1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * NVMe I/O command implementation.
4 * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5 */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/blkdev.h>
8 #include <linux/blk-integrity.h>
9 #include <linux/memremap.h>
10 #include <linux/module.h>
11 #include "nvmet.h"
12
nvmet_bdev_set_limits(struct block_device * bdev,struct nvme_id_ns * id)13 void nvmet_bdev_set_limits(struct block_device *bdev, struct nvme_id_ns *id)
14 {
15 /* Logical blocks per physical block, 0's based. */
16 const __le16 lpp0b = to0based(bdev_physical_block_size(bdev) /
17 bdev_logical_block_size(bdev));
18
19 /*
20 * For NVMe 1.2 and later, bit 1 indicates that the fields NAWUN,
21 * NAWUPF, and NACWU are defined for this namespace and should be
22 * used by the host for this namespace instead of the AWUN, AWUPF,
23 * and ACWU fields in the Identify Controller data structure. If
24 * any of these fields are zero that means that the corresponding
25 * field from the identify controller data structure should be used.
26 */
27 id->nsfeat |= 1 << 1;
28 id->nawun = lpp0b;
29 id->nawupf = lpp0b;
30 id->nacwu = lpp0b;
31
32 /*
33 * Bit 4 indicates that the fields NPWG, NPWA, NPDG, NPDA, and
34 * NOWS are defined for this namespace and should be used by
35 * the host for I/O optimization.
36 */
37 id->nsfeat |= 1 << 4;
38 /* NPWG = Namespace Preferred Write Granularity. 0's based */
39 id->npwg = to0based(bdev_io_min(bdev) / bdev_logical_block_size(bdev));
40 /* NPWA = Namespace Preferred Write Alignment. 0's based */
41 id->npwa = id->npwg;
42 /* NPDG = Namespace Preferred Deallocate Granularity. 0's based */
43 id->npdg = to0based(bdev_discard_granularity(bdev) /
44 bdev_logical_block_size(bdev));
45 /* NPDG = Namespace Preferred Deallocate Alignment */
46 id->npda = id->npdg;
47 /* NOWS = Namespace Optimal Write Size */
48 id->nows = to0based(bdev_io_opt(bdev) / bdev_logical_block_size(bdev));
49
50 /* Set WZDS and DRB if device supports unmapped write zeroes */
51 if (bdev_write_zeroes_unmap_sectors(bdev))
52 id->dlfeat = (1 << 3) | 0x1;
53 }
54
nvmet_bdev_ns_disable(struct nvmet_ns * ns)55 void nvmet_bdev_ns_disable(struct nvmet_ns *ns)
56 {
57 if (ns->bdev_file) {
58 fput(ns->bdev_file);
59 ns->bdev = NULL;
60 ns->bdev_file = NULL;
61 }
62 }
63
nvmet_bdev_ns_enable_integrity(struct nvmet_ns * ns)64 static void nvmet_bdev_ns_enable_integrity(struct nvmet_ns *ns)
65 {
66 struct blk_integrity *bi = bdev_get_integrity(ns->bdev);
67
68 if (!bi)
69 return;
70
71 if (bi->csum_type == BLK_INTEGRITY_CSUM_CRC) {
72 ns->metadata_size = bi->metadata_size;
73 if (bi->flags & BLK_INTEGRITY_REF_TAG)
74 ns->pi_type = NVME_NS_DPS_PI_TYPE1;
75 else
76 ns->pi_type = NVME_NS_DPS_PI_TYPE3;
77 } else {
78 ns->metadata_size = 0;
79 }
80 }
81
nvmet_bdev_ns_enable(struct nvmet_ns * ns)82 int nvmet_bdev_ns_enable(struct nvmet_ns *ns)
83 {
84 int ret;
85
86 /*
87 * When buffered_io namespace attribute is enabled that means user want
88 * this block device to be used as a file, so block device can take
89 * an advantage of cache.
90 */
91 if (ns->buffered_io)
92 return -ENOTBLK;
93
94 ns->bdev_file = bdev_file_open_by_path(ns->device_path,
95 BLK_OPEN_READ | BLK_OPEN_WRITE, NULL, NULL);
96 if (IS_ERR(ns->bdev_file)) {
97 ret = PTR_ERR(ns->bdev_file);
98 if (ret != -ENOTBLK) {
99 pr_err("failed to open block device %s: (%d)\n",
100 ns->device_path, ret);
101 }
102 ns->bdev_file = NULL;
103 return ret;
104 }
105 ns->bdev = file_bdev(ns->bdev_file);
106 ns->size = bdev_nr_bytes(ns->bdev);
107 ns->blksize_shift = blksize_bits(bdev_logical_block_size(ns->bdev));
108
109 ns->pi_type = 0;
110 ns->metadata_size = 0;
111 if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY))
112 nvmet_bdev_ns_enable_integrity(ns);
113
114 if (bdev_is_zoned(ns->bdev)) {
115 if (!nvmet_bdev_zns_enable(ns)) {
116 nvmet_bdev_ns_disable(ns);
117 return -EINVAL;
118 }
119 ns->csi = NVME_CSI_ZNS;
120 }
121
122 return 0;
123 }
124
nvmet_bdev_ns_revalidate(struct nvmet_ns * ns)125 void nvmet_bdev_ns_revalidate(struct nvmet_ns *ns)
126 {
127 ns->size = bdev_nr_bytes(ns->bdev);
128 }
129
blk_to_nvme_status(struct nvmet_req * req,blk_status_t blk_sts)130 u16 blk_to_nvme_status(struct nvmet_req *req, blk_status_t blk_sts)
131 {
132 u16 status = NVME_SC_SUCCESS;
133
134 if (likely(blk_sts == BLK_STS_OK))
135 return status;
136 /*
137 * Right now there exists M : 1 mapping between block layer error
138 * to the NVMe status code (see nvme_error_status()). For consistency,
139 * when we reverse map we use most appropriate NVMe Status code from
140 * the group of the NVMe status codes used in the nvme_error_status().
141 */
142 switch (blk_sts) {
143 case BLK_STS_NOSPC:
144 status = NVME_SC_CAP_EXCEEDED | NVME_STATUS_DNR;
145 req->error_loc = offsetof(struct nvme_rw_command, length);
146 break;
147 case BLK_STS_TARGET:
148 status = NVME_SC_LBA_RANGE | NVME_STATUS_DNR;
149 req->error_loc = offsetof(struct nvme_rw_command, slba);
150 break;
151 case BLK_STS_NOTSUPP:
152 status = NVME_SC_INVALID_OPCODE | NVME_STATUS_DNR;
153 req->error_loc = offsetof(struct nvme_common_command, opcode);
154 break;
155 case BLK_STS_MEDIUM:
156 status = NVME_SC_ACCESS_DENIED;
157 req->error_loc = offsetof(struct nvme_rw_command, nsid);
158 break;
159 case BLK_STS_IOERR:
160 default:
161 status = NVME_SC_INTERNAL | NVME_STATUS_DNR;
162 req->error_loc = offsetof(struct nvme_common_command, opcode);
163 }
164
165 switch (req->cmd->common.opcode) {
166 case nvme_cmd_read:
167 case nvme_cmd_write:
168 req->error_slba = le64_to_cpu(req->cmd->rw.slba);
169 break;
170 case nvme_cmd_write_zeroes:
171 req->error_slba =
172 le64_to_cpu(req->cmd->write_zeroes.slba);
173 break;
174 default:
175 req->error_slba = 0;
176 }
177 return status;
178 }
179
nvmet_bio_done(struct bio * bio)180 static void nvmet_bio_done(struct bio *bio)
181 {
182 struct nvmet_req *req = bio->bi_private;
183
184 nvmet_req_complete(req, blk_to_nvme_status(req, bio->bi_status));
185 nvmet_req_bio_put(req, bio);
186 }
187
188 #ifdef CONFIG_BLK_DEV_INTEGRITY
nvmet_bdev_alloc_bip(struct nvmet_req * req,struct bio * bio,struct sg_mapping_iter * miter)189 static int nvmet_bdev_alloc_bip(struct nvmet_req *req, struct bio *bio,
190 struct sg_mapping_iter *miter)
191 {
192 struct blk_integrity *bi;
193 struct bio_integrity_payload *bip;
194 int rc;
195 size_t resid, len;
196
197 bi = bdev_get_integrity(req->ns->bdev);
198 if (unlikely(!bi)) {
199 pr_err("Unable to locate bio_integrity\n");
200 return -ENODEV;
201 }
202
203 bip = bio_integrity_alloc(bio, GFP_NOIO,
204 bio_max_segs(req->metadata_sg_cnt));
205 if (IS_ERR(bip)) {
206 pr_err("Unable to allocate bio_integrity_payload\n");
207 return PTR_ERR(bip);
208 }
209
210 /* virtual start sector must be in integrity interval units */
211 bip_set_seed(bip, bio->bi_iter.bi_sector >>
212 (bi->interval_exp - SECTOR_SHIFT));
213
214 resid = bio_integrity_bytes(bi, bio_sectors(bio));
215 while (resid > 0 && sg_miter_next(miter)) {
216 len = min_t(size_t, miter->length, resid);
217 rc = bio_integrity_add_page(bio, miter->page, len,
218 offset_in_page(miter->addr));
219 if (unlikely(rc != len)) {
220 pr_err("bio_integrity_add_page() failed; %d\n", rc);
221 sg_miter_stop(miter);
222 return -ENOMEM;
223 }
224
225 resid -= len;
226 if (len < miter->length)
227 miter->consumed -= miter->length - len;
228 }
229 sg_miter_stop(miter);
230
231 return 0;
232 }
233 #else
nvmet_bdev_alloc_bip(struct nvmet_req * req,struct bio * bio,struct sg_mapping_iter * miter)234 static int nvmet_bdev_alloc_bip(struct nvmet_req *req, struct bio *bio,
235 struct sg_mapping_iter *miter)
236 {
237 return -EINVAL;
238 }
239 #endif /* CONFIG_BLK_DEV_INTEGRITY */
240
nvmet_bdev_execute_rw(struct nvmet_req * req)241 static void nvmet_bdev_execute_rw(struct nvmet_req *req)
242 {
243 unsigned int sg_cnt = req->sg_cnt;
244 struct bio *bio;
245 struct scatterlist *sg;
246 struct blk_plug plug;
247 sector_t sector;
248 blk_opf_t opf;
249 int i, rc;
250 struct sg_mapping_iter prot_miter;
251 unsigned int iter_flags;
252 unsigned int total_len = nvmet_rw_data_len(req) + req->metadata_len;
253
254 if (!nvmet_check_transfer_len(req, total_len))
255 return;
256
257 if (!req->sg_cnt) {
258 nvmet_req_complete(req, 0);
259 return;
260 }
261
262 if (req->cmd->rw.opcode == nvme_cmd_write) {
263 opf = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE;
264 if (req->cmd->rw.control & cpu_to_le16(NVME_RW_FUA))
265 opf |= REQ_FUA;
266 iter_flags = SG_MITER_TO_SG;
267 } else {
268 opf = REQ_OP_READ;
269 iter_flags = SG_MITER_FROM_SG;
270 }
271
272 if (req->cmd->rw.control & cpu_to_le16(NVME_RW_LR))
273 opf |= REQ_FAILFAST_DEV;
274
275 if (is_pci_p2pdma_page(sg_page(req->sg)))
276 opf |= REQ_NOMERGE;
277
278 sector = nvmet_lba_to_sect(req->ns, req->cmd->rw.slba);
279
280 if (nvmet_use_inline_bvec(req)) {
281 bio = &req->b.inline_bio;
282 bio_init(bio, req->ns->bdev, req->inline_bvec,
283 ARRAY_SIZE(req->inline_bvec), opf);
284 } else {
285 bio = bio_alloc(req->ns->bdev, bio_max_segs(sg_cnt), opf,
286 GFP_KERNEL);
287 }
288 bio->bi_iter.bi_sector = sector;
289 bio->bi_private = req;
290 bio->bi_end_io = nvmet_bio_done;
291
292 blk_start_plug(&plug);
293 if (req->metadata_len)
294 sg_miter_start(&prot_miter, req->metadata_sg,
295 req->metadata_sg_cnt, iter_flags);
296
297 for_each_sg(req->sg, sg, req->sg_cnt, i) {
298 while (bio_add_page(bio, sg_page(sg), sg->length, sg->offset)
299 != sg->length) {
300 struct bio *prev = bio;
301
302 if (req->metadata_len) {
303 rc = nvmet_bdev_alloc_bip(req, bio,
304 &prot_miter);
305 if (unlikely(rc)) {
306 bio_io_error(bio);
307 return;
308 }
309 }
310
311 bio = bio_alloc(req->ns->bdev, bio_max_segs(sg_cnt),
312 opf, GFP_KERNEL);
313 bio->bi_iter.bi_sector = sector;
314
315 bio_chain(bio, prev);
316 submit_bio(prev);
317 }
318
319 sector += sg->length >> 9;
320 sg_cnt--;
321 }
322
323 if (req->metadata_len) {
324 rc = nvmet_bdev_alloc_bip(req, bio, &prot_miter);
325 if (unlikely(rc)) {
326 bio_io_error(bio);
327 return;
328 }
329 }
330
331 submit_bio(bio);
332 blk_finish_plug(&plug);
333 }
334
nvmet_bdev_execute_flush(struct nvmet_req * req)335 static void nvmet_bdev_execute_flush(struct nvmet_req *req)
336 {
337 struct bio *bio = &req->b.inline_bio;
338
339 if (!bdev_write_cache(req->ns->bdev)) {
340 nvmet_req_complete(req, NVME_SC_SUCCESS);
341 return;
342 }
343
344 if (!nvmet_check_transfer_len(req, 0))
345 return;
346
347 bio_init(bio, req->ns->bdev, req->inline_bvec,
348 ARRAY_SIZE(req->inline_bvec), REQ_OP_WRITE | REQ_PREFLUSH);
349 bio->bi_private = req;
350 bio->bi_end_io = nvmet_bio_done;
351
352 submit_bio(bio);
353 }
354
nvmet_bdev_flush(struct nvmet_req * req)355 u16 nvmet_bdev_flush(struct nvmet_req *req)
356 {
357 if (!bdev_write_cache(req->ns->bdev))
358 return 0;
359
360 if (blkdev_issue_flush(req->ns->bdev))
361 return NVME_SC_INTERNAL | NVME_STATUS_DNR;
362 return 0;
363 }
364
nvmet_bdev_discard_range(struct nvmet_req * req,struct nvme_dsm_range * range,struct bio ** bio)365 static u16 nvmet_bdev_discard_range(struct nvmet_req *req,
366 struct nvme_dsm_range *range, struct bio **bio)
367 {
368 struct nvmet_ns *ns = req->ns;
369 int ret;
370
371 ret = __blkdev_issue_discard(ns->bdev,
372 nvmet_lba_to_sect(ns, range->slba),
373 le32_to_cpu(range->nlb) << (ns->blksize_shift - 9),
374 GFP_KERNEL, bio);
375 if (ret && ret != -EOPNOTSUPP) {
376 req->error_slba = le64_to_cpu(range->slba);
377 return errno_to_nvme_status(req, ret);
378 }
379 return NVME_SC_SUCCESS;
380 }
381
nvmet_bdev_execute_discard(struct nvmet_req * req)382 static void nvmet_bdev_execute_discard(struct nvmet_req *req)
383 {
384 struct nvme_dsm_range range;
385 struct bio *bio = NULL;
386 int i;
387 u16 status;
388
389 for (i = 0; i <= le32_to_cpu(req->cmd->dsm.nr); i++) {
390 status = nvmet_copy_from_sgl(req, i * sizeof(range), &range,
391 sizeof(range));
392 if (status)
393 break;
394
395 status = nvmet_bdev_discard_range(req, &range, &bio);
396 if (status)
397 break;
398 }
399
400 if (bio) {
401 bio->bi_private = req;
402 bio->bi_end_io = nvmet_bio_done;
403 if (status)
404 bio_io_error(bio);
405 else
406 submit_bio(bio);
407 } else {
408 nvmet_req_complete(req, status);
409 }
410 }
411
nvmet_bdev_execute_dsm(struct nvmet_req * req)412 static void nvmet_bdev_execute_dsm(struct nvmet_req *req)
413 {
414 if (!nvmet_check_data_len_lte(req, nvmet_dsm_len(req)))
415 return;
416
417 switch (le32_to_cpu(req->cmd->dsm.attributes)) {
418 case NVME_DSMGMT_AD:
419 nvmet_bdev_execute_discard(req);
420 return;
421 case NVME_DSMGMT_IDR:
422 case NVME_DSMGMT_IDW:
423 default:
424 /* Not supported yet */
425 nvmet_req_complete(req, 0);
426 return;
427 }
428 }
429
nvmet_bdev_execute_write_zeroes(struct nvmet_req * req)430 static void nvmet_bdev_execute_write_zeroes(struct nvmet_req *req)
431 {
432 struct nvme_write_zeroes_cmd *write_zeroes = &req->cmd->write_zeroes;
433 struct bio *bio = NULL;
434 sector_t sector;
435 sector_t nr_sector;
436 int ret;
437
438 if (!nvmet_check_transfer_len(req, 0))
439 return;
440
441 sector = nvmet_lba_to_sect(req->ns, write_zeroes->slba);
442 nr_sector = (((sector_t)le16_to_cpu(write_zeroes->length) + 1) <<
443 (req->ns->blksize_shift - 9));
444
445 ret = __blkdev_issue_zeroout(req->ns->bdev, sector, nr_sector,
446 GFP_KERNEL, &bio, 0);
447 if (bio) {
448 bio->bi_private = req;
449 bio->bi_end_io = nvmet_bio_done;
450 submit_bio(bio);
451 } else {
452 nvmet_req_complete(req, errno_to_nvme_status(req, ret));
453 }
454 }
455
nvmet_bdev_parse_io_cmd(struct nvmet_req * req)456 u16 nvmet_bdev_parse_io_cmd(struct nvmet_req *req)
457 {
458 switch (req->cmd->common.opcode) {
459 case nvme_cmd_read:
460 case nvme_cmd_write:
461 req->execute = nvmet_bdev_execute_rw;
462 if (req->sq->ctrl->pi_support && nvmet_ns_has_pi(req->ns))
463 req->metadata_len = nvmet_rw_metadata_len(req);
464 return 0;
465 case nvme_cmd_flush:
466 req->execute = nvmet_bdev_execute_flush;
467 return 0;
468 case nvme_cmd_dsm:
469 req->execute = nvmet_bdev_execute_dsm;
470 return 0;
471 case nvme_cmd_write_zeroes:
472 req->execute = nvmet_bdev_execute_write_zeroes;
473 return 0;
474 default:
475 return nvmet_report_invalid_opcode(req);
476 }
477 }
478