1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright (C) International Business Machines Corp., 2000-2004
4 * Portions Copyright (C) Tino Reichardt, 2012
5 */
6
7 #include <linux/fs.h>
8 #include <linux/slab.h>
9 #include "jfs_incore.h"
10 #include "jfs_superblock.h"
11 #include "jfs_dmap.h"
12 #include "jfs_imap.h"
13 #include "jfs_lock.h"
14 #include "jfs_metapage.h"
15 #include "jfs_debug.h"
16 #include "jfs_discard.h"
17
18 /*
19 * SERIALIZATION of the Block Allocation Map.
20 *
21 * the working state of the block allocation map is accessed in
22 * two directions:
23 *
24 * 1) allocation and free requests that start at the dmap
25 * level and move up through the dmap control pages (i.e.
26 * the vast majority of requests).
27 *
28 * 2) allocation requests that start at dmap control page
29 * level and work down towards the dmaps.
30 *
31 * the serialization scheme used here is as follows.
32 *
33 * requests which start at the bottom are serialized against each
34 * other through buffers and each requests holds onto its buffers
35 * as it works it way up from a single dmap to the required level
36 * of dmap control page.
37 * requests that start at the top are serialized against each other
38 * and request that start from the bottom by the multiple read/single
39 * write inode lock of the bmap inode. requests starting at the top
40 * take this lock in write mode while request starting at the bottom
41 * take the lock in read mode. a single top-down request may proceed
42 * exclusively while multiple bottoms-up requests may proceed
43 * simultaneously (under the protection of busy buffers).
44 *
45 * in addition to information found in dmaps and dmap control pages,
46 * the working state of the block allocation map also includes read/
47 * write information maintained in the bmap descriptor (i.e. total
48 * free block count, allocation group level free block counts).
49 * a single exclusive lock (BMAP_LOCK) is used to guard this information
50 * in the face of multiple-bottoms up requests.
51 * (lock ordering: IREAD_LOCK, BMAP_LOCK);
52 *
53 * accesses to the persistent state of the block allocation map (limited
54 * to the persistent bitmaps in dmaps) is guarded by (busy) buffers.
55 */
56
57 #define BMAP_LOCK_INIT(bmp) mutex_init(&bmp->db_bmaplock)
58 #define BMAP_LOCK(bmp) mutex_lock(&bmp->db_bmaplock)
59 #define BMAP_UNLOCK(bmp) mutex_unlock(&bmp->db_bmaplock)
60
61 /*
62 * forward references
63 */
64 static void dbAllocBits(struct bmap * bmp, struct dmap * dp, s64 blkno,
65 int nblocks);
66 static void dbSplit(dmtree_t *tp, int leafno, int splitsz, int newval, bool is_ctl);
67 static int dbBackSplit(dmtree_t *tp, int leafno, bool is_ctl);
68 static int dbJoin(dmtree_t *tp, int leafno, int newval, bool is_ctl);
69 static void dbAdjTree(dmtree_t *tp, int leafno, int newval, bool is_ctl);
70 static int dbAdjCtl(struct bmap * bmp, s64 blkno, int newval, int alloc,
71 int level);
72 static int dbAllocAny(struct bmap * bmp, s64 nblocks, int l2nb, s64 * results);
73 static int dbAllocNext(struct bmap * bmp, struct dmap * dp, s64 blkno,
74 int nblocks);
75 static int dbAllocNear(struct bmap * bmp, struct dmap * dp, s64 blkno,
76 int nblocks,
77 int l2nb, s64 * results);
78 static int dbAllocDmap(struct bmap * bmp, struct dmap * dp, s64 blkno,
79 int nblocks);
80 static int dbAllocDmapLev(struct bmap * bmp, struct dmap * dp, int nblocks,
81 int l2nb,
82 s64 * results);
83 static int dbAllocAG(struct bmap * bmp, int agno, s64 nblocks, int l2nb,
84 s64 * results);
85 static int dbAllocCtl(struct bmap * bmp, s64 nblocks, int l2nb, s64 blkno,
86 s64 * results);
87 static int dbExtend(struct inode *ip, s64 blkno, s64 nblocks, s64 addnblocks);
88 static int dbFindBits(u32 word, int l2nb);
89 static int dbFindCtl(struct bmap * bmp, int l2nb, int level, s64 * blkno);
90 static int dbFindLeaf(dmtree_t *tp, int l2nb, int *leafidx, bool is_ctl);
91 static int dbFreeBits(struct bmap * bmp, struct dmap * dp, s64 blkno,
92 int nblocks);
93 static int dbFreeDmap(struct bmap * bmp, struct dmap * dp, s64 blkno,
94 int nblocks);
95 static int dbMaxBud(u8 * cp);
96 static int blkstol2(s64 nb);
97
98 static int cntlz(u32 value);
99 static int cnttz(u32 word);
100
101 static int dbAllocDmapBU(struct bmap * bmp, struct dmap * dp, s64 blkno,
102 int nblocks);
103 static int dbInitDmap(struct dmap * dp, s64 blkno, int nblocks);
104 static int dbInitDmapTree(struct dmap * dp);
105 static int dbInitTree(struct dmaptree * dtp);
106 static int dbInitDmapCtl(struct dmapctl * dcp, int level, int i);
107 static int dbGetL2AGSize(s64 nblocks);
108
109 /*
110 * buddy table
111 *
112 * table used for determining buddy sizes within characters of
113 * dmap bitmap words. the characters themselves serve as indexes
114 * into the table, with the table elements yielding the maximum
115 * binary buddy of free bits within the character.
116 */
117 static const s8 budtab[256] = {
118 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
119 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
120 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
121 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
122 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
123 2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
124 2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
125 2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
126 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
127 2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
128 2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
129 2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
130 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
131 2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
132 2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
133 2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, -1
134 };
135
136 /*
137 * NAME: dbMount()
138 *
139 * FUNCTION: initializate the block allocation map.
140 *
141 * memory is allocated for the in-core bmap descriptor and
142 * the in-core descriptor is initialized from disk.
143 *
144 * PARAMETERS:
145 * ipbmap - pointer to in-core inode for the block map.
146 *
147 * RETURN VALUES:
148 * 0 - success
149 * -ENOMEM - insufficient memory
150 * -EIO - i/o error
151 * -EINVAL - wrong bmap data
152 */
dbMount(struct inode * ipbmap)153 int dbMount(struct inode *ipbmap)
154 {
155 struct bmap *bmp;
156 struct dbmap_disk *dbmp_le;
157 struct metapage *mp;
158 int i, err;
159
160 /*
161 * allocate/initialize the in-memory bmap descriptor
162 */
163 /* allocate memory for the in-memory bmap descriptor */
164 bmp = kmalloc(sizeof(struct bmap), GFP_KERNEL);
165 if (bmp == NULL)
166 return -ENOMEM;
167
168 /* read the on-disk bmap descriptor. */
169 mp = read_metapage(ipbmap,
170 BMAPBLKNO << JFS_SBI(ipbmap->i_sb)->l2nbperpage,
171 PSIZE, 0);
172 if (mp == NULL) {
173 err = -EIO;
174 goto err_kfree_bmp;
175 }
176
177 /* copy the on-disk bmap descriptor to its in-memory version. */
178 dbmp_le = (struct dbmap_disk *) mp->data;
179 bmp->db_mapsize = le64_to_cpu(dbmp_le->dn_mapsize);
180 bmp->db_nfree = le64_to_cpu(dbmp_le->dn_nfree);
181 bmp->db_l2nbperpage = le32_to_cpu(dbmp_le->dn_l2nbperpage);
182 bmp->db_numag = le32_to_cpu(dbmp_le->dn_numag);
183 bmp->db_maxlevel = le32_to_cpu(dbmp_le->dn_maxlevel);
184 bmp->db_maxag = le32_to_cpu(dbmp_le->dn_maxag);
185 bmp->db_agpref = le32_to_cpu(dbmp_le->dn_agpref);
186 bmp->db_aglevel = le32_to_cpu(dbmp_le->dn_aglevel);
187 bmp->db_agheight = le32_to_cpu(dbmp_le->dn_agheight);
188 bmp->db_agwidth = le32_to_cpu(dbmp_le->dn_agwidth);
189 bmp->db_agstart = le32_to_cpu(dbmp_le->dn_agstart);
190 bmp->db_agl2size = le32_to_cpu(dbmp_le->dn_agl2size);
191
192 if ((bmp->db_l2nbperpage > L2PSIZE - L2MINBLOCKSIZE) ||
193 (bmp->db_l2nbperpage < 0) ||
194 !bmp->db_numag || (bmp->db_numag > MAXAG) ||
195 (bmp->db_maxag >= MAXAG) || (bmp->db_maxag < 0) ||
196 (bmp->db_agpref >= MAXAG) || (bmp->db_agpref < 0) ||
197 (bmp->db_agheight < 0) || (bmp->db_agheight > (L2LPERCTL >> 1)) ||
198 (bmp->db_agwidth < 1) || (bmp->db_agwidth > (LPERCTL / MAXAG)) ||
199 (bmp->db_agwidth > (1 << (L2LPERCTL - (bmp->db_agheight << 1)))) ||
200 (bmp->db_agstart < 0) ||
201 (bmp->db_agstart > (CTLTREESIZE - 1 - bmp->db_agwidth * (MAXAG - 1))) ||
202 (bmp->db_agl2size > L2MAXL2SIZE - L2MAXAG) ||
203 (bmp->db_agl2size < 0) ||
204 ((bmp->db_mapsize - 1) >> bmp->db_agl2size) > MAXAG) {
205 err = -EINVAL;
206 goto err_release_metapage;
207 }
208
209 for (i = 0; i < MAXAG; i++)
210 bmp->db_agfree[i] = le64_to_cpu(dbmp_le->dn_agfree[i]);
211 bmp->db_agsize = le64_to_cpu(dbmp_le->dn_agsize);
212 bmp->db_maxfreebud = dbmp_le->dn_maxfreebud;
213
214 /* release the buffer. */
215 release_metapage(mp);
216
217 /* bind the bmap inode and the bmap descriptor to each other. */
218 bmp->db_ipbmap = ipbmap;
219 JFS_SBI(ipbmap->i_sb)->bmap = bmp;
220
221 memset(bmp->db_active, 0, sizeof(bmp->db_active));
222
223 /*
224 * allocate/initialize the bmap lock
225 */
226 BMAP_LOCK_INIT(bmp);
227
228 return (0);
229
230 err_release_metapage:
231 release_metapage(mp);
232 err_kfree_bmp:
233 kfree(bmp);
234 return err;
235 }
236
237
238 /*
239 * NAME: dbUnmount()
240 *
241 * FUNCTION: terminate the block allocation map in preparation for
242 * file system unmount.
243 *
244 * the in-core bmap descriptor is written to disk and
245 * the memory for this descriptor is freed.
246 *
247 * PARAMETERS:
248 * ipbmap - pointer to in-core inode for the block map.
249 *
250 * RETURN VALUES:
251 * 0 - success
252 * -EIO - i/o error
253 */
dbUnmount(struct inode * ipbmap,int mounterror)254 int dbUnmount(struct inode *ipbmap, int mounterror)
255 {
256 struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
257
258 if (!(mounterror || isReadOnly(ipbmap)))
259 dbSync(ipbmap);
260
261 /*
262 * Invalidate the page cache buffers
263 */
264 truncate_inode_pages(ipbmap->i_mapping, 0);
265
266 /* free the memory for the in-memory bmap. */
267 kfree(bmp);
268 JFS_SBI(ipbmap->i_sb)->bmap = NULL;
269
270 return (0);
271 }
272
273 /*
274 * dbSync()
275 */
dbSync(struct inode * ipbmap)276 int dbSync(struct inode *ipbmap)
277 {
278 struct dbmap_disk *dbmp_le;
279 struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
280 struct metapage *mp;
281 int i;
282
283 /*
284 * write bmap global control page
285 */
286 /* get the buffer for the on-disk bmap descriptor. */
287 mp = read_metapage(ipbmap,
288 BMAPBLKNO << JFS_SBI(ipbmap->i_sb)->l2nbperpage,
289 PSIZE, 0);
290 if (mp == NULL) {
291 jfs_err("dbSync: read_metapage failed!");
292 return -EIO;
293 }
294 /* copy the in-memory version of the bmap to the on-disk version */
295 dbmp_le = (struct dbmap_disk *) mp->data;
296 dbmp_le->dn_mapsize = cpu_to_le64(bmp->db_mapsize);
297 dbmp_le->dn_nfree = cpu_to_le64(bmp->db_nfree);
298 dbmp_le->dn_l2nbperpage = cpu_to_le32(bmp->db_l2nbperpage);
299 dbmp_le->dn_numag = cpu_to_le32(bmp->db_numag);
300 dbmp_le->dn_maxlevel = cpu_to_le32(bmp->db_maxlevel);
301 dbmp_le->dn_maxag = cpu_to_le32(bmp->db_maxag);
302 dbmp_le->dn_agpref = cpu_to_le32(bmp->db_agpref);
303 dbmp_le->dn_aglevel = cpu_to_le32(bmp->db_aglevel);
304 dbmp_le->dn_agheight = cpu_to_le32(bmp->db_agheight);
305 dbmp_le->dn_agwidth = cpu_to_le32(bmp->db_agwidth);
306 dbmp_le->dn_agstart = cpu_to_le32(bmp->db_agstart);
307 dbmp_le->dn_agl2size = cpu_to_le32(bmp->db_agl2size);
308 for (i = 0; i < MAXAG; i++)
309 dbmp_le->dn_agfree[i] = cpu_to_le64(bmp->db_agfree[i]);
310 dbmp_le->dn_agsize = cpu_to_le64(bmp->db_agsize);
311 dbmp_le->dn_maxfreebud = bmp->db_maxfreebud;
312
313 /* write the buffer */
314 write_metapage(mp);
315
316 /*
317 * write out dirty pages of bmap
318 */
319 filemap_write_and_wait(ipbmap->i_mapping);
320
321 diWriteSpecial(ipbmap, 0);
322
323 return (0);
324 }
325
326 /*
327 * NAME: dbFree()
328 *
329 * FUNCTION: free the specified block range from the working block
330 * allocation map.
331 *
332 * the blocks will be free from the working map one dmap
333 * at a time.
334 *
335 * PARAMETERS:
336 * ip - pointer to in-core inode;
337 * blkno - starting block number to be freed.
338 * nblocks - number of blocks to be freed.
339 *
340 * RETURN VALUES:
341 * 0 - success
342 * -EIO - i/o error
343 */
dbFree(struct inode * ip,s64 blkno,s64 nblocks)344 int dbFree(struct inode *ip, s64 blkno, s64 nblocks)
345 {
346 struct metapage *mp;
347 struct dmap *dp;
348 int nb, rc;
349 s64 lblkno, rem;
350 struct inode *ipbmap = JFS_SBI(ip->i_sb)->ipbmap;
351 struct bmap *bmp = JFS_SBI(ip->i_sb)->bmap;
352 struct super_block *sb = ipbmap->i_sb;
353
354 IREAD_LOCK(ipbmap, RDWRLOCK_DMAP);
355
356 /* block to be freed better be within the mapsize. */
357 if (unlikely((blkno == 0) || (blkno + nblocks > bmp->db_mapsize))) {
358 IREAD_UNLOCK(ipbmap);
359 printk(KERN_ERR "blkno = %Lx, nblocks = %Lx\n",
360 (unsigned long long) blkno,
361 (unsigned long long) nblocks);
362 jfs_error(ip->i_sb, "block to be freed is outside the map\n");
363 return -EIO;
364 }
365
366 /**
367 * TRIM the blocks, when mounted with discard option
368 */
369 if (JFS_SBI(sb)->flag & JFS_DISCARD)
370 if (JFS_SBI(sb)->minblks_trim <= nblocks)
371 jfs_issue_discard(ipbmap, blkno, nblocks);
372
373 /*
374 * free the blocks a dmap at a time.
375 */
376 mp = NULL;
377 for (rem = nblocks; rem > 0; rem -= nb, blkno += nb) {
378 /* release previous dmap if any */
379 if (mp) {
380 write_metapage(mp);
381 }
382
383 /* get the buffer for the current dmap. */
384 lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
385 mp = read_metapage(ipbmap, lblkno, PSIZE, 0);
386 if (mp == NULL) {
387 IREAD_UNLOCK(ipbmap);
388 return -EIO;
389 }
390 dp = (struct dmap *) mp->data;
391
392 /* determine the number of blocks to be freed from
393 * this dmap.
394 */
395 nb = min(rem, BPERDMAP - (blkno & (BPERDMAP - 1)));
396
397 /* free the blocks. */
398 if ((rc = dbFreeDmap(bmp, dp, blkno, nb))) {
399 jfs_error(ip->i_sb, "error in block map\n");
400 release_metapage(mp);
401 IREAD_UNLOCK(ipbmap);
402 return (rc);
403 }
404 }
405
406 /* write the last buffer. */
407 if (mp)
408 write_metapage(mp);
409
410 IREAD_UNLOCK(ipbmap);
411
412 return (0);
413 }
414
415
416 /*
417 * NAME: dbUpdatePMap()
418 *
419 * FUNCTION: update the allocation state (free or allocate) of the
420 * specified block range in the persistent block allocation map.
421 *
422 * the blocks will be updated in the persistent map one
423 * dmap at a time.
424 *
425 * PARAMETERS:
426 * ipbmap - pointer to in-core inode for the block map.
427 * free - 'true' if block range is to be freed from the persistent
428 * map; 'false' if it is to be allocated.
429 * blkno - starting block number of the range.
430 * nblocks - number of contiguous blocks in the range.
431 * tblk - transaction block;
432 *
433 * RETURN VALUES:
434 * 0 - success
435 * -EIO - i/o error
436 */
437 int
dbUpdatePMap(struct inode * ipbmap,int free,s64 blkno,s64 nblocks,struct tblock * tblk)438 dbUpdatePMap(struct inode *ipbmap,
439 int free, s64 blkno, s64 nblocks, struct tblock * tblk)
440 {
441 int nblks, dbitno, wbitno, rbits;
442 int word, nbits, nwords;
443 struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
444 s64 lblkno, rem, lastlblkno;
445 u32 mask;
446 struct dmap *dp;
447 struct metapage *mp;
448 struct jfs_log *log;
449 int lsn, difft, diffp;
450 unsigned long flags;
451
452 /* the blocks better be within the mapsize. */
453 if (blkno + nblocks > bmp->db_mapsize) {
454 printk(KERN_ERR "blkno = %Lx, nblocks = %Lx\n",
455 (unsigned long long) blkno,
456 (unsigned long long) nblocks);
457 jfs_error(ipbmap->i_sb, "blocks are outside the map\n");
458 return -EIO;
459 }
460
461 /* compute delta of transaction lsn from log syncpt */
462 lsn = tblk->lsn;
463 log = (struct jfs_log *) JFS_SBI(tblk->sb)->log;
464 logdiff(difft, lsn, log);
465
466 /*
467 * update the block state a dmap at a time.
468 */
469 mp = NULL;
470 lastlblkno = 0;
471 for (rem = nblocks; rem > 0; rem -= nblks, blkno += nblks) {
472 /* get the buffer for the current dmap. */
473 lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
474 if (lblkno != lastlblkno) {
475 if (mp) {
476 write_metapage(mp);
477 }
478
479 mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE,
480 0);
481 if (mp == NULL)
482 return -EIO;
483 metapage_wait_for_io(mp);
484 }
485 dp = (struct dmap *) mp->data;
486
487 /* determine the bit number and word within the dmap of
488 * the starting block. also determine how many blocks
489 * are to be updated within this dmap.
490 */
491 dbitno = blkno & (BPERDMAP - 1);
492 word = dbitno >> L2DBWORD;
493 nblks = min(rem, (s64)BPERDMAP - dbitno);
494
495 /* update the bits of the dmap words. the first and last
496 * words may only have a subset of their bits updated. if
497 * this is the case, we'll work against that word (i.e.
498 * partial first and/or last) only in a single pass. a
499 * single pass will also be used to update all words that
500 * are to have all their bits updated.
501 */
502 for (rbits = nblks; rbits > 0;
503 rbits -= nbits, dbitno += nbits) {
504 /* determine the bit number within the word and
505 * the number of bits within the word.
506 */
507 wbitno = dbitno & (DBWORD - 1);
508 nbits = min(rbits, DBWORD - wbitno);
509
510 /* check if only part of the word is to be updated. */
511 if (nbits < DBWORD) {
512 /* update (free or allocate) the bits
513 * in this word.
514 */
515 mask =
516 (ONES << (DBWORD - nbits) >> wbitno);
517 if (free)
518 dp->pmap[word] &=
519 cpu_to_le32(~mask);
520 else
521 dp->pmap[word] |=
522 cpu_to_le32(mask);
523
524 word += 1;
525 } else {
526 /* one or more words are to have all
527 * their bits updated. determine how
528 * many words and how many bits.
529 */
530 nwords = rbits >> L2DBWORD;
531 nbits = nwords << L2DBWORD;
532
533 /* update (free or allocate) the bits
534 * in these words.
535 */
536 if (free)
537 memset(&dp->pmap[word], 0,
538 nwords * 4);
539 else
540 memset(&dp->pmap[word], (int) ONES,
541 nwords * 4);
542
543 word += nwords;
544 }
545 }
546
547 /*
548 * update dmap lsn
549 */
550 if (lblkno == lastlblkno)
551 continue;
552
553 lastlblkno = lblkno;
554
555 LOGSYNC_LOCK(log, flags);
556 if (mp->lsn != 0) {
557 /* inherit older/smaller lsn */
558 logdiff(diffp, mp->lsn, log);
559 if (difft < diffp) {
560 mp->lsn = lsn;
561
562 /* move bp after tblock in logsync list */
563 list_move(&mp->synclist, &tblk->synclist);
564 }
565
566 /* inherit younger/larger clsn */
567 logdiff(difft, tblk->clsn, log);
568 logdiff(diffp, mp->clsn, log);
569 if (difft > diffp)
570 mp->clsn = tblk->clsn;
571 } else {
572 mp->log = log;
573 mp->lsn = lsn;
574
575 /* insert bp after tblock in logsync list */
576 log->count++;
577 list_add(&mp->synclist, &tblk->synclist);
578
579 mp->clsn = tblk->clsn;
580 }
581 LOGSYNC_UNLOCK(log, flags);
582 }
583
584 /* write the last buffer. */
585 if (mp) {
586 write_metapage(mp);
587 }
588
589 return (0);
590 }
591
592
593 /*
594 * NAME: dbNextAG()
595 *
596 * FUNCTION: find the preferred allocation group for new allocations.
597 *
598 * Within the allocation groups, we maintain a preferred
599 * allocation group which consists of a group with at least
600 * average free space. It is the preferred group that we target
601 * new inode allocation towards. The tie-in between inode
602 * allocation and block allocation occurs as we allocate the
603 * first (data) block of an inode and specify the inode (block)
604 * as the allocation hint for this block.
605 *
606 * We try to avoid having more than one open file growing in
607 * an allocation group, as this will lead to fragmentation.
608 * This differs from the old OS/2 method of trying to keep
609 * empty ags around for large allocations.
610 *
611 * PARAMETERS:
612 * ipbmap - pointer to in-core inode for the block map.
613 *
614 * RETURN VALUES:
615 * the preferred allocation group number.
616 */
dbNextAG(struct inode * ipbmap)617 int dbNextAG(struct inode *ipbmap)
618 {
619 s64 avgfree;
620 int agpref;
621 s64 hwm = 0;
622 int i;
623 int next_best = -1;
624 struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
625
626 BMAP_LOCK(bmp);
627
628 /* determine the average number of free blocks within the ags. */
629 avgfree = (u32)bmp->db_nfree / bmp->db_numag;
630
631 /*
632 * if the current preferred ag does not have an active allocator
633 * and has at least average freespace, return it
634 */
635 agpref = bmp->db_agpref;
636 if ((atomic_read(&bmp->db_active[agpref]) == 0) &&
637 (bmp->db_agfree[agpref] >= avgfree))
638 goto unlock;
639
640 /* From the last preferred ag, find the next one with at least
641 * average free space.
642 */
643 for (i = 0 ; i < bmp->db_numag; i++, agpref++) {
644 if (agpref >= bmp->db_numag)
645 agpref = 0;
646
647 if (atomic_read(&bmp->db_active[agpref]))
648 /* open file is currently growing in this ag */
649 continue;
650 if (bmp->db_agfree[agpref] >= avgfree) {
651 /* Return this one */
652 bmp->db_agpref = agpref;
653 goto unlock;
654 } else if (bmp->db_agfree[agpref] > hwm) {
655 /* Less than avg. freespace, but best so far */
656 hwm = bmp->db_agfree[agpref];
657 next_best = agpref;
658 }
659 }
660
661 /*
662 * If no inactive ag was found with average freespace, use the
663 * next best
664 */
665 if (next_best != -1)
666 bmp->db_agpref = next_best;
667 /* else leave db_agpref unchanged */
668 unlock:
669 BMAP_UNLOCK(bmp);
670
671 /* return the preferred group.
672 */
673 return (bmp->db_agpref);
674 }
675
676 /*
677 * NAME: dbAlloc()
678 *
679 * FUNCTION: attempt to allocate a specified number of contiguous free
680 * blocks from the working allocation block map.
681 *
682 * the block allocation policy uses hints and a multi-step
683 * approach.
684 *
685 * for allocation requests smaller than the number of blocks
686 * per dmap, we first try to allocate the new blocks
687 * immediately following the hint. if these blocks are not
688 * available, we try to allocate blocks near the hint. if
689 * no blocks near the hint are available, we next try to
690 * allocate within the same dmap as contains the hint.
691 *
692 * if no blocks are available in the dmap or the allocation
693 * request is larger than the dmap size, we try to allocate
694 * within the same allocation group as contains the hint. if
695 * this does not succeed, we finally try to allocate anywhere
696 * within the aggregate.
697 *
698 * we also try to allocate anywhere within the aggregate
699 * for allocation requests larger than the allocation group
700 * size or requests that specify no hint value.
701 *
702 * PARAMETERS:
703 * ip - pointer to in-core inode;
704 * hint - allocation hint.
705 * nblocks - number of contiguous blocks in the range.
706 * results - on successful return, set to the starting block number
707 * of the newly allocated contiguous range.
708 *
709 * RETURN VALUES:
710 * 0 - success
711 * -ENOSPC - insufficient disk resources
712 * -EIO - i/o error
713 */
dbAlloc(struct inode * ip,s64 hint,s64 nblocks,s64 * results)714 int dbAlloc(struct inode *ip, s64 hint, s64 nblocks, s64 * results)
715 {
716 int rc, agno;
717 struct inode *ipbmap = JFS_SBI(ip->i_sb)->ipbmap;
718 struct bmap *bmp;
719 struct metapage *mp;
720 s64 lblkno, blkno;
721 struct dmap *dp;
722 int l2nb;
723 s64 mapSize;
724 int writers;
725
726 /* assert that nblocks is valid */
727 assert(nblocks > 0);
728
729 /* get the log2 number of blocks to be allocated.
730 * if the number of blocks is not a log2 multiple,
731 * it will be rounded up to the next log2 multiple.
732 */
733 l2nb = BLKSTOL2(nblocks);
734
735 bmp = JFS_SBI(ip->i_sb)->bmap;
736
737 mapSize = bmp->db_mapsize;
738
739 /* the hint should be within the map */
740 if (hint >= mapSize) {
741 jfs_error(ip->i_sb, "the hint is outside the map\n");
742 return -EIO;
743 }
744
745 /* if the number of blocks to be allocated is greater than the
746 * allocation group size, try to allocate anywhere.
747 */
748 if (l2nb > bmp->db_agl2size) {
749 IWRITE_LOCK(ipbmap, RDWRLOCK_DMAP);
750
751 rc = dbAllocAny(bmp, nblocks, l2nb, results);
752
753 goto write_unlock;
754 }
755
756 /*
757 * If no hint, let dbNextAG recommend an allocation group
758 */
759 if (hint == 0)
760 goto pref_ag;
761
762 /* we would like to allocate close to the hint. adjust the
763 * hint to the block following the hint since the allocators
764 * will start looking for free space starting at this point.
765 */
766 blkno = hint + 1;
767
768 if (blkno >= bmp->db_mapsize)
769 goto pref_ag;
770
771 agno = blkno >> bmp->db_agl2size;
772
773 /* check if blkno crosses over into a new allocation group.
774 * if so, check if we should allow allocations within this
775 * allocation group.
776 */
777 if ((blkno & (bmp->db_agsize - 1)) == 0)
778 /* check if the AG is currently being written to.
779 * if so, call dbNextAG() to find a non-busy
780 * AG with sufficient free space.
781 */
782 if (atomic_read(&bmp->db_active[agno]))
783 goto pref_ag;
784
785 /* check if the allocation request size can be satisfied from a
786 * single dmap. if so, try to allocate from the dmap containing
787 * the hint using a tiered strategy.
788 */
789 if (nblocks <= BPERDMAP) {
790 IREAD_LOCK(ipbmap, RDWRLOCK_DMAP);
791
792 /* get the buffer for the dmap containing the hint.
793 */
794 rc = -EIO;
795 lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
796 mp = read_metapage(ipbmap, lblkno, PSIZE, 0);
797 if (mp == NULL)
798 goto read_unlock;
799
800 dp = (struct dmap *) mp->data;
801
802 /* first, try to satisfy the allocation request with the
803 * blocks beginning at the hint.
804 */
805 if ((rc = dbAllocNext(bmp, dp, blkno, (int) nblocks))
806 != -ENOSPC) {
807 if (rc == 0) {
808 *results = blkno;
809 mark_metapage_dirty(mp);
810 }
811
812 release_metapage(mp);
813 goto read_unlock;
814 }
815
816 writers = atomic_read(&bmp->db_active[agno]);
817 if ((writers > 1) ||
818 ((writers == 1) && (JFS_IP(ip)->active_ag != agno))) {
819 /*
820 * Someone else is writing in this allocation
821 * group. To avoid fragmenting, try another ag
822 */
823 release_metapage(mp);
824 IREAD_UNLOCK(ipbmap);
825 goto pref_ag;
826 }
827
828 /* next, try to satisfy the allocation request with blocks
829 * near the hint.
830 */
831 if ((rc =
832 dbAllocNear(bmp, dp, blkno, (int) nblocks, l2nb, results))
833 != -ENOSPC) {
834 if (rc == 0)
835 mark_metapage_dirty(mp);
836
837 release_metapage(mp);
838 goto read_unlock;
839 }
840
841 /* try to satisfy the allocation request with blocks within
842 * the same dmap as the hint.
843 */
844 if ((rc = dbAllocDmapLev(bmp, dp, (int) nblocks, l2nb, results))
845 != -ENOSPC) {
846 if (rc == 0)
847 mark_metapage_dirty(mp);
848
849 release_metapage(mp);
850 goto read_unlock;
851 }
852
853 release_metapage(mp);
854 IREAD_UNLOCK(ipbmap);
855 }
856
857 /* try to satisfy the allocation request with blocks within
858 * the same allocation group as the hint.
859 */
860 IWRITE_LOCK(ipbmap, RDWRLOCK_DMAP);
861 if ((rc = dbAllocAG(bmp, agno, nblocks, l2nb, results)) != -ENOSPC)
862 goto write_unlock;
863
864 IWRITE_UNLOCK(ipbmap);
865
866
867 pref_ag:
868 /*
869 * Let dbNextAG recommend a preferred allocation group
870 */
871 agno = dbNextAG(ipbmap);
872 IWRITE_LOCK(ipbmap, RDWRLOCK_DMAP);
873
874 /* Try to allocate within this allocation group. if that fails, try to
875 * allocate anywhere in the map.
876 */
877 if ((rc = dbAllocAG(bmp, agno, nblocks, l2nb, results)) == -ENOSPC)
878 rc = dbAllocAny(bmp, nblocks, l2nb, results);
879
880 write_unlock:
881 IWRITE_UNLOCK(ipbmap);
882
883 return (rc);
884
885 read_unlock:
886 IREAD_UNLOCK(ipbmap);
887
888 return (rc);
889 }
890
891 /*
892 * NAME: dbReAlloc()
893 *
894 * FUNCTION: attempt to extend a current allocation by a specified
895 * number of blocks.
896 *
897 * this routine attempts to satisfy the allocation request
898 * by first trying to extend the existing allocation in
899 * place by allocating the additional blocks as the blocks
900 * immediately following the current allocation. if these
901 * blocks are not available, this routine will attempt to
902 * allocate a new set of contiguous blocks large enough
903 * to cover the existing allocation plus the additional
904 * number of blocks required.
905 *
906 * PARAMETERS:
907 * ip - pointer to in-core inode requiring allocation.
908 * blkno - starting block of the current allocation.
909 * nblocks - number of contiguous blocks within the current
910 * allocation.
911 * addnblocks - number of blocks to add to the allocation.
912 * results - on successful return, set to the starting block number
913 * of the existing allocation if the existing allocation
914 * was extended in place or to a newly allocated contiguous
915 * range if the existing allocation could not be extended
916 * in place.
917 *
918 * RETURN VALUES:
919 * 0 - success
920 * -ENOSPC - insufficient disk resources
921 * -EIO - i/o error
922 */
923 int
dbReAlloc(struct inode * ip,s64 blkno,s64 nblocks,s64 addnblocks,s64 * results)924 dbReAlloc(struct inode *ip,
925 s64 blkno, s64 nblocks, s64 addnblocks, s64 * results)
926 {
927 int rc;
928
929 /* try to extend the allocation in place.
930 */
931 if ((rc = dbExtend(ip, blkno, nblocks, addnblocks)) == 0) {
932 *results = blkno;
933 return (0);
934 } else {
935 if (rc != -ENOSPC)
936 return (rc);
937 }
938
939 /* could not extend the allocation in place, so allocate a
940 * new set of blocks for the entire request (i.e. try to get
941 * a range of contiguous blocks large enough to cover the
942 * existing allocation plus the additional blocks.)
943 */
944 return (dbAlloc
945 (ip, blkno + nblocks - 1, addnblocks + nblocks, results));
946 }
947
948
949 /*
950 * NAME: dbExtend()
951 *
952 * FUNCTION: attempt to extend a current allocation by a specified
953 * number of blocks.
954 *
955 * this routine attempts to satisfy the allocation request
956 * by first trying to extend the existing allocation in
957 * place by allocating the additional blocks as the blocks
958 * immediately following the current allocation.
959 *
960 * PARAMETERS:
961 * ip - pointer to in-core inode requiring allocation.
962 * blkno - starting block of the current allocation.
963 * nblocks - number of contiguous blocks within the current
964 * allocation.
965 * addnblocks - number of blocks to add to the allocation.
966 *
967 * RETURN VALUES:
968 * 0 - success
969 * -ENOSPC - insufficient disk resources
970 * -EIO - i/o error
971 */
dbExtend(struct inode * ip,s64 blkno,s64 nblocks,s64 addnblocks)972 static int dbExtend(struct inode *ip, s64 blkno, s64 nblocks, s64 addnblocks)
973 {
974 struct jfs_sb_info *sbi = JFS_SBI(ip->i_sb);
975 s64 lblkno, lastblkno, extblkno;
976 uint rel_block;
977 struct metapage *mp;
978 struct dmap *dp;
979 int rc;
980 struct inode *ipbmap = sbi->ipbmap;
981 struct bmap *bmp;
982
983 /*
984 * We don't want a non-aligned extent to cross a page boundary
985 */
986 if (((rel_block = blkno & (sbi->nbperpage - 1))) &&
987 (rel_block + nblocks + addnblocks > sbi->nbperpage))
988 return -ENOSPC;
989
990 /* get the last block of the current allocation */
991 lastblkno = blkno + nblocks - 1;
992
993 /* determine the block number of the block following
994 * the existing allocation.
995 */
996 extblkno = lastblkno + 1;
997
998 IREAD_LOCK(ipbmap, RDWRLOCK_DMAP);
999
1000 /* better be within the file system */
1001 bmp = sbi->bmap;
1002 if (lastblkno < 0 || lastblkno >= bmp->db_mapsize) {
1003 IREAD_UNLOCK(ipbmap);
1004 jfs_error(ip->i_sb, "the block is outside the filesystem\n");
1005 return -EIO;
1006 }
1007
1008 /* we'll attempt to extend the current allocation in place by
1009 * allocating the additional blocks as the blocks immediately
1010 * following the current allocation. we only try to extend the
1011 * current allocation in place if the number of additional blocks
1012 * can fit into a dmap, the last block of the current allocation
1013 * is not the last block of the file system, and the start of the
1014 * inplace extension is not on an allocation group boundary.
1015 */
1016 if (addnblocks > BPERDMAP || extblkno >= bmp->db_mapsize ||
1017 (extblkno & (bmp->db_agsize - 1)) == 0) {
1018 IREAD_UNLOCK(ipbmap);
1019 return -ENOSPC;
1020 }
1021
1022 /* get the buffer for the dmap containing the first block
1023 * of the extension.
1024 */
1025 lblkno = BLKTODMAP(extblkno, bmp->db_l2nbperpage);
1026 mp = read_metapage(ipbmap, lblkno, PSIZE, 0);
1027 if (mp == NULL) {
1028 IREAD_UNLOCK(ipbmap);
1029 return -EIO;
1030 }
1031
1032 dp = (struct dmap *) mp->data;
1033
1034 /* try to allocate the blocks immediately following the
1035 * current allocation.
1036 */
1037 rc = dbAllocNext(bmp, dp, extblkno, (int) addnblocks);
1038
1039 IREAD_UNLOCK(ipbmap);
1040
1041 /* were we successful ? */
1042 if (rc == 0)
1043 write_metapage(mp);
1044 else
1045 /* we were not successful */
1046 release_metapage(mp);
1047
1048 return (rc);
1049 }
1050
1051
1052 /*
1053 * NAME: dbAllocNext()
1054 *
1055 * FUNCTION: attempt to allocate the blocks of the specified block
1056 * range within a dmap.
1057 *
1058 * PARAMETERS:
1059 * bmp - pointer to bmap descriptor
1060 * dp - pointer to dmap.
1061 * blkno - starting block number of the range.
1062 * nblocks - number of contiguous free blocks of the range.
1063 *
1064 * RETURN VALUES:
1065 * 0 - success
1066 * -ENOSPC - insufficient disk resources
1067 * -EIO - i/o error
1068 *
1069 * serialization: IREAD_LOCK(ipbmap) held on entry/exit;
1070 */
dbAllocNext(struct bmap * bmp,struct dmap * dp,s64 blkno,int nblocks)1071 static int dbAllocNext(struct bmap * bmp, struct dmap * dp, s64 blkno,
1072 int nblocks)
1073 {
1074 int dbitno, word, rembits, nb, nwords, wbitno, nw;
1075 int l2size;
1076 s8 *leaf;
1077 u32 mask;
1078
1079 if (dp->tree.leafidx != cpu_to_le32(LEAFIND)) {
1080 jfs_error(bmp->db_ipbmap->i_sb, "Corrupt dmap page\n");
1081 return -EIO;
1082 }
1083
1084 /* pick up a pointer to the leaves of the dmap tree.
1085 */
1086 leaf = dp->tree.stree + le32_to_cpu(dp->tree.leafidx);
1087
1088 /* determine the bit number and word within the dmap of the
1089 * starting block.
1090 */
1091 dbitno = blkno & (BPERDMAP - 1);
1092 word = dbitno >> L2DBWORD;
1093
1094 /* check if the specified block range is contained within
1095 * this dmap.
1096 */
1097 if (dbitno + nblocks > BPERDMAP)
1098 return -ENOSPC;
1099
1100 /* check if the starting leaf indicates that anything
1101 * is free.
1102 */
1103 if (leaf[word] == NOFREE)
1104 return -ENOSPC;
1105
1106 /* check the dmaps words corresponding to block range to see
1107 * if the block range is free. not all bits of the first and
1108 * last words may be contained within the block range. if this
1109 * is the case, we'll work against those words (i.e. partial first
1110 * and/or last) on an individual basis (a single pass) and examine
1111 * the actual bits to determine if they are free. a single pass
1112 * will be used for all dmap words fully contained within the
1113 * specified range. within this pass, the leaves of the dmap
1114 * tree will be examined to determine if the blocks are free. a
1115 * single leaf may describe the free space of multiple dmap
1116 * words, so we may visit only a subset of the actual leaves
1117 * corresponding to the dmap words of the block range.
1118 */
1119 for (rembits = nblocks; rembits > 0; rembits -= nb, dbitno += nb) {
1120 /* determine the bit number within the word and
1121 * the number of bits within the word.
1122 */
1123 wbitno = dbitno & (DBWORD - 1);
1124 nb = min(rembits, DBWORD - wbitno);
1125
1126 /* check if only part of the word is to be examined.
1127 */
1128 if (nb < DBWORD) {
1129 /* check if the bits are free.
1130 */
1131 mask = (ONES << (DBWORD - nb) >> wbitno);
1132 if ((mask & ~le32_to_cpu(dp->wmap[word])) != mask)
1133 return -ENOSPC;
1134
1135 word += 1;
1136 } else {
1137 /* one or more dmap words are fully contained
1138 * within the block range. determine how many
1139 * words and how many bits.
1140 */
1141 nwords = rembits >> L2DBWORD;
1142 nb = nwords << L2DBWORD;
1143
1144 /* now examine the appropriate leaves to determine
1145 * if the blocks are free.
1146 */
1147 while (nwords > 0) {
1148 /* does the leaf describe any free space ?
1149 */
1150 if (leaf[word] < BUDMIN)
1151 return -ENOSPC;
1152
1153 /* determine the l2 number of bits provided
1154 * by this leaf.
1155 */
1156 l2size =
1157 min_t(int, leaf[word], NLSTOL2BSZ(nwords));
1158
1159 /* determine how many words were handled.
1160 */
1161 nw = BUDSIZE(l2size, BUDMIN);
1162
1163 nwords -= nw;
1164 word += nw;
1165 }
1166 }
1167 }
1168
1169 /* allocate the blocks.
1170 */
1171 return (dbAllocDmap(bmp, dp, blkno, nblocks));
1172 }
1173
1174
1175 /*
1176 * NAME: dbAllocNear()
1177 *
1178 * FUNCTION: attempt to allocate a number of contiguous free blocks near
1179 * a specified block (hint) within a dmap.
1180 *
1181 * starting with the dmap leaf that covers the hint, we'll
1182 * check the next four contiguous leaves for sufficient free
1183 * space. if sufficient free space is found, we'll allocate
1184 * the desired free space.
1185 *
1186 * PARAMETERS:
1187 * bmp - pointer to bmap descriptor
1188 * dp - pointer to dmap.
1189 * blkno - block number to allocate near.
1190 * nblocks - actual number of contiguous free blocks desired.
1191 * l2nb - log2 number of contiguous free blocks desired.
1192 * results - on successful return, set to the starting block number
1193 * of the newly allocated range.
1194 *
1195 * RETURN VALUES:
1196 * 0 - success
1197 * -ENOSPC - insufficient disk resources
1198 * -EIO - i/o error
1199 *
1200 * serialization: IREAD_LOCK(ipbmap) held on entry/exit;
1201 */
1202 static int
dbAllocNear(struct bmap * bmp,struct dmap * dp,s64 blkno,int nblocks,int l2nb,s64 * results)1203 dbAllocNear(struct bmap * bmp,
1204 struct dmap * dp, s64 blkno, int nblocks, int l2nb, s64 * results)
1205 {
1206 int word, lword, rc;
1207 s8 *leaf;
1208
1209 if (dp->tree.leafidx != cpu_to_le32(LEAFIND)) {
1210 jfs_error(bmp->db_ipbmap->i_sb, "Corrupt dmap page\n");
1211 return -EIO;
1212 }
1213
1214 leaf = dp->tree.stree + le32_to_cpu(dp->tree.leafidx);
1215
1216 /* determine the word within the dmap that holds the hint
1217 * (i.e. blkno). also, determine the last word in the dmap
1218 * that we'll include in our examination.
1219 */
1220 word = (blkno & (BPERDMAP - 1)) >> L2DBWORD;
1221 lword = min(word + 4, LPERDMAP);
1222
1223 /* examine the leaves for sufficient free space.
1224 */
1225 for (; word < lword; word++) {
1226 /* does the leaf describe sufficient free space ?
1227 */
1228 if (leaf[word] < l2nb)
1229 continue;
1230
1231 /* determine the block number within the file system
1232 * of the first block described by this dmap word.
1233 */
1234 blkno = le64_to_cpu(dp->start) + (word << L2DBWORD);
1235
1236 /* if not all bits of the dmap word are free, get the
1237 * starting bit number within the dmap word of the required
1238 * string of free bits and adjust the block number with the
1239 * value.
1240 */
1241 if (leaf[word] < BUDMIN)
1242 blkno +=
1243 dbFindBits(le32_to_cpu(dp->wmap[word]), l2nb);
1244
1245 /* allocate the blocks.
1246 */
1247 if ((rc = dbAllocDmap(bmp, dp, blkno, nblocks)) == 0)
1248 *results = blkno;
1249
1250 return (rc);
1251 }
1252
1253 return -ENOSPC;
1254 }
1255
1256
1257 /*
1258 * NAME: dbAllocAG()
1259 *
1260 * FUNCTION: attempt to allocate the specified number of contiguous
1261 * free blocks within the specified allocation group.
1262 *
1263 * unless the allocation group size is equal to the number
1264 * of blocks per dmap, the dmap control pages will be used to
1265 * find the required free space, if available. we start the
1266 * search at the highest dmap control page level which
1267 * distinctly describes the allocation group's free space
1268 * (i.e. the highest level at which the allocation group's
1269 * free space is not mixed in with that of any other group).
1270 * in addition, we start the search within this level at a
1271 * height of the dmapctl dmtree at which the nodes distinctly
1272 * describe the allocation group's free space. at this height,
1273 * the allocation group's free space may be represented by 1
1274 * or two sub-trees, depending on the allocation group size.
1275 * we search the top nodes of these subtrees left to right for
1276 * sufficient free space. if sufficient free space is found,
1277 * the subtree is searched to find the leftmost leaf that
1278 * has free space. once we have made it to the leaf, we
1279 * move the search to the next lower level dmap control page
1280 * corresponding to this leaf. we continue down the dmap control
1281 * pages until we find the dmap that contains or starts the
1282 * sufficient free space and we allocate at this dmap.
1283 *
1284 * if the allocation group size is equal to the dmap size,
1285 * we'll start at the dmap corresponding to the allocation
1286 * group and attempt the allocation at this level.
1287 *
1288 * the dmap control page search is also not performed if the
1289 * allocation group is completely free and we go to the first
1290 * dmap of the allocation group to do the allocation. this is
1291 * done because the allocation group may be part (not the first
1292 * part) of a larger binary buddy system, causing the dmap
1293 * control pages to indicate no free space (NOFREE) within
1294 * the allocation group.
1295 *
1296 * PARAMETERS:
1297 * bmp - pointer to bmap descriptor
1298 * agno - allocation group number.
1299 * nblocks - actual number of contiguous free blocks desired.
1300 * l2nb - log2 number of contiguous free blocks desired.
1301 * results - on successful return, set to the starting block number
1302 * of the newly allocated range.
1303 *
1304 * RETURN VALUES:
1305 * 0 - success
1306 * -ENOSPC - insufficient disk resources
1307 * -EIO - i/o error
1308 *
1309 * note: IWRITE_LOCK(ipmap) held on entry/exit;
1310 */
1311 static int
dbAllocAG(struct bmap * bmp,int agno,s64 nblocks,int l2nb,s64 * results)1312 dbAllocAG(struct bmap * bmp, int agno, s64 nblocks, int l2nb, s64 * results)
1313 {
1314 struct metapage *mp;
1315 struct dmapctl *dcp;
1316 int rc, ti, i, k, m, n, agperlev;
1317 s64 blkno, lblkno;
1318 int budmin;
1319
1320 /* allocation request should not be for more than the
1321 * allocation group size.
1322 */
1323 if (l2nb > bmp->db_agl2size) {
1324 jfs_error(bmp->db_ipbmap->i_sb,
1325 "allocation request is larger than the allocation group size\n");
1326 return -EIO;
1327 }
1328
1329 /* determine the starting block number of the allocation
1330 * group.
1331 */
1332 blkno = (s64) agno << bmp->db_agl2size;
1333
1334 /* check if the allocation group size is the minimum allocation
1335 * group size or if the allocation group is completely free. if
1336 * the allocation group size is the minimum size of BPERDMAP (i.e.
1337 * 1 dmap), there is no need to search the dmap control page (below)
1338 * that fully describes the allocation group since the allocation
1339 * group is already fully described by a dmap. in this case, we
1340 * just call dbAllocCtl() to search the dmap tree and allocate the
1341 * required space if available.
1342 *
1343 * if the allocation group is completely free, dbAllocCtl() is
1344 * also called to allocate the required space. this is done for
1345 * two reasons. first, it makes no sense searching the dmap control
1346 * pages for free space when we know that free space exists. second,
1347 * the dmap control pages may indicate that the allocation group
1348 * has no free space if the allocation group is part (not the first
1349 * part) of a larger binary buddy system.
1350 */
1351 if (bmp->db_agsize == BPERDMAP
1352 || bmp->db_agfree[agno] == bmp->db_agsize) {
1353 rc = dbAllocCtl(bmp, nblocks, l2nb, blkno, results);
1354 if ((rc == -ENOSPC) &&
1355 (bmp->db_agfree[agno] == bmp->db_agsize)) {
1356 printk(KERN_ERR "blkno = %Lx, blocks = %Lx\n",
1357 (unsigned long long) blkno,
1358 (unsigned long long) nblocks);
1359 jfs_error(bmp->db_ipbmap->i_sb,
1360 "dbAllocCtl failed in free AG\n");
1361 }
1362 return (rc);
1363 }
1364
1365 /* the buffer for the dmap control page that fully describes the
1366 * allocation group.
1367 */
1368 lblkno = BLKTOCTL(blkno, bmp->db_l2nbperpage, bmp->db_aglevel);
1369 mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1370 if (mp == NULL)
1371 return -EIO;
1372 dcp = (struct dmapctl *) mp->data;
1373 budmin = dcp->budmin;
1374
1375 if (dcp->leafidx != cpu_to_le32(CTLLEAFIND)) {
1376 jfs_error(bmp->db_ipbmap->i_sb, "Corrupt dmapctl page\n");
1377 release_metapage(mp);
1378 return -EIO;
1379 }
1380
1381 /* search the subtree(s) of the dmap control page that describes
1382 * the allocation group, looking for sufficient free space. to begin,
1383 * determine how many allocation groups are represented in a dmap
1384 * control page at the control page level (i.e. L0, L1, L2) that
1385 * fully describes an allocation group. next, determine the starting
1386 * tree index of this allocation group within the control page.
1387 */
1388 agperlev =
1389 (1 << (L2LPERCTL - (bmp->db_agheight << 1))) / bmp->db_agwidth;
1390 ti = bmp->db_agstart + bmp->db_agwidth * (agno & (agperlev - 1));
1391
1392 if (ti < 0 || ti >= le32_to_cpu(dcp->nleafs)) {
1393 jfs_error(bmp->db_ipbmap->i_sb, "Corrupt dmapctl page\n");
1394 release_metapage(mp);
1395 return -EIO;
1396 }
1397
1398 /* dmap control page trees fan-out by 4 and a single allocation
1399 * group may be described by 1 or 2 subtrees within the ag level
1400 * dmap control page, depending upon the ag size. examine the ag's
1401 * subtrees for sufficient free space, starting with the leftmost
1402 * subtree.
1403 */
1404 for (i = 0; i < bmp->db_agwidth; i++, ti++) {
1405 /* is there sufficient free space ?
1406 */
1407 if (l2nb > dcp->stree[ti])
1408 continue;
1409
1410 /* sufficient free space found in a subtree. now search down
1411 * the subtree to find the leftmost leaf that describes this
1412 * free space.
1413 */
1414 for (k = bmp->db_agheight; k > 0; k--) {
1415 for (n = 0, m = (ti << 2) + 1; n < 4; n++) {
1416 if (l2nb <= dcp->stree[m + n]) {
1417 ti = m + n;
1418 break;
1419 }
1420 }
1421 if (n == 4) {
1422 jfs_error(bmp->db_ipbmap->i_sb,
1423 "failed descending stree\n");
1424 release_metapage(mp);
1425 return -EIO;
1426 }
1427 }
1428
1429 /* determine the block number within the file system
1430 * that corresponds to this leaf.
1431 */
1432 if (bmp->db_aglevel == 2)
1433 blkno = 0;
1434 else if (bmp->db_aglevel == 1)
1435 blkno &= ~(MAXL1SIZE - 1);
1436 else /* bmp->db_aglevel == 0 */
1437 blkno &= ~(MAXL0SIZE - 1);
1438
1439 blkno +=
1440 ((s64) (ti - le32_to_cpu(dcp->leafidx))) << budmin;
1441
1442 /* release the buffer in preparation for going down
1443 * the next level of dmap control pages.
1444 */
1445 release_metapage(mp);
1446
1447 /* check if we need to continue to search down the lower
1448 * level dmap control pages. we need to if the number of
1449 * blocks required is less than maximum number of blocks
1450 * described at the next lower level.
1451 */
1452 if (l2nb < budmin) {
1453
1454 /* search the lower level dmap control pages to get
1455 * the starting block number of the dmap that
1456 * contains or starts off the free space.
1457 */
1458 if ((rc =
1459 dbFindCtl(bmp, l2nb, bmp->db_aglevel - 1,
1460 &blkno))) {
1461 if (rc == -ENOSPC) {
1462 jfs_error(bmp->db_ipbmap->i_sb,
1463 "control page inconsistent\n");
1464 return -EIO;
1465 }
1466 return (rc);
1467 }
1468 }
1469
1470 /* allocate the blocks.
1471 */
1472 rc = dbAllocCtl(bmp, nblocks, l2nb, blkno, results);
1473 if (rc == -ENOSPC) {
1474 jfs_error(bmp->db_ipbmap->i_sb,
1475 "unable to allocate blocks\n");
1476 rc = -EIO;
1477 }
1478 return (rc);
1479 }
1480
1481 /* no space in the allocation group. release the buffer and
1482 * return -ENOSPC.
1483 */
1484 release_metapage(mp);
1485
1486 return -ENOSPC;
1487 }
1488
1489
1490 /*
1491 * NAME: dbAllocAny()
1492 *
1493 * FUNCTION: attempt to allocate the specified number of contiguous
1494 * free blocks anywhere in the file system.
1495 *
1496 * dbAllocAny() attempts to find the sufficient free space by
1497 * searching down the dmap control pages, starting with the
1498 * highest level (i.e. L0, L1, L2) control page. if free space
1499 * large enough to satisfy the desired free space is found, the
1500 * desired free space is allocated.
1501 *
1502 * PARAMETERS:
1503 * bmp - pointer to bmap descriptor
1504 * nblocks - actual number of contiguous free blocks desired.
1505 * l2nb - log2 number of contiguous free blocks desired.
1506 * results - on successful return, set to the starting block number
1507 * of the newly allocated range.
1508 *
1509 * RETURN VALUES:
1510 * 0 - success
1511 * -ENOSPC - insufficient disk resources
1512 * -EIO - i/o error
1513 *
1514 * serialization: IWRITE_LOCK(ipbmap) held on entry/exit;
1515 */
dbAllocAny(struct bmap * bmp,s64 nblocks,int l2nb,s64 * results)1516 static int dbAllocAny(struct bmap * bmp, s64 nblocks, int l2nb, s64 * results)
1517 {
1518 int rc;
1519 s64 blkno = 0;
1520
1521 /* starting with the top level dmap control page, search
1522 * down the dmap control levels for sufficient free space.
1523 * if free space is found, dbFindCtl() returns the starting
1524 * block number of the dmap that contains or starts off the
1525 * range of free space.
1526 */
1527 if ((rc = dbFindCtl(bmp, l2nb, bmp->db_maxlevel, &blkno)))
1528 return (rc);
1529
1530 /* allocate the blocks.
1531 */
1532 rc = dbAllocCtl(bmp, nblocks, l2nb, blkno, results);
1533 if (rc == -ENOSPC) {
1534 jfs_error(bmp->db_ipbmap->i_sb, "unable to allocate blocks\n");
1535 return -EIO;
1536 }
1537 return (rc);
1538 }
1539
1540
1541 /*
1542 * NAME: dbDiscardAG()
1543 *
1544 * FUNCTION: attempt to discard (TRIM) all free blocks of specific AG
1545 *
1546 * algorithm:
1547 * 1) allocate blocks, as large as possible and save them
1548 * while holding IWRITE_LOCK on ipbmap
1549 * 2) trim all these saved block/length values
1550 * 3) mark the blocks free again
1551 *
1552 * benefit:
1553 * - we work only on one ag at some time, minimizing how long we
1554 * need to lock ipbmap
1555 * - reading / writing the fs is possible most time, even on
1556 * trimming
1557 *
1558 * downside:
1559 * - we write two times to the dmapctl and dmap pages
1560 * - but for me, this seems the best way, better ideas?
1561 * /TR 2012
1562 *
1563 * PARAMETERS:
1564 * ip - pointer to in-core inode
1565 * agno - ag to trim
1566 * minlen - minimum value of contiguous blocks
1567 *
1568 * RETURN VALUES:
1569 * s64 - actual number of blocks trimmed
1570 */
dbDiscardAG(struct inode * ip,int agno,s64 minlen)1571 s64 dbDiscardAG(struct inode *ip, int agno, s64 minlen)
1572 {
1573 struct inode *ipbmap = JFS_SBI(ip->i_sb)->ipbmap;
1574 struct bmap *bmp = JFS_SBI(ip->i_sb)->bmap;
1575 s64 nblocks, blkno;
1576 u64 trimmed = 0;
1577 int rc, l2nb;
1578 struct super_block *sb = ipbmap->i_sb;
1579
1580 struct range2trim {
1581 u64 blkno;
1582 u64 nblocks;
1583 } *totrim, *tt;
1584
1585 /* max blkno / nblocks pairs to trim */
1586 int count = 0, range_cnt;
1587 u64 max_ranges;
1588
1589 /* prevent others from writing new stuff here, while trimming */
1590 IWRITE_LOCK(ipbmap, RDWRLOCK_DMAP);
1591
1592 nblocks = bmp->db_agfree[agno];
1593 max_ranges = nblocks;
1594 do_div(max_ranges, minlen);
1595 range_cnt = min_t(u64, max_ranges + 1, 32 * 1024);
1596 totrim = kmalloc_array(range_cnt, sizeof(struct range2trim), GFP_NOFS);
1597 if (totrim == NULL) {
1598 jfs_error(bmp->db_ipbmap->i_sb, "no memory for trim array\n");
1599 IWRITE_UNLOCK(ipbmap);
1600 return 0;
1601 }
1602
1603 tt = totrim;
1604 while (nblocks >= minlen) {
1605 l2nb = BLKSTOL2(nblocks);
1606
1607 /* 0 = okay, -EIO = fatal, -ENOSPC -> try smaller block */
1608 rc = dbAllocAG(bmp, agno, nblocks, l2nb, &blkno);
1609 if (rc == 0) {
1610 tt->blkno = blkno;
1611 tt->nblocks = nblocks;
1612 tt++; count++;
1613
1614 /* the whole ag is free, trim now */
1615 if (bmp->db_agfree[agno] == 0)
1616 break;
1617
1618 /* give a hint for the next while */
1619 nblocks = bmp->db_agfree[agno];
1620 continue;
1621 } else if (rc == -ENOSPC) {
1622 /* search for next smaller log2 block */
1623 l2nb = BLKSTOL2(nblocks) - 1;
1624 if (unlikely(l2nb < 0))
1625 break;
1626 nblocks = 1LL << l2nb;
1627 } else {
1628 /* Trim any already allocated blocks */
1629 jfs_error(bmp->db_ipbmap->i_sb, "-EIO\n");
1630 break;
1631 }
1632
1633 /* check, if our trim array is full */
1634 if (unlikely(count >= range_cnt - 1))
1635 break;
1636 }
1637 IWRITE_UNLOCK(ipbmap);
1638
1639 tt->nblocks = 0; /* mark the current end */
1640 for (tt = totrim; tt->nblocks != 0; tt++) {
1641 /* when mounted with online discard, dbFree() will
1642 * call jfs_issue_discard() itself */
1643 if (!(JFS_SBI(sb)->flag & JFS_DISCARD))
1644 jfs_issue_discard(ip, tt->blkno, tt->nblocks);
1645 dbFree(ip, tt->blkno, tt->nblocks);
1646 trimmed += tt->nblocks;
1647 }
1648 kfree(totrim);
1649
1650 return trimmed;
1651 }
1652
1653 /*
1654 * NAME: dbFindCtl()
1655 *
1656 * FUNCTION: starting at a specified dmap control page level and block
1657 * number, search down the dmap control levels for a range of
1658 * contiguous free blocks large enough to satisfy an allocation
1659 * request for the specified number of free blocks.
1660 *
1661 * if sufficient contiguous free blocks are found, this routine
1662 * returns the starting block number within a dmap page that
1663 * contains or starts a range of contiqious free blocks that
1664 * is sufficient in size.
1665 *
1666 * PARAMETERS:
1667 * bmp - pointer to bmap descriptor
1668 * level - starting dmap control page level.
1669 * l2nb - log2 number of contiguous free blocks desired.
1670 * *blkno - on entry, starting block number for conducting the search.
1671 * on successful return, the first block within a dmap page
1672 * that contains or starts a range of contiguous free blocks.
1673 *
1674 * RETURN VALUES:
1675 * 0 - success
1676 * -ENOSPC - insufficient disk resources
1677 * -EIO - i/o error
1678 *
1679 * serialization: IWRITE_LOCK(ipbmap) held on entry/exit;
1680 */
dbFindCtl(struct bmap * bmp,int l2nb,int level,s64 * blkno)1681 static int dbFindCtl(struct bmap * bmp, int l2nb, int level, s64 * blkno)
1682 {
1683 int rc, leafidx, lev;
1684 s64 b, lblkno;
1685 struct dmapctl *dcp;
1686 int budmin;
1687 struct metapage *mp;
1688
1689 /* starting at the specified dmap control page level and block
1690 * number, search down the dmap control levels for the starting
1691 * block number of a dmap page that contains or starts off
1692 * sufficient free blocks.
1693 */
1694 for (lev = level, b = *blkno; lev >= 0; lev--) {
1695 /* get the buffer of the dmap control page for the block
1696 * number and level (i.e. L0, L1, L2).
1697 */
1698 lblkno = BLKTOCTL(b, bmp->db_l2nbperpage, lev);
1699 mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1700 if (mp == NULL)
1701 return -EIO;
1702 dcp = (struct dmapctl *) mp->data;
1703 budmin = dcp->budmin;
1704
1705 if (dcp->leafidx != cpu_to_le32(CTLLEAFIND)) {
1706 jfs_error(bmp->db_ipbmap->i_sb,
1707 "Corrupt dmapctl page\n");
1708 release_metapage(mp);
1709 return -EIO;
1710 }
1711
1712 /* search the tree within the dmap control page for
1713 * sufficient free space. if sufficient free space is found,
1714 * dbFindLeaf() returns the index of the leaf at which
1715 * free space was found.
1716 */
1717 rc = dbFindLeaf((dmtree_t *) dcp, l2nb, &leafidx, true);
1718
1719 /* release the buffer.
1720 */
1721 release_metapage(mp);
1722
1723 /* space found ?
1724 */
1725 if (rc) {
1726 if (lev != level) {
1727 jfs_error(bmp->db_ipbmap->i_sb,
1728 "dmap inconsistent\n");
1729 return -EIO;
1730 }
1731 return -ENOSPC;
1732 }
1733
1734 /* adjust the block number to reflect the location within
1735 * the dmap control page (i.e. the leaf) at which free
1736 * space was found.
1737 */
1738 b += (((s64) leafidx) << budmin);
1739
1740 /* we stop the search at this dmap control page level if
1741 * the number of blocks required is greater than or equal
1742 * to the maximum number of blocks described at the next
1743 * (lower) level.
1744 */
1745 if (l2nb >= budmin)
1746 break;
1747 }
1748
1749 *blkno = b;
1750 return (0);
1751 }
1752
1753
1754 /*
1755 * NAME: dbAllocCtl()
1756 *
1757 * FUNCTION: attempt to allocate a specified number of contiguous
1758 * blocks starting within a specific dmap.
1759 *
1760 * this routine is called by higher level routines that search
1761 * the dmap control pages above the actual dmaps for contiguous
1762 * free space. the result of successful searches by these
1763 * routines are the starting block numbers within dmaps, with
1764 * the dmaps themselves containing the desired contiguous free
1765 * space or starting a contiguous free space of desired size
1766 * that is made up of the blocks of one or more dmaps. these
1767 * calls should not fail due to insufficent resources.
1768 *
1769 * this routine is called in some cases where it is not known
1770 * whether it will fail due to insufficient resources. more
1771 * specifically, this occurs when allocating from an allocation
1772 * group whose size is equal to the number of blocks per dmap.
1773 * in this case, the dmap control pages are not examined prior
1774 * to calling this routine (to save pathlength) and the call
1775 * might fail.
1776 *
1777 * for a request size that fits within a dmap, this routine relies
1778 * upon the dmap's dmtree to find the requested contiguous free
1779 * space. for request sizes that are larger than a dmap, the
1780 * requested free space will start at the first block of the
1781 * first dmap (i.e. blkno).
1782 *
1783 * PARAMETERS:
1784 * bmp - pointer to bmap descriptor
1785 * nblocks - actual number of contiguous free blocks to allocate.
1786 * l2nb - log2 number of contiguous free blocks to allocate.
1787 * blkno - starting block number of the dmap to start the allocation
1788 * from.
1789 * results - on successful return, set to the starting block number
1790 * of the newly allocated range.
1791 *
1792 * RETURN VALUES:
1793 * 0 - success
1794 * -ENOSPC - insufficient disk resources
1795 * -EIO - i/o error
1796 *
1797 * serialization: IWRITE_LOCK(ipbmap) held on entry/exit;
1798 */
1799 static int
dbAllocCtl(struct bmap * bmp,s64 nblocks,int l2nb,s64 blkno,s64 * results)1800 dbAllocCtl(struct bmap * bmp, s64 nblocks, int l2nb, s64 blkno, s64 * results)
1801 {
1802 int rc, nb;
1803 s64 b, lblkno, n;
1804 struct metapage *mp;
1805 struct dmap *dp;
1806
1807 /* check if the allocation request is confined to a single dmap.
1808 */
1809 if (l2nb <= L2BPERDMAP) {
1810 /* get the buffer for the dmap.
1811 */
1812 lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
1813 mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1814 if (mp == NULL)
1815 return -EIO;
1816 dp = (struct dmap *) mp->data;
1817
1818 if (dp->tree.budmin < 0) {
1819 release_metapage(mp);
1820 return -EIO;
1821 }
1822
1823 /* try to allocate the blocks.
1824 */
1825 rc = dbAllocDmapLev(bmp, dp, (int) nblocks, l2nb, results);
1826 if (rc == 0)
1827 mark_metapage_dirty(mp);
1828
1829 release_metapage(mp);
1830
1831 return (rc);
1832 }
1833
1834 /* allocation request involving multiple dmaps. it must start on
1835 * a dmap boundary.
1836 */
1837 assert((blkno & (BPERDMAP - 1)) == 0);
1838
1839 /* allocate the blocks dmap by dmap.
1840 */
1841 for (n = nblocks, b = blkno; n > 0; n -= nb, b += nb) {
1842 /* get the buffer for the dmap.
1843 */
1844 lblkno = BLKTODMAP(b, bmp->db_l2nbperpage);
1845 mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1846 if (mp == NULL) {
1847 rc = -EIO;
1848 goto backout;
1849 }
1850 dp = (struct dmap *) mp->data;
1851
1852 /* the dmap better be all free.
1853 */
1854 if (dp->tree.stree[ROOT] != L2BPERDMAP) {
1855 release_metapage(mp);
1856 jfs_error(bmp->db_ipbmap->i_sb,
1857 "the dmap is not all free\n");
1858 rc = -EIO;
1859 goto backout;
1860 }
1861
1862 /* determine how many blocks to allocate from this dmap.
1863 */
1864 nb = min_t(s64, n, BPERDMAP);
1865
1866 /* allocate the blocks from the dmap.
1867 */
1868 if ((rc = dbAllocDmap(bmp, dp, b, nb))) {
1869 release_metapage(mp);
1870 goto backout;
1871 }
1872
1873 /* write the buffer.
1874 */
1875 write_metapage(mp);
1876 }
1877
1878 /* set the results (starting block number) and return.
1879 */
1880 *results = blkno;
1881 return (0);
1882
1883 /* something failed in handling an allocation request involving
1884 * multiple dmaps. we'll try to clean up by backing out any
1885 * allocation that has already happened for this request. if
1886 * we fail in backing out the allocation, we'll mark the file
1887 * system to indicate that blocks have been leaked.
1888 */
1889 backout:
1890
1891 /* try to backout the allocations dmap by dmap.
1892 */
1893 for (n = nblocks - n, b = blkno; n > 0;
1894 n -= BPERDMAP, b += BPERDMAP) {
1895 /* get the buffer for this dmap.
1896 */
1897 lblkno = BLKTODMAP(b, bmp->db_l2nbperpage);
1898 mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1899 if (mp == NULL) {
1900 /* could not back out. mark the file system
1901 * to indicate that we have leaked blocks.
1902 */
1903 jfs_error(bmp->db_ipbmap->i_sb,
1904 "I/O Error: Block Leakage\n");
1905 continue;
1906 }
1907 dp = (struct dmap *) mp->data;
1908
1909 /* free the blocks is this dmap.
1910 */
1911 if (dbFreeDmap(bmp, dp, b, BPERDMAP)) {
1912 /* could not back out. mark the file system
1913 * to indicate that we have leaked blocks.
1914 */
1915 release_metapage(mp);
1916 jfs_error(bmp->db_ipbmap->i_sb, "Block Leakage\n");
1917 continue;
1918 }
1919
1920 /* write the buffer.
1921 */
1922 write_metapage(mp);
1923 }
1924
1925 return (rc);
1926 }
1927
1928
1929 /*
1930 * NAME: dbAllocDmapLev()
1931 *
1932 * FUNCTION: attempt to allocate a specified number of contiguous blocks
1933 * from a specified dmap.
1934 *
1935 * this routine checks if the contiguous blocks are available.
1936 * if so, nblocks of blocks are allocated; otherwise, ENOSPC is
1937 * returned.
1938 *
1939 * PARAMETERS:
1940 * mp - pointer to bmap descriptor
1941 * dp - pointer to dmap to attempt to allocate blocks from.
1942 * l2nb - log2 number of contiguous block desired.
1943 * nblocks - actual number of contiguous block desired.
1944 * results - on successful return, set to the starting block number
1945 * of the newly allocated range.
1946 *
1947 * RETURN VALUES:
1948 * 0 - success
1949 * -ENOSPC - insufficient disk resources
1950 * -EIO - i/o error
1951 *
1952 * serialization: IREAD_LOCK(ipbmap), e.g., from dbAlloc(), or
1953 * IWRITE_LOCK(ipbmap), e.g., dbAllocCtl(), held on entry/exit;
1954 */
1955 static int
dbAllocDmapLev(struct bmap * bmp,struct dmap * dp,int nblocks,int l2nb,s64 * results)1956 dbAllocDmapLev(struct bmap * bmp,
1957 struct dmap * dp, int nblocks, int l2nb, s64 * results)
1958 {
1959 s64 blkno;
1960 int leafidx, rc;
1961
1962 /* can't be more than a dmaps worth of blocks */
1963 assert(l2nb <= L2BPERDMAP);
1964
1965 /* search the tree within the dmap page for sufficient
1966 * free space. if sufficient free space is found, dbFindLeaf()
1967 * returns the index of the leaf at which free space was found.
1968 */
1969 if (dbFindLeaf((dmtree_t *) &dp->tree, l2nb, &leafidx, false))
1970 return -ENOSPC;
1971
1972 if (leafidx < 0)
1973 return -EIO;
1974
1975 /* determine the block number within the file system corresponding
1976 * to the leaf at which free space was found.
1977 */
1978 blkno = le64_to_cpu(dp->start) + (leafidx << L2DBWORD);
1979
1980 /* if not all bits of the dmap word are free, get the starting
1981 * bit number within the dmap word of the required string of free
1982 * bits and adjust the block number with this value.
1983 */
1984 if (dp->tree.stree[leafidx + LEAFIND] < BUDMIN)
1985 blkno += dbFindBits(le32_to_cpu(dp->wmap[leafidx]), l2nb);
1986
1987 /* allocate the blocks */
1988 if ((rc = dbAllocDmap(bmp, dp, blkno, nblocks)) == 0)
1989 *results = blkno;
1990
1991 return (rc);
1992 }
1993
1994
1995 /*
1996 * NAME: dbAllocDmap()
1997 *
1998 * FUNCTION: adjust the disk allocation map to reflect the allocation
1999 * of a specified block range within a dmap.
2000 *
2001 * this routine allocates the specified blocks from the dmap
2002 * through a call to dbAllocBits(). if the allocation of the
2003 * block range causes the maximum string of free blocks within
2004 * the dmap to change (i.e. the value of the root of the dmap's
2005 * dmtree), this routine will cause this change to be reflected
2006 * up through the appropriate levels of the dmap control pages
2007 * by a call to dbAdjCtl() for the L0 dmap control page that
2008 * covers this dmap.
2009 *
2010 * PARAMETERS:
2011 * bmp - pointer to bmap descriptor
2012 * dp - pointer to dmap to allocate the block range from.
2013 * blkno - starting block number of the block to be allocated.
2014 * nblocks - number of blocks to be allocated.
2015 *
2016 * RETURN VALUES:
2017 * 0 - success
2018 * -EIO - i/o error
2019 *
2020 * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2021 */
dbAllocDmap(struct bmap * bmp,struct dmap * dp,s64 blkno,int nblocks)2022 static int dbAllocDmap(struct bmap * bmp, struct dmap * dp, s64 blkno,
2023 int nblocks)
2024 {
2025 s8 oldroot;
2026 int rc;
2027
2028 /* save the current value of the root (i.e. maximum free string)
2029 * of the dmap tree.
2030 */
2031 oldroot = dp->tree.stree[ROOT];
2032
2033 /* allocate the specified (blocks) bits */
2034 dbAllocBits(bmp, dp, blkno, nblocks);
2035
2036 /* if the root has not changed, done. */
2037 if (dp->tree.stree[ROOT] == oldroot)
2038 return (0);
2039
2040 /* root changed. bubble the change up to the dmap control pages.
2041 * if the adjustment of the upper level control pages fails,
2042 * backout the bit allocation (thus making everything consistent).
2043 */
2044 if ((rc = dbAdjCtl(bmp, blkno, dp->tree.stree[ROOT], 1, 0)))
2045 dbFreeBits(bmp, dp, blkno, nblocks);
2046
2047 return (rc);
2048 }
2049
2050
2051 /*
2052 * NAME: dbFreeDmap()
2053 *
2054 * FUNCTION: adjust the disk allocation map to reflect the allocation
2055 * of a specified block range within a dmap.
2056 *
2057 * this routine frees the specified blocks from the dmap through
2058 * a call to dbFreeBits(). if the deallocation of the block range
2059 * causes the maximum string of free blocks within the dmap to
2060 * change (i.e. the value of the root of the dmap's dmtree), this
2061 * routine will cause this change to be reflected up through the
2062 * appropriate levels of the dmap control pages by a call to
2063 * dbAdjCtl() for the L0 dmap control page that covers this dmap.
2064 *
2065 * PARAMETERS:
2066 * bmp - pointer to bmap descriptor
2067 * dp - pointer to dmap to free the block range from.
2068 * blkno - starting block number of the block to be freed.
2069 * nblocks - number of blocks to be freed.
2070 *
2071 * RETURN VALUES:
2072 * 0 - success
2073 * -EIO - i/o error
2074 *
2075 * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2076 */
dbFreeDmap(struct bmap * bmp,struct dmap * dp,s64 blkno,int nblocks)2077 static int dbFreeDmap(struct bmap * bmp, struct dmap * dp, s64 blkno,
2078 int nblocks)
2079 {
2080 s8 oldroot;
2081 int rc = 0, word;
2082
2083 /* save the current value of the root (i.e. maximum free string)
2084 * of the dmap tree.
2085 */
2086 oldroot = dp->tree.stree[ROOT];
2087
2088 /* free the specified (blocks) bits */
2089 rc = dbFreeBits(bmp, dp, blkno, nblocks);
2090
2091 /* if error or the root has not changed, done. */
2092 if (rc || (dp->tree.stree[ROOT] == oldroot))
2093 return (rc);
2094
2095 /* root changed. bubble the change up to the dmap control pages.
2096 * if the adjustment of the upper level control pages fails,
2097 * backout the deallocation.
2098 */
2099 if ((rc = dbAdjCtl(bmp, blkno, dp->tree.stree[ROOT], 0, 0))) {
2100 word = (blkno & (BPERDMAP - 1)) >> L2DBWORD;
2101
2102 /* as part of backing out the deallocation, we will have
2103 * to back split the dmap tree if the deallocation caused
2104 * the freed blocks to become part of a larger binary buddy
2105 * system.
2106 */
2107 if (dp->tree.stree[word] == NOFREE)
2108 dbBackSplit((dmtree_t *)&dp->tree, word, false);
2109
2110 dbAllocBits(bmp, dp, blkno, nblocks);
2111 }
2112
2113 return (rc);
2114 }
2115
2116
2117 /*
2118 * NAME: dbAllocBits()
2119 *
2120 * FUNCTION: allocate a specified block range from a dmap.
2121 *
2122 * this routine updates the dmap to reflect the working
2123 * state allocation of the specified block range. it directly
2124 * updates the bits of the working map and causes the adjustment
2125 * of the binary buddy system described by the dmap's dmtree
2126 * leaves to reflect the bits allocated. it also causes the
2127 * dmap's dmtree, as a whole, to reflect the allocated range.
2128 *
2129 * PARAMETERS:
2130 * bmp - pointer to bmap descriptor
2131 * dp - pointer to dmap to allocate bits from.
2132 * blkno - starting block number of the bits to be allocated.
2133 * nblocks - number of bits to be allocated.
2134 *
2135 * RETURN VALUES: none
2136 *
2137 * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2138 */
dbAllocBits(struct bmap * bmp,struct dmap * dp,s64 blkno,int nblocks)2139 static void dbAllocBits(struct bmap * bmp, struct dmap * dp, s64 blkno,
2140 int nblocks)
2141 {
2142 int dbitno, word, rembits, nb, nwords, wbitno, nw, agno;
2143 dmtree_t *tp = (dmtree_t *) & dp->tree;
2144 int size;
2145 s8 *leaf;
2146
2147 /* pick up a pointer to the leaves of the dmap tree */
2148 leaf = dp->tree.stree + LEAFIND;
2149
2150 /* determine the bit number and word within the dmap of the
2151 * starting block.
2152 */
2153 dbitno = blkno & (BPERDMAP - 1);
2154 word = dbitno >> L2DBWORD;
2155
2156 /* block range better be within the dmap */
2157 assert(dbitno + nblocks <= BPERDMAP);
2158
2159 /* allocate the bits of the dmap's words corresponding to the block
2160 * range. not all bits of the first and last words may be contained
2161 * within the block range. if this is the case, we'll work against
2162 * those words (i.e. partial first and/or last) on an individual basis
2163 * (a single pass), allocating the bits of interest by hand and
2164 * updating the leaf corresponding to the dmap word. a single pass
2165 * will be used for all dmap words fully contained within the
2166 * specified range. within this pass, the bits of all fully contained
2167 * dmap words will be marked as free in a single shot and the leaves
2168 * will be updated. a single leaf may describe the free space of
2169 * multiple dmap words, so we may update only a subset of the actual
2170 * leaves corresponding to the dmap words of the block range.
2171 */
2172 for (rembits = nblocks; rembits > 0; rembits -= nb, dbitno += nb) {
2173 /* determine the bit number within the word and
2174 * the number of bits within the word.
2175 */
2176 wbitno = dbitno & (DBWORD - 1);
2177 nb = min(rembits, DBWORD - wbitno);
2178
2179 /* check if only part of a word is to be allocated.
2180 */
2181 if (nb < DBWORD) {
2182 /* allocate (set to 1) the appropriate bits within
2183 * this dmap word.
2184 */
2185 dp->wmap[word] |= cpu_to_le32(ONES << (DBWORD - nb)
2186 >> wbitno);
2187
2188 /* update the leaf for this dmap word. in addition
2189 * to setting the leaf value to the binary buddy max
2190 * of the updated dmap word, dbSplit() will split
2191 * the binary system of the leaves if need be.
2192 */
2193 dbSplit(tp, word, BUDMIN,
2194 dbMaxBud((u8 *)&dp->wmap[word]), false);
2195
2196 word += 1;
2197 } else {
2198 /* one or more dmap words are fully contained
2199 * within the block range. determine how many
2200 * words and allocate (set to 1) the bits of these
2201 * words.
2202 */
2203 nwords = rembits >> L2DBWORD;
2204 memset(&dp->wmap[word], (int) ONES, nwords * 4);
2205
2206 /* determine how many bits.
2207 */
2208 nb = nwords << L2DBWORD;
2209
2210 /* now update the appropriate leaves to reflect
2211 * the allocated words.
2212 */
2213 for (; nwords > 0; nwords -= nw) {
2214 if (leaf[word] < BUDMIN) {
2215 jfs_error(bmp->db_ipbmap->i_sb,
2216 "leaf page corrupt\n");
2217 break;
2218 }
2219
2220 /* determine what the leaf value should be
2221 * updated to as the minimum of the l2 number
2222 * of bits being allocated and the l2 number
2223 * of bits currently described by this leaf.
2224 */
2225 size = min_t(int, leaf[word],
2226 NLSTOL2BSZ(nwords));
2227
2228 /* update the leaf to reflect the allocation.
2229 * in addition to setting the leaf value to
2230 * NOFREE, dbSplit() will split the binary
2231 * system of the leaves to reflect the current
2232 * allocation (size).
2233 */
2234 dbSplit(tp, word, size, NOFREE, false);
2235
2236 /* get the number of dmap words handled */
2237 nw = BUDSIZE(size, BUDMIN);
2238 word += nw;
2239 }
2240 }
2241 }
2242
2243 /* update the free count for this dmap */
2244 le32_add_cpu(&dp->nfree, -nblocks);
2245
2246 BMAP_LOCK(bmp);
2247
2248 /* if this allocation group is completely free,
2249 * update the maximum allocation group number if this allocation
2250 * group is the new max.
2251 */
2252 agno = blkno >> bmp->db_agl2size;
2253 if (agno > bmp->db_maxag)
2254 bmp->db_maxag = agno;
2255
2256 /* update the free count for the allocation group and map */
2257 bmp->db_agfree[agno] -= nblocks;
2258 bmp->db_nfree -= nblocks;
2259
2260 BMAP_UNLOCK(bmp);
2261 }
2262
2263
2264 /*
2265 * NAME: dbFreeBits()
2266 *
2267 * FUNCTION: free a specified block range from a dmap.
2268 *
2269 * this routine updates the dmap to reflect the working
2270 * state allocation of the specified block range. it directly
2271 * updates the bits of the working map and causes the adjustment
2272 * of the binary buddy system described by the dmap's dmtree
2273 * leaves to reflect the bits freed. it also causes the dmap's
2274 * dmtree, as a whole, to reflect the deallocated range.
2275 *
2276 * PARAMETERS:
2277 * bmp - pointer to bmap descriptor
2278 * dp - pointer to dmap to free bits from.
2279 * blkno - starting block number of the bits to be freed.
2280 * nblocks - number of bits to be freed.
2281 *
2282 * RETURN VALUES: 0 for success
2283 *
2284 * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2285 */
dbFreeBits(struct bmap * bmp,struct dmap * dp,s64 blkno,int nblocks)2286 static int dbFreeBits(struct bmap * bmp, struct dmap * dp, s64 blkno,
2287 int nblocks)
2288 {
2289 int dbitno, word, rembits, nb, nwords, wbitno, nw, agno;
2290 dmtree_t *tp = (dmtree_t *) & dp->tree;
2291 int rc = 0;
2292 int size;
2293
2294 /* determine the bit number and word within the dmap of the
2295 * starting block.
2296 */
2297 dbitno = blkno & (BPERDMAP - 1);
2298 word = dbitno >> L2DBWORD;
2299
2300 /* block range better be within the dmap.
2301 */
2302 assert(dbitno + nblocks <= BPERDMAP);
2303
2304 /* free the bits of the dmaps words corresponding to the block range.
2305 * not all bits of the first and last words may be contained within
2306 * the block range. if this is the case, we'll work against those
2307 * words (i.e. partial first and/or last) on an individual basis
2308 * (a single pass), freeing the bits of interest by hand and updating
2309 * the leaf corresponding to the dmap word. a single pass will be used
2310 * for all dmap words fully contained within the specified range.
2311 * within this pass, the bits of all fully contained dmap words will
2312 * be marked as free in a single shot and the leaves will be updated. a
2313 * single leaf may describe the free space of multiple dmap words,
2314 * so we may update only a subset of the actual leaves corresponding
2315 * to the dmap words of the block range.
2316 *
2317 * dbJoin() is used to update leaf values and will join the binary
2318 * buddy system of the leaves if the new leaf values indicate this
2319 * should be done.
2320 */
2321 for (rembits = nblocks; rembits > 0; rembits -= nb, dbitno += nb) {
2322 /* determine the bit number within the word and
2323 * the number of bits within the word.
2324 */
2325 wbitno = dbitno & (DBWORD - 1);
2326 nb = min(rembits, DBWORD - wbitno);
2327
2328 /* check if only part of a word is to be freed.
2329 */
2330 if (nb < DBWORD) {
2331 /* free (zero) the appropriate bits within this
2332 * dmap word.
2333 */
2334 dp->wmap[word] &=
2335 cpu_to_le32(~(ONES << (DBWORD - nb)
2336 >> wbitno));
2337
2338 /* update the leaf for this dmap word.
2339 */
2340 rc = dbJoin(tp, word,
2341 dbMaxBud((u8 *)&dp->wmap[word]), false);
2342 if (rc)
2343 return rc;
2344
2345 word += 1;
2346 } else {
2347 /* one or more dmap words are fully contained
2348 * within the block range. determine how many
2349 * words and free (zero) the bits of these words.
2350 */
2351 nwords = rembits >> L2DBWORD;
2352 memset(&dp->wmap[word], 0, nwords * 4);
2353
2354 /* determine how many bits.
2355 */
2356 nb = nwords << L2DBWORD;
2357
2358 /* now update the appropriate leaves to reflect
2359 * the freed words.
2360 */
2361 for (; nwords > 0; nwords -= nw) {
2362 /* determine what the leaf value should be
2363 * updated to as the minimum of the l2 number
2364 * of bits being freed and the l2 (max) number
2365 * of bits that can be described by this leaf.
2366 */
2367 size =
2368 min(LITOL2BSZ
2369 (word, L2LPERDMAP, BUDMIN),
2370 NLSTOL2BSZ(nwords));
2371
2372 /* update the leaf.
2373 */
2374 rc = dbJoin(tp, word, size, false);
2375 if (rc)
2376 return rc;
2377
2378 /* get the number of dmap words handled.
2379 */
2380 nw = BUDSIZE(size, BUDMIN);
2381 word += nw;
2382 }
2383 }
2384 }
2385
2386 /* update the free count for this dmap.
2387 */
2388 le32_add_cpu(&dp->nfree, nblocks);
2389
2390 BMAP_LOCK(bmp);
2391
2392 /* update the free count for the allocation group and
2393 * map.
2394 */
2395 agno = blkno >> bmp->db_agl2size;
2396 bmp->db_nfree += nblocks;
2397 bmp->db_agfree[agno] += nblocks;
2398
2399 /* check if this allocation group is not completely free and
2400 * if it is currently the maximum (rightmost) allocation group.
2401 * if so, establish the new maximum allocation group number by
2402 * searching left for the first allocation group with allocation.
2403 */
2404 if ((bmp->db_agfree[agno] == bmp->db_agsize && agno == bmp->db_maxag) ||
2405 (agno == bmp->db_numag - 1 &&
2406 bmp->db_agfree[agno] == (bmp-> db_mapsize & (BPERDMAP - 1)))) {
2407 while (bmp->db_maxag > 0) {
2408 bmp->db_maxag -= 1;
2409 if (bmp->db_agfree[bmp->db_maxag] !=
2410 bmp->db_agsize)
2411 break;
2412 }
2413
2414 /* re-establish the allocation group preference if the
2415 * current preference is right of the maximum allocation
2416 * group.
2417 */
2418 if (bmp->db_agpref > bmp->db_maxag)
2419 bmp->db_agpref = bmp->db_maxag;
2420 }
2421
2422 BMAP_UNLOCK(bmp);
2423
2424 return 0;
2425 }
2426
2427
2428 /*
2429 * NAME: dbAdjCtl()
2430 *
2431 * FUNCTION: adjust a dmap control page at a specified level to reflect
2432 * the change in a lower level dmap or dmap control page's
2433 * maximum string of free blocks (i.e. a change in the root
2434 * of the lower level object's dmtree) due to the allocation
2435 * or deallocation of a range of blocks with a single dmap.
2436 *
2437 * on entry, this routine is provided with the new value of
2438 * the lower level dmap or dmap control page root and the
2439 * starting block number of the block range whose allocation
2440 * or deallocation resulted in the root change. this range
2441 * is respresented by a single leaf of the current dmapctl
2442 * and the leaf will be updated with this value, possibly
2443 * causing a binary buddy system within the leaves to be
2444 * split or joined. the update may also cause the dmapctl's
2445 * dmtree to be updated.
2446 *
2447 * if the adjustment of the dmap control page, itself, causes its
2448 * root to change, this change will be bubbled up to the next dmap
2449 * control level by a recursive call to this routine, specifying
2450 * the new root value and the next dmap control page level to
2451 * be adjusted.
2452 * PARAMETERS:
2453 * bmp - pointer to bmap descriptor
2454 * blkno - the first block of a block range within a dmap. it is
2455 * the allocation or deallocation of this block range that
2456 * requires the dmap control page to be adjusted.
2457 * newval - the new value of the lower level dmap or dmap control
2458 * page root.
2459 * alloc - 'true' if adjustment is due to an allocation.
2460 * level - current level of dmap control page (i.e. L0, L1, L2) to
2461 * be adjusted.
2462 *
2463 * RETURN VALUES:
2464 * 0 - success
2465 * -EIO - i/o error
2466 *
2467 * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2468 */
2469 static int
dbAdjCtl(struct bmap * bmp,s64 blkno,int newval,int alloc,int level)2470 dbAdjCtl(struct bmap * bmp, s64 blkno, int newval, int alloc, int level)
2471 {
2472 struct metapage *mp;
2473 s8 oldroot;
2474 int oldval;
2475 s64 lblkno;
2476 struct dmapctl *dcp;
2477 int rc, leafno, ti;
2478
2479 /* get the buffer for the dmap control page for the specified
2480 * block number and control page level.
2481 */
2482 lblkno = BLKTOCTL(blkno, bmp->db_l2nbperpage, level);
2483 mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
2484 if (mp == NULL)
2485 return -EIO;
2486 dcp = (struct dmapctl *) mp->data;
2487
2488 if (dcp->leafidx != cpu_to_le32(CTLLEAFIND)) {
2489 jfs_error(bmp->db_ipbmap->i_sb, "Corrupt dmapctl page\n");
2490 release_metapage(mp);
2491 return -EIO;
2492 }
2493
2494 /* determine the leaf number corresponding to the block and
2495 * the index within the dmap control tree.
2496 */
2497 leafno = BLKTOCTLLEAF(blkno, dcp->budmin);
2498 ti = leafno + le32_to_cpu(dcp->leafidx);
2499
2500 /* save the current leaf value and the current root level (i.e.
2501 * maximum l2 free string described by this dmapctl).
2502 */
2503 oldval = dcp->stree[ti];
2504 oldroot = dcp->stree[ROOT];
2505
2506 /* check if this is a control page update for an allocation.
2507 * if so, update the leaf to reflect the new leaf value using
2508 * dbSplit(); otherwise (deallocation), use dbJoin() to update
2509 * the leaf with the new value. in addition to updating the
2510 * leaf, dbSplit() will also split the binary buddy system of
2511 * the leaves, if required, and bubble new values within the
2512 * dmapctl tree, if required. similarly, dbJoin() will join
2513 * the binary buddy system of leaves and bubble new values up
2514 * the dmapctl tree as required by the new leaf value.
2515 */
2516 if (alloc) {
2517 /* check if we are in the middle of a binary buddy
2518 * system. this happens when we are performing the
2519 * first allocation out of an allocation group that
2520 * is part (not the first part) of a larger binary
2521 * buddy system. if we are in the middle, back split
2522 * the system prior to calling dbSplit() which assumes
2523 * that it is at the front of a binary buddy system.
2524 */
2525 if (oldval == NOFREE) {
2526 rc = dbBackSplit((dmtree_t *)dcp, leafno, true);
2527 if (rc) {
2528 release_metapage(mp);
2529 return rc;
2530 }
2531 oldval = dcp->stree[ti];
2532 }
2533 dbSplit((dmtree_t *) dcp, leafno, dcp->budmin, newval, true);
2534 } else {
2535 rc = dbJoin((dmtree_t *) dcp, leafno, newval, true);
2536 if (rc) {
2537 release_metapage(mp);
2538 return rc;
2539 }
2540 }
2541
2542 /* check if the root of the current dmap control page changed due
2543 * to the update and if the current dmap control page is not at
2544 * the current top level (i.e. L0, L1, L2) of the map. if so (i.e.
2545 * root changed and this is not the top level), call this routine
2546 * again (recursion) for the next higher level of the mapping to
2547 * reflect the change in root for the current dmap control page.
2548 */
2549 if (dcp->stree[ROOT] != oldroot) {
2550 /* are we below the top level of the map. if so,
2551 * bubble the root up to the next higher level.
2552 */
2553 if (level < bmp->db_maxlevel) {
2554 /* bubble up the new root of this dmap control page to
2555 * the next level.
2556 */
2557 if ((rc =
2558 dbAdjCtl(bmp, blkno, dcp->stree[ROOT], alloc,
2559 level + 1))) {
2560 /* something went wrong in bubbling up the new
2561 * root value, so backout the changes to the
2562 * current dmap control page.
2563 */
2564 if (alloc) {
2565 dbJoin((dmtree_t *) dcp, leafno,
2566 oldval, true);
2567 } else {
2568 /* the dbJoin() above might have
2569 * caused a larger binary buddy system
2570 * to form and we may now be in the
2571 * middle of it. if this is the case,
2572 * back split the buddies.
2573 */
2574 if (dcp->stree[ti] == NOFREE)
2575 dbBackSplit((dmtree_t *)
2576 dcp, leafno, true);
2577 dbSplit((dmtree_t *) dcp, leafno,
2578 dcp->budmin, oldval, true);
2579 }
2580
2581 /* release the buffer and return the error.
2582 */
2583 release_metapage(mp);
2584 return (rc);
2585 }
2586 } else {
2587 /* we're at the top level of the map. update
2588 * the bmap control page to reflect the size
2589 * of the maximum free buddy system.
2590 */
2591 assert(level == bmp->db_maxlevel);
2592 if (bmp->db_maxfreebud != oldroot) {
2593 jfs_error(bmp->db_ipbmap->i_sb,
2594 "the maximum free buddy is not the old root\n");
2595 }
2596 bmp->db_maxfreebud = dcp->stree[ROOT];
2597 }
2598 }
2599
2600 /* write the buffer.
2601 */
2602 write_metapage(mp);
2603
2604 return (0);
2605 }
2606
2607
2608 /*
2609 * NAME: dbSplit()
2610 *
2611 * FUNCTION: update the leaf of a dmtree with a new value, splitting
2612 * the leaf from the binary buddy system of the dmtree's
2613 * leaves, as required.
2614 *
2615 * PARAMETERS:
2616 * tp - pointer to the tree containing the leaf.
2617 * leafno - the number of the leaf to be updated.
2618 * splitsz - the size the binary buddy system starting at the leaf
2619 * must be split to, specified as the log2 number of blocks.
2620 * newval - the new value for the leaf.
2621 *
2622 * RETURN VALUES: none
2623 *
2624 * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2625 */
dbSplit(dmtree_t * tp,int leafno,int splitsz,int newval,bool is_ctl)2626 static void dbSplit(dmtree_t *tp, int leafno, int splitsz, int newval, bool is_ctl)
2627 {
2628 int budsz;
2629 int cursz;
2630 s8 *leaf = tp->dmt_stree + le32_to_cpu(tp->dmt_leafidx);
2631
2632 /* check if the leaf needs to be split.
2633 */
2634 if (leaf[leafno] > tp->dmt_budmin) {
2635 /* the split occurs by cutting the buddy system in half
2636 * at the specified leaf until we reach the specified
2637 * size. pick up the starting split size (current size
2638 * - 1 in l2) and the corresponding buddy size.
2639 */
2640 cursz = leaf[leafno] - 1;
2641 budsz = BUDSIZE(cursz, tp->dmt_budmin);
2642
2643 /* split until we reach the specified size.
2644 */
2645 while (cursz >= splitsz) {
2646 /* update the buddy's leaf with its new value.
2647 */
2648 dbAdjTree(tp, leafno ^ budsz, cursz, is_ctl);
2649
2650 /* on to the next size and buddy.
2651 */
2652 cursz -= 1;
2653 budsz >>= 1;
2654 }
2655 }
2656
2657 /* adjust the dmap tree to reflect the specified leaf's new
2658 * value.
2659 */
2660 dbAdjTree(tp, leafno, newval, is_ctl);
2661 }
2662
2663
2664 /*
2665 * NAME: dbBackSplit()
2666 *
2667 * FUNCTION: back split the binary buddy system of dmtree leaves
2668 * that hold a specified leaf until the specified leaf
2669 * starts its own binary buddy system.
2670 *
2671 * the allocators typically perform allocations at the start
2672 * of binary buddy systems and dbSplit() is used to accomplish
2673 * any required splits. in some cases, however, allocation
2674 * may occur in the middle of a binary system and requires a
2675 * back split, with the split proceeding out from the middle of
2676 * the system (less efficient) rather than the start of the
2677 * system (more efficient). the cases in which a back split
2678 * is required are rare and are limited to the first allocation
2679 * within an allocation group which is a part (not first part)
2680 * of a larger binary buddy system and a few exception cases
2681 * in which a previous join operation must be backed out.
2682 *
2683 * PARAMETERS:
2684 * tp - pointer to the tree containing the leaf.
2685 * leafno - the number of the leaf to be updated.
2686 *
2687 * RETURN VALUES: none
2688 *
2689 * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2690 */
dbBackSplit(dmtree_t * tp,int leafno,bool is_ctl)2691 static int dbBackSplit(dmtree_t *tp, int leafno, bool is_ctl)
2692 {
2693 int budsz, bud, w, bsz, size;
2694 int cursz;
2695 s8 *leaf = tp->dmt_stree + le32_to_cpu(tp->dmt_leafidx);
2696
2697 /* leaf should be part (not first part) of a binary
2698 * buddy system.
2699 */
2700 assert(leaf[leafno] == NOFREE);
2701
2702 /* the back split is accomplished by iteratively finding the leaf
2703 * that starts the buddy system that contains the specified leaf and
2704 * splitting that system in two. this iteration continues until
2705 * the specified leaf becomes the start of a buddy system.
2706 *
2707 * determine maximum possible l2 size for the specified leaf.
2708 */
2709 size =
2710 LITOL2BSZ(leafno, le32_to_cpu(tp->dmt_l2nleafs),
2711 tp->dmt_budmin);
2712
2713 /* determine the number of leaves covered by this size. this
2714 * is the buddy size that we will start with as we search for
2715 * the buddy system that contains the specified leaf.
2716 */
2717 budsz = BUDSIZE(size, tp->dmt_budmin);
2718
2719 /* back split.
2720 */
2721 while (leaf[leafno] == NOFREE) {
2722 /* find the leftmost buddy leaf.
2723 */
2724 for (w = leafno, bsz = budsz;; bsz <<= 1,
2725 w = (w < bud) ? w : bud) {
2726 if (bsz >= le32_to_cpu(tp->dmt_nleafs)) {
2727 jfs_err("JFS: block map error in dbBackSplit");
2728 return -EIO;
2729 }
2730
2731 /* determine the buddy.
2732 */
2733 bud = w ^ bsz;
2734
2735 /* check if this buddy is the start of the system.
2736 */
2737 if (leaf[bud] != NOFREE) {
2738 /* split the leaf at the start of the
2739 * system in two.
2740 */
2741 cursz = leaf[bud] - 1;
2742 dbSplit(tp, bud, cursz, cursz, is_ctl);
2743 break;
2744 }
2745 }
2746 }
2747
2748 if (leaf[leafno] != size) {
2749 jfs_err("JFS: wrong leaf value in dbBackSplit");
2750 return -EIO;
2751 }
2752 return 0;
2753 }
2754
2755
2756 /*
2757 * NAME: dbJoin()
2758 *
2759 * FUNCTION: update the leaf of a dmtree with a new value, joining
2760 * the leaf with other leaves of the dmtree into a multi-leaf
2761 * binary buddy system, as required.
2762 *
2763 * PARAMETERS:
2764 * tp - pointer to the tree containing the leaf.
2765 * leafno - the number of the leaf to be updated.
2766 * newval - the new value for the leaf.
2767 *
2768 * RETURN VALUES: none
2769 */
dbJoin(dmtree_t * tp,int leafno,int newval,bool is_ctl)2770 static int dbJoin(dmtree_t *tp, int leafno, int newval, bool is_ctl)
2771 {
2772 int budsz, buddy;
2773 s8 *leaf;
2774
2775 /* can the new leaf value require a join with other leaves ?
2776 */
2777 if (newval >= tp->dmt_budmin) {
2778 /* pickup a pointer to the leaves of the tree.
2779 */
2780 leaf = tp->dmt_stree + le32_to_cpu(tp->dmt_leafidx);
2781
2782 /* try to join the specified leaf into a large binary
2783 * buddy system. the join proceeds by attempting to join
2784 * the specified leafno with its buddy (leaf) at new value.
2785 * if the join occurs, we attempt to join the left leaf
2786 * of the joined buddies with its buddy at new value + 1.
2787 * we continue to join until we find a buddy that cannot be
2788 * joined (does not have a value equal to the size of the
2789 * last join) or until all leaves have been joined into a
2790 * single system.
2791 *
2792 * get the buddy size (number of words covered) of
2793 * the new value.
2794 */
2795 budsz = BUDSIZE(newval, tp->dmt_budmin);
2796
2797 /* try to join.
2798 */
2799 while (budsz < le32_to_cpu(tp->dmt_nleafs)) {
2800 /* get the buddy leaf.
2801 */
2802 buddy = leafno ^ budsz;
2803
2804 /* if the leaf's new value is greater than its
2805 * buddy's value, we join no more.
2806 */
2807 if (newval > leaf[buddy])
2808 break;
2809
2810 /* It shouldn't be less */
2811 if (newval < leaf[buddy])
2812 return -EIO;
2813
2814 /* check which (leafno or buddy) is the left buddy.
2815 * the left buddy gets to claim the blocks resulting
2816 * from the join while the right gets to claim none.
2817 * the left buddy is also eligible to participate in
2818 * a join at the next higher level while the right
2819 * is not.
2820 *
2821 */
2822 if (leafno < buddy) {
2823 /* leafno is the left buddy.
2824 */
2825 dbAdjTree(tp, buddy, NOFREE, is_ctl);
2826 } else {
2827 /* buddy is the left buddy and becomes
2828 * leafno.
2829 */
2830 dbAdjTree(tp, leafno, NOFREE, is_ctl);
2831 leafno = buddy;
2832 }
2833
2834 /* on to try the next join.
2835 */
2836 newval += 1;
2837 budsz <<= 1;
2838 }
2839 }
2840
2841 /* update the leaf value.
2842 */
2843 dbAdjTree(tp, leafno, newval, is_ctl);
2844
2845 return 0;
2846 }
2847
2848
2849 /*
2850 * NAME: dbAdjTree()
2851 *
2852 * FUNCTION: update a leaf of a dmtree with a new value, adjusting
2853 * the dmtree, as required, to reflect the new leaf value.
2854 * the combination of any buddies must already be done before
2855 * this is called.
2856 *
2857 * PARAMETERS:
2858 * tp - pointer to the tree to be adjusted.
2859 * leafno - the number of the leaf to be updated.
2860 * newval - the new value for the leaf.
2861 *
2862 * RETURN VALUES: none
2863 */
dbAdjTree(dmtree_t * tp,int leafno,int newval,bool is_ctl)2864 static void dbAdjTree(dmtree_t *tp, int leafno, int newval, bool is_ctl)
2865 {
2866 int lp, pp, k;
2867 int max, size;
2868
2869 size = is_ctl ? CTLTREESIZE : TREESIZE;
2870
2871 /* pick up the index of the leaf for this leafno.
2872 */
2873 lp = leafno + le32_to_cpu(tp->dmt_leafidx);
2874
2875 if (WARN_ON_ONCE(lp >= size || lp < 0))
2876 return;
2877
2878 /* is the current value the same as the old value ? if so,
2879 * there is nothing to do.
2880 */
2881 if (tp->dmt_stree[lp] == newval)
2882 return;
2883
2884 /* set the new value.
2885 */
2886 tp->dmt_stree[lp] = newval;
2887
2888 /* bubble the new value up the tree as required.
2889 */
2890 for (k = 0; k < le32_to_cpu(tp->dmt_height); k++) {
2891 if (lp == 0)
2892 break;
2893
2894 /* get the index of the first leaf of the 4 leaf
2895 * group containing the specified leaf (leafno).
2896 */
2897 lp = ((lp - 1) & ~0x03) + 1;
2898
2899 /* get the index of the parent of this 4 leaf group.
2900 */
2901 pp = (lp - 1) >> 2;
2902
2903 /* determine the maximum of the 4 leaves.
2904 */
2905 max = TREEMAX(&tp->dmt_stree[lp]);
2906
2907 /* if the maximum of the 4 is the same as the
2908 * parent's value, we're done.
2909 */
2910 if (tp->dmt_stree[pp] == max)
2911 break;
2912
2913 /* parent gets new value.
2914 */
2915 tp->dmt_stree[pp] = max;
2916
2917 /* parent becomes leaf for next go-round.
2918 */
2919 lp = pp;
2920 }
2921 }
2922
2923
2924 /*
2925 * NAME: dbFindLeaf()
2926 *
2927 * FUNCTION: search a dmtree_t for sufficient free blocks, returning
2928 * the index of a leaf describing the free blocks if
2929 * sufficient free blocks are found.
2930 *
2931 * the search starts at the top of the dmtree_t tree and
2932 * proceeds down the tree to the leftmost leaf with sufficient
2933 * free space.
2934 *
2935 * PARAMETERS:
2936 * tp - pointer to the tree to be searched.
2937 * l2nb - log2 number of free blocks to search for.
2938 * leafidx - return pointer to be set to the index of the leaf
2939 * describing at least l2nb free blocks if sufficient
2940 * free blocks are found.
2941 * is_ctl - determines if the tree is of type ctl
2942 *
2943 * RETURN VALUES:
2944 * 0 - success
2945 * -ENOSPC - insufficient free blocks.
2946 */
dbFindLeaf(dmtree_t * tp,int l2nb,int * leafidx,bool is_ctl)2947 static int dbFindLeaf(dmtree_t *tp, int l2nb, int *leafidx, bool is_ctl)
2948 {
2949 int ti, n = 0, k, x = 0;
2950 int max_size, max_idx;
2951
2952 max_size = is_ctl ? CTLTREESIZE : TREESIZE;
2953 max_idx = is_ctl ? LPERCTL : LPERDMAP;
2954
2955 /* first check the root of the tree to see if there is
2956 * sufficient free space.
2957 */
2958 if (l2nb > tp->dmt_stree[ROOT])
2959 return -ENOSPC;
2960
2961 /* sufficient free space available. now search down the tree
2962 * starting at the next level for the leftmost leaf that
2963 * describes sufficient free space.
2964 */
2965 for (k = le32_to_cpu(tp->dmt_height), ti = 1;
2966 k > 0; k--, ti = ((ti + n) << 2) + 1) {
2967 /* search the four nodes at this level, starting from
2968 * the left.
2969 */
2970 for (x = ti, n = 0; n < 4; n++) {
2971 /* sufficient free space found. move to the next
2972 * level (or quit if this is the last level).
2973 */
2974 if (x + n > max_size)
2975 return -ENOSPC;
2976 if (l2nb <= tp->dmt_stree[x + n])
2977 break;
2978 }
2979
2980 /* better have found something since the higher
2981 * levels of the tree said it was here.
2982 */
2983 assert(n < 4);
2984 }
2985 if (le32_to_cpu(tp->dmt_leafidx) >= max_idx)
2986 return -ENOSPC;
2987
2988 /* set the return to the leftmost leaf describing sufficient
2989 * free space.
2990 */
2991 *leafidx = x + n - le32_to_cpu(tp->dmt_leafidx);
2992
2993 return (0);
2994 }
2995
2996
2997 /*
2998 * NAME: dbFindBits()
2999 *
3000 * FUNCTION: find a specified number of binary buddy free bits within a
3001 * dmap bitmap word value.
3002 *
3003 * this routine searches the bitmap value for (1 << l2nb) free
3004 * bits at (1 << l2nb) alignments within the value.
3005 *
3006 * PARAMETERS:
3007 * word - dmap bitmap word value.
3008 * l2nb - number of free bits specified as a log2 number.
3009 *
3010 * RETURN VALUES:
3011 * starting bit number of free bits.
3012 */
dbFindBits(u32 word,int l2nb)3013 static int dbFindBits(u32 word, int l2nb)
3014 {
3015 int bitno, nb;
3016 u32 mask;
3017
3018 /* get the number of bits.
3019 */
3020 nb = 1 << l2nb;
3021 assert(nb <= DBWORD);
3022
3023 /* complement the word so we can use a mask (i.e. 0s represent
3024 * free bits) and compute the mask.
3025 */
3026 word = ~word;
3027 mask = ONES << (DBWORD - nb);
3028
3029 /* scan the word for nb free bits at nb alignments.
3030 */
3031 for (bitno = 0; mask != 0; bitno += nb, mask = (mask >> nb)) {
3032 if ((mask & word) == mask)
3033 break;
3034 }
3035
3036 ASSERT(bitno < 32);
3037
3038 /* return the bit number.
3039 */
3040 return (bitno);
3041 }
3042
3043
3044 /*
3045 * NAME: dbMaxBud(u8 *cp)
3046 *
3047 * FUNCTION: determine the largest binary buddy string of free
3048 * bits within 32-bits of the map.
3049 *
3050 * PARAMETERS:
3051 * cp - pointer to the 32-bit value.
3052 *
3053 * RETURN VALUES:
3054 * largest binary buddy of free bits within a dmap word.
3055 */
dbMaxBud(u8 * cp)3056 static int dbMaxBud(u8 * cp)
3057 {
3058 signed char tmp1, tmp2;
3059
3060 /* check if the wmap word is all free. if so, the
3061 * free buddy size is BUDMIN.
3062 */
3063 if (*((uint *) cp) == 0)
3064 return (BUDMIN);
3065
3066 /* check if the wmap word is half free. if so, the
3067 * free buddy size is BUDMIN-1.
3068 */
3069 if (*((u16 *) cp) == 0 || *((u16 *) cp + 1) == 0)
3070 return (BUDMIN - 1);
3071
3072 /* not all free or half free. determine the free buddy
3073 * size thru table lookup using quarters of the wmap word.
3074 */
3075 tmp1 = max(budtab[cp[2]], budtab[cp[3]]);
3076 tmp2 = max(budtab[cp[0]], budtab[cp[1]]);
3077 return (max(tmp1, tmp2));
3078 }
3079
3080
3081 /*
3082 * NAME: cnttz(uint word)
3083 *
3084 * FUNCTION: determine the number of trailing zeros within a 32-bit
3085 * value.
3086 *
3087 * PARAMETERS:
3088 * value - 32-bit value to be examined.
3089 *
3090 * RETURN VALUES:
3091 * count of trailing zeros
3092 */
cnttz(u32 word)3093 static int cnttz(u32 word)
3094 {
3095 int n;
3096
3097 for (n = 0; n < 32; n++, word >>= 1) {
3098 if (word & 0x01)
3099 break;
3100 }
3101
3102 return (n);
3103 }
3104
3105
3106 /*
3107 * NAME: cntlz(u32 value)
3108 *
3109 * FUNCTION: determine the number of leading zeros within a 32-bit
3110 * value.
3111 *
3112 * PARAMETERS:
3113 * value - 32-bit value to be examined.
3114 *
3115 * RETURN VALUES:
3116 * count of leading zeros
3117 */
cntlz(u32 value)3118 static int cntlz(u32 value)
3119 {
3120 int n;
3121
3122 for (n = 0; n < 32; n++, value <<= 1) {
3123 if (value & HIGHORDER)
3124 break;
3125 }
3126 return (n);
3127 }
3128
3129
3130 /*
3131 * NAME: blkstol2(s64 nb)
3132 *
3133 * FUNCTION: convert a block count to its log2 value. if the block
3134 * count is not a l2 multiple, it is rounded up to the next
3135 * larger l2 multiple.
3136 *
3137 * PARAMETERS:
3138 * nb - number of blocks
3139 *
3140 * RETURN VALUES:
3141 * log2 number of blocks
3142 */
blkstol2(s64 nb)3143 static int blkstol2(s64 nb)
3144 {
3145 int l2nb;
3146 s64 mask; /* meant to be signed */
3147
3148 mask = (s64) 1 << (64 - 1);
3149
3150 /* count the leading bits.
3151 */
3152 for (l2nb = 0; l2nb < 64; l2nb++, mask >>= 1) {
3153 /* leading bit found.
3154 */
3155 if (nb & mask) {
3156 /* determine the l2 value.
3157 */
3158 l2nb = (64 - 1) - l2nb;
3159
3160 /* check if we need to round up.
3161 */
3162 if (~mask & nb)
3163 l2nb++;
3164
3165 return (l2nb);
3166 }
3167 }
3168 assert(0);
3169 return 0; /* fix compiler warning */
3170 }
3171
3172
3173 /*
3174 * NAME: dbAllocBottomUp()
3175 *
3176 * FUNCTION: alloc the specified block range from the working block
3177 * allocation map.
3178 *
3179 * the blocks will be alloc from the working map one dmap
3180 * at a time.
3181 *
3182 * PARAMETERS:
3183 * ip - pointer to in-core inode;
3184 * blkno - starting block number to be freed.
3185 * nblocks - number of blocks to be freed.
3186 *
3187 * RETURN VALUES:
3188 * 0 - success
3189 * -EIO - i/o error
3190 */
dbAllocBottomUp(struct inode * ip,s64 blkno,s64 nblocks)3191 int dbAllocBottomUp(struct inode *ip, s64 blkno, s64 nblocks)
3192 {
3193 struct metapage *mp;
3194 struct dmap *dp;
3195 int nb, rc;
3196 s64 lblkno, rem;
3197 struct inode *ipbmap = JFS_SBI(ip->i_sb)->ipbmap;
3198 struct bmap *bmp = JFS_SBI(ip->i_sb)->bmap;
3199
3200 IREAD_LOCK(ipbmap, RDWRLOCK_DMAP);
3201
3202 /* block to be allocated better be within the mapsize. */
3203 ASSERT(nblocks <= bmp->db_mapsize - blkno);
3204
3205 /*
3206 * allocate the blocks a dmap at a time.
3207 */
3208 mp = NULL;
3209 for (rem = nblocks; rem > 0; rem -= nb, blkno += nb) {
3210 /* release previous dmap if any */
3211 if (mp) {
3212 write_metapage(mp);
3213 }
3214
3215 /* get the buffer for the current dmap. */
3216 lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
3217 mp = read_metapage(ipbmap, lblkno, PSIZE, 0);
3218 if (mp == NULL) {
3219 IREAD_UNLOCK(ipbmap);
3220 return -EIO;
3221 }
3222 dp = (struct dmap *) mp->data;
3223
3224 /* determine the number of blocks to be allocated from
3225 * this dmap.
3226 */
3227 nb = min(rem, BPERDMAP - (blkno & (BPERDMAP - 1)));
3228
3229 /* allocate the blocks. */
3230 if ((rc = dbAllocDmapBU(bmp, dp, blkno, nb))) {
3231 release_metapage(mp);
3232 IREAD_UNLOCK(ipbmap);
3233 return (rc);
3234 }
3235 }
3236
3237 /* write the last buffer. */
3238 write_metapage(mp);
3239
3240 IREAD_UNLOCK(ipbmap);
3241
3242 return (0);
3243 }
3244
3245
dbAllocDmapBU(struct bmap * bmp,struct dmap * dp,s64 blkno,int nblocks)3246 static int dbAllocDmapBU(struct bmap * bmp, struct dmap * dp, s64 blkno,
3247 int nblocks)
3248 {
3249 int rc;
3250 int dbitno, word, rembits, nb, nwords, wbitno, agno;
3251 s8 oldroot;
3252 struct dmaptree *tp = (struct dmaptree *) & dp->tree;
3253
3254 /* save the current value of the root (i.e. maximum free string)
3255 * of the dmap tree.
3256 */
3257 oldroot = tp->stree[ROOT];
3258
3259 /* determine the bit number and word within the dmap of the
3260 * starting block.
3261 */
3262 dbitno = blkno & (BPERDMAP - 1);
3263 word = dbitno >> L2DBWORD;
3264
3265 /* block range better be within the dmap */
3266 assert(dbitno + nblocks <= BPERDMAP);
3267
3268 /* allocate the bits of the dmap's words corresponding to the block
3269 * range. not all bits of the first and last words may be contained
3270 * within the block range. if this is the case, we'll work against
3271 * those words (i.e. partial first and/or last) on an individual basis
3272 * (a single pass), allocating the bits of interest by hand and
3273 * updating the leaf corresponding to the dmap word. a single pass
3274 * will be used for all dmap words fully contained within the
3275 * specified range. within this pass, the bits of all fully contained
3276 * dmap words will be marked as free in a single shot and the leaves
3277 * will be updated. a single leaf may describe the free space of
3278 * multiple dmap words, so we may update only a subset of the actual
3279 * leaves corresponding to the dmap words of the block range.
3280 */
3281 for (rembits = nblocks; rembits > 0; rembits -= nb, dbitno += nb) {
3282 /* determine the bit number within the word and
3283 * the number of bits within the word.
3284 */
3285 wbitno = dbitno & (DBWORD - 1);
3286 nb = min(rembits, DBWORD - wbitno);
3287
3288 /* check if only part of a word is to be allocated.
3289 */
3290 if (nb < DBWORD) {
3291 /* allocate (set to 1) the appropriate bits within
3292 * this dmap word.
3293 */
3294 dp->wmap[word] |= cpu_to_le32(ONES << (DBWORD - nb)
3295 >> wbitno);
3296
3297 word++;
3298 } else {
3299 /* one or more dmap words are fully contained
3300 * within the block range. determine how many
3301 * words and allocate (set to 1) the bits of these
3302 * words.
3303 */
3304 nwords = rembits >> L2DBWORD;
3305 memset(&dp->wmap[word], (int) ONES, nwords * 4);
3306
3307 /* determine how many bits */
3308 nb = nwords << L2DBWORD;
3309 word += nwords;
3310 }
3311 }
3312
3313 /* update the free count for this dmap */
3314 le32_add_cpu(&dp->nfree, -nblocks);
3315
3316 /* reconstruct summary tree */
3317 dbInitDmapTree(dp);
3318
3319 BMAP_LOCK(bmp);
3320
3321 /* if this allocation group is completely free,
3322 * update the highest active allocation group number
3323 * if this allocation group is the new max.
3324 */
3325 agno = blkno >> bmp->db_agl2size;
3326 if (agno > bmp->db_maxag)
3327 bmp->db_maxag = agno;
3328
3329 /* update the free count for the allocation group and map */
3330 bmp->db_agfree[agno] -= nblocks;
3331 bmp->db_nfree -= nblocks;
3332
3333 BMAP_UNLOCK(bmp);
3334
3335 /* if the root has not changed, done. */
3336 if (tp->stree[ROOT] == oldroot)
3337 return (0);
3338
3339 /* root changed. bubble the change up to the dmap control pages.
3340 * if the adjustment of the upper level control pages fails,
3341 * backout the bit allocation (thus making everything consistent).
3342 */
3343 if ((rc = dbAdjCtl(bmp, blkno, tp->stree[ROOT], 1, 0)))
3344 dbFreeBits(bmp, dp, blkno, nblocks);
3345
3346 return (rc);
3347 }
3348
3349
3350 /*
3351 * NAME: dbExtendFS()
3352 *
3353 * FUNCTION: extend bmap from blkno for nblocks;
3354 * dbExtendFS() updates bmap ready for dbAllocBottomUp();
3355 *
3356 * L2
3357 * |
3358 * L1---------------------------------L1
3359 * | |
3360 * L0---------L0---------L0 L0---------L0---------L0
3361 * | | | | | |
3362 * d0,...,dn d0,...,dn d0,...,dn d0,...,dn d0,...,dn d0,.,dm;
3363 * L2L1L0d0,...,dnL0d0,...,dnL0d0,...,dnL1L0d0,...,dnL0d0,...,dnL0d0,..dm
3364 *
3365 * <---old---><----------------------------extend----------------------->
3366 */
dbExtendFS(struct inode * ipbmap,s64 blkno,s64 nblocks)3367 int dbExtendFS(struct inode *ipbmap, s64 blkno, s64 nblocks)
3368 {
3369 struct jfs_sb_info *sbi = JFS_SBI(ipbmap->i_sb);
3370 int nbperpage = sbi->nbperpage;
3371 int i, i0 = true, j, j0 = true, k, n;
3372 s64 newsize;
3373 s64 p;
3374 struct metapage *mp, *l2mp, *l1mp = NULL, *l0mp = NULL;
3375 struct dmapctl *l2dcp, *l1dcp, *l0dcp;
3376 struct dmap *dp;
3377 s8 *l0leaf, *l1leaf, *l2leaf;
3378 struct bmap *bmp = sbi->bmap;
3379 int agno, l2agsize, oldl2agsize;
3380 s64 ag_rem;
3381
3382 newsize = blkno + nblocks;
3383
3384 jfs_info("dbExtendFS: blkno:%Ld nblocks:%Ld newsize:%Ld",
3385 (long long) blkno, (long long) nblocks, (long long) newsize);
3386
3387 /*
3388 * initialize bmap control page.
3389 *
3390 * all the data in bmap control page should exclude
3391 * the mkfs hidden dmap page.
3392 */
3393
3394 /* update mapsize */
3395 bmp->db_mapsize = newsize;
3396 bmp->db_maxlevel = BMAPSZTOLEV(bmp->db_mapsize);
3397
3398 /* compute new AG size */
3399 l2agsize = dbGetL2AGSize(newsize);
3400 oldl2agsize = bmp->db_agl2size;
3401
3402 bmp->db_agl2size = l2agsize;
3403 bmp->db_agsize = (s64)1 << l2agsize;
3404
3405 /* compute new number of AG */
3406 agno = bmp->db_numag;
3407 bmp->db_numag = newsize >> l2agsize;
3408 bmp->db_numag += ((u32) newsize % (u32) bmp->db_agsize) ? 1 : 0;
3409
3410 /*
3411 * reconfigure db_agfree[]
3412 * from old AG configuration to new AG configuration;
3413 *
3414 * coalesce contiguous k (newAGSize/oldAGSize) AGs;
3415 * i.e., (AGi, ..., AGj) where i = k*n and j = k*(n+1) - 1 to AGn;
3416 * note: new AG size = old AG size * (2**x).
3417 */
3418 if (l2agsize == oldl2agsize)
3419 goto extend;
3420 k = 1 << (l2agsize - oldl2agsize);
3421 ag_rem = bmp->db_agfree[0]; /* save agfree[0] */
3422 for (i = 0, n = 0; i < agno; n++) {
3423 bmp->db_agfree[n] = 0; /* init collection point */
3424
3425 /* coalesce contiguous k AGs; */
3426 for (j = 0; j < k && i < agno; j++, i++) {
3427 /* merge AGi to AGn */
3428 bmp->db_agfree[n] += bmp->db_agfree[i];
3429 }
3430 }
3431 bmp->db_agfree[0] += ag_rem; /* restore agfree[0] */
3432
3433 for (; n < MAXAG; n++)
3434 bmp->db_agfree[n] = 0;
3435
3436 /*
3437 * update highest active ag number
3438 */
3439
3440 bmp->db_maxag = bmp->db_maxag / k;
3441
3442 /*
3443 * extend bmap
3444 *
3445 * update bit maps and corresponding level control pages;
3446 * global control page db_nfree, db_agfree[agno], db_maxfreebud;
3447 */
3448 extend:
3449 /* get L2 page */
3450 p = BMAPBLKNO + nbperpage; /* L2 page */
3451 l2mp = read_metapage(ipbmap, p, PSIZE, 0);
3452 if (!l2mp) {
3453 jfs_error(ipbmap->i_sb, "L2 page could not be read\n");
3454 return -EIO;
3455 }
3456 l2dcp = (struct dmapctl *) l2mp->data;
3457
3458 /* compute start L1 */
3459 k = blkno >> L2MAXL1SIZE;
3460 l2leaf = l2dcp->stree + CTLLEAFIND + k;
3461 p = BLKTOL1(blkno, sbi->l2nbperpage); /* L1 page */
3462
3463 /*
3464 * extend each L1 in L2
3465 */
3466 for (; k < LPERCTL; k++, p += nbperpage) {
3467 /* get L1 page */
3468 if (j0) {
3469 /* read in L1 page: (blkno & (MAXL1SIZE - 1)) */
3470 l1mp = read_metapage(ipbmap, p, PSIZE, 0);
3471 if (l1mp == NULL)
3472 goto errout;
3473 l1dcp = (struct dmapctl *) l1mp->data;
3474
3475 /* compute start L0 */
3476 j = (blkno & (MAXL1SIZE - 1)) >> L2MAXL0SIZE;
3477 l1leaf = l1dcp->stree + CTLLEAFIND + j;
3478 p = BLKTOL0(blkno, sbi->l2nbperpage);
3479 j0 = false;
3480 } else {
3481 /* assign/init L1 page */
3482 l1mp = get_metapage(ipbmap, p, PSIZE, 0);
3483 if (l1mp == NULL)
3484 goto errout;
3485
3486 l1dcp = (struct dmapctl *) l1mp->data;
3487
3488 /* compute start L0 */
3489 j = 0;
3490 l1leaf = l1dcp->stree + CTLLEAFIND;
3491 p += nbperpage; /* 1st L0 of L1.k */
3492 }
3493
3494 /*
3495 * extend each L0 in L1
3496 */
3497 for (; j < LPERCTL; j++) {
3498 /* get L0 page */
3499 if (i0) {
3500 /* read in L0 page: (blkno & (MAXL0SIZE - 1)) */
3501
3502 l0mp = read_metapage(ipbmap, p, PSIZE, 0);
3503 if (l0mp == NULL)
3504 goto errout;
3505 l0dcp = (struct dmapctl *) l0mp->data;
3506
3507 /* compute start dmap */
3508 i = (blkno & (MAXL0SIZE - 1)) >>
3509 L2BPERDMAP;
3510 l0leaf = l0dcp->stree + CTLLEAFIND + i;
3511 p = BLKTODMAP(blkno,
3512 sbi->l2nbperpage);
3513 i0 = false;
3514 } else {
3515 /* assign/init L0 page */
3516 l0mp = get_metapage(ipbmap, p, PSIZE, 0);
3517 if (l0mp == NULL)
3518 goto errout;
3519
3520 l0dcp = (struct dmapctl *) l0mp->data;
3521
3522 /* compute start dmap */
3523 i = 0;
3524 l0leaf = l0dcp->stree + CTLLEAFIND;
3525 p += nbperpage; /* 1st dmap of L0.j */
3526 }
3527
3528 /*
3529 * extend each dmap in L0
3530 */
3531 for (; i < LPERCTL; i++) {
3532 /*
3533 * reconstruct the dmap page, and
3534 * initialize corresponding parent L0 leaf
3535 */
3536 if ((n = blkno & (BPERDMAP - 1))) {
3537 /* read in dmap page: */
3538 mp = read_metapage(ipbmap, p,
3539 PSIZE, 0);
3540 if (mp == NULL)
3541 goto errout;
3542 n = min(nblocks, (s64)BPERDMAP - n);
3543 } else {
3544 /* assign/init dmap page */
3545 mp = read_metapage(ipbmap, p,
3546 PSIZE, 0);
3547 if (mp == NULL)
3548 goto errout;
3549
3550 n = min_t(s64, nblocks, BPERDMAP);
3551 }
3552
3553 dp = (struct dmap *) mp->data;
3554 *l0leaf = dbInitDmap(dp, blkno, n);
3555
3556 bmp->db_nfree += n;
3557 agno = le64_to_cpu(dp->start) >> l2agsize;
3558 bmp->db_agfree[agno] += n;
3559
3560 write_metapage(mp);
3561
3562 l0leaf++;
3563 p += nbperpage;
3564
3565 blkno += n;
3566 nblocks -= n;
3567 if (nblocks == 0)
3568 break;
3569 } /* for each dmap in a L0 */
3570
3571 /*
3572 * build current L0 page from its leaves, and
3573 * initialize corresponding parent L1 leaf
3574 */
3575 *l1leaf = dbInitDmapCtl(l0dcp, 0, ++i);
3576 write_metapage(l0mp);
3577 l0mp = NULL;
3578
3579 if (nblocks)
3580 l1leaf++; /* continue for next L0 */
3581 else {
3582 /* more than 1 L0 ? */
3583 if (j > 0)
3584 break; /* build L1 page */
3585 else {
3586 /* summarize in global bmap page */
3587 bmp->db_maxfreebud = *l1leaf;
3588 release_metapage(l1mp);
3589 release_metapage(l2mp);
3590 goto finalize;
3591 }
3592 }
3593 } /* for each L0 in a L1 */
3594
3595 /*
3596 * build current L1 page from its leaves, and
3597 * initialize corresponding parent L2 leaf
3598 */
3599 *l2leaf = dbInitDmapCtl(l1dcp, 1, ++j);
3600 write_metapage(l1mp);
3601 l1mp = NULL;
3602
3603 if (nblocks)
3604 l2leaf++; /* continue for next L1 */
3605 else {
3606 /* more than 1 L1 ? */
3607 if (k > 0)
3608 break; /* build L2 page */
3609 else {
3610 /* summarize in global bmap page */
3611 bmp->db_maxfreebud = *l2leaf;
3612 release_metapage(l2mp);
3613 goto finalize;
3614 }
3615 }
3616 } /* for each L1 in a L2 */
3617
3618 jfs_error(ipbmap->i_sb, "function has not returned as expected\n");
3619 errout:
3620 if (l0mp)
3621 release_metapage(l0mp);
3622 if (l1mp)
3623 release_metapage(l1mp);
3624 release_metapage(l2mp);
3625 return -EIO;
3626
3627 /*
3628 * finalize bmap control page
3629 */
3630 finalize:
3631
3632 return 0;
3633 }
3634
3635
3636 /*
3637 * dbFinalizeBmap()
3638 */
dbFinalizeBmap(struct inode * ipbmap)3639 void dbFinalizeBmap(struct inode *ipbmap)
3640 {
3641 struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
3642 int actags, inactags, l2nl;
3643 s64 ag_rem, actfree, inactfree, avgfree;
3644 int i, n;
3645
3646 /*
3647 * finalize bmap control page
3648 */
3649 //finalize:
3650 /*
3651 * compute db_agpref: preferred ag to allocate from
3652 * (the leftmost ag with average free space in it);
3653 */
3654 //agpref:
3655 /* get the number of active ags and inactive ags */
3656 actags = bmp->db_maxag + 1;
3657 inactags = bmp->db_numag - actags;
3658 ag_rem = bmp->db_mapsize & (bmp->db_agsize - 1); /* ??? */
3659
3660 /* determine how many blocks are in the inactive allocation
3661 * groups. in doing this, we must account for the fact that
3662 * the rightmost group might be a partial group (i.e. file
3663 * system size is not a multiple of the group size).
3664 */
3665 inactfree = (inactags && ag_rem) ?
3666 (((s64)inactags - 1) << bmp->db_agl2size) + ag_rem
3667 : ((s64)inactags << bmp->db_agl2size);
3668
3669 /* determine how many free blocks are in the active
3670 * allocation groups plus the average number of free blocks
3671 * within the active ags.
3672 */
3673 actfree = bmp->db_nfree - inactfree;
3674 avgfree = (u32) actfree / (u32) actags;
3675
3676 /* if the preferred allocation group has not average free space.
3677 * re-establish the preferred group as the leftmost
3678 * group with average free space.
3679 */
3680 if (bmp->db_agfree[bmp->db_agpref] < avgfree) {
3681 for (bmp->db_agpref = 0; bmp->db_agpref < actags;
3682 bmp->db_agpref++) {
3683 if (bmp->db_agfree[bmp->db_agpref] >= avgfree)
3684 break;
3685 }
3686 if (bmp->db_agpref >= bmp->db_numag) {
3687 jfs_error(ipbmap->i_sb,
3688 "cannot find ag with average freespace\n");
3689 }
3690 }
3691
3692 /*
3693 * compute db_aglevel, db_agheight, db_width, db_agstart:
3694 * an ag is covered in aglevel dmapctl summary tree,
3695 * at agheight level height (from leaf) with agwidth number of nodes
3696 * each, which starts at agstart index node of the smmary tree node
3697 * array;
3698 */
3699 bmp->db_aglevel = BMAPSZTOLEV(bmp->db_agsize);
3700 l2nl =
3701 bmp->db_agl2size - (L2BPERDMAP + bmp->db_aglevel * L2LPERCTL);
3702 bmp->db_agheight = l2nl >> 1;
3703 bmp->db_agwidth = 1 << (l2nl - (bmp->db_agheight << 1));
3704 for (i = 5 - bmp->db_agheight, bmp->db_agstart = 0, n = 1; i > 0;
3705 i--) {
3706 bmp->db_agstart += n;
3707 n <<= 2;
3708 }
3709
3710 }
3711
3712
3713 /*
3714 * NAME: dbInitDmap()/ujfs_idmap_page()
3715 *
3716 * FUNCTION: initialize working/persistent bitmap of the dmap page
3717 * for the specified number of blocks:
3718 *
3719 * at entry, the bitmaps had been initialized as free (ZEROS);
3720 * The number of blocks will only account for the actually
3721 * existing blocks. Blocks which don't actually exist in
3722 * the aggregate will be marked as allocated (ONES);
3723 *
3724 * PARAMETERS:
3725 * dp - pointer to page of map
3726 * nblocks - number of blocks this page
3727 *
3728 * RETURNS: NONE
3729 */
dbInitDmap(struct dmap * dp,s64 Blkno,int nblocks)3730 static int dbInitDmap(struct dmap * dp, s64 Blkno, int nblocks)
3731 {
3732 int blkno, w, b, r, nw, nb, i;
3733
3734 /* starting block number within the dmap */
3735 blkno = Blkno & (BPERDMAP - 1);
3736
3737 if (blkno == 0) {
3738 dp->nblocks = dp->nfree = cpu_to_le32(nblocks);
3739 dp->start = cpu_to_le64(Blkno);
3740
3741 if (nblocks == BPERDMAP) {
3742 memset(&dp->wmap[0], 0, LPERDMAP * 4);
3743 memset(&dp->pmap[0], 0, LPERDMAP * 4);
3744 goto initTree;
3745 }
3746 } else {
3747 le32_add_cpu(&dp->nblocks, nblocks);
3748 le32_add_cpu(&dp->nfree, nblocks);
3749 }
3750
3751 /* word number containing start block number */
3752 w = blkno >> L2DBWORD;
3753
3754 /*
3755 * free the bits corresponding to the block range (ZEROS):
3756 * note: not all bits of the first and last words may be contained
3757 * within the block range.
3758 */
3759 for (r = nblocks; r > 0; r -= nb, blkno += nb) {
3760 /* number of bits preceding range to be freed in the word */
3761 b = blkno & (DBWORD - 1);
3762 /* number of bits to free in the word */
3763 nb = min(r, DBWORD - b);
3764
3765 /* is partial word to be freed ? */
3766 if (nb < DBWORD) {
3767 /* free (set to 0) from the bitmap word */
3768 dp->wmap[w] &= cpu_to_le32(~(ONES << (DBWORD - nb)
3769 >> b));
3770 dp->pmap[w] &= cpu_to_le32(~(ONES << (DBWORD - nb)
3771 >> b));
3772
3773 /* skip the word freed */
3774 w++;
3775 } else {
3776 /* free (set to 0) contiguous bitmap words */
3777 nw = r >> L2DBWORD;
3778 memset(&dp->wmap[w], 0, nw * 4);
3779 memset(&dp->pmap[w], 0, nw * 4);
3780
3781 /* skip the words freed */
3782 nb = nw << L2DBWORD;
3783 w += nw;
3784 }
3785 }
3786
3787 /*
3788 * mark bits following the range to be freed (non-existing
3789 * blocks) as allocated (ONES)
3790 */
3791
3792 if (blkno == BPERDMAP)
3793 goto initTree;
3794
3795 /* the first word beyond the end of existing blocks */
3796 w = blkno >> L2DBWORD;
3797
3798 /* does nblocks fall on a 32-bit boundary ? */
3799 b = blkno & (DBWORD - 1);
3800 if (b) {
3801 /* mark a partial word allocated */
3802 dp->wmap[w] = dp->pmap[w] = cpu_to_le32(ONES >> b);
3803 w++;
3804 }
3805
3806 /* set the rest of the words in the page to allocated (ONES) */
3807 for (i = w; i < LPERDMAP; i++)
3808 dp->pmap[i] = dp->wmap[i] = cpu_to_le32(ONES);
3809
3810 /*
3811 * init tree
3812 */
3813 initTree:
3814 return (dbInitDmapTree(dp));
3815 }
3816
3817
3818 /*
3819 * NAME: dbInitDmapTree()/ujfs_complete_dmap()
3820 *
3821 * FUNCTION: initialize summary tree of the specified dmap:
3822 *
3823 * at entry, bitmap of the dmap has been initialized;
3824 *
3825 * PARAMETERS:
3826 * dp - dmap to complete
3827 * blkno - starting block number for this dmap
3828 * treemax - will be filled in with max free for this dmap
3829 *
3830 * RETURNS: max free string at the root of the tree
3831 */
dbInitDmapTree(struct dmap * dp)3832 static int dbInitDmapTree(struct dmap * dp)
3833 {
3834 struct dmaptree *tp;
3835 s8 *cp;
3836 int i;
3837
3838 /* init fixed info of tree */
3839 tp = &dp->tree;
3840 tp->nleafs = cpu_to_le32(LPERDMAP);
3841 tp->l2nleafs = cpu_to_le32(L2LPERDMAP);
3842 tp->leafidx = cpu_to_le32(LEAFIND);
3843 tp->height = cpu_to_le32(4);
3844 tp->budmin = BUDMIN;
3845
3846 /* init each leaf from corresponding wmap word:
3847 * note: leaf is set to NOFREE(-1) if all blocks of corresponding
3848 * bitmap word are allocated.
3849 */
3850 cp = tp->stree + le32_to_cpu(tp->leafidx);
3851 for (i = 0; i < LPERDMAP; i++)
3852 *cp++ = dbMaxBud((u8 *) & dp->wmap[i]);
3853
3854 /* build the dmap's binary buddy summary tree */
3855 return (dbInitTree(tp));
3856 }
3857
3858
3859 /*
3860 * NAME: dbInitTree()/ujfs_adjtree()
3861 *
3862 * FUNCTION: initialize binary buddy summary tree of a dmap or dmapctl.
3863 *
3864 * at entry, the leaves of the tree has been initialized
3865 * from corresponding bitmap word or root of summary tree
3866 * of the child control page;
3867 * configure binary buddy system at the leaf level, then
3868 * bubble up the values of the leaf nodes up the tree.
3869 *
3870 * PARAMETERS:
3871 * cp - Pointer to the root of the tree
3872 * l2leaves- Number of leaf nodes as a power of 2
3873 * l2min - Number of blocks that can be covered by a leaf
3874 * as a power of 2
3875 *
3876 * RETURNS: max free string at the root of the tree
3877 */
dbInitTree(struct dmaptree * dtp)3878 static int dbInitTree(struct dmaptree * dtp)
3879 {
3880 int l2max, l2free, bsize, nextb, i;
3881 int child, parent, nparent;
3882 s8 *tp, *cp, *cp1;
3883
3884 tp = dtp->stree;
3885
3886 /* Determine the maximum free string possible for the leaves */
3887 l2max = le32_to_cpu(dtp->l2nleafs) + dtp->budmin;
3888
3889 /*
3890 * configure the leaf level into binary buddy system
3891 *
3892 * Try to combine buddies starting with a buddy size of 1
3893 * (i.e. two leaves). At a buddy size of 1 two buddy leaves
3894 * can be combined if both buddies have a maximum free of l2min;
3895 * the combination will result in the left-most buddy leaf having
3896 * a maximum free of l2min+1.
3897 * After processing all buddies for a given size, process buddies
3898 * at the next higher buddy size (i.e. current size * 2) and
3899 * the next maximum free (current free + 1).
3900 * This continues until the maximum possible buddy combination
3901 * yields maximum free.
3902 */
3903 for (l2free = dtp->budmin, bsize = 1; l2free < l2max;
3904 l2free++, bsize = nextb) {
3905 /* get next buddy size == current buddy pair size */
3906 nextb = bsize << 1;
3907
3908 /* scan each adjacent buddy pair at current buddy size */
3909 for (i = 0, cp = tp + le32_to_cpu(dtp->leafidx);
3910 i < le32_to_cpu(dtp->nleafs);
3911 i += nextb, cp += nextb) {
3912 /* coalesce if both adjacent buddies are max free */
3913 if (*cp == l2free && *(cp + bsize) == l2free) {
3914 *cp = l2free + 1; /* left take right */
3915 *(cp + bsize) = -1; /* right give left */
3916 }
3917 }
3918 }
3919
3920 /*
3921 * bubble summary information of leaves up the tree.
3922 *
3923 * Starting at the leaf node level, the four nodes described by
3924 * the higher level parent node are compared for a maximum free and
3925 * this maximum becomes the value of the parent node.
3926 * when all lower level nodes are processed in this fashion then
3927 * move up to the next level (parent becomes a lower level node) and
3928 * continue the process for that level.
3929 */
3930 for (child = le32_to_cpu(dtp->leafidx),
3931 nparent = le32_to_cpu(dtp->nleafs) >> 2;
3932 nparent > 0; nparent >>= 2, child = parent) {
3933 /* get index of 1st node of parent level */
3934 parent = (child - 1) >> 2;
3935
3936 /* set the value of the parent node as the maximum
3937 * of the four nodes of the current level.
3938 */
3939 for (i = 0, cp = tp + child, cp1 = tp + parent;
3940 i < nparent; i++, cp += 4, cp1++)
3941 *cp1 = TREEMAX(cp);
3942 }
3943
3944 return (*tp);
3945 }
3946
3947
3948 /*
3949 * dbInitDmapCtl()
3950 *
3951 * function: initialize dmapctl page
3952 */
dbInitDmapCtl(struct dmapctl * dcp,int level,int i)3953 static int dbInitDmapCtl(struct dmapctl * dcp, int level, int i)
3954 { /* start leaf index not covered by range */
3955 s8 *cp;
3956
3957 dcp->nleafs = cpu_to_le32(LPERCTL);
3958 dcp->l2nleafs = cpu_to_le32(L2LPERCTL);
3959 dcp->leafidx = cpu_to_le32(CTLLEAFIND);
3960 dcp->height = cpu_to_le32(5);
3961 dcp->budmin = L2BPERDMAP + L2LPERCTL * level;
3962
3963 /*
3964 * initialize the leaves of current level that were not covered
3965 * by the specified input block range (i.e. the leaves have no
3966 * low level dmapctl or dmap).
3967 */
3968 cp = &dcp->stree[CTLLEAFIND + i];
3969 for (; i < LPERCTL; i++)
3970 *cp++ = NOFREE;
3971
3972 /* build the dmap's binary buddy summary tree */
3973 return (dbInitTree((struct dmaptree *) dcp));
3974 }
3975
3976
3977 /*
3978 * NAME: dbGetL2AGSize()/ujfs_getagl2size()
3979 *
3980 * FUNCTION: Determine log2(allocation group size) from aggregate size
3981 *
3982 * PARAMETERS:
3983 * nblocks - Number of blocks in aggregate
3984 *
3985 * RETURNS: log2(allocation group size) in aggregate blocks
3986 */
dbGetL2AGSize(s64 nblocks)3987 static int dbGetL2AGSize(s64 nblocks)
3988 {
3989 s64 sz;
3990 s64 m;
3991 int l2sz;
3992
3993 if (nblocks < BPERDMAP * MAXAG)
3994 return (L2BPERDMAP);
3995
3996 /* round up aggregate size to power of 2 */
3997 m = ((u64) 1 << (64 - 1));
3998 for (l2sz = 64; l2sz >= 0; l2sz--, m >>= 1) {
3999 if (m & nblocks)
4000 break;
4001 }
4002
4003 sz = (s64) 1 << l2sz;
4004 if (sz < nblocks)
4005 l2sz += 1;
4006
4007 /* agsize = roundupSize/max_number_of_ag */
4008 return (l2sz - L2MAXAG);
4009 }
4010
4011
4012 /*
4013 * NAME: dbMapFileSizeToMapSize()
4014 *
4015 * FUNCTION: compute number of blocks the block allocation map file
4016 * can cover from the map file size;
4017 *
4018 * RETURNS: Number of blocks which can be covered by this block map file;
4019 */
4020
4021 /*
4022 * maximum number of map pages at each level including control pages
4023 */
4024 #define MAXL0PAGES (1 + LPERCTL)
4025 #define MAXL1PAGES (1 + LPERCTL * MAXL0PAGES)
4026
4027 /*
4028 * convert number of map pages to the zero origin top dmapctl level
4029 */
4030 #define BMAPPGTOLEV(npages) \
4031 (((npages) <= 3 + MAXL0PAGES) ? 0 : \
4032 ((npages) <= 2 + MAXL1PAGES) ? 1 : 2)
4033
dbMapFileSizeToMapSize(struct inode * ipbmap)4034 s64 dbMapFileSizeToMapSize(struct inode * ipbmap)
4035 {
4036 struct super_block *sb = ipbmap->i_sb;
4037 s64 nblocks;
4038 s64 npages, ndmaps;
4039 int level, i;
4040 int complete, factor;
4041
4042 nblocks = ipbmap->i_size >> JFS_SBI(sb)->l2bsize;
4043 npages = nblocks >> JFS_SBI(sb)->l2nbperpage;
4044 level = BMAPPGTOLEV(npages);
4045
4046 /* At each level, accumulate the number of dmap pages covered by
4047 * the number of full child levels below it;
4048 * repeat for the last incomplete child level.
4049 */
4050 ndmaps = 0;
4051 npages--; /* skip the first global control page */
4052 /* skip higher level control pages above top level covered by map */
4053 npages -= (2 - level);
4054 npages--; /* skip top level's control page */
4055 for (i = level; i >= 0; i--) {
4056 factor =
4057 (i == 2) ? MAXL1PAGES : ((i == 1) ? MAXL0PAGES : 1);
4058 complete = (u32) npages / factor;
4059 ndmaps += complete * ((i == 2) ? LPERCTL * LPERCTL :
4060 ((i == 1) ? LPERCTL : 1));
4061
4062 /* pages in last/incomplete child */
4063 npages = (u32) npages % factor;
4064 /* skip incomplete child's level control page */
4065 npages--;
4066 }
4067
4068 /* convert the number of dmaps into the number of blocks
4069 * which can be covered by the dmaps;
4070 */
4071 nblocks = ndmaps << L2BPERDMAP;
4072
4073 return (nblocks);
4074 }
4075