xref: /linux/fs/jfs/jfs_dmap.c (revision ab93e0dd72c37d378dd936f031ffb83ff2bd87ce)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *   Copyright (C) International Business Machines Corp., 2000-2004
4  *   Portions Copyright (C) Tino Reichardt, 2012
5  */
6 
7 #include <linux/fs.h>
8 #include <linux/slab.h>
9 #include "jfs_incore.h"
10 #include "jfs_superblock.h"
11 #include "jfs_dmap.h"
12 #include "jfs_imap.h"
13 #include "jfs_lock.h"
14 #include "jfs_metapage.h"
15 #include "jfs_debug.h"
16 #include "jfs_discard.h"
17 
18 /*
19  *	SERIALIZATION of the Block Allocation Map.
20  *
21  *	the working state of the block allocation map is accessed in
22  *	two directions:
23  *
24  *	1) allocation and free requests that start at the dmap
25  *	   level and move up through the dmap control pages (i.e.
26  *	   the vast majority of requests).
27  *
28  *	2) allocation requests that start at dmap control page
29  *	   level and work down towards the dmaps.
30  *
31  *	the serialization scheme used here is as follows.
32  *
33  *	requests which start at the bottom are serialized against each
34  *	other through buffers and each requests holds onto its buffers
35  *	as it works it way up from a single dmap to the required level
36  *	of dmap control page.
37  *	requests that start at the top are serialized against each other
38  *	and request that start from the bottom by the multiple read/single
39  *	write inode lock of the bmap inode. requests starting at the top
40  *	take this lock in write mode while request starting at the bottom
41  *	take the lock in read mode.  a single top-down request may proceed
42  *	exclusively while multiple bottoms-up requests may proceed
43  *	simultaneously (under the protection of busy buffers).
44  *
45  *	in addition to information found in dmaps and dmap control pages,
46  *	the working state of the block allocation map also includes read/
47  *	write information maintained in the bmap descriptor (i.e. total
48  *	free block count, allocation group level free block counts).
49  *	a single exclusive lock (BMAP_LOCK) is used to guard this information
50  *	in the face of multiple-bottoms up requests.
51  *	(lock ordering: IREAD_LOCK, BMAP_LOCK);
52  *
53  *	accesses to the persistent state of the block allocation map (limited
54  *	to the persistent bitmaps in dmaps) is guarded by (busy) buffers.
55  */
56 
57 #define BMAP_LOCK_INIT(bmp)	mutex_init(&bmp->db_bmaplock)
58 #define BMAP_LOCK(bmp)		mutex_lock(&bmp->db_bmaplock)
59 #define BMAP_UNLOCK(bmp)	mutex_unlock(&bmp->db_bmaplock)
60 
61 /*
62  * forward references
63  */
64 static void dbAllocBits(struct bmap * bmp, struct dmap * dp, s64 blkno,
65 			int nblocks);
66 static void dbSplit(dmtree_t *tp, int leafno, int splitsz, int newval, bool is_ctl);
67 static int dbBackSplit(dmtree_t *tp, int leafno, bool is_ctl);
68 static int dbJoin(dmtree_t *tp, int leafno, int newval, bool is_ctl);
69 static void dbAdjTree(dmtree_t *tp, int leafno, int newval, bool is_ctl);
70 static int dbAdjCtl(struct bmap * bmp, s64 blkno, int newval, int alloc,
71 		    int level);
72 static int dbAllocAny(struct bmap * bmp, s64 nblocks, int l2nb, s64 * results);
73 static int dbAllocNext(struct bmap * bmp, struct dmap * dp, s64 blkno,
74 		       int nblocks);
75 static int dbAllocNear(struct bmap * bmp, struct dmap * dp, s64 blkno,
76 		       int nblocks,
77 		       int l2nb, s64 * results);
78 static int dbAllocDmap(struct bmap * bmp, struct dmap * dp, s64 blkno,
79 		       int nblocks);
80 static int dbAllocDmapLev(struct bmap * bmp, struct dmap * dp, int nblocks,
81 			  int l2nb,
82 			  s64 * results);
83 static int dbAllocAG(struct bmap * bmp, int agno, s64 nblocks, int l2nb,
84 		     s64 * results);
85 static int dbAllocCtl(struct bmap * bmp, s64 nblocks, int l2nb, s64 blkno,
86 		      s64 * results);
87 static int dbExtend(struct inode *ip, s64 blkno, s64 nblocks, s64 addnblocks);
88 static int dbFindBits(u32 word, int l2nb);
89 static int dbFindCtl(struct bmap * bmp, int l2nb, int level, s64 * blkno);
90 static int dbFindLeaf(dmtree_t *tp, int l2nb, int *leafidx, bool is_ctl);
91 static int dbFreeBits(struct bmap * bmp, struct dmap * dp, s64 blkno,
92 		      int nblocks);
93 static int dbFreeDmap(struct bmap * bmp, struct dmap * dp, s64 blkno,
94 		      int nblocks);
95 static int dbMaxBud(u8 * cp);
96 static int blkstol2(s64 nb);
97 
98 static int cntlz(u32 value);
99 static int cnttz(u32 word);
100 
101 static int dbAllocDmapBU(struct bmap * bmp, struct dmap * dp, s64 blkno,
102 			 int nblocks);
103 static int dbInitDmap(struct dmap * dp, s64 blkno, int nblocks);
104 static int dbInitDmapTree(struct dmap * dp);
105 static int dbInitTree(struct dmaptree * dtp);
106 static int dbInitDmapCtl(struct dmapctl * dcp, int level, int i);
107 static int dbGetL2AGSize(s64 nblocks);
108 
109 /*
110  *	buddy table
111  *
112  * table used for determining buddy sizes within characters of
113  * dmap bitmap words.  the characters themselves serve as indexes
114  * into the table, with the table elements yielding the maximum
115  * binary buddy of free bits within the character.
116  */
117 static const s8 budtab[256] = {
118 	3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
119 	2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
120 	2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
121 	2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
122 	2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
123 	2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
124 	2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
125 	2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
126 	2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
127 	2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
128 	2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
129 	2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
130 	2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
131 	2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
132 	2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
133 	2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, -1
134 };
135 
136 /*
137  * NAME:	dbMount()
138  *
139  * FUNCTION:	initializate the block allocation map.
140  *
141  *		memory is allocated for the in-core bmap descriptor and
142  *		the in-core descriptor is initialized from disk.
143  *
144  * PARAMETERS:
145  *	ipbmap	- pointer to in-core inode for the block map.
146  *
147  * RETURN VALUES:
148  *	0	- success
149  *	-ENOMEM	- insufficient memory
150  *	-EIO	- i/o error
151  *	-EINVAL - wrong bmap data
152  */
dbMount(struct inode * ipbmap)153 int dbMount(struct inode *ipbmap)
154 {
155 	struct bmap *bmp;
156 	struct dbmap_disk *dbmp_le;
157 	struct metapage *mp;
158 	int i, err;
159 
160 	/*
161 	 * allocate/initialize the in-memory bmap descriptor
162 	 */
163 	/* allocate memory for the in-memory bmap descriptor */
164 	bmp = kmalloc(sizeof(struct bmap), GFP_KERNEL);
165 	if (bmp == NULL)
166 		return -ENOMEM;
167 
168 	/* read the on-disk bmap descriptor. */
169 	mp = read_metapage(ipbmap,
170 			   BMAPBLKNO << JFS_SBI(ipbmap->i_sb)->l2nbperpage,
171 			   PSIZE, 0);
172 	if (mp == NULL) {
173 		err = -EIO;
174 		goto err_kfree_bmp;
175 	}
176 
177 	/* copy the on-disk bmap descriptor to its in-memory version. */
178 	dbmp_le = (struct dbmap_disk *) mp->data;
179 	bmp->db_mapsize = le64_to_cpu(dbmp_le->dn_mapsize);
180 	bmp->db_nfree = le64_to_cpu(dbmp_le->dn_nfree);
181 	bmp->db_l2nbperpage = le32_to_cpu(dbmp_le->dn_l2nbperpage);
182 	bmp->db_numag = le32_to_cpu(dbmp_le->dn_numag);
183 	bmp->db_maxlevel = le32_to_cpu(dbmp_le->dn_maxlevel);
184 	bmp->db_maxag = le32_to_cpu(dbmp_le->dn_maxag);
185 	bmp->db_agpref = le32_to_cpu(dbmp_le->dn_agpref);
186 	bmp->db_aglevel = le32_to_cpu(dbmp_le->dn_aglevel);
187 	bmp->db_agheight = le32_to_cpu(dbmp_le->dn_agheight);
188 	bmp->db_agwidth = le32_to_cpu(dbmp_le->dn_agwidth);
189 	bmp->db_agstart = le32_to_cpu(dbmp_le->dn_agstart);
190 	bmp->db_agl2size = le32_to_cpu(dbmp_le->dn_agl2size);
191 
192 	if ((bmp->db_l2nbperpage > L2PSIZE - L2MINBLOCKSIZE) ||
193 	    (bmp->db_l2nbperpage < 0) ||
194 	    !bmp->db_numag || (bmp->db_numag > MAXAG) ||
195 	    (bmp->db_maxag >= MAXAG) || (bmp->db_maxag < 0) ||
196 	    (bmp->db_agpref >= MAXAG) || (bmp->db_agpref < 0) ||
197 	    (bmp->db_agheight < 0) || (bmp->db_agheight > (L2LPERCTL >> 1)) ||
198 	    (bmp->db_agwidth < 1) || (bmp->db_agwidth > (LPERCTL / MAXAG)) ||
199 	    (bmp->db_agwidth > (1 << (L2LPERCTL - (bmp->db_agheight << 1)))) ||
200 	    (bmp->db_agstart < 0) ||
201 	    (bmp->db_agstart > (CTLTREESIZE - 1 - bmp->db_agwidth * (MAXAG - 1))) ||
202 	    (bmp->db_agl2size > L2MAXL2SIZE - L2MAXAG) ||
203 	    (bmp->db_agl2size < 0) ||
204 	    ((bmp->db_mapsize - 1) >> bmp->db_agl2size) > MAXAG) {
205 		err = -EINVAL;
206 		goto err_release_metapage;
207 	}
208 
209 	for (i = 0; i < MAXAG; i++)
210 		bmp->db_agfree[i] = le64_to_cpu(dbmp_le->dn_agfree[i]);
211 	bmp->db_agsize = le64_to_cpu(dbmp_le->dn_agsize);
212 	bmp->db_maxfreebud = dbmp_le->dn_maxfreebud;
213 
214 	/* release the buffer. */
215 	release_metapage(mp);
216 
217 	/* bind the bmap inode and the bmap descriptor to each other. */
218 	bmp->db_ipbmap = ipbmap;
219 	JFS_SBI(ipbmap->i_sb)->bmap = bmp;
220 
221 	memset(bmp->db_active, 0, sizeof(bmp->db_active));
222 
223 	/*
224 	 * allocate/initialize the bmap lock
225 	 */
226 	BMAP_LOCK_INIT(bmp);
227 
228 	return (0);
229 
230 err_release_metapage:
231 	release_metapage(mp);
232 err_kfree_bmp:
233 	kfree(bmp);
234 	return err;
235 }
236 
237 
238 /*
239  * NAME:	dbUnmount()
240  *
241  * FUNCTION:	terminate the block allocation map in preparation for
242  *		file system unmount.
243  *
244  *		the in-core bmap descriptor is written to disk and
245  *		the memory for this descriptor is freed.
246  *
247  * PARAMETERS:
248  *	ipbmap	- pointer to in-core inode for the block map.
249  *
250  * RETURN VALUES:
251  *	0	- success
252  *	-EIO	- i/o error
253  */
dbUnmount(struct inode * ipbmap,int mounterror)254 int dbUnmount(struct inode *ipbmap, int mounterror)
255 {
256 	struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
257 
258 	if (!(mounterror || isReadOnly(ipbmap)))
259 		dbSync(ipbmap);
260 
261 	/*
262 	 * Invalidate the page cache buffers
263 	 */
264 	truncate_inode_pages(ipbmap->i_mapping, 0);
265 
266 	/* free the memory for the in-memory bmap. */
267 	kfree(bmp);
268 	JFS_SBI(ipbmap->i_sb)->bmap = NULL;
269 
270 	return (0);
271 }
272 
273 /*
274  *	dbSync()
275  */
dbSync(struct inode * ipbmap)276 int dbSync(struct inode *ipbmap)
277 {
278 	struct dbmap_disk *dbmp_le;
279 	struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
280 	struct metapage *mp;
281 	int i;
282 
283 	/*
284 	 * write bmap global control page
285 	 */
286 	/* get the buffer for the on-disk bmap descriptor. */
287 	mp = read_metapage(ipbmap,
288 			   BMAPBLKNO << JFS_SBI(ipbmap->i_sb)->l2nbperpage,
289 			   PSIZE, 0);
290 	if (mp == NULL) {
291 		jfs_err("dbSync: read_metapage failed!");
292 		return -EIO;
293 	}
294 	/* copy the in-memory version of the bmap to the on-disk version */
295 	dbmp_le = (struct dbmap_disk *) mp->data;
296 	dbmp_le->dn_mapsize = cpu_to_le64(bmp->db_mapsize);
297 	dbmp_le->dn_nfree = cpu_to_le64(bmp->db_nfree);
298 	dbmp_le->dn_l2nbperpage = cpu_to_le32(bmp->db_l2nbperpage);
299 	dbmp_le->dn_numag = cpu_to_le32(bmp->db_numag);
300 	dbmp_le->dn_maxlevel = cpu_to_le32(bmp->db_maxlevel);
301 	dbmp_le->dn_maxag = cpu_to_le32(bmp->db_maxag);
302 	dbmp_le->dn_agpref = cpu_to_le32(bmp->db_agpref);
303 	dbmp_le->dn_aglevel = cpu_to_le32(bmp->db_aglevel);
304 	dbmp_le->dn_agheight = cpu_to_le32(bmp->db_agheight);
305 	dbmp_le->dn_agwidth = cpu_to_le32(bmp->db_agwidth);
306 	dbmp_le->dn_agstart = cpu_to_le32(bmp->db_agstart);
307 	dbmp_le->dn_agl2size = cpu_to_le32(bmp->db_agl2size);
308 	for (i = 0; i < MAXAG; i++)
309 		dbmp_le->dn_agfree[i] = cpu_to_le64(bmp->db_agfree[i]);
310 	dbmp_le->dn_agsize = cpu_to_le64(bmp->db_agsize);
311 	dbmp_le->dn_maxfreebud = bmp->db_maxfreebud;
312 
313 	/* write the buffer */
314 	write_metapage(mp);
315 
316 	/*
317 	 * write out dirty pages of bmap
318 	 */
319 	filemap_write_and_wait(ipbmap->i_mapping);
320 
321 	diWriteSpecial(ipbmap, 0);
322 
323 	return (0);
324 }
325 
326 /*
327  * NAME:	dbFree()
328  *
329  * FUNCTION:	free the specified block range from the working block
330  *		allocation map.
331  *
332  *		the blocks will be free from the working map one dmap
333  *		at a time.
334  *
335  * PARAMETERS:
336  *	ip	- pointer to in-core inode;
337  *	blkno	- starting block number to be freed.
338  *	nblocks	- number of blocks to be freed.
339  *
340  * RETURN VALUES:
341  *	0	- success
342  *	-EIO	- i/o error
343  */
dbFree(struct inode * ip,s64 blkno,s64 nblocks)344 int dbFree(struct inode *ip, s64 blkno, s64 nblocks)
345 {
346 	struct metapage *mp;
347 	struct dmap *dp;
348 	int nb, rc;
349 	s64 lblkno, rem;
350 	struct inode *ipbmap = JFS_SBI(ip->i_sb)->ipbmap;
351 	struct bmap *bmp = JFS_SBI(ip->i_sb)->bmap;
352 	struct super_block *sb = ipbmap->i_sb;
353 
354 	IREAD_LOCK(ipbmap, RDWRLOCK_DMAP);
355 
356 	/* block to be freed better be within the mapsize. */
357 	if (unlikely((blkno == 0) || (blkno + nblocks > bmp->db_mapsize))) {
358 		IREAD_UNLOCK(ipbmap);
359 		printk(KERN_ERR "blkno = %Lx, nblocks = %Lx\n",
360 		       (unsigned long long) blkno,
361 		       (unsigned long long) nblocks);
362 		jfs_error(ip->i_sb, "block to be freed is outside the map\n");
363 		return -EIO;
364 	}
365 
366 	/**
367 	 * TRIM the blocks, when mounted with discard option
368 	 */
369 	if (JFS_SBI(sb)->flag & JFS_DISCARD)
370 		if (JFS_SBI(sb)->minblks_trim <= nblocks)
371 			jfs_issue_discard(ipbmap, blkno, nblocks);
372 
373 	/*
374 	 * free the blocks a dmap at a time.
375 	 */
376 	mp = NULL;
377 	for (rem = nblocks; rem > 0; rem -= nb, blkno += nb) {
378 		/* release previous dmap if any */
379 		if (mp) {
380 			write_metapage(mp);
381 		}
382 
383 		/* get the buffer for the current dmap. */
384 		lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
385 		mp = read_metapage(ipbmap, lblkno, PSIZE, 0);
386 		if (mp == NULL) {
387 			IREAD_UNLOCK(ipbmap);
388 			return -EIO;
389 		}
390 		dp = (struct dmap *) mp->data;
391 
392 		/* determine the number of blocks to be freed from
393 		 * this dmap.
394 		 */
395 		nb = min(rem, BPERDMAP - (blkno & (BPERDMAP - 1)));
396 
397 		/* free the blocks. */
398 		if ((rc = dbFreeDmap(bmp, dp, blkno, nb))) {
399 			jfs_error(ip->i_sb, "error in block map\n");
400 			release_metapage(mp);
401 			IREAD_UNLOCK(ipbmap);
402 			return (rc);
403 		}
404 	}
405 
406 	/* write the last buffer. */
407 	if (mp)
408 		write_metapage(mp);
409 
410 	IREAD_UNLOCK(ipbmap);
411 
412 	return (0);
413 }
414 
415 
416 /*
417  * NAME:	dbUpdatePMap()
418  *
419  * FUNCTION:	update the allocation state (free or allocate) of the
420  *		specified block range in the persistent block allocation map.
421  *
422  *		the blocks will be updated in the persistent map one
423  *		dmap at a time.
424  *
425  * PARAMETERS:
426  *	ipbmap	- pointer to in-core inode for the block map.
427  *	free	- 'true' if block range is to be freed from the persistent
428  *		  map; 'false' if it is to be allocated.
429  *	blkno	- starting block number of the range.
430  *	nblocks	- number of contiguous blocks in the range.
431  *	tblk	- transaction block;
432  *
433  * RETURN VALUES:
434  *	0	- success
435  *	-EIO	- i/o error
436  */
437 int
dbUpdatePMap(struct inode * ipbmap,int free,s64 blkno,s64 nblocks,struct tblock * tblk)438 dbUpdatePMap(struct inode *ipbmap,
439 	     int free, s64 blkno, s64 nblocks, struct tblock * tblk)
440 {
441 	int nblks, dbitno, wbitno, rbits;
442 	int word, nbits, nwords;
443 	struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
444 	s64 lblkno, rem, lastlblkno;
445 	u32 mask;
446 	struct dmap *dp;
447 	struct metapage *mp;
448 	struct jfs_log *log;
449 	int lsn, difft, diffp;
450 	unsigned long flags;
451 
452 	/* the blocks better be within the mapsize. */
453 	if (blkno + nblocks > bmp->db_mapsize) {
454 		printk(KERN_ERR "blkno = %Lx, nblocks = %Lx\n",
455 		       (unsigned long long) blkno,
456 		       (unsigned long long) nblocks);
457 		jfs_error(ipbmap->i_sb, "blocks are outside the map\n");
458 		return -EIO;
459 	}
460 
461 	/* compute delta of transaction lsn from log syncpt */
462 	lsn = tblk->lsn;
463 	log = (struct jfs_log *) JFS_SBI(tblk->sb)->log;
464 	logdiff(difft, lsn, log);
465 
466 	/*
467 	 * update the block state a dmap at a time.
468 	 */
469 	mp = NULL;
470 	lastlblkno = 0;
471 	for (rem = nblocks; rem > 0; rem -= nblks, blkno += nblks) {
472 		/* get the buffer for the current dmap. */
473 		lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
474 		if (lblkno != lastlblkno) {
475 			if (mp) {
476 				write_metapage(mp);
477 			}
478 
479 			mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE,
480 					   0);
481 			if (mp == NULL)
482 				return -EIO;
483 			metapage_wait_for_io(mp);
484 		}
485 		dp = (struct dmap *) mp->data;
486 
487 		/* determine the bit number and word within the dmap of
488 		 * the starting block.  also determine how many blocks
489 		 * are to be updated within this dmap.
490 		 */
491 		dbitno = blkno & (BPERDMAP - 1);
492 		word = dbitno >> L2DBWORD;
493 		nblks = min(rem, (s64)BPERDMAP - dbitno);
494 
495 		/* update the bits of the dmap words. the first and last
496 		 * words may only have a subset of their bits updated. if
497 		 * this is the case, we'll work against that word (i.e.
498 		 * partial first and/or last) only in a single pass.  a
499 		 * single pass will also be used to update all words that
500 		 * are to have all their bits updated.
501 		 */
502 		for (rbits = nblks; rbits > 0;
503 		     rbits -= nbits, dbitno += nbits) {
504 			/* determine the bit number within the word and
505 			 * the number of bits within the word.
506 			 */
507 			wbitno = dbitno & (DBWORD - 1);
508 			nbits = min(rbits, DBWORD - wbitno);
509 
510 			/* check if only part of the word is to be updated. */
511 			if (nbits < DBWORD) {
512 				/* update (free or allocate) the bits
513 				 * in this word.
514 				 */
515 				mask =
516 				    (ONES << (DBWORD - nbits) >> wbitno);
517 				if (free)
518 					dp->pmap[word] &=
519 					    cpu_to_le32(~mask);
520 				else
521 					dp->pmap[word] |=
522 					    cpu_to_le32(mask);
523 
524 				word += 1;
525 			} else {
526 				/* one or more words are to have all
527 				 * their bits updated.  determine how
528 				 * many words and how many bits.
529 				 */
530 				nwords = rbits >> L2DBWORD;
531 				nbits = nwords << L2DBWORD;
532 
533 				/* update (free or allocate) the bits
534 				 * in these words.
535 				 */
536 				if (free)
537 					memset(&dp->pmap[word], 0,
538 					       nwords * 4);
539 				else
540 					memset(&dp->pmap[word], (int) ONES,
541 					       nwords * 4);
542 
543 				word += nwords;
544 			}
545 		}
546 
547 		/*
548 		 * update dmap lsn
549 		 */
550 		if (lblkno == lastlblkno)
551 			continue;
552 
553 		lastlblkno = lblkno;
554 
555 		LOGSYNC_LOCK(log, flags);
556 		if (mp->lsn != 0) {
557 			/* inherit older/smaller lsn */
558 			logdiff(diffp, mp->lsn, log);
559 			if (difft < diffp) {
560 				mp->lsn = lsn;
561 
562 				/* move bp after tblock in logsync list */
563 				list_move(&mp->synclist, &tblk->synclist);
564 			}
565 
566 			/* inherit younger/larger clsn */
567 			logdiff(difft, tblk->clsn, log);
568 			logdiff(diffp, mp->clsn, log);
569 			if (difft > diffp)
570 				mp->clsn = tblk->clsn;
571 		} else {
572 			mp->log = log;
573 			mp->lsn = lsn;
574 
575 			/* insert bp after tblock in logsync list */
576 			log->count++;
577 			list_add(&mp->synclist, &tblk->synclist);
578 
579 			mp->clsn = tblk->clsn;
580 		}
581 		LOGSYNC_UNLOCK(log, flags);
582 	}
583 
584 	/* write the last buffer. */
585 	if (mp) {
586 		write_metapage(mp);
587 	}
588 
589 	return (0);
590 }
591 
592 
593 /*
594  * NAME:	dbNextAG()
595  *
596  * FUNCTION:	find the preferred allocation group for new allocations.
597  *
598  *		Within the allocation groups, we maintain a preferred
599  *		allocation group which consists of a group with at least
600  *		average free space.  It is the preferred group that we target
601  *		new inode allocation towards.  The tie-in between inode
602  *		allocation and block allocation occurs as we allocate the
603  *		first (data) block of an inode and specify the inode (block)
604  *		as the allocation hint for this block.
605  *
606  *		We try to avoid having more than one open file growing in
607  *		an allocation group, as this will lead to fragmentation.
608  *		This differs from the old OS/2 method of trying to keep
609  *		empty ags around for large allocations.
610  *
611  * PARAMETERS:
612  *	ipbmap	- pointer to in-core inode for the block map.
613  *
614  * RETURN VALUES:
615  *	the preferred allocation group number.
616  */
dbNextAG(struct inode * ipbmap)617 int dbNextAG(struct inode *ipbmap)
618 {
619 	s64 avgfree;
620 	int agpref;
621 	s64 hwm = 0;
622 	int i;
623 	int next_best = -1;
624 	struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
625 
626 	BMAP_LOCK(bmp);
627 
628 	/* determine the average number of free blocks within the ags. */
629 	avgfree = (u32)bmp->db_nfree / bmp->db_numag;
630 
631 	/*
632 	 * if the current preferred ag does not have an active allocator
633 	 * and has at least average freespace, return it
634 	 */
635 	agpref = bmp->db_agpref;
636 	if ((atomic_read(&bmp->db_active[agpref]) == 0) &&
637 	    (bmp->db_agfree[agpref] >= avgfree))
638 		goto unlock;
639 
640 	/* From the last preferred ag, find the next one with at least
641 	 * average free space.
642 	 */
643 	for (i = 0 ; i < bmp->db_numag; i++, agpref++) {
644 		if (agpref >= bmp->db_numag)
645 			agpref = 0;
646 
647 		if (atomic_read(&bmp->db_active[agpref]))
648 			/* open file is currently growing in this ag */
649 			continue;
650 		if (bmp->db_agfree[agpref] >= avgfree) {
651 			/* Return this one */
652 			bmp->db_agpref = agpref;
653 			goto unlock;
654 		} else if (bmp->db_agfree[agpref] > hwm) {
655 			/* Less than avg. freespace, but best so far */
656 			hwm = bmp->db_agfree[agpref];
657 			next_best = agpref;
658 		}
659 	}
660 
661 	/*
662 	 * If no inactive ag was found with average freespace, use the
663 	 * next best
664 	 */
665 	if (next_best != -1)
666 		bmp->db_agpref = next_best;
667 	/* else leave db_agpref unchanged */
668 unlock:
669 	BMAP_UNLOCK(bmp);
670 
671 	/* return the preferred group.
672 	 */
673 	return (bmp->db_agpref);
674 }
675 
676 /*
677  * NAME:	dbAlloc()
678  *
679  * FUNCTION:	attempt to allocate a specified number of contiguous free
680  *		blocks from the working allocation block map.
681  *
682  *		the block allocation policy uses hints and a multi-step
683  *		approach.
684  *
685  *		for allocation requests smaller than the number of blocks
686  *		per dmap, we first try to allocate the new blocks
687  *		immediately following the hint.  if these blocks are not
688  *		available, we try to allocate blocks near the hint.  if
689  *		no blocks near the hint are available, we next try to
690  *		allocate within the same dmap as contains the hint.
691  *
692  *		if no blocks are available in the dmap or the allocation
693  *		request is larger than the dmap size, we try to allocate
694  *		within the same allocation group as contains the hint. if
695  *		this does not succeed, we finally try to allocate anywhere
696  *		within the aggregate.
697  *
698  *		we also try to allocate anywhere within the aggregate
699  *		for allocation requests larger than the allocation group
700  *		size or requests that specify no hint value.
701  *
702  * PARAMETERS:
703  *	ip	- pointer to in-core inode;
704  *	hint	- allocation hint.
705  *	nblocks	- number of contiguous blocks in the range.
706  *	results	- on successful return, set to the starting block number
707  *		  of the newly allocated contiguous range.
708  *
709  * RETURN VALUES:
710  *	0	- success
711  *	-ENOSPC	- insufficient disk resources
712  *	-EIO	- i/o error
713  */
dbAlloc(struct inode * ip,s64 hint,s64 nblocks,s64 * results)714 int dbAlloc(struct inode *ip, s64 hint, s64 nblocks, s64 * results)
715 {
716 	int rc, agno;
717 	struct inode *ipbmap = JFS_SBI(ip->i_sb)->ipbmap;
718 	struct bmap *bmp;
719 	struct metapage *mp;
720 	s64 lblkno, blkno;
721 	struct dmap *dp;
722 	int l2nb;
723 	s64 mapSize;
724 	int writers;
725 
726 	/* assert that nblocks is valid */
727 	assert(nblocks > 0);
728 
729 	/* get the log2 number of blocks to be allocated.
730 	 * if the number of blocks is not a log2 multiple,
731 	 * it will be rounded up to the next log2 multiple.
732 	 */
733 	l2nb = BLKSTOL2(nblocks);
734 
735 	bmp = JFS_SBI(ip->i_sb)->bmap;
736 
737 	mapSize = bmp->db_mapsize;
738 
739 	/* the hint should be within the map */
740 	if (hint >= mapSize) {
741 		jfs_error(ip->i_sb, "the hint is outside the map\n");
742 		return -EIO;
743 	}
744 
745 	/* if the number of blocks to be allocated is greater than the
746 	 * allocation group size, try to allocate anywhere.
747 	 */
748 	if (l2nb > bmp->db_agl2size) {
749 		IWRITE_LOCK(ipbmap, RDWRLOCK_DMAP);
750 
751 		rc = dbAllocAny(bmp, nblocks, l2nb, results);
752 
753 		goto write_unlock;
754 	}
755 
756 	/*
757 	 * If no hint, let dbNextAG recommend an allocation group
758 	 */
759 	if (hint == 0)
760 		goto pref_ag;
761 
762 	/* we would like to allocate close to the hint.  adjust the
763 	 * hint to the block following the hint since the allocators
764 	 * will start looking for free space starting at this point.
765 	 */
766 	blkno = hint + 1;
767 
768 	if (blkno >= bmp->db_mapsize)
769 		goto pref_ag;
770 
771 	agno = blkno >> bmp->db_agl2size;
772 
773 	/* check if blkno crosses over into a new allocation group.
774 	 * if so, check if we should allow allocations within this
775 	 * allocation group.
776 	 */
777 	if ((blkno & (bmp->db_agsize - 1)) == 0)
778 		/* check if the AG is currently being written to.
779 		 * if so, call dbNextAG() to find a non-busy
780 		 * AG with sufficient free space.
781 		 */
782 		if (atomic_read(&bmp->db_active[agno]))
783 			goto pref_ag;
784 
785 	/* check if the allocation request size can be satisfied from a
786 	 * single dmap.  if so, try to allocate from the dmap containing
787 	 * the hint using a tiered strategy.
788 	 */
789 	if (nblocks <= BPERDMAP) {
790 		IREAD_LOCK(ipbmap, RDWRLOCK_DMAP);
791 
792 		/* get the buffer for the dmap containing the hint.
793 		 */
794 		rc = -EIO;
795 		lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
796 		mp = read_metapage(ipbmap, lblkno, PSIZE, 0);
797 		if (mp == NULL)
798 			goto read_unlock;
799 
800 		dp = (struct dmap *) mp->data;
801 
802 		/* first, try to satisfy the allocation request with the
803 		 * blocks beginning at the hint.
804 		 */
805 		if ((rc = dbAllocNext(bmp, dp, blkno, (int) nblocks))
806 		    != -ENOSPC) {
807 			if (rc == 0) {
808 				*results = blkno;
809 				mark_metapage_dirty(mp);
810 			}
811 
812 			release_metapage(mp);
813 			goto read_unlock;
814 		}
815 
816 		writers = atomic_read(&bmp->db_active[agno]);
817 		if ((writers > 1) ||
818 		    ((writers == 1) && (JFS_IP(ip)->active_ag != agno))) {
819 			/*
820 			 * Someone else is writing in this allocation
821 			 * group.  To avoid fragmenting, try another ag
822 			 */
823 			release_metapage(mp);
824 			IREAD_UNLOCK(ipbmap);
825 			goto pref_ag;
826 		}
827 
828 		/* next, try to satisfy the allocation request with blocks
829 		 * near the hint.
830 		 */
831 		if ((rc =
832 		     dbAllocNear(bmp, dp, blkno, (int) nblocks, l2nb, results))
833 		    != -ENOSPC) {
834 			if (rc == 0)
835 				mark_metapage_dirty(mp);
836 
837 			release_metapage(mp);
838 			goto read_unlock;
839 		}
840 
841 		/* try to satisfy the allocation request with blocks within
842 		 * the same dmap as the hint.
843 		 */
844 		if ((rc = dbAllocDmapLev(bmp, dp, (int) nblocks, l2nb, results))
845 		    != -ENOSPC) {
846 			if (rc == 0)
847 				mark_metapage_dirty(mp);
848 
849 			release_metapage(mp);
850 			goto read_unlock;
851 		}
852 
853 		release_metapage(mp);
854 		IREAD_UNLOCK(ipbmap);
855 	}
856 
857 	/* try to satisfy the allocation request with blocks within
858 	 * the same allocation group as the hint.
859 	 */
860 	IWRITE_LOCK(ipbmap, RDWRLOCK_DMAP);
861 	if ((rc = dbAllocAG(bmp, agno, nblocks, l2nb, results)) != -ENOSPC)
862 		goto write_unlock;
863 
864 	IWRITE_UNLOCK(ipbmap);
865 
866 
867       pref_ag:
868 	/*
869 	 * Let dbNextAG recommend a preferred allocation group
870 	 */
871 	agno = dbNextAG(ipbmap);
872 	IWRITE_LOCK(ipbmap, RDWRLOCK_DMAP);
873 
874 	/* Try to allocate within this allocation group.  if that fails, try to
875 	 * allocate anywhere in the map.
876 	 */
877 	if ((rc = dbAllocAG(bmp, agno, nblocks, l2nb, results)) == -ENOSPC)
878 		rc = dbAllocAny(bmp, nblocks, l2nb, results);
879 
880       write_unlock:
881 	IWRITE_UNLOCK(ipbmap);
882 
883 	return (rc);
884 
885       read_unlock:
886 	IREAD_UNLOCK(ipbmap);
887 
888 	return (rc);
889 }
890 
891 /*
892  * NAME:	dbReAlloc()
893  *
894  * FUNCTION:	attempt to extend a current allocation by a specified
895  *		number of blocks.
896  *
897  *		this routine attempts to satisfy the allocation request
898  *		by first trying to extend the existing allocation in
899  *		place by allocating the additional blocks as the blocks
900  *		immediately following the current allocation.  if these
901  *		blocks are not available, this routine will attempt to
902  *		allocate a new set of contiguous blocks large enough
903  *		to cover the existing allocation plus the additional
904  *		number of blocks required.
905  *
906  * PARAMETERS:
907  *	ip	    -  pointer to in-core inode requiring allocation.
908  *	blkno	    -  starting block of the current allocation.
909  *	nblocks	    -  number of contiguous blocks within the current
910  *		       allocation.
911  *	addnblocks  -  number of blocks to add to the allocation.
912  *	results	-      on successful return, set to the starting block number
913  *		       of the existing allocation if the existing allocation
914  *		       was extended in place or to a newly allocated contiguous
915  *		       range if the existing allocation could not be extended
916  *		       in place.
917  *
918  * RETURN VALUES:
919  *	0	- success
920  *	-ENOSPC	- insufficient disk resources
921  *	-EIO	- i/o error
922  */
923 int
dbReAlloc(struct inode * ip,s64 blkno,s64 nblocks,s64 addnblocks,s64 * results)924 dbReAlloc(struct inode *ip,
925 	  s64 blkno, s64 nblocks, s64 addnblocks, s64 * results)
926 {
927 	int rc;
928 
929 	/* try to extend the allocation in place.
930 	 */
931 	if ((rc = dbExtend(ip, blkno, nblocks, addnblocks)) == 0) {
932 		*results = blkno;
933 		return (0);
934 	} else {
935 		if (rc != -ENOSPC)
936 			return (rc);
937 	}
938 
939 	/* could not extend the allocation in place, so allocate a
940 	 * new set of blocks for the entire request (i.e. try to get
941 	 * a range of contiguous blocks large enough to cover the
942 	 * existing allocation plus the additional blocks.)
943 	 */
944 	return (dbAlloc
945 		(ip, blkno + nblocks - 1, addnblocks + nblocks, results));
946 }
947 
948 
949 /*
950  * NAME:	dbExtend()
951  *
952  * FUNCTION:	attempt to extend a current allocation by a specified
953  *		number of blocks.
954  *
955  *		this routine attempts to satisfy the allocation request
956  *		by first trying to extend the existing allocation in
957  *		place by allocating the additional blocks as the blocks
958  *		immediately following the current allocation.
959  *
960  * PARAMETERS:
961  *	ip	    -  pointer to in-core inode requiring allocation.
962  *	blkno	    -  starting block of the current allocation.
963  *	nblocks	    -  number of contiguous blocks within the current
964  *		       allocation.
965  *	addnblocks  -  number of blocks to add to the allocation.
966  *
967  * RETURN VALUES:
968  *	0	- success
969  *	-ENOSPC	- insufficient disk resources
970  *	-EIO	- i/o error
971  */
dbExtend(struct inode * ip,s64 blkno,s64 nblocks,s64 addnblocks)972 static int dbExtend(struct inode *ip, s64 blkno, s64 nblocks, s64 addnblocks)
973 {
974 	struct jfs_sb_info *sbi = JFS_SBI(ip->i_sb);
975 	s64 lblkno, lastblkno, extblkno;
976 	uint rel_block;
977 	struct metapage *mp;
978 	struct dmap *dp;
979 	int rc;
980 	struct inode *ipbmap = sbi->ipbmap;
981 	struct bmap *bmp;
982 
983 	/*
984 	 * We don't want a non-aligned extent to cross a page boundary
985 	 */
986 	if (((rel_block = blkno & (sbi->nbperpage - 1))) &&
987 	    (rel_block + nblocks + addnblocks > sbi->nbperpage))
988 		return -ENOSPC;
989 
990 	/* get the last block of the current allocation */
991 	lastblkno = blkno + nblocks - 1;
992 
993 	/* determine the block number of the block following
994 	 * the existing allocation.
995 	 */
996 	extblkno = lastblkno + 1;
997 
998 	IREAD_LOCK(ipbmap, RDWRLOCK_DMAP);
999 
1000 	/* better be within the file system */
1001 	bmp = sbi->bmap;
1002 	if (lastblkno < 0 || lastblkno >= bmp->db_mapsize) {
1003 		IREAD_UNLOCK(ipbmap);
1004 		jfs_error(ip->i_sb, "the block is outside the filesystem\n");
1005 		return -EIO;
1006 	}
1007 
1008 	/* we'll attempt to extend the current allocation in place by
1009 	 * allocating the additional blocks as the blocks immediately
1010 	 * following the current allocation.  we only try to extend the
1011 	 * current allocation in place if the number of additional blocks
1012 	 * can fit into a dmap, the last block of the current allocation
1013 	 * is not the last block of the file system, and the start of the
1014 	 * inplace extension is not on an allocation group boundary.
1015 	 */
1016 	if (addnblocks > BPERDMAP || extblkno >= bmp->db_mapsize ||
1017 	    (extblkno & (bmp->db_agsize - 1)) == 0) {
1018 		IREAD_UNLOCK(ipbmap);
1019 		return -ENOSPC;
1020 	}
1021 
1022 	/* get the buffer for the dmap containing the first block
1023 	 * of the extension.
1024 	 */
1025 	lblkno = BLKTODMAP(extblkno, bmp->db_l2nbperpage);
1026 	mp = read_metapage(ipbmap, lblkno, PSIZE, 0);
1027 	if (mp == NULL) {
1028 		IREAD_UNLOCK(ipbmap);
1029 		return -EIO;
1030 	}
1031 
1032 	dp = (struct dmap *) mp->data;
1033 
1034 	/* try to allocate the blocks immediately following the
1035 	 * current allocation.
1036 	 */
1037 	rc = dbAllocNext(bmp, dp, extblkno, (int) addnblocks);
1038 
1039 	IREAD_UNLOCK(ipbmap);
1040 
1041 	/* were we successful ? */
1042 	if (rc == 0)
1043 		write_metapage(mp);
1044 	else
1045 		/* we were not successful */
1046 		release_metapage(mp);
1047 
1048 	return (rc);
1049 }
1050 
1051 
1052 /*
1053  * NAME:	dbAllocNext()
1054  *
1055  * FUNCTION:	attempt to allocate the blocks of the specified block
1056  *		range within a dmap.
1057  *
1058  * PARAMETERS:
1059  *	bmp	-  pointer to bmap descriptor
1060  *	dp	-  pointer to dmap.
1061  *	blkno	-  starting block number of the range.
1062  *	nblocks	-  number of contiguous free blocks of the range.
1063  *
1064  * RETURN VALUES:
1065  *	0	- success
1066  *	-ENOSPC	- insufficient disk resources
1067  *	-EIO	- i/o error
1068  *
1069  * serialization: IREAD_LOCK(ipbmap) held on entry/exit;
1070  */
dbAllocNext(struct bmap * bmp,struct dmap * dp,s64 blkno,int nblocks)1071 static int dbAllocNext(struct bmap * bmp, struct dmap * dp, s64 blkno,
1072 		       int nblocks)
1073 {
1074 	int dbitno, word, rembits, nb, nwords, wbitno, nw;
1075 	int l2size;
1076 	s8 *leaf;
1077 	u32 mask;
1078 
1079 	if (dp->tree.leafidx != cpu_to_le32(LEAFIND)) {
1080 		jfs_error(bmp->db_ipbmap->i_sb, "Corrupt dmap page\n");
1081 		return -EIO;
1082 	}
1083 
1084 	/* pick up a pointer to the leaves of the dmap tree.
1085 	 */
1086 	leaf = dp->tree.stree + le32_to_cpu(dp->tree.leafidx);
1087 
1088 	/* determine the bit number and word within the dmap of the
1089 	 * starting block.
1090 	 */
1091 	dbitno = blkno & (BPERDMAP - 1);
1092 	word = dbitno >> L2DBWORD;
1093 
1094 	/* check if the specified block range is contained within
1095 	 * this dmap.
1096 	 */
1097 	if (dbitno + nblocks > BPERDMAP)
1098 		return -ENOSPC;
1099 
1100 	/* check if the starting leaf indicates that anything
1101 	 * is free.
1102 	 */
1103 	if (leaf[word] == NOFREE)
1104 		return -ENOSPC;
1105 
1106 	/* check the dmaps words corresponding to block range to see
1107 	 * if the block range is free.  not all bits of the first and
1108 	 * last words may be contained within the block range.  if this
1109 	 * is the case, we'll work against those words (i.e. partial first
1110 	 * and/or last) on an individual basis (a single pass) and examine
1111 	 * the actual bits to determine if they are free.  a single pass
1112 	 * will be used for all dmap words fully contained within the
1113 	 * specified range.  within this pass, the leaves of the dmap
1114 	 * tree will be examined to determine if the blocks are free. a
1115 	 * single leaf may describe the free space of multiple dmap
1116 	 * words, so we may visit only a subset of the actual leaves
1117 	 * corresponding to the dmap words of the block range.
1118 	 */
1119 	for (rembits = nblocks; rembits > 0; rembits -= nb, dbitno += nb) {
1120 		/* determine the bit number within the word and
1121 		 * the number of bits within the word.
1122 		 */
1123 		wbitno = dbitno & (DBWORD - 1);
1124 		nb = min(rembits, DBWORD - wbitno);
1125 
1126 		/* check if only part of the word is to be examined.
1127 		 */
1128 		if (nb < DBWORD) {
1129 			/* check if the bits are free.
1130 			 */
1131 			mask = (ONES << (DBWORD - nb) >> wbitno);
1132 			if ((mask & ~le32_to_cpu(dp->wmap[word])) != mask)
1133 				return -ENOSPC;
1134 
1135 			word += 1;
1136 		} else {
1137 			/* one or more dmap words are fully contained
1138 			 * within the block range.  determine how many
1139 			 * words and how many bits.
1140 			 */
1141 			nwords = rembits >> L2DBWORD;
1142 			nb = nwords << L2DBWORD;
1143 
1144 			/* now examine the appropriate leaves to determine
1145 			 * if the blocks are free.
1146 			 */
1147 			while (nwords > 0) {
1148 				/* does the leaf describe any free space ?
1149 				 */
1150 				if (leaf[word] < BUDMIN)
1151 					return -ENOSPC;
1152 
1153 				/* determine the l2 number of bits provided
1154 				 * by this leaf.
1155 				 */
1156 				l2size =
1157 				    min_t(int, leaf[word], NLSTOL2BSZ(nwords));
1158 
1159 				/* determine how many words were handled.
1160 				 */
1161 				nw = BUDSIZE(l2size, BUDMIN);
1162 
1163 				nwords -= nw;
1164 				word += nw;
1165 			}
1166 		}
1167 	}
1168 
1169 	/* allocate the blocks.
1170 	 */
1171 	return (dbAllocDmap(bmp, dp, blkno, nblocks));
1172 }
1173 
1174 
1175 /*
1176  * NAME:	dbAllocNear()
1177  *
1178  * FUNCTION:	attempt to allocate a number of contiguous free blocks near
1179  *		a specified block (hint) within a dmap.
1180  *
1181  *		starting with the dmap leaf that covers the hint, we'll
1182  *		check the next four contiguous leaves for sufficient free
1183  *		space.  if sufficient free space is found, we'll allocate
1184  *		the desired free space.
1185  *
1186  * PARAMETERS:
1187  *	bmp	-  pointer to bmap descriptor
1188  *	dp	-  pointer to dmap.
1189  *	blkno	-  block number to allocate near.
1190  *	nblocks	-  actual number of contiguous free blocks desired.
1191  *	l2nb	-  log2 number of contiguous free blocks desired.
1192  *	results	-  on successful return, set to the starting block number
1193  *		   of the newly allocated range.
1194  *
1195  * RETURN VALUES:
1196  *	0	- success
1197  *	-ENOSPC	- insufficient disk resources
1198  *	-EIO	- i/o error
1199  *
1200  * serialization: IREAD_LOCK(ipbmap) held on entry/exit;
1201  */
1202 static int
dbAllocNear(struct bmap * bmp,struct dmap * dp,s64 blkno,int nblocks,int l2nb,s64 * results)1203 dbAllocNear(struct bmap * bmp,
1204 	    struct dmap * dp, s64 blkno, int nblocks, int l2nb, s64 * results)
1205 {
1206 	int word, lword, rc;
1207 	s8 *leaf;
1208 
1209 	if (dp->tree.leafidx != cpu_to_le32(LEAFIND)) {
1210 		jfs_error(bmp->db_ipbmap->i_sb, "Corrupt dmap page\n");
1211 		return -EIO;
1212 	}
1213 
1214 	leaf = dp->tree.stree + le32_to_cpu(dp->tree.leafidx);
1215 
1216 	/* determine the word within the dmap that holds the hint
1217 	 * (i.e. blkno).  also, determine the last word in the dmap
1218 	 * that we'll include in our examination.
1219 	 */
1220 	word = (blkno & (BPERDMAP - 1)) >> L2DBWORD;
1221 	lword = min(word + 4, LPERDMAP);
1222 
1223 	/* examine the leaves for sufficient free space.
1224 	 */
1225 	for (; word < lword; word++) {
1226 		/* does the leaf describe sufficient free space ?
1227 		 */
1228 		if (leaf[word] < l2nb)
1229 			continue;
1230 
1231 		/* determine the block number within the file system
1232 		 * of the first block described by this dmap word.
1233 		 */
1234 		blkno = le64_to_cpu(dp->start) + (word << L2DBWORD);
1235 
1236 		/* if not all bits of the dmap word are free, get the
1237 		 * starting bit number within the dmap word of the required
1238 		 * string of free bits and adjust the block number with the
1239 		 * value.
1240 		 */
1241 		if (leaf[word] < BUDMIN)
1242 			blkno +=
1243 			    dbFindBits(le32_to_cpu(dp->wmap[word]), l2nb);
1244 
1245 		/* allocate the blocks.
1246 		 */
1247 		if ((rc = dbAllocDmap(bmp, dp, blkno, nblocks)) == 0)
1248 			*results = blkno;
1249 
1250 		return (rc);
1251 	}
1252 
1253 	return -ENOSPC;
1254 }
1255 
1256 
1257 /*
1258  * NAME:	dbAllocAG()
1259  *
1260  * FUNCTION:	attempt to allocate the specified number of contiguous
1261  *		free blocks within the specified allocation group.
1262  *
1263  *		unless the allocation group size is equal to the number
1264  *		of blocks per dmap, the dmap control pages will be used to
1265  *		find the required free space, if available.  we start the
1266  *		search at the highest dmap control page level which
1267  *		distinctly describes the allocation group's free space
1268  *		(i.e. the highest level at which the allocation group's
1269  *		free space is not mixed in with that of any other group).
1270  *		in addition, we start the search within this level at a
1271  *		height of the dmapctl dmtree at which the nodes distinctly
1272  *		describe the allocation group's free space.  at this height,
1273  *		the allocation group's free space may be represented by 1
1274  *		or two sub-trees, depending on the allocation group size.
1275  *		we search the top nodes of these subtrees left to right for
1276  *		sufficient free space.  if sufficient free space is found,
1277  *		the subtree is searched to find the leftmost leaf that
1278  *		has free space.  once we have made it to the leaf, we
1279  *		move the search to the next lower level dmap control page
1280  *		corresponding to this leaf.  we continue down the dmap control
1281  *		pages until we find the dmap that contains or starts the
1282  *		sufficient free space and we allocate at this dmap.
1283  *
1284  *		if the allocation group size is equal to the dmap size,
1285  *		we'll start at the dmap corresponding to the allocation
1286  *		group and attempt the allocation at this level.
1287  *
1288  *		the dmap control page search is also not performed if the
1289  *		allocation group is completely free and we go to the first
1290  *		dmap of the allocation group to do the allocation.  this is
1291  *		done because the allocation group may be part (not the first
1292  *		part) of a larger binary buddy system, causing the dmap
1293  *		control pages to indicate no free space (NOFREE) within
1294  *		the allocation group.
1295  *
1296  * PARAMETERS:
1297  *	bmp	-  pointer to bmap descriptor
1298  *	agno	- allocation group number.
1299  *	nblocks	-  actual number of contiguous free blocks desired.
1300  *	l2nb	-  log2 number of contiguous free blocks desired.
1301  *	results	-  on successful return, set to the starting block number
1302  *		   of the newly allocated range.
1303  *
1304  * RETURN VALUES:
1305  *	0	- success
1306  *	-ENOSPC	- insufficient disk resources
1307  *	-EIO	- i/o error
1308  *
1309  * note: IWRITE_LOCK(ipmap) held on entry/exit;
1310  */
1311 static int
dbAllocAG(struct bmap * bmp,int agno,s64 nblocks,int l2nb,s64 * results)1312 dbAllocAG(struct bmap * bmp, int agno, s64 nblocks, int l2nb, s64 * results)
1313 {
1314 	struct metapage *mp;
1315 	struct dmapctl *dcp;
1316 	int rc, ti, i, k, m, n, agperlev;
1317 	s64 blkno, lblkno;
1318 	int budmin;
1319 
1320 	/* allocation request should not be for more than the
1321 	 * allocation group size.
1322 	 */
1323 	if (l2nb > bmp->db_agl2size) {
1324 		jfs_error(bmp->db_ipbmap->i_sb,
1325 			  "allocation request is larger than the allocation group size\n");
1326 		return -EIO;
1327 	}
1328 
1329 	/* determine the starting block number of the allocation
1330 	 * group.
1331 	 */
1332 	blkno = (s64) agno << bmp->db_agl2size;
1333 
1334 	/* check if the allocation group size is the minimum allocation
1335 	 * group size or if the allocation group is completely free. if
1336 	 * the allocation group size is the minimum size of BPERDMAP (i.e.
1337 	 * 1 dmap), there is no need to search the dmap control page (below)
1338 	 * that fully describes the allocation group since the allocation
1339 	 * group is already fully described by a dmap.  in this case, we
1340 	 * just call dbAllocCtl() to search the dmap tree and allocate the
1341 	 * required space if available.
1342 	 *
1343 	 * if the allocation group is completely free, dbAllocCtl() is
1344 	 * also called to allocate the required space.  this is done for
1345 	 * two reasons.  first, it makes no sense searching the dmap control
1346 	 * pages for free space when we know that free space exists.  second,
1347 	 * the dmap control pages may indicate that the allocation group
1348 	 * has no free space if the allocation group is part (not the first
1349 	 * part) of a larger binary buddy system.
1350 	 */
1351 	if (bmp->db_agsize == BPERDMAP
1352 	    || bmp->db_agfree[agno] == bmp->db_agsize) {
1353 		rc = dbAllocCtl(bmp, nblocks, l2nb, blkno, results);
1354 		if ((rc == -ENOSPC) &&
1355 		    (bmp->db_agfree[agno] == bmp->db_agsize)) {
1356 			printk(KERN_ERR "blkno = %Lx, blocks = %Lx\n",
1357 			       (unsigned long long) blkno,
1358 			       (unsigned long long) nblocks);
1359 			jfs_error(bmp->db_ipbmap->i_sb,
1360 				  "dbAllocCtl failed in free AG\n");
1361 		}
1362 		return (rc);
1363 	}
1364 
1365 	/* the buffer for the dmap control page that fully describes the
1366 	 * allocation group.
1367 	 */
1368 	lblkno = BLKTOCTL(blkno, bmp->db_l2nbperpage, bmp->db_aglevel);
1369 	mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1370 	if (mp == NULL)
1371 		return -EIO;
1372 	dcp = (struct dmapctl *) mp->data;
1373 	budmin = dcp->budmin;
1374 
1375 	if (dcp->leafidx != cpu_to_le32(CTLLEAFIND)) {
1376 		jfs_error(bmp->db_ipbmap->i_sb, "Corrupt dmapctl page\n");
1377 		release_metapage(mp);
1378 		return -EIO;
1379 	}
1380 
1381 	/* search the subtree(s) of the dmap control page that describes
1382 	 * the allocation group, looking for sufficient free space.  to begin,
1383 	 * determine how many allocation groups are represented in a dmap
1384 	 * control page at the control page level (i.e. L0, L1, L2) that
1385 	 * fully describes an allocation group. next, determine the starting
1386 	 * tree index of this allocation group within the control page.
1387 	 */
1388 	agperlev =
1389 	    (1 << (L2LPERCTL - (bmp->db_agheight << 1))) / bmp->db_agwidth;
1390 	ti = bmp->db_agstart + bmp->db_agwidth * (agno & (agperlev - 1));
1391 
1392 	if (ti < 0 || ti >= le32_to_cpu(dcp->nleafs)) {
1393 		jfs_error(bmp->db_ipbmap->i_sb, "Corrupt dmapctl page\n");
1394 		release_metapage(mp);
1395 		return -EIO;
1396 	}
1397 
1398 	/* dmap control page trees fan-out by 4 and a single allocation
1399 	 * group may be described by 1 or 2 subtrees within the ag level
1400 	 * dmap control page, depending upon the ag size. examine the ag's
1401 	 * subtrees for sufficient free space, starting with the leftmost
1402 	 * subtree.
1403 	 */
1404 	for (i = 0; i < bmp->db_agwidth; i++, ti++) {
1405 		/* is there sufficient free space ?
1406 		 */
1407 		if (l2nb > dcp->stree[ti])
1408 			continue;
1409 
1410 		/* sufficient free space found in a subtree. now search down
1411 		 * the subtree to find the leftmost leaf that describes this
1412 		 * free space.
1413 		 */
1414 		for (k = bmp->db_agheight; k > 0; k--) {
1415 			for (n = 0, m = (ti << 2) + 1; n < 4; n++) {
1416 				if (l2nb <= dcp->stree[m + n]) {
1417 					ti = m + n;
1418 					break;
1419 				}
1420 			}
1421 			if (n == 4) {
1422 				jfs_error(bmp->db_ipbmap->i_sb,
1423 					  "failed descending stree\n");
1424 				release_metapage(mp);
1425 				return -EIO;
1426 			}
1427 		}
1428 
1429 		/* determine the block number within the file system
1430 		 * that corresponds to this leaf.
1431 		 */
1432 		if (bmp->db_aglevel == 2)
1433 			blkno = 0;
1434 		else if (bmp->db_aglevel == 1)
1435 			blkno &= ~(MAXL1SIZE - 1);
1436 		else		/* bmp->db_aglevel == 0 */
1437 			blkno &= ~(MAXL0SIZE - 1);
1438 
1439 		blkno +=
1440 		    ((s64) (ti - le32_to_cpu(dcp->leafidx))) << budmin;
1441 
1442 		/* release the buffer in preparation for going down
1443 		 * the next level of dmap control pages.
1444 		 */
1445 		release_metapage(mp);
1446 
1447 		/* check if we need to continue to search down the lower
1448 		 * level dmap control pages.  we need to if the number of
1449 		 * blocks required is less than maximum number of blocks
1450 		 * described at the next lower level.
1451 		 */
1452 		if (l2nb < budmin) {
1453 
1454 			/* search the lower level dmap control pages to get
1455 			 * the starting block number of the dmap that
1456 			 * contains or starts off the free space.
1457 			 */
1458 			if ((rc =
1459 			     dbFindCtl(bmp, l2nb, bmp->db_aglevel - 1,
1460 				       &blkno))) {
1461 				if (rc == -ENOSPC) {
1462 					jfs_error(bmp->db_ipbmap->i_sb,
1463 						  "control page inconsistent\n");
1464 					return -EIO;
1465 				}
1466 				return (rc);
1467 			}
1468 		}
1469 
1470 		/* allocate the blocks.
1471 		 */
1472 		rc = dbAllocCtl(bmp, nblocks, l2nb, blkno, results);
1473 		if (rc == -ENOSPC) {
1474 			jfs_error(bmp->db_ipbmap->i_sb,
1475 				  "unable to allocate blocks\n");
1476 			rc = -EIO;
1477 		}
1478 		return (rc);
1479 	}
1480 
1481 	/* no space in the allocation group.  release the buffer and
1482 	 * return -ENOSPC.
1483 	 */
1484 	release_metapage(mp);
1485 
1486 	return -ENOSPC;
1487 }
1488 
1489 
1490 /*
1491  * NAME:	dbAllocAny()
1492  *
1493  * FUNCTION:	attempt to allocate the specified number of contiguous
1494  *		free blocks anywhere in the file system.
1495  *
1496  *		dbAllocAny() attempts to find the sufficient free space by
1497  *		searching down the dmap control pages, starting with the
1498  *		highest level (i.e. L0, L1, L2) control page.  if free space
1499  *		large enough to satisfy the desired free space is found, the
1500  *		desired free space is allocated.
1501  *
1502  * PARAMETERS:
1503  *	bmp	-  pointer to bmap descriptor
1504  *	nblocks	 -  actual number of contiguous free blocks desired.
1505  *	l2nb	 -  log2 number of contiguous free blocks desired.
1506  *	results	-  on successful return, set to the starting block number
1507  *		   of the newly allocated range.
1508  *
1509  * RETURN VALUES:
1510  *	0	- success
1511  *	-ENOSPC	- insufficient disk resources
1512  *	-EIO	- i/o error
1513  *
1514  * serialization: IWRITE_LOCK(ipbmap) held on entry/exit;
1515  */
dbAllocAny(struct bmap * bmp,s64 nblocks,int l2nb,s64 * results)1516 static int dbAllocAny(struct bmap * bmp, s64 nblocks, int l2nb, s64 * results)
1517 {
1518 	int rc;
1519 	s64 blkno = 0;
1520 
1521 	/* starting with the top level dmap control page, search
1522 	 * down the dmap control levels for sufficient free space.
1523 	 * if free space is found, dbFindCtl() returns the starting
1524 	 * block number of the dmap that contains or starts off the
1525 	 * range of free space.
1526 	 */
1527 	if ((rc = dbFindCtl(bmp, l2nb, bmp->db_maxlevel, &blkno)))
1528 		return (rc);
1529 
1530 	/* allocate the blocks.
1531 	 */
1532 	rc = dbAllocCtl(bmp, nblocks, l2nb, blkno, results);
1533 	if (rc == -ENOSPC) {
1534 		jfs_error(bmp->db_ipbmap->i_sb, "unable to allocate blocks\n");
1535 		return -EIO;
1536 	}
1537 	return (rc);
1538 }
1539 
1540 
1541 /*
1542  * NAME:	dbDiscardAG()
1543  *
1544  * FUNCTION:	attempt to discard (TRIM) all free blocks of specific AG
1545  *
1546  *		algorithm:
1547  *		1) allocate blocks, as large as possible and save them
1548  *		   while holding IWRITE_LOCK on ipbmap
1549  *		2) trim all these saved block/length values
1550  *		3) mark the blocks free again
1551  *
1552  *		benefit:
1553  *		- we work only on one ag at some time, minimizing how long we
1554  *		  need to lock ipbmap
1555  *		- reading / writing the fs is possible most time, even on
1556  *		  trimming
1557  *
1558  *		downside:
1559  *		- we write two times to the dmapctl and dmap pages
1560  *		- but for me, this seems the best way, better ideas?
1561  *		/TR 2012
1562  *
1563  * PARAMETERS:
1564  *	ip	- pointer to in-core inode
1565  *	agno	- ag to trim
1566  *	minlen	- minimum value of contiguous blocks
1567  *
1568  * RETURN VALUES:
1569  *	s64	- actual number of blocks trimmed
1570  */
dbDiscardAG(struct inode * ip,int agno,s64 minlen)1571 s64 dbDiscardAG(struct inode *ip, int agno, s64 minlen)
1572 {
1573 	struct inode *ipbmap = JFS_SBI(ip->i_sb)->ipbmap;
1574 	struct bmap *bmp = JFS_SBI(ip->i_sb)->bmap;
1575 	s64 nblocks, blkno;
1576 	u64 trimmed = 0;
1577 	int rc, l2nb;
1578 	struct super_block *sb = ipbmap->i_sb;
1579 
1580 	struct range2trim {
1581 		u64 blkno;
1582 		u64 nblocks;
1583 	} *totrim, *tt;
1584 
1585 	/* max blkno / nblocks pairs to trim */
1586 	int count = 0, range_cnt;
1587 	u64 max_ranges;
1588 
1589 	/* prevent others from writing new stuff here, while trimming */
1590 	IWRITE_LOCK(ipbmap, RDWRLOCK_DMAP);
1591 
1592 	nblocks = bmp->db_agfree[agno];
1593 	max_ranges = nblocks;
1594 	do_div(max_ranges, minlen);
1595 	range_cnt = min_t(u64, max_ranges + 1, 32 * 1024);
1596 	totrim = kmalloc_array(range_cnt, sizeof(struct range2trim), GFP_NOFS);
1597 	if (totrim == NULL) {
1598 		jfs_error(bmp->db_ipbmap->i_sb, "no memory for trim array\n");
1599 		IWRITE_UNLOCK(ipbmap);
1600 		return 0;
1601 	}
1602 
1603 	tt = totrim;
1604 	while (nblocks >= minlen) {
1605 		l2nb = BLKSTOL2(nblocks);
1606 
1607 		/* 0 = okay, -EIO = fatal, -ENOSPC -> try smaller block */
1608 		rc = dbAllocAG(bmp, agno, nblocks, l2nb, &blkno);
1609 		if (rc == 0) {
1610 			tt->blkno = blkno;
1611 			tt->nblocks = nblocks;
1612 			tt++; count++;
1613 
1614 			/* the whole ag is free, trim now */
1615 			if (bmp->db_agfree[agno] == 0)
1616 				break;
1617 
1618 			/* give a hint for the next while */
1619 			nblocks = bmp->db_agfree[agno];
1620 			continue;
1621 		} else if (rc == -ENOSPC) {
1622 			/* search for next smaller log2 block */
1623 			l2nb = BLKSTOL2(nblocks) - 1;
1624 			if (unlikely(l2nb < 0))
1625 				break;
1626 			nblocks = 1LL << l2nb;
1627 		} else {
1628 			/* Trim any already allocated blocks */
1629 			jfs_error(bmp->db_ipbmap->i_sb, "-EIO\n");
1630 			break;
1631 		}
1632 
1633 		/* check, if our trim array is full */
1634 		if (unlikely(count >= range_cnt - 1))
1635 			break;
1636 	}
1637 	IWRITE_UNLOCK(ipbmap);
1638 
1639 	tt->nblocks = 0; /* mark the current end */
1640 	for (tt = totrim; tt->nblocks != 0; tt++) {
1641 		/* when mounted with online discard, dbFree() will
1642 		 * call jfs_issue_discard() itself */
1643 		if (!(JFS_SBI(sb)->flag & JFS_DISCARD))
1644 			jfs_issue_discard(ip, tt->blkno, tt->nblocks);
1645 		dbFree(ip, tt->blkno, tt->nblocks);
1646 		trimmed += tt->nblocks;
1647 	}
1648 	kfree(totrim);
1649 
1650 	return trimmed;
1651 }
1652 
1653 /*
1654  * NAME:	dbFindCtl()
1655  *
1656  * FUNCTION:	starting at a specified dmap control page level and block
1657  *		number, search down the dmap control levels for a range of
1658  *		contiguous free blocks large enough to satisfy an allocation
1659  *		request for the specified number of free blocks.
1660  *
1661  *		if sufficient contiguous free blocks are found, this routine
1662  *		returns the starting block number within a dmap page that
1663  *		contains or starts a range of contiqious free blocks that
1664  *		is sufficient in size.
1665  *
1666  * PARAMETERS:
1667  *	bmp	-  pointer to bmap descriptor
1668  *	level	-  starting dmap control page level.
1669  *	l2nb	-  log2 number of contiguous free blocks desired.
1670  *	*blkno	-  on entry, starting block number for conducting the search.
1671  *		   on successful return, the first block within a dmap page
1672  *		   that contains or starts a range of contiguous free blocks.
1673  *
1674  * RETURN VALUES:
1675  *	0	- success
1676  *	-ENOSPC	- insufficient disk resources
1677  *	-EIO	- i/o error
1678  *
1679  * serialization: IWRITE_LOCK(ipbmap) held on entry/exit;
1680  */
dbFindCtl(struct bmap * bmp,int l2nb,int level,s64 * blkno)1681 static int dbFindCtl(struct bmap * bmp, int l2nb, int level, s64 * blkno)
1682 {
1683 	int rc, leafidx, lev;
1684 	s64 b, lblkno;
1685 	struct dmapctl *dcp;
1686 	int budmin;
1687 	struct metapage *mp;
1688 
1689 	/* starting at the specified dmap control page level and block
1690 	 * number, search down the dmap control levels for the starting
1691 	 * block number of a dmap page that contains or starts off
1692 	 * sufficient free blocks.
1693 	 */
1694 	for (lev = level, b = *blkno; lev >= 0; lev--) {
1695 		/* get the buffer of the dmap control page for the block
1696 		 * number and level (i.e. L0, L1, L2).
1697 		 */
1698 		lblkno = BLKTOCTL(b, bmp->db_l2nbperpage, lev);
1699 		mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1700 		if (mp == NULL)
1701 			return -EIO;
1702 		dcp = (struct dmapctl *) mp->data;
1703 		budmin = dcp->budmin;
1704 
1705 		if (dcp->leafidx != cpu_to_le32(CTLLEAFIND)) {
1706 			jfs_error(bmp->db_ipbmap->i_sb,
1707 				  "Corrupt dmapctl page\n");
1708 			release_metapage(mp);
1709 			return -EIO;
1710 		}
1711 
1712 		/* search the tree within the dmap control page for
1713 		 * sufficient free space.  if sufficient free space is found,
1714 		 * dbFindLeaf() returns the index of the leaf at which
1715 		 * free space was found.
1716 		 */
1717 		rc = dbFindLeaf((dmtree_t *) dcp, l2nb, &leafidx, true);
1718 
1719 		/* release the buffer.
1720 		 */
1721 		release_metapage(mp);
1722 
1723 		/* space found ?
1724 		 */
1725 		if (rc) {
1726 			if (lev != level) {
1727 				jfs_error(bmp->db_ipbmap->i_sb,
1728 					  "dmap inconsistent\n");
1729 				return -EIO;
1730 			}
1731 			return -ENOSPC;
1732 		}
1733 
1734 		/* adjust the block number to reflect the location within
1735 		 * the dmap control page (i.e. the leaf) at which free
1736 		 * space was found.
1737 		 */
1738 		b += (((s64) leafidx) << budmin);
1739 
1740 		/* we stop the search at this dmap control page level if
1741 		 * the number of blocks required is greater than or equal
1742 		 * to the maximum number of blocks described at the next
1743 		 * (lower) level.
1744 		 */
1745 		if (l2nb >= budmin)
1746 			break;
1747 	}
1748 
1749 	*blkno = b;
1750 	return (0);
1751 }
1752 
1753 
1754 /*
1755  * NAME:	dbAllocCtl()
1756  *
1757  * FUNCTION:	attempt to allocate a specified number of contiguous
1758  *		blocks starting within a specific dmap.
1759  *
1760  *		this routine is called by higher level routines that search
1761  *		the dmap control pages above the actual dmaps for contiguous
1762  *		free space.  the result of successful searches by these
1763  *		routines are the starting block numbers within dmaps, with
1764  *		the dmaps themselves containing the desired contiguous free
1765  *		space or starting a contiguous free space of desired size
1766  *		that is made up of the blocks of one or more dmaps. these
1767  *		calls should not fail due to insufficent resources.
1768  *
1769  *		this routine is called in some cases where it is not known
1770  *		whether it will fail due to insufficient resources.  more
1771  *		specifically, this occurs when allocating from an allocation
1772  *		group whose size is equal to the number of blocks per dmap.
1773  *		in this case, the dmap control pages are not examined prior
1774  *		to calling this routine (to save pathlength) and the call
1775  *		might fail.
1776  *
1777  *		for a request size that fits within a dmap, this routine relies
1778  *		upon the dmap's dmtree to find the requested contiguous free
1779  *		space.  for request sizes that are larger than a dmap, the
1780  *		requested free space will start at the first block of the
1781  *		first dmap (i.e. blkno).
1782  *
1783  * PARAMETERS:
1784  *	bmp	-  pointer to bmap descriptor
1785  *	nblocks	 -  actual number of contiguous free blocks to allocate.
1786  *	l2nb	 -  log2 number of contiguous free blocks to allocate.
1787  *	blkno	 -  starting block number of the dmap to start the allocation
1788  *		    from.
1789  *	results	-  on successful return, set to the starting block number
1790  *		   of the newly allocated range.
1791  *
1792  * RETURN VALUES:
1793  *	0	- success
1794  *	-ENOSPC	- insufficient disk resources
1795  *	-EIO	- i/o error
1796  *
1797  * serialization: IWRITE_LOCK(ipbmap) held on entry/exit;
1798  */
1799 static int
dbAllocCtl(struct bmap * bmp,s64 nblocks,int l2nb,s64 blkno,s64 * results)1800 dbAllocCtl(struct bmap * bmp, s64 nblocks, int l2nb, s64 blkno, s64 * results)
1801 {
1802 	int rc, nb;
1803 	s64 b, lblkno, n;
1804 	struct metapage *mp;
1805 	struct dmap *dp;
1806 
1807 	/* check if the allocation request is confined to a single dmap.
1808 	 */
1809 	if (l2nb <= L2BPERDMAP) {
1810 		/* get the buffer for the dmap.
1811 		 */
1812 		lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
1813 		mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1814 		if (mp == NULL)
1815 			return -EIO;
1816 		dp = (struct dmap *) mp->data;
1817 
1818 		if (dp->tree.budmin < 0) {
1819 			release_metapage(mp);
1820 			return -EIO;
1821 		}
1822 
1823 		/* try to allocate the blocks.
1824 		 */
1825 		rc = dbAllocDmapLev(bmp, dp, (int) nblocks, l2nb, results);
1826 		if (rc == 0)
1827 			mark_metapage_dirty(mp);
1828 
1829 		release_metapage(mp);
1830 
1831 		return (rc);
1832 	}
1833 
1834 	/* allocation request involving multiple dmaps. it must start on
1835 	 * a dmap boundary.
1836 	 */
1837 	assert((blkno & (BPERDMAP - 1)) == 0);
1838 
1839 	/* allocate the blocks dmap by dmap.
1840 	 */
1841 	for (n = nblocks, b = blkno; n > 0; n -= nb, b += nb) {
1842 		/* get the buffer for the dmap.
1843 		 */
1844 		lblkno = BLKTODMAP(b, bmp->db_l2nbperpage);
1845 		mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1846 		if (mp == NULL) {
1847 			rc = -EIO;
1848 			goto backout;
1849 		}
1850 		dp = (struct dmap *) mp->data;
1851 
1852 		/* the dmap better be all free.
1853 		 */
1854 		if (dp->tree.stree[ROOT] != L2BPERDMAP) {
1855 			release_metapage(mp);
1856 			jfs_error(bmp->db_ipbmap->i_sb,
1857 				  "the dmap is not all free\n");
1858 			rc = -EIO;
1859 			goto backout;
1860 		}
1861 
1862 		/* determine how many blocks to allocate from this dmap.
1863 		 */
1864 		nb = min_t(s64, n, BPERDMAP);
1865 
1866 		/* allocate the blocks from the dmap.
1867 		 */
1868 		if ((rc = dbAllocDmap(bmp, dp, b, nb))) {
1869 			release_metapage(mp);
1870 			goto backout;
1871 		}
1872 
1873 		/* write the buffer.
1874 		 */
1875 		write_metapage(mp);
1876 	}
1877 
1878 	/* set the results (starting block number) and return.
1879 	 */
1880 	*results = blkno;
1881 	return (0);
1882 
1883 	/* something failed in handling an allocation request involving
1884 	 * multiple dmaps.  we'll try to clean up by backing out any
1885 	 * allocation that has already happened for this request.  if
1886 	 * we fail in backing out the allocation, we'll mark the file
1887 	 * system to indicate that blocks have been leaked.
1888 	 */
1889       backout:
1890 
1891 	/* try to backout the allocations dmap by dmap.
1892 	 */
1893 	for (n = nblocks - n, b = blkno; n > 0;
1894 	     n -= BPERDMAP, b += BPERDMAP) {
1895 		/* get the buffer for this dmap.
1896 		 */
1897 		lblkno = BLKTODMAP(b, bmp->db_l2nbperpage);
1898 		mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1899 		if (mp == NULL) {
1900 			/* could not back out.  mark the file system
1901 			 * to indicate that we have leaked blocks.
1902 			 */
1903 			jfs_error(bmp->db_ipbmap->i_sb,
1904 				  "I/O Error: Block Leakage\n");
1905 			continue;
1906 		}
1907 		dp = (struct dmap *) mp->data;
1908 
1909 		/* free the blocks is this dmap.
1910 		 */
1911 		if (dbFreeDmap(bmp, dp, b, BPERDMAP)) {
1912 			/* could not back out.  mark the file system
1913 			 * to indicate that we have leaked blocks.
1914 			 */
1915 			release_metapage(mp);
1916 			jfs_error(bmp->db_ipbmap->i_sb, "Block Leakage\n");
1917 			continue;
1918 		}
1919 
1920 		/* write the buffer.
1921 		 */
1922 		write_metapage(mp);
1923 	}
1924 
1925 	return (rc);
1926 }
1927 
1928 
1929 /*
1930  * NAME:	dbAllocDmapLev()
1931  *
1932  * FUNCTION:	attempt to allocate a specified number of contiguous blocks
1933  *		from a specified dmap.
1934  *
1935  *		this routine checks if the contiguous blocks are available.
1936  *		if so, nblocks of blocks are allocated; otherwise, ENOSPC is
1937  *		returned.
1938  *
1939  * PARAMETERS:
1940  *	mp	-  pointer to bmap descriptor
1941  *	dp	-  pointer to dmap to attempt to allocate blocks from.
1942  *	l2nb	-  log2 number of contiguous block desired.
1943  *	nblocks	-  actual number of contiguous block desired.
1944  *	results	-  on successful return, set to the starting block number
1945  *		   of the newly allocated range.
1946  *
1947  * RETURN VALUES:
1948  *	0	- success
1949  *	-ENOSPC	- insufficient disk resources
1950  *	-EIO	- i/o error
1951  *
1952  * serialization: IREAD_LOCK(ipbmap), e.g., from dbAlloc(), or
1953  *	IWRITE_LOCK(ipbmap), e.g., dbAllocCtl(), held on entry/exit;
1954  */
1955 static int
dbAllocDmapLev(struct bmap * bmp,struct dmap * dp,int nblocks,int l2nb,s64 * results)1956 dbAllocDmapLev(struct bmap * bmp,
1957 	       struct dmap * dp, int nblocks, int l2nb, s64 * results)
1958 {
1959 	s64 blkno;
1960 	int leafidx, rc;
1961 
1962 	/* can't be more than a dmaps worth of blocks */
1963 	assert(l2nb <= L2BPERDMAP);
1964 
1965 	/* search the tree within the dmap page for sufficient
1966 	 * free space.  if sufficient free space is found, dbFindLeaf()
1967 	 * returns the index of the leaf at which free space was found.
1968 	 */
1969 	if (dbFindLeaf((dmtree_t *) &dp->tree, l2nb, &leafidx, false))
1970 		return -ENOSPC;
1971 
1972 	if (leafidx < 0)
1973 		return -EIO;
1974 
1975 	/* determine the block number within the file system corresponding
1976 	 * to the leaf at which free space was found.
1977 	 */
1978 	blkno = le64_to_cpu(dp->start) + (leafidx << L2DBWORD);
1979 
1980 	/* if not all bits of the dmap word are free, get the starting
1981 	 * bit number within the dmap word of the required string of free
1982 	 * bits and adjust the block number with this value.
1983 	 */
1984 	if (dp->tree.stree[leafidx + LEAFIND] < BUDMIN)
1985 		blkno += dbFindBits(le32_to_cpu(dp->wmap[leafidx]), l2nb);
1986 
1987 	/* allocate the blocks */
1988 	if ((rc = dbAllocDmap(bmp, dp, blkno, nblocks)) == 0)
1989 		*results = blkno;
1990 
1991 	return (rc);
1992 }
1993 
1994 
1995 /*
1996  * NAME:	dbAllocDmap()
1997  *
1998  * FUNCTION:	adjust the disk allocation map to reflect the allocation
1999  *		of a specified block range within a dmap.
2000  *
2001  *		this routine allocates the specified blocks from the dmap
2002  *		through a call to dbAllocBits(). if the allocation of the
2003  *		block range causes the maximum string of free blocks within
2004  *		the dmap to change (i.e. the value of the root of the dmap's
2005  *		dmtree), this routine will cause this change to be reflected
2006  *		up through the appropriate levels of the dmap control pages
2007  *		by a call to dbAdjCtl() for the L0 dmap control page that
2008  *		covers this dmap.
2009  *
2010  * PARAMETERS:
2011  *	bmp	-  pointer to bmap descriptor
2012  *	dp	-  pointer to dmap to allocate the block range from.
2013  *	blkno	-  starting block number of the block to be allocated.
2014  *	nblocks	-  number of blocks to be allocated.
2015  *
2016  * RETURN VALUES:
2017  *	0	- success
2018  *	-EIO	- i/o error
2019  *
2020  * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2021  */
dbAllocDmap(struct bmap * bmp,struct dmap * dp,s64 blkno,int nblocks)2022 static int dbAllocDmap(struct bmap * bmp, struct dmap * dp, s64 blkno,
2023 		       int nblocks)
2024 {
2025 	s8 oldroot;
2026 	int rc;
2027 
2028 	/* save the current value of the root (i.e. maximum free string)
2029 	 * of the dmap tree.
2030 	 */
2031 	oldroot = dp->tree.stree[ROOT];
2032 
2033 	/* allocate the specified (blocks) bits */
2034 	dbAllocBits(bmp, dp, blkno, nblocks);
2035 
2036 	/* if the root has not changed, done. */
2037 	if (dp->tree.stree[ROOT] == oldroot)
2038 		return (0);
2039 
2040 	/* root changed. bubble the change up to the dmap control pages.
2041 	 * if the adjustment of the upper level control pages fails,
2042 	 * backout the bit allocation (thus making everything consistent).
2043 	 */
2044 	if ((rc = dbAdjCtl(bmp, blkno, dp->tree.stree[ROOT], 1, 0)))
2045 		dbFreeBits(bmp, dp, blkno, nblocks);
2046 
2047 	return (rc);
2048 }
2049 
2050 
2051 /*
2052  * NAME:	dbFreeDmap()
2053  *
2054  * FUNCTION:	adjust the disk allocation map to reflect the allocation
2055  *		of a specified block range within a dmap.
2056  *
2057  *		this routine frees the specified blocks from the dmap through
2058  *		a call to dbFreeBits(). if the deallocation of the block range
2059  *		causes the maximum string of free blocks within the dmap to
2060  *		change (i.e. the value of the root of the dmap's dmtree), this
2061  *		routine will cause this change to be reflected up through the
2062  *		appropriate levels of the dmap control pages by a call to
2063  *		dbAdjCtl() for the L0 dmap control page that covers this dmap.
2064  *
2065  * PARAMETERS:
2066  *	bmp	-  pointer to bmap descriptor
2067  *	dp	-  pointer to dmap to free the block range from.
2068  *	blkno	-  starting block number of the block to be freed.
2069  *	nblocks	-  number of blocks to be freed.
2070  *
2071  * RETURN VALUES:
2072  *	0	- success
2073  *	-EIO	- i/o error
2074  *
2075  * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2076  */
dbFreeDmap(struct bmap * bmp,struct dmap * dp,s64 blkno,int nblocks)2077 static int dbFreeDmap(struct bmap * bmp, struct dmap * dp, s64 blkno,
2078 		      int nblocks)
2079 {
2080 	s8 oldroot;
2081 	int rc = 0, word;
2082 
2083 	/* save the current value of the root (i.e. maximum free string)
2084 	 * of the dmap tree.
2085 	 */
2086 	oldroot = dp->tree.stree[ROOT];
2087 
2088 	/* free the specified (blocks) bits */
2089 	rc = dbFreeBits(bmp, dp, blkno, nblocks);
2090 
2091 	/* if error or the root has not changed, done. */
2092 	if (rc || (dp->tree.stree[ROOT] == oldroot))
2093 		return (rc);
2094 
2095 	/* root changed. bubble the change up to the dmap control pages.
2096 	 * if the adjustment of the upper level control pages fails,
2097 	 * backout the deallocation.
2098 	 */
2099 	if ((rc = dbAdjCtl(bmp, blkno, dp->tree.stree[ROOT], 0, 0))) {
2100 		word = (blkno & (BPERDMAP - 1)) >> L2DBWORD;
2101 
2102 		/* as part of backing out the deallocation, we will have
2103 		 * to back split the dmap tree if the deallocation caused
2104 		 * the freed blocks to become part of a larger binary buddy
2105 		 * system.
2106 		 */
2107 		if (dp->tree.stree[word] == NOFREE)
2108 			dbBackSplit((dmtree_t *)&dp->tree, word, false);
2109 
2110 		dbAllocBits(bmp, dp, blkno, nblocks);
2111 	}
2112 
2113 	return (rc);
2114 }
2115 
2116 
2117 /*
2118  * NAME:	dbAllocBits()
2119  *
2120  * FUNCTION:	allocate a specified block range from a dmap.
2121  *
2122  *		this routine updates the dmap to reflect the working
2123  *		state allocation of the specified block range. it directly
2124  *		updates the bits of the working map and causes the adjustment
2125  *		of the binary buddy system described by the dmap's dmtree
2126  *		leaves to reflect the bits allocated.  it also causes the
2127  *		dmap's dmtree, as a whole, to reflect the allocated range.
2128  *
2129  * PARAMETERS:
2130  *	bmp	-  pointer to bmap descriptor
2131  *	dp	-  pointer to dmap to allocate bits from.
2132  *	blkno	-  starting block number of the bits to be allocated.
2133  *	nblocks	-  number of bits to be allocated.
2134  *
2135  * RETURN VALUES: none
2136  *
2137  * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2138  */
dbAllocBits(struct bmap * bmp,struct dmap * dp,s64 blkno,int nblocks)2139 static void dbAllocBits(struct bmap * bmp, struct dmap * dp, s64 blkno,
2140 			int nblocks)
2141 {
2142 	int dbitno, word, rembits, nb, nwords, wbitno, nw, agno;
2143 	dmtree_t *tp = (dmtree_t *) & dp->tree;
2144 	int size;
2145 	s8 *leaf;
2146 
2147 	/* pick up a pointer to the leaves of the dmap tree */
2148 	leaf = dp->tree.stree + LEAFIND;
2149 
2150 	/* determine the bit number and word within the dmap of the
2151 	 * starting block.
2152 	 */
2153 	dbitno = blkno & (BPERDMAP - 1);
2154 	word = dbitno >> L2DBWORD;
2155 
2156 	/* block range better be within the dmap */
2157 	assert(dbitno + nblocks <= BPERDMAP);
2158 
2159 	/* allocate the bits of the dmap's words corresponding to the block
2160 	 * range. not all bits of the first and last words may be contained
2161 	 * within the block range.  if this is the case, we'll work against
2162 	 * those words (i.e. partial first and/or last) on an individual basis
2163 	 * (a single pass), allocating the bits of interest by hand and
2164 	 * updating the leaf corresponding to the dmap word. a single pass
2165 	 * will be used for all dmap words fully contained within the
2166 	 * specified range.  within this pass, the bits of all fully contained
2167 	 * dmap words will be marked as free in a single shot and the leaves
2168 	 * will be updated. a single leaf may describe the free space of
2169 	 * multiple dmap words, so we may update only a subset of the actual
2170 	 * leaves corresponding to the dmap words of the block range.
2171 	 */
2172 	for (rembits = nblocks; rembits > 0; rembits -= nb, dbitno += nb) {
2173 		/* determine the bit number within the word and
2174 		 * the number of bits within the word.
2175 		 */
2176 		wbitno = dbitno & (DBWORD - 1);
2177 		nb = min(rembits, DBWORD - wbitno);
2178 
2179 		/* check if only part of a word is to be allocated.
2180 		 */
2181 		if (nb < DBWORD) {
2182 			/* allocate (set to 1) the appropriate bits within
2183 			 * this dmap word.
2184 			 */
2185 			dp->wmap[word] |= cpu_to_le32(ONES << (DBWORD - nb)
2186 						      >> wbitno);
2187 
2188 			/* update the leaf for this dmap word. in addition
2189 			 * to setting the leaf value to the binary buddy max
2190 			 * of the updated dmap word, dbSplit() will split
2191 			 * the binary system of the leaves if need be.
2192 			 */
2193 			dbSplit(tp, word, BUDMIN,
2194 				dbMaxBud((u8 *)&dp->wmap[word]), false);
2195 
2196 			word += 1;
2197 		} else {
2198 			/* one or more dmap words are fully contained
2199 			 * within the block range.  determine how many
2200 			 * words and allocate (set to 1) the bits of these
2201 			 * words.
2202 			 */
2203 			nwords = rembits >> L2DBWORD;
2204 			memset(&dp->wmap[word], (int) ONES, nwords * 4);
2205 
2206 			/* determine how many bits.
2207 			 */
2208 			nb = nwords << L2DBWORD;
2209 
2210 			/* now update the appropriate leaves to reflect
2211 			 * the allocated words.
2212 			 */
2213 			for (; nwords > 0; nwords -= nw) {
2214 				if (leaf[word] < BUDMIN) {
2215 					jfs_error(bmp->db_ipbmap->i_sb,
2216 						  "leaf page corrupt\n");
2217 					break;
2218 				}
2219 
2220 				/* determine what the leaf value should be
2221 				 * updated to as the minimum of the l2 number
2222 				 * of bits being allocated and the l2 number
2223 				 * of bits currently described by this leaf.
2224 				 */
2225 				size = min_t(int, leaf[word],
2226 					     NLSTOL2BSZ(nwords));
2227 
2228 				/* update the leaf to reflect the allocation.
2229 				 * in addition to setting the leaf value to
2230 				 * NOFREE, dbSplit() will split the binary
2231 				 * system of the leaves to reflect the current
2232 				 * allocation (size).
2233 				 */
2234 				dbSplit(tp, word, size, NOFREE, false);
2235 
2236 				/* get the number of dmap words handled */
2237 				nw = BUDSIZE(size, BUDMIN);
2238 				word += nw;
2239 			}
2240 		}
2241 	}
2242 
2243 	/* update the free count for this dmap */
2244 	le32_add_cpu(&dp->nfree, -nblocks);
2245 
2246 	BMAP_LOCK(bmp);
2247 
2248 	/* if this allocation group is completely free,
2249 	 * update the maximum allocation group number if this allocation
2250 	 * group is the new max.
2251 	 */
2252 	agno = blkno >> bmp->db_agl2size;
2253 	if (agno > bmp->db_maxag)
2254 		bmp->db_maxag = agno;
2255 
2256 	/* update the free count for the allocation group and map */
2257 	bmp->db_agfree[agno] -= nblocks;
2258 	bmp->db_nfree -= nblocks;
2259 
2260 	BMAP_UNLOCK(bmp);
2261 }
2262 
2263 
2264 /*
2265  * NAME:	dbFreeBits()
2266  *
2267  * FUNCTION:	free a specified block range from a dmap.
2268  *
2269  *		this routine updates the dmap to reflect the working
2270  *		state allocation of the specified block range. it directly
2271  *		updates the bits of the working map and causes the adjustment
2272  *		of the binary buddy system described by the dmap's dmtree
2273  *		leaves to reflect the bits freed.  it also causes the dmap's
2274  *		dmtree, as a whole, to reflect the deallocated range.
2275  *
2276  * PARAMETERS:
2277  *	bmp	-  pointer to bmap descriptor
2278  *	dp	-  pointer to dmap to free bits from.
2279  *	blkno	-  starting block number of the bits to be freed.
2280  *	nblocks	-  number of bits to be freed.
2281  *
2282  * RETURN VALUES: 0 for success
2283  *
2284  * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2285  */
dbFreeBits(struct bmap * bmp,struct dmap * dp,s64 blkno,int nblocks)2286 static int dbFreeBits(struct bmap * bmp, struct dmap * dp, s64 blkno,
2287 		       int nblocks)
2288 {
2289 	int dbitno, word, rembits, nb, nwords, wbitno, nw, agno;
2290 	dmtree_t *tp = (dmtree_t *) & dp->tree;
2291 	int rc = 0;
2292 	int size;
2293 
2294 	/* determine the bit number and word within the dmap of the
2295 	 * starting block.
2296 	 */
2297 	dbitno = blkno & (BPERDMAP - 1);
2298 	word = dbitno >> L2DBWORD;
2299 
2300 	/* block range better be within the dmap.
2301 	 */
2302 	assert(dbitno + nblocks <= BPERDMAP);
2303 
2304 	/* free the bits of the dmaps words corresponding to the block range.
2305 	 * not all bits of the first and last words may be contained within
2306 	 * the block range.  if this is the case, we'll work against those
2307 	 * words (i.e. partial first and/or last) on an individual basis
2308 	 * (a single pass), freeing the bits of interest by hand and updating
2309 	 * the leaf corresponding to the dmap word. a single pass will be used
2310 	 * for all dmap words fully contained within the specified range.
2311 	 * within this pass, the bits of all fully contained dmap words will
2312 	 * be marked as free in a single shot and the leaves will be updated. a
2313 	 * single leaf may describe the free space of multiple dmap words,
2314 	 * so we may update only a subset of the actual leaves corresponding
2315 	 * to the dmap words of the block range.
2316 	 *
2317 	 * dbJoin() is used to update leaf values and will join the binary
2318 	 * buddy system of the leaves if the new leaf values indicate this
2319 	 * should be done.
2320 	 */
2321 	for (rembits = nblocks; rembits > 0; rembits -= nb, dbitno += nb) {
2322 		/* determine the bit number within the word and
2323 		 * the number of bits within the word.
2324 		 */
2325 		wbitno = dbitno & (DBWORD - 1);
2326 		nb = min(rembits, DBWORD - wbitno);
2327 
2328 		/* check if only part of a word is to be freed.
2329 		 */
2330 		if (nb < DBWORD) {
2331 			/* free (zero) the appropriate bits within this
2332 			 * dmap word.
2333 			 */
2334 			dp->wmap[word] &=
2335 			    cpu_to_le32(~(ONES << (DBWORD - nb)
2336 					  >> wbitno));
2337 
2338 			/* update the leaf for this dmap word.
2339 			 */
2340 			rc = dbJoin(tp, word,
2341 				    dbMaxBud((u8 *)&dp->wmap[word]), false);
2342 			if (rc)
2343 				return rc;
2344 
2345 			word += 1;
2346 		} else {
2347 			/* one or more dmap words are fully contained
2348 			 * within the block range.  determine how many
2349 			 * words and free (zero) the bits of these words.
2350 			 */
2351 			nwords = rembits >> L2DBWORD;
2352 			memset(&dp->wmap[word], 0, nwords * 4);
2353 
2354 			/* determine how many bits.
2355 			 */
2356 			nb = nwords << L2DBWORD;
2357 
2358 			/* now update the appropriate leaves to reflect
2359 			 * the freed words.
2360 			 */
2361 			for (; nwords > 0; nwords -= nw) {
2362 				/* determine what the leaf value should be
2363 				 * updated to as the minimum of the l2 number
2364 				 * of bits being freed and the l2 (max) number
2365 				 * of bits that can be described by this leaf.
2366 				 */
2367 				size =
2368 				    min(LITOL2BSZ
2369 					(word, L2LPERDMAP, BUDMIN),
2370 					NLSTOL2BSZ(nwords));
2371 
2372 				/* update the leaf.
2373 				 */
2374 				rc = dbJoin(tp, word, size, false);
2375 				if (rc)
2376 					return rc;
2377 
2378 				/* get the number of dmap words handled.
2379 				 */
2380 				nw = BUDSIZE(size, BUDMIN);
2381 				word += nw;
2382 			}
2383 		}
2384 	}
2385 
2386 	/* update the free count for this dmap.
2387 	 */
2388 	le32_add_cpu(&dp->nfree, nblocks);
2389 
2390 	BMAP_LOCK(bmp);
2391 
2392 	/* update the free count for the allocation group and
2393 	 * map.
2394 	 */
2395 	agno = blkno >> bmp->db_agl2size;
2396 	bmp->db_nfree += nblocks;
2397 	bmp->db_agfree[agno] += nblocks;
2398 
2399 	/* check if this allocation group is not completely free and
2400 	 * if it is currently the maximum (rightmost) allocation group.
2401 	 * if so, establish the new maximum allocation group number by
2402 	 * searching left for the first allocation group with allocation.
2403 	 */
2404 	if ((bmp->db_agfree[agno] == bmp->db_agsize && agno == bmp->db_maxag) ||
2405 	    (agno == bmp->db_numag - 1 &&
2406 	     bmp->db_agfree[agno] == (bmp-> db_mapsize & (BPERDMAP - 1)))) {
2407 		while (bmp->db_maxag > 0) {
2408 			bmp->db_maxag -= 1;
2409 			if (bmp->db_agfree[bmp->db_maxag] !=
2410 			    bmp->db_agsize)
2411 				break;
2412 		}
2413 
2414 		/* re-establish the allocation group preference if the
2415 		 * current preference is right of the maximum allocation
2416 		 * group.
2417 		 */
2418 		if (bmp->db_agpref > bmp->db_maxag)
2419 			bmp->db_agpref = bmp->db_maxag;
2420 	}
2421 
2422 	BMAP_UNLOCK(bmp);
2423 
2424 	return 0;
2425 }
2426 
2427 
2428 /*
2429  * NAME:	dbAdjCtl()
2430  *
2431  * FUNCTION:	adjust a dmap control page at a specified level to reflect
2432  *		the change in a lower level dmap or dmap control page's
2433  *		maximum string of free blocks (i.e. a change in the root
2434  *		of the lower level object's dmtree) due to the allocation
2435  *		or deallocation of a range of blocks with a single dmap.
2436  *
2437  *		on entry, this routine is provided with the new value of
2438  *		the lower level dmap or dmap control page root and the
2439  *		starting block number of the block range whose allocation
2440  *		or deallocation resulted in the root change.  this range
2441  *		is respresented by a single leaf of the current dmapctl
2442  *		and the leaf will be updated with this value, possibly
2443  *		causing a binary buddy system within the leaves to be
2444  *		split or joined.  the update may also cause the dmapctl's
2445  *		dmtree to be updated.
2446  *
2447  *		if the adjustment of the dmap control page, itself, causes its
2448  *		root to change, this change will be bubbled up to the next dmap
2449  *		control level by a recursive call to this routine, specifying
2450  *		the new root value and the next dmap control page level to
2451  *		be adjusted.
2452  * PARAMETERS:
2453  *	bmp	-  pointer to bmap descriptor
2454  *	blkno	-  the first block of a block range within a dmap.  it is
2455  *		   the allocation or deallocation of this block range that
2456  *		   requires the dmap control page to be adjusted.
2457  *	newval	-  the new value of the lower level dmap or dmap control
2458  *		   page root.
2459  *	alloc	-  'true' if adjustment is due to an allocation.
2460  *	level	-  current level of dmap control page (i.e. L0, L1, L2) to
2461  *		   be adjusted.
2462  *
2463  * RETURN VALUES:
2464  *	0	- success
2465  *	-EIO	- i/o error
2466  *
2467  * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2468  */
2469 static int
dbAdjCtl(struct bmap * bmp,s64 blkno,int newval,int alloc,int level)2470 dbAdjCtl(struct bmap * bmp, s64 blkno, int newval, int alloc, int level)
2471 {
2472 	struct metapage *mp;
2473 	s8 oldroot;
2474 	int oldval;
2475 	s64 lblkno;
2476 	struct dmapctl *dcp;
2477 	int rc, leafno, ti;
2478 
2479 	/* get the buffer for the dmap control page for the specified
2480 	 * block number and control page level.
2481 	 */
2482 	lblkno = BLKTOCTL(blkno, bmp->db_l2nbperpage, level);
2483 	mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
2484 	if (mp == NULL)
2485 		return -EIO;
2486 	dcp = (struct dmapctl *) mp->data;
2487 
2488 	if (dcp->leafidx != cpu_to_le32(CTLLEAFIND)) {
2489 		jfs_error(bmp->db_ipbmap->i_sb, "Corrupt dmapctl page\n");
2490 		release_metapage(mp);
2491 		return -EIO;
2492 	}
2493 
2494 	/* determine the leaf number corresponding to the block and
2495 	 * the index within the dmap control tree.
2496 	 */
2497 	leafno = BLKTOCTLLEAF(blkno, dcp->budmin);
2498 	ti = leafno + le32_to_cpu(dcp->leafidx);
2499 
2500 	/* save the current leaf value and the current root level (i.e.
2501 	 * maximum l2 free string described by this dmapctl).
2502 	 */
2503 	oldval = dcp->stree[ti];
2504 	oldroot = dcp->stree[ROOT];
2505 
2506 	/* check if this is a control page update for an allocation.
2507 	 * if so, update the leaf to reflect the new leaf value using
2508 	 * dbSplit(); otherwise (deallocation), use dbJoin() to update
2509 	 * the leaf with the new value.  in addition to updating the
2510 	 * leaf, dbSplit() will also split the binary buddy system of
2511 	 * the leaves, if required, and bubble new values within the
2512 	 * dmapctl tree, if required.  similarly, dbJoin() will join
2513 	 * the binary buddy system of leaves and bubble new values up
2514 	 * the dmapctl tree as required by the new leaf value.
2515 	 */
2516 	if (alloc) {
2517 		/* check if we are in the middle of a binary buddy
2518 		 * system.  this happens when we are performing the
2519 		 * first allocation out of an allocation group that
2520 		 * is part (not the first part) of a larger binary
2521 		 * buddy system.  if we are in the middle, back split
2522 		 * the system prior to calling dbSplit() which assumes
2523 		 * that it is at the front of a binary buddy system.
2524 		 */
2525 		if (oldval == NOFREE) {
2526 			rc = dbBackSplit((dmtree_t *)dcp, leafno, true);
2527 			if (rc) {
2528 				release_metapage(mp);
2529 				return rc;
2530 			}
2531 			oldval = dcp->stree[ti];
2532 		}
2533 		dbSplit((dmtree_t *) dcp, leafno, dcp->budmin, newval, true);
2534 	} else {
2535 		rc = dbJoin((dmtree_t *) dcp, leafno, newval, true);
2536 		if (rc) {
2537 			release_metapage(mp);
2538 			return rc;
2539 		}
2540 	}
2541 
2542 	/* check if the root of the current dmap control page changed due
2543 	 * to the update and if the current dmap control page is not at
2544 	 * the current top level (i.e. L0, L1, L2) of the map.  if so (i.e.
2545 	 * root changed and this is not the top level), call this routine
2546 	 * again (recursion) for the next higher level of the mapping to
2547 	 * reflect the change in root for the current dmap control page.
2548 	 */
2549 	if (dcp->stree[ROOT] != oldroot) {
2550 		/* are we below the top level of the map.  if so,
2551 		 * bubble the root up to the next higher level.
2552 		 */
2553 		if (level < bmp->db_maxlevel) {
2554 			/* bubble up the new root of this dmap control page to
2555 			 * the next level.
2556 			 */
2557 			if ((rc =
2558 			     dbAdjCtl(bmp, blkno, dcp->stree[ROOT], alloc,
2559 				      level + 1))) {
2560 				/* something went wrong in bubbling up the new
2561 				 * root value, so backout the changes to the
2562 				 * current dmap control page.
2563 				 */
2564 				if (alloc) {
2565 					dbJoin((dmtree_t *) dcp, leafno,
2566 					       oldval, true);
2567 				} else {
2568 					/* the dbJoin() above might have
2569 					 * caused a larger binary buddy system
2570 					 * to form and we may now be in the
2571 					 * middle of it.  if this is the case,
2572 					 * back split the buddies.
2573 					 */
2574 					if (dcp->stree[ti] == NOFREE)
2575 						dbBackSplit((dmtree_t *)
2576 							    dcp, leafno, true);
2577 					dbSplit((dmtree_t *) dcp, leafno,
2578 						dcp->budmin, oldval, true);
2579 				}
2580 
2581 				/* release the buffer and return the error.
2582 				 */
2583 				release_metapage(mp);
2584 				return (rc);
2585 			}
2586 		} else {
2587 			/* we're at the top level of the map. update
2588 			 * the bmap control page to reflect the size
2589 			 * of the maximum free buddy system.
2590 			 */
2591 			assert(level == bmp->db_maxlevel);
2592 			if (bmp->db_maxfreebud != oldroot) {
2593 				jfs_error(bmp->db_ipbmap->i_sb,
2594 					  "the maximum free buddy is not the old root\n");
2595 			}
2596 			bmp->db_maxfreebud = dcp->stree[ROOT];
2597 		}
2598 	}
2599 
2600 	/* write the buffer.
2601 	 */
2602 	write_metapage(mp);
2603 
2604 	return (0);
2605 }
2606 
2607 
2608 /*
2609  * NAME:	dbSplit()
2610  *
2611  * FUNCTION:	update the leaf of a dmtree with a new value, splitting
2612  *		the leaf from the binary buddy system of the dmtree's
2613  *		leaves, as required.
2614  *
2615  * PARAMETERS:
2616  *	tp	- pointer to the tree containing the leaf.
2617  *	leafno	- the number of the leaf to be updated.
2618  *	splitsz	- the size the binary buddy system starting at the leaf
2619  *		  must be split to, specified as the log2 number of blocks.
2620  *	newval	- the new value for the leaf.
2621  *
2622  * RETURN VALUES: none
2623  *
2624  * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2625  */
dbSplit(dmtree_t * tp,int leafno,int splitsz,int newval,bool is_ctl)2626 static void dbSplit(dmtree_t *tp, int leafno, int splitsz, int newval, bool is_ctl)
2627 {
2628 	int budsz;
2629 	int cursz;
2630 	s8 *leaf = tp->dmt_stree + le32_to_cpu(tp->dmt_leafidx);
2631 
2632 	/* check if the leaf needs to be split.
2633 	 */
2634 	if (leaf[leafno] > tp->dmt_budmin) {
2635 		/* the split occurs by cutting the buddy system in half
2636 		 * at the specified leaf until we reach the specified
2637 		 * size.  pick up the starting split size (current size
2638 		 * - 1 in l2) and the corresponding buddy size.
2639 		 */
2640 		cursz = leaf[leafno] - 1;
2641 		budsz = BUDSIZE(cursz, tp->dmt_budmin);
2642 
2643 		/* split until we reach the specified size.
2644 		 */
2645 		while (cursz >= splitsz) {
2646 			/* update the buddy's leaf with its new value.
2647 			 */
2648 			dbAdjTree(tp, leafno ^ budsz, cursz, is_ctl);
2649 
2650 			/* on to the next size and buddy.
2651 			 */
2652 			cursz -= 1;
2653 			budsz >>= 1;
2654 		}
2655 	}
2656 
2657 	/* adjust the dmap tree to reflect the specified leaf's new
2658 	 * value.
2659 	 */
2660 	dbAdjTree(tp, leafno, newval, is_ctl);
2661 }
2662 
2663 
2664 /*
2665  * NAME:	dbBackSplit()
2666  *
2667  * FUNCTION:	back split the binary buddy system of dmtree leaves
2668  *		that hold a specified leaf until the specified leaf
2669  *		starts its own binary buddy system.
2670  *
2671  *		the allocators typically perform allocations at the start
2672  *		of binary buddy systems and dbSplit() is used to accomplish
2673  *		any required splits.  in some cases, however, allocation
2674  *		may occur in the middle of a binary system and requires a
2675  *		back split, with the split proceeding out from the middle of
2676  *		the system (less efficient) rather than the start of the
2677  *		system (more efficient).  the cases in which a back split
2678  *		is required are rare and are limited to the first allocation
2679  *		within an allocation group which is a part (not first part)
2680  *		of a larger binary buddy system and a few exception cases
2681  *		in which a previous join operation must be backed out.
2682  *
2683  * PARAMETERS:
2684  *	tp	- pointer to the tree containing the leaf.
2685  *	leafno	- the number of the leaf to be updated.
2686  *
2687  * RETURN VALUES: none
2688  *
2689  * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2690  */
dbBackSplit(dmtree_t * tp,int leafno,bool is_ctl)2691 static int dbBackSplit(dmtree_t *tp, int leafno, bool is_ctl)
2692 {
2693 	int budsz, bud, w, bsz, size;
2694 	int cursz;
2695 	s8 *leaf = tp->dmt_stree + le32_to_cpu(tp->dmt_leafidx);
2696 
2697 	/* leaf should be part (not first part) of a binary
2698 	 * buddy system.
2699 	 */
2700 	assert(leaf[leafno] == NOFREE);
2701 
2702 	/* the back split is accomplished by iteratively finding the leaf
2703 	 * that starts the buddy system that contains the specified leaf and
2704 	 * splitting that system in two.  this iteration continues until
2705 	 * the specified leaf becomes the start of a buddy system.
2706 	 *
2707 	 * determine maximum possible l2 size for the specified leaf.
2708 	 */
2709 	size =
2710 	    LITOL2BSZ(leafno, le32_to_cpu(tp->dmt_l2nleafs),
2711 		      tp->dmt_budmin);
2712 
2713 	/* determine the number of leaves covered by this size.  this
2714 	 * is the buddy size that we will start with as we search for
2715 	 * the buddy system that contains the specified leaf.
2716 	 */
2717 	budsz = BUDSIZE(size, tp->dmt_budmin);
2718 
2719 	/* back split.
2720 	 */
2721 	while (leaf[leafno] == NOFREE) {
2722 		/* find the leftmost buddy leaf.
2723 		 */
2724 		for (w = leafno, bsz = budsz;; bsz <<= 1,
2725 		     w = (w < bud) ? w : bud) {
2726 			if (bsz >= le32_to_cpu(tp->dmt_nleafs)) {
2727 				jfs_err("JFS: block map error in dbBackSplit");
2728 				return -EIO;
2729 			}
2730 
2731 			/* determine the buddy.
2732 			 */
2733 			bud = w ^ bsz;
2734 
2735 			/* check if this buddy is the start of the system.
2736 			 */
2737 			if (leaf[bud] != NOFREE) {
2738 				/* split the leaf at the start of the
2739 				 * system in two.
2740 				 */
2741 				cursz = leaf[bud] - 1;
2742 				dbSplit(tp, bud, cursz, cursz, is_ctl);
2743 				break;
2744 			}
2745 		}
2746 	}
2747 
2748 	if (leaf[leafno] != size) {
2749 		jfs_err("JFS: wrong leaf value in dbBackSplit");
2750 		return -EIO;
2751 	}
2752 	return 0;
2753 }
2754 
2755 
2756 /*
2757  * NAME:	dbJoin()
2758  *
2759  * FUNCTION:	update the leaf of a dmtree with a new value, joining
2760  *		the leaf with other leaves of the dmtree into a multi-leaf
2761  *		binary buddy system, as required.
2762  *
2763  * PARAMETERS:
2764  *	tp	- pointer to the tree containing the leaf.
2765  *	leafno	- the number of the leaf to be updated.
2766  *	newval	- the new value for the leaf.
2767  *
2768  * RETURN VALUES: none
2769  */
dbJoin(dmtree_t * tp,int leafno,int newval,bool is_ctl)2770 static int dbJoin(dmtree_t *tp, int leafno, int newval, bool is_ctl)
2771 {
2772 	int budsz, buddy;
2773 	s8 *leaf;
2774 
2775 	/* can the new leaf value require a join with other leaves ?
2776 	 */
2777 	if (newval >= tp->dmt_budmin) {
2778 		/* pickup a pointer to the leaves of the tree.
2779 		 */
2780 		leaf = tp->dmt_stree + le32_to_cpu(tp->dmt_leafidx);
2781 
2782 		/* try to join the specified leaf into a large binary
2783 		 * buddy system.  the join proceeds by attempting to join
2784 		 * the specified leafno with its buddy (leaf) at new value.
2785 		 * if the join occurs, we attempt to join the left leaf
2786 		 * of the joined buddies with its buddy at new value + 1.
2787 		 * we continue to join until we find a buddy that cannot be
2788 		 * joined (does not have a value equal to the size of the
2789 		 * last join) or until all leaves have been joined into a
2790 		 * single system.
2791 		 *
2792 		 * get the buddy size (number of words covered) of
2793 		 * the new value.
2794 		 */
2795 		budsz = BUDSIZE(newval, tp->dmt_budmin);
2796 
2797 		/* try to join.
2798 		 */
2799 		while (budsz < le32_to_cpu(tp->dmt_nleafs)) {
2800 			/* get the buddy leaf.
2801 			 */
2802 			buddy = leafno ^ budsz;
2803 
2804 			/* if the leaf's new value is greater than its
2805 			 * buddy's value, we join no more.
2806 			 */
2807 			if (newval > leaf[buddy])
2808 				break;
2809 
2810 			/* It shouldn't be less */
2811 			if (newval < leaf[buddy])
2812 				return -EIO;
2813 
2814 			/* check which (leafno or buddy) is the left buddy.
2815 			 * the left buddy gets to claim the blocks resulting
2816 			 * from the join while the right gets to claim none.
2817 			 * the left buddy is also eligible to participate in
2818 			 * a join at the next higher level while the right
2819 			 * is not.
2820 			 *
2821 			 */
2822 			if (leafno < buddy) {
2823 				/* leafno is the left buddy.
2824 				 */
2825 				dbAdjTree(tp, buddy, NOFREE, is_ctl);
2826 			} else {
2827 				/* buddy is the left buddy and becomes
2828 				 * leafno.
2829 				 */
2830 				dbAdjTree(tp, leafno, NOFREE, is_ctl);
2831 				leafno = buddy;
2832 			}
2833 
2834 			/* on to try the next join.
2835 			 */
2836 			newval += 1;
2837 			budsz <<= 1;
2838 		}
2839 	}
2840 
2841 	/* update the leaf value.
2842 	 */
2843 	dbAdjTree(tp, leafno, newval, is_ctl);
2844 
2845 	return 0;
2846 }
2847 
2848 
2849 /*
2850  * NAME:	dbAdjTree()
2851  *
2852  * FUNCTION:	update a leaf of a dmtree with a new value, adjusting
2853  *		the dmtree, as required, to reflect the new leaf value.
2854  *		the combination of any buddies must already be done before
2855  *		this is called.
2856  *
2857  * PARAMETERS:
2858  *	tp	- pointer to the tree to be adjusted.
2859  *	leafno	- the number of the leaf to be updated.
2860  *	newval	- the new value for the leaf.
2861  *
2862  * RETURN VALUES: none
2863  */
dbAdjTree(dmtree_t * tp,int leafno,int newval,bool is_ctl)2864 static void dbAdjTree(dmtree_t *tp, int leafno, int newval, bool is_ctl)
2865 {
2866 	int lp, pp, k;
2867 	int max, size;
2868 
2869 	size = is_ctl ? CTLTREESIZE : TREESIZE;
2870 
2871 	/* pick up the index of the leaf for this leafno.
2872 	 */
2873 	lp = leafno + le32_to_cpu(tp->dmt_leafidx);
2874 
2875 	if (WARN_ON_ONCE(lp >= size || lp < 0))
2876 		return;
2877 
2878 	/* is the current value the same as the old value ?  if so,
2879 	 * there is nothing to do.
2880 	 */
2881 	if (tp->dmt_stree[lp] == newval)
2882 		return;
2883 
2884 	/* set the new value.
2885 	 */
2886 	tp->dmt_stree[lp] = newval;
2887 
2888 	/* bubble the new value up the tree as required.
2889 	 */
2890 	for (k = 0; k < le32_to_cpu(tp->dmt_height); k++) {
2891 		if (lp == 0)
2892 			break;
2893 
2894 		/* get the index of the first leaf of the 4 leaf
2895 		 * group containing the specified leaf (leafno).
2896 		 */
2897 		lp = ((lp - 1) & ~0x03) + 1;
2898 
2899 		/* get the index of the parent of this 4 leaf group.
2900 		 */
2901 		pp = (lp - 1) >> 2;
2902 
2903 		/* determine the maximum of the 4 leaves.
2904 		 */
2905 		max = TREEMAX(&tp->dmt_stree[lp]);
2906 
2907 		/* if the maximum of the 4 is the same as the
2908 		 * parent's value, we're done.
2909 		 */
2910 		if (tp->dmt_stree[pp] == max)
2911 			break;
2912 
2913 		/* parent gets new value.
2914 		 */
2915 		tp->dmt_stree[pp] = max;
2916 
2917 		/* parent becomes leaf for next go-round.
2918 		 */
2919 		lp = pp;
2920 	}
2921 }
2922 
2923 
2924 /*
2925  * NAME:	dbFindLeaf()
2926  *
2927  * FUNCTION:	search a dmtree_t for sufficient free blocks, returning
2928  *		the index of a leaf describing the free blocks if
2929  *		sufficient free blocks are found.
2930  *
2931  *		the search starts at the top of the dmtree_t tree and
2932  *		proceeds down the tree to the leftmost leaf with sufficient
2933  *		free space.
2934  *
2935  * PARAMETERS:
2936  *	tp	- pointer to the tree to be searched.
2937  *	l2nb	- log2 number of free blocks to search for.
2938  *	leafidx	- return pointer to be set to the index of the leaf
2939  *		  describing at least l2nb free blocks if sufficient
2940  *		  free blocks are found.
2941  *	is_ctl	- determines if the tree is of type ctl
2942  *
2943  * RETURN VALUES:
2944  *	0	- success
2945  *	-ENOSPC	- insufficient free blocks.
2946  */
dbFindLeaf(dmtree_t * tp,int l2nb,int * leafidx,bool is_ctl)2947 static int dbFindLeaf(dmtree_t *tp, int l2nb, int *leafidx, bool is_ctl)
2948 {
2949 	int ti, n = 0, k, x = 0;
2950 	int max_size, max_idx;
2951 
2952 	max_size = is_ctl ? CTLTREESIZE : TREESIZE;
2953 	max_idx = is_ctl ? LPERCTL : LPERDMAP;
2954 
2955 	/* first check the root of the tree to see if there is
2956 	 * sufficient free space.
2957 	 */
2958 	if (l2nb > tp->dmt_stree[ROOT])
2959 		return -ENOSPC;
2960 
2961 	/* sufficient free space available. now search down the tree
2962 	 * starting at the next level for the leftmost leaf that
2963 	 * describes sufficient free space.
2964 	 */
2965 	for (k = le32_to_cpu(tp->dmt_height), ti = 1;
2966 	     k > 0; k--, ti = ((ti + n) << 2) + 1) {
2967 		/* search the four nodes at this level, starting from
2968 		 * the left.
2969 		 */
2970 		for (x = ti, n = 0; n < 4; n++) {
2971 			/* sufficient free space found.  move to the next
2972 			 * level (or quit if this is the last level).
2973 			 */
2974 			if (x + n > max_size)
2975 				return -ENOSPC;
2976 			if (l2nb <= tp->dmt_stree[x + n])
2977 				break;
2978 		}
2979 
2980 		/* better have found something since the higher
2981 		 * levels of the tree said it was here.
2982 		 */
2983 		assert(n < 4);
2984 	}
2985 	if (le32_to_cpu(tp->dmt_leafidx) >= max_idx)
2986 		return -ENOSPC;
2987 
2988 	/* set the return to the leftmost leaf describing sufficient
2989 	 * free space.
2990 	 */
2991 	*leafidx = x + n - le32_to_cpu(tp->dmt_leafidx);
2992 
2993 	return (0);
2994 }
2995 
2996 
2997 /*
2998  * NAME:	dbFindBits()
2999  *
3000  * FUNCTION:	find a specified number of binary buddy free bits within a
3001  *		dmap bitmap word value.
3002  *
3003  *		this routine searches the bitmap value for (1 << l2nb) free
3004  *		bits at (1 << l2nb) alignments within the value.
3005  *
3006  * PARAMETERS:
3007  *	word	-  dmap bitmap word value.
3008  *	l2nb	-  number of free bits specified as a log2 number.
3009  *
3010  * RETURN VALUES:
3011  *	starting bit number of free bits.
3012  */
dbFindBits(u32 word,int l2nb)3013 static int dbFindBits(u32 word, int l2nb)
3014 {
3015 	int bitno, nb;
3016 	u32 mask;
3017 
3018 	/* get the number of bits.
3019 	 */
3020 	nb = 1 << l2nb;
3021 	assert(nb <= DBWORD);
3022 
3023 	/* complement the word so we can use a mask (i.e. 0s represent
3024 	 * free bits) and compute the mask.
3025 	 */
3026 	word = ~word;
3027 	mask = ONES << (DBWORD - nb);
3028 
3029 	/* scan the word for nb free bits at nb alignments.
3030 	 */
3031 	for (bitno = 0; mask != 0; bitno += nb, mask = (mask >> nb)) {
3032 		if ((mask & word) == mask)
3033 			break;
3034 	}
3035 
3036 	ASSERT(bitno < 32);
3037 
3038 	/* return the bit number.
3039 	 */
3040 	return (bitno);
3041 }
3042 
3043 
3044 /*
3045  * NAME:	dbMaxBud(u8 *cp)
3046  *
3047  * FUNCTION:	determine the largest binary buddy string of free
3048  *		bits within 32-bits of the map.
3049  *
3050  * PARAMETERS:
3051  *	cp	-  pointer to the 32-bit value.
3052  *
3053  * RETURN VALUES:
3054  *	largest binary buddy of free bits within a dmap word.
3055  */
dbMaxBud(u8 * cp)3056 static int dbMaxBud(u8 * cp)
3057 {
3058 	signed char tmp1, tmp2;
3059 
3060 	/* check if the wmap word is all free. if so, the
3061 	 * free buddy size is BUDMIN.
3062 	 */
3063 	if (*((uint *) cp) == 0)
3064 		return (BUDMIN);
3065 
3066 	/* check if the wmap word is half free. if so, the
3067 	 * free buddy size is BUDMIN-1.
3068 	 */
3069 	if (*((u16 *) cp) == 0 || *((u16 *) cp + 1) == 0)
3070 		return (BUDMIN - 1);
3071 
3072 	/* not all free or half free. determine the free buddy
3073 	 * size thru table lookup using quarters of the wmap word.
3074 	 */
3075 	tmp1 = max(budtab[cp[2]], budtab[cp[3]]);
3076 	tmp2 = max(budtab[cp[0]], budtab[cp[1]]);
3077 	return (max(tmp1, tmp2));
3078 }
3079 
3080 
3081 /*
3082  * NAME:	cnttz(uint word)
3083  *
3084  * FUNCTION:	determine the number of trailing zeros within a 32-bit
3085  *		value.
3086  *
3087  * PARAMETERS:
3088  *	value	-  32-bit value to be examined.
3089  *
3090  * RETURN VALUES:
3091  *	count of trailing zeros
3092  */
cnttz(u32 word)3093 static int cnttz(u32 word)
3094 {
3095 	int n;
3096 
3097 	for (n = 0; n < 32; n++, word >>= 1) {
3098 		if (word & 0x01)
3099 			break;
3100 	}
3101 
3102 	return (n);
3103 }
3104 
3105 
3106 /*
3107  * NAME:	cntlz(u32 value)
3108  *
3109  * FUNCTION:	determine the number of leading zeros within a 32-bit
3110  *		value.
3111  *
3112  * PARAMETERS:
3113  *	value	-  32-bit value to be examined.
3114  *
3115  * RETURN VALUES:
3116  *	count of leading zeros
3117  */
cntlz(u32 value)3118 static int cntlz(u32 value)
3119 {
3120 	int n;
3121 
3122 	for (n = 0; n < 32; n++, value <<= 1) {
3123 		if (value & HIGHORDER)
3124 			break;
3125 	}
3126 	return (n);
3127 }
3128 
3129 
3130 /*
3131  * NAME:	blkstol2(s64 nb)
3132  *
3133  * FUNCTION:	convert a block count to its log2 value. if the block
3134  *		count is not a l2 multiple, it is rounded up to the next
3135  *		larger l2 multiple.
3136  *
3137  * PARAMETERS:
3138  *	nb	-  number of blocks
3139  *
3140  * RETURN VALUES:
3141  *	log2 number of blocks
3142  */
blkstol2(s64 nb)3143 static int blkstol2(s64 nb)
3144 {
3145 	int l2nb;
3146 	s64 mask;		/* meant to be signed */
3147 
3148 	mask = (s64) 1 << (64 - 1);
3149 
3150 	/* count the leading bits.
3151 	 */
3152 	for (l2nb = 0; l2nb < 64; l2nb++, mask >>= 1) {
3153 		/* leading bit found.
3154 		 */
3155 		if (nb & mask) {
3156 			/* determine the l2 value.
3157 			 */
3158 			l2nb = (64 - 1) - l2nb;
3159 
3160 			/* check if we need to round up.
3161 			 */
3162 			if (~mask & nb)
3163 				l2nb++;
3164 
3165 			return (l2nb);
3166 		}
3167 	}
3168 	assert(0);
3169 	return 0;		/* fix compiler warning */
3170 }
3171 
3172 
3173 /*
3174  * NAME:	dbAllocBottomUp()
3175  *
3176  * FUNCTION:	alloc the specified block range from the working block
3177  *		allocation map.
3178  *
3179  *		the blocks will be alloc from the working map one dmap
3180  *		at a time.
3181  *
3182  * PARAMETERS:
3183  *	ip	-  pointer to in-core inode;
3184  *	blkno	-  starting block number to be freed.
3185  *	nblocks	-  number of blocks to be freed.
3186  *
3187  * RETURN VALUES:
3188  *	0	- success
3189  *	-EIO	- i/o error
3190  */
dbAllocBottomUp(struct inode * ip,s64 blkno,s64 nblocks)3191 int dbAllocBottomUp(struct inode *ip, s64 blkno, s64 nblocks)
3192 {
3193 	struct metapage *mp;
3194 	struct dmap *dp;
3195 	int nb, rc;
3196 	s64 lblkno, rem;
3197 	struct inode *ipbmap = JFS_SBI(ip->i_sb)->ipbmap;
3198 	struct bmap *bmp = JFS_SBI(ip->i_sb)->bmap;
3199 
3200 	IREAD_LOCK(ipbmap, RDWRLOCK_DMAP);
3201 
3202 	/* block to be allocated better be within the mapsize. */
3203 	ASSERT(nblocks <= bmp->db_mapsize - blkno);
3204 
3205 	/*
3206 	 * allocate the blocks a dmap at a time.
3207 	 */
3208 	mp = NULL;
3209 	for (rem = nblocks; rem > 0; rem -= nb, blkno += nb) {
3210 		/* release previous dmap if any */
3211 		if (mp) {
3212 			write_metapage(mp);
3213 		}
3214 
3215 		/* get the buffer for the current dmap. */
3216 		lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
3217 		mp = read_metapage(ipbmap, lblkno, PSIZE, 0);
3218 		if (mp == NULL) {
3219 			IREAD_UNLOCK(ipbmap);
3220 			return -EIO;
3221 		}
3222 		dp = (struct dmap *) mp->data;
3223 
3224 		/* determine the number of blocks to be allocated from
3225 		 * this dmap.
3226 		 */
3227 		nb = min(rem, BPERDMAP - (blkno & (BPERDMAP - 1)));
3228 
3229 		/* allocate the blocks. */
3230 		if ((rc = dbAllocDmapBU(bmp, dp, blkno, nb))) {
3231 			release_metapage(mp);
3232 			IREAD_UNLOCK(ipbmap);
3233 			return (rc);
3234 		}
3235 	}
3236 
3237 	/* write the last buffer. */
3238 	write_metapage(mp);
3239 
3240 	IREAD_UNLOCK(ipbmap);
3241 
3242 	return (0);
3243 }
3244 
3245 
dbAllocDmapBU(struct bmap * bmp,struct dmap * dp,s64 blkno,int nblocks)3246 static int dbAllocDmapBU(struct bmap * bmp, struct dmap * dp, s64 blkno,
3247 			 int nblocks)
3248 {
3249 	int rc;
3250 	int dbitno, word, rembits, nb, nwords, wbitno, agno;
3251 	s8 oldroot;
3252 	struct dmaptree *tp = (struct dmaptree *) & dp->tree;
3253 
3254 	/* save the current value of the root (i.e. maximum free string)
3255 	 * of the dmap tree.
3256 	 */
3257 	oldroot = tp->stree[ROOT];
3258 
3259 	/* determine the bit number and word within the dmap of the
3260 	 * starting block.
3261 	 */
3262 	dbitno = blkno & (BPERDMAP - 1);
3263 	word = dbitno >> L2DBWORD;
3264 
3265 	/* block range better be within the dmap */
3266 	assert(dbitno + nblocks <= BPERDMAP);
3267 
3268 	/* allocate the bits of the dmap's words corresponding to the block
3269 	 * range. not all bits of the first and last words may be contained
3270 	 * within the block range.  if this is the case, we'll work against
3271 	 * those words (i.e. partial first and/or last) on an individual basis
3272 	 * (a single pass), allocating the bits of interest by hand and
3273 	 * updating the leaf corresponding to the dmap word. a single pass
3274 	 * will be used for all dmap words fully contained within the
3275 	 * specified range.  within this pass, the bits of all fully contained
3276 	 * dmap words will be marked as free in a single shot and the leaves
3277 	 * will be updated. a single leaf may describe the free space of
3278 	 * multiple dmap words, so we may update only a subset of the actual
3279 	 * leaves corresponding to the dmap words of the block range.
3280 	 */
3281 	for (rembits = nblocks; rembits > 0; rembits -= nb, dbitno += nb) {
3282 		/* determine the bit number within the word and
3283 		 * the number of bits within the word.
3284 		 */
3285 		wbitno = dbitno & (DBWORD - 1);
3286 		nb = min(rembits, DBWORD - wbitno);
3287 
3288 		/* check if only part of a word is to be allocated.
3289 		 */
3290 		if (nb < DBWORD) {
3291 			/* allocate (set to 1) the appropriate bits within
3292 			 * this dmap word.
3293 			 */
3294 			dp->wmap[word] |= cpu_to_le32(ONES << (DBWORD - nb)
3295 						      >> wbitno);
3296 
3297 			word++;
3298 		} else {
3299 			/* one or more dmap words are fully contained
3300 			 * within the block range.  determine how many
3301 			 * words and allocate (set to 1) the bits of these
3302 			 * words.
3303 			 */
3304 			nwords = rembits >> L2DBWORD;
3305 			memset(&dp->wmap[word], (int) ONES, nwords * 4);
3306 
3307 			/* determine how many bits */
3308 			nb = nwords << L2DBWORD;
3309 			word += nwords;
3310 		}
3311 	}
3312 
3313 	/* update the free count for this dmap */
3314 	le32_add_cpu(&dp->nfree, -nblocks);
3315 
3316 	/* reconstruct summary tree */
3317 	dbInitDmapTree(dp);
3318 
3319 	BMAP_LOCK(bmp);
3320 
3321 	/* if this allocation group is completely free,
3322 	 * update the highest active allocation group number
3323 	 * if this allocation group is the new max.
3324 	 */
3325 	agno = blkno >> bmp->db_agl2size;
3326 	if (agno > bmp->db_maxag)
3327 		bmp->db_maxag = agno;
3328 
3329 	/* update the free count for the allocation group and map */
3330 	bmp->db_agfree[agno] -= nblocks;
3331 	bmp->db_nfree -= nblocks;
3332 
3333 	BMAP_UNLOCK(bmp);
3334 
3335 	/* if the root has not changed, done. */
3336 	if (tp->stree[ROOT] == oldroot)
3337 		return (0);
3338 
3339 	/* root changed. bubble the change up to the dmap control pages.
3340 	 * if the adjustment of the upper level control pages fails,
3341 	 * backout the bit allocation (thus making everything consistent).
3342 	 */
3343 	if ((rc = dbAdjCtl(bmp, blkno, tp->stree[ROOT], 1, 0)))
3344 		dbFreeBits(bmp, dp, blkno, nblocks);
3345 
3346 	return (rc);
3347 }
3348 
3349 
3350 /*
3351  * NAME:	dbExtendFS()
3352  *
3353  * FUNCTION:	extend bmap from blkno for nblocks;
3354  *		dbExtendFS() updates bmap ready for dbAllocBottomUp();
3355  *
3356  * L2
3357  *  |
3358  *   L1---------------------------------L1
3359  *    |					 |
3360  *     L0---------L0---------L0		  L0---------L0---------L0
3361  *      |	   |	      |		   |	      |		 |
3362  *	 d0,...,dn  d0,...,dn  d0,...,dn    d0,...,dn  d0,...,dn  d0,.,dm;
3363  * L2L1L0d0,...,dnL0d0,...,dnL0d0,...,dnL1L0d0,...,dnL0d0,...,dnL0d0,..dm
3364  *
3365  * <---old---><----------------------------extend----------------------->
3366  */
dbExtendFS(struct inode * ipbmap,s64 blkno,s64 nblocks)3367 int dbExtendFS(struct inode *ipbmap, s64 blkno,	s64 nblocks)
3368 {
3369 	struct jfs_sb_info *sbi = JFS_SBI(ipbmap->i_sb);
3370 	int nbperpage = sbi->nbperpage;
3371 	int i, i0 = true, j, j0 = true, k, n;
3372 	s64 newsize;
3373 	s64 p;
3374 	struct metapage *mp, *l2mp, *l1mp = NULL, *l0mp = NULL;
3375 	struct dmapctl *l2dcp, *l1dcp, *l0dcp;
3376 	struct dmap *dp;
3377 	s8 *l0leaf, *l1leaf, *l2leaf;
3378 	struct bmap *bmp = sbi->bmap;
3379 	int agno, l2agsize, oldl2agsize;
3380 	s64 ag_rem;
3381 
3382 	newsize = blkno + nblocks;
3383 
3384 	jfs_info("dbExtendFS: blkno:%Ld nblocks:%Ld newsize:%Ld",
3385 		 (long long) blkno, (long long) nblocks, (long long) newsize);
3386 
3387 	/*
3388 	 *	initialize bmap control page.
3389 	 *
3390 	 * all the data in bmap control page should exclude
3391 	 * the mkfs hidden dmap page.
3392 	 */
3393 
3394 	/* update mapsize */
3395 	bmp->db_mapsize = newsize;
3396 	bmp->db_maxlevel = BMAPSZTOLEV(bmp->db_mapsize);
3397 
3398 	/* compute new AG size */
3399 	l2agsize = dbGetL2AGSize(newsize);
3400 	oldl2agsize = bmp->db_agl2size;
3401 
3402 	bmp->db_agl2size = l2agsize;
3403 	bmp->db_agsize = (s64)1 << l2agsize;
3404 
3405 	/* compute new number of AG */
3406 	agno = bmp->db_numag;
3407 	bmp->db_numag = newsize >> l2agsize;
3408 	bmp->db_numag += ((u32) newsize % (u32) bmp->db_agsize) ? 1 : 0;
3409 
3410 	/*
3411 	 *	reconfigure db_agfree[]
3412 	 * from old AG configuration to new AG configuration;
3413 	 *
3414 	 * coalesce contiguous k (newAGSize/oldAGSize) AGs;
3415 	 * i.e., (AGi, ..., AGj) where i = k*n and j = k*(n+1) - 1 to AGn;
3416 	 * note: new AG size = old AG size * (2**x).
3417 	 */
3418 	if (l2agsize == oldl2agsize)
3419 		goto extend;
3420 	k = 1 << (l2agsize - oldl2agsize);
3421 	ag_rem = bmp->db_agfree[0];	/* save agfree[0] */
3422 	for (i = 0, n = 0; i < agno; n++) {
3423 		bmp->db_agfree[n] = 0;	/* init collection point */
3424 
3425 		/* coalesce contiguous k AGs; */
3426 		for (j = 0; j < k && i < agno; j++, i++) {
3427 			/* merge AGi to AGn */
3428 			bmp->db_agfree[n] += bmp->db_agfree[i];
3429 		}
3430 	}
3431 	bmp->db_agfree[0] += ag_rem;	/* restore agfree[0] */
3432 
3433 	for (; n < MAXAG; n++)
3434 		bmp->db_agfree[n] = 0;
3435 
3436 	/*
3437 	 * update highest active ag number
3438 	 */
3439 
3440 	bmp->db_maxag = bmp->db_maxag / k;
3441 
3442 	/*
3443 	 *	extend bmap
3444 	 *
3445 	 * update bit maps and corresponding level control pages;
3446 	 * global control page db_nfree, db_agfree[agno], db_maxfreebud;
3447 	 */
3448       extend:
3449 	/* get L2 page */
3450 	p = BMAPBLKNO + nbperpage;	/* L2 page */
3451 	l2mp = read_metapage(ipbmap, p, PSIZE, 0);
3452 	if (!l2mp) {
3453 		jfs_error(ipbmap->i_sb, "L2 page could not be read\n");
3454 		return -EIO;
3455 	}
3456 	l2dcp = (struct dmapctl *) l2mp->data;
3457 
3458 	/* compute start L1 */
3459 	k = blkno >> L2MAXL1SIZE;
3460 	l2leaf = l2dcp->stree + CTLLEAFIND + k;
3461 	p = BLKTOL1(blkno, sbi->l2nbperpage);	/* L1 page */
3462 
3463 	/*
3464 	 * extend each L1 in L2
3465 	 */
3466 	for (; k < LPERCTL; k++, p += nbperpage) {
3467 		/* get L1 page */
3468 		if (j0) {
3469 			/* read in L1 page: (blkno & (MAXL1SIZE - 1)) */
3470 			l1mp = read_metapage(ipbmap, p, PSIZE, 0);
3471 			if (l1mp == NULL)
3472 				goto errout;
3473 			l1dcp = (struct dmapctl *) l1mp->data;
3474 
3475 			/* compute start L0 */
3476 			j = (blkno & (MAXL1SIZE - 1)) >> L2MAXL0SIZE;
3477 			l1leaf = l1dcp->stree + CTLLEAFIND + j;
3478 			p = BLKTOL0(blkno, sbi->l2nbperpage);
3479 			j0 = false;
3480 		} else {
3481 			/* assign/init L1 page */
3482 			l1mp = get_metapage(ipbmap, p, PSIZE, 0);
3483 			if (l1mp == NULL)
3484 				goto errout;
3485 
3486 			l1dcp = (struct dmapctl *) l1mp->data;
3487 
3488 			/* compute start L0 */
3489 			j = 0;
3490 			l1leaf = l1dcp->stree + CTLLEAFIND;
3491 			p += nbperpage;	/* 1st L0 of L1.k */
3492 		}
3493 
3494 		/*
3495 		 * extend each L0 in L1
3496 		 */
3497 		for (; j < LPERCTL; j++) {
3498 			/* get L0 page */
3499 			if (i0) {
3500 				/* read in L0 page: (blkno & (MAXL0SIZE - 1)) */
3501 
3502 				l0mp = read_metapage(ipbmap, p, PSIZE, 0);
3503 				if (l0mp == NULL)
3504 					goto errout;
3505 				l0dcp = (struct dmapctl *) l0mp->data;
3506 
3507 				/* compute start dmap */
3508 				i = (blkno & (MAXL0SIZE - 1)) >>
3509 				    L2BPERDMAP;
3510 				l0leaf = l0dcp->stree + CTLLEAFIND + i;
3511 				p = BLKTODMAP(blkno,
3512 					      sbi->l2nbperpage);
3513 				i0 = false;
3514 			} else {
3515 				/* assign/init L0 page */
3516 				l0mp = get_metapage(ipbmap, p, PSIZE, 0);
3517 				if (l0mp == NULL)
3518 					goto errout;
3519 
3520 				l0dcp = (struct dmapctl *) l0mp->data;
3521 
3522 				/* compute start dmap */
3523 				i = 0;
3524 				l0leaf = l0dcp->stree + CTLLEAFIND;
3525 				p += nbperpage;	/* 1st dmap of L0.j */
3526 			}
3527 
3528 			/*
3529 			 * extend each dmap in L0
3530 			 */
3531 			for (; i < LPERCTL; i++) {
3532 				/*
3533 				 * reconstruct the dmap page, and
3534 				 * initialize corresponding parent L0 leaf
3535 				 */
3536 				if ((n = blkno & (BPERDMAP - 1))) {
3537 					/* read in dmap page: */
3538 					mp = read_metapage(ipbmap, p,
3539 							   PSIZE, 0);
3540 					if (mp == NULL)
3541 						goto errout;
3542 					n = min(nblocks, (s64)BPERDMAP - n);
3543 				} else {
3544 					/* assign/init dmap page */
3545 					mp = read_metapage(ipbmap, p,
3546 							   PSIZE, 0);
3547 					if (mp == NULL)
3548 						goto errout;
3549 
3550 					n = min_t(s64, nblocks, BPERDMAP);
3551 				}
3552 
3553 				dp = (struct dmap *) mp->data;
3554 				*l0leaf = dbInitDmap(dp, blkno, n);
3555 
3556 				bmp->db_nfree += n;
3557 				agno = le64_to_cpu(dp->start) >> l2agsize;
3558 				bmp->db_agfree[agno] += n;
3559 
3560 				write_metapage(mp);
3561 
3562 				l0leaf++;
3563 				p += nbperpage;
3564 
3565 				blkno += n;
3566 				nblocks -= n;
3567 				if (nblocks == 0)
3568 					break;
3569 			}	/* for each dmap in a L0 */
3570 
3571 			/*
3572 			 * build current L0 page from its leaves, and
3573 			 * initialize corresponding parent L1 leaf
3574 			 */
3575 			*l1leaf = dbInitDmapCtl(l0dcp, 0, ++i);
3576 			write_metapage(l0mp);
3577 			l0mp = NULL;
3578 
3579 			if (nblocks)
3580 				l1leaf++;	/* continue for next L0 */
3581 			else {
3582 				/* more than 1 L0 ? */
3583 				if (j > 0)
3584 					break;	/* build L1 page */
3585 				else {
3586 					/* summarize in global bmap page */
3587 					bmp->db_maxfreebud = *l1leaf;
3588 					release_metapage(l1mp);
3589 					release_metapage(l2mp);
3590 					goto finalize;
3591 				}
3592 			}
3593 		}		/* for each L0 in a L1 */
3594 
3595 		/*
3596 		 * build current L1 page from its leaves, and
3597 		 * initialize corresponding parent L2 leaf
3598 		 */
3599 		*l2leaf = dbInitDmapCtl(l1dcp, 1, ++j);
3600 		write_metapage(l1mp);
3601 		l1mp = NULL;
3602 
3603 		if (nblocks)
3604 			l2leaf++;	/* continue for next L1 */
3605 		else {
3606 			/* more than 1 L1 ? */
3607 			if (k > 0)
3608 				break;	/* build L2 page */
3609 			else {
3610 				/* summarize in global bmap page */
3611 				bmp->db_maxfreebud = *l2leaf;
3612 				release_metapage(l2mp);
3613 				goto finalize;
3614 			}
3615 		}
3616 	}			/* for each L1 in a L2 */
3617 
3618 	jfs_error(ipbmap->i_sb, "function has not returned as expected\n");
3619 errout:
3620 	if (l0mp)
3621 		release_metapage(l0mp);
3622 	if (l1mp)
3623 		release_metapage(l1mp);
3624 	release_metapage(l2mp);
3625 	return -EIO;
3626 
3627 	/*
3628 	 *	finalize bmap control page
3629 	 */
3630 finalize:
3631 
3632 	return 0;
3633 }
3634 
3635 
3636 /*
3637  *	dbFinalizeBmap()
3638  */
dbFinalizeBmap(struct inode * ipbmap)3639 void dbFinalizeBmap(struct inode *ipbmap)
3640 {
3641 	struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
3642 	int actags, inactags, l2nl;
3643 	s64 ag_rem, actfree, inactfree, avgfree;
3644 	int i, n;
3645 
3646 	/*
3647 	 *	finalize bmap control page
3648 	 */
3649 //finalize:
3650 	/*
3651 	 * compute db_agpref: preferred ag to allocate from
3652 	 * (the leftmost ag with average free space in it);
3653 	 */
3654 //agpref:
3655 	/* get the number of active ags and inactive ags */
3656 	actags = bmp->db_maxag + 1;
3657 	inactags = bmp->db_numag - actags;
3658 	ag_rem = bmp->db_mapsize & (bmp->db_agsize - 1);	/* ??? */
3659 
3660 	/* determine how many blocks are in the inactive allocation
3661 	 * groups. in doing this, we must account for the fact that
3662 	 * the rightmost group might be a partial group (i.e. file
3663 	 * system size is not a multiple of the group size).
3664 	 */
3665 	inactfree = (inactags && ag_rem) ?
3666 	    (((s64)inactags - 1) << bmp->db_agl2size) + ag_rem
3667 	    : ((s64)inactags << bmp->db_agl2size);
3668 
3669 	/* determine how many free blocks are in the active
3670 	 * allocation groups plus the average number of free blocks
3671 	 * within the active ags.
3672 	 */
3673 	actfree = bmp->db_nfree - inactfree;
3674 	avgfree = (u32) actfree / (u32) actags;
3675 
3676 	/* if the preferred allocation group has not average free space.
3677 	 * re-establish the preferred group as the leftmost
3678 	 * group with average free space.
3679 	 */
3680 	if (bmp->db_agfree[bmp->db_agpref] < avgfree) {
3681 		for (bmp->db_agpref = 0; bmp->db_agpref < actags;
3682 		     bmp->db_agpref++) {
3683 			if (bmp->db_agfree[bmp->db_agpref] >= avgfree)
3684 				break;
3685 		}
3686 		if (bmp->db_agpref >= bmp->db_numag) {
3687 			jfs_error(ipbmap->i_sb,
3688 				  "cannot find ag with average freespace\n");
3689 		}
3690 	}
3691 
3692 	/*
3693 	 * compute db_aglevel, db_agheight, db_width, db_agstart:
3694 	 * an ag is covered in aglevel dmapctl summary tree,
3695 	 * at agheight level height (from leaf) with agwidth number of nodes
3696 	 * each, which starts at agstart index node of the smmary tree node
3697 	 * array;
3698 	 */
3699 	bmp->db_aglevel = BMAPSZTOLEV(bmp->db_agsize);
3700 	l2nl =
3701 	    bmp->db_agl2size - (L2BPERDMAP + bmp->db_aglevel * L2LPERCTL);
3702 	bmp->db_agheight = l2nl >> 1;
3703 	bmp->db_agwidth = 1 << (l2nl - (bmp->db_agheight << 1));
3704 	for (i = 5 - bmp->db_agheight, bmp->db_agstart = 0, n = 1; i > 0;
3705 	     i--) {
3706 		bmp->db_agstart += n;
3707 		n <<= 2;
3708 	}
3709 
3710 }
3711 
3712 
3713 /*
3714  * NAME:	dbInitDmap()/ujfs_idmap_page()
3715  *
3716  * FUNCTION:	initialize working/persistent bitmap of the dmap page
3717  *		for the specified number of blocks:
3718  *
3719  *		at entry, the bitmaps had been initialized as free (ZEROS);
3720  *		The number of blocks will only account for the actually
3721  *		existing blocks. Blocks which don't actually exist in
3722  *		the aggregate will be marked as allocated (ONES);
3723  *
3724  * PARAMETERS:
3725  *	dp	- pointer to page of map
3726  *	nblocks	- number of blocks this page
3727  *
3728  * RETURNS: NONE
3729  */
dbInitDmap(struct dmap * dp,s64 Blkno,int nblocks)3730 static int dbInitDmap(struct dmap * dp, s64 Blkno, int nblocks)
3731 {
3732 	int blkno, w, b, r, nw, nb, i;
3733 
3734 	/* starting block number within the dmap */
3735 	blkno = Blkno & (BPERDMAP - 1);
3736 
3737 	if (blkno == 0) {
3738 		dp->nblocks = dp->nfree = cpu_to_le32(nblocks);
3739 		dp->start = cpu_to_le64(Blkno);
3740 
3741 		if (nblocks == BPERDMAP) {
3742 			memset(&dp->wmap[0], 0, LPERDMAP * 4);
3743 			memset(&dp->pmap[0], 0, LPERDMAP * 4);
3744 			goto initTree;
3745 		}
3746 	} else {
3747 		le32_add_cpu(&dp->nblocks, nblocks);
3748 		le32_add_cpu(&dp->nfree, nblocks);
3749 	}
3750 
3751 	/* word number containing start block number */
3752 	w = blkno >> L2DBWORD;
3753 
3754 	/*
3755 	 * free the bits corresponding to the block range (ZEROS):
3756 	 * note: not all bits of the first and last words may be contained
3757 	 * within the block range.
3758 	 */
3759 	for (r = nblocks; r > 0; r -= nb, blkno += nb) {
3760 		/* number of bits preceding range to be freed in the word */
3761 		b = blkno & (DBWORD - 1);
3762 		/* number of bits to free in the word */
3763 		nb = min(r, DBWORD - b);
3764 
3765 		/* is partial word to be freed ? */
3766 		if (nb < DBWORD) {
3767 			/* free (set to 0) from the bitmap word */
3768 			dp->wmap[w] &= cpu_to_le32(~(ONES << (DBWORD - nb)
3769 						     >> b));
3770 			dp->pmap[w] &= cpu_to_le32(~(ONES << (DBWORD - nb)
3771 						     >> b));
3772 
3773 			/* skip the word freed */
3774 			w++;
3775 		} else {
3776 			/* free (set to 0) contiguous bitmap words */
3777 			nw = r >> L2DBWORD;
3778 			memset(&dp->wmap[w], 0, nw * 4);
3779 			memset(&dp->pmap[w], 0, nw * 4);
3780 
3781 			/* skip the words freed */
3782 			nb = nw << L2DBWORD;
3783 			w += nw;
3784 		}
3785 	}
3786 
3787 	/*
3788 	 * mark bits following the range to be freed (non-existing
3789 	 * blocks) as allocated (ONES)
3790 	 */
3791 
3792 	if (blkno == BPERDMAP)
3793 		goto initTree;
3794 
3795 	/* the first word beyond the end of existing blocks */
3796 	w = blkno >> L2DBWORD;
3797 
3798 	/* does nblocks fall on a 32-bit boundary ? */
3799 	b = blkno & (DBWORD - 1);
3800 	if (b) {
3801 		/* mark a partial word allocated */
3802 		dp->wmap[w] = dp->pmap[w] = cpu_to_le32(ONES >> b);
3803 		w++;
3804 	}
3805 
3806 	/* set the rest of the words in the page to allocated (ONES) */
3807 	for (i = w; i < LPERDMAP; i++)
3808 		dp->pmap[i] = dp->wmap[i] = cpu_to_le32(ONES);
3809 
3810 	/*
3811 	 * init tree
3812 	 */
3813       initTree:
3814 	return (dbInitDmapTree(dp));
3815 }
3816 
3817 
3818 /*
3819  * NAME:	dbInitDmapTree()/ujfs_complete_dmap()
3820  *
3821  * FUNCTION:	initialize summary tree of the specified dmap:
3822  *
3823  *		at entry, bitmap of the dmap has been initialized;
3824  *
3825  * PARAMETERS:
3826  *	dp	- dmap to complete
3827  *	blkno	- starting block number for this dmap
3828  *	treemax	- will be filled in with max free for this dmap
3829  *
3830  * RETURNS:	max free string at the root of the tree
3831  */
dbInitDmapTree(struct dmap * dp)3832 static int dbInitDmapTree(struct dmap * dp)
3833 {
3834 	struct dmaptree *tp;
3835 	s8 *cp;
3836 	int i;
3837 
3838 	/* init fixed info of tree */
3839 	tp = &dp->tree;
3840 	tp->nleafs = cpu_to_le32(LPERDMAP);
3841 	tp->l2nleafs = cpu_to_le32(L2LPERDMAP);
3842 	tp->leafidx = cpu_to_le32(LEAFIND);
3843 	tp->height = cpu_to_le32(4);
3844 	tp->budmin = BUDMIN;
3845 
3846 	/* init each leaf from corresponding wmap word:
3847 	 * note: leaf is set to NOFREE(-1) if all blocks of corresponding
3848 	 * bitmap word are allocated.
3849 	 */
3850 	cp = tp->stree + le32_to_cpu(tp->leafidx);
3851 	for (i = 0; i < LPERDMAP; i++)
3852 		*cp++ = dbMaxBud((u8 *) & dp->wmap[i]);
3853 
3854 	/* build the dmap's binary buddy summary tree */
3855 	return (dbInitTree(tp));
3856 }
3857 
3858 
3859 /*
3860  * NAME:	dbInitTree()/ujfs_adjtree()
3861  *
3862  * FUNCTION:	initialize binary buddy summary tree of a dmap or dmapctl.
3863  *
3864  *		at entry, the leaves of the tree has been initialized
3865  *		from corresponding bitmap word or root of summary tree
3866  *		of the child control page;
3867  *		configure binary buddy system at the leaf level, then
3868  *		bubble up the values of the leaf nodes up the tree.
3869  *
3870  * PARAMETERS:
3871  *	cp	- Pointer to the root of the tree
3872  *	l2leaves- Number of leaf nodes as a power of 2
3873  *	l2min	- Number of blocks that can be covered by a leaf
3874  *		  as a power of 2
3875  *
3876  * RETURNS: max free string at the root of the tree
3877  */
dbInitTree(struct dmaptree * dtp)3878 static int dbInitTree(struct dmaptree * dtp)
3879 {
3880 	int l2max, l2free, bsize, nextb, i;
3881 	int child, parent, nparent;
3882 	s8 *tp, *cp, *cp1;
3883 
3884 	tp = dtp->stree;
3885 
3886 	/* Determine the maximum free string possible for the leaves */
3887 	l2max = le32_to_cpu(dtp->l2nleafs) + dtp->budmin;
3888 
3889 	/*
3890 	 * configure the leaf level into binary buddy system
3891 	 *
3892 	 * Try to combine buddies starting with a buddy size of 1
3893 	 * (i.e. two leaves). At a buddy size of 1 two buddy leaves
3894 	 * can be combined if both buddies have a maximum free of l2min;
3895 	 * the combination will result in the left-most buddy leaf having
3896 	 * a maximum free of l2min+1.
3897 	 * After processing all buddies for a given size, process buddies
3898 	 * at the next higher buddy size (i.e. current size * 2) and
3899 	 * the next maximum free (current free + 1).
3900 	 * This continues until the maximum possible buddy combination
3901 	 * yields maximum free.
3902 	 */
3903 	for (l2free = dtp->budmin, bsize = 1; l2free < l2max;
3904 	     l2free++, bsize = nextb) {
3905 		/* get next buddy size == current buddy pair size */
3906 		nextb = bsize << 1;
3907 
3908 		/* scan each adjacent buddy pair at current buddy size */
3909 		for (i = 0, cp = tp + le32_to_cpu(dtp->leafidx);
3910 		     i < le32_to_cpu(dtp->nleafs);
3911 		     i += nextb, cp += nextb) {
3912 			/* coalesce if both adjacent buddies are max free */
3913 			if (*cp == l2free && *(cp + bsize) == l2free) {
3914 				*cp = l2free + 1;	/* left take right */
3915 				*(cp + bsize) = -1;	/* right give left */
3916 			}
3917 		}
3918 	}
3919 
3920 	/*
3921 	 * bubble summary information of leaves up the tree.
3922 	 *
3923 	 * Starting at the leaf node level, the four nodes described by
3924 	 * the higher level parent node are compared for a maximum free and
3925 	 * this maximum becomes the value of the parent node.
3926 	 * when all lower level nodes are processed in this fashion then
3927 	 * move up to the next level (parent becomes a lower level node) and
3928 	 * continue the process for that level.
3929 	 */
3930 	for (child = le32_to_cpu(dtp->leafidx),
3931 	     nparent = le32_to_cpu(dtp->nleafs) >> 2;
3932 	     nparent > 0; nparent >>= 2, child = parent) {
3933 		/* get index of 1st node of parent level */
3934 		parent = (child - 1) >> 2;
3935 
3936 		/* set the value of the parent node as the maximum
3937 		 * of the four nodes of the current level.
3938 		 */
3939 		for (i = 0, cp = tp + child, cp1 = tp + parent;
3940 		     i < nparent; i++, cp += 4, cp1++)
3941 			*cp1 = TREEMAX(cp);
3942 	}
3943 
3944 	return (*tp);
3945 }
3946 
3947 
3948 /*
3949  *	dbInitDmapCtl()
3950  *
3951  * function: initialize dmapctl page
3952  */
dbInitDmapCtl(struct dmapctl * dcp,int level,int i)3953 static int dbInitDmapCtl(struct dmapctl * dcp, int level, int i)
3954 {				/* start leaf index not covered by range */
3955 	s8 *cp;
3956 
3957 	dcp->nleafs = cpu_to_le32(LPERCTL);
3958 	dcp->l2nleafs = cpu_to_le32(L2LPERCTL);
3959 	dcp->leafidx = cpu_to_le32(CTLLEAFIND);
3960 	dcp->height = cpu_to_le32(5);
3961 	dcp->budmin = L2BPERDMAP + L2LPERCTL * level;
3962 
3963 	/*
3964 	 * initialize the leaves of current level that were not covered
3965 	 * by the specified input block range (i.e. the leaves have no
3966 	 * low level dmapctl or dmap).
3967 	 */
3968 	cp = &dcp->stree[CTLLEAFIND + i];
3969 	for (; i < LPERCTL; i++)
3970 		*cp++ = NOFREE;
3971 
3972 	/* build the dmap's binary buddy summary tree */
3973 	return (dbInitTree((struct dmaptree *) dcp));
3974 }
3975 
3976 
3977 /*
3978  * NAME:	dbGetL2AGSize()/ujfs_getagl2size()
3979  *
3980  * FUNCTION:	Determine log2(allocation group size) from aggregate size
3981  *
3982  * PARAMETERS:
3983  *	nblocks	- Number of blocks in aggregate
3984  *
3985  * RETURNS: log2(allocation group size) in aggregate blocks
3986  */
dbGetL2AGSize(s64 nblocks)3987 static int dbGetL2AGSize(s64 nblocks)
3988 {
3989 	s64 sz;
3990 	s64 m;
3991 	int l2sz;
3992 
3993 	if (nblocks < BPERDMAP * MAXAG)
3994 		return (L2BPERDMAP);
3995 
3996 	/* round up aggregate size to power of 2 */
3997 	m = ((u64) 1 << (64 - 1));
3998 	for (l2sz = 64; l2sz >= 0; l2sz--, m >>= 1) {
3999 		if (m & nblocks)
4000 			break;
4001 	}
4002 
4003 	sz = (s64) 1 << l2sz;
4004 	if (sz < nblocks)
4005 		l2sz += 1;
4006 
4007 	/* agsize = roundupSize/max_number_of_ag */
4008 	return (l2sz - L2MAXAG);
4009 }
4010 
4011 
4012 /*
4013  * NAME:	dbMapFileSizeToMapSize()
4014  *
4015  * FUNCTION:	compute number of blocks the block allocation map file
4016  *		can cover from the map file size;
4017  *
4018  * RETURNS:	Number of blocks which can be covered by this block map file;
4019  */
4020 
4021 /*
4022  * maximum number of map pages at each level including control pages
4023  */
4024 #define MAXL0PAGES	(1 + LPERCTL)
4025 #define MAXL1PAGES	(1 + LPERCTL * MAXL0PAGES)
4026 
4027 /*
4028  * convert number of map pages to the zero origin top dmapctl level
4029  */
4030 #define BMAPPGTOLEV(npages)	\
4031 	(((npages) <= 3 + MAXL0PAGES) ? 0 : \
4032 	 ((npages) <= 2 + MAXL1PAGES) ? 1 : 2)
4033 
dbMapFileSizeToMapSize(struct inode * ipbmap)4034 s64 dbMapFileSizeToMapSize(struct inode * ipbmap)
4035 {
4036 	struct super_block *sb = ipbmap->i_sb;
4037 	s64 nblocks;
4038 	s64 npages, ndmaps;
4039 	int level, i;
4040 	int complete, factor;
4041 
4042 	nblocks = ipbmap->i_size >> JFS_SBI(sb)->l2bsize;
4043 	npages = nblocks >> JFS_SBI(sb)->l2nbperpage;
4044 	level = BMAPPGTOLEV(npages);
4045 
4046 	/* At each level, accumulate the number of dmap pages covered by
4047 	 * the number of full child levels below it;
4048 	 * repeat for the last incomplete child level.
4049 	 */
4050 	ndmaps = 0;
4051 	npages--;		/* skip the first global control page */
4052 	/* skip higher level control pages above top level covered by map */
4053 	npages -= (2 - level);
4054 	npages--;		/* skip top level's control page */
4055 	for (i = level; i >= 0; i--) {
4056 		factor =
4057 		    (i == 2) ? MAXL1PAGES : ((i == 1) ? MAXL0PAGES : 1);
4058 		complete = (u32) npages / factor;
4059 		ndmaps += complete * ((i == 2) ? LPERCTL * LPERCTL :
4060 				      ((i == 1) ? LPERCTL : 1));
4061 
4062 		/* pages in last/incomplete child */
4063 		npages = (u32) npages % factor;
4064 		/* skip incomplete child's level control page */
4065 		npages--;
4066 	}
4067 
4068 	/* convert the number of dmaps into the number of blocks
4069 	 * which can be covered by the dmaps;
4070 	 */
4071 	nblocks = ndmaps << L2BPERDMAP;
4072 
4073 	return (nblocks);
4074 }
4075