1 // SPDX-License-Identifier: GPL-2.0 2 3 //! A condition variable. 4 //! 5 //! This module allows Rust code to use the kernel's [`struct wait_queue_head`] as a condition 6 //! variable. 7 8 use super::{lock::Backend, lock::Guard, LockClassKey}; 9 use crate::{ 10 ffi::{c_int, c_long}, 11 str::CStr, 12 task::{ 13 MAX_SCHEDULE_TIMEOUT, TASK_FREEZABLE, TASK_INTERRUPTIBLE, TASK_NORMAL, TASK_UNINTERRUPTIBLE, 14 }, 15 time::Jiffies, 16 types::Opaque, 17 }; 18 use core::{marker::PhantomPinned, pin::Pin, ptr}; 19 use pin_init::{pin_data, pin_init, PinInit}; 20 21 /// Creates a [`CondVar`] initialiser with the given name and a newly-created lock class. 22 #[macro_export] 23 macro_rules! new_condvar { 24 ($($name:literal)?) => { 25 $crate::sync::CondVar::new($crate::optional_name!($($name)?), $crate::static_lock_class!()) 26 }; 27 } 28 pub use new_condvar; 29 30 /// A conditional variable. 31 /// 32 /// Exposes the kernel's [`struct wait_queue_head`] as a condition variable. It allows the caller to 33 /// atomically release the given lock and go to sleep. It reacquires the lock when it wakes up. And 34 /// it wakes up when notified by another thread (via [`CondVar::notify_one`] or 35 /// [`CondVar::notify_all`]) or because the thread received a signal. It may also wake up 36 /// spuriously. 37 /// 38 /// Instances of [`CondVar`] need a lock class and to be pinned. The recommended way to create such 39 /// instances is with the [`pin_init`](crate::pin_init!) and [`new_condvar`] macros. 40 /// 41 /// # Examples 42 /// 43 /// The following is an example of using a condvar with a mutex: 44 /// 45 /// ``` 46 /// use kernel::sync::{new_condvar, new_mutex, CondVar, Mutex}; 47 /// 48 /// #[pin_data] 49 /// pub struct Example { 50 /// #[pin] 51 /// value: Mutex<u32>, 52 /// 53 /// #[pin] 54 /// value_changed: CondVar, 55 /// } 56 /// 57 /// /// Waits for `e.value` to become `v`. 58 /// fn wait_for_value(e: &Example, v: u32) { 59 /// let mut guard = e.value.lock(); 60 /// while *guard != v { 61 /// e.value_changed.wait(&mut guard); 62 /// } 63 /// } 64 /// 65 /// /// Increments `e.value` and notifies all potential waiters. 66 /// fn increment(e: &Example) { 67 /// *e.value.lock() += 1; 68 /// e.value_changed.notify_all(); 69 /// } 70 /// 71 /// /// Allocates a new boxed `Example`. 72 /// fn new_example() -> Result<Pin<KBox<Example>>> { 73 /// KBox::pin_init(pin_init!(Example { 74 /// value <- new_mutex!(0), 75 /// value_changed <- new_condvar!(), 76 /// }), GFP_KERNEL) 77 /// } 78 /// ``` 79 /// 80 /// [`struct wait_queue_head`]: srctree/include/linux/wait.h 81 #[pin_data] 82 pub struct CondVar { 83 #[pin] 84 pub(crate) wait_queue_head: Opaque<bindings::wait_queue_head>, 85 86 /// A condvar needs to be pinned because it contains a [`struct list_head`] that is 87 /// self-referential, so it cannot be safely moved once it is initialised. 88 /// 89 /// [`struct list_head`]: srctree/include/linux/types.h 90 #[pin] 91 _pin: PhantomPinned, 92 } 93 94 // SAFETY: `CondVar` only uses a `struct wait_queue_head`, which is safe to use on any thread. 95 unsafe impl Send for CondVar {} 96 97 // SAFETY: `CondVar` only uses a `struct wait_queue_head`, which is safe to use on multiple threads 98 // concurrently. 99 unsafe impl Sync for CondVar {} 100 101 impl CondVar { 102 /// Constructs a new condvar initialiser. new(name: &'static CStr, key: Pin<&'static LockClassKey>) -> impl PinInit<Self>103 pub fn new(name: &'static CStr, key: Pin<&'static LockClassKey>) -> impl PinInit<Self> { 104 pin_init!(Self { 105 _pin: PhantomPinned, 106 // SAFETY: `slot` is valid while the closure is called and both `name` and `key` have 107 // static lifetimes so they live indefinitely. 108 wait_queue_head <- Opaque::ffi_init(|slot| unsafe { 109 bindings::__init_waitqueue_head(slot, name.as_char_ptr(), key.as_ptr()) 110 }), 111 }) 112 } 113 wait_internal<T: ?Sized, B: Backend>( &self, wait_state: c_int, guard: &mut Guard<'_, T, B>, timeout_in_jiffies: c_long, ) -> c_long114 fn wait_internal<T: ?Sized, B: Backend>( 115 &self, 116 wait_state: c_int, 117 guard: &mut Guard<'_, T, B>, 118 timeout_in_jiffies: c_long, 119 ) -> c_long { 120 let wait = Opaque::<bindings::wait_queue_entry>::uninit(); 121 122 // SAFETY: `wait` points to valid memory. 123 unsafe { bindings::init_wait(wait.get()) }; 124 125 // SAFETY: Both `wait` and `wait_queue_head` point to valid memory. 126 unsafe { 127 bindings::prepare_to_wait_exclusive(self.wait_queue_head.get(), wait.get(), wait_state) 128 }; 129 130 // SAFETY: Switches to another thread. The timeout can be any number. 131 let ret = guard.do_unlocked(|| unsafe { bindings::schedule_timeout(timeout_in_jiffies) }); 132 133 // SAFETY: Both `wait` and `wait_queue_head` point to valid memory. 134 unsafe { bindings::finish_wait(self.wait_queue_head.get(), wait.get()) }; 135 136 ret 137 } 138 139 /// Releases the lock and waits for a notification in uninterruptible mode. 140 /// 141 /// Atomically releases the given lock (whose ownership is proven by the guard) and puts the 142 /// thread to sleep, reacquiring the lock on wake up. It wakes up when notified by 143 /// [`CondVar::notify_one`] or [`CondVar::notify_all`]. Note that it may also wake up 144 /// spuriously. wait<T: ?Sized, B: Backend>(&self, guard: &mut Guard<'_, T, B>)145 pub fn wait<T: ?Sized, B: Backend>(&self, guard: &mut Guard<'_, T, B>) { 146 self.wait_internal(TASK_UNINTERRUPTIBLE, guard, MAX_SCHEDULE_TIMEOUT); 147 } 148 149 /// Releases the lock and waits for a notification in interruptible mode. 150 /// 151 /// Similar to [`CondVar::wait`], except that the wait is interruptible. That is, the thread may 152 /// wake up due to signals. It may also wake up spuriously. 153 /// 154 /// Returns whether there is a signal pending. 155 #[must_use = "wait_interruptible returns if a signal is pending, so the caller must check the return value"] wait_interruptible<T: ?Sized, B: Backend>(&self, guard: &mut Guard<'_, T, B>) -> bool156 pub fn wait_interruptible<T: ?Sized, B: Backend>(&self, guard: &mut Guard<'_, T, B>) -> bool { 157 self.wait_internal(TASK_INTERRUPTIBLE, guard, MAX_SCHEDULE_TIMEOUT); 158 crate::current!().signal_pending() 159 } 160 161 /// Releases the lock and waits for a notification in interruptible and freezable mode. 162 /// 163 /// The process is allowed to be frozen during this sleep. No lock should be held when calling 164 /// this function, and there is a lockdep assertion for this. Freezing a task that holds a lock 165 /// can trivially deadlock vs another task that needs that lock to complete before it too can 166 /// hit freezable. 167 #[must_use = "wait_interruptible_freezable returns if a signal is pending, so the caller must check the return value"] wait_interruptible_freezable<T: ?Sized, B: Backend>( &self, guard: &mut Guard<'_, T, B>, ) -> bool168 pub fn wait_interruptible_freezable<T: ?Sized, B: Backend>( 169 &self, 170 guard: &mut Guard<'_, T, B>, 171 ) -> bool { 172 self.wait_internal( 173 TASK_INTERRUPTIBLE | TASK_FREEZABLE, 174 guard, 175 MAX_SCHEDULE_TIMEOUT, 176 ); 177 crate::current!().signal_pending() 178 } 179 180 /// Releases the lock and waits for a notification in interruptible mode. 181 /// 182 /// Atomically releases the given lock (whose ownership is proven by the guard) and puts the 183 /// thread to sleep. It wakes up when notified by [`CondVar::notify_one`] or 184 /// [`CondVar::notify_all`], or when a timeout occurs, or when the thread receives a signal. 185 #[must_use = "wait_interruptible_timeout returns if a signal is pending, so the caller must check the return value"] wait_interruptible_timeout<T: ?Sized, B: Backend>( &self, guard: &mut Guard<'_, T, B>, jiffies: Jiffies, ) -> CondVarTimeoutResult186 pub fn wait_interruptible_timeout<T: ?Sized, B: Backend>( 187 &self, 188 guard: &mut Guard<'_, T, B>, 189 jiffies: Jiffies, 190 ) -> CondVarTimeoutResult { 191 let jiffies = jiffies.try_into().unwrap_or(MAX_SCHEDULE_TIMEOUT); 192 let res = self.wait_internal(TASK_INTERRUPTIBLE, guard, jiffies); 193 194 match (res as Jiffies, crate::current!().signal_pending()) { 195 (jiffies, true) => CondVarTimeoutResult::Signal { jiffies }, 196 (0, false) => CondVarTimeoutResult::Timeout, 197 (jiffies, false) => CondVarTimeoutResult::Woken { jiffies }, 198 } 199 } 200 201 /// Calls the kernel function to notify the appropriate number of threads. notify(&self, count: c_int)202 fn notify(&self, count: c_int) { 203 // SAFETY: `wait_queue_head` points to valid memory. 204 unsafe { 205 bindings::__wake_up( 206 self.wait_queue_head.get(), 207 TASK_NORMAL, 208 count, 209 ptr::null_mut(), 210 ) 211 }; 212 } 213 214 /// Calls the kernel function to notify one thread synchronously. 215 /// 216 /// This method behaves like `notify_one`, except that it hints to the scheduler that the 217 /// current thread is about to go to sleep, so it should schedule the target thread on the same 218 /// CPU. notify_sync(&self)219 pub fn notify_sync(&self) { 220 // SAFETY: `wait_queue_head` points to valid memory. 221 unsafe { bindings::__wake_up_sync(self.wait_queue_head.get(), TASK_NORMAL) }; 222 } 223 224 /// Wakes a single waiter up, if any. 225 /// 226 /// This is not 'sticky' in the sense that if no thread is waiting, the notification is lost 227 /// completely (as opposed to automatically waking up the next waiter). notify_one(&self)228 pub fn notify_one(&self) { 229 self.notify(1); 230 } 231 232 /// Wakes all waiters up, if any. 233 /// 234 /// This is not 'sticky' in the sense that if no thread is waiting, the notification is lost 235 /// completely (as opposed to automatically waking up the next waiter). notify_all(&self)236 pub fn notify_all(&self) { 237 self.notify(0); 238 } 239 } 240 241 /// The return type of `wait_timeout`. 242 pub enum CondVarTimeoutResult { 243 /// The timeout was reached. 244 Timeout, 245 /// Somebody woke us up. 246 Woken { 247 /// Remaining sleep duration. 248 jiffies: Jiffies, 249 }, 250 /// A signal occurred. 251 Signal { 252 /// Remaining sleep duration. 253 jiffies: Jiffies, 254 }, 255 } 256