xref: /linux/drivers/gpu/drm/xe/xe_devcoredump.c (revision ab93e0dd72c37d378dd936f031ffb83ff2bd87ce)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2023 Intel Corporation
4  */
5 
6 #include "xe_devcoredump.h"
7 #include "xe_devcoredump_types.h"
8 
9 #include <linux/ascii85.h>
10 #include <linux/devcoredump.h>
11 #include <generated/utsrelease.h>
12 
13 #include <drm/drm_managed.h>
14 
15 #include "xe_device.h"
16 #include "xe_exec_queue.h"
17 #include "xe_force_wake.h"
18 #include "xe_gt.h"
19 #include "xe_gt_printk.h"
20 #include "xe_guc_capture.h"
21 #include "xe_guc_ct.h"
22 #include "xe_guc_log.h"
23 #include "xe_guc_submit.h"
24 #include "xe_hw_engine.h"
25 #include "xe_module.h"
26 #include "xe_pm.h"
27 #include "xe_sched_job.h"
28 #include "xe_vm.h"
29 
30 /**
31  * DOC: Xe device coredump
32  *
33  * Xe uses dev_coredump infrastructure for exposing the crash errors in a
34  * standardized way. Once a crash occurs, devcoredump exposes a temporary
35  * node under ``/sys/class/devcoredump/devcd<m>/``. The same node is also
36  * accessible in ``/sys/class/drm/card<n>/device/devcoredump/``. The
37  * ``failing_device`` symlink points to the device that crashed and created the
38  * coredump.
39  *
40  * The following characteristics are observed by xe when creating a device
41  * coredump:
42  *
43  * **Snapshot at hang**:
44  *   The 'data' file contains a snapshot of the HW and driver states at the time
45  *   the hang happened. Due to the driver recovering from resets/crashes, it may
46  *   not correspond to the state of the system when the file is read by
47  *   userspace.
48  *
49  * **Coredump release**:
50  *   After a coredump is generated, it stays in kernel memory until released by
51  *   userspace by writing anything to it, or after an internal timer expires. The
52  *   exact timeout may vary and should not be relied upon. Example to release
53  *   a coredump:
54  *
55  *   .. code-block:: shell
56  *
57  *	$ > /sys/class/drm/card0/device/devcoredump/data
58  *
59  * **First failure only**:
60  *   In general, the first hang is the most critical one since the following
61  *   hangs can be a consequence of the initial hang. For this reason a snapshot
62  *   is taken only for the first failure. Until the devcoredump is released by
63  *   userspace or kernel, all subsequent hangs do not override the snapshot nor
64  *   create new ones. Devcoredump has a delayed work queue that will eventually
65  *   delete the file node and free all the dump information.
66  */
67 
68 #ifdef CONFIG_DEV_COREDUMP
69 
70 /* 1 hour timeout */
71 #define XE_COREDUMP_TIMEOUT_JIFFIES (60 * 60 * HZ)
72 
coredump_to_xe(const struct xe_devcoredump * coredump)73 static struct xe_device *coredump_to_xe(const struct xe_devcoredump *coredump)
74 {
75 	return container_of(coredump, struct xe_device, devcoredump);
76 }
77 
exec_queue_to_guc(struct xe_exec_queue * q)78 static struct xe_guc *exec_queue_to_guc(struct xe_exec_queue *q)
79 {
80 	return &q->gt->uc.guc;
81 }
82 
__xe_devcoredump_read(char * buffer,ssize_t count,ssize_t start,struct xe_devcoredump * coredump)83 static ssize_t __xe_devcoredump_read(char *buffer, ssize_t count,
84 				     ssize_t start,
85 				     struct xe_devcoredump *coredump)
86 {
87 	struct xe_device *xe;
88 	struct xe_devcoredump_snapshot *ss;
89 	struct drm_printer p;
90 	struct drm_print_iterator iter;
91 	struct timespec64 ts;
92 	int i;
93 
94 	xe = coredump_to_xe(coredump);
95 	ss = &coredump->snapshot;
96 
97 	iter.data = buffer;
98 	iter.start = start;
99 	iter.remain = count;
100 
101 	p = drm_coredump_printer(&iter);
102 
103 	drm_puts(&p, "**** Xe Device Coredump ****\n");
104 	drm_printf(&p, "Reason: %s\n", ss->reason);
105 	drm_puts(&p, "kernel: " UTS_RELEASE "\n");
106 	drm_puts(&p, "module: " KBUILD_MODNAME "\n");
107 
108 	ts = ktime_to_timespec64(ss->snapshot_time);
109 	drm_printf(&p, "Snapshot time: %lld.%09ld\n", ts.tv_sec, ts.tv_nsec);
110 	ts = ktime_to_timespec64(ss->boot_time);
111 	drm_printf(&p, "Uptime: %lld.%09ld\n", ts.tv_sec, ts.tv_nsec);
112 	drm_printf(&p, "Process: %s [%d]\n", ss->process_name, ss->pid);
113 	xe_device_snapshot_print(xe, &p);
114 
115 	drm_printf(&p, "\n**** GT #%d ****\n", ss->gt->info.id);
116 	drm_printf(&p, "\tTile: %d\n", ss->gt->tile->id);
117 
118 	drm_puts(&p, "\n**** GuC Log ****\n");
119 	xe_guc_log_snapshot_print(ss->guc.log, &p);
120 	drm_puts(&p, "\n**** GuC CT ****\n");
121 	xe_guc_ct_snapshot_print(ss->guc.ct, &p);
122 
123 	drm_puts(&p, "\n**** Contexts ****\n");
124 	xe_guc_exec_queue_snapshot_print(ss->ge, &p);
125 
126 	drm_puts(&p, "\n**** Job ****\n");
127 	xe_sched_job_snapshot_print(ss->job, &p);
128 
129 	drm_puts(&p, "\n**** HW Engines ****\n");
130 	for (i = 0; i < XE_NUM_HW_ENGINES; i++)
131 		if (ss->hwe[i])
132 			xe_engine_snapshot_print(ss->hwe[i], &p);
133 
134 	drm_puts(&p, "\n**** VM state ****\n");
135 	xe_vm_snapshot_print(ss->vm, &p);
136 
137 	return count - iter.remain;
138 }
139 
xe_devcoredump_snapshot_free(struct xe_devcoredump_snapshot * ss)140 static void xe_devcoredump_snapshot_free(struct xe_devcoredump_snapshot *ss)
141 {
142 	int i;
143 
144 	kfree(ss->reason);
145 	ss->reason = NULL;
146 
147 	xe_guc_log_snapshot_free(ss->guc.log);
148 	ss->guc.log = NULL;
149 
150 	xe_guc_ct_snapshot_free(ss->guc.ct);
151 	ss->guc.ct = NULL;
152 
153 	xe_guc_capture_put_matched_nodes(&ss->gt->uc.guc);
154 	ss->matched_node = NULL;
155 
156 	xe_guc_exec_queue_snapshot_free(ss->ge);
157 	ss->ge = NULL;
158 
159 	xe_sched_job_snapshot_free(ss->job);
160 	ss->job = NULL;
161 
162 	for (i = 0; i < XE_NUM_HW_ENGINES; i++)
163 		if (ss->hwe[i]) {
164 			xe_hw_engine_snapshot_free(ss->hwe[i]);
165 			ss->hwe[i] = NULL;
166 		}
167 
168 	xe_vm_snapshot_free(ss->vm);
169 	ss->vm = NULL;
170 }
171 
172 #define XE_DEVCOREDUMP_CHUNK_MAX	(SZ_512M + SZ_1G)
173 
174 /**
175  * xe_devcoredump_read() - Read data from the Xe device coredump snapshot
176  * @buffer: Destination buffer to copy the coredump data into
177  * @offset: Offset in the coredump data to start reading from
178  * @count: Number of bytes to read
179  * @data: Pointer to the xe_devcoredump structure
180  * @datalen: Length of the data (unused)
181  *
182  * Reads a chunk of the coredump snapshot data into the provided buffer.
183  * If the devcoredump is smaller than 1.5 GB (XE_DEVCOREDUMP_CHUNK_MAX),
184  * it is read directly from a pre-written buffer. For larger devcoredumps,
185  * the pre-written buffer must be periodically repopulated from the snapshot
186  * state due to kmalloc size limitations.
187  *
188  * Return: Number of bytes copied on success, or a negative error code on failure.
189  */
xe_devcoredump_read(char * buffer,loff_t offset,size_t count,void * data,size_t datalen)190 static ssize_t xe_devcoredump_read(char *buffer, loff_t offset,
191 				   size_t count, void *data, size_t datalen)
192 {
193 	struct xe_devcoredump *coredump = data;
194 	struct xe_devcoredump_snapshot *ss;
195 	ssize_t byte_copied = 0;
196 	u32 chunk_offset;
197 	ssize_t new_chunk_position;
198 	bool pm_needed = false;
199 	int ret = 0;
200 
201 	if (!coredump)
202 		return -ENODEV;
203 
204 	ss = &coredump->snapshot;
205 
206 	/* Ensure delayed work is captured before continuing */
207 	flush_work(&ss->work);
208 
209 	pm_needed = ss->read.size > XE_DEVCOREDUMP_CHUNK_MAX;
210 	if (pm_needed)
211 		xe_pm_runtime_get(gt_to_xe(ss->gt));
212 
213 	mutex_lock(&coredump->lock);
214 
215 	if (!ss->read.buffer) {
216 		ret = -ENODEV;
217 		goto unlock;
218 	}
219 
220 	if (offset >= ss->read.size)
221 		goto unlock;
222 
223 	new_chunk_position = div_u64_rem(offset,
224 					 XE_DEVCOREDUMP_CHUNK_MAX,
225 					 &chunk_offset);
226 
227 	if (offset >= ss->read.chunk_position + XE_DEVCOREDUMP_CHUNK_MAX ||
228 	    offset < ss->read.chunk_position) {
229 		ss->read.chunk_position = new_chunk_position *
230 			XE_DEVCOREDUMP_CHUNK_MAX;
231 
232 		__xe_devcoredump_read(ss->read.buffer,
233 				      XE_DEVCOREDUMP_CHUNK_MAX,
234 				      ss->read.chunk_position, coredump);
235 	}
236 
237 	byte_copied = count < ss->read.size - offset ? count :
238 		ss->read.size - offset;
239 	memcpy(buffer, ss->read.buffer + chunk_offset, byte_copied);
240 
241 unlock:
242 	mutex_unlock(&coredump->lock);
243 
244 	if (pm_needed)
245 		xe_pm_runtime_put(gt_to_xe(ss->gt));
246 
247 	return byte_copied ? byte_copied : ret;
248 }
249 
xe_devcoredump_free(void * data)250 static void xe_devcoredump_free(void *data)
251 {
252 	struct xe_devcoredump *coredump = data;
253 
254 	/* Our device is gone. Nothing to do... */
255 	if (!data || !coredump_to_xe(coredump))
256 		return;
257 
258 	cancel_work_sync(&coredump->snapshot.work);
259 
260 	mutex_lock(&coredump->lock);
261 
262 	xe_devcoredump_snapshot_free(&coredump->snapshot);
263 	kvfree(coredump->snapshot.read.buffer);
264 
265 	/* To prevent stale data on next snapshot, clear everything */
266 	memset(&coredump->snapshot, 0, sizeof(coredump->snapshot));
267 	coredump->captured = false;
268 	drm_info(&coredump_to_xe(coredump)->drm,
269 		 "Xe device coredump has been deleted.\n");
270 
271 	mutex_unlock(&coredump->lock);
272 }
273 
xe_devcoredump_deferred_snap_work(struct work_struct * work)274 static void xe_devcoredump_deferred_snap_work(struct work_struct *work)
275 {
276 	struct xe_devcoredump_snapshot *ss = container_of(work, typeof(*ss), work);
277 	struct xe_devcoredump *coredump = container_of(ss, typeof(*coredump), snapshot);
278 	struct xe_device *xe = coredump_to_xe(coredump);
279 	unsigned int fw_ref;
280 
281 	/*
282 	 * NB: Despite passing a GFP_ flags parameter here, more allocations are done
283 	 * internally using GFP_KERNEL explicitly. Hence this call must be in the worker
284 	 * thread and not in the initial capture call.
285 	 */
286 	dev_coredumpm_timeout(gt_to_xe(ss->gt)->drm.dev, THIS_MODULE, coredump, 0, GFP_KERNEL,
287 			      xe_devcoredump_read, xe_devcoredump_free,
288 			      XE_COREDUMP_TIMEOUT_JIFFIES);
289 
290 	xe_pm_runtime_get(xe);
291 
292 	/* keep going if fw fails as we still want to save the memory and SW data */
293 	fw_ref = xe_force_wake_get(gt_to_fw(ss->gt), XE_FORCEWAKE_ALL);
294 	if (!xe_force_wake_ref_has_domain(fw_ref, XE_FORCEWAKE_ALL))
295 		xe_gt_info(ss->gt, "failed to get forcewake for coredump capture\n");
296 	xe_vm_snapshot_capture_delayed(ss->vm);
297 	xe_guc_exec_queue_snapshot_capture_delayed(ss->ge);
298 	xe_force_wake_put(gt_to_fw(ss->gt), fw_ref);
299 
300 	ss->read.chunk_position = 0;
301 
302 	/* Calculate devcoredump size */
303 	ss->read.size = __xe_devcoredump_read(NULL, LONG_MAX, 0, coredump);
304 
305 	if (ss->read.size > XE_DEVCOREDUMP_CHUNK_MAX) {
306 		ss->read.buffer = kvmalloc(XE_DEVCOREDUMP_CHUNK_MAX,
307 					   GFP_USER);
308 		if (!ss->read.buffer)
309 			goto put_pm;
310 
311 		__xe_devcoredump_read(ss->read.buffer,
312 				      XE_DEVCOREDUMP_CHUNK_MAX,
313 				      0, coredump);
314 	} else {
315 		ss->read.buffer = kvmalloc(ss->read.size, GFP_USER);
316 		if (!ss->read.buffer)
317 			goto put_pm;
318 
319 		__xe_devcoredump_read(ss->read.buffer, ss->read.size, 0,
320 				      coredump);
321 		xe_devcoredump_snapshot_free(ss);
322 	}
323 
324 put_pm:
325 	xe_pm_runtime_put(xe);
326 }
327 
devcoredump_snapshot(struct xe_devcoredump * coredump,struct xe_exec_queue * q,struct xe_sched_job * job)328 static void devcoredump_snapshot(struct xe_devcoredump *coredump,
329 				 struct xe_exec_queue *q,
330 				 struct xe_sched_job *job)
331 {
332 	struct xe_devcoredump_snapshot *ss = &coredump->snapshot;
333 	struct xe_guc *guc = exec_queue_to_guc(q);
334 	const char *process_name = "no process";
335 	unsigned int fw_ref;
336 	bool cookie;
337 
338 	ss->snapshot_time = ktime_get_real();
339 	ss->boot_time = ktime_get_boottime();
340 
341 	if (q->vm && q->vm->xef) {
342 		process_name = q->vm->xef->process_name;
343 		ss->pid = q->vm->xef->pid;
344 	}
345 
346 	strscpy(ss->process_name, process_name);
347 
348 	ss->gt = q->gt;
349 	INIT_WORK(&ss->work, xe_devcoredump_deferred_snap_work);
350 
351 	cookie = dma_fence_begin_signalling();
352 
353 	/* keep going if fw fails as we still want to save the memory and SW data */
354 	fw_ref = xe_force_wake_get(gt_to_fw(q->gt), XE_FORCEWAKE_ALL);
355 
356 	ss->guc.log = xe_guc_log_snapshot_capture(&guc->log, true);
357 	ss->guc.ct = xe_guc_ct_snapshot_capture(&guc->ct);
358 	ss->ge = xe_guc_exec_queue_snapshot_capture(q);
359 	if (job)
360 		ss->job = xe_sched_job_snapshot_capture(job);
361 	ss->vm = xe_vm_snapshot_capture(q->vm);
362 
363 	xe_engine_snapshot_capture_for_queue(q);
364 
365 	queue_work(system_unbound_wq, &ss->work);
366 
367 	xe_force_wake_put(gt_to_fw(q->gt), fw_ref);
368 	dma_fence_end_signalling(cookie);
369 }
370 
371 /**
372  * xe_devcoredump - Take the required snapshots and initialize coredump device.
373  * @q: The faulty xe_exec_queue, where the issue was detected.
374  * @job: The faulty xe_sched_job, where the issue was detected.
375  * @fmt: Printf format + args to describe the reason for the core dump
376  *
377  * This function should be called at the crash time within the serialized
378  * gt_reset. It is skipped if we still have the core dump device available
379  * with the information of the 'first' snapshot.
380  */
381 __printf(3, 4)
xe_devcoredump(struct xe_exec_queue * q,struct xe_sched_job * job,const char * fmt,...)382 void xe_devcoredump(struct xe_exec_queue *q, struct xe_sched_job *job, const char *fmt, ...)
383 {
384 	struct xe_device *xe = gt_to_xe(q->gt);
385 	struct xe_devcoredump *coredump = &xe->devcoredump;
386 	va_list varg;
387 
388 	mutex_lock(&coredump->lock);
389 
390 	if (coredump->captured) {
391 		drm_dbg(&xe->drm, "Multiple hangs are occurring, but only the first snapshot was taken\n");
392 		mutex_unlock(&coredump->lock);
393 		return;
394 	}
395 
396 	coredump->captured = true;
397 
398 	va_start(varg, fmt);
399 	coredump->snapshot.reason = kvasprintf(GFP_ATOMIC, fmt, varg);
400 	va_end(varg);
401 
402 	devcoredump_snapshot(coredump, q, job);
403 
404 	drm_info(&xe->drm, "Xe device coredump has been created\n");
405 	drm_info(&xe->drm, "Check your /sys/class/drm/card%d/device/devcoredump/data\n",
406 		 xe->drm.primary->index);
407 
408 	mutex_unlock(&coredump->lock);
409 }
410 
xe_driver_devcoredump_fini(void * arg)411 static void xe_driver_devcoredump_fini(void *arg)
412 {
413 	struct drm_device *drm = arg;
414 
415 	dev_coredump_put(drm->dev);
416 }
417 
xe_devcoredump_init(struct xe_device * xe)418 int xe_devcoredump_init(struct xe_device *xe)
419 {
420 	int err;
421 
422 	err = drmm_mutex_init(&xe->drm, &xe->devcoredump.lock);
423 	if (err)
424 		return err;
425 
426 	if (IS_ENABLED(CONFIG_LOCKDEP)) {
427 		fs_reclaim_acquire(GFP_KERNEL);
428 		might_lock(&xe->devcoredump.lock);
429 		fs_reclaim_release(GFP_KERNEL);
430 	}
431 
432 	return devm_add_action_or_reset(xe->drm.dev, xe_driver_devcoredump_fini, &xe->drm);
433 }
434 
435 #endif
436 
437 /**
438  * xe_print_blob_ascii85 - print a BLOB to some useful location in ASCII85
439  *
440  * The output is split into multiple calls to drm_puts() because some print
441  * targets, e.g. dmesg, cannot handle arbitrarily long lines. These targets may
442  * add newlines, as is the case with dmesg: each drm_puts() call creates a
443  * separate line.
444  *
445  * There is also a scheduler yield call to prevent the 'task has been stuck for
446  * 120s' kernel hang check feature from firing when printing to a slow target
447  * such as dmesg over a serial port.
448  *
449  * @p: the printer object to output to
450  * @prefix: optional prefix to add to output string
451  * @suffix: optional suffix to add at the end. 0 disables it and is
452  *          not added to the output, which is useful when using multiple calls
453  *          to dump data to @p
454  * @blob: the Binary Large OBject to dump out
455  * @offset: offset in bytes to skip from the front of the BLOB, must be a multiple of sizeof(u32)
456  * @size: the size in bytes of the BLOB, must be a multiple of sizeof(u32)
457  */
xe_print_blob_ascii85(struct drm_printer * p,const char * prefix,char suffix,const void * blob,size_t offset,size_t size)458 void xe_print_blob_ascii85(struct drm_printer *p, const char *prefix, char suffix,
459 			   const void *blob, size_t offset, size_t size)
460 {
461 	const u32 *blob32 = (const u32 *)blob;
462 	char buff[ASCII85_BUFSZ], *line_buff;
463 	size_t line_pos = 0;
464 
465 #define DMESG_MAX_LINE_LEN	800
466 	/* Always leave space for the suffix char and the \0 */
467 #define MIN_SPACE		(ASCII85_BUFSZ + 2)	/* 85 + "<suffix>\0" */
468 
469 	if (size & 3)
470 		drm_printf(p, "Size not word aligned: %zu", size);
471 	if (offset & 3)
472 		drm_printf(p, "Offset not word aligned: %zu", offset);
473 
474 	line_buff = kzalloc(DMESG_MAX_LINE_LEN, GFP_ATOMIC);
475 	if (!line_buff) {
476 		drm_printf(p, "Failed to allocate line buffer\n");
477 		return;
478 	}
479 
480 	blob32 += offset / sizeof(*blob32);
481 	size /= sizeof(*blob32);
482 
483 	if (prefix) {
484 		strscpy(line_buff, prefix, DMESG_MAX_LINE_LEN - MIN_SPACE - 2);
485 		line_pos = strlen(line_buff);
486 
487 		line_buff[line_pos++] = ':';
488 		line_buff[line_pos++] = ' ';
489 	}
490 
491 	while (size--) {
492 		u32 val = *(blob32++);
493 
494 		strscpy(line_buff + line_pos, ascii85_encode(val, buff),
495 			DMESG_MAX_LINE_LEN - line_pos);
496 		line_pos += strlen(line_buff + line_pos);
497 
498 		if ((line_pos + MIN_SPACE) >= DMESG_MAX_LINE_LEN) {
499 			line_buff[line_pos++] = 0;
500 
501 			drm_puts(p, line_buff);
502 
503 			line_pos = 0;
504 
505 			/* Prevent 'stuck thread' time out errors */
506 			cond_resched();
507 		}
508 	}
509 
510 	if (suffix)
511 		line_buff[line_pos++] = suffix;
512 
513 	if (line_pos) {
514 		line_buff[line_pos++] = 0;
515 		drm_puts(p, line_buff);
516 	}
517 
518 	kfree(line_buff);
519 
520 #undef MIN_SPACE
521 #undef DMESG_MAX_LINE_LEN
522 }
523