1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Linux Socket Filter - Kernel level socket filtering
4 *
5 * Based on the design of the Berkeley Packet Filter. The new
6 * internal format has been designed by PLUMgrid:
7 *
8 * Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9 *
10 * Authors:
11 *
12 * Jay Schulist <jschlst@samba.org>
13 * Alexei Starovoitov <ast@plumgrid.com>
14 * Daniel Borkmann <dborkman@redhat.com>
15 *
16 * Andi Kleen - Fix a few bad bugs and races.
17 * Kris Katterjohn - Added many additional checks in bpf_check_classic()
18 */
19
20 #include <uapi/linux/btf.h>
21 #include <linux/filter.h>
22 #include <linux/skbuff.h>
23 #include <linux/vmalloc.h>
24 #include <linux/prandom.h>
25 #include <linux/bpf.h>
26 #include <linux/btf.h>
27 #include <linux/objtool.h>
28 #include <linux/overflow.h>
29 #include <linux/rbtree_latch.h>
30 #include <linux/kallsyms.h>
31 #include <linux/rcupdate.h>
32 #include <linux/perf_event.h>
33 #include <linux/extable.h>
34 #include <linux/log2.h>
35 #include <linux/bpf_verifier.h>
36 #include <linux/nodemask.h>
37 #include <linux/nospec.h>
38 #include <linux/bpf_mem_alloc.h>
39 #include <linux/memcontrol.h>
40 #include <linux/execmem.h>
41
42 #include <asm/barrier.h>
43 #include <linux/unaligned.h>
44
45 /* Registers */
46 #define BPF_R0 regs[BPF_REG_0]
47 #define BPF_R1 regs[BPF_REG_1]
48 #define BPF_R2 regs[BPF_REG_2]
49 #define BPF_R3 regs[BPF_REG_3]
50 #define BPF_R4 regs[BPF_REG_4]
51 #define BPF_R5 regs[BPF_REG_5]
52 #define BPF_R6 regs[BPF_REG_6]
53 #define BPF_R7 regs[BPF_REG_7]
54 #define BPF_R8 regs[BPF_REG_8]
55 #define BPF_R9 regs[BPF_REG_9]
56 #define BPF_R10 regs[BPF_REG_10]
57
58 /* Named registers */
59 #define DST regs[insn->dst_reg]
60 #define SRC regs[insn->src_reg]
61 #define FP regs[BPF_REG_FP]
62 #define AX regs[BPF_REG_AX]
63 #define ARG1 regs[BPF_REG_ARG1]
64 #define CTX regs[BPF_REG_CTX]
65 #define OFF insn->off
66 #define IMM insn->imm
67
68 struct bpf_mem_alloc bpf_global_ma;
69 bool bpf_global_ma_set;
70
71 /* No hurry in this branch
72 *
73 * Exported for the bpf jit load helper.
74 */
bpf_internal_load_pointer_neg_helper(const struct sk_buff * skb,int k,unsigned int size)75 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
76 {
77 u8 *ptr = NULL;
78
79 if (k >= SKF_NET_OFF) {
80 ptr = skb_network_header(skb) + k - SKF_NET_OFF;
81 } else if (k >= SKF_LL_OFF) {
82 if (unlikely(!skb_mac_header_was_set(skb)))
83 return NULL;
84 ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
85 }
86 if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
87 return ptr;
88
89 return NULL;
90 }
91
92 /* tell bpf programs that include vmlinux.h kernel's PAGE_SIZE */
93 enum page_size_enum {
94 __PAGE_SIZE = PAGE_SIZE
95 };
96
bpf_prog_alloc_no_stats(unsigned int size,gfp_t gfp_extra_flags)97 struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags)
98 {
99 gfp_t gfp_flags = bpf_memcg_flags(GFP_KERNEL | __GFP_ZERO | gfp_extra_flags);
100 struct bpf_prog_aux *aux;
101 struct bpf_prog *fp;
102
103 size = round_up(size, __PAGE_SIZE);
104 fp = __vmalloc(size, gfp_flags);
105 if (fp == NULL)
106 return NULL;
107
108 aux = kzalloc(sizeof(*aux), bpf_memcg_flags(GFP_KERNEL | gfp_extra_flags));
109 if (aux == NULL) {
110 vfree(fp);
111 return NULL;
112 }
113 fp->active = alloc_percpu_gfp(int, bpf_memcg_flags(GFP_KERNEL | gfp_extra_flags));
114 if (!fp->active) {
115 vfree(fp);
116 kfree(aux);
117 return NULL;
118 }
119
120 fp->pages = size / PAGE_SIZE;
121 fp->aux = aux;
122 fp->aux->prog = fp;
123 fp->jit_requested = ebpf_jit_enabled();
124 fp->blinding_requested = bpf_jit_blinding_enabled(fp);
125 #ifdef CONFIG_CGROUP_BPF
126 aux->cgroup_atype = CGROUP_BPF_ATTACH_TYPE_INVALID;
127 #endif
128
129 INIT_LIST_HEAD_RCU(&fp->aux->ksym.lnode);
130 #ifdef CONFIG_FINEIBT
131 INIT_LIST_HEAD_RCU(&fp->aux->ksym_prefix.lnode);
132 #endif
133 mutex_init(&fp->aux->used_maps_mutex);
134 mutex_init(&fp->aux->ext_mutex);
135 mutex_init(&fp->aux->dst_mutex);
136
137 #ifdef CONFIG_BPF_SYSCALL
138 bpf_prog_stream_init(fp);
139 #endif
140
141 return fp;
142 }
143
bpf_prog_alloc(unsigned int size,gfp_t gfp_extra_flags)144 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags)
145 {
146 gfp_t gfp_flags = bpf_memcg_flags(GFP_KERNEL | __GFP_ZERO | gfp_extra_flags);
147 struct bpf_prog *prog;
148 int cpu;
149
150 prog = bpf_prog_alloc_no_stats(size, gfp_extra_flags);
151 if (!prog)
152 return NULL;
153
154 prog->stats = alloc_percpu_gfp(struct bpf_prog_stats, gfp_flags);
155 if (!prog->stats) {
156 free_percpu(prog->active);
157 kfree(prog->aux);
158 vfree(prog);
159 return NULL;
160 }
161
162 for_each_possible_cpu(cpu) {
163 struct bpf_prog_stats *pstats;
164
165 pstats = per_cpu_ptr(prog->stats, cpu);
166 u64_stats_init(&pstats->syncp);
167 }
168 return prog;
169 }
170 EXPORT_SYMBOL_GPL(bpf_prog_alloc);
171
bpf_prog_alloc_jited_linfo(struct bpf_prog * prog)172 int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog)
173 {
174 if (!prog->aux->nr_linfo || !prog->jit_requested)
175 return 0;
176
177 prog->aux->jited_linfo = kvcalloc(prog->aux->nr_linfo,
178 sizeof(*prog->aux->jited_linfo),
179 bpf_memcg_flags(GFP_KERNEL | __GFP_NOWARN));
180 if (!prog->aux->jited_linfo)
181 return -ENOMEM;
182
183 return 0;
184 }
185
bpf_prog_jit_attempt_done(struct bpf_prog * prog)186 void bpf_prog_jit_attempt_done(struct bpf_prog *prog)
187 {
188 if (prog->aux->jited_linfo &&
189 (!prog->jited || !prog->aux->jited_linfo[0])) {
190 kvfree(prog->aux->jited_linfo);
191 prog->aux->jited_linfo = NULL;
192 }
193
194 kfree(prog->aux->kfunc_tab);
195 prog->aux->kfunc_tab = NULL;
196 }
197
198 /* The jit engine is responsible to provide an array
199 * for insn_off to the jited_off mapping (insn_to_jit_off).
200 *
201 * The idx to this array is the insn_off. Hence, the insn_off
202 * here is relative to the prog itself instead of the main prog.
203 * This array has one entry for each xlated bpf insn.
204 *
205 * jited_off is the byte off to the end of the jited insn.
206 *
207 * Hence, with
208 * insn_start:
209 * The first bpf insn off of the prog. The insn off
210 * here is relative to the main prog.
211 * e.g. if prog is a subprog, insn_start > 0
212 * linfo_idx:
213 * The prog's idx to prog->aux->linfo and jited_linfo
214 *
215 * jited_linfo[linfo_idx] = prog->bpf_func
216 *
217 * For i > linfo_idx,
218 *
219 * jited_linfo[i] = prog->bpf_func +
220 * insn_to_jit_off[linfo[i].insn_off - insn_start - 1]
221 */
bpf_prog_fill_jited_linfo(struct bpf_prog * prog,const u32 * insn_to_jit_off)222 void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
223 const u32 *insn_to_jit_off)
224 {
225 u32 linfo_idx, insn_start, insn_end, nr_linfo, i;
226 const struct bpf_line_info *linfo;
227 void **jited_linfo;
228
229 if (!prog->aux->jited_linfo || prog->aux->func_idx > prog->aux->func_cnt)
230 /* Userspace did not provide linfo */
231 return;
232
233 linfo_idx = prog->aux->linfo_idx;
234 linfo = &prog->aux->linfo[linfo_idx];
235 insn_start = linfo[0].insn_off;
236 insn_end = insn_start + prog->len;
237
238 jited_linfo = &prog->aux->jited_linfo[linfo_idx];
239 jited_linfo[0] = prog->bpf_func;
240
241 nr_linfo = prog->aux->nr_linfo - linfo_idx;
242
243 for (i = 1; i < nr_linfo && linfo[i].insn_off < insn_end; i++)
244 /* The verifier ensures that linfo[i].insn_off is
245 * strictly increasing
246 */
247 jited_linfo[i] = prog->bpf_func +
248 insn_to_jit_off[linfo[i].insn_off - insn_start - 1];
249 }
250
bpf_prog_realloc(struct bpf_prog * fp_old,unsigned int size,gfp_t gfp_extra_flags)251 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
252 gfp_t gfp_extra_flags)
253 {
254 gfp_t gfp_flags = bpf_memcg_flags(GFP_KERNEL | __GFP_ZERO | gfp_extra_flags);
255 struct bpf_prog *fp;
256 u32 pages;
257
258 size = round_up(size, PAGE_SIZE);
259 pages = size / PAGE_SIZE;
260 if (pages <= fp_old->pages)
261 return fp_old;
262
263 fp = __vmalloc(size, gfp_flags);
264 if (fp) {
265 memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE);
266 fp->pages = pages;
267 fp->aux->prog = fp;
268
269 /* We keep fp->aux from fp_old around in the new
270 * reallocated structure.
271 */
272 fp_old->aux = NULL;
273 fp_old->stats = NULL;
274 fp_old->active = NULL;
275 __bpf_prog_free(fp_old);
276 }
277
278 return fp;
279 }
280
__bpf_prog_free(struct bpf_prog * fp)281 void __bpf_prog_free(struct bpf_prog *fp)
282 {
283 if (fp->aux) {
284 mutex_destroy(&fp->aux->used_maps_mutex);
285 mutex_destroy(&fp->aux->dst_mutex);
286 kfree(fp->aux->poke_tab);
287 kfree(fp->aux);
288 }
289 free_percpu(fp->stats);
290 free_percpu(fp->active);
291 vfree(fp);
292 }
293
bpf_prog_calc_tag(struct bpf_prog * fp)294 int bpf_prog_calc_tag(struct bpf_prog *fp)
295 {
296 const u32 bits_offset = SHA1_BLOCK_SIZE - sizeof(__be64);
297 u32 raw_size = bpf_prog_tag_scratch_size(fp);
298 u32 digest[SHA1_DIGEST_WORDS];
299 u32 ws[SHA1_WORKSPACE_WORDS];
300 u32 i, bsize, psize, blocks;
301 struct bpf_insn *dst;
302 bool was_ld_map;
303 u8 *raw, *todo;
304 __be32 *result;
305 __be64 *bits;
306
307 raw = vmalloc(raw_size);
308 if (!raw)
309 return -ENOMEM;
310
311 sha1_init_raw(digest);
312 memset(ws, 0, sizeof(ws));
313
314 /* We need to take out the map fd for the digest calculation
315 * since they are unstable from user space side.
316 */
317 dst = (void *)raw;
318 for (i = 0, was_ld_map = false; i < fp->len; i++) {
319 dst[i] = fp->insnsi[i];
320 if (!was_ld_map &&
321 dst[i].code == (BPF_LD | BPF_IMM | BPF_DW) &&
322 (dst[i].src_reg == BPF_PSEUDO_MAP_FD ||
323 dst[i].src_reg == BPF_PSEUDO_MAP_VALUE)) {
324 was_ld_map = true;
325 dst[i].imm = 0;
326 } else if (was_ld_map &&
327 dst[i].code == 0 &&
328 dst[i].dst_reg == 0 &&
329 dst[i].src_reg == 0 &&
330 dst[i].off == 0) {
331 was_ld_map = false;
332 dst[i].imm = 0;
333 } else {
334 was_ld_map = false;
335 }
336 }
337
338 psize = bpf_prog_insn_size(fp);
339 memset(&raw[psize], 0, raw_size - psize);
340 raw[psize++] = 0x80;
341
342 bsize = round_up(psize, SHA1_BLOCK_SIZE);
343 blocks = bsize / SHA1_BLOCK_SIZE;
344 todo = raw;
345 if (bsize - psize >= sizeof(__be64)) {
346 bits = (__be64 *)(todo + bsize - sizeof(__be64));
347 } else {
348 bits = (__be64 *)(todo + bsize + bits_offset);
349 blocks++;
350 }
351 *bits = cpu_to_be64((psize - 1) << 3);
352
353 while (blocks--) {
354 sha1_transform(digest, todo, ws);
355 todo += SHA1_BLOCK_SIZE;
356 }
357
358 result = (__force __be32 *)digest;
359 for (i = 0; i < SHA1_DIGEST_WORDS; i++)
360 result[i] = cpu_to_be32(digest[i]);
361 memcpy(fp->tag, result, sizeof(fp->tag));
362
363 vfree(raw);
364 return 0;
365 }
366
bpf_adj_delta_to_imm(struct bpf_insn * insn,u32 pos,s32 end_old,s32 end_new,s32 curr,const bool probe_pass)367 static int bpf_adj_delta_to_imm(struct bpf_insn *insn, u32 pos, s32 end_old,
368 s32 end_new, s32 curr, const bool probe_pass)
369 {
370 const s64 imm_min = S32_MIN, imm_max = S32_MAX;
371 s32 delta = end_new - end_old;
372 s64 imm = insn->imm;
373
374 if (curr < pos && curr + imm + 1 >= end_old)
375 imm += delta;
376 else if (curr >= end_new && curr + imm + 1 < end_new)
377 imm -= delta;
378 if (imm < imm_min || imm > imm_max)
379 return -ERANGE;
380 if (!probe_pass)
381 insn->imm = imm;
382 return 0;
383 }
384
bpf_adj_delta_to_off(struct bpf_insn * insn,u32 pos,s32 end_old,s32 end_new,s32 curr,const bool probe_pass)385 static int bpf_adj_delta_to_off(struct bpf_insn *insn, u32 pos, s32 end_old,
386 s32 end_new, s32 curr, const bool probe_pass)
387 {
388 s64 off_min, off_max, off;
389 s32 delta = end_new - end_old;
390
391 if (insn->code == (BPF_JMP32 | BPF_JA)) {
392 off = insn->imm;
393 off_min = S32_MIN;
394 off_max = S32_MAX;
395 } else {
396 off = insn->off;
397 off_min = S16_MIN;
398 off_max = S16_MAX;
399 }
400
401 if (curr < pos && curr + off + 1 >= end_old)
402 off += delta;
403 else if (curr >= end_new && curr + off + 1 < end_new)
404 off -= delta;
405 if (off < off_min || off > off_max)
406 return -ERANGE;
407 if (!probe_pass) {
408 if (insn->code == (BPF_JMP32 | BPF_JA))
409 insn->imm = off;
410 else
411 insn->off = off;
412 }
413 return 0;
414 }
415
bpf_adj_branches(struct bpf_prog * prog,u32 pos,s32 end_old,s32 end_new,const bool probe_pass)416 static int bpf_adj_branches(struct bpf_prog *prog, u32 pos, s32 end_old,
417 s32 end_new, const bool probe_pass)
418 {
419 u32 i, insn_cnt = prog->len + (probe_pass ? end_new - end_old : 0);
420 struct bpf_insn *insn = prog->insnsi;
421 int ret = 0;
422
423 for (i = 0; i < insn_cnt; i++, insn++) {
424 u8 code;
425
426 /* In the probing pass we still operate on the original,
427 * unpatched image in order to check overflows before we
428 * do any other adjustments. Therefore skip the patchlet.
429 */
430 if (probe_pass && i == pos) {
431 i = end_new;
432 insn = prog->insnsi + end_old;
433 }
434 if (bpf_pseudo_func(insn)) {
435 ret = bpf_adj_delta_to_imm(insn, pos, end_old,
436 end_new, i, probe_pass);
437 if (ret)
438 return ret;
439 continue;
440 }
441 code = insn->code;
442 if ((BPF_CLASS(code) != BPF_JMP &&
443 BPF_CLASS(code) != BPF_JMP32) ||
444 BPF_OP(code) == BPF_EXIT)
445 continue;
446 /* Adjust offset of jmps if we cross patch boundaries. */
447 if (BPF_OP(code) == BPF_CALL) {
448 if (insn->src_reg != BPF_PSEUDO_CALL)
449 continue;
450 ret = bpf_adj_delta_to_imm(insn, pos, end_old,
451 end_new, i, probe_pass);
452 } else {
453 ret = bpf_adj_delta_to_off(insn, pos, end_old,
454 end_new, i, probe_pass);
455 }
456 if (ret)
457 break;
458 }
459
460 return ret;
461 }
462
bpf_adj_linfo(struct bpf_prog * prog,u32 off,u32 delta)463 static void bpf_adj_linfo(struct bpf_prog *prog, u32 off, u32 delta)
464 {
465 struct bpf_line_info *linfo;
466 u32 i, nr_linfo;
467
468 nr_linfo = prog->aux->nr_linfo;
469 if (!nr_linfo || !delta)
470 return;
471
472 linfo = prog->aux->linfo;
473
474 for (i = 0; i < nr_linfo; i++)
475 if (off < linfo[i].insn_off)
476 break;
477
478 /* Push all off < linfo[i].insn_off by delta */
479 for (; i < nr_linfo; i++)
480 linfo[i].insn_off += delta;
481 }
482
bpf_patch_insn_single(struct bpf_prog * prog,u32 off,const struct bpf_insn * patch,u32 len)483 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
484 const struct bpf_insn *patch, u32 len)
485 {
486 u32 insn_adj_cnt, insn_rest, insn_delta = len - 1;
487 const u32 cnt_max = S16_MAX;
488 struct bpf_prog *prog_adj;
489 int err;
490
491 /* Since our patchlet doesn't expand the image, we're done. */
492 if (insn_delta == 0) {
493 memcpy(prog->insnsi + off, patch, sizeof(*patch));
494 return prog;
495 }
496
497 insn_adj_cnt = prog->len + insn_delta;
498
499 /* Reject anything that would potentially let the insn->off
500 * target overflow when we have excessive program expansions.
501 * We need to probe here before we do any reallocation where
502 * we afterwards may not fail anymore.
503 */
504 if (insn_adj_cnt > cnt_max &&
505 (err = bpf_adj_branches(prog, off, off + 1, off + len, true)))
506 return ERR_PTR(err);
507
508 /* Several new instructions need to be inserted. Make room
509 * for them. Likely, there's no need for a new allocation as
510 * last page could have large enough tailroom.
511 */
512 prog_adj = bpf_prog_realloc(prog, bpf_prog_size(insn_adj_cnt),
513 GFP_USER);
514 if (!prog_adj)
515 return ERR_PTR(-ENOMEM);
516
517 prog_adj->len = insn_adj_cnt;
518
519 /* Patching happens in 3 steps:
520 *
521 * 1) Move over tail of insnsi from next instruction onwards,
522 * so we can patch the single target insn with one or more
523 * new ones (patching is always from 1 to n insns, n > 0).
524 * 2) Inject new instructions at the target location.
525 * 3) Adjust branch offsets if necessary.
526 */
527 insn_rest = insn_adj_cnt - off - len;
528
529 memmove(prog_adj->insnsi + off + len, prog_adj->insnsi + off + 1,
530 sizeof(*patch) * insn_rest);
531 memcpy(prog_adj->insnsi + off, patch, sizeof(*patch) * len);
532
533 /* We are guaranteed to not fail at this point, otherwise
534 * the ship has sailed to reverse to the original state. An
535 * overflow cannot happen at this point.
536 */
537 BUG_ON(bpf_adj_branches(prog_adj, off, off + 1, off + len, false));
538
539 bpf_adj_linfo(prog_adj, off, insn_delta);
540
541 return prog_adj;
542 }
543
bpf_remove_insns(struct bpf_prog * prog,u32 off,u32 cnt)544 int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt)
545 {
546 int err;
547
548 /* Branch offsets can't overflow when program is shrinking, no need
549 * to call bpf_adj_branches(..., true) here
550 */
551 memmove(prog->insnsi + off, prog->insnsi + off + cnt,
552 sizeof(struct bpf_insn) * (prog->len - off - cnt));
553 prog->len -= cnt;
554
555 err = bpf_adj_branches(prog, off, off + cnt, off, false);
556 WARN_ON_ONCE(err);
557 return err;
558 }
559
bpf_prog_kallsyms_del_subprogs(struct bpf_prog * fp)560 static void bpf_prog_kallsyms_del_subprogs(struct bpf_prog *fp)
561 {
562 int i;
563
564 for (i = 0; i < fp->aux->real_func_cnt; i++)
565 bpf_prog_kallsyms_del(fp->aux->func[i]);
566 }
567
bpf_prog_kallsyms_del_all(struct bpf_prog * fp)568 void bpf_prog_kallsyms_del_all(struct bpf_prog *fp)
569 {
570 bpf_prog_kallsyms_del_subprogs(fp);
571 bpf_prog_kallsyms_del(fp);
572 }
573
574 #ifdef CONFIG_BPF_JIT
575 /* All BPF JIT sysctl knobs here. */
576 int bpf_jit_enable __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON);
577 int bpf_jit_kallsyms __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON);
578 int bpf_jit_harden __read_mostly;
579 long bpf_jit_limit __read_mostly;
580 long bpf_jit_limit_max __read_mostly;
581
582 static void
bpf_prog_ksym_set_addr(struct bpf_prog * prog)583 bpf_prog_ksym_set_addr(struct bpf_prog *prog)
584 {
585 WARN_ON_ONCE(!bpf_prog_ebpf_jited(prog));
586
587 prog->aux->ksym.start = (unsigned long) prog->bpf_func;
588 prog->aux->ksym.end = prog->aux->ksym.start + prog->jited_len;
589 }
590
591 static void
bpf_prog_ksym_set_name(struct bpf_prog * prog)592 bpf_prog_ksym_set_name(struct bpf_prog *prog)
593 {
594 char *sym = prog->aux->ksym.name;
595 const char *end = sym + KSYM_NAME_LEN;
596 const struct btf_type *type;
597 const char *func_name;
598
599 BUILD_BUG_ON(sizeof("bpf_prog_") +
600 sizeof(prog->tag) * 2 +
601 /* name has been null terminated.
602 * We should need +1 for the '_' preceding
603 * the name. However, the null character
604 * is double counted between the name and the
605 * sizeof("bpf_prog_") above, so we omit
606 * the +1 here.
607 */
608 sizeof(prog->aux->name) > KSYM_NAME_LEN);
609
610 sym += snprintf(sym, KSYM_NAME_LEN, "bpf_prog_");
611 sym = bin2hex(sym, prog->tag, sizeof(prog->tag));
612
613 /* prog->aux->name will be ignored if full btf name is available */
614 if (prog->aux->func_info_cnt && prog->aux->func_idx < prog->aux->func_info_cnt) {
615 type = btf_type_by_id(prog->aux->btf,
616 prog->aux->func_info[prog->aux->func_idx].type_id);
617 func_name = btf_name_by_offset(prog->aux->btf, type->name_off);
618 snprintf(sym, (size_t)(end - sym), "_%s", func_name);
619 return;
620 }
621
622 if (prog->aux->name[0])
623 snprintf(sym, (size_t)(end - sym), "_%s", prog->aux->name);
624 else
625 *sym = 0;
626 }
627
bpf_get_ksym_start(struct latch_tree_node * n)628 static unsigned long bpf_get_ksym_start(struct latch_tree_node *n)
629 {
630 return container_of(n, struct bpf_ksym, tnode)->start;
631 }
632
bpf_tree_less(struct latch_tree_node * a,struct latch_tree_node * b)633 static __always_inline bool bpf_tree_less(struct latch_tree_node *a,
634 struct latch_tree_node *b)
635 {
636 return bpf_get_ksym_start(a) < bpf_get_ksym_start(b);
637 }
638
bpf_tree_comp(void * key,struct latch_tree_node * n)639 static __always_inline int bpf_tree_comp(void *key, struct latch_tree_node *n)
640 {
641 unsigned long val = (unsigned long)key;
642 const struct bpf_ksym *ksym;
643
644 ksym = container_of(n, struct bpf_ksym, tnode);
645
646 if (val < ksym->start)
647 return -1;
648 /* Ensure that we detect return addresses as part of the program, when
649 * the final instruction is a call for a program part of the stack
650 * trace. Therefore, do val > ksym->end instead of val >= ksym->end.
651 */
652 if (val > ksym->end)
653 return 1;
654
655 return 0;
656 }
657
658 static const struct latch_tree_ops bpf_tree_ops = {
659 .less = bpf_tree_less,
660 .comp = bpf_tree_comp,
661 };
662
663 static DEFINE_SPINLOCK(bpf_lock);
664 static LIST_HEAD(bpf_kallsyms);
665 static struct latch_tree_root bpf_tree __cacheline_aligned;
666
bpf_ksym_add(struct bpf_ksym * ksym)667 void bpf_ksym_add(struct bpf_ksym *ksym)
668 {
669 spin_lock_bh(&bpf_lock);
670 WARN_ON_ONCE(!list_empty(&ksym->lnode));
671 list_add_tail_rcu(&ksym->lnode, &bpf_kallsyms);
672 latch_tree_insert(&ksym->tnode, &bpf_tree, &bpf_tree_ops);
673 spin_unlock_bh(&bpf_lock);
674 }
675
__bpf_ksym_del(struct bpf_ksym * ksym)676 static void __bpf_ksym_del(struct bpf_ksym *ksym)
677 {
678 if (list_empty(&ksym->lnode))
679 return;
680
681 latch_tree_erase(&ksym->tnode, &bpf_tree, &bpf_tree_ops);
682 list_del_rcu(&ksym->lnode);
683 }
684
bpf_ksym_del(struct bpf_ksym * ksym)685 void bpf_ksym_del(struct bpf_ksym *ksym)
686 {
687 spin_lock_bh(&bpf_lock);
688 __bpf_ksym_del(ksym);
689 spin_unlock_bh(&bpf_lock);
690 }
691
bpf_prog_kallsyms_candidate(const struct bpf_prog * fp)692 static bool bpf_prog_kallsyms_candidate(const struct bpf_prog *fp)
693 {
694 return fp->jited && !bpf_prog_was_classic(fp);
695 }
696
bpf_prog_kallsyms_add(struct bpf_prog * fp)697 void bpf_prog_kallsyms_add(struct bpf_prog *fp)
698 {
699 if (!bpf_prog_kallsyms_candidate(fp) ||
700 !bpf_token_capable(fp->aux->token, CAP_BPF))
701 return;
702
703 bpf_prog_ksym_set_addr(fp);
704 bpf_prog_ksym_set_name(fp);
705 fp->aux->ksym.prog = true;
706
707 bpf_ksym_add(&fp->aux->ksym);
708
709 #ifdef CONFIG_FINEIBT
710 /*
711 * When FineIBT, code in the __cfi_foo() symbols can get executed
712 * and hence unwinder needs help.
713 */
714 if (cfi_mode != CFI_FINEIBT)
715 return;
716
717 snprintf(fp->aux->ksym_prefix.name, KSYM_NAME_LEN,
718 "__cfi_%s", fp->aux->ksym.name);
719
720 fp->aux->ksym_prefix.start = (unsigned long) fp->bpf_func - 16;
721 fp->aux->ksym_prefix.end = (unsigned long) fp->bpf_func;
722
723 bpf_ksym_add(&fp->aux->ksym_prefix);
724 #endif
725 }
726
bpf_prog_kallsyms_del(struct bpf_prog * fp)727 void bpf_prog_kallsyms_del(struct bpf_prog *fp)
728 {
729 if (!bpf_prog_kallsyms_candidate(fp))
730 return;
731
732 bpf_ksym_del(&fp->aux->ksym);
733 #ifdef CONFIG_FINEIBT
734 if (cfi_mode != CFI_FINEIBT)
735 return;
736 bpf_ksym_del(&fp->aux->ksym_prefix);
737 #endif
738 }
739
bpf_ksym_find(unsigned long addr)740 static struct bpf_ksym *bpf_ksym_find(unsigned long addr)
741 {
742 struct latch_tree_node *n;
743
744 n = latch_tree_find((void *)addr, &bpf_tree, &bpf_tree_ops);
745 return n ? container_of(n, struct bpf_ksym, tnode) : NULL;
746 }
747
__bpf_address_lookup(unsigned long addr,unsigned long * size,unsigned long * off,char * sym)748 int __bpf_address_lookup(unsigned long addr, unsigned long *size,
749 unsigned long *off, char *sym)
750 {
751 struct bpf_ksym *ksym;
752 int ret = 0;
753
754 rcu_read_lock();
755 ksym = bpf_ksym_find(addr);
756 if (ksym) {
757 unsigned long symbol_start = ksym->start;
758 unsigned long symbol_end = ksym->end;
759
760 ret = strscpy(sym, ksym->name, KSYM_NAME_LEN);
761
762 if (size)
763 *size = symbol_end - symbol_start;
764 if (off)
765 *off = addr - symbol_start;
766 }
767 rcu_read_unlock();
768
769 return ret;
770 }
771
is_bpf_text_address(unsigned long addr)772 bool is_bpf_text_address(unsigned long addr)
773 {
774 bool ret;
775
776 rcu_read_lock();
777 ret = bpf_ksym_find(addr) != NULL;
778 rcu_read_unlock();
779
780 return ret;
781 }
782
bpf_prog_ksym_find(unsigned long addr)783 struct bpf_prog *bpf_prog_ksym_find(unsigned long addr)
784 {
785 struct bpf_ksym *ksym;
786
787 WARN_ON_ONCE(!rcu_read_lock_held());
788 ksym = bpf_ksym_find(addr);
789
790 return ksym && ksym->prog ?
791 container_of(ksym, struct bpf_prog_aux, ksym)->prog :
792 NULL;
793 }
794
search_bpf_extables(unsigned long addr)795 const struct exception_table_entry *search_bpf_extables(unsigned long addr)
796 {
797 const struct exception_table_entry *e = NULL;
798 struct bpf_prog *prog;
799
800 rcu_read_lock();
801 prog = bpf_prog_ksym_find(addr);
802 if (!prog)
803 goto out;
804 if (!prog->aux->num_exentries)
805 goto out;
806
807 e = search_extable(prog->aux->extable, prog->aux->num_exentries, addr);
808 out:
809 rcu_read_unlock();
810 return e;
811 }
812
bpf_get_kallsym(unsigned int symnum,unsigned long * value,char * type,char * sym)813 int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
814 char *sym)
815 {
816 struct bpf_ksym *ksym;
817 unsigned int it = 0;
818 int ret = -ERANGE;
819
820 if (!bpf_jit_kallsyms_enabled())
821 return ret;
822
823 rcu_read_lock();
824 list_for_each_entry_rcu(ksym, &bpf_kallsyms, lnode) {
825 if (it++ != symnum)
826 continue;
827
828 strscpy(sym, ksym->name, KSYM_NAME_LEN);
829
830 *value = ksym->start;
831 *type = BPF_SYM_ELF_TYPE;
832
833 ret = 0;
834 break;
835 }
836 rcu_read_unlock();
837
838 return ret;
839 }
840
bpf_jit_add_poke_descriptor(struct bpf_prog * prog,struct bpf_jit_poke_descriptor * poke)841 int bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
842 struct bpf_jit_poke_descriptor *poke)
843 {
844 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
845 static const u32 poke_tab_max = 1024;
846 u32 slot = prog->aux->size_poke_tab;
847 u32 size = slot + 1;
848
849 if (size > poke_tab_max)
850 return -ENOSPC;
851 if (poke->tailcall_target || poke->tailcall_target_stable ||
852 poke->tailcall_bypass || poke->adj_off || poke->bypass_addr)
853 return -EINVAL;
854
855 switch (poke->reason) {
856 case BPF_POKE_REASON_TAIL_CALL:
857 if (!poke->tail_call.map)
858 return -EINVAL;
859 break;
860 default:
861 return -EINVAL;
862 }
863
864 tab = krealloc_array(tab, size, sizeof(*poke), GFP_KERNEL);
865 if (!tab)
866 return -ENOMEM;
867
868 memcpy(&tab[slot], poke, sizeof(*poke));
869 prog->aux->size_poke_tab = size;
870 prog->aux->poke_tab = tab;
871
872 return slot;
873 }
874
875 /*
876 * BPF program pack allocator.
877 *
878 * Most BPF programs are pretty small. Allocating a hole page for each
879 * program is sometime a waste. Many small bpf program also adds pressure
880 * to instruction TLB. To solve this issue, we introduce a BPF program pack
881 * allocator. The prog_pack allocator uses HPAGE_PMD_SIZE page (2MB on x86)
882 * to host BPF programs.
883 */
884 #define BPF_PROG_CHUNK_SHIFT 6
885 #define BPF_PROG_CHUNK_SIZE (1 << BPF_PROG_CHUNK_SHIFT)
886 #define BPF_PROG_CHUNK_MASK (~(BPF_PROG_CHUNK_SIZE - 1))
887
888 struct bpf_prog_pack {
889 struct list_head list;
890 void *ptr;
891 unsigned long bitmap[];
892 };
893
bpf_jit_fill_hole_with_zero(void * area,unsigned int size)894 void bpf_jit_fill_hole_with_zero(void *area, unsigned int size)
895 {
896 memset(area, 0, size);
897 }
898
899 #define BPF_PROG_SIZE_TO_NBITS(size) (round_up(size, BPF_PROG_CHUNK_SIZE) / BPF_PROG_CHUNK_SIZE)
900
901 static DEFINE_MUTEX(pack_mutex);
902 static LIST_HEAD(pack_list);
903
904 /* PMD_SIZE is not available in some special config, e.g. ARCH=arm with
905 * CONFIG_MMU=n. Use PAGE_SIZE in these cases.
906 */
907 #ifdef PMD_SIZE
908 /* PMD_SIZE is really big for some archs. It doesn't make sense to
909 * reserve too much memory in one allocation. Hardcode BPF_PROG_PACK_SIZE to
910 * 2MiB * num_possible_nodes(). On most architectures PMD_SIZE will be
911 * greater than or equal to 2MB.
912 */
913 #define BPF_PROG_PACK_SIZE (SZ_2M * num_possible_nodes())
914 #else
915 #define BPF_PROG_PACK_SIZE PAGE_SIZE
916 #endif
917
918 #define BPF_PROG_CHUNK_COUNT (BPF_PROG_PACK_SIZE / BPF_PROG_CHUNK_SIZE)
919
alloc_new_pack(bpf_jit_fill_hole_t bpf_fill_ill_insns)920 static struct bpf_prog_pack *alloc_new_pack(bpf_jit_fill_hole_t bpf_fill_ill_insns)
921 {
922 struct bpf_prog_pack *pack;
923 int err;
924
925 pack = kzalloc(struct_size(pack, bitmap, BITS_TO_LONGS(BPF_PROG_CHUNK_COUNT)),
926 GFP_KERNEL);
927 if (!pack)
928 return NULL;
929 pack->ptr = bpf_jit_alloc_exec(BPF_PROG_PACK_SIZE);
930 if (!pack->ptr)
931 goto out;
932 bpf_fill_ill_insns(pack->ptr, BPF_PROG_PACK_SIZE);
933 bitmap_zero(pack->bitmap, BPF_PROG_PACK_SIZE / BPF_PROG_CHUNK_SIZE);
934
935 set_vm_flush_reset_perms(pack->ptr);
936 err = set_memory_rox((unsigned long)pack->ptr,
937 BPF_PROG_PACK_SIZE / PAGE_SIZE);
938 if (err)
939 goto out;
940 list_add_tail(&pack->list, &pack_list);
941 return pack;
942
943 out:
944 bpf_jit_free_exec(pack->ptr);
945 kfree(pack);
946 return NULL;
947 }
948
bpf_prog_pack_alloc(u32 size,bpf_jit_fill_hole_t bpf_fill_ill_insns)949 void *bpf_prog_pack_alloc(u32 size, bpf_jit_fill_hole_t bpf_fill_ill_insns)
950 {
951 unsigned int nbits = BPF_PROG_SIZE_TO_NBITS(size);
952 struct bpf_prog_pack *pack;
953 unsigned long pos;
954 void *ptr = NULL;
955
956 mutex_lock(&pack_mutex);
957 if (size > BPF_PROG_PACK_SIZE) {
958 size = round_up(size, PAGE_SIZE);
959 ptr = bpf_jit_alloc_exec(size);
960 if (ptr) {
961 int err;
962
963 bpf_fill_ill_insns(ptr, size);
964 set_vm_flush_reset_perms(ptr);
965 err = set_memory_rox((unsigned long)ptr,
966 size / PAGE_SIZE);
967 if (err) {
968 bpf_jit_free_exec(ptr);
969 ptr = NULL;
970 }
971 }
972 goto out;
973 }
974 list_for_each_entry(pack, &pack_list, list) {
975 pos = bitmap_find_next_zero_area(pack->bitmap, BPF_PROG_CHUNK_COUNT, 0,
976 nbits, 0);
977 if (pos < BPF_PROG_CHUNK_COUNT)
978 goto found_free_area;
979 }
980
981 pack = alloc_new_pack(bpf_fill_ill_insns);
982 if (!pack)
983 goto out;
984
985 pos = 0;
986
987 found_free_area:
988 bitmap_set(pack->bitmap, pos, nbits);
989 ptr = (void *)(pack->ptr) + (pos << BPF_PROG_CHUNK_SHIFT);
990
991 out:
992 mutex_unlock(&pack_mutex);
993 return ptr;
994 }
995
bpf_prog_pack_free(void * ptr,u32 size)996 void bpf_prog_pack_free(void *ptr, u32 size)
997 {
998 struct bpf_prog_pack *pack = NULL, *tmp;
999 unsigned int nbits;
1000 unsigned long pos;
1001
1002 mutex_lock(&pack_mutex);
1003 if (size > BPF_PROG_PACK_SIZE) {
1004 bpf_jit_free_exec(ptr);
1005 goto out;
1006 }
1007
1008 list_for_each_entry(tmp, &pack_list, list) {
1009 if (ptr >= tmp->ptr && (tmp->ptr + BPF_PROG_PACK_SIZE) > ptr) {
1010 pack = tmp;
1011 break;
1012 }
1013 }
1014
1015 if (WARN_ONCE(!pack, "bpf_prog_pack bug\n"))
1016 goto out;
1017
1018 nbits = BPF_PROG_SIZE_TO_NBITS(size);
1019 pos = ((unsigned long)ptr - (unsigned long)pack->ptr) >> BPF_PROG_CHUNK_SHIFT;
1020
1021 WARN_ONCE(bpf_arch_text_invalidate(ptr, size),
1022 "bpf_prog_pack bug: missing bpf_arch_text_invalidate?\n");
1023
1024 bitmap_clear(pack->bitmap, pos, nbits);
1025 if (bitmap_find_next_zero_area(pack->bitmap, BPF_PROG_CHUNK_COUNT, 0,
1026 BPF_PROG_CHUNK_COUNT, 0) == 0) {
1027 list_del(&pack->list);
1028 bpf_jit_free_exec(pack->ptr);
1029 kfree(pack);
1030 }
1031 out:
1032 mutex_unlock(&pack_mutex);
1033 }
1034
1035 static atomic_long_t bpf_jit_current;
1036
1037 /* Can be overridden by an arch's JIT compiler if it has a custom,
1038 * dedicated BPF backend memory area, or if neither of the two
1039 * below apply.
1040 */
bpf_jit_alloc_exec_limit(void)1041 u64 __weak bpf_jit_alloc_exec_limit(void)
1042 {
1043 #if defined(MODULES_VADDR)
1044 return MODULES_END - MODULES_VADDR;
1045 #else
1046 return VMALLOC_END - VMALLOC_START;
1047 #endif
1048 }
1049
bpf_jit_charge_init(void)1050 static int __init bpf_jit_charge_init(void)
1051 {
1052 /* Only used as heuristic here to derive limit. */
1053 bpf_jit_limit_max = bpf_jit_alloc_exec_limit();
1054 bpf_jit_limit = min_t(u64, round_up(bpf_jit_limit_max >> 1,
1055 PAGE_SIZE), LONG_MAX);
1056 return 0;
1057 }
1058 pure_initcall(bpf_jit_charge_init);
1059
bpf_jit_charge_modmem(u32 size)1060 int bpf_jit_charge_modmem(u32 size)
1061 {
1062 if (atomic_long_add_return(size, &bpf_jit_current) > READ_ONCE(bpf_jit_limit)) {
1063 if (!bpf_capable()) {
1064 atomic_long_sub(size, &bpf_jit_current);
1065 return -EPERM;
1066 }
1067 }
1068
1069 return 0;
1070 }
1071
bpf_jit_uncharge_modmem(u32 size)1072 void bpf_jit_uncharge_modmem(u32 size)
1073 {
1074 atomic_long_sub(size, &bpf_jit_current);
1075 }
1076
bpf_jit_alloc_exec(unsigned long size)1077 void *__weak bpf_jit_alloc_exec(unsigned long size)
1078 {
1079 return execmem_alloc(EXECMEM_BPF, size);
1080 }
1081
bpf_jit_free_exec(void * addr)1082 void __weak bpf_jit_free_exec(void *addr)
1083 {
1084 execmem_free(addr);
1085 }
1086
1087 struct bpf_binary_header *
bpf_jit_binary_alloc(unsigned int proglen,u8 ** image_ptr,unsigned int alignment,bpf_jit_fill_hole_t bpf_fill_ill_insns)1088 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
1089 unsigned int alignment,
1090 bpf_jit_fill_hole_t bpf_fill_ill_insns)
1091 {
1092 struct bpf_binary_header *hdr;
1093 u32 size, hole, start;
1094
1095 WARN_ON_ONCE(!is_power_of_2(alignment) ||
1096 alignment > BPF_IMAGE_ALIGNMENT);
1097
1098 /* Most of BPF filters are really small, but if some of them
1099 * fill a page, allow at least 128 extra bytes to insert a
1100 * random section of illegal instructions.
1101 */
1102 size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE);
1103
1104 if (bpf_jit_charge_modmem(size))
1105 return NULL;
1106 hdr = bpf_jit_alloc_exec(size);
1107 if (!hdr) {
1108 bpf_jit_uncharge_modmem(size);
1109 return NULL;
1110 }
1111
1112 /* Fill space with illegal/arch-dep instructions. */
1113 bpf_fill_ill_insns(hdr, size);
1114
1115 hdr->size = size;
1116 hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)),
1117 PAGE_SIZE - sizeof(*hdr));
1118 start = get_random_u32_below(hole) & ~(alignment - 1);
1119
1120 /* Leave a random number of instructions before BPF code. */
1121 *image_ptr = &hdr->image[start];
1122
1123 return hdr;
1124 }
1125
bpf_jit_binary_free(struct bpf_binary_header * hdr)1126 void bpf_jit_binary_free(struct bpf_binary_header *hdr)
1127 {
1128 u32 size = hdr->size;
1129
1130 bpf_jit_free_exec(hdr);
1131 bpf_jit_uncharge_modmem(size);
1132 }
1133
1134 /* Allocate jit binary from bpf_prog_pack allocator.
1135 * Since the allocated memory is RO+X, the JIT engine cannot write directly
1136 * to the memory. To solve this problem, a RW buffer is also allocated at
1137 * as the same time. The JIT engine should calculate offsets based on the
1138 * RO memory address, but write JITed program to the RW buffer. Once the
1139 * JIT engine finishes, it calls bpf_jit_binary_pack_finalize, which copies
1140 * the JITed program to the RO memory.
1141 */
1142 struct bpf_binary_header *
bpf_jit_binary_pack_alloc(unsigned int proglen,u8 ** image_ptr,unsigned int alignment,struct bpf_binary_header ** rw_header,u8 ** rw_image,bpf_jit_fill_hole_t bpf_fill_ill_insns)1143 bpf_jit_binary_pack_alloc(unsigned int proglen, u8 **image_ptr,
1144 unsigned int alignment,
1145 struct bpf_binary_header **rw_header,
1146 u8 **rw_image,
1147 bpf_jit_fill_hole_t bpf_fill_ill_insns)
1148 {
1149 struct bpf_binary_header *ro_header;
1150 u32 size, hole, start;
1151
1152 WARN_ON_ONCE(!is_power_of_2(alignment) ||
1153 alignment > BPF_IMAGE_ALIGNMENT);
1154
1155 /* add 16 bytes for a random section of illegal instructions */
1156 size = round_up(proglen + sizeof(*ro_header) + 16, BPF_PROG_CHUNK_SIZE);
1157
1158 if (bpf_jit_charge_modmem(size))
1159 return NULL;
1160 ro_header = bpf_prog_pack_alloc(size, bpf_fill_ill_insns);
1161 if (!ro_header) {
1162 bpf_jit_uncharge_modmem(size);
1163 return NULL;
1164 }
1165
1166 *rw_header = kvmalloc(size, GFP_KERNEL);
1167 if (!*rw_header) {
1168 bpf_prog_pack_free(ro_header, size);
1169 bpf_jit_uncharge_modmem(size);
1170 return NULL;
1171 }
1172
1173 /* Fill space with illegal/arch-dep instructions. */
1174 bpf_fill_ill_insns(*rw_header, size);
1175 (*rw_header)->size = size;
1176
1177 hole = min_t(unsigned int, size - (proglen + sizeof(*ro_header)),
1178 BPF_PROG_CHUNK_SIZE - sizeof(*ro_header));
1179 start = get_random_u32_below(hole) & ~(alignment - 1);
1180
1181 *image_ptr = &ro_header->image[start];
1182 *rw_image = &(*rw_header)->image[start];
1183
1184 return ro_header;
1185 }
1186
1187 /* Copy JITed text from rw_header to its final location, the ro_header. */
bpf_jit_binary_pack_finalize(struct bpf_binary_header * ro_header,struct bpf_binary_header * rw_header)1188 int bpf_jit_binary_pack_finalize(struct bpf_binary_header *ro_header,
1189 struct bpf_binary_header *rw_header)
1190 {
1191 void *ptr;
1192
1193 ptr = bpf_arch_text_copy(ro_header, rw_header, rw_header->size);
1194
1195 kvfree(rw_header);
1196
1197 if (IS_ERR(ptr)) {
1198 bpf_prog_pack_free(ro_header, ro_header->size);
1199 return PTR_ERR(ptr);
1200 }
1201 return 0;
1202 }
1203
1204 /* bpf_jit_binary_pack_free is called in two different scenarios:
1205 * 1) when the program is freed after;
1206 * 2) when the JIT engine fails (before bpf_jit_binary_pack_finalize).
1207 * For case 2), we need to free both the RO memory and the RW buffer.
1208 *
1209 * bpf_jit_binary_pack_free requires proper ro_header->size. However,
1210 * bpf_jit_binary_pack_alloc does not set it. Therefore, ro_header->size
1211 * must be set with either bpf_jit_binary_pack_finalize (normal path) or
1212 * bpf_arch_text_copy (when jit fails).
1213 */
bpf_jit_binary_pack_free(struct bpf_binary_header * ro_header,struct bpf_binary_header * rw_header)1214 void bpf_jit_binary_pack_free(struct bpf_binary_header *ro_header,
1215 struct bpf_binary_header *rw_header)
1216 {
1217 u32 size = ro_header->size;
1218
1219 bpf_prog_pack_free(ro_header, size);
1220 kvfree(rw_header);
1221 bpf_jit_uncharge_modmem(size);
1222 }
1223
1224 struct bpf_binary_header *
bpf_jit_binary_pack_hdr(const struct bpf_prog * fp)1225 bpf_jit_binary_pack_hdr(const struct bpf_prog *fp)
1226 {
1227 unsigned long real_start = (unsigned long)fp->bpf_func;
1228 unsigned long addr;
1229
1230 addr = real_start & BPF_PROG_CHUNK_MASK;
1231 return (void *)addr;
1232 }
1233
1234 static inline struct bpf_binary_header *
bpf_jit_binary_hdr(const struct bpf_prog * fp)1235 bpf_jit_binary_hdr(const struct bpf_prog *fp)
1236 {
1237 unsigned long real_start = (unsigned long)fp->bpf_func;
1238 unsigned long addr;
1239
1240 addr = real_start & PAGE_MASK;
1241 return (void *)addr;
1242 }
1243
1244 /* This symbol is only overridden by archs that have different
1245 * requirements than the usual eBPF JITs, f.e. when they only
1246 * implement cBPF JIT, do not set images read-only, etc.
1247 */
bpf_jit_free(struct bpf_prog * fp)1248 void __weak bpf_jit_free(struct bpf_prog *fp)
1249 {
1250 if (fp->jited) {
1251 struct bpf_binary_header *hdr = bpf_jit_binary_hdr(fp);
1252
1253 bpf_jit_binary_free(hdr);
1254 WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(fp));
1255 }
1256
1257 bpf_prog_unlock_free(fp);
1258 }
1259
bpf_jit_get_func_addr(const struct bpf_prog * prog,const struct bpf_insn * insn,bool extra_pass,u64 * func_addr,bool * func_addr_fixed)1260 int bpf_jit_get_func_addr(const struct bpf_prog *prog,
1261 const struct bpf_insn *insn, bool extra_pass,
1262 u64 *func_addr, bool *func_addr_fixed)
1263 {
1264 s16 off = insn->off;
1265 s32 imm = insn->imm;
1266 u8 *addr;
1267 int err;
1268
1269 *func_addr_fixed = insn->src_reg != BPF_PSEUDO_CALL;
1270 if (!*func_addr_fixed) {
1271 /* Place-holder address till the last pass has collected
1272 * all addresses for JITed subprograms in which case we
1273 * can pick them up from prog->aux.
1274 */
1275 if (!extra_pass)
1276 addr = NULL;
1277 else if (prog->aux->func &&
1278 off >= 0 && off < prog->aux->real_func_cnt)
1279 addr = (u8 *)prog->aux->func[off]->bpf_func;
1280 else
1281 return -EINVAL;
1282 } else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL &&
1283 bpf_jit_supports_far_kfunc_call()) {
1284 err = bpf_get_kfunc_addr(prog, insn->imm, insn->off, &addr);
1285 if (err)
1286 return err;
1287 } else {
1288 /* Address of a BPF helper call. Since part of the core
1289 * kernel, it's always at a fixed location. __bpf_call_base
1290 * and the helper with imm relative to it are both in core
1291 * kernel.
1292 */
1293 addr = (u8 *)__bpf_call_base + imm;
1294 }
1295
1296 *func_addr = (unsigned long)addr;
1297 return 0;
1298 }
1299
bpf_jit_get_prog_name(struct bpf_prog * prog)1300 const char *bpf_jit_get_prog_name(struct bpf_prog *prog)
1301 {
1302 if (prog->aux->ksym.prog)
1303 return prog->aux->ksym.name;
1304 return prog->aux->name;
1305 }
1306
bpf_jit_blind_insn(const struct bpf_insn * from,const struct bpf_insn * aux,struct bpf_insn * to_buff,bool emit_zext)1307 static int bpf_jit_blind_insn(const struct bpf_insn *from,
1308 const struct bpf_insn *aux,
1309 struct bpf_insn *to_buff,
1310 bool emit_zext)
1311 {
1312 struct bpf_insn *to = to_buff;
1313 u32 imm_rnd = get_random_u32();
1314 s16 off;
1315
1316 BUILD_BUG_ON(BPF_REG_AX + 1 != MAX_BPF_JIT_REG);
1317 BUILD_BUG_ON(MAX_BPF_REG + 1 != MAX_BPF_JIT_REG);
1318
1319 /* Constraints on AX register:
1320 *
1321 * AX register is inaccessible from user space. It is mapped in
1322 * all JITs, and used here for constant blinding rewrites. It is
1323 * typically "stateless" meaning its contents are only valid within
1324 * the executed instruction, but not across several instructions.
1325 * There are a few exceptions however which are further detailed
1326 * below.
1327 *
1328 * Constant blinding is only used by JITs, not in the interpreter.
1329 * The interpreter uses AX in some occasions as a local temporary
1330 * register e.g. in DIV or MOD instructions.
1331 *
1332 * In restricted circumstances, the verifier can also use the AX
1333 * register for rewrites as long as they do not interfere with
1334 * the above cases!
1335 */
1336 if (from->dst_reg == BPF_REG_AX || from->src_reg == BPF_REG_AX)
1337 goto out;
1338
1339 if (from->imm == 0 &&
1340 (from->code == (BPF_ALU | BPF_MOV | BPF_K) ||
1341 from->code == (BPF_ALU64 | BPF_MOV | BPF_K))) {
1342 *to++ = BPF_ALU64_REG(BPF_XOR, from->dst_reg, from->dst_reg);
1343 goto out;
1344 }
1345
1346 switch (from->code) {
1347 case BPF_ALU | BPF_ADD | BPF_K:
1348 case BPF_ALU | BPF_SUB | BPF_K:
1349 case BPF_ALU | BPF_AND | BPF_K:
1350 case BPF_ALU | BPF_OR | BPF_K:
1351 case BPF_ALU | BPF_XOR | BPF_K:
1352 case BPF_ALU | BPF_MUL | BPF_K:
1353 case BPF_ALU | BPF_MOV | BPF_K:
1354 case BPF_ALU | BPF_DIV | BPF_K:
1355 case BPF_ALU | BPF_MOD | BPF_K:
1356 *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1357 *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1358 *to++ = BPF_ALU32_REG_OFF(from->code, from->dst_reg, BPF_REG_AX, from->off);
1359 break;
1360
1361 case BPF_ALU64 | BPF_ADD | BPF_K:
1362 case BPF_ALU64 | BPF_SUB | BPF_K:
1363 case BPF_ALU64 | BPF_AND | BPF_K:
1364 case BPF_ALU64 | BPF_OR | BPF_K:
1365 case BPF_ALU64 | BPF_XOR | BPF_K:
1366 case BPF_ALU64 | BPF_MUL | BPF_K:
1367 case BPF_ALU64 | BPF_MOV | BPF_K:
1368 case BPF_ALU64 | BPF_DIV | BPF_K:
1369 case BPF_ALU64 | BPF_MOD | BPF_K:
1370 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1371 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1372 *to++ = BPF_ALU64_REG_OFF(from->code, from->dst_reg, BPF_REG_AX, from->off);
1373 break;
1374
1375 case BPF_JMP | BPF_JEQ | BPF_K:
1376 case BPF_JMP | BPF_JNE | BPF_K:
1377 case BPF_JMP | BPF_JGT | BPF_K:
1378 case BPF_JMP | BPF_JLT | BPF_K:
1379 case BPF_JMP | BPF_JGE | BPF_K:
1380 case BPF_JMP | BPF_JLE | BPF_K:
1381 case BPF_JMP | BPF_JSGT | BPF_K:
1382 case BPF_JMP | BPF_JSLT | BPF_K:
1383 case BPF_JMP | BPF_JSGE | BPF_K:
1384 case BPF_JMP | BPF_JSLE | BPF_K:
1385 case BPF_JMP | BPF_JSET | BPF_K:
1386 /* Accommodate for extra offset in case of a backjump. */
1387 off = from->off;
1388 if (off < 0)
1389 off -= 2;
1390 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1391 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1392 *to++ = BPF_JMP_REG(from->code, from->dst_reg, BPF_REG_AX, off);
1393 break;
1394
1395 case BPF_JMP32 | BPF_JEQ | BPF_K:
1396 case BPF_JMP32 | BPF_JNE | BPF_K:
1397 case BPF_JMP32 | BPF_JGT | BPF_K:
1398 case BPF_JMP32 | BPF_JLT | BPF_K:
1399 case BPF_JMP32 | BPF_JGE | BPF_K:
1400 case BPF_JMP32 | BPF_JLE | BPF_K:
1401 case BPF_JMP32 | BPF_JSGT | BPF_K:
1402 case BPF_JMP32 | BPF_JSLT | BPF_K:
1403 case BPF_JMP32 | BPF_JSGE | BPF_K:
1404 case BPF_JMP32 | BPF_JSLE | BPF_K:
1405 case BPF_JMP32 | BPF_JSET | BPF_K:
1406 /* Accommodate for extra offset in case of a backjump. */
1407 off = from->off;
1408 if (off < 0)
1409 off -= 2;
1410 *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1411 *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1412 *to++ = BPF_JMP32_REG(from->code, from->dst_reg, BPF_REG_AX,
1413 off);
1414 break;
1415
1416 case BPF_LD | BPF_IMM | BPF_DW:
1417 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[1].imm);
1418 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1419 *to++ = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
1420 *to++ = BPF_ALU64_REG(BPF_MOV, aux[0].dst_reg, BPF_REG_AX);
1421 break;
1422 case 0: /* Part 2 of BPF_LD | BPF_IMM | BPF_DW. */
1423 *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[0].imm);
1424 *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1425 if (emit_zext)
1426 *to++ = BPF_ZEXT_REG(BPF_REG_AX);
1427 *to++ = BPF_ALU64_REG(BPF_OR, aux[0].dst_reg, BPF_REG_AX);
1428 break;
1429
1430 case BPF_ST | BPF_MEM | BPF_DW:
1431 case BPF_ST | BPF_MEM | BPF_W:
1432 case BPF_ST | BPF_MEM | BPF_H:
1433 case BPF_ST | BPF_MEM | BPF_B:
1434 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1435 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1436 *to++ = BPF_STX_MEM(from->code, from->dst_reg, BPF_REG_AX, from->off);
1437 break;
1438 }
1439 out:
1440 return to - to_buff;
1441 }
1442
bpf_prog_clone_create(struct bpf_prog * fp_other,gfp_t gfp_extra_flags)1443 static struct bpf_prog *bpf_prog_clone_create(struct bpf_prog *fp_other,
1444 gfp_t gfp_extra_flags)
1445 {
1446 gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
1447 struct bpf_prog *fp;
1448
1449 fp = __vmalloc(fp_other->pages * PAGE_SIZE, gfp_flags);
1450 if (fp != NULL) {
1451 /* aux->prog still points to the fp_other one, so
1452 * when promoting the clone to the real program,
1453 * this still needs to be adapted.
1454 */
1455 memcpy(fp, fp_other, fp_other->pages * PAGE_SIZE);
1456 }
1457
1458 return fp;
1459 }
1460
bpf_prog_clone_free(struct bpf_prog * fp)1461 static void bpf_prog_clone_free(struct bpf_prog *fp)
1462 {
1463 /* aux was stolen by the other clone, so we cannot free
1464 * it from this path! It will be freed eventually by the
1465 * other program on release.
1466 *
1467 * At this point, we don't need a deferred release since
1468 * clone is guaranteed to not be locked.
1469 */
1470 fp->aux = NULL;
1471 fp->stats = NULL;
1472 fp->active = NULL;
1473 __bpf_prog_free(fp);
1474 }
1475
bpf_jit_prog_release_other(struct bpf_prog * fp,struct bpf_prog * fp_other)1476 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other)
1477 {
1478 /* We have to repoint aux->prog to self, as we don't
1479 * know whether fp here is the clone or the original.
1480 */
1481 fp->aux->prog = fp;
1482 bpf_prog_clone_free(fp_other);
1483 }
1484
bpf_jit_blind_constants(struct bpf_prog * prog)1485 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *prog)
1486 {
1487 struct bpf_insn insn_buff[16], aux[2];
1488 struct bpf_prog *clone, *tmp;
1489 int insn_delta, insn_cnt;
1490 struct bpf_insn *insn;
1491 int i, rewritten;
1492
1493 if (!prog->blinding_requested || prog->blinded)
1494 return prog;
1495
1496 clone = bpf_prog_clone_create(prog, GFP_USER);
1497 if (!clone)
1498 return ERR_PTR(-ENOMEM);
1499
1500 insn_cnt = clone->len;
1501 insn = clone->insnsi;
1502
1503 for (i = 0; i < insn_cnt; i++, insn++) {
1504 if (bpf_pseudo_func(insn)) {
1505 /* ld_imm64 with an address of bpf subprog is not
1506 * a user controlled constant. Don't randomize it,
1507 * since it will conflict with jit_subprogs() logic.
1508 */
1509 insn++;
1510 i++;
1511 continue;
1512 }
1513
1514 /* We temporarily need to hold the original ld64 insn
1515 * so that we can still access the first part in the
1516 * second blinding run.
1517 */
1518 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW) &&
1519 insn[1].code == 0)
1520 memcpy(aux, insn, sizeof(aux));
1521
1522 rewritten = bpf_jit_blind_insn(insn, aux, insn_buff,
1523 clone->aux->verifier_zext);
1524 if (!rewritten)
1525 continue;
1526
1527 tmp = bpf_patch_insn_single(clone, i, insn_buff, rewritten);
1528 if (IS_ERR(tmp)) {
1529 /* Patching may have repointed aux->prog during
1530 * realloc from the original one, so we need to
1531 * fix it up here on error.
1532 */
1533 bpf_jit_prog_release_other(prog, clone);
1534 return tmp;
1535 }
1536
1537 clone = tmp;
1538 insn_delta = rewritten - 1;
1539
1540 /* Walk new program and skip insns we just inserted. */
1541 insn = clone->insnsi + i + insn_delta;
1542 insn_cnt += insn_delta;
1543 i += insn_delta;
1544 }
1545
1546 clone->blinded = 1;
1547 return clone;
1548 }
1549 #endif /* CONFIG_BPF_JIT */
1550
1551 /* Base function for offset calculation. Needs to go into .text section,
1552 * therefore keeping it non-static as well; will also be used by JITs
1553 * anyway later on, so do not let the compiler omit it. This also needs
1554 * to go into kallsyms for correlation from e.g. bpftool, so naming
1555 * must not change.
1556 */
__bpf_call_base(u64 r1,u64 r2,u64 r3,u64 r4,u64 r5)1557 noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
1558 {
1559 return 0;
1560 }
1561 EXPORT_SYMBOL_GPL(__bpf_call_base);
1562
1563 /* All UAPI available opcodes. */
1564 #define BPF_INSN_MAP(INSN_2, INSN_3) \
1565 /* 32 bit ALU operations. */ \
1566 /* Register based. */ \
1567 INSN_3(ALU, ADD, X), \
1568 INSN_3(ALU, SUB, X), \
1569 INSN_3(ALU, AND, X), \
1570 INSN_3(ALU, OR, X), \
1571 INSN_3(ALU, LSH, X), \
1572 INSN_3(ALU, RSH, X), \
1573 INSN_3(ALU, XOR, X), \
1574 INSN_3(ALU, MUL, X), \
1575 INSN_3(ALU, MOV, X), \
1576 INSN_3(ALU, ARSH, X), \
1577 INSN_3(ALU, DIV, X), \
1578 INSN_3(ALU, MOD, X), \
1579 INSN_2(ALU, NEG), \
1580 INSN_3(ALU, END, TO_BE), \
1581 INSN_3(ALU, END, TO_LE), \
1582 /* Immediate based. */ \
1583 INSN_3(ALU, ADD, K), \
1584 INSN_3(ALU, SUB, K), \
1585 INSN_3(ALU, AND, K), \
1586 INSN_3(ALU, OR, K), \
1587 INSN_3(ALU, LSH, K), \
1588 INSN_3(ALU, RSH, K), \
1589 INSN_3(ALU, XOR, K), \
1590 INSN_3(ALU, MUL, K), \
1591 INSN_3(ALU, MOV, K), \
1592 INSN_3(ALU, ARSH, K), \
1593 INSN_3(ALU, DIV, K), \
1594 INSN_3(ALU, MOD, K), \
1595 /* 64 bit ALU operations. */ \
1596 /* Register based. */ \
1597 INSN_3(ALU64, ADD, X), \
1598 INSN_3(ALU64, SUB, X), \
1599 INSN_3(ALU64, AND, X), \
1600 INSN_3(ALU64, OR, X), \
1601 INSN_3(ALU64, LSH, X), \
1602 INSN_3(ALU64, RSH, X), \
1603 INSN_3(ALU64, XOR, X), \
1604 INSN_3(ALU64, MUL, X), \
1605 INSN_3(ALU64, MOV, X), \
1606 INSN_3(ALU64, ARSH, X), \
1607 INSN_3(ALU64, DIV, X), \
1608 INSN_3(ALU64, MOD, X), \
1609 INSN_2(ALU64, NEG), \
1610 INSN_3(ALU64, END, TO_LE), \
1611 /* Immediate based. */ \
1612 INSN_3(ALU64, ADD, K), \
1613 INSN_3(ALU64, SUB, K), \
1614 INSN_3(ALU64, AND, K), \
1615 INSN_3(ALU64, OR, K), \
1616 INSN_3(ALU64, LSH, K), \
1617 INSN_3(ALU64, RSH, K), \
1618 INSN_3(ALU64, XOR, K), \
1619 INSN_3(ALU64, MUL, K), \
1620 INSN_3(ALU64, MOV, K), \
1621 INSN_3(ALU64, ARSH, K), \
1622 INSN_3(ALU64, DIV, K), \
1623 INSN_3(ALU64, MOD, K), \
1624 /* Call instruction. */ \
1625 INSN_2(JMP, CALL), \
1626 /* Exit instruction. */ \
1627 INSN_2(JMP, EXIT), \
1628 /* 32-bit Jump instructions. */ \
1629 /* Register based. */ \
1630 INSN_3(JMP32, JEQ, X), \
1631 INSN_3(JMP32, JNE, X), \
1632 INSN_3(JMP32, JGT, X), \
1633 INSN_3(JMP32, JLT, X), \
1634 INSN_3(JMP32, JGE, X), \
1635 INSN_3(JMP32, JLE, X), \
1636 INSN_3(JMP32, JSGT, X), \
1637 INSN_3(JMP32, JSLT, X), \
1638 INSN_3(JMP32, JSGE, X), \
1639 INSN_3(JMP32, JSLE, X), \
1640 INSN_3(JMP32, JSET, X), \
1641 /* Immediate based. */ \
1642 INSN_3(JMP32, JEQ, K), \
1643 INSN_3(JMP32, JNE, K), \
1644 INSN_3(JMP32, JGT, K), \
1645 INSN_3(JMP32, JLT, K), \
1646 INSN_3(JMP32, JGE, K), \
1647 INSN_3(JMP32, JLE, K), \
1648 INSN_3(JMP32, JSGT, K), \
1649 INSN_3(JMP32, JSLT, K), \
1650 INSN_3(JMP32, JSGE, K), \
1651 INSN_3(JMP32, JSLE, K), \
1652 INSN_3(JMP32, JSET, K), \
1653 /* Jump instructions. */ \
1654 /* Register based. */ \
1655 INSN_3(JMP, JEQ, X), \
1656 INSN_3(JMP, JNE, X), \
1657 INSN_3(JMP, JGT, X), \
1658 INSN_3(JMP, JLT, X), \
1659 INSN_3(JMP, JGE, X), \
1660 INSN_3(JMP, JLE, X), \
1661 INSN_3(JMP, JSGT, X), \
1662 INSN_3(JMP, JSLT, X), \
1663 INSN_3(JMP, JSGE, X), \
1664 INSN_3(JMP, JSLE, X), \
1665 INSN_3(JMP, JSET, X), \
1666 /* Immediate based. */ \
1667 INSN_3(JMP, JEQ, K), \
1668 INSN_3(JMP, JNE, K), \
1669 INSN_3(JMP, JGT, K), \
1670 INSN_3(JMP, JLT, K), \
1671 INSN_3(JMP, JGE, K), \
1672 INSN_3(JMP, JLE, K), \
1673 INSN_3(JMP, JSGT, K), \
1674 INSN_3(JMP, JSLT, K), \
1675 INSN_3(JMP, JSGE, K), \
1676 INSN_3(JMP, JSLE, K), \
1677 INSN_3(JMP, JSET, K), \
1678 INSN_2(JMP, JA), \
1679 INSN_2(JMP32, JA), \
1680 /* Atomic operations. */ \
1681 INSN_3(STX, ATOMIC, B), \
1682 INSN_3(STX, ATOMIC, H), \
1683 INSN_3(STX, ATOMIC, W), \
1684 INSN_3(STX, ATOMIC, DW), \
1685 /* Store instructions. */ \
1686 /* Register based. */ \
1687 INSN_3(STX, MEM, B), \
1688 INSN_3(STX, MEM, H), \
1689 INSN_3(STX, MEM, W), \
1690 INSN_3(STX, MEM, DW), \
1691 /* Immediate based. */ \
1692 INSN_3(ST, MEM, B), \
1693 INSN_3(ST, MEM, H), \
1694 INSN_3(ST, MEM, W), \
1695 INSN_3(ST, MEM, DW), \
1696 /* Load instructions. */ \
1697 /* Register based. */ \
1698 INSN_3(LDX, MEM, B), \
1699 INSN_3(LDX, MEM, H), \
1700 INSN_3(LDX, MEM, W), \
1701 INSN_3(LDX, MEM, DW), \
1702 INSN_3(LDX, MEMSX, B), \
1703 INSN_3(LDX, MEMSX, H), \
1704 INSN_3(LDX, MEMSX, W), \
1705 /* Immediate based. */ \
1706 INSN_3(LD, IMM, DW)
1707
bpf_opcode_in_insntable(u8 code)1708 bool bpf_opcode_in_insntable(u8 code)
1709 {
1710 #define BPF_INSN_2_TBL(x, y) [BPF_##x | BPF_##y] = true
1711 #define BPF_INSN_3_TBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = true
1712 static const bool public_insntable[256] = {
1713 [0 ... 255] = false,
1714 /* Now overwrite non-defaults ... */
1715 BPF_INSN_MAP(BPF_INSN_2_TBL, BPF_INSN_3_TBL),
1716 /* UAPI exposed, but rewritten opcodes. cBPF carry-over. */
1717 [BPF_LD | BPF_ABS | BPF_B] = true,
1718 [BPF_LD | BPF_ABS | BPF_H] = true,
1719 [BPF_LD | BPF_ABS | BPF_W] = true,
1720 [BPF_LD | BPF_IND | BPF_B] = true,
1721 [BPF_LD | BPF_IND | BPF_H] = true,
1722 [BPF_LD | BPF_IND | BPF_W] = true,
1723 [BPF_JMP | BPF_JCOND] = true,
1724 };
1725 #undef BPF_INSN_3_TBL
1726 #undef BPF_INSN_2_TBL
1727 return public_insntable[code];
1728 }
1729
1730 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
1731 /**
1732 * ___bpf_prog_run - run eBPF program on a given context
1733 * @regs: is the array of MAX_BPF_EXT_REG eBPF pseudo-registers
1734 * @insn: is the array of eBPF instructions
1735 *
1736 * Decode and execute eBPF instructions.
1737 *
1738 * Return: whatever value is in %BPF_R0 at program exit
1739 */
___bpf_prog_run(u64 * regs,const struct bpf_insn * insn)1740 static u64 ___bpf_prog_run(u64 *regs, const struct bpf_insn *insn)
1741 {
1742 #define BPF_INSN_2_LBL(x, y) [BPF_##x | BPF_##y] = &&x##_##y
1743 #define BPF_INSN_3_LBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = &&x##_##y##_##z
1744 static const void * const jumptable[256] __annotate_jump_table = {
1745 [0 ... 255] = &&default_label,
1746 /* Now overwrite non-defaults ... */
1747 BPF_INSN_MAP(BPF_INSN_2_LBL, BPF_INSN_3_LBL),
1748 /* Non-UAPI available opcodes. */
1749 [BPF_JMP | BPF_CALL_ARGS] = &&JMP_CALL_ARGS,
1750 [BPF_JMP | BPF_TAIL_CALL] = &&JMP_TAIL_CALL,
1751 [BPF_ST | BPF_NOSPEC] = &&ST_NOSPEC,
1752 [BPF_LDX | BPF_PROBE_MEM | BPF_B] = &&LDX_PROBE_MEM_B,
1753 [BPF_LDX | BPF_PROBE_MEM | BPF_H] = &&LDX_PROBE_MEM_H,
1754 [BPF_LDX | BPF_PROBE_MEM | BPF_W] = &&LDX_PROBE_MEM_W,
1755 [BPF_LDX | BPF_PROBE_MEM | BPF_DW] = &&LDX_PROBE_MEM_DW,
1756 [BPF_LDX | BPF_PROBE_MEMSX | BPF_B] = &&LDX_PROBE_MEMSX_B,
1757 [BPF_LDX | BPF_PROBE_MEMSX | BPF_H] = &&LDX_PROBE_MEMSX_H,
1758 [BPF_LDX | BPF_PROBE_MEMSX | BPF_W] = &&LDX_PROBE_MEMSX_W,
1759 };
1760 #undef BPF_INSN_3_LBL
1761 #undef BPF_INSN_2_LBL
1762 u32 tail_call_cnt = 0;
1763
1764 #define CONT ({ insn++; goto select_insn; })
1765 #define CONT_JMP ({ insn++; goto select_insn; })
1766
1767 select_insn:
1768 goto *jumptable[insn->code];
1769
1770 /* Explicitly mask the register-based shift amounts with 63 or 31
1771 * to avoid undefined behavior. Normally this won't affect the
1772 * generated code, for example, in case of native 64 bit archs such
1773 * as x86-64 or arm64, the compiler is optimizing the AND away for
1774 * the interpreter. In case of JITs, each of the JIT backends compiles
1775 * the BPF shift operations to machine instructions which produce
1776 * implementation-defined results in such a case; the resulting
1777 * contents of the register may be arbitrary, but program behaviour
1778 * as a whole remains defined. In other words, in case of JIT backends,
1779 * the AND must /not/ be added to the emitted LSH/RSH/ARSH translation.
1780 */
1781 /* ALU (shifts) */
1782 #define SHT(OPCODE, OP) \
1783 ALU64_##OPCODE##_X: \
1784 DST = DST OP (SRC & 63); \
1785 CONT; \
1786 ALU_##OPCODE##_X: \
1787 DST = (u32) DST OP ((u32) SRC & 31); \
1788 CONT; \
1789 ALU64_##OPCODE##_K: \
1790 DST = DST OP IMM; \
1791 CONT; \
1792 ALU_##OPCODE##_K: \
1793 DST = (u32) DST OP (u32) IMM; \
1794 CONT;
1795 /* ALU (rest) */
1796 #define ALU(OPCODE, OP) \
1797 ALU64_##OPCODE##_X: \
1798 DST = DST OP SRC; \
1799 CONT; \
1800 ALU_##OPCODE##_X: \
1801 DST = (u32) DST OP (u32) SRC; \
1802 CONT; \
1803 ALU64_##OPCODE##_K: \
1804 DST = DST OP IMM; \
1805 CONT; \
1806 ALU_##OPCODE##_K: \
1807 DST = (u32) DST OP (u32) IMM; \
1808 CONT;
1809 ALU(ADD, +)
1810 ALU(SUB, -)
1811 ALU(AND, &)
1812 ALU(OR, |)
1813 ALU(XOR, ^)
1814 ALU(MUL, *)
1815 SHT(LSH, <<)
1816 SHT(RSH, >>)
1817 #undef SHT
1818 #undef ALU
1819 ALU_NEG:
1820 DST = (u32) -DST;
1821 CONT;
1822 ALU64_NEG:
1823 DST = -DST;
1824 CONT;
1825 ALU_MOV_X:
1826 switch (OFF) {
1827 case 0:
1828 DST = (u32) SRC;
1829 break;
1830 case 8:
1831 DST = (u32)(s8) SRC;
1832 break;
1833 case 16:
1834 DST = (u32)(s16) SRC;
1835 break;
1836 }
1837 CONT;
1838 ALU_MOV_K:
1839 DST = (u32) IMM;
1840 CONT;
1841 ALU64_MOV_X:
1842 switch (OFF) {
1843 case 0:
1844 DST = SRC;
1845 break;
1846 case 8:
1847 DST = (s8) SRC;
1848 break;
1849 case 16:
1850 DST = (s16) SRC;
1851 break;
1852 case 32:
1853 DST = (s32) SRC;
1854 break;
1855 }
1856 CONT;
1857 ALU64_MOV_K:
1858 DST = IMM;
1859 CONT;
1860 LD_IMM_DW:
1861 DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32;
1862 insn++;
1863 CONT;
1864 ALU_ARSH_X:
1865 DST = (u64) (u32) (((s32) DST) >> (SRC & 31));
1866 CONT;
1867 ALU_ARSH_K:
1868 DST = (u64) (u32) (((s32) DST) >> IMM);
1869 CONT;
1870 ALU64_ARSH_X:
1871 (*(s64 *) &DST) >>= (SRC & 63);
1872 CONT;
1873 ALU64_ARSH_K:
1874 (*(s64 *) &DST) >>= IMM;
1875 CONT;
1876 ALU64_MOD_X:
1877 switch (OFF) {
1878 case 0:
1879 div64_u64_rem(DST, SRC, &AX);
1880 DST = AX;
1881 break;
1882 case 1:
1883 AX = div64_s64(DST, SRC);
1884 DST = DST - AX * SRC;
1885 break;
1886 }
1887 CONT;
1888 ALU_MOD_X:
1889 switch (OFF) {
1890 case 0:
1891 AX = (u32) DST;
1892 DST = do_div(AX, (u32) SRC);
1893 break;
1894 case 1:
1895 AX = abs((s32)DST);
1896 AX = do_div(AX, abs((s32)SRC));
1897 if ((s32)DST < 0)
1898 DST = (u32)-AX;
1899 else
1900 DST = (u32)AX;
1901 break;
1902 }
1903 CONT;
1904 ALU64_MOD_K:
1905 switch (OFF) {
1906 case 0:
1907 div64_u64_rem(DST, IMM, &AX);
1908 DST = AX;
1909 break;
1910 case 1:
1911 AX = div64_s64(DST, IMM);
1912 DST = DST - AX * IMM;
1913 break;
1914 }
1915 CONT;
1916 ALU_MOD_K:
1917 switch (OFF) {
1918 case 0:
1919 AX = (u32) DST;
1920 DST = do_div(AX, (u32) IMM);
1921 break;
1922 case 1:
1923 AX = abs((s32)DST);
1924 AX = do_div(AX, abs((s32)IMM));
1925 if ((s32)DST < 0)
1926 DST = (u32)-AX;
1927 else
1928 DST = (u32)AX;
1929 break;
1930 }
1931 CONT;
1932 ALU64_DIV_X:
1933 switch (OFF) {
1934 case 0:
1935 DST = div64_u64(DST, SRC);
1936 break;
1937 case 1:
1938 DST = div64_s64(DST, SRC);
1939 break;
1940 }
1941 CONT;
1942 ALU_DIV_X:
1943 switch (OFF) {
1944 case 0:
1945 AX = (u32) DST;
1946 do_div(AX, (u32) SRC);
1947 DST = (u32) AX;
1948 break;
1949 case 1:
1950 AX = abs((s32)DST);
1951 do_div(AX, abs((s32)SRC));
1952 if (((s32)DST < 0) == ((s32)SRC < 0))
1953 DST = (u32)AX;
1954 else
1955 DST = (u32)-AX;
1956 break;
1957 }
1958 CONT;
1959 ALU64_DIV_K:
1960 switch (OFF) {
1961 case 0:
1962 DST = div64_u64(DST, IMM);
1963 break;
1964 case 1:
1965 DST = div64_s64(DST, IMM);
1966 break;
1967 }
1968 CONT;
1969 ALU_DIV_K:
1970 switch (OFF) {
1971 case 0:
1972 AX = (u32) DST;
1973 do_div(AX, (u32) IMM);
1974 DST = (u32) AX;
1975 break;
1976 case 1:
1977 AX = abs((s32)DST);
1978 do_div(AX, abs((s32)IMM));
1979 if (((s32)DST < 0) == ((s32)IMM < 0))
1980 DST = (u32)AX;
1981 else
1982 DST = (u32)-AX;
1983 break;
1984 }
1985 CONT;
1986 ALU_END_TO_BE:
1987 switch (IMM) {
1988 case 16:
1989 DST = (__force u16) cpu_to_be16(DST);
1990 break;
1991 case 32:
1992 DST = (__force u32) cpu_to_be32(DST);
1993 break;
1994 case 64:
1995 DST = (__force u64) cpu_to_be64(DST);
1996 break;
1997 }
1998 CONT;
1999 ALU_END_TO_LE:
2000 switch (IMM) {
2001 case 16:
2002 DST = (__force u16) cpu_to_le16(DST);
2003 break;
2004 case 32:
2005 DST = (__force u32) cpu_to_le32(DST);
2006 break;
2007 case 64:
2008 DST = (__force u64) cpu_to_le64(DST);
2009 break;
2010 }
2011 CONT;
2012 ALU64_END_TO_LE:
2013 switch (IMM) {
2014 case 16:
2015 DST = (__force u16) __swab16(DST);
2016 break;
2017 case 32:
2018 DST = (__force u32) __swab32(DST);
2019 break;
2020 case 64:
2021 DST = (__force u64) __swab64(DST);
2022 break;
2023 }
2024 CONT;
2025
2026 /* CALL */
2027 JMP_CALL:
2028 /* Function call scratches BPF_R1-BPF_R5 registers,
2029 * preserves BPF_R6-BPF_R9, and stores return value
2030 * into BPF_R0.
2031 */
2032 BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3,
2033 BPF_R4, BPF_R5);
2034 CONT;
2035
2036 JMP_CALL_ARGS:
2037 BPF_R0 = (__bpf_call_base_args + insn->imm)(BPF_R1, BPF_R2,
2038 BPF_R3, BPF_R4,
2039 BPF_R5,
2040 insn + insn->off + 1);
2041 CONT;
2042
2043 JMP_TAIL_CALL: {
2044 struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2;
2045 struct bpf_array *array = container_of(map, struct bpf_array, map);
2046 struct bpf_prog *prog;
2047 u32 index = BPF_R3;
2048
2049 if (unlikely(index >= array->map.max_entries))
2050 goto out;
2051
2052 if (unlikely(tail_call_cnt >= MAX_TAIL_CALL_CNT))
2053 goto out;
2054
2055 tail_call_cnt++;
2056
2057 prog = READ_ONCE(array->ptrs[index]);
2058 if (!prog)
2059 goto out;
2060
2061 /* ARG1 at this point is guaranteed to point to CTX from
2062 * the verifier side due to the fact that the tail call is
2063 * handled like a helper, that is, bpf_tail_call_proto,
2064 * where arg1_type is ARG_PTR_TO_CTX.
2065 */
2066 insn = prog->insnsi;
2067 goto select_insn;
2068 out:
2069 CONT;
2070 }
2071 JMP_JA:
2072 insn += insn->off;
2073 CONT;
2074 JMP32_JA:
2075 insn += insn->imm;
2076 CONT;
2077 JMP_EXIT:
2078 return BPF_R0;
2079 /* JMP */
2080 #define COND_JMP(SIGN, OPCODE, CMP_OP) \
2081 JMP_##OPCODE##_X: \
2082 if ((SIGN##64) DST CMP_OP (SIGN##64) SRC) { \
2083 insn += insn->off; \
2084 CONT_JMP; \
2085 } \
2086 CONT; \
2087 JMP32_##OPCODE##_X: \
2088 if ((SIGN##32) DST CMP_OP (SIGN##32) SRC) { \
2089 insn += insn->off; \
2090 CONT_JMP; \
2091 } \
2092 CONT; \
2093 JMP_##OPCODE##_K: \
2094 if ((SIGN##64) DST CMP_OP (SIGN##64) IMM) { \
2095 insn += insn->off; \
2096 CONT_JMP; \
2097 } \
2098 CONT; \
2099 JMP32_##OPCODE##_K: \
2100 if ((SIGN##32) DST CMP_OP (SIGN##32) IMM) { \
2101 insn += insn->off; \
2102 CONT_JMP; \
2103 } \
2104 CONT;
2105 COND_JMP(u, JEQ, ==)
2106 COND_JMP(u, JNE, !=)
2107 COND_JMP(u, JGT, >)
2108 COND_JMP(u, JLT, <)
2109 COND_JMP(u, JGE, >=)
2110 COND_JMP(u, JLE, <=)
2111 COND_JMP(u, JSET, &)
2112 COND_JMP(s, JSGT, >)
2113 COND_JMP(s, JSLT, <)
2114 COND_JMP(s, JSGE, >=)
2115 COND_JMP(s, JSLE, <=)
2116 #undef COND_JMP
2117 /* ST, STX and LDX*/
2118 ST_NOSPEC:
2119 /* Speculation barrier for mitigating Speculative Store Bypass,
2120 * Bounds-Check Bypass and Type Confusion. In case of arm64, we
2121 * rely on the firmware mitigation as controlled via the ssbd
2122 * kernel parameter. Whenever the mitigation is enabled, it
2123 * works for all of the kernel code with no need to provide any
2124 * additional instructions here. In case of x86, we use 'lfence'
2125 * insn for mitigation. We reuse preexisting logic from Spectre
2126 * v1 mitigation that happens to produce the required code on
2127 * x86 for v4 as well.
2128 */
2129 barrier_nospec();
2130 CONT;
2131 #define LDST(SIZEOP, SIZE) \
2132 STX_MEM_##SIZEOP: \
2133 *(SIZE *)(unsigned long) (DST + insn->off) = SRC; \
2134 CONT; \
2135 ST_MEM_##SIZEOP: \
2136 *(SIZE *)(unsigned long) (DST + insn->off) = IMM; \
2137 CONT; \
2138 LDX_MEM_##SIZEOP: \
2139 DST = *(SIZE *)(unsigned long) (SRC + insn->off); \
2140 CONT; \
2141 LDX_PROBE_MEM_##SIZEOP: \
2142 bpf_probe_read_kernel_common(&DST, sizeof(SIZE), \
2143 (const void *)(long) (SRC + insn->off)); \
2144 DST = *((SIZE *)&DST); \
2145 CONT;
2146
2147 LDST(B, u8)
2148 LDST(H, u16)
2149 LDST(W, u32)
2150 LDST(DW, u64)
2151 #undef LDST
2152
2153 #define LDSX(SIZEOP, SIZE) \
2154 LDX_MEMSX_##SIZEOP: \
2155 DST = *(SIZE *)(unsigned long) (SRC + insn->off); \
2156 CONT; \
2157 LDX_PROBE_MEMSX_##SIZEOP: \
2158 bpf_probe_read_kernel_common(&DST, sizeof(SIZE), \
2159 (const void *)(long) (SRC + insn->off)); \
2160 DST = *((SIZE *)&DST); \
2161 CONT;
2162
2163 LDSX(B, s8)
2164 LDSX(H, s16)
2165 LDSX(W, s32)
2166 #undef LDSX
2167
2168 #define ATOMIC_ALU_OP(BOP, KOP) \
2169 case BOP: \
2170 if (BPF_SIZE(insn->code) == BPF_W) \
2171 atomic_##KOP((u32) SRC, (atomic_t *)(unsigned long) \
2172 (DST + insn->off)); \
2173 else if (BPF_SIZE(insn->code) == BPF_DW) \
2174 atomic64_##KOP((u64) SRC, (atomic64_t *)(unsigned long) \
2175 (DST + insn->off)); \
2176 else \
2177 goto default_label; \
2178 break; \
2179 case BOP | BPF_FETCH: \
2180 if (BPF_SIZE(insn->code) == BPF_W) \
2181 SRC = (u32) atomic_fetch_##KOP( \
2182 (u32) SRC, \
2183 (atomic_t *)(unsigned long) (DST + insn->off)); \
2184 else if (BPF_SIZE(insn->code) == BPF_DW) \
2185 SRC = (u64) atomic64_fetch_##KOP( \
2186 (u64) SRC, \
2187 (atomic64_t *)(unsigned long) (DST + insn->off)); \
2188 else \
2189 goto default_label; \
2190 break;
2191
2192 STX_ATOMIC_DW:
2193 STX_ATOMIC_W:
2194 STX_ATOMIC_H:
2195 STX_ATOMIC_B:
2196 switch (IMM) {
2197 /* Atomic read-modify-write instructions support only W and DW
2198 * size modifiers.
2199 */
2200 ATOMIC_ALU_OP(BPF_ADD, add)
2201 ATOMIC_ALU_OP(BPF_AND, and)
2202 ATOMIC_ALU_OP(BPF_OR, or)
2203 ATOMIC_ALU_OP(BPF_XOR, xor)
2204 #undef ATOMIC_ALU_OP
2205
2206 case BPF_XCHG:
2207 if (BPF_SIZE(insn->code) == BPF_W)
2208 SRC = (u32) atomic_xchg(
2209 (atomic_t *)(unsigned long) (DST + insn->off),
2210 (u32) SRC);
2211 else if (BPF_SIZE(insn->code) == BPF_DW)
2212 SRC = (u64) atomic64_xchg(
2213 (atomic64_t *)(unsigned long) (DST + insn->off),
2214 (u64) SRC);
2215 else
2216 goto default_label;
2217 break;
2218 case BPF_CMPXCHG:
2219 if (BPF_SIZE(insn->code) == BPF_W)
2220 BPF_R0 = (u32) atomic_cmpxchg(
2221 (atomic_t *)(unsigned long) (DST + insn->off),
2222 (u32) BPF_R0, (u32) SRC);
2223 else if (BPF_SIZE(insn->code) == BPF_DW)
2224 BPF_R0 = (u64) atomic64_cmpxchg(
2225 (atomic64_t *)(unsigned long) (DST + insn->off),
2226 (u64) BPF_R0, (u64) SRC);
2227 else
2228 goto default_label;
2229 break;
2230 /* Atomic load and store instructions support all size
2231 * modifiers.
2232 */
2233 case BPF_LOAD_ACQ:
2234 switch (BPF_SIZE(insn->code)) {
2235 #define LOAD_ACQUIRE(SIZEOP, SIZE) \
2236 case BPF_##SIZEOP: \
2237 DST = (SIZE)smp_load_acquire( \
2238 (SIZE *)(unsigned long)(SRC + insn->off)); \
2239 break;
2240 LOAD_ACQUIRE(B, u8)
2241 LOAD_ACQUIRE(H, u16)
2242 LOAD_ACQUIRE(W, u32)
2243 #ifdef CONFIG_64BIT
2244 LOAD_ACQUIRE(DW, u64)
2245 #endif
2246 #undef LOAD_ACQUIRE
2247 default:
2248 goto default_label;
2249 }
2250 break;
2251 case BPF_STORE_REL:
2252 switch (BPF_SIZE(insn->code)) {
2253 #define STORE_RELEASE(SIZEOP, SIZE) \
2254 case BPF_##SIZEOP: \
2255 smp_store_release( \
2256 (SIZE *)(unsigned long)(DST + insn->off), (SIZE)SRC); \
2257 break;
2258 STORE_RELEASE(B, u8)
2259 STORE_RELEASE(H, u16)
2260 STORE_RELEASE(W, u32)
2261 #ifdef CONFIG_64BIT
2262 STORE_RELEASE(DW, u64)
2263 #endif
2264 #undef STORE_RELEASE
2265 default:
2266 goto default_label;
2267 }
2268 break;
2269
2270 default:
2271 goto default_label;
2272 }
2273 CONT;
2274
2275 default_label:
2276 /* If we ever reach this, we have a bug somewhere. Die hard here
2277 * instead of just returning 0; we could be somewhere in a subprog,
2278 * so execution could continue otherwise which we do /not/ want.
2279 *
2280 * Note, verifier whitelists all opcodes in bpf_opcode_in_insntable().
2281 */
2282 pr_warn("BPF interpreter: unknown opcode %02x (imm: 0x%x)\n",
2283 insn->code, insn->imm);
2284 BUG_ON(1);
2285 return 0;
2286 }
2287
2288 #define PROG_NAME(stack_size) __bpf_prog_run##stack_size
2289 #define DEFINE_BPF_PROG_RUN(stack_size) \
2290 static unsigned int PROG_NAME(stack_size)(const void *ctx, const struct bpf_insn *insn) \
2291 { \
2292 u64 stack[stack_size / sizeof(u64)]; \
2293 u64 regs[MAX_BPF_EXT_REG] = {}; \
2294 \
2295 kmsan_unpoison_memory(stack, sizeof(stack)); \
2296 FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
2297 ARG1 = (u64) (unsigned long) ctx; \
2298 return ___bpf_prog_run(regs, insn); \
2299 }
2300
2301 #define PROG_NAME_ARGS(stack_size) __bpf_prog_run_args##stack_size
2302 #define DEFINE_BPF_PROG_RUN_ARGS(stack_size) \
2303 static u64 PROG_NAME_ARGS(stack_size)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5, \
2304 const struct bpf_insn *insn) \
2305 { \
2306 u64 stack[stack_size / sizeof(u64)]; \
2307 u64 regs[MAX_BPF_EXT_REG]; \
2308 \
2309 kmsan_unpoison_memory(stack, sizeof(stack)); \
2310 FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
2311 BPF_R1 = r1; \
2312 BPF_R2 = r2; \
2313 BPF_R3 = r3; \
2314 BPF_R4 = r4; \
2315 BPF_R5 = r5; \
2316 return ___bpf_prog_run(regs, insn); \
2317 }
2318
2319 #define EVAL1(FN, X) FN(X)
2320 #define EVAL2(FN, X, Y...) FN(X) EVAL1(FN, Y)
2321 #define EVAL3(FN, X, Y...) FN(X) EVAL2(FN, Y)
2322 #define EVAL4(FN, X, Y...) FN(X) EVAL3(FN, Y)
2323 #define EVAL5(FN, X, Y...) FN(X) EVAL4(FN, Y)
2324 #define EVAL6(FN, X, Y...) FN(X) EVAL5(FN, Y)
2325
2326 EVAL6(DEFINE_BPF_PROG_RUN, 32, 64, 96, 128, 160, 192);
2327 EVAL6(DEFINE_BPF_PROG_RUN, 224, 256, 288, 320, 352, 384);
2328 EVAL4(DEFINE_BPF_PROG_RUN, 416, 448, 480, 512);
2329
2330 EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 32, 64, 96, 128, 160, 192);
2331 EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 224, 256, 288, 320, 352, 384);
2332 EVAL4(DEFINE_BPF_PROG_RUN_ARGS, 416, 448, 480, 512);
2333
2334 #define PROG_NAME_LIST(stack_size) PROG_NAME(stack_size),
2335
2336 static unsigned int (*interpreters[])(const void *ctx,
2337 const struct bpf_insn *insn) = {
2338 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
2339 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
2340 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
2341 };
2342 #undef PROG_NAME_LIST
2343 #define PROG_NAME_LIST(stack_size) PROG_NAME_ARGS(stack_size),
2344 static __maybe_unused
2345 u64 (*interpreters_args[])(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5,
2346 const struct bpf_insn *insn) = {
2347 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
2348 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
2349 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
2350 };
2351 #undef PROG_NAME_LIST
2352
2353 #ifdef CONFIG_BPF_SYSCALL
bpf_patch_call_args(struct bpf_insn * insn,u32 stack_depth)2354 void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth)
2355 {
2356 stack_depth = max_t(u32, stack_depth, 1);
2357 insn->off = (s16) insn->imm;
2358 insn->imm = interpreters_args[(round_up(stack_depth, 32) / 32) - 1] -
2359 __bpf_call_base_args;
2360 insn->code = BPF_JMP | BPF_CALL_ARGS;
2361 }
2362 #endif
2363 #endif
2364
__bpf_prog_ret0_warn(const void * ctx,const struct bpf_insn * insn)2365 static unsigned int __bpf_prog_ret0_warn(const void *ctx,
2366 const struct bpf_insn *insn)
2367 {
2368 /* If this handler ever gets executed, then BPF_JIT_ALWAYS_ON
2369 * is not working properly, or interpreter is being used when
2370 * prog->jit_requested is not 0, so warn about it!
2371 */
2372 WARN_ON_ONCE(1);
2373 return 0;
2374 }
2375
__bpf_prog_map_compatible(struct bpf_map * map,const struct bpf_prog * fp)2376 static bool __bpf_prog_map_compatible(struct bpf_map *map,
2377 const struct bpf_prog *fp)
2378 {
2379 enum bpf_prog_type prog_type = resolve_prog_type(fp);
2380 struct bpf_prog_aux *aux = fp->aux;
2381 enum bpf_cgroup_storage_type i;
2382 bool ret = false;
2383 u64 cookie;
2384
2385 if (fp->kprobe_override)
2386 return ret;
2387
2388 spin_lock(&map->owner_lock);
2389 /* There's no owner yet where we could check for compatibility. */
2390 if (!map->owner) {
2391 map->owner = bpf_map_owner_alloc(map);
2392 if (!map->owner)
2393 goto err;
2394 map->owner->type = prog_type;
2395 map->owner->jited = fp->jited;
2396 map->owner->xdp_has_frags = aux->xdp_has_frags;
2397 map->owner->attach_func_proto = aux->attach_func_proto;
2398 for_each_cgroup_storage_type(i) {
2399 map->owner->storage_cookie[i] =
2400 aux->cgroup_storage[i] ?
2401 aux->cgroup_storage[i]->cookie : 0;
2402 }
2403 ret = true;
2404 } else {
2405 ret = map->owner->type == prog_type &&
2406 map->owner->jited == fp->jited &&
2407 map->owner->xdp_has_frags == aux->xdp_has_frags;
2408 for_each_cgroup_storage_type(i) {
2409 if (!ret)
2410 break;
2411 cookie = aux->cgroup_storage[i] ?
2412 aux->cgroup_storage[i]->cookie : 0;
2413 ret = map->owner->storage_cookie[i] == cookie ||
2414 !cookie;
2415 }
2416 if (ret &&
2417 map->owner->attach_func_proto != aux->attach_func_proto) {
2418 switch (prog_type) {
2419 case BPF_PROG_TYPE_TRACING:
2420 case BPF_PROG_TYPE_LSM:
2421 case BPF_PROG_TYPE_EXT:
2422 case BPF_PROG_TYPE_STRUCT_OPS:
2423 ret = false;
2424 break;
2425 default:
2426 break;
2427 }
2428 }
2429 }
2430 err:
2431 spin_unlock(&map->owner_lock);
2432 return ret;
2433 }
2434
bpf_prog_map_compatible(struct bpf_map * map,const struct bpf_prog * fp)2435 bool bpf_prog_map_compatible(struct bpf_map *map, const struct bpf_prog *fp)
2436 {
2437 /* XDP programs inserted into maps are not guaranteed to run on
2438 * a particular netdev (and can run outside driver context entirely
2439 * in the case of devmap and cpumap). Until device checks
2440 * are implemented, prohibit adding dev-bound programs to program maps.
2441 */
2442 if (bpf_prog_is_dev_bound(fp->aux))
2443 return false;
2444
2445 return __bpf_prog_map_compatible(map, fp);
2446 }
2447
bpf_check_tail_call(const struct bpf_prog * fp)2448 static int bpf_check_tail_call(const struct bpf_prog *fp)
2449 {
2450 struct bpf_prog_aux *aux = fp->aux;
2451 int i, ret = 0;
2452
2453 mutex_lock(&aux->used_maps_mutex);
2454 for (i = 0; i < aux->used_map_cnt; i++) {
2455 struct bpf_map *map = aux->used_maps[i];
2456
2457 if (!map_type_contains_progs(map))
2458 continue;
2459
2460 if (!__bpf_prog_map_compatible(map, fp)) {
2461 ret = -EINVAL;
2462 goto out;
2463 }
2464 }
2465
2466 out:
2467 mutex_unlock(&aux->used_maps_mutex);
2468 return ret;
2469 }
2470
bpf_prog_select_func(struct bpf_prog * fp)2471 static void bpf_prog_select_func(struct bpf_prog *fp)
2472 {
2473 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
2474 u32 stack_depth = max_t(u32, fp->aux->stack_depth, 1);
2475 u32 idx = (round_up(stack_depth, 32) / 32) - 1;
2476
2477 /* may_goto may cause stack size > 512, leading to idx out-of-bounds.
2478 * But for non-JITed programs, we don't need bpf_func, so no bounds
2479 * check needed.
2480 */
2481 if (!fp->jit_requested &&
2482 !WARN_ON_ONCE(idx >= ARRAY_SIZE(interpreters))) {
2483 fp->bpf_func = interpreters[idx];
2484 } else {
2485 fp->bpf_func = __bpf_prog_ret0_warn;
2486 }
2487 #else
2488 fp->bpf_func = __bpf_prog_ret0_warn;
2489 #endif
2490 }
2491
2492 /**
2493 * bpf_prog_select_runtime - select exec runtime for BPF program
2494 * @fp: bpf_prog populated with BPF program
2495 * @err: pointer to error variable
2496 *
2497 * Try to JIT eBPF program, if JIT is not available, use interpreter.
2498 * The BPF program will be executed via bpf_prog_run() function.
2499 *
2500 * Return: the &fp argument along with &err set to 0 for success or
2501 * a negative errno code on failure
2502 */
bpf_prog_select_runtime(struct bpf_prog * fp,int * err)2503 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err)
2504 {
2505 /* In case of BPF to BPF calls, verifier did all the prep
2506 * work with regards to JITing, etc.
2507 */
2508 bool jit_needed = fp->jit_requested;
2509
2510 if (fp->bpf_func)
2511 goto finalize;
2512
2513 if (IS_ENABLED(CONFIG_BPF_JIT_ALWAYS_ON) ||
2514 bpf_prog_has_kfunc_call(fp))
2515 jit_needed = true;
2516
2517 bpf_prog_select_func(fp);
2518
2519 /* eBPF JITs can rewrite the program in case constant
2520 * blinding is active. However, in case of error during
2521 * blinding, bpf_int_jit_compile() must always return a
2522 * valid program, which in this case would simply not
2523 * be JITed, but falls back to the interpreter.
2524 */
2525 if (!bpf_prog_is_offloaded(fp->aux)) {
2526 *err = bpf_prog_alloc_jited_linfo(fp);
2527 if (*err)
2528 return fp;
2529
2530 fp = bpf_int_jit_compile(fp);
2531 bpf_prog_jit_attempt_done(fp);
2532 if (!fp->jited && jit_needed) {
2533 *err = -ENOTSUPP;
2534 return fp;
2535 }
2536 } else {
2537 *err = bpf_prog_offload_compile(fp);
2538 if (*err)
2539 return fp;
2540 }
2541
2542 finalize:
2543 *err = bpf_prog_lock_ro(fp);
2544 if (*err)
2545 return fp;
2546
2547 /* The tail call compatibility check can only be done at
2548 * this late stage as we need to determine, if we deal
2549 * with JITed or non JITed program concatenations and not
2550 * all eBPF JITs might immediately support all features.
2551 */
2552 *err = bpf_check_tail_call(fp);
2553
2554 return fp;
2555 }
2556 EXPORT_SYMBOL_GPL(bpf_prog_select_runtime);
2557
__bpf_prog_ret1(const void * ctx,const struct bpf_insn * insn)2558 static unsigned int __bpf_prog_ret1(const void *ctx,
2559 const struct bpf_insn *insn)
2560 {
2561 return 1;
2562 }
2563
2564 static struct bpf_prog_dummy {
2565 struct bpf_prog prog;
2566 } dummy_bpf_prog = {
2567 .prog = {
2568 .bpf_func = __bpf_prog_ret1,
2569 },
2570 };
2571
2572 struct bpf_empty_prog_array bpf_empty_prog_array = {
2573 .null_prog = NULL,
2574 };
2575 EXPORT_SYMBOL(bpf_empty_prog_array);
2576
bpf_prog_array_alloc(u32 prog_cnt,gfp_t flags)2577 struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags)
2578 {
2579 struct bpf_prog_array *p;
2580
2581 if (prog_cnt)
2582 p = kzalloc(struct_size(p, items, prog_cnt + 1), flags);
2583 else
2584 p = &bpf_empty_prog_array.hdr;
2585
2586 return p;
2587 }
2588
bpf_prog_array_free(struct bpf_prog_array * progs)2589 void bpf_prog_array_free(struct bpf_prog_array *progs)
2590 {
2591 if (!progs || progs == &bpf_empty_prog_array.hdr)
2592 return;
2593 kfree_rcu(progs, rcu);
2594 }
2595
__bpf_prog_array_free_sleepable_cb(struct rcu_head * rcu)2596 static void __bpf_prog_array_free_sleepable_cb(struct rcu_head *rcu)
2597 {
2598 struct bpf_prog_array *progs;
2599
2600 /* If RCU Tasks Trace grace period implies RCU grace period, there is
2601 * no need to call kfree_rcu(), just call kfree() directly.
2602 */
2603 progs = container_of(rcu, struct bpf_prog_array, rcu);
2604 if (rcu_trace_implies_rcu_gp())
2605 kfree(progs);
2606 else
2607 kfree_rcu(progs, rcu);
2608 }
2609
bpf_prog_array_free_sleepable(struct bpf_prog_array * progs)2610 void bpf_prog_array_free_sleepable(struct bpf_prog_array *progs)
2611 {
2612 if (!progs || progs == &bpf_empty_prog_array.hdr)
2613 return;
2614 call_rcu_tasks_trace(&progs->rcu, __bpf_prog_array_free_sleepable_cb);
2615 }
2616
bpf_prog_array_length(struct bpf_prog_array * array)2617 int bpf_prog_array_length(struct bpf_prog_array *array)
2618 {
2619 struct bpf_prog_array_item *item;
2620 u32 cnt = 0;
2621
2622 for (item = array->items; item->prog; item++)
2623 if (item->prog != &dummy_bpf_prog.prog)
2624 cnt++;
2625 return cnt;
2626 }
2627
bpf_prog_array_is_empty(struct bpf_prog_array * array)2628 bool bpf_prog_array_is_empty(struct bpf_prog_array *array)
2629 {
2630 struct bpf_prog_array_item *item;
2631
2632 for (item = array->items; item->prog; item++)
2633 if (item->prog != &dummy_bpf_prog.prog)
2634 return false;
2635 return true;
2636 }
2637
bpf_prog_array_copy_core(struct bpf_prog_array * array,u32 * prog_ids,u32 request_cnt)2638 static bool bpf_prog_array_copy_core(struct bpf_prog_array *array,
2639 u32 *prog_ids,
2640 u32 request_cnt)
2641 {
2642 struct bpf_prog_array_item *item;
2643 int i = 0;
2644
2645 for (item = array->items; item->prog; item++) {
2646 if (item->prog == &dummy_bpf_prog.prog)
2647 continue;
2648 prog_ids[i] = item->prog->aux->id;
2649 if (++i == request_cnt) {
2650 item++;
2651 break;
2652 }
2653 }
2654
2655 return !!(item->prog);
2656 }
2657
bpf_prog_array_copy_to_user(struct bpf_prog_array * array,__u32 __user * prog_ids,u32 cnt)2658 int bpf_prog_array_copy_to_user(struct bpf_prog_array *array,
2659 __u32 __user *prog_ids, u32 cnt)
2660 {
2661 unsigned long err = 0;
2662 bool nospc;
2663 u32 *ids;
2664
2665 /* users of this function are doing:
2666 * cnt = bpf_prog_array_length();
2667 * if (cnt > 0)
2668 * bpf_prog_array_copy_to_user(..., cnt);
2669 * so below kcalloc doesn't need extra cnt > 0 check.
2670 */
2671 ids = kcalloc(cnt, sizeof(u32), GFP_USER | __GFP_NOWARN);
2672 if (!ids)
2673 return -ENOMEM;
2674 nospc = bpf_prog_array_copy_core(array, ids, cnt);
2675 err = copy_to_user(prog_ids, ids, cnt * sizeof(u32));
2676 kfree(ids);
2677 if (err)
2678 return -EFAULT;
2679 if (nospc)
2680 return -ENOSPC;
2681 return 0;
2682 }
2683
bpf_prog_array_delete_safe(struct bpf_prog_array * array,struct bpf_prog * old_prog)2684 void bpf_prog_array_delete_safe(struct bpf_prog_array *array,
2685 struct bpf_prog *old_prog)
2686 {
2687 struct bpf_prog_array_item *item;
2688
2689 for (item = array->items; item->prog; item++)
2690 if (item->prog == old_prog) {
2691 WRITE_ONCE(item->prog, &dummy_bpf_prog.prog);
2692 break;
2693 }
2694 }
2695
2696 /**
2697 * bpf_prog_array_delete_safe_at() - Replaces the program at the given
2698 * index into the program array with
2699 * a dummy no-op program.
2700 * @array: a bpf_prog_array
2701 * @index: the index of the program to replace
2702 *
2703 * Skips over dummy programs, by not counting them, when calculating
2704 * the position of the program to replace.
2705 *
2706 * Return:
2707 * * 0 - Success
2708 * * -EINVAL - Invalid index value. Must be a non-negative integer.
2709 * * -ENOENT - Index out of range
2710 */
bpf_prog_array_delete_safe_at(struct bpf_prog_array * array,int index)2711 int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index)
2712 {
2713 return bpf_prog_array_update_at(array, index, &dummy_bpf_prog.prog);
2714 }
2715
2716 /**
2717 * bpf_prog_array_update_at() - Updates the program at the given index
2718 * into the program array.
2719 * @array: a bpf_prog_array
2720 * @index: the index of the program to update
2721 * @prog: the program to insert into the array
2722 *
2723 * Skips over dummy programs, by not counting them, when calculating
2724 * the position of the program to update.
2725 *
2726 * Return:
2727 * * 0 - Success
2728 * * -EINVAL - Invalid index value. Must be a non-negative integer.
2729 * * -ENOENT - Index out of range
2730 */
bpf_prog_array_update_at(struct bpf_prog_array * array,int index,struct bpf_prog * prog)2731 int bpf_prog_array_update_at(struct bpf_prog_array *array, int index,
2732 struct bpf_prog *prog)
2733 {
2734 struct bpf_prog_array_item *item;
2735
2736 if (unlikely(index < 0))
2737 return -EINVAL;
2738
2739 for (item = array->items; item->prog; item++) {
2740 if (item->prog == &dummy_bpf_prog.prog)
2741 continue;
2742 if (!index) {
2743 WRITE_ONCE(item->prog, prog);
2744 return 0;
2745 }
2746 index--;
2747 }
2748 return -ENOENT;
2749 }
2750
bpf_prog_array_copy(struct bpf_prog_array * old_array,struct bpf_prog * exclude_prog,struct bpf_prog * include_prog,u64 bpf_cookie,struct bpf_prog_array ** new_array)2751 int bpf_prog_array_copy(struct bpf_prog_array *old_array,
2752 struct bpf_prog *exclude_prog,
2753 struct bpf_prog *include_prog,
2754 u64 bpf_cookie,
2755 struct bpf_prog_array **new_array)
2756 {
2757 int new_prog_cnt, carry_prog_cnt = 0;
2758 struct bpf_prog_array_item *existing, *new;
2759 struct bpf_prog_array *array;
2760 bool found_exclude = false;
2761
2762 /* Figure out how many existing progs we need to carry over to
2763 * the new array.
2764 */
2765 if (old_array) {
2766 existing = old_array->items;
2767 for (; existing->prog; existing++) {
2768 if (existing->prog == exclude_prog) {
2769 found_exclude = true;
2770 continue;
2771 }
2772 if (existing->prog != &dummy_bpf_prog.prog)
2773 carry_prog_cnt++;
2774 if (existing->prog == include_prog)
2775 return -EEXIST;
2776 }
2777 }
2778
2779 if (exclude_prog && !found_exclude)
2780 return -ENOENT;
2781
2782 /* How many progs (not NULL) will be in the new array? */
2783 new_prog_cnt = carry_prog_cnt;
2784 if (include_prog)
2785 new_prog_cnt += 1;
2786
2787 /* Do we have any prog (not NULL) in the new array? */
2788 if (!new_prog_cnt) {
2789 *new_array = NULL;
2790 return 0;
2791 }
2792
2793 /* +1 as the end of prog_array is marked with NULL */
2794 array = bpf_prog_array_alloc(new_prog_cnt + 1, GFP_KERNEL);
2795 if (!array)
2796 return -ENOMEM;
2797 new = array->items;
2798
2799 /* Fill in the new prog array */
2800 if (carry_prog_cnt) {
2801 existing = old_array->items;
2802 for (; existing->prog; existing++) {
2803 if (existing->prog == exclude_prog ||
2804 existing->prog == &dummy_bpf_prog.prog)
2805 continue;
2806
2807 new->prog = existing->prog;
2808 new->bpf_cookie = existing->bpf_cookie;
2809 new++;
2810 }
2811 }
2812 if (include_prog) {
2813 new->prog = include_prog;
2814 new->bpf_cookie = bpf_cookie;
2815 new++;
2816 }
2817 new->prog = NULL;
2818 *new_array = array;
2819 return 0;
2820 }
2821
bpf_prog_array_copy_info(struct bpf_prog_array * array,u32 * prog_ids,u32 request_cnt,u32 * prog_cnt)2822 int bpf_prog_array_copy_info(struct bpf_prog_array *array,
2823 u32 *prog_ids, u32 request_cnt,
2824 u32 *prog_cnt)
2825 {
2826 u32 cnt = 0;
2827
2828 if (array)
2829 cnt = bpf_prog_array_length(array);
2830
2831 *prog_cnt = cnt;
2832
2833 /* return early if user requested only program count or nothing to copy */
2834 if (!request_cnt || !cnt)
2835 return 0;
2836
2837 /* this function is called under trace/bpf_trace.c: bpf_event_mutex */
2838 return bpf_prog_array_copy_core(array, prog_ids, request_cnt) ? -ENOSPC
2839 : 0;
2840 }
2841
__bpf_free_used_maps(struct bpf_prog_aux * aux,struct bpf_map ** used_maps,u32 len)2842 void __bpf_free_used_maps(struct bpf_prog_aux *aux,
2843 struct bpf_map **used_maps, u32 len)
2844 {
2845 struct bpf_map *map;
2846 bool sleepable;
2847 u32 i;
2848
2849 sleepable = aux->prog->sleepable;
2850 for (i = 0; i < len; i++) {
2851 map = used_maps[i];
2852 if (map->ops->map_poke_untrack)
2853 map->ops->map_poke_untrack(map, aux);
2854 if (sleepable)
2855 atomic64_dec(&map->sleepable_refcnt);
2856 bpf_map_put(map);
2857 }
2858 }
2859
bpf_free_used_maps(struct bpf_prog_aux * aux)2860 static void bpf_free_used_maps(struct bpf_prog_aux *aux)
2861 {
2862 __bpf_free_used_maps(aux, aux->used_maps, aux->used_map_cnt);
2863 kfree(aux->used_maps);
2864 }
2865
__bpf_free_used_btfs(struct btf_mod_pair * used_btfs,u32 len)2866 void __bpf_free_used_btfs(struct btf_mod_pair *used_btfs, u32 len)
2867 {
2868 #ifdef CONFIG_BPF_SYSCALL
2869 struct btf_mod_pair *btf_mod;
2870 u32 i;
2871
2872 for (i = 0; i < len; i++) {
2873 btf_mod = &used_btfs[i];
2874 if (btf_mod->module)
2875 module_put(btf_mod->module);
2876 btf_put(btf_mod->btf);
2877 }
2878 #endif
2879 }
2880
bpf_free_used_btfs(struct bpf_prog_aux * aux)2881 static void bpf_free_used_btfs(struct bpf_prog_aux *aux)
2882 {
2883 __bpf_free_used_btfs(aux->used_btfs, aux->used_btf_cnt);
2884 kfree(aux->used_btfs);
2885 }
2886
bpf_prog_free_deferred(struct work_struct * work)2887 static void bpf_prog_free_deferred(struct work_struct *work)
2888 {
2889 struct bpf_prog_aux *aux;
2890 int i;
2891
2892 aux = container_of(work, struct bpf_prog_aux, work);
2893 #ifdef CONFIG_BPF_SYSCALL
2894 bpf_free_kfunc_btf_tab(aux->kfunc_btf_tab);
2895 bpf_prog_stream_free(aux->prog);
2896 #endif
2897 #ifdef CONFIG_CGROUP_BPF
2898 if (aux->cgroup_atype != CGROUP_BPF_ATTACH_TYPE_INVALID)
2899 bpf_cgroup_atype_put(aux->cgroup_atype);
2900 #endif
2901 bpf_free_used_maps(aux);
2902 bpf_free_used_btfs(aux);
2903 if (bpf_prog_is_dev_bound(aux))
2904 bpf_prog_dev_bound_destroy(aux->prog);
2905 #ifdef CONFIG_PERF_EVENTS
2906 if (aux->prog->has_callchain_buf)
2907 put_callchain_buffers();
2908 #endif
2909 if (aux->dst_trampoline)
2910 bpf_trampoline_put(aux->dst_trampoline);
2911 for (i = 0; i < aux->real_func_cnt; i++) {
2912 /* We can just unlink the subprog poke descriptor table as
2913 * it was originally linked to the main program and is also
2914 * released along with it.
2915 */
2916 aux->func[i]->aux->poke_tab = NULL;
2917 bpf_jit_free(aux->func[i]);
2918 }
2919 if (aux->real_func_cnt) {
2920 kfree(aux->func);
2921 bpf_prog_unlock_free(aux->prog);
2922 } else {
2923 bpf_jit_free(aux->prog);
2924 }
2925 }
2926
bpf_prog_free(struct bpf_prog * fp)2927 void bpf_prog_free(struct bpf_prog *fp)
2928 {
2929 struct bpf_prog_aux *aux = fp->aux;
2930
2931 if (aux->dst_prog)
2932 bpf_prog_put(aux->dst_prog);
2933 bpf_token_put(aux->token);
2934 INIT_WORK(&aux->work, bpf_prog_free_deferred);
2935 schedule_work(&aux->work);
2936 }
2937 EXPORT_SYMBOL_GPL(bpf_prog_free);
2938
2939 /* RNG for unprivileged user space with separated state from prandom_u32(). */
2940 static DEFINE_PER_CPU(struct rnd_state, bpf_user_rnd_state);
2941
bpf_user_rnd_init_once(void)2942 void bpf_user_rnd_init_once(void)
2943 {
2944 prandom_init_once(&bpf_user_rnd_state);
2945 }
2946
BPF_CALL_0(bpf_user_rnd_u32)2947 BPF_CALL_0(bpf_user_rnd_u32)
2948 {
2949 /* Should someone ever have the rather unwise idea to use some
2950 * of the registers passed into this function, then note that
2951 * this function is called from native eBPF and classic-to-eBPF
2952 * transformations. Register assignments from both sides are
2953 * different, f.e. classic always sets fn(ctx, A, X) here.
2954 */
2955 struct rnd_state *state;
2956 u32 res;
2957
2958 state = &get_cpu_var(bpf_user_rnd_state);
2959 res = prandom_u32_state(state);
2960 put_cpu_var(bpf_user_rnd_state);
2961
2962 return res;
2963 }
2964
BPF_CALL_0(bpf_get_raw_cpu_id)2965 BPF_CALL_0(bpf_get_raw_cpu_id)
2966 {
2967 return raw_smp_processor_id();
2968 }
2969
2970 /* Weak definitions of helper functions in case we don't have bpf syscall. */
2971 const struct bpf_func_proto bpf_map_lookup_elem_proto __weak;
2972 const struct bpf_func_proto bpf_map_update_elem_proto __weak;
2973 const struct bpf_func_proto bpf_map_delete_elem_proto __weak;
2974 const struct bpf_func_proto bpf_map_push_elem_proto __weak;
2975 const struct bpf_func_proto bpf_map_pop_elem_proto __weak;
2976 const struct bpf_func_proto bpf_map_peek_elem_proto __weak;
2977 const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto __weak;
2978 const struct bpf_func_proto bpf_spin_lock_proto __weak;
2979 const struct bpf_func_proto bpf_spin_unlock_proto __weak;
2980 const struct bpf_func_proto bpf_jiffies64_proto __weak;
2981
2982 const struct bpf_func_proto bpf_get_prandom_u32_proto __weak;
2983 const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak;
2984 const struct bpf_func_proto bpf_get_numa_node_id_proto __weak;
2985 const struct bpf_func_proto bpf_ktime_get_ns_proto __weak;
2986 const struct bpf_func_proto bpf_ktime_get_boot_ns_proto __weak;
2987 const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto __weak;
2988 const struct bpf_func_proto bpf_ktime_get_tai_ns_proto __weak;
2989
2990 const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak;
2991 const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak;
2992 const struct bpf_func_proto bpf_get_current_comm_proto __weak;
2993 const struct bpf_func_proto bpf_get_current_cgroup_id_proto __weak;
2994 const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto __weak;
2995 const struct bpf_func_proto bpf_get_local_storage_proto __weak;
2996 const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto __weak;
2997 const struct bpf_func_proto bpf_snprintf_btf_proto __weak;
2998 const struct bpf_func_proto bpf_seq_printf_btf_proto __weak;
2999 const struct bpf_func_proto bpf_set_retval_proto __weak;
3000 const struct bpf_func_proto bpf_get_retval_proto __weak;
3001
bpf_get_trace_printk_proto(void)3002 const struct bpf_func_proto * __weak bpf_get_trace_printk_proto(void)
3003 {
3004 return NULL;
3005 }
3006
bpf_get_trace_vprintk_proto(void)3007 const struct bpf_func_proto * __weak bpf_get_trace_vprintk_proto(void)
3008 {
3009 return NULL;
3010 }
3011
bpf_get_perf_event_read_value_proto(void)3012 const struct bpf_func_proto * __weak bpf_get_perf_event_read_value_proto(void)
3013 {
3014 return NULL;
3015 }
3016
3017 u64 __weak
bpf_event_output(struct bpf_map * map,u64 flags,void * meta,u64 meta_size,void * ctx,u64 ctx_size,bpf_ctx_copy_t ctx_copy)3018 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
3019 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
3020 {
3021 return -ENOTSUPP;
3022 }
3023 EXPORT_SYMBOL_GPL(bpf_event_output);
3024
3025 /* Always built-in helper functions. */
3026 const struct bpf_func_proto bpf_tail_call_proto = {
3027 .func = NULL,
3028 .gpl_only = false,
3029 .ret_type = RET_VOID,
3030 .arg1_type = ARG_PTR_TO_CTX,
3031 .arg2_type = ARG_CONST_MAP_PTR,
3032 .arg3_type = ARG_ANYTHING,
3033 };
3034
3035 /* Stub for JITs that only support cBPF. eBPF programs are interpreted.
3036 * It is encouraged to implement bpf_int_jit_compile() instead, so that
3037 * eBPF and implicitly also cBPF can get JITed!
3038 */
bpf_int_jit_compile(struct bpf_prog * prog)3039 struct bpf_prog * __weak bpf_int_jit_compile(struct bpf_prog *prog)
3040 {
3041 return prog;
3042 }
3043
3044 /* Stub for JITs that support eBPF. All cBPF code gets transformed into
3045 * eBPF by the kernel and is later compiled by bpf_int_jit_compile().
3046 */
bpf_jit_compile(struct bpf_prog * prog)3047 void __weak bpf_jit_compile(struct bpf_prog *prog)
3048 {
3049 }
3050
bpf_helper_changes_pkt_data(enum bpf_func_id func_id)3051 bool __weak bpf_helper_changes_pkt_data(enum bpf_func_id func_id)
3052 {
3053 return false;
3054 }
3055
3056 /* Return TRUE if the JIT backend wants verifier to enable sub-register usage
3057 * analysis code and wants explicit zero extension inserted by verifier.
3058 * Otherwise, return FALSE.
3059 *
3060 * The verifier inserts an explicit zero extension after BPF_CMPXCHGs even if
3061 * you don't override this. JITs that don't want these extra insns can detect
3062 * them using insn_is_zext.
3063 */
bpf_jit_needs_zext(void)3064 bool __weak bpf_jit_needs_zext(void)
3065 {
3066 return false;
3067 }
3068
3069 /* By default, enable the verifier's mitigations against Spectre v1 and v4 for
3070 * all archs. The value returned must not change at runtime as there is
3071 * currently no support for reloading programs that were loaded without
3072 * mitigations.
3073 */
bpf_jit_bypass_spec_v1(void)3074 bool __weak bpf_jit_bypass_spec_v1(void)
3075 {
3076 return false;
3077 }
3078
bpf_jit_bypass_spec_v4(void)3079 bool __weak bpf_jit_bypass_spec_v4(void)
3080 {
3081 return false;
3082 }
3083
3084 /* Return true if the JIT inlines the call to the helper corresponding to
3085 * the imm.
3086 *
3087 * The verifier will not patch the insn->imm for the call to the helper if
3088 * this returns true.
3089 */
bpf_jit_inlines_helper_call(s32 imm)3090 bool __weak bpf_jit_inlines_helper_call(s32 imm)
3091 {
3092 return false;
3093 }
3094
3095 /* Return TRUE if the JIT backend supports mixing bpf2bpf and tailcalls. */
bpf_jit_supports_subprog_tailcalls(void)3096 bool __weak bpf_jit_supports_subprog_tailcalls(void)
3097 {
3098 return false;
3099 }
3100
bpf_jit_supports_percpu_insn(void)3101 bool __weak bpf_jit_supports_percpu_insn(void)
3102 {
3103 return false;
3104 }
3105
bpf_jit_supports_kfunc_call(void)3106 bool __weak bpf_jit_supports_kfunc_call(void)
3107 {
3108 return false;
3109 }
3110
bpf_jit_supports_far_kfunc_call(void)3111 bool __weak bpf_jit_supports_far_kfunc_call(void)
3112 {
3113 return false;
3114 }
3115
bpf_jit_supports_arena(void)3116 bool __weak bpf_jit_supports_arena(void)
3117 {
3118 return false;
3119 }
3120
bpf_jit_supports_insn(struct bpf_insn * insn,bool in_arena)3121 bool __weak bpf_jit_supports_insn(struct bpf_insn *insn, bool in_arena)
3122 {
3123 return false;
3124 }
3125
bpf_arch_uaddress_limit(void)3126 u64 __weak bpf_arch_uaddress_limit(void)
3127 {
3128 #if defined(CONFIG_64BIT) && defined(CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE)
3129 return TASK_SIZE;
3130 #else
3131 return 0;
3132 #endif
3133 }
3134
3135 /* Return TRUE if the JIT backend satisfies the following two conditions:
3136 * 1) JIT backend supports atomic_xchg() on pointer-sized words.
3137 * 2) Under the specific arch, the implementation of xchg() is the same
3138 * as atomic_xchg() on pointer-sized words.
3139 */
bpf_jit_supports_ptr_xchg(void)3140 bool __weak bpf_jit_supports_ptr_xchg(void)
3141 {
3142 return false;
3143 }
3144
3145 /* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call
3146 * skb_copy_bits(), so provide a weak definition of it for NET-less config.
3147 */
skb_copy_bits(const struct sk_buff * skb,int offset,void * to,int len)3148 int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to,
3149 int len)
3150 {
3151 return -EFAULT;
3152 }
3153
bpf_arch_text_poke(void * ip,enum bpf_text_poke_type t,void * addr1,void * addr2)3154 int __weak bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
3155 void *addr1, void *addr2)
3156 {
3157 return -ENOTSUPP;
3158 }
3159
bpf_arch_text_copy(void * dst,void * src,size_t len)3160 void * __weak bpf_arch_text_copy(void *dst, void *src, size_t len)
3161 {
3162 return ERR_PTR(-ENOTSUPP);
3163 }
3164
bpf_arch_text_invalidate(void * dst,size_t len)3165 int __weak bpf_arch_text_invalidate(void *dst, size_t len)
3166 {
3167 return -ENOTSUPP;
3168 }
3169
bpf_jit_supports_exceptions(void)3170 bool __weak bpf_jit_supports_exceptions(void)
3171 {
3172 return false;
3173 }
3174
bpf_jit_supports_private_stack(void)3175 bool __weak bpf_jit_supports_private_stack(void)
3176 {
3177 return false;
3178 }
3179
arch_bpf_stack_walk(bool (* consume_fn)(void * cookie,u64 ip,u64 sp,u64 bp),void * cookie)3180 void __weak arch_bpf_stack_walk(bool (*consume_fn)(void *cookie, u64 ip, u64 sp, u64 bp), void *cookie)
3181 {
3182 }
3183
bpf_jit_supports_timed_may_goto(void)3184 bool __weak bpf_jit_supports_timed_may_goto(void)
3185 {
3186 return false;
3187 }
3188
arch_bpf_timed_may_goto(void)3189 u64 __weak arch_bpf_timed_may_goto(void)
3190 {
3191 return 0;
3192 }
3193
bpf_prog_report_may_goto_violation(void)3194 static noinline void bpf_prog_report_may_goto_violation(void)
3195 {
3196 #ifdef CONFIG_BPF_SYSCALL
3197 struct bpf_stream_stage ss;
3198 struct bpf_prog *prog;
3199
3200 prog = bpf_prog_find_from_stack();
3201 if (!prog)
3202 return;
3203 bpf_stream_stage(ss, prog, BPF_STDERR, ({
3204 bpf_stream_printk(ss, "ERROR: Timeout detected for may_goto instruction\n");
3205 bpf_stream_dump_stack(ss);
3206 }));
3207 #endif
3208 }
3209
bpf_check_timed_may_goto(struct bpf_timed_may_goto * p)3210 u64 bpf_check_timed_may_goto(struct bpf_timed_may_goto *p)
3211 {
3212 u64 time = ktime_get_mono_fast_ns();
3213
3214 /* Populate the timestamp for this stack frame, and refresh count. */
3215 if (!p->timestamp) {
3216 p->timestamp = time;
3217 return BPF_MAX_TIMED_LOOPS;
3218 }
3219 /* Check if we've exhausted our time slice, and zero count. */
3220 if (unlikely(time - p->timestamp >= (NSEC_PER_SEC / 4))) {
3221 bpf_prog_report_may_goto_violation();
3222 return 0;
3223 }
3224 /* Refresh the count for the stack frame. */
3225 return BPF_MAX_TIMED_LOOPS;
3226 }
3227
3228 /* for configs without MMU or 32-bit */
3229 __weak const struct bpf_map_ops arena_map_ops;
bpf_arena_get_user_vm_start(struct bpf_arena * arena)3230 __weak u64 bpf_arena_get_user_vm_start(struct bpf_arena *arena)
3231 {
3232 return 0;
3233 }
bpf_arena_get_kern_vm_start(struct bpf_arena * arena)3234 __weak u64 bpf_arena_get_kern_vm_start(struct bpf_arena *arena)
3235 {
3236 return 0;
3237 }
3238
3239 #ifdef CONFIG_BPF_SYSCALL
bpf_global_ma_init(void)3240 static int __init bpf_global_ma_init(void)
3241 {
3242 int ret;
3243
3244 ret = bpf_mem_alloc_init(&bpf_global_ma, 0, false);
3245 bpf_global_ma_set = !ret;
3246 return ret;
3247 }
3248 late_initcall(bpf_global_ma_init);
3249 #endif
3250
3251 DEFINE_STATIC_KEY_FALSE(bpf_stats_enabled_key);
3252 EXPORT_SYMBOL(bpf_stats_enabled_key);
3253
3254 /* All definitions of tracepoints related to BPF. */
3255 #define CREATE_TRACE_POINTS
3256 #include <linux/bpf_trace.h>
3257
3258 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_exception);
3259 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_bulk_tx);
3260
3261 #ifdef CONFIG_BPF_SYSCALL
3262
bpf_prog_get_file_line(struct bpf_prog * prog,unsigned long ip,const char ** filep,const char ** linep,int * nump)3263 int bpf_prog_get_file_line(struct bpf_prog *prog, unsigned long ip, const char **filep,
3264 const char **linep, int *nump)
3265 {
3266 int idx = -1, insn_start, insn_end, len;
3267 struct bpf_line_info *linfo;
3268 void **jited_linfo;
3269 struct btf *btf;
3270 int nr_linfo;
3271
3272 btf = prog->aux->btf;
3273 linfo = prog->aux->linfo;
3274 jited_linfo = prog->aux->jited_linfo;
3275
3276 if (!btf || !linfo || !jited_linfo)
3277 return -EINVAL;
3278 len = prog->aux->func ? prog->aux->func[prog->aux->func_idx]->len : prog->len;
3279
3280 linfo = &prog->aux->linfo[prog->aux->linfo_idx];
3281 jited_linfo = &prog->aux->jited_linfo[prog->aux->linfo_idx];
3282
3283 insn_start = linfo[0].insn_off;
3284 insn_end = insn_start + len;
3285 nr_linfo = prog->aux->nr_linfo - prog->aux->linfo_idx;
3286
3287 for (int i = 0; i < nr_linfo &&
3288 linfo[i].insn_off >= insn_start && linfo[i].insn_off < insn_end; i++) {
3289 if (jited_linfo[i] >= (void *)ip)
3290 break;
3291 idx = i;
3292 }
3293
3294 if (idx == -1)
3295 return -ENOENT;
3296
3297 /* Get base component of the file path. */
3298 *filep = btf_name_by_offset(btf, linfo[idx].file_name_off);
3299 *filep = kbasename(*filep);
3300 /* Obtain the source line, and strip whitespace in prefix. */
3301 *linep = btf_name_by_offset(btf, linfo[idx].line_off);
3302 while (isspace(**linep))
3303 *linep += 1;
3304 *nump = BPF_LINE_INFO_LINE_NUM(linfo[idx].line_col);
3305 return 0;
3306 }
3307
3308 struct walk_stack_ctx {
3309 struct bpf_prog *prog;
3310 };
3311
find_from_stack_cb(void * cookie,u64 ip,u64 sp,u64 bp)3312 static bool find_from_stack_cb(void *cookie, u64 ip, u64 sp, u64 bp)
3313 {
3314 struct walk_stack_ctx *ctxp = cookie;
3315 struct bpf_prog *prog;
3316
3317 /*
3318 * The RCU read lock is held to safely traverse the latch tree, but we
3319 * don't need its protection when accessing the prog, since it has an
3320 * active stack frame on the current stack trace, and won't disappear.
3321 */
3322 rcu_read_lock();
3323 prog = bpf_prog_ksym_find(ip);
3324 rcu_read_unlock();
3325 if (!prog)
3326 return true;
3327 if (bpf_is_subprog(prog))
3328 return true;
3329 ctxp->prog = prog;
3330 return false;
3331 }
3332
bpf_prog_find_from_stack(void)3333 struct bpf_prog *bpf_prog_find_from_stack(void)
3334 {
3335 struct walk_stack_ctx ctx = {};
3336
3337 arch_bpf_stack_walk(find_from_stack_cb, &ctx);
3338 return ctx.prog;
3339 }
3340
3341 #endif
3342