1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright 1993 by Theodore Ts'o.
4 */
5 #include <linux/module.h>
6 #include <linux/moduleparam.h>
7 #include <linux/sched.h>
8 #include <linux/fs.h>
9 #include <linux/pagemap.h>
10 #include <linux/file.h>
11 #include <linux/stat.h>
12 #include <linux/errno.h>
13 #include <linux/major.h>
14 #include <linux/wait.h>
15 #include <linux/blkpg.h>
16 #include <linux/init.h>
17 #include <linux/swap.h>
18 #include <linux/slab.h>
19 #include <linux/compat.h>
20 #include <linux/suspend.h>
21 #include <linux/freezer.h>
22 #include <linux/mutex.h>
23 #include <linux/writeback.h>
24 #include <linux/completion.h>
25 #include <linux/highmem.h>
26 #include <linux/splice.h>
27 #include <linux/sysfs.h>
28 #include <linux/miscdevice.h>
29 #include <linux/falloc.h>
30 #include <linux/uio.h>
31 #include <linux/ioprio.h>
32 #include <linux/blk-cgroup.h>
33 #include <linux/sched/mm.h>
34 #include <linux/statfs.h>
35 #include <linux/uaccess.h>
36 #include <linux/blk-mq.h>
37 #include <linux/spinlock.h>
38 #include <uapi/linux/loop.h>
39
40 /* Possible states of device */
41 enum {
42 Lo_unbound,
43 Lo_bound,
44 Lo_rundown,
45 Lo_deleting,
46 };
47
48 struct loop_device {
49 int lo_number;
50 loff_t lo_offset;
51 loff_t lo_sizelimit;
52 int lo_flags;
53 char lo_file_name[LO_NAME_SIZE];
54
55 struct file *lo_backing_file;
56 unsigned int lo_min_dio_size;
57 struct block_device *lo_device;
58
59 gfp_t old_gfp_mask;
60
61 spinlock_t lo_lock;
62 int lo_state;
63 spinlock_t lo_work_lock;
64 struct workqueue_struct *workqueue;
65 struct work_struct rootcg_work;
66 struct list_head rootcg_cmd_list;
67 struct list_head idle_worker_list;
68 struct rb_root worker_tree;
69 struct timer_list timer;
70 bool sysfs_inited;
71
72 struct request_queue *lo_queue;
73 struct blk_mq_tag_set tag_set;
74 struct gendisk *lo_disk;
75 struct mutex lo_mutex;
76 bool idr_visible;
77 };
78
79 struct loop_cmd {
80 struct list_head list_entry;
81 bool use_aio; /* use AIO interface to handle I/O */
82 atomic_t ref; /* only for aio */
83 long ret;
84 struct kiocb iocb;
85 struct bio_vec *bvec;
86 struct cgroup_subsys_state *blkcg_css;
87 struct cgroup_subsys_state *memcg_css;
88 };
89
90 #define LOOP_IDLE_WORKER_TIMEOUT (60 * HZ)
91 #define LOOP_DEFAULT_HW_Q_DEPTH 128
92
93 static DEFINE_IDR(loop_index_idr);
94 static DEFINE_MUTEX(loop_ctl_mutex);
95 static DEFINE_MUTEX(loop_validate_mutex);
96
97 /**
98 * loop_global_lock_killable() - take locks for safe loop_validate_file() test
99 *
100 * @lo: struct loop_device
101 * @global: true if @lo is about to bind another "struct loop_device", false otherwise
102 *
103 * Returns 0 on success, -EINTR otherwise.
104 *
105 * Since loop_validate_file() traverses on other "struct loop_device" if
106 * is_loop_device() is true, we need a global lock for serializing concurrent
107 * loop_configure()/loop_change_fd()/__loop_clr_fd() calls.
108 */
loop_global_lock_killable(struct loop_device * lo,bool global)109 static int loop_global_lock_killable(struct loop_device *lo, bool global)
110 {
111 int err;
112
113 if (global) {
114 err = mutex_lock_killable(&loop_validate_mutex);
115 if (err)
116 return err;
117 }
118 err = mutex_lock_killable(&lo->lo_mutex);
119 if (err && global)
120 mutex_unlock(&loop_validate_mutex);
121 return err;
122 }
123
124 /**
125 * loop_global_unlock() - release locks taken by loop_global_lock_killable()
126 *
127 * @lo: struct loop_device
128 * @global: true if @lo was about to bind another "struct loop_device", false otherwise
129 */
loop_global_unlock(struct loop_device * lo,bool global)130 static void loop_global_unlock(struct loop_device *lo, bool global)
131 {
132 mutex_unlock(&lo->lo_mutex);
133 if (global)
134 mutex_unlock(&loop_validate_mutex);
135 }
136
137 static int max_part;
138 static int part_shift;
139
get_size(loff_t offset,loff_t sizelimit,struct file * file)140 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file)
141 {
142 loff_t loopsize;
143
144 /* Compute loopsize in bytes */
145 loopsize = i_size_read(file->f_mapping->host);
146 if (offset > 0)
147 loopsize -= offset;
148 /* offset is beyond i_size, weird but possible */
149 if (loopsize < 0)
150 return 0;
151
152 if (sizelimit > 0 && sizelimit < loopsize)
153 loopsize = sizelimit;
154 /*
155 * Unfortunately, if we want to do I/O on the device,
156 * the number of 512-byte sectors has to fit into a sector_t.
157 */
158 return loopsize >> 9;
159 }
160
get_loop_size(struct loop_device * lo,struct file * file)161 static loff_t get_loop_size(struct loop_device *lo, struct file *file)
162 {
163 return get_size(lo->lo_offset, lo->lo_sizelimit, file);
164 }
165
166 /*
167 * We support direct I/O only if lo_offset is aligned with the logical I/O size
168 * of backing device, and the logical block size of loop is bigger than that of
169 * the backing device.
170 */
lo_can_use_dio(struct loop_device * lo)171 static bool lo_can_use_dio(struct loop_device *lo)
172 {
173 if (!(lo->lo_backing_file->f_mode & FMODE_CAN_ODIRECT))
174 return false;
175 if (queue_logical_block_size(lo->lo_queue) < lo->lo_min_dio_size)
176 return false;
177 if (lo->lo_offset & (lo->lo_min_dio_size - 1))
178 return false;
179 return true;
180 }
181
182 /*
183 * Direct I/O can be enabled either by using an O_DIRECT file descriptor, or by
184 * passing in the LO_FLAGS_DIRECT_IO flag from userspace. It will be silently
185 * disabled when the device block size is too small or the offset is unaligned.
186 *
187 * loop_get_status will always report the effective LO_FLAGS_DIRECT_IO flag and
188 * not the originally passed in one.
189 */
loop_update_dio(struct loop_device * lo)190 static inline void loop_update_dio(struct loop_device *lo)
191 {
192 lockdep_assert_held(&lo->lo_mutex);
193 WARN_ON_ONCE(lo->lo_state == Lo_bound &&
194 lo->lo_queue->mq_freeze_depth == 0);
195
196 if ((lo->lo_flags & LO_FLAGS_DIRECT_IO) && !lo_can_use_dio(lo))
197 lo->lo_flags &= ~LO_FLAGS_DIRECT_IO;
198 }
199
200 /**
201 * loop_set_size() - sets device size and notifies userspace
202 * @lo: struct loop_device to set the size for
203 * @size: new size of the loop device
204 *
205 * Callers must validate that the size passed into this function fits into
206 * a sector_t, eg using loop_validate_size()
207 */
loop_set_size(struct loop_device * lo,loff_t size)208 static void loop_set_size(struct loop_device *lo, loff_t size)
209 {
210 if (!set_capacity_and_notify(lo->lo_disk, size))
211 kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE);
212 }
213
loop_clear_limits(struct loop_device * lo,int mode)214 static void loop_clear_limits(struct loop_device *lo, int mode)
215 {
216 struct queue_limits lim = queue_limits_start_update(lo->lo_queue);
217
218 if (mode & FALLOC_FL_ZERO_RANGE)
219 lim.max_write_zeroes_sectors = 0;
220
221 if (mode & FALLOC_FL_PUNCH_HOLE) {
222 lim.max_hw_discard_sectors = 0;
223 lim.discard_granularity = 0;
224 }
225
226 /*
227 * XXX: this updates the queue limits without freezing the queue, which
228 * is against the locking protocol and dangerous. But we can't just
229 * freeze the queue as we're inside the ->queue_rq method here. So this
230 * should move out into a workqueue unless we get the file operations to
231 * advertise if they support specific fallocate operations.
232 */
233 queue_limits_commit_update(lo->lo_queue, &lim);
234 }
235
lo_fallocate(struct loop_device * lo,struct request * rq,loff_t pos,int mode)236 static int lo_fallocate(struct loop_device *lo, struct request *rq, loff_t pos,
237 int mode)
238 {
239 /*
240 * We use fallocate to manipulate the space mappings used by the image
241 * a.k.a. discard/zerorange.
242 */
243 struct file *file = lo->lo_backing_file;
244 int ret;
245
246 mode |= FALLOC_FL_KEEP_SIZE;
247
248 if (!bdev_max_discard_sectors(lo->lo_device))
249 return -EOPNOTSUPP;
250
251 ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq));
252 if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP))
253 return -EIO;
254
255 /*
256 * We initially configure the limits in a hope that fallocate is
257 * supported and clear them here if that turns out not to be true.
258 */
259 if (unlikely(ret == -EOPNOTSUPP))
260 loop_clear_limits(lo, mode);
261
262 return ret;
263 }
264
lo_req_flush(struct loop_device * lo,struct request * rq)265 static int lo_req_flush(struct loop_device *lo, struct request *rq)
266 {
267 int ret = vfs_fsync(lo->lo_backing_file, 0);
268 if (unlikely(ret && ret != -EINVAL))
269 ret = -EIO;
270
271 return ret;
272 }
273
lo_complete_rq(struct request * rq)274 static void lo_complete_rq(struct request *rq)
275 {
276 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
277 blk_status_t ret = BLK_STS_OK;
278
279 if (cmd->ret < 0 || cmd->ret == blk_rq_bytes(rq) ||
280 req_op(rq) != REQ_OP_READ) {
281 if (cmd->ret < 0)
282 ret = errno_to_blk_status(cmd->ret);
283 goto end_io;
284 }
285
286 /*
287 * Short READ - if we got some data, advance our request and
288 * retry it. If we got no data, end the rest with EIO.
289 */
290 if (cmd->ret) {
291 blk_update_request(rq, BLK_STS_OK, cmd->ret);
292 cmd->ret = 0;
293 blk_mq_requeue_request(rq, true);
294 } else {
295 struct bio *bio = rq->bio;
296
297 while (bio) {
298 zero_fill_bio(bio);
299 bio = bio->bi_next;
300 }
301
302 ret = BLK_STS_IOERR;
303 end_io:
304 blk_mq_end_request(rq, ret);
305 }
306 }
307
lo_rw_aio_do_completion(struct loop_cmd * cmd)308 static void lo_rw_aio_do_completion(struct loop_cmd *cmd)
309 {
310 struct request *rq = blk_mq_rq_from_pdu(cmd);
311
312 if (!atomic_dec_and_test(&cmd->ref))
313 return;
314 kfree(cmd->bvec);
315 cmd->bvec = NULL;
316 if (likely(!blk_should_fake_timeout(rq->q)))
317 blk_mq_complete_request(rq);
318 }
319
lo_rw_aio_complete(struct kiocb * iocb,long ret)320 static void lo_rw_aio_complete(struct kiocb *iocb, long ret)
321 {
322 struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb);
323
324 cmd->ret = ret;
325 lo_rw_aio_do_completion(cmd);
326 }
327
lo_rw_aio(struct loop_device * lo,struct loop_cmd * cmd,loff_t pos,int rw)328 static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd,
329 loff_t pos, int rw)
330 {
331 struct iov_iter iter;
332 struct req_iterator rq_iter;
333 struct bio_vec *bvec;
334 struct request *rq = blk_mq_rq_from_pdu(cmd);
335 struct bio *bio = rq->bio;
336 struct file *file = lo->lo_backing_file;
337 struct bio_vec tmp;
338 unsigned int offset;
339 int nr_bvec = 0;
340 int ret;
341
342 rq_for_each_bvec(tmp, rq, rq_iter)
343 nr_bvec++;
344
345 if (rq->bio != rq->biotail) {
346
347 bvec = kmalloc_array(nr_bvec, sizeof(struct bio_vec),
348 GFP_NOIO);
349 if (!bvec)
350 return -EIO;
351 cmd->bvec = bvec;
352
353 /*
354 * The bios of the request may be started from the middle of
355 * the 'bvec' because of bio splitting, so we can't directly
356 * copy bio->bi_iov_vec to new bvec. The rq_for_each_bvec
357 * API will take care of all details for us.
358 */
359 rq_for_each_bvec(tmp, rq, rq_iter) {
360 *bvec = tmp;
361 bvec++;
362 }
363 bvec = cmd->bvec;
364 offset = 0;
365 } else {
366 /*
367 * Same here, this bio may be started from the middle of the
368 * 'bvec' because of bio splitting, so offset from the bvec
369 * must be passed to iov iterator
370 */
371 offset = bio->bi_iter.bi_bvec_done;
372 bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
373 }
374 atomic_set(&cmd->ref, 2);
375
376 iov_iter_bvec(&iter, rw, bvec, nr_bvec, blk_rq_bytes(rq));
377 iter.iov_offset = offset;
378
379 cmd->iocb.ki_pos = pos;
380 cmd->iocb.ki_filp = file;
381 cmd->iocb.ki_ioprio = req_get_ioprio(rq);
382 if (cmd->use_aio) {
383 cmd->iocb.ki_complete = lo_rw_aio_complete;
384 cmd->iocb.ki_flags = IOCB_DIRECT;
385 } else {
386 cmd->iocb.ki_complete = NULL;
387 cmd->iocb.ki_flags = 0;
388 }
389
390 if (rw == ITER_SOURCE)
391 ret = file->f_op->write_iter(&cmd->iocb, &iter);
392 else
393 ret = file->f_op->read_iter(&cmd->iocb, &iter);
394
395 lo_rw_aio_do_completion(cmd);
396
397 if (ret != -EIOCBQUEUED)
398 lo_rw_aio_complete(&cmd->iocb, ret);
399 return -EIOCBQUEUED;
400 }
401
do_req_filebacked(struct loop_device * lo,struct request * rq)402 static int do_req_filebacked(struct loop_device *lo, struct request *rq)
403 {
404 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
405 loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset;
406
407 switch (req_op(rq)) {
408 case REQ_OP_FLUSH:
409 return lo_req_flush(lo, rq);
410 case REQ_OP_WRITE_ZEROES:
411 /*
412 * If the caller doesn't want deallocation, call zeroout to
413 * write zeroes the range. Otherwise, punch them out.
414 */
415 return lo_fallocate(lo, rq, pos,
416 (rq->cmd_flags & REQ_NOUNMAP) ?
417 FALLOC_FL_ZERO_RANGE :
418 FALLOC_FL_PUNCH_HOLE);
419 case REQ_OP_DISCARD:
420 return lo_fallocate(lo, rq, pos, FALLOC_FL_PUNCH_HOLE);
421 case REQ_OP_WRITE:
422 return lo_rw_aio(lo, cmd, pos, ITER_SOURCE);
423 case REQ_OP_READ:
424 return lo_rw_aio(lo, cmd, pos, ITER_DEST);
425 default:
426 WARN_ON_ONCE(1);
427 return -EIO;
428 }
429 }
430
loop_reread_partitions(struct loop_device * lo)431 static void loop_reread_partitions(struct loop_device *lo)
432 {
433 int rc;
434
435 mutex_lock(&lo->lo_disk->open_mutex);
436 rc = bdev_disk_changed(lo->lo_disk, false);
437 mutex_unlock(&lo->lo_disk->open_mutex);
438 if (rc)
439 pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n",
440 __func__, lo->lo_number, lo->lo_file_name, rc);
441 }
442
loop_query_min_dio_size(struct loop_device * lo)443 static unsigned int loop_query_min_dio_size(struct loop_device *lo)
444 {
445 struct file *file = lo->lo_backing_file;
446 struct block_device *sb_bdev = file->f_mapping->host->i_sb->s_bdev;
447 struct kstat st;
448
449 /*
450 * Use the minimal dio alignment of the file system if provided.
451 */
452 if (!vfs_getattr(&file->f_path, &st, STATX_DIOALIGN, 0) &&
453 (st.result_mask & STATX_DIOALIGN))
454 return st.dio_offset_align;
455
456 /*
457 * In a perfect world this wouldn't be needed, but as of Linux 6.13 only
458 * a handful of file systems support the STATX_DIOALIGN flag.
459 */
460 if (sb_bdev)
461 return bdev_logical_block_size(sb_bdev);
462 return SECTOR_SIZE;
463 }
464
is_loop_device(struct file * file)465 static inline int is_loop_device(struct file *file)
466 {
467 struct inode *i = file->f_mapping->host;
468
469 return i && S_ISBLK(i->i_mode) && imajor(i) == LOOP_MAJOR;
470 }
471
loop_validate_file(struct file * file,struct block_device * bdev)472 static int loop_validate_file(struct file *file, struct block_device *bdev)
473 {
474 struct inode *inode = file->f_mapping->host;
475 struct file *f = file;
476
477 /* Avoid recursion */
478 while (is_loop_device(f)) {
479 struct loop_device *l;
480
481 lockdep_assert_held(&loop_validate_mutex);
482 if (f->f_mapping->host->i_rdev == bdev->bd_dev)
483 return -EBADF;
484
485 l = I_BDEV(f->f_mapping->host)->bd_disk->private_data;
486 if (l->lo_state != Lo_bound)
487 return -EINVAL;
488 /* Order wrt setting lo->lo_backing_file in loop_configure(). */
489 rmb();
490 f = l->lo_backing_file;
491 }
492 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
493 return -EINVAL;
494 return 0;
495 }
496
loop_assign_backing_file(struct loop_device * lo,struct file * file)497 static void loop_assign_backing_file(struct loop_device *lo, struct file *file)
498 {
499 lo->lo_backing_file = file;
500 lo->old_gfp_mask = mapping_gfp_mask(file->f_mapping);
501 mapping_set_gfp_mask(file->f_mapping,
502 lo->old_gfp_mask & ~(__GFP_IO | __GFP_FS));
503 if (lo->lo_backing_file->f_flags & O_DIRECT)
504 lo->lo_flags |= LO_FLAGS_DIRECT_IO;
505 lo->lo_min_dio_size = loop_query_min_dio_size(lo);
506 }
507
loop_check_backing_file(struct file * file)508 static int loop_check_backing_file(struct file *file)
509 {
510 if (!file->f_op->read_iter)
511 return -EINVAL;
512
513 if ((file->f_mode & FMODE_WRITE) && !file->f_op->write_iter)
514 return -EINVAL;
515
516 return 0;
517 }
518
519 /*
520 * loop_change_fd switched the backing store of a loopback device to
521 * a new file. This is useful for operating system installers to free up
522 * the original file and in High Availability environments to switch to
523 * an alternative location for the content in case of server meltdown.
524 * This can only work if the loop device is used read-only, and if the
525 * new backing store is the same size and type as the old backing store.
526 */
loop_change_fd(struct loop_device * lo,struct block_device * bdev,unsigned int arg)527 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
528 unsigned int arg)
529 {
530 struct file *file = fget(arg);
531 struct file *old_file;
532 unsigned int memflags;
533 int error;
534 bool partscan;
535 bool is_loop;
536
537 if (!file)
538 return -EBADF;
539
540 error = loop_check_backing_file(file);
541 if (error)
542 return error;
543
544 /* suppress uevents while reconfiguring the device */
545 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 1);
546
547 is_loop = is_loop_device(file);
548 error = loop_global_lock_killable(lo, is_loop);
549 if (error)
550 goto out_putf;
551 error = -ENXIO;
552 if (lo->lo_state != Lo_bound)
553 goto out_err;
554
555 /* the loop device has to be read-only */
556 error = -EINVAL;
557 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
558 goto out_err;
559
560 error = loop_validate_file(file, bdev);
561 if (error)
562 goto out_err;
563
564 old_file = lo->lo_backing_file;
565
566 error = -EINVAL;
567
568 /* size of the new backing store needs to be the same */
569 if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
570 goto out_err;
571
572 /*
573 * We might switch to direct I/O mode for the loop device, write back
574 * all dirty data the page cache now that so that the individual I/O
575 * operations don't have to do that.
576 */
577 vfs_fsync(file, 0);
578
579 /* and ... switch */
580 disk_force_media_change(lo->lo_disk);
581 memflags = blk_mq_freeze_queue(lo->lo_queue);
582 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
583 loop_assign_backing_file(lo, file);
584 loop_update_dio(lo);
585 blk_mq_unfreeze_queue(lo->lo_queue, memflags);
586 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN;
587 loop_global_unlock(lo, is_loop);
588
589 /*
590 * Flush loop_validate_file() before fput(), for l->lo_backing_file
591 * might be pointing at old_file which might be the last reference.
592 */
593 if (!is_loop) {
594 mutex_lock(&loop_validate_mutex);
595 mutex_unlock(&loop_validate_mutex);
596 }
597 /*
598 * We must drop file reference outside of lo_mutex as dropping
599 * the file ref can take open_mutex which creates circular locking
600 * dependency.
601 */
602 fput(old_file);
603 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 0);
604 if (partscan)
605 loop_reread_partitions(lo);
606
607 error = 0;
608 done:
609 kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE);
610 return error;
611
612 out_err:
613 loop_global_unlock(lo, is_loop);
614 out_putf:
615 fput(file);
616 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 0);
617 goto done;
618 }
619
620 /* loop sysfs attributes */
621
loop_attr_show(struct device * dev,char * page,ssize_t (* callback)(struct loop_device *,char *))622 static ssize_t loop_attr_show(struct device *dev, char *page,
623 ssize_t (*callback)(struct loop_device *, char *))
624 {
625 struct gendisk *disk = dev_to_disk(dev);
626 struct loop_device *lo = disk->private_data;
627
628 return callback(lo, page);
629 }
630
631 #define LOOP_ATTR_RO(_name) \
632 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \
633 static ssize_t loop_attr_do_show_##_name(struct device *d, \
634 struct device_attribute *attr, char *b) \
635 { \
636 return loop_attr_show(d, b, loop_attr_##_name##_show); \
637 } \
638 static struct device_attribute loop_attr_##_name = \
639 __ATTR(_name, 0444, loop_attr_do_show_##_name, NULL);
640
loop_attr_backing_file_show(struct loop_device * lo,char * buf)641 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
642 {
643 ssize_t ret;
644 char *p = NULL;
645
646 spin_lock_irq(&lo->lo_lock);
647 if (lo->lo_backing_file)
648 p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1);
649 spin_unlock_irq(&lo->lo_lock);
650
651 if (IS_ERR_OR_NULL(p))
652 ret = PTR_ERR(p);
653 else {
654 ret = strlen(p);
655 memmove(buf, p, ret);
656 buf[ret++] = '\n';
657 buf[ret] = 0;
658 }
659
660 return ret;
661 }
662
loop_attr_offset_show(struct loop_device * lo,char * buf)663 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
664 {
665 return sysfs_emit(buf, "%llu\n", (unsigned long long)lo->lo_offset);
666 }
667
loop_attr_sizelimit_show(struct loop_device * lo,char * buf)668 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
669 {
670 return sysfs_emit(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
671 }
672
loop_attr_autoclear_show(struct loop_device * lo,char * buf)673 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
674 {
675 int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
676
677 return sysfs_emit(buf, "%s\n", autoclear ? "1" : "0");
678 }
679
loop_attr_partscan_show(struct loop_device * lo,char * buf)680 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf)
681 {
682 int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN);
683
684 return sysfs_emit(buf, "%s\n", partscan ? "1" : "0");
685 }
686
loop_attr_dio_show(struct loop_device * lo,char * buf)687 static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf)
688 {
689 int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO);
690
691 return sysfs_emit(buf, "%s\n", dio ? "1" : "0");
692 }
693
694 LOOP_ATTR_RO(backing_file);
695 LOOP_ATTR_RO(offset);
696 LOOP_ATTR_RO(sizelimit);
697 LOOP_ATTR_RO(autoclear);
698 LOOP_ATTR_RO(partscan);
699 LOOP_ATTR_RO(dio);
700
701 static struct attribute *loop_attrs[] = {
702 &loop_attr_backing_file.attr,
703 &loop_attr_offset.attr,
704 &loop_attr_sizelimit.attr,
705 &loop_attr_autoclear.attr,
706 &loop_attr_partscan.attr,
707 &loop_attr_dio.attr,
708 NULL,
709 };
710
711 static struct attribute_group loop_attribute_group = {
712 .name = "loop",
713 .attrs= loop_attrs,
714 };
715
loop_sysfs_init(struct loop_device * lo)716 static void loop_sysfs_init(struct loop_device *lo)
717 {
718 lo->sysfs_inited = !sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
719 &loop_attribute_group);
720 }
721
loop_sysfs_exit(struct loop_device * lo)722 static void loop_sysfs_exit(struct loop_device *lo)
723 {
724 if (lo->sysfs_inited)
725 sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
726 &loop_attribute_group);
727 }
728
loop_get_discard_config(struct loop_device * lo,u32 * granularity,u32 * max_discard_sectors)729 static void loop_get_discard_config(struct loop_device *lo,
730 u32 *granularity, u32 *max_discard_sectors)
731 {
732 struct file *file = lo->lo_backing_file;
733 struct inode *inode = file->f_mapping->host;
734 struct kstatfs sbuf;
735
736 /*
737 * If the backing device is a block device, mirror its zeroing
738 * capability. Set the discard sectors to the block device's zeroing
739 * capabilities because loop discards result in blkdev_issue_zeroout(),
740 * not blkdev_issue_discard(). This maintains consistent behavior with
741 * file-backed loop devices: discarded regions read back as zero.
742 */
743 if (S_ISBLK(inode->i_mode)) {
744 struct block_device *bdev = I_BDEV(inode);
745
746 *max_discard_sectors = bdev_write_zeroes_sectors(bdev);
747 *granularity = bdev_discard_granularity(bdev);
748
749 /*
750 * We use punch hole to reclaim the free space used by the
751 * image a.k.a. discard.
752 */
753 } else if (file->f_op->fallocate && !vfs_statfs(&file->f_path, &sbuf)) {
754 *max_discard_sectors = UINT_MAX >> 9;
755 *granularity = sbuf.f_bsize;
756 }
757 }
758
759 struct loop_worker {
760 struct rb_node rb_node;
761 struct work_struct work;
762 struct list_head cmd_list;
763 struct list_head idle_list;
764 struct loop_device *lo;
765 struct cgroup_subsys_state *blkcg_css;
766 unsigned long last_ran_at;
767 };
768
769 static void loop_workfn(struct work_struct *work);
770
771 #ifdef CONFIG_BLK_CGROUP
queue_on_root_worker(struct cgroup_subsys_state * css)772 static inline int queue_on_root_worker(struct cgroup_subsys_state *css)
773 {
774 return !css || css == blkcg_root_css;
775 }
776 #else
queue_on_root_worker(struct cgroup_subsys_state * css)777 static inline int queue_on_root_worker(struct cgroup_subsys_state *css)
778 {
779 return !css;
780 }
781 #endif
782
loop_queue_work(struct loop_device * lo,struct loop_cmd * cmd)783 static void loop_queue_work(struct loop_device *lo, struct loop_cmd *cmd)
784 {
785 struct rb_node **node, *parent = NULL;
786 struct loop_worker *cur_worker, *worker = NULL;
787 struct work_struct *work;
788 struct list_head *cmd_list;
789
790 spin_lock_irq(&lo->lo_work_lock);
791
792 if (queue_on_root_worker(cmd->blkcg_css))
793 goto queue_work;
794
795 node = &lo->worker_tree.rb_node;
796
797 while (*node) {
798 parent = *node;
799 cur_worker = container_of(*node, struct loop_worker, rb_node);
800 if (cur_worker->blkcg_css == cmd->blkcg_css) {
801 worker = cur_worker;
802 break;
803 } else if ((long)cur_worker->blkcg_css < (long)cmd->blkcg_css) {
804 node = &(*node)->rb_left;
805 } else {
806 node = &(*node)->rb_right;
807 }
808 }
809 if (worker)
810 goto queue_work;
811
812 worker = kzalloc(sizeof(struct loop_worker), GFP_NOWAIT | __GFP_NOWARN);
813 /*
814 * In the event we cannot allocate a worker, just queue on the
815 * rootcg worker and issue the I/O as the rootcg
816 */
817 if (!worker) {
818 cmd->blkcg_css = NULL;
819 if (cmd->memcg_css)
820 css_put(cmd->memcg_css);
821 cmd->memcg_css = NULL;
822 goto queue_work;
823 }
824
825 worker->blkcg_css = cmd->blkcg_css;
826 css_get(worker->blkcg_css);
827 INIT_WORK(&worker->work, loop_workfn);
828 INIT_LIST_HEAD(&worker->cmd_list);
829 INIT_LIST_HEAD(&worker->idle_list);
830 worker->lo = lo;
831 rb_link_node(&worker->rb_node, parent, node);
832 rb_insert_color(&worker->rb_node, &lo->worker_tree);
833 queue_work:
834 if (worker) {
835 /*
836 * We need to remove from the idle list here while
837 * holding the lock so that the idle timer doesn't
838 * free the worker
839 */
840 if (!list_empty(&worker->idle_list))
841 list_del_init(&worker->idle_list);
842 work = &worker->work;
843 cmd_list = &worker->cmd_list;
844 } else {
845 work = &lo->rootcg_work;
846 cmd_list = &lo->rootcg_cmd_list;
847 }
848 list_add_tail(&cmd->list_entry, cmd_list);
849 queue_work(lo->workqueue, work);
850 spin_unlock_irq(&lo->lo_work_lock);
851 }
852
loop_set_timer(struct loop_device * lo)853 static void loop_set_timer(struct loop_device *lo)
854 {
855 timer_reduce(&lo->timer, jiffies + LOOP_IDLE_WORKER_TIMEOUT);
856 }
857
loop_free_idle_workers(struct loop_device * lo,bool delete_all)858 static void loop_free_idle_workers(struct loop_device *lo, bool delete_all)
859 {
860 struct loop_worker *pos, *worker;
861
862 spin_lock_irq(&lo->lo_work_lock);
863 list_for_each_entry_safe(worker, pos, &lo->idle_worker_list,
864 idle_list) {
865 if (!delete_all &&
866 time_is_after_jiffies(worker->last_ran_at +
867 LOOP_IDLE_WORKER_TIMEOUT))
868 break;
869 list_del(&worker->idle_list);
870 rb_erase(&worker->rb_node, &lo->worker_tree);
871 css_put(worker->blkcg_css);
872 kfree(worker);
873 }
874 if (!list_empty(&lo->idle_worker_list))
875 loop_set_timer(lo);
876 spin_unlock_irq(&lo->lo_work_lock);
877 }
878
loop_free_idle_workers_timer(struct timer_list * timer)879 static void loop_free_idle_workers_timer(struct timer_list *timer)
880 {
881 struct loop_device *lo = container_of(timer, struct loop_device, timer);
882
883 return loop_free_idle_workers(lo, false);
884 }
885
886 /**
887 * loop_set_status_from_info - configure device from loop_info
888 * @lo: struct loop_device to configure
889 * @info: struct loop_info64 to configure the device with
890 *
891 * Configures the loop device parameters according to the passed
892 * in loop_info64 configuration.
893 */
894 static int
loop_set_status_from_info(struct loop_device * lo,const struct loop_info64 * info)895 loop_set_status_from_info(struct loop_device *lo,
896 const struct loop_info64 *info)
897 {
898 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
899 return -EINVAL;
900
901 switch (info->lo_encrypt_type) {
902 case LO_CRYPT_NONE:
903 break;
904 case LO_CRYPT_XOR:
905 pr_warn("support for the xor transformation has been removed.\n");
906 return -EINVAL;
907 case LO_CRYPT_CRYPTOAPI:
908 pr_warn("support for cryptoloop has been removed. Use dm-crypt instead.\n");
909 return -EINVAL;
910 default:
911 return -EINVAL;
912 }
913
914 /* Avoid assigning overflow values */
915 if (info->lo_offset > LLONG_MAX || info->lo_sizelimit > LLONG_MAX)
916 return -EOVERFLOW;
917
918 lo->lo_offset = info->lo_offset;
919 lo->lo_sizelimit = info->lo_sizelimit;
920
921 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
922 lo->lo_file_name[LO_NAME_SIZE-1] = 0;
923 return 0;
924 }
925
loop_default_blocksize(struct loop_device * lo)926 static unsigned int loop_default_blocksize(struct loop_device *lo)
927 {
928 /* In case of direct I/O, match underlying minimum I/O size */
929 if (lo->lo_flags & LO_FLAGS_DIRECT_IO)
930 return lo->lo_min_dio_size;
931 return SECTOR_SIZE;
932 }
933
loop_update_limits(struct loop_device * lo,struct queue_limits * lim,unsigned int bsize)934 static void loop_update_limits(struct loop_device *lo, struct queue_limits *lim,
935 unsigned int bsize)
936 {
937 struct file *file = lo->lo_backing_file;
938 struct inode *inode = file->f_mapping->host;
939 struct block_device *backing_bdev = NULL;
940 u32 granularity = 0, max_discard_sectors = 0;
941
942 if (S_ISBLK(inode->i_mode))
943 backing_bdev = I_BDEV(inode);
944 else if (inode->i_sb->s_bdev)
945 backing_bdev = inode->i_sb->s_bdev;
946
947 if (!bsize)
948 bsize = loop_default_blocksize(lo);
949
950 loop_get_discard_config(lo, &granularity, &max_discard_sectors);
951
952 lim->logical_block_size = bsize;
953 lim->physical_block_size = bsize;
954 lim->io_min = bsize;
955 lim->features &= ~(BLK_FEAT_WRITE_CACHE | BLK_FEAT_ROTATIONAL);
956 if (file->f_op->fsync && !(lo->lo_flags & LO_FLAGS_READ_ONLY))
957 lim->features |= BLK_FEAT_WRITE_CACHE;
958 if (backing_bdev && !bdev_nonrot(backing_bdev))
959 lim->features |= BLK_FEAT_ROTATIONAL;
960 lim->max_hw_discard_sectors = max_discard_sectors;
961 lim->max_write_zeroes_sectors = max_discard_sectors;
962 if (max_discard_sectors)
963 lim->discard_granularity = granularity;
964 else
965 lim->discard_granularity = 0;
966 }
967
loop_configure(struct loop_device * lo,blk_mode_t mode,struct block_device * bdev,const struct loop_config * config)968 static int loop_configure(struct loop_device *lo, blk_mode_t mode,
969 struct block_device *bdev,
970 const struct loop_config *config)
971 {
972 struct file *file = fget(config->fd);
973 struct queue_limits lim;
974 int error;
975 loff_t size;
976 bool partscan;
977 bool is_loop;
978
979 if (!file)
980 return -EBADF;
981
982 error = loop_check_backing_file(file);
983 if (error)
984 return error;
985
986 is_loop = is_loop_device(file);
987
988 /* This is safe, since we have a reference from open(). */
989 __module_get(THIS_MODULE);
990
991 /*
992 * If we don't hold exclusive handle for the device, upgrade to it
993 * here to avoid changing device under exclusive owner.
994 */
995 if (!(mode & BLK_OPEN_EXCL)) {
996 error = bd_prepare_to_claim(bdev, loop_configure, NULL);
997 if (error)
998 goto out_putf;
999 }
1000
1001 error = loop_global_lock_killable(lo, is_loop);
1002 if (error)
1003 goto out_bdev;
1004
1005 error = -EBUSY;
1006 if (lo->lo_state != Lo_unbound)
1007 goto out_unlock;
1008
1009 error = loop_validate_file(file, bdev);
1010 if (error)
1011 goto out_unlock;
1012
1013 if ((config->info.lo_flags & ~LOOP_CONFIGURE_SETTABLE_FLAGS) != 0) {
1014 error = -EINVAL;
1015 goto out_unlock;
1016 }
1017
1018 error = loop_set_status_from_info(lo, &config->info);
1019 if (error)
1020 goto out_unlock;
1021 lo->lo_flags = config->info.lo_flags;
1022
1023 if (!(file->f_mode & FMODE_WRITE) || !(mode & BLK_OPEN_WRITE) ||
1024 !file->f_op->write_iter)
1025 lo->lo_flags |= LO_FLAGS_READ_ONLY;
1026
1027 if (!lo->workqueue) {
1028 lo->workqueue = alloc_workqueue("loop%d",
1029 WQ_UNBOUND | WQ_FREEZABLE,
1030 0, lo->lo_number);
1031 if (!lo->workqueue) {
1032 error = -ENOMEM;
1033 goto out_unlock;
1034 }
1035 }
1036
1037 /* suppress uevents while reconfiguring the device */
1038 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 1);
1039
1040 disk_force_media_change(lo->lo_disk);
1041 set_disk_ro(lo->lo_disk, (lo->lo_flags & LO_FLAGS_READ_ONLY) != 0);
1042
1043 lo->lo_device = bdev;
1044 loop_assign_backing_file(lo, file);
1045
1046 lim = queue_limits_start_update(lo->lo_queue);
1047 loop_update_limits(lo, &lim, config->block_size);
1048 /* No need to freeze the queue as the device isn't bound yet. */
1049 error = queue_limits_commit_update(lo->lo_queue, &lim);
1050 if (error)
1051 goto out_unlock;
1052
1053 /*
1054 * We might switch to direct I/O mode for the loop device, write back
1055 * all dirty data the page cache now that so that the individual I/O
1056 * operations don't have to do that.
1057 */
1058 vfs_fsync(file, 0);
1059
1060 loop_update_dio(lo);
1061 loop_sysfs_init(lo);
1062
1063 size = get_loop_size(lo, file);
1064 loop_set_size(lo, size);
1065
1066 /* Order wrt reading lo_state in loop_validate_file(). */
1067 wmb();
1068
1069 lo->lo_state = Lo_bound;
1070 if (part_shift)
1071 lo->lo_flags |= LO_FLAGS_PARTSCAN;
1072 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN;
1073 if (partscan)
1074 clear_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state);
1075
1076 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 0);
1077 kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE);
1078
1079 loop_global_unlock(lo, is_loop);
1080 if (partscan)
1081 loop_reread_partitions(lo);
1082
1083 if (!(mode & BLK_OPEN_EXCL))
1084 bd_abort_claiming(bdev, loop_configure);
1085
1086 return 0;
1087
1088 out_unlock:
1089 loop_global_unlock(lo, is_loop);
1090 out_bdev:
1091 if (!(mode & BLK_OPEN_EXCL))
1092 bd_abort_claiming(bdev, loop_configure);
1093 out_putf:
1094 fput(file);
1095 /* This is safe: open() is still holding a reference. */
1096 module_put(THIS_MODULE);
1097 return error;
1098 }
1099
__loop_clr_fd(struct loop_device * lo)1100 static void __loop_clr_fd(struct loop_device *lo)
1101 {
1102 struct queue_limits lim;
1103 struct file *filp;
1104 gfp_t gfp = lo->old_gfp_mask;
1105
1106 spin_lock_irq(&lo->lo_lock);
1107 filp = lo->lo_backing_file;
1108 lo->lo_backing_file = NULL;
1109 spin_unlock_irq(&lo->lo_lock);
1110
1111 lo->lo_device = NULL;
1112 lo->lo_offset = 0;
1113 lo->lo_sizelimit = 0;
1114 memset(lo->lo_file_name, 0, LO_NAME_SIZE);
1115
1116 /*
1117 * Reset the block size to the default.
1118 *
1119 * No queue freezing needed because this is called from the final
1120 * ->release call only, so there can't be any outstanding I/O.
1121 */
1122 lim = queue_limits_start_update(lo->lo_queue);
1123 lim.logical_block_size = SECTOR_SIZE;
1124 lim.physical_block_size = SECTOR_SIZE;
1125 lim.io_min = SECTOR_SIZE;
1126 queue_limits_commit_update(lo->lo_queue, &lim);
1127
1128 invalidate_disk(lo->lo_disk);
1129 loop_sysfs_exit(lo);
1130 /* let user-space know about this change */
1131 kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE);
1132 mapping_set_gfp_mask(filp->f_mapping, gfp);
1133 /* This is safe: open() is still holding a reference. */
1134 module_put(THIS_MODULE);
1135
1136 disk_force_media_change(lo->lo_disk);
1137
1138 if (lo->lo_flags & LO_FLAGS_PARTSCAN) {
1139 int err;
1140
1141 /*
1142 * open_mutex has been held already in release path, so don't
1143 * acquire it if this function is called in such case.
1144 *
1145 * If the reread partition isn't from release path, lo_refcnt
1146 * must be at least one and it can only become zero when the
1147 * current holder is released.
1148 */
1149 err = bdev_disk_changed(lo->lo_disk, false);
1150 if (err)
1151 pr_warn("%s: partition scan of loop%d failed (rc=%d)\n",
1152 __func__, lo->lo_number, err);
1153 /* Device is gone, no point in returning error */
1154 }
1155
1156 /*
1157 * lo->lo_state is set to Lo_unbound here after above partscan has
1158 * finished. There cannot be anybody else entering __loop_clr_fd() as
1159 * Lo_rundown state protects us from all the other places trying to
1160 * change the 'lo' device.
1161 */
1162 lo->lo_flags = 0;
1163 if (!part_shift)
1164 set_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state);
1165 mutex_lock(&lo->lo_mutex);
1166 lo->lo_state = Lo_unbound;
1167 mutex_unlock(&lo->lo_mutex);
1168
1169 /*
1170 * Need not hold lo_mutex to fput backing file. Calling fput holding
1171 * lo_mutex triggers a circular lock dependency possibility warning as
1172 * fput can take open_mutex which is usually taken before lo_mutex.
1173 */
1174 fput(filp);
1175 }
1176
loop_clr_fd(struct loop_device * lo)1177 static int loop_clr_fd(struct loop_device *lo)
1178 {
1179 int err;
1180
1181 /*
1182 * Since lo_ioctl() is called without locks held, it is possible that
1183 * loop_configure()/loop_change_fd() and loop_clr_fd() run in parallel.
1184 *
1185 * Therefore, use global lock when setting Lo_rundown state in order to
1186 * make sure that loop_validate_file() will fail if the "struct file"
1187 * which loop_configure()/loop_change_fd() found via fget() was this
1188 * loop device.
1189 */
1190 err = loop_global_lock_killable(lo, true);
1191 if (err)
1192 return err;
1193 if (lo->lo_state != Lo_bound) {
1194 loop_global_unlock(lo, true);
1195 return -ENXIO;
1196 }
1197 /*
1198 * Mark the device for removing the backing device on last close.
1199 * If we are the only opener, also switch the state to roundown here to
1200 * prevent new openers from coming in.
1201 */
1202
1203 lo->lo_flags |= LO_FLAGS_AUTOCLEAR;
1204 if (disk_openers(lo->lo_disk) == 1)
1205 lo->lo_state = Lo_rundown;
1206 loop_global_unlock(lo, true);
1207
1208 return 0;
1209 }
1210
1211 static int
loop_set_status(struct loop_device * lo,const struct loop_info64 * info)1212 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
1213 {
1214 int err;
1215 bool partscan = false;
1216 bool size_changed = false;
1217 unsigned int memflags;
1218
1219 err = mutex_lock_killable(&lo->lo_mutex);
1220 if (err)
1221 return err;
1222 if (lo->lo_state != Lo_bound) {
1223 err = -ENXIO;
1224 goto out_unlock;
1225 }
1226
1227 if (lo->lo_offset != info->lo_offset ||
1228 lo->lo_sizelimit != info->lo_sizelimit) {
1229 size_changed = true;
1230 sync_blockdev(lo->lo_device);
1231 invalidate_bdev(lo->lo_device);
1232 }
1233
1234 /* I/O needs to be drained before changing lo_offset or lo_sizelimit */
1235 memflags = blk_mq_freeze_queue(lo->lo_queue);
1236
1237 err = loop_set_status_from_info(lo, info);
1238 if (err)
1239 goto out_unfreeze;
1240
1241 partscan = !(lo->lo_flags & LO_FLAGS_PARTSCAN) &&
1242 (info->lo_flags & LO_FLAGS_PARTSCAN);
1243
1244 lo->lo_flags &= ~LOOP_SET_STATUS_CLEARABLE_FLAGS;
1245 lo->lo_flags |= (info->lo_flags & LOOP_SET_STATUS_SETTABLE_FLAGS);
1246
1247 if (size_changed) {
1248 loff_t new_size = get_size(lo->lo_offset, lo->lo_sizelimit,
1249 lo->lo_backing_file);
1250 loop_set_size(lo, new_size);
1251 }
1252
1253 /* update the direct I/O flag if lo_offset changed */
1254 loop_update_dio(lo);
1255
1256 out_unfreeze:
1257 blk_mq_unfreeze_queue(lo->lo_queue, memflags);
1258 if (partscan)
1259 clear_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state);
1260 out_unlock:
1261 mutex_unlock(&lo->lo_mutex);
1262 if (partscan)
1263 loop_reread_partitions(lo);
1264
1265 return err;
1266 }
1267
1268 static int
loop_get_status(struct loop_device * lo,struct loop_info64 * info)1269 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1270 {
1271 struct path path;
1272 struct kstat stat;
1273 int ret;
1274
1275 ret = mutex_lock_killable(&lo->lo_mutex);
1276 if (ret)
1277 return ret;
1278 if (lo->lo_state != Lo_bound) {
1279 mutex_unlock(&lo->lo_mutex);
1280 return -ENXIO;
1281 }
1282
1283 memset(info, 0, sizeof(*info));
1284 info->lo_number = lo->lo_number;
1285 info->lo_offset = lo->lo_offset;
1286 info->lo_sizelimit = lo->lo_sizelimit;
1287 info->lo_flags = lo->lo_flags;
1288 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1289
1290 /* Drop lo_mutex while we call into the filesystem. */
1291 path = lo->lo_backing_file->f_path;
1292 path_get(&path);
1293 mutex_unlock(&lo->lo_mutex);
1294 ret = vfs_getattr(&path, &stat, STATX_INO, AT_STATX_SYNC_AS_STAT);
1295 if (!ret) {
1296 info->lo_device = huge_encode_dev(stat.dev);
1297 info->lo_inode = stat.ino;
1298 info->lo_rdevice = huge_encode_dev(stat.rdev);
1299 }
1300 path_put(&path);
1301 return ret;
1302 }
1303
1304 static void
loop_info64_from_old(const struct loop_info * info,struct loop_info64 * info64)1305 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1306 {
1307 memset(info64, 0, sizeof(*info64));
1308 info64->lo_number = info->lo_number;
1309 info64->lo_device = info->lo_device;
1310 info64->lo_inode = info->lo_inode;
1311 info64->lo_rdevice = info->lo_rdevice;
1312 info64->lo_offset = info->lo_offset;
1313 info64->lo_sizelimit = 0;
1314 info64->lo_flags = info->lo_flags;
1315 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1316 }
1317
1318 static int
loop_info64_to_old(const struct loop_info64 * info64,struct loop_info * info)1319 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1320 {
1321 memset(info, 0, sizeof(*info));
1322 info->lo_number = info64->lo_number;
1323 info->lo_device = info64->lo_device;
1324 info->lo_inode = info64->lo_inode;
1325 info->lo_rdevice = info64->lo_rdevice;
1326 info->lo_offset = info64->lo_offset;
1327 info->lo_flags = info64->lo_flags;
1328 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1329
1330 /* error in case values were truncated */
1331 if (info->lo_device != info64->lo_device ||
1332 info->lo_rdevice != info64->lo_rdevice ||
1333 info->lo_inode != info64->lo_inode ||
1334 info->lo_offset != info64->lo_offset)
1335 return -EOVERFLOW;
1336
1337 return 0;
1338 }
1339
1340 static int
loop_set_status_old(struct loop_device * lo,const struct loop_info __user * arg)1341 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1342 {
1343 struct loop_info info;
1344 struct loop_info64 info64;
1345
1346 if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1347 return -EFAULT;
1348 loop_info64_from_old(&info, &info64);
1349 return loop_set_status(lo, &info64);
1350 }
1351
1352 static int
loop_set_status64(struct loop_device * lo,const struct loop_info64 __user * arg)1353 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1354 {
1355 struct loop_info64 info64;
1356
1357 if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1358 return -EFAULT;
1359 return loop_set_status(lo, &info64);
1360 }
1361
1362 static int
loop_get_status_old(struct loop_device * lo,struct loop_info __user * arg)1363 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1364 struct loop_info info;
1365 struct loop_info64 info64;
1366 int err;
1367
1368 if (!arg)
1369 return -EINVAL;
1370 err = loop_get_status(lo, &info64);
1371 if (!err)
1372 err = loop_info64_to_old(&info64, &info);
1373 if (!err && copy_to_user(arg, &info, sizeof(info)))
1374 err = -EFAULT;
1375
1376 return err;
1377 }
1378
1379 static int
loop_get_status64(struct loop_device * lo,struct loop_info64 __user * arg)1380 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1381 struct loop_info64 info64;
1382 int err;
1383
1384 if (!arg)
1385 return -EINVAL;
1386 err = loop_get_status(lo, &info64);
1387 if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1388 err = -EFAULT;
1389
1390 return err;
1391 }
1392
loop_set_capacity(struct loop_device * lo)1393 static int loop_set_capacity(struct loop_device *lo)
1394 {
1395 loff_t size;
1396
1397 if (unlikely(lo->lo_state != Lo_bound))
1398 return -ENXIO;
1399
1400 size = get_loop_size(lo, lo->lo_backing_file);
1401 loop_set_size(lo, size);
1402
1403 return 0;
1404 }
1405
loop_set_dio(struct loop_device * lo,unsigned long arg)1406 static int loop_set_dio(struct loop_device *lo, unsigned long arg)
1407 {
1408 bool use_dio = !!arg;
1409 unsigned int memflags;
1410
1411 if (lo->lo_state != Lo_bound)
1412 return -ENXIO;
1413 if (use_dio == !!(lo->lo_flags & LO_FLAGS_DIRECT_IO))
1414 return 0;
1415
1416 if (use_dio) {
1417 if (!lo_can_use_dio(lo))
1418 return -EINVAL;
1419 /* flush dirty pages before starting to use direct I/O */
1420 vfs_fsync(lo->lo_backing_file, 0);
1421 }
1422
1423 memflags = blk_mq_freeze_queue(lo->lo_queue);
1424 if (use_dio)
1425 lo->lo_flags |= LO_FLAGS_DIRECT_IO;
1426 else
1427 lo->lo_flags &= ~LO_FLAGS_DIRECT_IO;
1428 blk_mq_unfreeze_queue(lo->lo_queue, memflags);
1429 return 0;
1430 }
1431
loop_set_block_size(struct loop_device * lo,unsigned long arg)1432 static int loop_set_block_size(struct loop_device *lo, unsigned long arg)
1433 {
1434 struct queue_limits lim;
1435 unsigned int memflags;
1436 int err = 0;
1437
1438 if (lo->lo_state != Lo_bound)
1439 return -ENXIO;
1440
1441 if (lo->lo_queue->limits.logical_block_size == arg)
1442 return 0;
1443
1444 sync_blockdev(lo->lo_device);
1445 invalidate_bdev(lo->lo_device);
1446
1447 lim = queue_limits_start_update(lo->lo_queue);
1448 loop_update_limits(lo, &lim, arg);
1449
1450 memflags = blk_mq_freeze_queue(lo->lo_queue);
1451 err = queue_limits_commit_update(lo->lo_queue, &lim);
1452 loop_update_dio(lo);
1453 blk_mq_unfreeze_queue(lo->lo_queue, memflags);
1454
1455 return err;
1456 }
1457
lo_simple_ioctl(struct loop_device * lo,unsigned int cmd,unsigned long arg)1458 static int lo_simple_ioctl(struct loop_device *lo, unsigned int cmd,
1459 unsigned long arg)
1460 {
1461 int err;
1462
1463 err = mutex_lock_killable(&lo->lo_mutex);
1464 if (err)
1465 return err;
1466 switch (cmd) {
1467 case LOOP_SET_CAPACITY:
1468 err = loop_set_capacity(lo);
1469 break;
1470 case LOOP_SET_DIRECT_IO:
1471 err = loop_set_dio(lo, arg);
1472 break;
1473 case LOOP_SET_BLOCK_SIZE:
1474 err = loop_set_block_size(lo, arg);
1475 break;
1476 default:
1477 err = -EINVAL;
1478 }
1479 mutex_unlock(&lo->lo_mutex);
1480 return err;
1481 }
1482
lo_ioctl(struct block_device * bdev,blk_mode_t mode,unsigned int cmd,unsigned long arg)1483 static int lo_ioctl(struct block_device *bdev, blk_mode_t mode,
1484 unsigned int cmd, unsigned long arg)
1485 {
1486 struct loop_device *lo = bdev->bd_disk->private_data;
1487 void __user *argp = (void __user *) arg;
1488 int err;
1489
1490 switch (cmd) {
1491 case LOOP_SET_FD: {
1492 /*
1493 * Legacy case - pass in a zeroed out struct loop_config with
1494 * only the file descriptor set , which corresponds with the
1495 * default parameters we'd have used otherwise.
1496 */
1497 struct loop_config config;
1498
1499 memset(&config, 0, sizeof(config));
1500 config.fd = arg;
1501
1502 return loop_configure(lo, mode, bdev, &config);
1503 }
1504 case LOOP_CONFIGURE: {
1505 struct loop_config config;
1506
1507 if (copy_from_user(&config, argp, sizeof(config)))
1508 return -EFAULT;
1509
1510 return loop_configure(lo, mode, bdev, &config);
1511 }
1512 case LOOP_CHANGE_FD:
1513 return loop_change_fd(lo, bdev, arg);
1514 case LOOP_CLR_FD:
1515 return loop_clr_fd(lo);
1516 case LOOP_SET_STATUS:
1517 err = -EPERM;
1518 if ((mode & BLK_OPEN_WRITE) || capable(CAP_SYS_ADMIN))
1519 err = loop_set_status_old(lo, argp);
1520 break;
1521 case LOOP_GET_STATUS:
1522 return loop_get_status_old(lo, argp);
1523 case LOOP_SET_STATUS64:
1524 err = -EPERM;
1525 if ((mode & BLK_OPEN_WRITE) || capable(CAP_SYS_ADMIN))
1526 err = loop_set_status64(lo, argp);
1527 break;
1528 case LOOP_GET_STATUS64:
1529 return loop_get_status64(lo, argp);
1530 case LOOP_SET_CAPACITY:
1531 case LOOP_SET_DIRECT_IO:
1532 case LOOP_SET_BLOCK_SIZE:
1533 if (!(mode & BLK_OPEN_WRITE) && !capable(CAP_SYS_ADMIN))
1534 return -EPERM;
1535 fallthrough;
1536 default:
1537 err = lo_simple_ioctl(lo, cmd, arg);
1538 break;
1539 }
1540
1541 return err;
1542 }
1543
1544 #ifdef CONFIG_COMPAT
1545 struct compat_loop_info {
1546 compat_int_t lo_number; /* ioctl r/o */
1547 compat_dev_t lo_device; /* ioctl r/o */
1548 compat_ulong_t lo_inode; /* ioctl r/o */
1549 compat_dev_t lo_rdevice; /* ioctl r/o */
1550 compat_int_t lo_offset;
1551 compat_int_t lo_encrypt_type; /* obsolete, ignored */
1552 compat_int_t lo_encrypt_key_size; /* ioctl w/o */
1553 compat_int_t lo_flags; /* ioctl r/o */
1554 char lo_name[LO_NAME_SIZE];
1555 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1556 compat_ulong_t lo_init[2];
1557 char reserved[4];
1558 };
1559
1560 /*
1561 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1562 * - noinlined to reduce stack space usage in main part of driver
1563 */
1564 static noinline int
loop_info64_from_compat(const struct compat_loop_info __user * arg,struct loop_info64 * info64)1565 loop_info64_from_compat(const struct compat_loop_info __user *arg,
1566 struct loop_info64 *info64)
1567 {
1568 struct compat_loop_info info;
1569
1570 if (copy_from_user(&info, arg, sizeof(info)))
1571 return -EFAULT;
1572
1573 memset(info64, 0, sizeof(*info64));
1574 info64->lo_number = info.lo_number;
1575 info64->lo_device = info.lo_device;
1576 info64->lo_inode = info.lo_inode;
1577 info64->lo_rdevice = info.lo_rdevice;
1578 info64->lo_offset = info.lo_offset;
1579 info64->lo_sizelimit = 0;
1580 info64->lo_flags = info.lo_flags;
1581 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1582 return 0;
1583 }
1584
1585 /*
1586 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1587 * - noinlined to reduce stack space usage in main part of driver
1588 */
1589 static noinline int
loop_info64_to_compat(const struct loop_info64 * info64,struct compat_loop_info __user * arg)1590 loop_info64_to_compat(const struct loop_info64 *info64,
1591 struct compat_loop_info __user *arg)
1592 {
1593 struct compat_loop_info info;
1594
1595 memset(&info, 0, sizeof(info));
1596 info.lo_number = info64->lo_number;
1597 info.lo_device = info64->lo_device;
1598 info.lo_inode = info64->lo_inode;
1599 info.lo_rdevice = info64->lo_rdevice;
1600 info.lo_offset = info64->lo_offset;
1601 info.lo_flags = info64->lo_flags;
1602 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1603
1604 /* error in case values were truncated */
1605 if (info.lo_device != info64->lo_device ||
1606 info.lo_rdevice != info64->lo_rdevice ||
1607 info.lo_inode != info64->lo_inode ||
1608 info.lo_offset != info64->lo_offset)
1609 return -EOVERFLOW;
1610
1611 if (copy_to_user(arg, &info, sizeof(info)))
1612 return -EFAULT;
1613 return 0;
1614 }
1615
1616 static int
loop_set_status_compat(struct loop_device * lo,const struct compat_loop_info __user * arg)1617 loop_set_status_compat(struct loop_device *lo,
1618 const struct compat_loop_info __user *arg)
1619 {
1620 struct loop_info64 info64;
1621 int ret;
1622
1623 ret = loop_info64_from_compat(arg, &info64);
1624 if (ret < 0)
1625 return ret;
1626 return loop_set_status(lo, &info64);
1627 }
1628
1629 static int
loop_get_status_compat(struct loop_device * lo,struct compat_loop_info __user * arg)1630 loop_get_status_compat(struct loop_device *lo,
1631 struct compat_loop_info __user *arg)
1632 {
1633 struct loop_info64 info64;
1634 int err;
1635
1636 if (!arg)
1637 return -EINVAL;
1638 err = loop_get_status(lo, &info64);
1639 if (!err)
1640 err = loop_info64_to_compat(&info64, arg);
1641 return err;
1642 }
1643
lo_compat_ioctl(struct block_device * bdev,blk_mode_t mode,unsigned int cmd,unsigned long arg)1644 static int lo_compat_ioctl(struct block_device *bdev, blk_mode_t mode,
1645 unsigned int cmd, unsigned long arg)
1646 {
1647 struct loop_device *lo = bdev->bd_disk->private_data;
1648 int err;
1649
1650 switch(cmd) {
1651 case LOOP_SET_STATUS:
1652 err = loop_set_status_compat(lo,
1653 (const struct compat_loop_info __user *)arg);
1654 break;
1655 case LOOP_GET_STATUS:
1656 err = loop_get_status_compat(lo,
1657 (struct compat_loop_info __user *)arg);
1658 break;
1659 case LOOP_SET_CAPACITY:
1660 case LOOP_CLR_FD:
1661 case LOOP_GET_STATUS64:
1662 case LOOP_SET_STATUS64:
1663 case LOOP_CONFIGURE:
1664 arg = (unsigned long) compat_ptr(arg);
1665 fallthrough;
1666 case LOOP_SET_FD:
1667 case LOOP_CHANGE_FD:
1668 case LOOP_SET_BLOCK_SIZE:
1669 case LOOP_SET_DIRECT_IO:
1670 err = lo_ioctl(bdev, mode, cmd, arg);
1671 break;
1672 default:
1673 err = -ENOIOCTLCMD;
1674 break;
1675 }
1676 return err;
1677 }
1678 #endif
1679
lo_open(struct gendisk * disk,blk_mode_t mode)1680 static int lo_open(struct gendisk *disk, blk_mode_t mode)
1681 {
1682 struct loop_device *lo = disk->private_data;
1683 int err;
1684
1685 err = mutex_lock_killable(&lo->lo_mutex);
1686 if (err)
1687 return err;
1688
1689 if (lo->lo_state == Lo_deleting || lo->lo_state == Lo_rundown)
1690 err = -ENXIO;
1691 mutex_unlock(&lo->lo_mutex);
1692 return err;
1693 }
1694
lo_release(struct gendisk * disk)1695 static void lo_release(struct gendisk *disk)
1696 {
1697 struct loop_device *lo = disk->private_data;
1698 bool need_clear = false;
1699
1700 if (disk_openers(disk) > 0)
1701 return;
1702 /*
1703 * Clear the backing device information if this is the last close of
1704 * a device that's been marked for auto clear, or on which LOOP_CLR_FD
1705 * has been called.
1706 */
1707
1708 mutex_lock(&lo->lo_mutex);
1709 if (lo->lo_state == Lo_bound && (lo->lo_flags & LO_FLAGS_AUTOCLEAR))
1710 lo->lo_state = Lo_rundown;
1711
1712 need_clear = (lo->lo_state == Lo_rundown);
1713 mutex_unlock(&lo->lo_mutex);
1714
1715 if (need_clear)
1716 __loop_clr_fd(lo);
1717 }
1718
lo_free_disk(struct gendisk * disk)1719 static void lo_free_disk(struct gendisk *disk)
1720 {
1721 struct loop_device *lo = disk->private_data;
1722
1723 if (lo->workqueue)
1724 destroy_workqueue(lo->workqueue);
1725 loop_free_idle_workers(lo, true);
1726 timer_shutdown_sync(&lo->timer);
1727 mutex_destroy(&lo->lo_mutex);
1728 kfree(lo);
1729 }
1730
1731 static const struct block_device_operations lo_fops = {
1732 .owner = THIS_MODULE,
1733 .open = lo_open,
1734 .release = lo_release,
1735 .ioctl = lo_ioctl,
1736 #ifdef CONFIG_COMPAT
1737 .compat_ioctl = lo_compat_ioctl,
1738 #endif
1739 .free_disk = lo_free_disk,
1740 };
1741
1742 /*
1743 * And now the modules code and kernel interface.
1744 */
1745
1746 /*
1747 * If max_loop is specified, create that many devices upfront.
1748 * This also becomes a hard limit. If max_loop is not specified,
1749 * the default isn't a hard limit (as before commit 85c50197716c
1750 * changed the default value from 0 for max_loop=0 reasons), just
1751 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
1752 * init time. Loop devices can be requested on-demand with the
1753 * /dev/loop-control interface, or be instantiated by accessing
1754 * a 'dead' device node.
1755 */
1756 static int max_loop = CONFIG_BLK_DEV_LOOP_MIN_COUNT;
1757
1758 #ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD
1759 static bool max_loop_specified;
1760
max_loop_param_set_int(const char * val,const struct kernel_param * kp)1761 static int max_loop_param_set_int(const char *val,
1762 const struct kernel_param *kp)
1763 {
1764 int ret;
1765
1766 ret = param_set_int(val, kp);
1767 if (ret < 0)
1768 return ret;
1769
1770 max_loop_specified = true;
1771 return 0;
1772 }
1773
1774 static const struct kernel_param_ops max_loop_param_ops = {
1775 .set = max_loop_param_set_int,
1776 .get = param_get_int,
1777 };
1778
1779 module_param_cb(max_loop, &max_loop_param_ops, &max_loop, 0444);
1780 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1781 #else
1782 module_param(max_loop, int, 0444);
1783 MODULE_PARM_DESC(max_loop, "Initial number of loop devices");
1784 #endif
1785
1786 module_param(max_part, int, 0444);
1787 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1788
1789 static int hw_queue_depth = LOOP_DEFAULT_HW_Q_DEPTH;
1790
loop_set_hw_queue_depth(const char * s,const struct kernel_param * p)1791 static int loop_set_hw_queue_depth(const char *s, const struct kernel_param *p)
1792 {
1793 int qd, ret;
1794
1795 ret = kstrtoint(s, 0, &qd);
1796 if (ret < 0)
1797 return ret;
1798 if (qd < 1)
1799 return -EINVAL;
1800 hw_queue_depth = qd;
1801 return 0;
1802 }
1803
1804 static const struct kernel_param_ops loop_hw_qdepth_param_ops = {
1805 .set = loop_set_hw_queue_depth,
1806 .get = param_get_int,
1807 };
1808
1809 device_param_cb(hw_queue_depth, &loop_hw_qdepth_param_ops, &hw_queue_depth, 0444);
1810 MODULE_PARM_DESC(hw_queue_depth, "Queue depth for each hardware queue. Default: " __stringify(LOOP_DEFAULT_HW_Q_DEPTH));
1811
1812 MODULE_DESCRIPTION("Loopback device support");
1813 MODULE_LICENSE("GPL");
1814 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1815
loop_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)1816 static blk_status_t loop_queue_rq(struct blk_mq_hw_ctx *hctx,
1817 const struct blk_mq_queue_data *bd)
1818 {
1819 struct request *rq = bd->rq;
1820 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
1821 struct loop_device *lo = rq->q->queuedata;
1822
1823 blk_mq_start_request(rq);
1824
1825 if (lo->lo_state != Lo_bound)
1826 return BLK_STS_IOERR;
1827
1828 switch (req_op(rq)) {
1829 case REQ_OP_FLUSH:
1830 case REQ_OP_DISCARD:
1831 case REQ_OP_WRITE_ZEROES:
1832 cmd->use_aio = false;
1833 break;
1834 default:
1835 cmd->use_aio = lo->lo_flags & LO_FLAGS_DIRECT_IO;
1836 break;
1837 }
1838
1839 /* always use the first bio's css */
1840 cmd->blkcg_css = NULL;
1841 cmd->memcg_css = NULL;
1842 #ifdef CONFIG_BLK_CGROUP
1843 if (rq->bio) {
1844 cmd->blkcg_css = bio_blkcg_css(rq->bio);
1845 #ifdef CONFIG_MEMCG
1846 if (cmd->blkcg_css) {
1847 cmd->memcg_css =
1848 cgroup_get_e_css(cmd->blkcg_css->cgroup,
1849 &memory_cgrp_subsys);
1850 }
1851 #endif
1852 }
1853 #endif
1854 loop_queue_work(lo, cmd);
1855
1856 return BLK_STS_OK;
1857 }
1858
loop_handle_cmd(struct loop_cmd * cmd)1859 static void loop_handle_cmd(struct loop_cmd *cmd)
1860 {
1861 struct cgroup_subsys_state *cmd_blkcg_css = cmd->blkcg_css;
1862 struct cgroup_subsys_state *cmd_memcg_css = cmd->memcg_css;
1863 struct request *rq = blk_mq_rq_from_pdu(cmd);
1864 const bool write = op_is_write(req_op(rq));
1865 struct loop_device *lo = rq->q->queuedata;
1866 int ret = 0;
1867 struct mem_cgroup *old_memcg = NULL;
1868
1869 if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) {
1870 ret = -EIO;
1871 goto failed;
1872 }
1873
1874 if (cmd_blkcg_css)
1875 kthread_associate_blkcg(cmd_blkcg_css);
1876 if (cmd_memcg_css)
1877 old_memcg = set_active_memcg(
1878 mem_cgroup_from_css(cmd_memcg_css));
1879
1880 /*
1881 * do_req_filebacked() may call blk_mq_complete_request() synchronously
1882 * or asynchronously if using aio. Hence, do not touch 'cmd' after
1883 * do_req_filebacked() has returned unless we are sure that 'cmd' has
1884 * not yet been completed.
1885 */
1886 ret = do_req_filebacked(lo, rq);
1887
1888 if (cmd_blkcg_css)
1889 kthread_associate_blkcg(NULL);
1890
1891 if (cmd_memcg_css) {
1892 set_active_memcg(old_memcg);
1893 css_put(cmd_memcg_css);
1894 }
1895 failed:
1896 /* complete non-aio request */
1897 if (ret != -EIOCBQUEUED) {
1898 if (ret == -EOPNOTSUPP)
1899 cmd->ret = ret;
1900 else
1901 cmd->ret = ret ? -EIO : 0;
1902 if (likely(!blk_should_fake_timeout(rq->q)))
1903 blk_mq_complete_request(rq);
1904 }
1905 }
1906
loop_process_work(struct loop_worker * worker,struct list_head * cmd_list,struct loop_device * lo)1907 static void loop_process_work(struct loop_worker *worker,
1908 struct list_head *cmd_list, struct loop_device *lo)
1909 {
1910 int orig_flags = current->flags;
1911 struct loop_cmd *cmd;
1912
1913 current->flags |= PF_LOCAL_THROTTLE | PF_MEMALLOC_NOIO;
1914 spin_lock_irq(&lo->lo_work_lock);
1915 while (!list_empty(cmd_list)) {
1916 cmd = container_of(
1917 cmd_list->next, struct loop_cmd, list_entry);
1918 list_del(cmd_list->next);
1919 spin_unlock_irq(&lo->lo_work_lock);
1920
1921 loop_handle_cmd(cmd);
1922 cond_resched();
1923
1924 spin_lock_irq(&lo->lo_work_lock);
1925 }
1926
1927 /*
1928 * We only add to the idle list if there are no pending cmds
1929 * *and* the worker will not run again which ensures that it
1930 * is safe to free any worker on the idle list
1931 */
1932 if (worker && !work_pending(&worker->work)) {
1933 worker->last_ran_at = jiffies;
1934 list_add_tail(&worker->idle_list, &lo->idle_worker_list);
1935 loop_set_timer(lo);
1936 }
1937 spin_unlock_irq(&lo->lo_work_lock);
1938 current->flags = orig_flags;
1939 }
1940
loop_workfn(struct work_struct * work)1941 static void loop_workfn(struct work_struct *work)
1942 {
1943 struct loop_worker *worker =
1944 container_of(work, struct loop_worker, work);
1945 loop_process_work(worker, &worker->cmd_list, worker->lo);
1946 }
1947
loop_rootcg_workfn(struct work_struct * work)1948 static void loop_rootcg_workfn(struct work_struct *work)
1949 {
1950 struct loop_device *lo =
1951 container_of(work, struct loop_device, rootcg_work);
1952 loop_process_work(NULL, &lo->rootcg_cmd_list, lo);
1953 }
1954
1955 static const struct blk_mq_ops loop_mq_ops = {
1956 .queue_rq = loop_queue_rq,
1957 .complete = lo_complete_rq,
1958 };
1959
loop_add(int i)1960 static int loop_add(int i)
1961 {
1962 struct queue_limits lim = {
1963 /*
1964 * Random number picked from the historic block max_sectors cap.
1965 */
1966 .max_hw_sectors = 2560u,
1967 };
1968 struct loop_device *lo;
1969 struct gendisk *disk;
1970 int err;
1971
1972 err = -ENOMEM;
1973 lo = kzalloc(sizeof(*lo), GFP_KERNEL);
1974 if (!lo)
1975 goto out;
1976 lo->worker_tree = RB_ROOT;
1977 INIT_LIST_HEAD(&lo->idle_worker_list);
1978 timer_setup(&lo->timer, loop_free_idle_workers_timer, TIMER_DEFERRABLE);
1979 lo->lo_state = Lo_unbound;
1980
1981 err = mutex_lock_killable(&loop_ctl_mutex);
1982 if (err)
1983 goto out_free_dev;
1984
1985 /* allocate id, if @id >= 0, we're requesting that specific id */
1986 if (i >= 0) {
1987 err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL);
1988 if (err == -ENOSPC)
1989 err = -EEXIST;
1990 } else {
1991 err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL);
1992 }
1993 mutex_unlock(&loop_ctl_mutex);
1994 if (err < 0)
1995 goto out_free_dev;
1996 i = err;
1997
1998 lo->tag_set.ops = &loop_mq_ops;
1999 lo->tag_set.nr_hw_queues = 1;
2000 lo->tag_set.queue_depth = hw_queue_depth;
2001 lo->tag_set.numa_node = NUMA_NO_NODE;
2002 lo->tag_set.cmd_size = sizeof(struct loop_cmd);
2003 lo->tag_set.flags = BLK_MQ_F_STACKING | BLK_MQ_F_NO_SCHED_BY_DEFAULT;
2004 lo->tag_set.driver_data = lo;
2005
2006 err = blk_mq_alloc_tag_set(&lo->tag_set);
2007 if (err)
2008 goto out_free_idr;
2009
2010 disk = lo->lo_disk = blk_mq_alloc_disk(&lo->tag_set, &lim, lo);
2011 if (IS_ERR(disk)) {
2012 err = PTR_ERR(disk);
2013 goto out_cleanup_tags;
2014 }
2015 lo->lo_queue = lo->lo_disk->queue;
2016
2017 /*
2018 * Disable partition scanning by default. The in-kernel partition
2019 * scanning can be requested individually per-device during its
2020 * setup. Userspace can always add and remove partitions from all
2021 * devices. The needed partition minors are allocated from the
2022 * extended minor space, the main loop device numbers will continue
2023 * to match the loop minors, regardless of the number of partitions
2024 * used.
2025 *
2026 * If max_part is given, partition scanning is globally enabled for
2027 * all loop devices. The minors for the main loop devices will be
2028 * multiples of max_part.
2029 *
2030 * Note: Global-for-all-devices, set-only-at-init, read-only module
2031 * parameteters like 'max_loop' and 'max_part' make things needlessly
2032 * complicated, are too static, inflexible and may surprise
2033 * userspace tools. Parameters like this in general should be avoided.
2034 */
2035 if (!part_shift)
2036 set_bit(GD_SUPPRESS_PART_SCAN, &disk->state);
2037 mutex_init(&lo->lo_mutex);
2038 lo->lo_number = i;
2039 spin_lock_init(&lo->lo_lock);
2040 spin_lock_init(&lo->lo_work_lock);
2041 INIT_WORK(&lo->rootcg_work, loop_rootcg_workfn);
2042 INIT_LIST_HEAD(&lo->rootcg_cmd_list);
2043 disk->major = LOOP_MAJOR;
2044 disk->first_minor = i << part_shift;
2045 disk->minors = 1 << part_shift;
2046 disk->fops = &lo_fops;
2047 disk->private_data = lo;
2048 disk->queue = lo->lo_queue;
2049 disk->events = DISK_EVENT_MEDIA_CHANGE;
2050 disk->event_flags = DISK_EVENT_FLAG_UEVENT;
2051 sprintf(disk->disk_name, "loop%d", i);
2052 /* Make this loop device reachable from pathname. */
2053 err = add_disk(disk);
2054 if (err)
2055 goto out_cleanup_disk;
2056
2057 /* Show this loop device. */
2058 mutex_lock(&loop_ctl_mutex);
2059 lo->idr_visible = true;
2060 mutex_unlock(&loop_ctl_mutex);
2061
2062 return i;
2063
2064 out_cleanup_disk:
2065 put_disk(disk);
2066 out_cleanup_tags:
2067 blk_mq_free_tag_set(&lo->tag_set);
2068 out_free_idr:
2069 mutex_lock(&loop_ctl_mutex);
2070 idr_remove(&loop_index_idr, i);
2071 mutex_unlock(&loop_ctl_mutex);
2072 out_free_dev:
2073 kfree(lo);
2074 out:
2075 return err;
2076 }
2077
loop_remove(struct loop_device * lo)2078 static void loop_remove(struct loop_device *lo)
2079 {
2080 /* Make this loop device unreachable from pathname. */
2081 del_gendisk(lo->lo_disk);
2082 blk_mq_free_tag_set(&lo->tag_set);
2083
2084 mutex_lock(&loop_ctl_mutex);
2085 idr_remove(&loop_index_idr, lo->lo_number);
2086 mutex_unlock(&loop_ctl_mutex);
2087
2088 put_disk(lo->lo_disk);
2089 }
2090
2091 #ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD
loop_probe(dev_t dev)2092 static void loop_probe(dev_t dev)
2093 {
2094 int idx = MINOR(dev) >> part_shift;
2095
2096 if (max_loop_specified && max_loop && idx >= max_loop)
2097 return;
2098 loop_add(idx);
2099 }
2100 #else
2101 #define loop_probe NULL
2102 #endif /* !CONFIG_BLOCK_LEGACY_AUTOLOAD */
2103
loop_control_remove(int idx)2104 static int loop_control_remove(int idx)
2105 {
2106 struct loop_device *lo;
2107 int ret;
2108
2109 if (idx < 0) {
2110 pr_warn_once("deleting an unspecified loop device is not supported.\n");
2111 return -EINVAL;
2112 }
2113
2114 /* Hide this loop device for serialization. */
2115 ret = mutex_lock_killable(&loop_ctl_mutex);
2116 if (ret)
2117 return ret;
2118 lo = idr_find(&loop_index_idr, idx);
2119 if (!lo || !lo->idr_visible)
2120 ret = -ENODEV;
2121 else
2122 lo->idr_visible = false;
2123 mutex_unlock(&loop_ctl_mutex);
2124 if (ret)
2125 return ret;
2126
2127 /* Check whether this loop device can be removed. */
2128 ret = mutex_lock_killable(&lo->lo_mutex);
2129 if (ret)
2130 goto mark_visible;
2131 if (lo->lo_state != Lo_unbound || disk_openers(lo->lo_disk) > 0) {
2132 mutex_unlock(&lo->lo_mutex);
2133 ret = -EBUSY;
2134 goto mark_visible;
2135 }
2136 /* Mark this loop device as no more bound, but not quite unbound yet */
2137 lo->lo_state = Lo_deleting;
2138 mutex_unlock(&lo->lo_mutex);
2139
2140 loop_remove(lo);
2141 return 0;
2142
2143 mark_visible:
2144 /* Show this loop device again. */
2145 mutex_lock(&loop_ctl_mutex);
2146 lo->idr_visible = true;
2147 mutex_unlock(&loop_ctl_mutex);
2148 return ret;
2149 }
2150
loop_control_get_free(int idx)2151 static int loop_control_get_free(int idx)
2152 {
2153 struct loop_device *lo;
2154 int id, ret;
2155
2156 ret = mutex_lock_killable(&loop_ctl_mutex);
2157 if (ret)
2158 return ret;
2159 idr_for_each_entry(&loop_index_idr, lo, id) {
2160 /* Hitting a race results in creating a new loop device which is harmless. */
2161 if (lo->idr_visible && data_race(lo->lo_state) == Lo_unbound)
2162 goto found;
2163 }
2164 mutex_unlock(&loop_ctl_mutex);
2165 return loop_add(-1);
2166 found:
2167 mutex_unlock(&loop_ctl_mutex);
2168 return id;
2169 }
2170
loop_control_ioctl(struct file * file,unsigned int cmd,unsigned long parm)2171 static long loop_control_ioctl(struct file *file, unsigned int cmd,
2172 unsigned long parm)
2173 {
2174 switch (cmd) {
2175 case LOOP_CTL_ADD:
2176 return loop_add(parm);
2177 case LOOP_CTL_REMOVE:
2178 return loop_control_remove(parm);
2179 case LOOP_CTL_GET_FREE:
2180 return loop_control_get_free(parm);
2181 default:
2182 return -ENOSYS;
2183 }
2184 }
2185
2186 static const struct file_operations loop_ctl_fops = {
2187 .open = nonseekable_open,
2188 .unlocked_ioctl = loop_control_ioctl,
2189 .compat_ioctl = loop_control_ioctl,
2190 .owner = THIS_MODULE,
2191 .llseek = noop_llseek,
2192 };
2193
2194 static struct miscdevice loop_misc = {
2195 .minor = LOOP_CTRL_MINOR,
2196 .name = "loop-control",
2197 .fops = &loop_ctl_fops,
2198 };
2199
2200 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR);
2201 MODULE_ALIAS("devname:loop-control");
2202
loop_init(void)2203 static int __init loop_init(void)
2204 {
2205 int i;
2206 int err;
2207
2208 part_shift = 0;
2209 if (max_part > 0) {
2210 part_shift = fls(max_part);
2211
2212 /*
2213 * Adjust max_part according to part_shift as it is exported
2214 * to user space so that user can decide correct minor number
2215 * if [s]he want to create more devices.
2216 *
2217 * Note that -1 is required because partition 0 is reserved
2218 * for the whole disk.
2219 */
2220 max_part = (1UL << part_shift) - 1;
2221 }
2222
2223 if ((1UL << part_shift) > DISK_MAX_PARTS) {
2224 err = -EINVAL;
2225 goto err_out;
2226 }
2227
2228 if (max_loop > 1UL << (MINORBITS - part_shift)) {
2229 err = -EINVAL;
2230 goto err_out;
2231 }
2232
2233 err = misc_register(&loop_misc);
2234 if (err < 0)
2235 goto err_out;
2236
2237
2238 if (__register_blkdev(LOOP_MAJOR, "loop", loop_probe)) {
2239 err = -EIO;
2240 goto misc_out;
2241 }
2242
2243 /* pre-create number of devices given by config or max_loop */
2244 for (i = 0; i < max_loop; i++)
2245 loop_add(i);
2246
2247 printk(KERN_INFO "loop: module loaded\n");
2248 return 0;
2249
2250 misc_out:
2251 misc_deregister(&loop_misc);
2252 err_out:
2253 return err;
2254 }
2255
loop_exit(void)2256 static void __exit loop_exit(void)
2257 {
2258 struct loop_device *lo;
2259 int id;
2260
2261 unregister_blkdev(LOOP_MAJOR, "loop");
2262 misc_deregister(&loop_misc);
2263
2264 /*
2265 * There is no need to use loop_ctl_mutex here, for nobody else can
2266 * access loop_index_idr when this module is unloading (unless forced
2267 * module unloading is requested). If this is not a clean unloading,
2268 * we have no means to avoid kernel crash.
2269 */
2270 idr_for_each_entry(&loop_index_idr, lo, id)
2271 loop_remove(lo);
2272
2273 idr_destroy(&loop_index_idr);
2274 }
2275
2276 module_init(loop_init);
2277 module_exit(loop_exit);
2278
2279 #ifndef MODULE
max_loop_setup(char * str)2280 static int __init max_loop_setup(char *str)
2281 {
2282 max_loop = simple_strtol(str, NULL, 0);
2283 #ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD
2284 max_loop_specified = true;
2285 #endif
2286 return 1;
2287 }
2288
2289 __setup("max_loop=", max_loop_setup);
2290 #endif
2291