1 /*
2 * ARM generic helpers.
3 *
4 * This code is licensed under the GNU GPL v2 or later.
5 *
6 * SPDX-License-Identifier: GPL-2.0-or-later
7 */
8
9 #include "qemu/osdep.h"
10 #include "qemu/log.h"
11 #include "trace.h"
12 #include "cpu.h"
13 #include "internals.h"
14 #include "cpu-features.h"
15 #include "exec/page-protection.h"
16 #include "exec/mmap-lock.h"
17 #include "qemu/main-loop.h"
18 #include "qemu/timer.h"
19 #include "qemu/bitops.h"
20 #include "qemu/qemu-print.h"
21 #include "exec/cputlb.h"
22 #include "exec/translation-block.h"
23 #include "hw/irq.h"
24 #include "system/cpu-timers.h"
25 #include "exec/icount.h"
26 #include "system/kvm.h"
27 #include "system/tcg.h"
28 #include "qapi/error.h"
29 #include "qemu/guest-random.h"
30 #ifdef CONFIG_TCG
31 #include "accel/tcg/probe.h"
32 #include "accel/tcg/getpc.h"
33 #include "semihosting/common-semi.h"
34 #endif
35 #include "cpregs.h"
36 #include "target/arm/gtimer.h"
37
38 #define HELPER_H "tcg/helper.h"
39 #include "exec/helper-proto.h.inc"
40
41 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
42
43 static void switch_mode(CPUARMState *env, int mode);
44
raw_read(CPUARMState * env,const ARMCPRegInfo * ri)45 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
46 {
47 assert(ri->fieldoffset);
48 if (cpreg_field_is_64bit(ri)) {
49 return CPREG_FIELD64(env, ri);
50 } else {
51 return CPREG_FIELD32(env, ri);
52 }
53 }
54
raw_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)55 void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
56 {
57 assert(ri->fieldoffset);
58 if (cpreg_field_is_64bit(ri)) {
59 CPREG_FIELD64(env, ri) = value;
60 } else {
61 CPREG_FIELD32(env, ri) = value;
62 }
63 }
64
raw_ptr(CPUARMState * env,const ARMCPRegInfo * ri)65 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
66 {
67 return (char *)env + ri->fieldoffset;
68 }
69
read_raw_cp_reg(CPUARMState * env,const ARMCPRegInfo * ri)70 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
71 {
72 /* Raw read of a coprocessor register (as needed for migration, etc). */
73 if (ri->type & ARM_CP_CONST) {
74 return ri->resetvalue;
75 } else if (ri->raw_readfn) {
76 return ri->raw_readfn(env, ri);
77 } else if (ri->readfn) {
78 return ri->readfn(env, ri);
79 } else {
80 return raw_read(env, ri);
81 }
82 }
83
write_raw_cp_reg(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t v)84 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
85 uint64_t v)
86 {
87 /*
88 * Raw write of a coprocessor register (as needed for migration, etc).
89 * Note that constant registers are treated as write-ignored; the
90 * caller should check for success by whether a readback gives the
91 * value written.
92 */
93 if (ri->type & ARM_CP_CONST) {
94 return;
95 } else if (ri->raw_writefn) {
96 ri->raw_writefn(env, ri, v);
97 } else if (ri->writefn) {
98 ri->writefn(env, ri, v);
99 } else {
100 raw_write(env, ri, v);
101 }
102 }
103
raw_accessors_invalid(const ARMCPRegInfo * ri)104 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
105 {
106 /*
107 * Return true if the regdef would cause an assertion if you called
108 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
109 * program bug for it not to have the NO_RAW flag).
110 * NB that returning false here doesn't necessarily mean that calling
111 * read/write_raw_cp_reg() is safe, because we can't distinguish "has
112 * read/write access functions which are safe for raw use" from "has
113 * read/write access functions which have side effects but has forgotten
114 * to provide raw access functions".
115 * The tests here line up with the conditions in read/write_raw_cp_reg()
116 * and assertions in raw_read()/raw_write().
117 */
118 if ((ri->type & ARM_CP_CONST) ||
119 ri->fieldoffset ||
120 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
121 return false;
122 }
123 return true;
124 }
125
write_cpustate_to_list(ARMCPU * cpu,bool kvm_sync)126 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync)
127 {
128 /* Write the coprocessor state from cpu->env to the (index,value) list. */
129 int i;
130 bool ok = true;
131
132 for (i = 0; i < cpu->cpreg_array_len; i++) {
133 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
134 const ARMCPRegInfo *ri;
135 uint64_t newval;
136
137 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
138 if (!ri) {
139 ok = false;
140 continue;
141 }
142 if (ri->type & ARM_CP_NO_RAW) {
143 continue;
144 }
145
146 newval = read_raw_cp_reg(&cpu->env, ri);
147 if (kvm_sync) {
148 /*
149 * Only sync if the previous list->cpustate sync succeeded.
150 * Rather than tracking the success/failure state for every
151 * item in the list, we just recheck "does the raw write we must
152 * have made in write_list_to_cpustate() read back OK" here.
153 */
154 uint64_t oldval = cpu->cpreg_values[i];
155
156 if (oldval == newval) {
157 continue;
158 }
159
160 write_raw_cp_reg(&cpu->env, ri, oldval);
161 if (read_raw_cp_reg(&cpu->env, ri) != oldval) {
162 continue;
163 }
164
165 write_raw_cp_reg(&cpu->env, ri, newval);
166 }
167 cpu->cpreg_values[i] = newval;
168 }
169 return ok;
170 }
171
write_list_to_cpustate(ARMCPU * cpu)172 bool write_list_to_cpustate(ARMCPU *cpu)
173 {
174 int i;
175 bool ok = true;
176
177 for (i = 0; i < cpu->cpreg_array_len; i++) {
178 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
179 uint64_t v = cpu->cpreg_values[i];
180 const ARMCPRegInfo *ri;
181
182 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
183 if (!ri) {
184 ok = false;
185 continue;
186 }
187 if (ri->type & ARM_CP_NO_RAW) {
188 continue;
189 }
190 /*
191 * Write value and confirm it reads back as written
192 * (to catch read-only registers and partially read-only
193 * registers where the incoming migration value doesn't match)
194 */
195 write_raw_cp_reg(&cpu->env, ri, v);
196 if (read_raw_cp_reg(&cpu->env, ri) != v) {
197 ok = false;
198 }
199 }
200 return ok;
201 }
202
add_cpreg_to_list(gpointer key,gpointer opaque)203 static void add_cpreg_to_list(gpointer key, gpointer opaque)
204 {
205 ARMCPU *cpu = opaque;
206 uint32_t regidx = (uintptr_t)key;
207 const ARMCPRegInfo *ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
208
209 if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) {
210 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
211 /* The value array need not be initialized at this point */
212 cpu->cpreg_array_len++;
213 }
214 }
215
count_cpreg(gpointer key,gpointer opaque)216 static void count_cpreg(gpointer key, gpointer opaque)
217 {
218 ARMCPU *cpu = opaque;
219 const ARMCPRegInfo *ri;
220
221 ri = g_hash_table_lookup(cpu->cp_regs, key);
222
223 if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) {
224 cpu->cpreg_array_len++;
225 }
226 }
227
cpreg_key_compare(gconstpointer a,gconstpointer b,gpointer d)228 static gint cpreg_key_compare(gconstpointer a, gconstpointer b, gpointer d)
229 {
230 uint64_t aidx = cpreg_to_kvm_id((uintptr_t)a);
231 uint64_t bidx = cpreg_to_kvm_id((uintptr_t)b);
232
233 if (aidx > bidx) {
234 return 1;
235 }
236 if (aidx < bidx) {
237 return -1;
238 }
239 return 0;
240 }
241
init_cpreg_list(ARMCPU * cpu)242 void init_cpreg_list(ARMCPU *cpu)
243 {
244 /*
245 * Initialise the cpreg_tuples[] array based on the cp_regs hash.
246 * Note that we require cpreg_tuples[] to be sorted by key ID.
247 */
248 GList *keys;
249 int arraylen;
250
251 keys = g_hash_table_get_keys(cpu->cp_regs);
252 keys = g_list_sort_with_data(keys, cpreg_key_compare, NULL);
253
254 cpu->cpreg_array_len = 0;
255
256 g_list_foreach(keys, count_cpreg, cpu);
257
258 arraylen = cpu->cpreg_array_len;
259 cpu->cpreg_indexes = g_new(uint64_t, arraylen);
260 cpu->cpreg_values = g_new(uint64_t, arraylen);
261 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
262 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
263 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
264 cpu->cpreg_array_len = 0;
265
266 g_list_foreach(keys, add_cpreg_to_list, cpu);
267
268 assert(cpu->cpreg_array_len == arraylen);
269
270 g_list_free(keys);
271 }
272
arm_pan_enabled(CPUARMState * env)273 static bool arm_pan_enabled(CPUARMState *env)
274 {
275 if (is_a64(env)) {
276 if ((arm_hcr_el2_eff(env) & (HCR_NV | HCR_NV1)) == (HCR_NV | HCR_NV1)) {
277 return false;
278 }
279 return env->pstate & PSTATE_PAN;
280 } else {
281 return env->uncached_cpsr & CPSR_PAN;
282 }
283 }
284
285 /*
286 * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0.
287 */
access_el3_aa32ns(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)288 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
289 const ARMCPRegInfo *ri,
290 bool isread)
291 {
292 if (!is_a64(env) && arm_current_el(env) == 3 &&
293 arm_is_secure_below_el3(env)) {
294 return CP_ACCESS_UNDEFINED;
295 }
296 return CP_ACCESS_OK;
297 }
298
299 /*
300 * Some secure-only AArch32 registers trap to EL3 if used from
301 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
302 * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
303 * We assume that the .access field is set to PL1_RW.
304 */
access_trap_aa32s_el1(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)305 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
306 const ARMCPRegInfo *ri,
307 bool isread)
308 {
309 if (arm_current_el(env) == 3) {
310 return CP_ACCESS_OK;
311 }
312 if (arm_is_secure_below_el3(env)) {
313 if (env->cp15.scr_el3 & SCR_EEL2) {
314 return CP_ACCESS_TRAP_EL2;
315 }
316 return CP_ACCESS_TRAP_EL3;
317 }
318 /* This will be EL1 NS and EL2 NS, which just UNDEF */
319 return CP_ACCESS_UNDEFINED;
320 }
321
322 /*
323 * Check for traps to performance monitor registers, which are controlled
324 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
325 */
access_tpm(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)326 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
327 bool isread)
328 {
329 int el = arm_current_el(env);
330 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
331
332 if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
333 return CP_ACCESS_TRAP_EL2;
334 }
335 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
336 return CP_ACCESS_TRAP_EL3;
337 }
338 return CP_ACCESS_OK;
339 }
340
341 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */
access_tvm_trvm(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)342 CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri,
343 bool isread)
344 {
345 if (arm_current_el(env) == 1) {
346 uint64_t trap = isread ? HCR_TRVM : HCR_TVM;
347 if (arm_hcr_el2_eff(env) & trap) {
348 return CP_ACCESS_TRAP_EL2;
349 }
350 }
351 return CP_ACCESS_OK;
352 }
353
354 /* Check for traps from EL1 due to HCR_EL2.TSW. */
access_tsw(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)355 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri,
356 bool isread)
357 {
358 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) {
359 return CP_ACCESS_TRAP_EL2;
360 }
361 return CP_ACCESS_OK;
362 }
363
364 /* Check for traps from EL1 due to HCR_EL2.TACR. */
access_tacr(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)365 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri,
366 bool isread)
367 {
368 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) {
369 return CP_ACCESS_TRAP_EL2;
370 }
371 return CP_ACCESS_OK;
372 }
373
dacr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)374 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
375 {
376 ARMCPU *cpu = env_archcpu(env);
377
378 raw_write(env, ri, value);
379 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
380 }
381
fcse_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)382 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
383 {
384 ARMCPU *cpu = env_archcpu(env);
385
386 if (raw_read(env, ri) != value) {
387 /*
388 * Unlike real hardware the qemu TLB uses virtual addresses,
389 * not modified virtual addresses, so this causes a TLB flush.
390 */
391 tlb_flush(CPU(cpu));
392 raw_write(env, ri, value);
393 }
394 }
395
contextidr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)396 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
397 uint64_t value)
398 {
399 ARMCPU *cpu = env_archcpu(env);
400
401 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
402 && !extended_addresses_enabled(env)) {
403 /*
404 * For VMSA (when not using the LPAE long descriptor page table
405 * format) this register includes the ASID, so do a TLB flush.
406 * For PMSA it is purely a process ID and no action is needed.
407 */
408 tlb_flush(CPU(cpu));
409 }
410 raw_write(env, ri, value);
411 }
412
alle1_tlbmask(CPUARMState * env)413 int alle1_tlbmask(CPUARMState *env)
414 {
415 /*
416 * Note that the 'ALL' scope must invalidate both stage 1 and
417 * stage 2 translations, whereas most other scopes only invalidate
418 * stage 1 translations.
419 *
420 * For AArch32 this is only used for TLBIALLNSNH and VTTBR
421 * writes, so only needs to apply to NS PL1&0, not S PL1&0.
422 */
423 return (ARMMMUIdxBit_E10_1 |
424 ARMMMUIdxBit_E10_1_PAN |
425 ARMMMUIdxBit_E10_0 |
426 ARMMMUIdxBit_Stage2 |
427 ARMMMUIdxBit_Stage2_S);
428 }
429
430 static const ARMCPRegInfo cp_reginfo[] = {
431 /*
432 * Define the secure and non-secure FCSE identifier CP registers
433 * separately because there is no secure bank in V8 (no _EL3). This allows
434 * the secure register to be properly reset and migrated. There is also no
435 * v8 EL1 version of the register so the non-secure instance stands alone.
436 */
437 { .name = "FCSEIDR",
438 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
439 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
440 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
441 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
442 { .name = "FCSEIDR_S",
443 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
444 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
445 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
446 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
447 /*
448 * Define the secure and non-secure context identifier CP registers
449 * separately because there is no secure bank in V8 (no _EL3). This allows
450 * the secure register to be properly reset and migrated. In the
451 * non-secure case, the 32-bit register will have reset and migration
452 * disabled during registration as it is handled by the 64-bit instance.
453 */
454 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
455 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
456 .access = PL1_RW, .accessfn = access_tvm_trvm,
457 .fgt = FGT_CONTEXTIDR_EL1,
458 .nv2_redirect_offset = 0x108 | NV2_REDIR_NV1,
459 .secure = ARM_CP_SECSTATE_NS,
460 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
461 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
462 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32,
463 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
464 .access = PL1_RW, .accessfn = access_tvm_trvm,
465 .secure = ARM_CP_SECSTATE_S,
466 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
467 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
468 };
469
470 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
471 /*
472 * NB: Some of these registers exist in v8 but with more precise
473 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
474 */
475 /* MMU Domain access control / MPU write buffer control */
476 { .name = "DACR",
477 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
478 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
479 .writefn = dacr_write, .raw_writefn = raw_write,
480 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
481 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
482 /*
483 * ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
484 * For v6 and v5, these mappings are overly broad.
485 */
486 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
487 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
488 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
489 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
490 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
491 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
492 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
493 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
494 /* Cache maintenance ops; some of this space may be overridden later. */
495 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
496 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
497 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
498 };
499
500 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
501 /*
502 * Not all pre-v6 cores implemented this WFI, so this is slightly
503 * over-broad.
504 */
505 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
506 .access = PL1_W, .type = ARM_CP_WFI },
507 };
508
509 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
510 /*
511 * Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
512 * is UNPREDICTABLE; we choose to NOP as most implementations do).
513 */
514 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
515 .access = PL1_W, .type = ARM_CP_WFI },
516 /*
517 * L1 cache lockdown. Not architectural in v6 and earlier but in practice
518 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
519 * OMAPCP will override this space.
520 */
521 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
522 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
523 .resetvalue = 0 },
524 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
525 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
526 .resetvalue = 0 },
527 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
528 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
529 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
530 .resetvalue = 0 },
531 /*
532 * We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
533 * implementing it as RAZ means the "debug architecture version" bits
534 * will read as a reserved value, which should cause Linux to not try
535 * to use the debug hardware.
536 */
537 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
538 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
539 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
540 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
541 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
542 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
543 };
544
cpacr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)545 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
546 uint64_t value)
547 {
548 uint32_t mask = 0;
549
550 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
551 if (!arm_feature(env, ARM_FEATURE_V8)) {
552 /*
553 * ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
554 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
555 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
556 */
557 if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) {
558 /* VFP coprocessor: cp10 & cp11 [23:20] */
559 mask |= R_CPACR_ASEDIS_MASK |
560 R_CPACR_D32DIS_MASK |
561 R_CPACR_CP11_MASK |
562 R_CPACR_CP10_MASK;
563
564 if (!arm_feature(env, ARM_FEATURE_NEON)) {
565 /* ASEDIS [31] bit is RAO/WI */
566 value |= R_CPACR_ASEDIS_MASK;
567 }
568
569 /*
570 * VFPv3 and upwards with NEON implement 32 double precision
571 * registers (D0-D31).
572 */
573 if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) {
574 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
575 value |= R_CPACR_D32DIS_MASK;
576 }
577 }
578 value &= mask;
579 }
580
581 /*
582 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
583 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
584 */
585 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
586 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
587 mask = R_CPACR_CP11_MASK | R_CPACR_CP10_MASK;
588 value = (value & ~mask) | (env->cp15.cpacr_el1 & mask);
589 }
590
591 env->cp15.cpacr_el1 = value;
592 }
593
cpacr_read(CPUARMState * env,const ARMCPRegInfo * ri)594 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri)
595 {
596 /*
597 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
598 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
599 */
600 uint64_t value = env->cp15.cpacr_el1;
601
602 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
603 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
604 value = ~(R_CPACR_CP11_MASK | R_CPACR_CP10_MASK);
605 }
606 return value;
607 }
608
609
cpacr_reset(CPUARMState * env,const ARMCPRegInfo * ri)610 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
611 {
612 /*
613 * Call cpacr_write() so that we reset with the correct RAO bits set
614 * for our CPU features.
615 */
616 cpacr_write(env, ri, 0);
617 }
618
cpacr_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)619 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
620 bool isread)
621 {
622 if (arm_feature(env, ARM_FEATURE_V8)) {
623 /* Check if CPACR accesses are to be trapped to EL2 */
624 if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) &&
625 FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TCPAC)) {
626 return CP_ACCESS_TRAP_EL2;
627 /* Check if CPACR accesses are to be trapped to EL3 */
628 } else if (arm_current_el(env) < 3 &&
629 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) {
630 return CP_ACCESS_TRAP_EL3;
631 }
632 }
633
634 return CP_ACCESS_OK;
635 }
636
cptr_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)637 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
638 bool isread)
639 {
640 /* Check if CPTR accesses are set to trap to EL3 */
641 if (arm_current_el(env) == 2 &&
642 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) {
643 return CP_ACCESS_TRAP_EL3;
644 }
645
646 return CP_ACCESS_OK;
647 }
648
649 static const ARMCPRegInfo v6_cp_reginfo[] = {
650 /* prefetch by MVA in v6, NOP in v7 */
651 { .name = "MVA_prefetch",
652 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
653 .access = PL1_W, .type = ARM_CP_NOP },
654 /*
655 * We need to break the TB after ISB to execute self-modifying code
656 * correctly and also to take any pending interrupts immediately.
657 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
658 */
659 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
660 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
661 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
662 .access = PL0_W, .type = ARM_CP_NOP },
663 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
664 .access = PL0_W, .type = ARM_CP_NOP },
665 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
666 .access = PL1_RW, .accessfn = access_tvm_trvm,
667 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
668 offsetof(CPUARMState, cp15.ifar_ns) },
669 .resetvalue = 0, },
670 /*
671 * Watchpoint Fault Address Register : should actually only be present
672 * for 1136, 1176, 11MPCore.
673 */
674 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
675 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
676 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
677 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
678 .fgt = FGT_CPACR_EL1,
679 .nv2_redirect_offset = 0x100 | NV2_REDIR_NV1,
680 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
681 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read },
682 };
683
684 typedef struct pm_event {
685 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */
686 /* If the event is supported on this CPU (used to generate PMCEID[01]) */
687 bool (*supported)(CPUARMState *);
688 /*
689 * Retrieve the current count of the underlying event. The programmed
690 * counters hold a difference from the return value from this function
691 */
692 uint64_t (*get_count)(CPUARMState *);
693 /*
694 * Return how many nanoseconds it will take (at a minimum) for count events
695 * to occur. A negative value indicates the counter will never overflow, or
696 * that the counter has otherwise arranged for the overflow bit to be set
697 * and the PMU interrupt to be raised on overflow.
698 */
699 int64_t (*ns_per_count)(uint64_t);
700 } pm_event;
701
event_always_supported(CPUARMState * env)702 static bool event_always_supported(CPUARMState *env)
703 {
704 return true;
705 }
706
swinc_get_count(CPUARMState * env)707 static uint64_t swinc_get_count(CPUARMState *env)
708 {
709 /*
710 * SW_INCR events are written directly to the pmevcntr's by writes to
711 * PMSWINC, so there is no underlying count maintained by the PMU itself
712 */
713 return 0;
714 }
715
swinc_ns_per(uint64_t ignored)716 static int64_t swinc_ns_per(uint64_t ignored)
717 {
718 return -1;
719 }
720
721 /*
722 * Return the underlying cycle count for the PMU cycle counters. If we're in
723 * usermode, simply return 0.
724 */
cycles_get_count(CPUARMState * env)725 static uint64_t cycles_get_count(CPUARMState *env)
726 {
727 #ifndef CONFIG_USER_ONLY
728 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
729 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
730 #else
731 return cpu_get_host_ticks();
732 #endif
733 }
734
735 #ifndef CONFIG_USER_ONLY
cycles_ns_per(uint64_t cycles)736 static int64_t cycles_ns_per(uint64_t cycles)
737 {
738 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles;
739 }
740
instructions_supported(CPUARMState * env)741 static bool instructions_supported(CPUARMState *env)
742 {
743 /* Precise instruction counting */
744 return icount_enabled() == ICOUNT_PRECISE;
745 }
746
instructions_get_count(CPUARMState * env)747 static uint64_t instructions_get_count(CPUARMState *env)
748 {
749 assert(icount_enabled() == ICOUNT_PRECISE);
750 return (uint64_t)icount_get_raw();
751 }
752
instructions_ns_per(uint64_t icount)753 static int64_t instructions_ns_per(uint64_t icount)
754 {
755 assert(icount_enabled() == ICOUNT_PRECISE);
756 return icount_to_ns((int64_t)icount);
757 }
758 #endif
759
pmuv3p1_events_supported(CPUARMState * env)760 static bool pmuv3p1_events_supported(CPUARMState *env)
761 {
762 /* For events which are supported in any v8.1 PMU */
763 return cpu_isar_feature(any_pmuv3p1, env_archcpu(env));
764 }
765
pmuv3p4_events_supported(CPUARMState * env)766 static bool pmuv3p4_events_supported(CPUARMState *env)
767 {
768 /* For events which are supported in any v8.1 PMU */
769 return cpu_isar_feature(any_pmuv3p4, env_archcpu(env));
770 }
771
zero_event_get_count(CPUARMState * env)772 static uint64_t zero_event_get_count(CPUARMState *env)
773 {
774 /* For events which on QEMU never fire, so their count is always zero */
775 return 0;
776 }
777
zero_event_ns_per(uint64_t cycles)778 static int64_t zero_event_ns_per(uint64_t cycles)
779 {
780 /* An event which never fires can never overflow */
781 return -1;
782 }
783
784 static const pm_event pm_events[] = {
785 { .number = 0x000, /* SW_INCR */
786 .supported = event_always_supported,
787 .get_count = swinc_get_count,
788 .ns_per_count = swinc_ns_per,
789 },
790 #ifndef CONFIG_USER_ONLY
791 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */
792 .supported = instructions_supported,
793 .get_count = instructions_get_count,
794 .ns_per_count = instructions_ns_per,
795 },
796 { .number = 0x011, /* CPU_CYCLES, Cycle */
797 .supported = event_always_supported,
798 .get_count = cycles_get_count,
799 .ns_per_count = cycles_ns_per,
800 },
801 #endif
802 { .number = 0x023, /* STALL_FRONTEND */
803 .supported = pmuv3p1_events_supported,
804 .get_count = zero_event_get_count,
805 .ns_per_count = zero_event_ns_per,
806 },
807 { .number = 0x024, /* STALL_BACKEND */
808 .supported = pmuv3p1_events_supported,
809 .get_count = zero_event_get_count,
810 .ns_per_count = zero_event_ns_per,
811 },
812 { .number = 0x03c, /* STALL */
813 .supported = pmuv3p4_events_supported,
814 .get_count = zero_event_get_count,
815 .ns_per_count = zero_event_ns_per,
816 },
817 };
818
819 /*
820 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of
821 * events (i.e. the statistical profiling extension), this implementation
822 * should first be updated to something sparse instead of the current
823 * supported_event_map[] array.
824 */
825 #define MAX_EVENT_ID 0x3c
826 #define UNSUPPORTED_EVENT UINT16_MAX
827 static uint16_t supported_event_map[MAX_EVENT_ID + 1];
828
829 /*
830 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map
831 * of ARM event numbers to indices in our pm_events array.
832 *
833 * Note: Events in the 0x40XX range are not currently supported.
834 */
pmu_init(ARMCPU * cpu)835 void pmu_init(ARMCPU *cpu)
836 {
837 unsigned int i;
838
839 /*
840 * Empty supported_event_map and cpu->pmceid[01] before adding supported
841 * events to them
842 */
843 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) {
844 supported_event_map[i] = UNSUPPORTED_EVENT;
845 }
846 cpu->pmceid0 = 0;
847 cpu->pmceid1 = 0;
848
849 for (i = 0; i < ARRAY_SIZE(pm_events); i++) {
850 const pm_event *cnt = &pm_events[i];
851 assert(cnt->number <= MAX_EVENT_ID);
852 /* We do not currently support events in the 0x40xx range */
853 assert(cnt->number <= 0x3f);
854
855 if (cnt->supported(&cpu->env)) {
856 supported_event_map[cnt->number] = i;
857 uint64_t event_mask = 1ULL << (cnt->number & 0x1f);
858 if (cnt->number & 0x20) {
859 cpu->pmceid1 |= event_mask;
860 } else {
861 cpu->pmceid0 |= event_mask;
862 }
863 }
864 }
865 }
866
867 /*
868 * Check at runtime whether a PMU event is supported for the current machine
869 */
event_supported(uint16_t number)870 static bool event_supported(uint16_t number)
871 {
872 if (number > MAX_EVENT_ID) {
873 return false;
874 }
875 return supported_event_map[number] != UNSUPPORTED_EVENT;
876 }
877
pmreg_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)878 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
879 bool isread)
880 {
881 /*
882 * Performance monitor registers user accessibility is controlled
883 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
884 * trapping to EL2 or EL3 for other accesses.
885 */
886 int el = arm_current_el(env);
887 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
888
889 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
890 return CP_ACCESS_TRAP_EL1;
891 }
892 if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
893 return CP_ACCESS_TRAP_EL2;
894 }
895 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
896 return CP_ACCESS_TRAP_EL3;
897 }
898
899 return CP_ACCESS_OK;
900 }
901
pmreg_access_xevcntr(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)902 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
903 const ARMCPRegInfo *ri,
904 bool isread)
905 {
906 /* ER: event counter read trap control */
907 if (arm_feature(env, ARM_FEATURE_V8)
908 && arm_current_el(env) == 0
909 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
910 && isread) {
911 return CP_ACCESS_OK;
912 }
913
914 return pmreg_access(env, ri, isread);
915 }
916
pmreg_access_swinc(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)917 static CPAccessResult pmreg_access_swinc(CPUARMState *env,
918 const ARMCPRegInfo *ri,
919 bool isread)
920 {
921 /* SW: software increment write trap control */
922 if (arm_feature(env, ARM_FEATURE_V8)
923 && arm_current_el(env) == 0
924 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
925 && !isread) {
926 return CP_ACCESS_OK;
927 }
928
929 return pmreg_access(env, ri, isread);
930 }
931
pmreg_access_selr(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)932 static CPAccessResult pmreg_access_selr(CPUARMState *env,
933 const ARMCPRegInfo *ri,
934 bool isread)
935 {
936 /* ER: event counter read trap control */
937 if (arm_feature(env, ARM_FEATURE_V8)
938 && arm_current_el(env) == 0
939 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
940 return CP_ACCESS_OK;
941 }
942
943 return pmreg_access(env, ri, isread);
944 }
945
pmreg_access_ccntr(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)946 static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
947 const ARMCPRegInfo *ri,
948 bool isread)
949 {
950 /* CR: cycle counter read trap control */
951 if (arm_feature(env, ARM_FEATURE_V8)
952 && arm_current_el(env) == 0
953 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
954 && isread) {
955 return CP_ACCESS_OK;
956 }
957
958 return pmreg_access(env, ri, isread);
959 }
960
961 /*
962 * Bits in MDCR_EL2 and MDCR_EL3 which pmu_counter_enabled() looks at.
963 * We use these to decide whether we need to wrap a write to MDCR_EL2
964 * or MDCR_EL3 in pmu_op_start()/pmu_op_finish() calls.
965 */
966 #define MDCR_EL2_PMU_ENABLE_BITS \
967 (MDCR_HPME | MDCR_HPMD | MDCR_HPMN | MDCR_HCCD | MDCR_HLP)
968 #define MDCR_EL3_PMU_ENABLE_BITS (MDCR_SPME | MDCR_SCCD)
969
970 /*
971 * Returns true if the counter (pass 31 for PMCCNTR) should count events using
972 * the current EL, security state, and register configuration.
973 */
pmu_counter_enabled(CPUARMState * env,uint8_t counter)974 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
975 {
976 uint64_t filter;
977 bool e, p, u, nsk, nsu, nsh, m;
978 bool enabled, prohibited = false, filtered;
979 bool secure = arm_is_secure(env);
980 int el = arm_current_el(env);
981 uint64_t mdcr_el2;
982 uint8_t hpmn;
983
984 /*
985 * We might be called for M-profile cores where MDCR_EL2 doesn't
986 * exist and arm_mdcr_el2_eff() will assert, so this early-exit check
987 * must be before we read that value.
988 */
989 if (!arm_feature(env, ARM_FEATURE_PMU)) {
990 return false;
991 }
992
993 mdcr_el2 = arm_mdcr_el2_eff(env);
994 hpmn = mdcr_el2 & MDCR_HPMN;
995
996 if (!arm_feature(env, ARM_FEATURE_EL2) ||
997 (counter < hpmn || counter == 31)) {
998 e = env->cp15.c9_pmcr & PMCRE;
999 } else {
1000 e = mdcr_el2 & MDCR_HPME;
1001 }
1002 enabled = e && (env->cp15.c9_pmcnten & (1 << counter));
1003
1004 /* Is event counting prohibited? */
1005 if (el == 2 && (counter < hpmn || counter == 31)) {
1006 prohibited = mdcr_el2 & MDCR_HPMD;
1007 }
1008 if (secure) {
1009 prohibited = prohibited || !(env->cp15.mdcr_el3 & MDCR_SPME);
1010 }
1011
1012 if (counter == 31) {
1013 /*
1014 * The cycle counter defaults to running. PMCR.DP says "disable
1015 * the cycle counter when event counting is prohibited".
1016 * Some MDCR bits disable the cycle counter specifically.
1017 */
1018 prohibited = prohibited && env->cp15.c9_pmcr & PMCRDP;
1019 if (cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1020 if (secure) {
1021 prohibited = prohibited || (env->cp15.mdcr_el3 & MDCR_SCCD);
1022 }
1023 if (el == 2) {
1024 prohibited = prohibited || (mdcr_el2 & MDCR_HCCD);
1025 }
1026 }
1027 }
1028
1029 if (counter == 31) {
1030 filter = env->cp15.pmccfiltr_el0;
1031 } else {
1032 filter = env->cp15.c14_pmevtyper[counter];
1033 }
1034
1035 p = filter & PMXEVTYPER_P;
1036 u = filter & PMXEVTYPER_U;
1037 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK);
1038 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU);
1039 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH);
1040 m = arm_el_is_aa64(env, 1) &&
1041 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M);
1042
1043 if (el == 0) {
1044 filtered = secure ? u : u != nsu;
1045 } else if (el == 1) {
1046 filtered = secure ? p : p != nsk;
1047 } else if (el == 2) {
1048 filtered = !nsh;
1049 } else { /* EL3 */
1050 filtered = m != p;
1051 }
1052
1053 if (counter != 31) {
1054 /*
1055 * If not checking PMCCNTR, ensure the counter is setup to an event we
1056 * support
1057 */
1058 uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
1059 if (!event_supported(event)) {
1060 return false;
1061 }
1062 }
1063
1064 return enabled && !prohibited && !filtered;
1065 }
1066
pmu_update_irq(CPUARMState * env)1067 static void pmu_update_irq(CPUARMState *env)
1068 {
1069 ARMCPU *cpu = env_archcpu(env);
1070 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
1071 (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
1072 }
1073
pmccntr_clockdiv_enabled(CPUARMState * env)1074 static bool pmccntr_clockdiv_enabled(CPUARMState *env)
1075 {
1076 /*
1077 * Return true if the clock divider is enabled and the cycle counter
1078 * is supposed to tick only once every 64 clock cycles. This is
1079 * controlled by PMCR.D, but if PMCR.LC is set to enable the long
1080 * (64-bit) cycle counter PMCR.D has no effect.
1081 */
1082 return (env->cp15.c9_pmcr & (PMCRD | PMCRLC)) == PMCRD;
1083 }
1084
pmevcntr_is_64_bit(CPUARMState * env,int counter)1085 static bool pmevcntr_is_64_bit(CPUARMState *env, int counter)
1086 {
1087 /* Return true if the specified event counter is configured to be 64 bit */
1088
1089 /* This isn't intended to be used with the cycle counter */
1090 assert(counter < 31);
1091
1092 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1093 return false;
1094 }
1095
1096 if (arm_feature(env, ARM_FEATURE_EL2)) {
1097 /*
1098 * MDCR_EL2.HLP still applies even when EL2 is disabled in the
1099 * current security state, so we don't use arm_mdcr_el2_eff() here.
1100 */
1101 bool hlp = env->cp15.mdcr_el2 & MDCR_HLP;
1102 int hpmn = env->cp15.mdcr_el2 & MDCR_HPMN;
1103
1104 if (counter >= hpmn) {
1105 return hlp;
1106 }
1107 }
1108 return env->cp15.c9_pmcr & PMCRLP;
1109 }
1110
1111 /*
1112 * Ensure c15_ccnt is the guest-visible count so that operations such as
1113 * enabling/disabling the counter or filtering, modifying the count itself,
1114 * etc. can be done logically. This is essentially a no-op if the counter is
1115 * not enabled at the time of the call.
1116 */
pmccntr_op_start(CPUARMState * env)1117 static void pmccntr_op_start(CPUARMState *env)
1118 {
1119 uint64_t cycles = cycles_get_count(env);
1120
1121 if (pmu_counter_enabled(env, 31)) {
1122 uint64_t eff_cycles = cycles;
1123 if (pmccntr_clockdiv_enabled(env)) {
1124 eff_cycles /= 64;
1125 }
1126
1127 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta;
1128
1129 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \
1130 1ull << 63 : 1ull << 31;
1131 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) {
1132 env->cp15.c9_pmovsr |= (1ULL << 31);
1133 pmu_update_irq(env);
1134 }
1135
1136 env->cp15.c15_ccnt = new_pmccntr;
1137 }
1138 env->cp15.c15_ccnt_delta = cycles;
1139 }
1140
1141 /*
1142 * If PMCCNTR is enabled, recalculate the delta between the clock and the
1143 * guest-visible count. A call to pmccntr_op_finish should follow every call to
1144 * pmccntr_op_start.
1145 */
pmccntr_op_finish(CPUARMState * env)1146 static void pmccntr_op_finish(CPUARMState *env)
1147 {
1148 if (pmu_counter_enabled(env, 31)) {
1149 #ifndef CONFIG_USER_ONLY
1150 /* Calculate when the counter will next overflow */
1151 uint64_t remaining_cycles = -env->cp15.c15_ccnt;
1152 if (!(env->cp15.c9_pmcr & PMCRLC)) {
1153 remaining_cycles = (uint32_t)remaining_cycles;
1154 }
1155 int64_t overflow_in = cycles_ns_per(remaining_cycles);
1156
1157 if (overflow_in > 0) {
1158 int64_t overflow_at;
1159
1160 if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1161 overflow_in, &overflow_at)) {
1162 ARMCPU *cpu = env_archcpu(env);
1163 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1164 }
1165 }
1166 #endif
1167
1168 uint64_t prev_cycles = env->cp15.c15_ccnt_delta;
1169 if (pmccntr_clockdiv_enabled(env)) {
1170 prev_cycles /= 64;
1171 }
1172 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt;
1173 }
1174 }
1175
pmevcntr_op_start(CPUARMState * env,uint8_t counter)1176 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter)
1177 {
1178
1179 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1180 uint64_t count = 0;
1181 if (event_supported(event)) {
1182 uint16_t event_idx = supported_event_map[event];
1183 count = pm_events[event_idx].get_count(env);
1184 }
1185
1186 if (pmu_counter_enabled(env, counter)) {
1187 uint64_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter];
1188 uint64_t overflow_mask = pmevcntr_is_64_bit(env, counter) ?
1189 1ULL << 63 : 1ULL << 31;
1190
1191 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & overflow_mask) {
1192 env->cp15.c9_pmovsr |= (1 << counter);
1193 pmu_update_irq(env);
1194 }
1195 env->cp15.c14_pmevcntr[counter] = new_pmevcntr;
1196 }
1197 env->cp15.c14_pmevcntr_delta[counter] = count;
1198 }
1199
pmevcntr_op_finish(CPUARMState * env,uint8_t counter)1200 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter)
1201 {
1202 if (pmu_counter_enabled(env, counter)) {
1203 #ifndef CONFIG_USER_ONLY
1204 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1205 uint16_t event_idx = supported_event_map[event];
1206 uint64_t delta = -(env->cp15.c14_pmevcntr[counter] + 1);
1207 int64_t overflow_in;
1208
1209 if (!pmevcntr_is_64_bit(env, counter)) {
1210 delta = (uint32_t)delta;
1211 }
1212 overflow_in = pm_events[event_idx].ns_per_count(delta);
1213
1214 if (overflow_in > 0) {
1215 int64_t overflow_at;
1216
1217 if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1218 overflow_in, &overflow_at)) {
1219 ARMCPU *cpu = env_archcpu(env);
1220 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1221 }
1222 }
1223 #endif
1224
1225 env->cp15.c14_pmevcntr_delta[counter] -=
1226 env->cp15.c14_pmevcntr[counter];
1227 }
1228 }
1229
pmu_op_start(CPUARMState * env)1230 void pmu_op_start(CPUARMState *env)
1231 {
1232 unsigned int i;
1233 pmccntr_op_start(env);
1234 for (i = 0; i < pmu_num_counters(env); i++) {
1235 pmevcntr_op_start(env, i);
1236 }
1237 }
1238
pmu_op_finish(CPUARMState * env)1239 void pmu_op_finish(CPUARMState *env)
1240 {
1241 unsigned int i;
1242 pmccntr_op_finish(env);
1243 for (i = 0; i < pmu_num_counters(env); i++) {
1244 pmevcntr_op_finish(env, i);
1245 }
1246 }
1247
pmu_pre_el_change(ARMCPU * cpu,void * ignored)1248 void pmu_pre_el_change(ARMCPU *cpu, void *ignored)
1249 {
1250 pmu_op_start(&cpu->env);
1251 }
1252
pmu_post_el_change(ARMCPU * cpu,void * ignored)1253 void pmu_post_el_change(ARMCPU *cpu, void *ignored)
1254 {
1255 pmu_op_finish(&cpu->env);
1256 }
1257
arm_pmu_timer_cb(void * opaque)1258 void arm_pmu_timer_cb(void *opaque)
1259 {
1260 ARMCPU *cpu = opaque;
1261
1262 /*
1263 * Update all the counter values based on the current underlying counts,
1264 * triggering interrupts to be raised, if necessary. pmu_op_finish() also
1265 * has the effect of setting the cpu->pmu_timer to the next earliest time a
1266 * counter may expire.
1267 */
1268 pmu_op_start(&cpu->env);
1269 pmu_op_finish(&cpu->env);
1270 }
1271
pmcr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1272 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1273 uint64_t value)
1274 {
1275 pmu_op_start(env);
1276
1277 if (value & PMCRC) {
1278 /* The counter has been reset */
1279 env->cp15.c15_ccnt = 0;
1280 }
1281
1282 if (value & PMCRP) {
1283 unsigned int i;
1284 for (i = 0; i < pmu_num_counters(env); i++) {
1285 env->cp15.c14_pmevcntr[i] = 0;
1286 }
1287 }
1288
1289 env->cp15.c9_pmcr &= ~PMCR_WRITABLE_MASK;
1290 env->cp15.c9_pmcr |= (value & PMCR_WRITABLE_MASK);
1291
1292 pmu_op_finish(env);
1293 }
1294
pmcr_read(CPUARMState * env,const ARMCPRegInfo * ri)1295 static uint64_t pmcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1296 {
1297 uint64_t pmcr = env->cp15.c9_pmcr;
1298
1299 /*
1300 * If EL2 is implemented and enabled for the current security state, reads
1301 * of PMCR.N from EL1 or EL0 return the value of MDCR_EL2.HPMN or HDCR.HPMN.
1302 */
1303 if (arm_current_el(env) <= 1 && arm_is_el2_enabled(env)) {
1304 pmcr &= ~PMCRN_MASK;
1305 pmcr |= (env->cp15.mdcr_el2 & MDCR_HPMN) << PMCRN_SHIFT;
1306 }
1307
1308 return pmcr;
1309 }
1310
pmswinc_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1311 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri,
1312 uint64_t value)
1313 {
1314 unsigned int i;
1315 uint64_t overflow_mask, new_pmswinc;
1316
1317 for (i = 0; i < pmu_num_counters(env); i++) {
1318 /* Increment a counter's count iff: */
1319 if ((value & (1 << i)) && /* counter's bit is set */
1320 /* counter is enabled and not filtered */
1321 pmu_counter_enabled(env, i) &&
1322 /* counter is SW_INCR */
1323 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
1324 pmevcntr_op_start(env, i);
1325
1326 /*
1327 * Detect if this write causes an overflow since we can't predict
1328 * PMSWINC overflows like we can for other events
1329 */
1330 new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
1331
1332 overflow_mask = pmevcntr_is_64_bit(env, i) ?
1333 1ULL << 63 : 1ULL << 31;
1334
1335 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & overflow_mask) {
1336 env->cp15.c9_pmovsr |= (1 << i);
1337 pmu_update_irq(env);
1338 }
1339
1340 env->cp15.c14_pmevcntr[i] = new_pmswinc;
1341
1342 pmevcntr_op_finish(env, i);
1343 }
1344 }
1345 }
1346
pmccntr_read(CPUARMState * env,const ARMCPRegInfo * ri)1347 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1348 {
1349 uint64_t ret;
1350 pmccntr_op_start(env);
1351 ret = env->cp15.c15_ccnt;
1352 pmccntr_op_finish(env);
1353 return ret;
1354 }
1355
pmselr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1356 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1357 uint64_t value)
1358 {
1359 /*
1360 * The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1361 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1362 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1363 * accessed.
1364 */
1365 env->cp15.c9_pmselr = value & 0x1f;
1366 }
1367
pmccntr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1368 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1369 uint64_t value)
1370 {
1371 pmccntr_op_start(env);
1372 env->cp15.c15_ccnt = value;
1373 pmccntr_op_finish(env);
1374 }
1375
pmccntr_write32(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1376 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1377 uint64_t value)
1378 {
1379 uint64_t cur_val = pmccntr_read(env, NULL);
1380
1381 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1382 }
1383
pmccfiltr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1384 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1385 uint64_t value)
1386 {
1387 pmccntr_op_start(env);
1388 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0;
1389 pmccntr_op_finish(env);
1390 }
1391
pmccfiltr_write_a32(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1392 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri,
1393 uint64_t value)
1394 {
1395 pmccntr_op_start(env);
1396 /* M is not accessible from AArch32 */
1397 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) |
1398 (value & PMCCFILTR);
1399 pmccntr_op_finish(env);
1400 }
1401
pmccfiltr_read_a32(CPUARMState * env,const ARMCPRegInfo * ri)1402 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri)
1403 {
1404 /* M is not visible in AArch32 */
1405 return env->cp15.pmccfiltr_el0 & PMCCFILTR;
1406 }
1407
pmcntenset_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1408 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1409 uint64_t value)
1410 {
1411 pmu_op_start(env);
1412 value &= pmu_counter_mask(env);
1413 env->cp15.c9_pmcnten |= value;
1414 pmu_op_finish(env);
1415 }
1416
pmcntenclr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1417 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1418 uint64_t value)
1419 {
1420 pmu_op_start(env);
1421 value &= pmu_counter_mask(env);
1422 env->cp15.c9_pmcnten &= ~value;
1423 pmu_op_finish(env);
1424 }
1425
pmovsr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1426 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1427 uint64_t value)
1428 {
1429 value &= pmu_counter_mask(env);
1430 env->cp15.c9_pmovsr &= ~value;
1431 pmu_update_irq(env);
1432 }
1433
pmovsset_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1434 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1435 uint64_t value)
1436 {
1437 value &= pmu_counter_mask(env);
1438 env->cp15.c9_pmovsr |= value;
1439 pmu_update_irq(env);
1440 }
1441
pmevtyper_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value,const uint8_t counter)1442 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1443 uint64_t value, const uint8_t counter)
1444 {
1445 if (counter == 31) {
1446 pmccfiltr_write(env, ri, value);
1447 } else if (counter < pmu_num_counters(env)) {
1448 pmevcntr_op_start(env, counter);
1449
1450 /*
1451 * If this counter's event type is changing, store the current
1452 * underlying count for the new type in c14_pmevcntr_delta[counter] so
1453 * pmevcntr_op_finish has the correct baseline when it converts back to
1454 * a delta.
1455 */
1456 uint16_t old_event = env->cp15.c14_pmevtyper[counter] &
1457 PMXEVTYPER_EVTCOUNT;
1458 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT;
1459 if (old_event != new_event) {
1460 uint64_t count = 0;
1461 if (event_supported(new_event)) {
1462 uint16_t event_idx = supported_event_map[new_event];
1463 count = pm_events[event_idx].get_count(env);
1464 }
1465 env->cp15.c14_pmevcntr_delta[counter] = count;
1466 }
1467
1468 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK;
1469 pmevcntr_op_finish(env, counter);
1470 }
1471 /*
1472 * Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1473 * PMSELR value is equal to or greater than the number of implemented
1474 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1475 */
1476 }
1477
pmevtyper_read(CPUARMState * env,const ARMCPRegInfo * ri,const uint8_t counter)1478 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri,
1479 const uint8_t counter)
1480 {
1481 if (counter == 31) {
1482 return env->cp15.pmccfiltr_el0;
1483 } else if (counter < pmu_num_counters(env)) {
1484 return env->cp15.c14_pmevtyper[counter];
1485 } else {
1486 /*
1487 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1488 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write().
1489 */
1490 return 0;
1491 }
1492 }
1493
pmevtyper_writefn(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1494 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1495 uint64_t value)
1496 {
1497 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1498 pmevtyper_write(env, ri, value, counter);
1499 }
1500
pmevtyper_rawwrite(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1501 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1502 uint64_t value)
1503 {
1504 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1505 env->cp15.c14_pmevtyper[counter] = value;
1506
1507 /*
1508 * pmevtyper_rawwrite is called between a pair of pmu_op_start and
1509 * pmu_op_finish calls when loading saved state for a migration. Because
1510 * we're potentially updating the type of event here, the value written to
1511 * c14_pmevcntr_delta by the preceding pmu_op_start call may be for a
1512 * different counter type. Therefore, we need to set this value to the
1513 * current count for the counter type we're writing so that pmu_op_finish
1514 * has the correct count for its calculation.
1515 */
1516 uint16_t event = value & PMXEVTYPER_EVTCOUNT;
1517 if (event_supported(event)) {
1518 uint16_t event_idx = supported_event_map[event];
1519 env->cp15.c14_pmevcntr_delta[counter] =
1520 pm_events[event_idx].get_count(env);
1521 }
1522 }
1523
pmevtyper_readfn(CPUARMState * env,const ARMCPRegInfo * ri)1524 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1525 {
1526 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1527 return pmevtyper_read(env, ri, counter);
1528 }
1529
pmxevtyper_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1530 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1531 uint64_t value)
1532 {
1533 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31);
1534 }
1535
pmxevtyper_read(CPUARMState * env,const ARMCPRegInfo * ri)1536 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1537 {
1538 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31);
1539 }
1540
pmevcntr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value,uint8_t counter)1541 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1542 uint64_t value, uint8_t counter)
1543 {
1544 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1545 /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */
1546 value &= MAKE_64BIT_MASK(0, 32);
1547 }
1548 if (counter < pmu_num_counters(env)) {
1549 pmevcntr_op_start(env, counter);
1550 env->cp15.c14_pmevcntr[counter] = value;
1551 pmevcntr_op_finish(env, counter);
1552 }
1553 /*
1554 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1555 * are CONSTRAINED UNPREDICTABLE.
1556 */
1557 }
1558
pmevcntr_read(CPUARMState * env,const ARMCPRegInfo * ri,uint8_t counter)1559 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri,
1560 uint8_t counter)
1561 {
1562 if (counter < pmu_num_counters(env)) {
1563 uint64_t ret;
1564 pmevcntr_op_start(env, counter);
1565 ret = env->cp15.c14_pmevcntr[counter];
1566 pmevcntr_op_finish(env, counter);
1567 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1568 /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */
1569 ret &= MAKE_64BIT_MASK(0, 32);
1570 }
1571 return ret;
1572 } else {
1573 /*
1574 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1575 * are CONSTRAINED UNPREDICTABLE.
1576 */
1577 return 0;
1578 }
1579 }
1580
pmevcntr_writefn(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1581 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1582 uint64_t value)
1583 {
1584 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1585 pmevcntr_write(env, ri, value, counter);
1586 }
1587
pmevcntr_readfn(CPUARMState * env,const ARMCPRegInfo * ri)1588 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1589 {
1590 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1591 return pmevcntr_read(env, ri, counter);
1592 }
1593
pmevcntr_rawwrite(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1594 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1595 uint64_t value)
1596 {
1597 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1598 assert(counter < pmu_num_counters(env));
1599 env->cp15.c14_pmevcntr[counter] = value;
1600 pmevcntr_write(env, ri, value, counter);
1601 }
1602
pmevcntr_rawread(CPUARMState * env,const ARMCPRegInfo * ri)1603 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri)
1604 {
1605 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1606 assert(counter < pmu_num_counters(env));
1607 return env->cp15.c14_pmevcntr[counter];
1608 }
1609
pmxevcntr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1610 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1611 uint64_t value)
1612 {
1613 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31);
1614 }
1615
pmxevcntr_read(CPUARMState * env,const ARMCPRegInfo * ri)1616 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1617 {
1618 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31);
1619 }
1620
pmuserenr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1621 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1622 uint64_t value)
1623 {
1624 if (arm_feature(env, ARM_FEATURE_V8)) {
1625 env->cp15.c9_pmuserenr = value & 0xf;
1626 } else {
1627 env->cp15.c9_pmuserenr = value & 1;
1628 }
1629 }
1630
pmintenset_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1631 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1632 uint64_t value)
1633 {
1634 /* We have no event counters so only the C bit can be changed */
1635 value &= pmu_counter_mask(env);
1636 env->cp15.c9_pminten |= value;
1637 pmu_update_irq(env);
1638 }
1639
pmintenclr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1640 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1641 uint64_t value)
1642 {
1643 value &= pmu_counter_mask(env);
1644 env->cp15.c9_pminten &= ~value;
1645 pmu_update_irq(env);
1646 }
1647
vbar_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1648 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1649 uint64_t value)
1650 {
1651 /*
1652 * Note that even though the AArch64 view of this register has bits
1653 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1654 * architectural requirements for bits which are RES0 only in some
1655 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1656 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1657 */
1658 raw_write(env, ri, value & ~0x1FULL);
1659 }
1660
scr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1661 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1662 {
1663 /* Begin with base v8.0 state. */
1664 uint64_t valid_mask = 0x3fff;
1665 ARMCPU *cpu = env_archcpu(env);
1666 uint64_t changed;
1667
1668 /*
1669 * Because SCR_EL3 is the "real" cpreg and SCR is the alias, reset always
1670 * passes the reginfo for SCR_EL3, which has type ARM_CP_STATE_AA64.
1671 * Instead, choose the format based on the mode of EL3.
1672 */
1673 if (arm_el_is_aa64(env, 3)) {
1674 value |= SCR_FW | SCR_AW; /* RES1 */
1675 valid_mask &= ~SCR_NET; /* RES0 */
1676
1677 if (!cpu_isar_feature(aa64_aa32_el1, cpu) &&
1678 !cpu_isar_feature(aa64_aa32_el2, cpu)) {
1679 value |= SCR_RW; /* RAO/WI */
1680 }
1681 if (cpu_isar_feature(aa64_ras, cpu)) {
1682 valid_mask |= SCR_TERR;
1683 }
1684 if (cpu_isar_feature(aa64_lor, cpu)) {
1685 valid_mask |= SCR_TLOR;
1686 }
1687 if (cpu_isar_feature(aa64_pauth, cpu)) {
1688 valid_mask |= SCR_API | SCR_APK;
1689 }
1690 if (cpu_isar_feature(aa64_sel2, cpu)) {
1691 valid_mask |= SCR_EEL2;
1692 } else if (cpu_isar_feature(aa64_rme, cpu)) {
1693 /* With RME and without SEL2, NS is RES1 (R_GSWWH, I_DJJQJ). */
1694 value |= SCR_NS;
1695 }
1696 if (cpu_isar_feature(aa64_mte, cpu)) {
1697 valid_mask |= SCR_ATA;
1698 }
1699 if (cpu_isar_feature(aa64_scxtnum, cpu)) {
1700 valid_mask |= SCR_ENSCXT;
1701 }
1702 if (cpu_isar_feature(aa64_doublefault, cpu)) {
1703 valid_mask |= SCR_EASE | SCR_NMEA;
1704 }
1705 if (cpu_isar_feature(aa64_sme, cpu)) {
1706 valid_mask |= SCR_ENTP2;
1707 }
1708 if (cpu_isar_feature(aa64_hcx, cpu)) {
1709 valid_mask |= SCR_HXEN;
1710 }
1711 if (cpu_isar_feature(aa64_fgt, cpu)) {
1712 valid_mask |= SCR_FGTEN;
1713 }
1714 if (cpu_isar_feature(aa64_rme, cpu)) {
1715 valid_mask |= SCR_NSE | SCR_GPF;
1716 }
1717 if (cpu_isar_feature(aa64_ecv, cpu)) {
1718 valid_mask |= SCR_ECVEN;
1719 }
1720 } else {
1721 valid_mask &= ~(SCR_RW | SCR_ST);
1722 if (cpu_isar_feature(aa32_ras, cpu)) {
1723 valid_mask |= SCR_TERR;
1724 }
1725 }
1726
1727 if (!arm_feature(env, ARM_FEATURE_EL2)) {
1728 valid_mask &= ~SCR_HCE;
1729
1730 /*
1731 * On ARMv7, SMD (or SCD as it is called in v7) is only
1732 * supported if EL2 exists. The bit is UNK/SBZP when
1733 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1734 * when EL2 is unavailable.
1735 * On ARMv8, this bit is always available.
1736 */
1737 if (arm_feature(env, ARM_FEATURE_V7) &&
1738 !arm_feature(env, ARM_FEATURE_V8)) {
1739 valid_mask &= ~SCR_SMD;
1740 }
1741 }
1742
1743 /* Clear all-context RES0 bits. */
1744 value &= valid_mask;
1745 changed = env->cp15.scr_el3 ^ value;
1746 env->cp15.scr_el3 = value;
1747
1748 /*
1749 * If SCR_EL3.{NS,NSE} changes, i.e. change of security state,
1750 * we must invalidate all TLBs below EL3.
1751 */
1752 if (changed & (SCR_NS | SCR_NSE)) {
1753 tlb_flush_by_mmuidx(env_cpu(env), (ARMMMUIdxBit_E10_0 |
1754 ARMMMUIdxBit_E20_0 |
1755 ARMMMUIdxBit_E10_1 |
1756 ARMMMUIdxBit_E20_2 |
1757 ARMMMUIdxBit_E10_1_PAN |
1758 ARMMMUIdxBit_E20_2_PAN |
1759 ARMMMUIdxBit_E2));
1760 }
1761 }
1762
scr_reset(CPUARMState * env,const ARMCPRegInfo * ri)1763 static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1764 {
1765 /*
1766 * scr_write will set the RES1 bits on an AArch64-only CPU.
1767 * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise.
1768 */
1769 scr_write(env, ri, 0);
1770 }
1771
access_tid4(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)1772 static CPAccessResult access_tid4(CPUARMState *env,
1773 const ARMCPRegInfo *ri,
1774 bool isread)
1775 {
1776 if (arm_current_el(env) == 1 &&
1777 (arm_hcr_el2_eff(env) & (HCR_TID2 | HCR_TID4))) {
1778 return CP_ACCESS_TRAP_EL2;
1779 }
1780
1781 return CP_ACCESS_OK;
1782 }
1783
ccsidr_read(CPUARMState * env,const ARMCPRegInfo * ri)1784 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1785 {
1786 ARMCPU *cpu = env_archcpu(env);
1787
1788 /*
1789 * Acquire the CSSELR index from the bank corresponding to the CCSIDR
1790 * bank
1791 */
1792 uint32_t index = A32_BANKED_REG_GET(env, csselr,
1793 ri->secure & ARM_CP_SECSTATE_S);
1794
1795 return cpu->ccsidr[index];
1796 }
1797
csselr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)1798 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1799 uint64_t value)
1800 {
1801 raw_write(env, ri, value & 0xf);
1802 }
1803
isr_read(CPUARMState * env,const ARMCPRegInfo * ri)1804 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1805 {
1806 CPUState *cs = env_cpu(env);
1807 bool el1 = arm_current_el(env) == 1;
1808 uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0;
1809 uint64_t ret = 0;
1810
1811 if (hcr_el2 & HCR_IMO) {
1812 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) {
1813 ret |= CPSR_I;
1814 }
1815 if (cs->interrupt_request & CPU_INTERRUPT_VINMI) {
1816 ret |= ISR_IS;
1817 ret |= CPSR_I;
1818 }
1819 } else {
1820 if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
1821 ret |= CPSR_I;
1822 }
1823
1824 if (cs->interrupt_request & CPU_INTERRUPT_NMI) {
1825 ret |= ISR_IS;
1826 ret |= CPSR_I;
1827 }
1828 }
1829
1830 if (hcr_el2 & HCR_FMO) {
1831 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) {
1832 ret |= CPSR_F;
1833 }
1834 if (cs->interrupt_request & CPU_INTERRUPT_VFNMI) {
1835 ret |= ISR_FS;
1836 ret |= CPSR_F;
1837 }
1838 } else {
1839 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
1840 ret |= CPSR_F;
1841 }
1842 }
1843
1844 if (hcr_el2 & HCR_AMO) {
1845 if (cs->interrupt_request & CPU_INTERRUPT_VSERR) {
1846 ret |= CPSR_A;
1847 }
1848 }
1849
1850 return ret;
1851 }
1852
access_aa64_tid1(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)1853 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
1854 bool isread)
1855 {
1856 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) {
1857 return CP_ACCESS_TRAP_EL2;
1858 }
1859
1860 return CP_ACCESS_OK;
1861 }
1862
access_aa32_tid1(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)1863 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
1864 bool isread)
1865 {
1866 if (arm_feature(env, ARM_FEATURE_V8)) {
1867 return access_aa64_tid1(env, ri, isread);
1868 }
1869
1870 return CP_ACCESS_OK;
1871 }
1872
1873 static const ARMCPRegInfo v7_cp_reginfo[] = {
1874 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
1875 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
1876 .access = PL1_W, .type = ARM_CP_NOP },
1877 /*
1878 * Performance monitors are implementation defined in v7,
1879 * but with an ARM recommended set of registers, which we
1880 * follow.
1881 *
1882 * Performance registers fall into three categories:
1883 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
1884 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
1885 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
1886 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
1887 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
1888 */
1889 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
1890 .access = PL0_RW, .type = ARM_CP_ALIAS | ARM_CP_IO,
1891 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1892 .writefn = pmcntenset_write,
1893 .accessfn = pmreg_access,
1894 .fgt = FGT_PMCNTEN,
1895 .raw_writefn = raw_write },
1896 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, .type = ARM_CP_IO,
1897 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
1898 .access = PL0_RW, .accessfn = pmreg_access,
1899 .fgt = FGT_PMCNTEN,
1900 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
1901 .writefn = pmcntenset_write, .raw_writefn = raw_write },
1902 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
1903 .access = PL0_RW,
1904 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1905 .accessfn = pmreg_access,
1906 .fgt = FGT_PMCNTEN,
1907 .writefn = pmcntenclr_write,
1908 .type = ARM_CP_ALIAS | ARM_CP_IO },
1909 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
1910 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
1911 .access = PL0_RW, .accessfn = pmreg_access,
1912 .fgt = FGT_PMCNTEN,
1913 .type = ARM_CP_ALIAS | ARM_CP_IO,
1914 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
1915 .writefn = pmcntenclr_write },
1916 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
1917 .access = PL0_RW, .type = ARM_CP_IO,
1918 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
1919 .accessfn = pmreg_access,
1920 .fgt = FGT_PMOVS,
1921 .writefn = pmovsr_write,
1922 .raw_writefn = raw_write },
1923 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
1924 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
1925 .access = PL0_RW, .accessfn = pmreg_access,
1926 .fgt = FGT_PMOVS,
1927 .type = ARM_CP_ALIAS | ARM_CP_IO,
1928 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
1929 .writefn = pmovsr_write,
1930 .raw_writefn = raw_write },
1931 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
1932 .access = PL0_W, .accessfn = pmreg_access_swinc,
1933 .fgt = FGT_PMSWINC_EL0,
1934 .type = ARM_CP_NO_RAW | ARM_CP_IO,
1935 .writefn = pmswinc_write },
1936 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64,
1937 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4,
1938 .access = PL0_W, .accessfn = pmreg_access_swinc,
1939 .fgt = FGT_PMSWINC_EL0,
1940 .type = ARM_CP_NO_RAW | ARM_CP_IO,
1941 .writefn = pmswinc_write },
1942 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
1943 .access = PL0_RW, .type = ARM_CP_ALIAS,
1944 .fgt = FGT_PMSELR_EL0,
1945 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
1946 .accessfn = pmreg_access_selr, .writefn = pmselr_write,
1947 .raw_writefn = raw_write},
1948 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
1949 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
1950 .access = PL0_RW, .accessfn = pmreg_access_selr,
1951 .fgt = FGT_PMSELR_EL0,
1952 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
1953 .writefn = pmselr_write, .raw_writefn = raw_write, },
1954 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
1955 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO,
1956 .fgt = FGT_PMCCNTR_EL0,
1957 .readfn = pmccntr_read, .writefn = pmccntr_write32,
1958 .accessfn = pmreg_access_ccntr },
1959 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
1960 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
1961 .access = PL0_RW, .accessfn = pmreg_access_ccntr,
1962 .fgt = FGT_PMCCNTR_EL0,
1963 .type = ARM_CP_IO,
1964 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt),
1965 .readfn = pmccntr_read, .writefn = pmccntr_write,
1966 .raw_readfn = raw_read, .raw_writefn = raw_write, },
1967 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7,
1968 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32,
1969 .access = PL0_RW, .accessfn = pmreg_access,
1970 .fgt = FGT_PMCCFILTR_EL0,
1971 .type = ARM_CP_ALIAS | ARM_CP_IO,
1972 .resetvalue = 0, },
1973 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
1974 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
1975 .writefn = pmccfiltr_write, .raw_writefn = raw_write,
1976 .access = PL0_RW, .accessfn = pmreg_access,
1977 .fgt = FGT_PMCCFILTR_EL0,
1978 .type = ARM_CP_IO,
1979 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
1980 .resetvalue = 0, },
1981 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
1982 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
1983 .accessfn = pmreg_access,
1984 .fgt = FGT_PMEVTYPERN_EL0,
1985 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
1986 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
1987 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
1988 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
1989 .accessfn = pmreg_access,
1990 .fgt = FGT_PMEVTYPERN_EL0,
1991 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
1992 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
1993 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
1994 .accessfn = pmreg_access_xevcntr,
1995 .fgt = FGT_PMEVCNTRN_EL0,
1996 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
1997 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64,
1998 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2,
1999 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2000 .accessfn = pmreg_access_xevcntr,
2001 .fgt = FGT_PMEVCNTRN_EL0,
2002 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2003 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
2004 .access = PL0_R | PL1_RW, .accessfn = access_tpm,
2005 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr),
2006 .resetvalue = 0,
2007 .writefn = pmuserenr_write, .raw_writefn = raw_write },
2008 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
2009 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
2010 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
2011 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
2012 .resetvalue = 0,
2013 .writefn = pmuserenr_write, .raw_writefn = raw_write },
2014 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
2015 .access = PL1_RW, .accessfn = access_tpm,
2016 .fgt = FGT_PMINTEN,
2017 .type = ARM_CP_ALIAS | ARM_CP_IO,
2018 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
2019 .resetvalue = 0,
2020 .writefn = pmintenset_write, .raw_writefn = raw_write },
2021 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
2022 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
2023 .access = PL1_RW, .accessfn = access_tpm,
2024 .fgt = FGT_PMINTEN,
2025 .type = ARM_CP_IO,
2026 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2027 .writefn = pmintenset_write, .raw_writefn = raw_write,
2028 .resetvalue = 0x0 },
2029 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
2030 .access = PL1_RW, .accessfn = access_tpm,
2031 .fgt = FGT_PMINTEN,
2032 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2033 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2034 .writefn = pmintenclr_write, },
2035 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
2036 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
2037 .access = PL1_RW, .accessfn = access_tpm,
2038 .fgt = FGT_PMINTEN,
2039 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2040 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2041 .writefn = pmintenclr_write },
2042 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
2043 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
2044 .access = PL1_R,
2045 .accessfn = access_tid4,
2046 .fgt = FGT_CCSIDR_EL1,
2047 .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
2048 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
2049 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
2050 .access = PL1_RW,
2051 .accessfn = access_tid4,
2052 .fgt = FGT_CSSELR_EL1,
2053 .writefn = csselr_write, .resetvalue = 0,
2054 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
2055 offsetof(CPUARMState, cp15.csselr_ns) } },
2056 /*
2057 * Auxiliary ID register: this actually has an IMPDEF value but for now
2058 * just RAZ for all cores:
2059 */
2060 { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
2061 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
2062 .access = PL1_R, .type = ARM_CP_CONST,
2063 .accessfn = access_aa64_tid1,
2064 .fgt = FGT_AIDR_EL1,
2065 .resetvalue = 0 },
2066 /*
2067 * Auxiliary fault status registers: these also are IMPDEF, and we
2068 * choose to RAZ/WI for all cores.
2069 */
2070 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
2071 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
2072 .access = PL1_RW, .accessfn = access_tvm_trvm,
2073 .fgt = FGT_AFSR0_EL1,
2074 .nv2_redirect_offset = 0x128 | NV2_REDIR_NV1,
2075 .type = ARM_CP_CONST, .resetvalue = 0 },
2076 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
2077 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
2078 .access = PL1_RW, .accessfn = access_tvm_trvm,
2079 .fgt = FGT_AFSR1_EL1,
2080 .nv2_redirect_offset = 0x130 | NV2_REDIR_NV1,
2081 .type = ARM_CP_CONST, .resetvalue = 0 },
2082 /*
2083 * MAIR can just read-as-written because we don't implement caches
2084 * and so don't need to care about memory attributes.
2085 */
2086 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
2087 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2088 .access = PL1_RW, .accessfn = access_tvm_trvm,
2089 .fgt = FGT_MAIR_EL1,
2090 .nv2_redirect_offset = 0x140 | NV2_REDIR_NV1,
2091 .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
2092 .resetvalue = 0 },
2093 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
2094 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
2095 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
2096 .resetvalue = 0 },
2097 /*
2098 * For non-long-descriptor page tables these are PRRR and NMRR;
2099 * regardless they still act as reads-as-written for QEMU.
2100 */
2101 /*
2102 * MAIR0/1 are defined separately from their 64-bit counterpart which
2103 * allows them to assign the correct fieldoffset based on the endianness
2104 * handled in the field definitions.
2105 */
2106 { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
2107 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2108 .access = PL1_RW, .accessfn = access_tvm_trvm,
2109 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
2110 offsetof(CPUARMState, cp15.mair0_ns) },
2111 .resetfn = arm_cp_reset_ignore },
2112 { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
2113 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1,
2114 .access = PL1_RW, .accessfn = access_tvm_trvm,
2115 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
2116 offsetof(CPUARMState, cp15.mair1_ns) },
2117 .resetfn = arm_cp_reset_ignore },
2118 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
2119 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
2120 .fgt = FGT_ISR_EL1,
2121 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
2122 };
2123
2124 static const ARMCPRegInfo pmovsset_cp_reginfo[] = {
2125 /* PMOVSSET is not implemented in v7 before v7ve */
2126 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3,
2127 .access = PL0_RW, .accessfn = pmreg_access,
2128 .fgt = FGT_PMOVS,
2129 .type = ARM_CP_ALIAS | ARM_CP_IO,
2130 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2131 .writefn = pmovsset_write,
2132 .raw_writefn = raw_write },
2133 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64,
2134 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3,
2135 .access = PL0_RW, .accessfn = pmreg_access,
2136 .fgt = FGT_PMOVS,
2137 .type = ARM_CP_ALIAS | ARM_CP_IO,
2138 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2139 .writefn = pmovsset_write,
2140 .raw_writefn = raw_write },
2141 };
2142
teecr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)2143 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2144 uint64_t value)
2145 {
2146 value &= 1;
2147 env->teecr = value;
2148 }
2149
teecr_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)2150 static CPAccessResult teecr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2151 bool isread)
2152 {
2153 /*
2154 * HSTR.TTEE only exists in v7A, not v8A, but v8A doesn't have T2EE
2155 * at all, so we don't need to check whether we're v8A.
2156 */
2157 if (arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) &&
2158 (env->cp15.hstr_el2 & HSTR_TTEE)) {
2159 return CP_ACCESS_TRAP_EL2;
2160 }
2161 return CP_ACCESS_OK;
2162 }
2163
teehbr_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)2164 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2165 bool isread)
2166 {
2167 if (arm_current_el(env) == 0 && (env->teecr & 1)) {
2168 return CP_ACCESS_TRAP_EL1;
2169 }
2170 return teecr_access(env, ri, isread);
2171 }
2172
2173 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
2174 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
2175 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
2176 .resetvalue = 0,
2177 .writefn = teecr_write, .accessfn = teecr_access },
2178 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
2179 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
2180 .accessfn = teehbr_access, .resetvalue = 0 },
2181 };
2182
2183 static const ARMCPRegInfo v6k_cp_reginfo[] = {
2184 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
2185 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
2186 .access = PL0_RW,
2187 .fgt = FGT_TPIDR_EL0,
2188 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
2189 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
2190 .access = PL0_RW,
2191 .fgt = FGT_TPIDR_EL0,
2192 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
2193 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
2194 .resetfn = arm_cp_reset_ignore },
2195 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
2196 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
2197 .access = PL0_R | PL1_W,
2198 .fgt = FGT_TPIDRRO_EL0,
2199 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
2200 .resetvalue = 0},
2201 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
2202 .access = PL0_R | PL1_W,
2203 .fgt = FGT_TPIDRRO_EL0,
2204 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
2205 offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
2206 .resetfn = arm_cp_reset_ignore },
2207 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
2208 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
2209 .access = PL1_RW,
2210 .fgt = FGT_TPIDR_EL1,
2211 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
2212 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
2213 .access = PL1_RW,
2214 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
2215 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
2216 .resetvalue = 0 },
2217 };
2218
arm_gt_cntfrq_reset(CPUARMState * env,const ARMCPRegInfo * opaque)2219 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque)
2220 {
2221 ARMCPU *cpu = env_archcpu(env);
2222
2223 cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz;
2224 }
2225
2226 #ifndef CONFIG_USER_ONLY
2227
gt_cntfrq_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)2228 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
2229 bool isread)
2230 {
2231 /*
2232 * CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
2233 * Writable only at the highest implemented exception level.
2234 */
2235 int el = arm_current_el(env);
2236 uint64_t hcr;
2237 uint32_t cntkctl;
2238
2239 switch (el) {
2240 case 0:
2241 hcr = arm_hcr_el2_eff(env);
2242 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2243 cntkctl = env->cp15.cnthctl_el2;
2244 } else {
2245 cntkctl = env->cp15.c14_cntkctl;
2246 }
2247 if (!extract32(cntkctl, 0, 2)) {
2248 return CP_ACCESS_TRAP_EL1;
2249 }
2250 break;
2251 case 1:
2252 if (!isread && ri->state == ARM_CP_STATE_AA32 &&
2253 arm_is_secure_below_el3(env)) {
2254 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
2255 return CP_ACCESS_UNDEFINED;
2256 }
2257 break;
2258 case 2:
2259 case 3:
2260 break;
2261 }
2262
2263 if (!isread && el < arm_highest_el(env)) {
2264 return CP_ACCESS_UNDEFINED;
2265 }
2266
2267 return CP_ACCESS_OK;
2268 }
2269
gt_counter_access(CPUARMState * env,int timeridx,bool isread)2270 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
2271 bool isread)
2272 {
2273 unsigned int cur_el = arm_current_el(env);
2274 bool has_el2 = arm_is_el2_enabled(env);
2275 uint64_t hcr = arm_hcr_el2_eff(env);
2276
2277 switch (cur_el) {
2278 case 0:
2279 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */
2280 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2281 return (extract32(env->cp15.cnthctl_el2, timeridx, 1)
2282 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2283 }
2284
2285 /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */
2286 if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
2287 return CP_ACCESS_TRAP_EL1;
2288 }
2289 /* fall through */
2290 case 1:
2291 /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */
2292 if (has_el2 && timeridx == GTIMER_PHYS &&
2293 (hcr & HCR_E2H
2294 ? !extract32(env->cp15.cnthctl_el2, 10, 1)
2295 : !extract32(env->cp15.cnthctl_el2, 0, 1))) {
2296 return CP_ACCESS_TRAP_EL2;
2297 }
2298 if (has_el2 && timeridx == GTIMER_VIRT) {
2299 if (FIELD_EX64(env->cp15.cnthctl_el2, CNTHCTL, EL1TVCT)) {
2300 return CP_ACCESS_TRAP_EL2;
2301 }
2302 }
2303 break;
2304 }
2305 return CP_ACCESS_OK;
2306 }
2307
gt_timer_access(CPUARMState * env,int timeridx,bool isread)2308 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
2309 bool isread)
2310 {
2311 unsigned int cur_el = arm_current_el(env);
2312 bool has_el2 = arm_is_el2_enabled(env);
2313 uint64_t hcr = arm_hcr_el2_eff(env);
2314
2315 switch (cur_el) {
2316 case 0:
2317 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2318 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */
2319 return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1)
2320 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2321 }
2322
2323 /*
2324 * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from
2325 * EL0 if EL0[PV]TEN is zero.
2326 */
2327 if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
2328 return CP_ACCESS_TRAP_EL1;
2329 }
2330 /* fall through */
2331
2332 case 1:
2333 if (has_el2 && timeridx == GTIMER_PHYS) {
2334 if (hcr & HCR_E2H) {
2335 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */
2336 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) {
2337 return CP_ACCESS_TRAP_EL2;
2338 }
2339 } else {
2340 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2341 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) {
2342 return CP_ACCESS_TRAP_EL2;
2343 }
2344 }
2345 }
2346 if (has_el2 && timeridx == GTIMER_VIRT) {
2347 if (FIELD_EX64(env->cp15.cnthctl_el2, CNTHCTL, EL1TVT)) {
2348 return CP_ACCESS_TRAP_EL2;
2349 }
2350 }
2351 break;
2352 }
2353 return CP_ACCESS_OK;
2354 }
2355
gt_pct_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)2356 static CPAccessResult gt_pct_access(CPUARMState *env,
2357 const ARMCPRegInfo *ri,
2358 bool isread)
2359 {
2360 return gt_counter_access(env, GTIMER_PHYS, isread);
2361 }
2362
gt_vct_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)2363 static CPAccessResult gt_vct_access(CPUARMState *env,
2364 const ARMCPRegInfo *ri,
2365 bool isread)
2366 {
2367 return gt_counter_access(env, GTIMER_VIRT, isread);
2368 }
2369
gt_ptimer_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)2370 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2371 bool isread)
2372 {
2373 return gt_timer_access(env, GTIMER_PHYS, isread);
2374 }
2375
gt_vtimer_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)2376 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2377 bool isread)
2378 {
2379 return gt_timer_access(env, GTIMER_VIRT, isread);
2380 }
2381
gt_stimer_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)2382 static CPAccessResult gt_stimer_access(CPUARMState *env,
2383 const ARMCPRegInfo *ri,
2384 bool isread)
2385 {
2386 /*
2387 * The AArch64 register view of the secure physical timer is
2388 * always accessible from EL3, and configurably accessible from
2389 * Secure EL1.
2390 */
2391 switch (arm_current_el(env)) {
2392 case 1:
2393 if (!arm_is_secure(env)) {
2394 return CP_ACCESS_UNDEFINED;
2395 }
2396 if (arm_is_el2_enabled(env)) {
2397 return CP_ACCESS_UNDEFINED;
2398 }
2399 if (!(env->cp15.scr_el3 & SCR_ST)) {
2400 return CP_ACCESS_TRAP_EL3;
2401 }
2402 return CP_ACCESS_OK;
2403 case 0:
2404 case 2:
2405 return CP_ACCESS_UNDEFINED;
2406 case 3:
2407 return CP_ACCESS_OK;
2408 default:
2409 g_assert_not_reached();
2410 }
2411 }
2412
gt_sel2timer_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)2413 static CPAccessResult gt_sel2timer_access(CPUARMState *env,
2414 const ARMCPRegInfo *ri,
2415 bool isread)
2416 {
2417 /*
2418 * The AArch64 register view of the secure EL2 timers are mostly
2419 * accessible from EL3 and EL2 although can also be trapped to EL2
2420 * from EL1 depending on nested virt config.
2421 */
2422 switch (arm_current_el(env)) {
2423 case 0: /* UNDEFINED */
2424 return CP_ACCESS_UNDEFINED;
2425 case 1:
2426 if (!arm_is_secure(env)) {
2427 /* UNDEFINED */
2428 return CP_ACCESS_UNDEFINED;
2429 } else if (arm_hcr_el2_eff(env) & HCR_NV) {
2430 /* Aarch64.SystemAccessTrap(EL2, 0x18) */
2431 return CP_ACCESS_TRAP_EL2;
2432 }
2433 /* UNDEFINED */
2434 return CP_ACCESS_UNDEFINED;
2435 case 2:
2436 if (!arm_is_secure(env)) {
2437 /* UNDEFINED */
2438 return CP_ACCESS_UNDEFINED;
2439 }
2440 return CP_ACCESS_OK;
2441 case 3:
2442 if (env->cp15.scr_el3 & SCR_EEL2) {
2443 return CP_ACCESS_OK;
2444 } else {
2445 return CP_ACCESS_UNDEFINED;
2446 }
2447 default:
2448 g_assert_not_reached();
2449 }
2450 }
2451
gt_get_countervalue(CPUARMState * env)2452 uint64_t gt_get_countervalue(CPUARMState *env)
2453 {
2454 ARMCPU *cpu = env_archcpu(env);
2455
2456 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu);
2457 }
2458
gt_update_irq(ARMCPU * cpu,int timeridx)2459 static void gt_update_irq(ARMCPU *cpu, int timeridx)
2460 {
2461 CPUARMState *env = &cpu->env;
2462 uint64_t cnthctl = env->cp15.cnthctl_el2;
2463 ARMSecuritySpace ss = arm_security_space(env);
2464 /* ISTATUS && !IMASK */
2465 int irqstate = (env->cp15.c14_timer[timeridx].ctl & 6) == 4;
2466
2467 /*
2468 * If bit CNTHCTL_EL2.CNT[VP]MASK is set, it overrides IMASK.
2469 * It is RES0 in Secure and NonSecure state.
2470 */
2471 if ((ss == ARMSS_Root || ss == ARMSS_Realm) &&
2472 ((timeridx == GTIMER_VIRT && (cnthctl & R_CNTHCTL_CNTVMASK_MASK)) ||
2473 (timeridx == GTIMER_PHYS && (cnthctl & R_CNTHCTL_CNTPMASK_MASK)))) {
2474 irqstate = 0;
2475 }
2476
2477 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2478 trace_arm_gt_update_irq(timeridx, irqstate);
2479 }
2480
gt_rme_post_el_change(ARMCPU * cpu,void * ignored)2481 void gt_rme_post_el_change(ARMCPU *cpu, void *ignored)
2482 {
2483 /*
2484 * Changing security state between Root and Secure/NonSecure, which may
2485 * happen when switching EL, can change the effective value of CNTHCTL_EL2
2486 * mask bits. Update the IRQ state accordingly.
2487 */
2488 gt_update_irq(cpu, GTIMER_VIRT);
2489 gt_update_irq(cpu, GTIMER_PHYS);
2490 }
2491
gt_phys_raw_cnt_offset(CPUARMState * env)2492 static uint64_t gt_phys_raw_cnt_offset(CPUARMState *env)
2493 {
2494 if ((env->cp15.scr_el3 & SCR_ECVEN) &&
2495 FIELD_EX64(env->cp15.cnthctl_el2, CNTHCTL, ECV) &&
2496 arm_is_el2_enabled(env) &&
2497 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
2498 return env->cp15.cntpoff_el2;
2499 }
2500 return 0;
2501 }
2502
gt_indirect_access_timer_offset(CPUARMState * env,int timeridx)2503 static uint64_t gt_indirect_access_timer_offset(CPUARMState *env, int timeridx)
2504 {
2505 /*
2506 * Return the timer offset to use for indirect accesses to the timer.
2507 * This is the Offset value as defined in D12.2.4.1 "Operation of the
2508 * CompareValue views of the timers".
2509 *
2510 * The condition here is not always the same as the condition for
2511 * whether to apply an offset register when doing a direct read of
2512 * the counter sysreg; those conditions are described in the
2513 * access pseudocode for each counter register.
2514 */
2515 switch (timeridx) {
2516 case GTIMER_PHYS:
2517 return gt_phys_raw_cnt_offset(env);
2518 case GTIMER_VIRT:
2519 return env->cp15.cntvoff_el2;
2520 case GTIMER_HYP:
2521 case GTIMER_SEC:
2522 case GTIMER_HYPVIRT:
2523 case GTIMER_S_EL2_PHYS:
2524 case GTIMER_S_EL2_VIRT:
2525 return 0;
2526 default:
2527 g_assert_not_reached();
2528 }
2529 }
2530
gt_direct_access_timer_offset(CPUARMState * env,int timeridx)2531 uint64_t gt_direct_access_timer_offset(CPUARMState *env, int timeridx)
2532 {
2533 /*
2534 * Return the timer offset to use for direct accesses to the
2535 * counter registers CNTPCT and CNTVCT, and for direct accesses
2536 * to the CNT*_TVAL registers.
2537 *
2538 * This isn't exactly the same as the indirect-access offset,
2539 * because here we also care about what EL the register access
2540 * is being made from.
2541 *
2542 * This corresponds to the access pseudocode for the registers.
2543 */
2544 uint64_t hcr;
2545
2546 switch (timeridx) {
2547 case GTIMER_PHYS:
2548 if (arm_current_el(env) >= 2) {
2549 return 0;
2550 }
2551 return gt_phys_raw_cnt_offset(env);
2552 case GTIMER_VIRT:
2553 switch (arm_current_el(env)) {
2554 case 2:
2555 hcr = arm_hcr_el2_eff(env);
2556 if (hcr & HCR_E2H) {
2557 return 0;
2558 }
2559 break;
2560 case 0:
2561 hcr = arm_hcr_el2_eff(env);
2562 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2563 return 0;
2564 }
2565 break;
2566 }
2567 return env->cp15.cntvoff_el2;
2568 case GTIMER_HYP:
2569 case GTIMER_SEC:
2570 case GTIMER_HYPVIRT:
2571 case GTIMER_S_EL2_PHYS:
2572 case GTIMER_S_EL2_VIRT:
2573 return 0;
2574 default:
2575 g_assert_not_reached();
2576 }
2577 }
2578
gt_recalc_timer(ARMCPU * cpu,int timeridx)2579 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
2580 {
2581 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
2582
2583 if (gt->ctl & 1) {
2584 /*
2585 * Timer enabled: calculate and set current ISTATUS, irq, and
2586 * reset timer to when ISTATUS next has to change
2587 */
2588 uint64_t offset = gt_indirect_access_timer_offset(&cpu->env, timeridx);
2589 uint64_t count = gt_get_countervalue(&cpu->env);
2590 /* Note that this must be unsigned 64 bit arithmetic: */
2591 int istatus = count - offset >= gt->cval;
2592 uint64_t nexttick;
2593
2594 gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
2595
2596 if (istatus) {
2597 /*
2598 * Next transition is when (count - offset) rolls back over to 0.
2599 * If offset > count then this is when count == offset;
2600 * if offset <= count then this is when count == offset + 2^64
2601 * For the latter case we set nexttick to an "as far in future
2602 * as possible" value and let the code below handle it.
2603 */
2604 if (offset > count) {
2605 nexttick = offset;
2606 } else {
2607 nexttick = UINT64_MAX;
2608 }
2609 } else {
2610 /*
2611 * Next transition is when (count - offset) == cval, i.e.
2612 * when count == (cval + offset).
2613 * If that would overflow, then again we set up the next interrupt
2614 * for "as far in the future as possible" for the code below.
2615 */
2616 if (uadd64_overflow(gt->cval, offset, &nexttick)) {
2617 nexttick = UINT64_MAX;
2618 }
2619 }
2620 /*
2621 * Note that the desired next expiry time might be beyond the
2622 * signed-64-bit range of a QEMUTimer -- in this case we just
2623 * set the timer for as far in the future as possible. When the
2624 * timer expires we will reset the timer for any remaining period.
2625 */
2626 if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) {
2627 timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX);
2628 } else {
2629 timer_mod(cpu->gt_timer[timeridx], nexttick);
2630 }
2631 trace_arm_gt_recalc(timeridx, nexttick);
2632 } else {
2633 /* Timer disabled: ISTATUS and timer output always clear */
2634 gt->ctl &= ~4;
2635 timer_del(cpu->gt_timer[timeridx]);
2636 trace_arm_gt_recalc_disabled(timeridx);
2637 }
2638 gt_update_irq(cpu, timeridx);
2639 }
2640
gt_timer_reset(CPUARMState * env,const ARMCPRegInfo * ri,int timeridx)2641 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
2642 int timeridx)
2643 {
2644 ARMCPU *cpu = env_archcpu(env);
2645
2646 timer_del(cpu->gt_timer[timeridx]);
2647 }
2648
gt_cnt_read(CPUARMState * env,const ARMCPRegInfo * ri)2649 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2650 {
2651 uint64_t offset = gt_direct_access_timer_offset(env, GTIMER_PHYS);
2652 return gt_get_countervalue(env) - offset;
2653 }
2654
gt_virt_cnt_read(CPUARMState * env,const ARMCPRegInfo * ri)2655 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2656 {
2657 uint64_t offset = gt_direct_access_timer_offset(env, GTIMER_VIRT);
2658 return gt_get_countervalue(env) - offset;
2659 }
2660
gt_cval_write(CPUARMState * env,const ARMCPRegInfo * ri,int timeridx,uint64_t value)2661 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2662 int timeridx,
2663 uint64_t value)
2664 {
2665 trace_arm_gt_cval_write(timeridx, value);
2666 env->cp15.c14_timer[timeridx].cval = value;
2667 gt_recalc_timer(env_archcpu(env), timeridx);
2668 }
2669
do_tval_read(CPUARMState * env,int timeridx,uint64_t offset)2670 static uint64_t do_tval_read(CPUARMState *env, int timeridx, uint64_t offset)
2671 {
2672 return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
2673 (gt_get_countervalue(env) - offset));
2674 }
2675
gt_tval_read(CPUARMState * env,const ARMCPRegInfo * ri,int timeridx)2676 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
2677 int timeridx)
2678 {
2679 uint64_t offset = gt_direct_access_timer_offset(env, timeridx);
2680
2681 return do_tval_read(env, timeridx, offset);
2682 }
2683
do_tval_write(CPUARMState * env,int timeridx,uint64_t value,uint64_t offset)2684 static void do_tval_write(CPUARMState *env, int timeridx, uint64_t value,
2685 uint64_t offset)
2686 {
2687 trace_arm_gt_tval_write(timeridx, value);
2688 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
2689 sextract64(value, 0, 32);
2690 gt_recalc_timer(env_archcpu(env), timeridx);
2691 }
2692
gt_tval_write(CPUARMState * env,const ARMCPRegInfo * ri,int timeridx,uint64_t value)2693 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2694 int timeridx,
2695 uint64_t value)
2696 {
2697 uint64_t offset = gt_direct_access_timer_offset(env, timeridx);
2698
2699 do_tval_write(env, timeridx, value, offset);
2700 }
2701
gt_ctl_write(CPUARMState * env,const ARMCPRegInfo * ri,int timeridx,uint64_t value)2702 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2703 int timeridx,
2704 uint64_t value)
2705 {
2706 ARMCPU *cpu = env_archcpu(env);
2707 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
2708
2709 trace_arm_gt_ctl_write(timeridx, value);
2710 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
2711 if ((oldval ^ value) & 1) {
2712 /* Enable toggled */
2713 gt_recalc_timer(cpu, timeridx);
2714 } else if ((oldval ^ value) & 2) {
2715 /*
2716 * IMASK toggled: don't need to recalculate,
2717 * just set the interrupt line based on ISTATUS
2718 */
2719 trace_arm_gt_imask_toggle(timeridx);
2720 gt_update_irq(cpu, timeridx);
2721 }
2722 }
2723
gt_phys_timer_reset(CPUARMState * env,const ARMCPRegInfo * ri)2724 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2725 {
2726 gt_timer_reset(env, ri, GTIMER_PHYS);
2727 }
2728
gt_phys_cval_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)2729 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2730 uint64_t value)
2731 {
2732 gt_cval_write(env, ri, GTIMER_PHYS, value);
2733 }
2734
gt_phys_tval_read(CPUARMState * env,const ARMCPRegInfo * ri)2735 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2736 {
2737 return gt_tval_read(env, ri, GTIMER_PHYS);
2738 }
2739
gt_phys_tval_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)2740 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2741 uint64_t value)
2742 {
2743 gt_tval_write(env, ri, GTIMER_PHYS, value);
2744 }
2745
gt_phys_ctl_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)2746 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2747 uint64_t value)
2748 {
2749 gt_ctl_write(env, ri, GTIMER_PHYS, value);
2750 }
2751
gt_phys_redir_timeridx(CPUARMState * env)2752 static int gt_phys_redir_timeridx(CPUARMState *env)
2753 {
2754 switch (arm_mmu_idx(env)) {
2755 case ARMMMUIdx_E20_0:
2756 case ARMMMUIdx_E20_2:
2757 case ARMMMUIdx_E20_2_PAN:
2758 return GTIMER_HYP;
2759 default:
2760 return GTIMER_PHYS;
2761 }
2762 }
2763
gt_virt_redir_timeridx(CPUARMState * env)2764 static int gt_virt_redir_timeridx(CPUARMState *env)
2765 {
2766 switch (arm_mmu_idx(env)) {
2767 case ARMMMUIdx_E20_0:
2768 case ARMMMUIdx_E20_2:
2769 case ARMMMUIdx_E20_2_PAN:
2770 return GTIMER_HYPVIRT;
2771 default:
2772 return GTIMER_VIRT;
2773 }
2774 }
2775
gt_phys_redir_cval_read(CPUARMState * env,const ARMCPRegInfo * ri)2776 static uint64_t gt_phys_redir_cval_read(CPUARMState *env,
2777 const ARMCPRegInfo *ri)
2778 {
2779 int timeridx = gt_phys_redir_timeridx(env);
2780 return env->cp15.c14_timer[timeridx].cval;
2781 }
2782
gt_phys_redir_cval_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)2783 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2784 uint64_t value)
2785 {
2786 int timeridx = gt_phys_redir_timeridx(env);
2787 gt_cval_write(env, ri, timeridx, value);
2788 }
2789
gt_phys_redir_tval_read(CPUARMState * env,const ARMCPRegInfo * ri)2790 static uint64_t gt_phys_redir_tval_read(CPUARMState *env,
2791 const ARMCPRegInfo *ri)
2792 {
2793 int timeridx = gt_phys_redir_timeridx(env);
2794 return gt_tval_read(env, ri, timeridx);
2795 }
2796
gt_phys_redir_tval_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)2797 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2798 uint64_t value)
2799 {
2800 int timeridx = gt_phys_redir_timeridx(env);
2801 gt_tval_write(env, ri, timeridx, value);
2802 }
2803
gt_phys_redir_ctl_read(CPUARMState * env,const ARMCPRegInfo * ri)2804 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env,
2805 const ARMCPRegInfo *ri)
2806 {
2807 int timeridx = gt_phys_redir_timeridx(env);
2808 return env->cp15.c14_timer[timeridx].ctl;
2809 }
2810
gt_phys_redir_ctl_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)2811 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2812 uint64_t value)
2813 {
2814 int timeridx = gt_phys_redir_timeridx(env);
2815 gt_ctl_write(env, ri, timeridx, value);
2816 }
2817
gt_virt_timer_reset(CPUARMState * env,const ARMCPRegInfo * ri)2818 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2819 {
2820 gt_timer_reset(env, ri, GTIMER_VIRT);
2821 }
2822
gt_virt_cval_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)2823 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2824 uint64_t value)
2825 {
2826 gt_cval_write(env, ri, GTIMER_VIRT, value);
2827 }
2828
gt_virt_tval_read(CPUARMState * env,const ARMCPRegInfo * ri)2829 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2830 {
2831 /*
2832 * This is CNTV_TVAL_EL02; unlike the underlying CNTV_TVAL_EL0
2833 * we always apply CNTVOFF_EL2. Special case that here rather
2834 * than going into the generic gt_tval_read() and then having
2835 * to re-detect that it's this register.
2836 * Note that the accessfn/perms mean we know we're at EL2 or EL3 here.
2837 */
2838 return do_tval_read(env, GTIMER_VIRT, env->cp15.cntvoff_el2);
2839 }
2840
gt_virt_tval_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)2841 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2842 uint64_t value)
2843 {
2844 /* Similarly for writes to CNTV_TVAL_EL02 */
2845 do_tval_write(env, GTIMER_VIRT, value, env->cp15.cntvoff_el2);
2846 }
2847
gt_virt_ctl_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)2848 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2849 uint64_t value)
2850 {
2851 gt_ctl_write(env, ri, GTIMER_VIRT, value);
2852 }
2853
gt_cnthctl_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)2854 static void gt_cnthctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2855 uint64_t value)
2856 {
2857 ARMCPU *cpu = env_archcpu(env);
2858 uint32_t oldval = env->cp15.cnthctl_el2;
2859 uint32_t valid_mask =
2860 R_CNTHCTL_EL0PCTEN_E2H1_MASK |
2861 R_CNTHCTL_EL0VCTEN_E2H1_MASK |
2862 R_CNTHCTL_EVNTEN_MASK |
2863 R_CNTHCTL_EVNTDIR_MASK |
2864 R_CNTHCTL_EVNTI_MASK |
2865 R_CNTHCTL_EL0VTEN_MASK |
2866 R_CNTHCTL_EL0PTEN_MASK |
2867 R_CNTHCTL_EL1PCTEN_E2H1_MASK |
2868 R_CNTHCTL_EL1PTEN_MASK;
2869
2870 if (cpu_isar_feature(aa64_rme, cpu)) {
2871 valid_mask |= R_CNTHCTL_CNTVMASK_MASK | R_CNTHCTL_CNTPMASK_MASK;
2872 }
2873 if (cpu_isar_feature(aa64_ecv_traps, cpu)) {
2874 valid_mask |=
2875 R_CNTHCTL_EL1TVT_MASK |
2876 R_CNTHCTL_EL1TVCT_MASK |
2877 R_CNTHCTL_EL1NVPCT_MASK |
2878 R_CNTHCTL_EL1NVVCT_MASK |
2879 R_CNTHCTL_EVNTIS_MASK;
2880 }
2881 if (cpu_isar_feature(aa64_ecv, cpu)) {
2882 valid_mask |= R_CNTHCTL_ECV_MASK;
2883 }
2884
2885 /* Clear RES0 bits */
2886 value &= valid_mask;
2887
2888 raw_write(env, ri, value);
2889
2890 if ((oldval ^ value) & R_CNTHCTL_CNTVMASK_MASK) {
2891 gt_update_irq(cpu, GTIMER_VIRT);
2892 } else if ((oldval ^ value) & R_CNTHCTL_CNTPMASK_MASK) {
2893 gt_update_irq(cpu, GTIMER_PHYS);
2894 }
2895 }
2896
gt_cntvoff_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)2897 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
2898 uint64_t value)
2899 {
2900 ARMCPU *cpu = env_archcpu(env);
2901
2902 trace_arm_gt_cntvoff_write(value);
2903 raw_write(env, ri, value);
2904 gt_recalc_timer(cpu, GTIMER_VIRT);
2905 }
2906
gt_virt_redir_cval_read(CPUARMState * env,const ARMCPRegInfo * ri)2907 static uint64_t gt_virt_redir_cval_read(CPUARMState *env,
2908 const ARMCPRegInfo *ri)
2909 {
2910 int timeridx = gt_virt_redir_timeridx(env);
2911 return env->cp15.c14_timer[timeridx].cval;
2912 }
2913
gt_virt_redir_cval_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)2914 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2915 uint64_t value)
2916 {
2917 int timeridx = gt_virt_redir_timeridx(env);
2918 gt_cval_write(env, ri, timeridx, value);
2919 }
2920
gt_virt_redir_tval_read(CPUARMState * env,const ARMCPRegInfo * ri)2921 static uint64_t gt_virt_redir_tval_read(CPUARMState *env,
2922 const ARMCPRegInfo *ri)
2923 {
2924 int timeridx = gt_virt_redir_timeridx(env);
2925 return gt_tval_read(env, ri, timeridx);
2926 }
2927
gt_virt_redir_tval_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)2928 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2929 uint64_t value)
2930 {
2931 int timeridx = gt_virt_redir_timeridx(env);
2932 gt_tval_write(env, ri, timeridx, value);
2933 }
2934
gt_virt_redir_ctl_read(CPUARMState * env,const ARMCPRegInfo * ri)2935 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env,
2936 const ARMCPRegInfo *ri)
2937 {
2938 int timeridx = gt_virt_redir_timeridx(env);
2939 return env->cp15.c14_timer[timeridx].ctl;
2940 }
2941
gt_virt_redir_ctl_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)2942 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2943 uint64_t value)
2944 {
2945 int timeridx = gt_virt_redir_timeridx(env);
2946 gt_ctl_write(env, ri, timeridx, value);
2947 }
2948
gt_hyp_timer_reset(CPUARMState * env,const ARMCPRegInfo * ri)2949 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2950 {
2951 gt_timer_reset(env, ri, GTIMER_HYP);
2952 }
2953
gt_hyp_cval_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)2954 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2955 uint64_t value)
2956 {
2957 gt_cval_write(env, ri, GTIMER_HYP, value);
2958 }
2959
gt_hyp_tval_read(CPUARMState * env,const ARMCPRegInfo * ri)2960 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2961 {
2962 return gt_tval_read(env, ri, GTIMER_HYP);
2963 }
2964
gt_hyp_tval_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)2965 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2966 uint64_t value)
2967 {
2968 gt_tval_write(env, ri, GTIMER_HYP, value);
2969 }
2970
gt_hyp_ctl_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)2971 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2972 uint64_t value)
2973 {
2974 gt_ctl_write(env, ri, GTIMER_HYP, value);
2975 }
2976
gt_sec_timer_reset(CPUARMState * env,const ARMCPRegInfo * ri)2977 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2978 {
2979 gt_timer_reset(env, ri, GTIMER_SEC);
2980 }
2981
gt_sec_cval_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)2982 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2983 uint64_t value)
2984 {
2985 gt_cval_write(env, ri, GTIMER_SEC, value);
2986 }
2987
gt_sec_tval_read(CPUARMState * env,const ARMCPRegInfo * ri)2988 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2989 {
2990 return gt_tval_read(env, ri, GTIMER_SEC);
2991 }
2992
gt_sec_tval_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)2993 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2994 uint64_t value)
2995 {
2996 gt_tval_write(env, ri, GTIMER_SEC, value);
2997 }
2998
gt_sec_ctl_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)2999 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3000 uint64_t value)
3001 {
3002 gt_ctl_write(env, ri, GTIMER_SEC, value);
3003 }
3004
gt_sec_pel2_timer_reset(CPUARMState * env,const ARMCPRegInfo * ri)3005 static void gt_sec_pel2_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3006 {
3007 gt_timer_reset(env, ri, GTIMER_S_EL2_PHYS);
3008 }
3009
gt_sec_pel2_cval_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3010 static void gt_sec_pel2_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3011 uint64_t value)
3012 {
3013 gt_cval_write(env, ri, GTIMER_S_EL2_PHYS, value);
3014 }
3015
gt_sec_pel2_tval_read(CPUARMState * env,const ARMCPRegInfo * ri)3016 static uint64_t gt_sec_pel2_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3017 {
3018 return gt_tval_read(env, ri, GTIMER_S_EL2_PHYS);
3019 }
3020
gt_sec_pel2_tval_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3021 static void gt_sec_pel2_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3022 uint64_t value)
3023 {
3024 gt_tval_write(env, ri, GTIMER_S_EL2_PHYS, value);
3025 }
3026
gt_sec_pel2_ctl_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3027 static void gt_sec_pel2_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3028 uint64_t value)
3029 {
3030 gt_ctl_write(env, ri, GTIMER_S_EL2_PHYS, value);
3031 }
3032
gt_sec_vel2_timer_reset(CPUARMState * env,const ARMCPRegInfo * ri)3033 static void gt_sec_vel2_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3034 {
3035 gt_timer_reset(env, ri, GTIMER_S_EL2_VIRT);
3036 }
3037
gt_sec_vel2_cval_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3038 static void gt_sec_vel2_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3039 uint64_t value)
3040 {
3041 gt_cval_write(env, ri, GTIMER_S_EL2_VIRT, value);
3042 }
3043
gt_sec_vel2_tval_read(CPUARMState * env,const ARMCPRegInfo * ri)3044 static uint64_t gt_sec_vel2_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3045 {
3046 return gt_tval_read(env, ri, GTIMER_S_EL2_VIRT);
3047 }
3048
gt_sec_vel2_tval_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3049 static void gt_sec_vel2_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3050 uint64_t value)
3051 {
3052 gt_tval_write(env, ri, GTIMER_S_EL2_VIRT, value);
3053 }
3054
gt_sec_vel2_ctl_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3055 static void gt_sec_vel2_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3056 uint64_t value)
3057 {
3058 gt_ctl_write(env, ri, GTIMER_S_EL2_VIRT, value);
3059 }
3060
gt_hv_timer_reset(CPUARMState * env,const ARMCPRegInfo * ri)3061 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3062 {
3063 gt_timer_reset(env, ri, GTIMER_HYPVIRT);
3064 }
3065
gt_hv_cval_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3066 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3067 uint64_t value)
3068 {
3069 gt_cval_write(env, ri, GTIMER_HYPVIRT, value);
3070 }
3071
gt_hv_tval_read(CPUARMState * env,const ARMCPRegInfo * ri)3072 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3073 {
3074 return gt_tval_read(env, ri, GTIMER_HYPVIRT);
3075 }
3076
gt_hv_tval_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3077 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3078 uint64_t value)
3079 {
3080 gt_tval_write(env, ri, GTIMER_HYPVIRT, value);
3081 }
3082
gt_hv_ctl_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3083 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3084 uint64_t value)
3085 {
3086 gt_ctl_write(env, ri, GTIMER_HYPVIRT, value);
3087 }
3088
arm_gt_ptimer_cb(void * opaque)3089 void arm_gt_ptimer_cb(void *opaque)
3090 {
3091 ARMCPU *cpu = opaque;
3092
3093 gt_recalc_timer(cpu, GTIMER_PHYS);
3094 }
3095
arm_gt_vtimer_cb(void * opaque)3096 void arm_gt_vtimer_cb(void *opaque)
3097 {
3098 ARMCPU *cpu = opaque;
3099
3100 gt_recalc_timer(cpu, GTIMER_VIRT);
3101 }
3102
arm_gt_htimer_cb(void * opaque)3103 void arm_gt_htimer_cb(void *opaque)
3104 {
3105 ARMCPU *cpu = opaque;
3106
3107 gt_recalc_timer(cpu, GTIMER_HYP);
3108 }
3109
arm_gt_stimer_cb(void * opaque)3110 void arm_gt_stimer_cb(void *opaque)
3111 {
3112 ARMCPU *cpu = opaque;
3113
3114 gt_recalc_timer(cpu, GTIMER_SEC);
3115 }
3116
arm_gt_sel2timer_cb(void * opaque)3117 void arm_gt_sel2timer_cb(void *opaque)
3118 {
3119 ARMCPU *cpu = opaque;
3120
3121 gt_recalc_timer(cpu, GTIMER_S_EL2_PHYS);
3122 }
3123
arm_gt_sel2vtimer_cb(void * opaque)3124 void arm_gt_sel2vtimer_cb(void *opaque)
3125 {
3126 ARMCPU *cpu = opaque;
3127
3128 gt_recalc_timer(cpu, GTIMER_S_EL2_VIRT);
3129 }
3130
arm_gt_hvtimer_cb(void * opaque)3131 void arm_gt_hvtimer_cb(void *opaque)
3132 {
3133 ARMCPU *cpu = opaque;
3134
3135 gt_recalc_timer(cpu, GTIMER_HYPVIRT);
3136 }
3137
3138 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3139 /*
3140 * Note that CNTFRQ is purely reads-as-written for the benefit
3141 * of software; writing it doesn't actually change the timer frequency.
3142 * Our reset value matches the fixed frequency we implement the timer at.
3143 */
3144 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
3145 .type = ARM_CP_ALIAS,
3146 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
3147 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
3148 },
3149 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3150 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3151 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
3152 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3153 .resetfn = arm_gt_cntfrq_reset,
3154 },
3155 /* overall control: mostly access permissions */
3156 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
3157 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
3158 .access = PL1_RW,
3159 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
3160 .resetvalue = 0,
3161 },
3162 /* per-timer control */
3163 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
3164 .secure = ARM_CP_SECSTATE_NS,
3165 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3166 .accessfn = gt_ptimer_access,
3167 .fieldoffset = offsetoflow32(CPUARMState,
3168 cp15.c14_timer[GTIMER_PHYS].ctl),
3169 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3170 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
3171 },
3172 { .name = "CNTP_CTL_S",
3173 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
3174 .secure = ARM_CP_SECSTATE_S,
3175 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3176 .accessfn = gt_ptimer_access,
3177 .fieldoffset = offsetoflow32(CPUARMState,
3178 cp15.c14_timer[GTIMER_SEC].ctl),
3179 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3180 },
3181 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
3182 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
3183 .type = ARM_CP_IO, .access = PL0_RW,
3184 .accessfn = gt_ptimer_access,
3185 .nv2_redirect_offset = 0x180 | NV2_REDIR_NV1,
3186 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
3187 .resetvalue = 0,
3188 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3189 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
3190 },
3191 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
3192 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3193 .accessfn = gt_vtimer_access,
3194 .fieldoffset = offsetoflow32(CPUARMState,
3195 cp15.c14_timer[GTIMER_VIRT].ctl),
3196 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3197 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
3198 },
3199 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
3200 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
3201 .type = ARM_CP_IO, .access = PL0_RW,
3202 .accessfn = gt_vtimer_access,
3203 .nv2_redirect_offset = 0x170 | NV2_REDIR_NV1,
3204 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
3205 .resetvalue = 0,
3206 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3207 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
3208 },
3209 /* TimerValue views: a 32 bit downcounting view of the underlying state */
3210 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
3211 .secure = ARM_CP_SECSTATE_NS,
3212 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3213 .accessfn = gt_ptimer_access,
3214 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3215 },
3216 { .name = "CNTP_TVAL_S",
3217 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
3218 .secure = ARM_CP_SECSTATE_S,
3219 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3220 .accessfn = gt_ptimer_access,
3221 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
3222 },
3223 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3224 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
3225 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3226 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
3227 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3228 },
3229 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
3230 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3231 .accessfn = gt_vtimer_access,
3232 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3233 },
3234 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3235 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
3236 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3237 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
3238 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3239 },
3240 /* The counter itself */
3241 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
3242 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3243 .accessfn = gt_pct_access,
3244 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
3245 },
3246 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
3247 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
3248 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3249 .accessfn = gt_pct_access, .readfn = gt_cnt_read,
3250 },
3251 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
3252 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3253 .accessfn = gt_vct_access,
3254 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
3255 },
3256 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3257 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3258 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3259 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
3260 },
3261 /* Comparison value, indicating when the timer goes off */
3262 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
3263 .secure = ARM_CP_SECSTATE_NS,
3264 .access = PL0_RW,
3265 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3266 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3267 .accessfn = gt_ptimer_access,
3268 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3269 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3270 },
3271 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2,
3272 .secure = ARM_CP_SECSTATE_S,
3273 .access = PL0_RW,
3274 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3275 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3276 .accessfn = gt_ptimer_access,
3277 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3278 },
3279 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3280 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
3281 .access = PL0_RW,
3282 .type = ARM_CP_IO,
3283 .nv2_redirect_offset = 0x178 | NV2_REDIR_NV1,
3284 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3285 .resetvalue = 0, .accessfn = gt_ptimer_access,
3286 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3287 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3288 },
3289 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
3290 .access = PL0_RW,
3291 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3292 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3293 .accessfn = gt_vtimer_access,
3294 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3295 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3296 },
3297 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3298 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
3299 .access = PL0_RW,
3300 .type = ARM_CP_IO,
3301 .nv2_redirect_offset = 0x168 | NV2_REDIR_NV1,
3302 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3303 .resetvalue = 0, .accessfn = gt_vtimer_access,
3304 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3305 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3306 },
3307 /*
3308 * Secure timer -- this is actually restricted to only EL3
3309 * and configurably Secure-EL1 via the accessfn.
3310 */
3311 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
3312 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
3313 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
3314 .accessfn = gt_stimer_access,
3315 .readfn = gt_sec_tval_read,
3316 .writefn = gt_sec_tval_write,
3317 .resetfn = gt_sec_timer_reset,
3318 },
3319 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
3320 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
3321 .type = ARM_CP_IO, .access = PL1_RW,
3322 .accessfn = gt_stimer_access,
3323 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
3324 .resetvalue = 0,
3325 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3326 },
3327 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
3328 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
3329 .type = ARM_CP_IO, .access = PL1_RW,
3330 .accessfn = gt_stimer_access,
3331 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3332 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3333 },
3334 };
3335
3336 /*
3337 * FEAT_ECV adds extra views of CNTVCT_EL0 and CNTPCT_EL0 which
3338 * are "self-synchronizing". For QEMU all sysregs are self-synchronizing,
3339 * so our implementations here are identical to the normal registers.
3340 */
3341 static const ARMCPRegInfo gen_timer_ecv_cp_reginfo[] = {
3342 { .name = "CNTVCTSS", .cp = 15, .crm = 14, .opc1 = 9,
3343 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3344 .accessfn = gt_vct_access,
3345 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
3346 },
3347 { .name = "CNTVCTSS_EL0", .state = ARM_CP_STATE_AA64,
3348 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 6,
3349 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3350 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
3351 },
3352 { .name = "CNTPCTSS", .cp = 15, .crm = 14, .opc1 = 8,
3353 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3354 .accessfn = gt_pct_access,
3355 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
3356 },
3357 { .name = "CNTPCTSS_EL0", .state = ARM_CP_STATE_AA64,
3358 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 5,
3359 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3360 .accessfn = gt_pct_access, .readfn = gt_cnt_read,
3361 },
3362 };
3363
gt_cntpoff_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)3364 static CPAccessResult gt_cntpoff_access(CPUARMState *env,
3365 const ARMCPRegInfo *ri,
3366 bool isread)
3367 {
3368 if (arm_current_el(env) == 2 && arm_feature(env, ARM_FEATURE_EL3) &&
3369 !(env->cp15.scr_el3 & SCR_ECVEN)) {
3370 return CP_ACCESS_TRAP_EL3;
3371 }
3372 return CP_ACCESS_OK;
3373 }
3374
gt_cntpoff_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3375 static void gt_cntpoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
3376 uint64_t value)
3377 {
3378 ARMCPU *cpu = env_archcpu(env);
3379
3380 trace_arm_gt_cntpoff_write(value);
3381 raw_write(env, ri, value);
3382 gt_recalc_timer(cpu, GTIMER_PHYS);
3383 }
3384
3385 static const ARMCPRegInfo gen_timer_cntpoff_reginfo = {
3386 .name = "CNTPOFF_EL2", .state = ARM_CP_STATE_AA64,
3387 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 6,
3388 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
3389 .accessfn = gt_cntpoff_access, .writefn = gt_cntpoff_write,
3390 .nv2_redirect_offset = 0x1a8,
3391 .fieldoffset = offsetof(CPUARMState, cp15.cntpoff_el2),
3392 };
3393 #else
3394
3395 /*
3396 * In user-mode most of the generic timer registers are inaccessible
3397 * however modern kernels (4.12+) allow access to cntvct_el0
3398 */
3399
gt_virt_cnt_read(CPUARMState * env,const ARMCPRegInfo * ri)3400 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
3401 {
3402 ARMCPU *cpu = env_archcpu(env);
3403
3404 /*
3405 * Currently we have no support for QEMUTimer in linux-user so we
3406 * can't call gt_get_countervalue(env), instead we directly
3407 * call the lower level functions.
3408 */
3409 return cpu_get_clock() / gt_cntfrq_period_ns(cpu);
3410 }
3411
3412 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3413 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3414 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3415 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */,
3416 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3417 .resetfn = arm_gt_cntfrq_reset,
3418 },
3419 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3420 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3421 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3422 .readfn = gt_virt_cnt_read,
3423 },
3424 };
3425
3426 /*
3427 * CNTVCTSS_EL0 has the same trap conditions as CNTVCT_EL0, so it also
3428 * is exposed to userspace by Linux.
3429 */
3430 static const ARMCPRegInfo gen_timer_ecv_cp_reginfo[] = {
3431 { .name = "CNTVCTSS_EL0", .state = ARM_CP_STATE_AA64,
3432 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 6,
3433 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3434 .readfn = gt_virt_cnt_read,
3435 },
3436 };
3437
3438 #endif
3439
par_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3440 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3441 {
3442 if (arm_feature(env, ARM_FEATURE_LPAE)) {
3443 raw_write(env, ri, value);
3444 } else if (arm_feature(env, ARM_FEATURE_V7)) {
3445 raw_write(env, ri, value & 0xfffff6ff);
3446 } else {
3447 raw_write(env, ri, value & 0xfffff1ff);
3448 }
3449 }
3450
3451 #ifndef CONFIG_USER_ONLY
3452 /* get_phys_addr() isn't present for user-mode-only targets */
3453
ats_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)3454 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
3455 bool isread)
3456 {
3457 if (ri->opc2 & 4) {
3458 /*
3459 * The ATS12NSO* operations must trap to EL3 or EL2 if executed in
3460 * Secure EL1 (which can only happen if EL3 is AArch64).
3461 * They are simply UNDEF if executed from NS EL1.
3462 * They function normally from EL2 or EL3.
3463 */
3464 if (arm_current_el(env) == 1) {
3465 if (arm_is_secure_below_el3(env)) {
3466 if (env->cp15.scr_el3 & SCR_EEL2) {
3467 return CP_ACCESS_TRAP_EL2;
3468 }
3469 return CP_ACCESS_TRAP_EL3;
3470 }
3471 return CP_ACCESS_UNDEFINED;
3472 }
3473 }
3474 return CP_ACCESS_OK;
3475 }
3476
3477 #ifdef CONFIG_TCG
par_el1_shareability(GetPhysAddrResult * res)3478 static int par_el1_shareability(GetPhysAddrResult *res)
3479 {
3480 /*
3481 * The PAR_EL1.SH field must be 0b10 for Device or Normal-NC
3482 * memory -- see pseudocode PAREncodeShareability().
3483 */
3484 if (((res->cacheattrs.attrs & 0xf0) == 0) ||
3485 res->cacheattrs.attrs == 0x44 || res->cacheattrs.attrs == 0x40) {
3486 return 2;
3487 }
3488 return res->cacheattrs.shareability;
3489 }
3490
do_ats_write(CPUARMState * env,uint64_t value,MMUAccessType access_type,ARMMMUIdx mmu_idx,ARMSecuritySpace ss)3491 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
3492 MMUAccessType access_type, ARMMMUIdx mmu_idx,
3493 ARMSecuritySpace ss)
3494 {
3495 bool ret;
3496 uint64_t par64;
3497 bool format64 = false;
3498 ARMMMUFaultInfo fi = {};
3499 GetPhysAddrResult res = {};
3500
3501 /*
3502 * I_MXTJT: Granule protection checks are not performed on the final
3503 * address of a successful translation. This is a translation not a
3504 * memory reference, so "memop = none = 0".
3505 */
3506 ret = get_phys_addr_with_space_nogpc(env, value, access_type, 0,
3507 mmu_idx, ss, &res, &fi);
3508
3509 /*
3510 * ATS operations only do S1 or S1+S2 translations, so we never
3511 * have to deal with the ARMCacheAttrs format for S2 only.
3512 */
3513 assert(!res.cacheattrs.is_s2_format);
3514
3515 if (ret) {
3516 /*
3517 * Some kinds of translation fault must cause exceptions rather
3518 * than being reported in the PAR.
3519 */
3520 int current_el = arm_current_el(env);
3521 int target_el;
3522 uint32_t syn, fsr, fsc;
3523 bool take_exc = false;
3524
3525 if (fi.s1ptw && current_el == 1
3526 && arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
3527 /*
3528 * Synchronous stage 2 fault on an access made as part of the
3529 * translation table walk for AT S1E0* or AT S1E1* insn
3530 * executed from NS EL1. If this is a synchronous external abort
3531 * and SCR_EL3.EA == 1, then we take a synchronous external abort
3532 * to EL3. Otherwise the fault is taken as an exception to EL2,
3533 * and HPFAR_EL2 holds the faulting IPA.
3534 */
3535 if (fi.type == ARMFault_SyncExternalOnWalk &&
3536 (env->cp15.scr_el3 & SCR_EA)) {
3537 target_el = 3;
3538 } else {
3539 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4;
3540 if (arm_is_secure_below_el3(env) && fi.s1ns) {
3541 env->cp15.hpfar_el2 |= HPFAR_NS;
3542 }
3543 target_el = 2;
3544 }
3545 take_exc = true;
3546 } else if (fi.type == ARMFault_SyncExternalOnWalk) {
3547 /*
3548 * Synchronous external aborts during a translation table walk
3549 * are taken as Data Abort exceptions.
3550 */
3551 if (fi.stage2) {
3552 if (current_el == 3) {
3553 target_el = 3;
3554 } else {
3555 target_el = 2;
3556 }
3557 } else {
3558 target_el = exception_target_el(env);
3559 }
3560 take_exc = true;
3561 }
3562
3563 if (take_exc) {
3564 /* Construct FSR and FSC using same logic as arm_deliver_fault() */
3565 if (target_el == 2 || arm_el_is_aa64(env, target_el) ||
3566 arm_s1_regime_using_lpae_format(env, mmu_idx)) {
3567 fsr = arm_fi_to_lfsc(&fi);
3568 fsc = extract32(fsr, 0, 6);
3569 } else {
3570 fsr = arm_fi_to_sfsc(&fi);
3571 fsc = 0x3f;
3572 }
3573 /*
3574 * Report exception with ESR indicating a fault due to a
3575 * translation table walk for a cache maintenance instruction.
3576 */
3577 syn = syn_data_abort_no_iss(current_el == target_el, 0,
3578 fi.ea, 1, fi.s1ptw, 1, fsc);
3579 env->exception.vaddress = value;
3580 env->exception.fsr = fsr;
3581 raise_exception(env, EXCP_DATA_ABORT, syn, target_el);
3582 }
3583 }
3584
3585 if (is_a64(env)) {
3586 format64 = true;
3587 } else if (arm_feature(env, ARM_FEATURE_LPAE)) {
3588 /*
3589 * ATS1Cxx:
3590 * * TTBCR.EAE determines whether the result is returned using the
3591 * 32-bit or the 64-bit PAR format
3592 * * Instructions executed in Hyp mode always use the 64bit format
3593 *
3594 * ATS1S2NSOxx uses the 64bit format if any of the following is true:
3595 * * The Non-secure TTBCR.EAE bit is set to 1
3596 * * The implementation includes EL2, and the value of HCR.VM is 1
3597 *
3598 * (Note that HCR.DC makes HCR.VM behave as if it is 1.)
3599 *
3600 * ATS1Hx always uses the 64bit format.
3601 */
3602 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);
3603
3604 if (arm_feature(env, ARM_FEATURE_EL2)) {
3605 if (mmu_idx == ARMMMUIdx_E10_0 ||
3606 mmu_idx == ARMMMUIdx_E10_1 ||
3607 mmu_idx == ARMMMUIdx_E10_1_PAN) {
3608 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC);
3609 } else {
3610 format64 |= arm_current_el(env) == 2;
3611 }
3612 }
3613 }
3614
3615 if (format64) {
3616 /* Create a 64-bit PAR */
3617 par64 = (1 << 11); /* LPAE bit always set */
3618 if (!ret) {
3619 par64 |= res.f.phys_addr & ~0xfffULL;
3620 if (!res.f.attrs.secure) {
3621 par64 |= (1 << 9); /* NS */
3622 }
3623 par64 |= (uint64_t)res.cacheattrs.attrs << 56; /* ATTR */
3624 par64 |= par_el1_shareability(&res) << 7; /* SH */
3625 } else {
3626 uint32_t fsr = arm_fi_to_lfsc(&fi);
3627
3628 par64 |= 1; /* F */
3629 par64 |= (fsr & 0x3f) << 1; /* FS */
3630 if (fi.stage2) {
3631 par64 |= (1 << 9); /* S */
3632 }
3633 if (fi.s1ptw) {
3634 par64 |= (1 << 8); /* PTW */
3635 }
3636 }
3637 } else {
3638 /*
3639 * fsr is a DFSR/IFSR value for the short descriptor
3640 * translation table format (with WnR always clear).
3641 * Convert it to a 32-bit PAR.
3642 */
3643 if (!ret) {
3644 /* We do not set any attribute bits in the PAR */
3645 if (res.f.lg_page_size == 24
3646 && arm_feature(env, ARM_FEATURE_V7)) {
3647 par64 = (res.f.phys_addr & 0xff000000) | (1 << 1);
3648 } else {
3649 par64 = res.f.phys_addr & 0xfffff000;
3650 }
3651 if (!res.f.attrs.secure) {
3652 par64 |= (1 << 9); /* NS */
3653 }
3654 } else {
3655 uint32_t fsr = arm_fi_to_sfsc(&fi);
3656
3657 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
3658 ((fsr & 0xf) << 1) | 1;
3659 }
3660 }
3661 return par64;
3662 }
3663 #endif /* CONFIG_TCG */
3664
ats_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3665 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3666 {
3667 #ifdef CONFIG_TCG
3668 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3669 uint64_t par64;
3670 ARMMMUIdx mmu_idx;
3671 int el = arm_current_el(env);
3672 ARMSecuritySpace ss = arm_security_space(env);
3673
3674 switch (ri->opc2 & 6) {
3675 case 0:
3676 /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */
3677 switch (el) {
3678 case 3:
3679 if (ri->crm == 9 && arm_pan_enabled(env)) {
3680 mmu_idx = ARMMMUIdx_E30_3_PAN;
3681 } else {
3682 mmu_idx = ARMMMUIdx_E3;
3683 }
3684 break;
3685 case 2:
3686 g_assert(ss != ARMSS_Secure); /* ARMv8.4-SecEL2 is 64-bit only */
3687 /* fall through */
3688 case 1:
3689 if (ri->crm == 9 && arm_pan_enabled(env)) {
3690 mmu_idx = ARMMMUIdx_Stage1_E1_PAN;
3691 } else {
3692 mmu_idx = ARMMMUIdx_Stage1_E1;
3693 }
3694 break;
3695 default:
3696 g_assert_not_reached();
3697 }
3698 break;
3699 case 2:
3700 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
3701 switch (el) {
3702 case 3:
3703 mmu_idx = ARMMMUIdx_E30_0;
3704 break;
3705 case 2:
3706 g_assert(ss != ARMSS_Secure); /* ARMv8.4-SecEL2 is 64-bit only */
3707 mmu_idx = ARMMMUIdx_Stage1_E0;
3708 break;
3709 case 1:
3710 mmu_idx = ARMMMUIdx_Stage1_E0;
3711 break;
3712 default:
3713 g_assert_not_reached();
3714 }
3715 break;
3716 case 4:
3717 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
3718 mmu_idx = ARMMMUIdx_E10_1;
3719 ss = ARMSS_NonSecure;
3720 break;
3721 case 6:
3722 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
3723 mmu_idx = ARMMMUIdx_E10_0;
3724 ss = ARMSS_NonSecure;
3725 break;
3726 default:
3727 g_assert_not_reached();
3728 }
3729
3730 par64 = do_ats_write(env, value, access_type, mmu_idx, ss);
3731
3732 A32_BANKED_CURRENT_REG_SET(env, par, par64);
3733 #else
3734 /* Handled by hardware accelerator. */
3735 g_assert_not_reached();
3736 #endif /* CONFIG_TCG */
3737 }
3738
ats1h_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3739 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
3740 uint64_t value)
3741 {
3742 #ifdef CONFIG_TCG
3743 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3744 uint64_t par64;
3745
3746 /* There is no SecureEL2 for AArch32. */
3747 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2,
3748 ARMSS_NonSecure);
3749
3750 A32_BANKED_CURRENT_REG_SET(env, par, par64);
3751 #else
3752 /* Handled by hardware accelerator. */
3753 g_assert_not_reached();
3754 #endif /* CONFIG_TCG */
3755 }
3756
at_e012_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)3757 static CPAccessResult at_e012_access(CPUARMState *env, const ARMCPRegInfo *ri,
3758 bool isread)
3759 {
3760 /*
3761 * R_NYXTL: instruction is UNDEFINED if it applies to an Exception level
3762 * lower than EL3 and the combination SCR_EL3.{NSE,NS} is reserved. This can
3763 * only happen when executing at EL3 because that combination also causes an
3764 * illegal exception return. We don't need to check FEAT_RME either, because
3765 * scr_write() ensures that the NSE bit is not set otherwise.
3766 */
3767 if ((env->cp15.scr_el3 & (SCR_NSE | SCR_NS)) == SCR_NSE) {
3768 return CP_ACCESS_UNDEFINED;
3769 }
3770 return CP_ACCESS_OK;
3771 }
3772
at_s1e2_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)3773 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
3774 bool isread)
3775 {
3776 if (arm_current_el(env) == 3 &&
3777 !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) {
3778 return CP_ACCESS_UNDEFINED;
3779 }
3780 return at_e012_access(env, ri, isread);
3781 }
3782
at_s1e01_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)3783 static CPAccessResult at_s1e01_access(CPUARMState *env, const ARMCPRegInfo *ri,
3784 bool isread)
3785 {
3786 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_AT)) {
3787 return CP_ACCESS_TRAP_EL2;
3788 }
3789 return at_e012_access(env, ri, isread);
3790 }
3791
ats_write64(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3792 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
3793 uint64_t value)
3794 {
3795 #ifdef CONFIG_TCG
3796 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3797 ARMMMUIdx mmu_idx;
3798 uint64_t hcr_el2 = arm_hcr_el2_eff(env);
3799 bool regime_e20 = (hcr_el2 & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE);
3800 bool for_el3 = false;
3801 ARMSecuritySpace ss;
3802
3803 switch (ri->opc2 & 6) {
3804 case 0:
3805 switch (ri->opc1) {
3806 case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */
3807 if (ri->crm == 9 && arm_pan_enabled(env)) {
3808 mmu_idx = regime_e20 ?
3809 ARMMMUIdx_E20_2_PAN : ARMMMUIdx_Stage1_E1_PAN;
3810 } else {
3811 mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_Stage1_E1;
3812 }
3813 break;
3814 case 4: /* AT S1E2R, AT S1E2W */
3815 mmu_idx = hcr_el2 & HCR_E2H ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2;
3816 break;
3817 case 6: /* AT S1E3R, AT S1E3W */
3818 mmu_idx = ARMMMUIdx_E3;
3819 for_el3 = true;
3820 break;
3821 default:
3822 g_assert_not_reached();
3823 }
3824 break;
3825 case 2: /* AT S1E0R, AT S1E0W */
3826 mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_Stage1_E0;
3827 break;
3828 case 4: /* AT S12E1R, AT S12E1W */
3829 mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E10_1;
3830 break;
3831 case 6: /* AT S12E0R, AT S12E0W */
3832 mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_E10_0;
3833 break;
3834 default:
3835 g_assert_not_reached();
3836 }
3837
3838 ss = for_el3 ? arm_security_space(env) : arm_security_space_below_el3(env);
3839 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx, ss);
3840 #else
3841 /* Handled by hardware accelerator. */
3842 g_assert_not_reached();
3843 #endif /* CONFIG_TCG */
3844 }
3845 #endif
3846
3847 /* Return basic MPU access permission bits. */
simple_mpu_ap_bits(uint32_t val)3848 static uint32_t simple_mpu_ap_bits(uint32_t val)
3849 {
3850 uint32_t ret;
3851 uint32_t mask;
3852 int i;
3853 ret = 0;
3854 mask = 3;
3855 for (i = 0; i < 16; i += 2) {
3856 ret |= (val >> i) & mask;
3857 mask <<= 2;
3858 }
3859 return ret;
3860 }
3861
3862 /* Pad basic MPU access permission bits to extended format. */
extended_mpu_ap_bits(uint32_t val)3863 static uint32_t extended_mpu_ap_bits(uint32_t val)
3864 {
3865 uint32_t ret;
3866 uint32_t mask;
3867 int i;
3868 ret = 0;
3869 mask = 3;
3870 for (i = 0; i < 16; i += 2) {
3871 ret |= (val & mask) << i;
3872 mask <<= 2;
3873 }
3874 return ret;
3875 }
3876
pmsav5_data_ap_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3877 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3878 uint64_t value)
3879 {
3880 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
3881 }
3882
pmsav5_data_ap_read(CPUARMState * env,const ARMCPRegInfo * ri)3883 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3884 {
3885 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
3886 }
3887
pmsav5_insn_ap_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3888 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3889 uint64_t value)
3890 {
3891 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
3892 }
3893
pmsav5_insn_ap_read(CPUARMState * env,const ARMCPRegInfo * ri)3894 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3895 {
3896 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
3897 }
3898
pmsav7_read(CPUARMState * env,const ARMCPRegInfo * ri)3899 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
3900 {
3901 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3902
3903 if (!u32p) {
3904 return 0;
3905 }
3906
3907 u32p += env->pmsav7.rnr[M_REG_NS];
3908 return *u32p;
3909 }
3910
pmsav7_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3911 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
3912 uint64_t value)
3913 {
3914 ARMCPU *cpu = env_archcpu(env);
3915 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3916
3917 if (!u32p) {
3918 return;
3919 }
3920
3921 u32p += env->pmsav7.rnr[M_REG_NS];
3922 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3923 *u32p = value;
3924 }
3925
pmsav7_rgnr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3926 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3927 uint64_t value)
3928 {
3929 ARMCPU *cpu = env_archcpu(env);
3930 uint32_t nrgs = cpu->pmsav7_dregion;
3931
3932 if (value >= nrgs) {
3933 qemu_log_mask(LOG_GUEST_ERROR,
3934 "PMSAv7 RGNR write >= # supported regions, %" PRIu32
3935 " > %" PRIu32 "\n", (uint32_t)value, nrgs);
3936 return;
3937 }
3938
3939 raw_write(env, ri, value);
3940 }
3941
prbar_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3942 static void prbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3943 uint64_t value)
3944 {
3945 ARMCPU *cpu = env_archcpu(env);
3946
3947 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3948 env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value;
3949 }
3950
prbar_read(CPUARMState * env,const ARMCPRegInfo * ri)3951 static uint64_t prbar_read(CPUARMState *env, const ARMCPRegInfo *ri)
3952 {
3953 return env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]];
3954 }
3955
prlar_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3956 static void prlar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3957 uint64_t value)
3958 {
3959 ARMCPU *cpu = env_archcpu(env);
3960
3961 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3962 env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value;
3963 }
3964
prlar_read(CPUARMState * env,const ARMCPRegInfo * ri)3965 static uint64_t prlar_read(CPUARMState *env, const ARMCPRegInfo *ri)
3966 {
3967 return env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]];
3968 }
3969
prselr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3970 static void prselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3971 uint64_t value)
3972 {
3973 ARMCPU *cpu = env_archcpu(env);
3974
3975 /*
3976 * Ignore writes that would select not implemented region.
3977 * This is architecturally UNPREDICTABLE.
3978 */
3979 if (value >= cpu->pmsav7_dregion) {
3980 return;
3981 }
3982
3983 env->pmsav7.rnr[M_REG_NS] = value;
3984 }
3985
hprbar_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)3986 static void hprbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3987 uint64_t value)
3988 {
3989 ARMCPU *cpu = env_archcpu(env);
3990
3991 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3992 env->pmsav8.hprbar[env->pmsav8.hprselr] = value;
3993 }
3994
hprbar_read(CPUARMState * env,const ARMCPRegInfo * ri)3995 static uint64_t hprbar_read(CPUARMState *env, const ARMCPRegInfo *ri)
3996 {
3997 return env->pmsav8.hprbar[env->pmsav8.hprselr];
3998 }
3999
hprlar_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4000 static void hprlar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4001 uint64_t value)
4002 {
4003 ARMCPU *cpu = env_archcpu(env);
4004
4005 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
4006 env->pmsav8.hprlar[env->pmsav8.hprselr] = value;
4007 }
4008
hprlar_read(CPUARMState * env,const ARMCPRegInfo * ri)4009 static uint64_t hprlar_read(CPUARMState *env, const ARMCPRegInfo *ri)
4010 {
4011 return env->pmsav8.hprlar[env->pmsav8.hprselr];
4012 }
4013
hprenr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4014 static void hprenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4015 uint64_t value)
4016 {
4017 uint32_t n;
4018 uint32_t bit;
4019 ARMCPU *cpu = env_archcpu(env);
4020
4021 /* Ignore writes to unimplemented regions */
4022 int rmax = MIN(cpu->pmsav8r_hdregion, 32);
4023 value &= MAKE_64BIT_MASK(0, rmax);
4024
4025 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
4026
4027 /* Register alias is only valid for first 32 indexes */
4028 for (n = 0; n < rmax; ++n) {
4029 bit = extract32(value, n, 1);
4030 env->pmsav8.hprlar[n] = deposit32(
4031 env->pmsav8.hprlar[n], 0, 1, bit);
4032 }
4033 }
4034
hprenr_read(CPUARMState * env,const ARMCPRegInfo * ri)4035 static uint64_t hprenr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4036 {
4037 uint32_t n;
4038 uint32_t result = 0x0;
4039 ARMCPU *cpu = env_archcpu(env);
4040
4041 /* Register alias is only valid for first 32 indexes */
4042 for (n = 0; n < MIN(cpu->pmsav8r_hdregion, 32); ++n) {
4043 if (env->pmsav8.hprlar[n] & 0x1) {
4044 result |= (0x1 << n);
4045 }
4046 }
4047 return result;
4048 }
4049
hprselr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4050 static void hprselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4051 uint64_t value)
4052 {
4053 ARMCPU *cpu = env_archcpu(env);
4054
4055 /*
4056 * Ignore writes that would select not implemented region.
4057 * This is architecturally UNPREDICTABLE.
4058 */
4059 if (value >= cpu->pmsav8r_hdregion) {
4060 return;
4061 }
4062
4063 env->pmsav8.hprselr = value;
4064 }
4065
pmsav8r_regn_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4066 static void pmsav8r_regn_write(CPUARMState *env, const ARMCPRegInfo *ri,
4067 uint64_t value)
4068 {
4069 ARMCPU *cpu = env_archcpu(env);
4070 uint8_t index = (extract32(ri->opc0, 0, 1) << 4) |
4071 (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1);
4072
4073 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
4074
4075 if (ri->opc1 & 4) {
4076 if (index >= cpu->pmsav8r_hdregion) {
4077 return;
4078 }
4079 if (ri->opc2 & 0x1) {
4080 env->pmsav8.hprlar[index] = value;
4081 } else {
4082 env->pmsav8.hprbar[index] = value;
4083 }
4084 } else {
4085 if (index >= cpu->pmsav7_dregion) {
4086 return;
4087 }
4088 if (ri->opc2 & 0x1) {
4089 env->pmsav8.rlar[M_REG_NS][index] = value;
4090 } else {
4091 env->pmsav8.rbar[M_REG_NS][index] = value;
4092 }
4093 }
4094 }
4095
pmsav8r_regn_read(CPUARMState * env,const ARMCPRegInfo * ri)4096 static uint64_t pmsav8r_regn_read(CPUARMState *env, const ARMCPRegInfo *ri)
4097 {
4098 ARMCPU *cpu = env_archcpu(env);
4099 uint8_t index = (extract32(ri->opc0, 0, 1) << 4) |
4100 (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1);
4101
4102 if (ri->opc1 & 4) {
4103 if (index >= cpu->pmsav8r_hdregion) {
4104 return 0x0;
4105 }
4106 if (ri->opc2 & 0x1) {
4107 return env->pmsav8.hprlar[index];
4108 } else {
4109 return env->pmsav8.hprbar[index];
4110 }
4111 } else {
4112 if (index >= cpu->pmsav7_dregion) {
4113 return 0x0;
4114 }
4115 if (ri->opc2 & 0x1) {
4116 return env->pmsav8.rlar[M_REG_NS][index];
4117 } else {
4118 return env->pmsav8.rbar[M_REG_NS][index];
4119 }
4120 }
4121 }
4122
4123 static const ARMCPRegInfo pmsav8r_cp_reginfo[] = {
4124 { .name = "PRBAR",
4125 .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 0,
4126 .access = PL1_RW, .type = ARM_CP_NO_RAW,
4127 .accessfn = access_tvm_trvm,
4128 .readfn = prbar_read, .writefn = prbar_write },
4129 { .name = "PRLAR",
4130 .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 1,
4131 .access = PL1_RW, .type = ARM_CP_NO_RAW,
4132 .accessfn = access_tvm_trvm,
4133 .readfn = prlar_read, .writefn = prlar_write },
4134 { .name = "PRSELR", .resetvalue = 0,
4135 .cp = 15, .opc1 = 0, .crn = 6, .crm = 2, .opc2 = 1,
4136 .access = PL1_RW, .accessfn = access_tvm_trvm,
4137 .writefn = prselr_write,
4138 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]) },
4139 { .name = "HPRBAR", .resetvalue = 0,
4140 .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 0,
4141 .access = PL2_RW, .type = ARM_CP_NO_RAW,
4142 .readfn = hprbar_read, .writefn = hprbar_write },
4143 { .name = "HPRLAR",
4144 .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 1,
4145 .access = PL2_RW, .type = ARM_CP_NO_RAW,
4146 .readfn = hprlar_read, .writefn = hprlar_write },
4147 { .name = "HPRSELR", .resetvalue = 0,
4148 .cp = 15, .opc1 = 4, .crn = 6, .crm = 2, .opc2 = 1,
4149 .access = PL2_RW,
4150 .writefn = hprselr_write,
4151 .fieldoffset = offsetof(CPUARMState, pmsav8.hprselr) },
4152 { .name = "HPRENR",
4153 .cp = 15, .opc1 = 4, .crn = 6, .crm = 1, .opc2 = 1,
4154 .access = PL2_RW, .type = ARM_CP_NO_RAW,
4155 .readfn = hprenr_read, .writefn = hprenr_write },
4156 };
4157
4158 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
4159 /*
4160 * Reset for all these registers is handled in arm_cpu_reset(),
4161 * because the PMSAv7 is also used by M-profile CPUs, which do
4162 * not register cpregs but still need the state to be reset.
4163 */
4164 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
4165 .access = PL1_RW, .type = ARM_CP_NO_RAW,
4166 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
4167 .readfn = pmsav7_read, .writefn = pmsav7_write,
4168 .resetfn = arm_cp_reset_ignore },
4169 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
4170 .access = PL1_RW, .type = ARM_CP_NO_RAW,
4171 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
4172 .readfn = pmsav7_read, .writefn = pmsav7_write,
4173 .resetfn = arm_cp_reset_ignore },
4174 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
4175 .access = PL1_RW, .type = ARM_CP_NO_RAW,
4176 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
4177 .readfn = pmsav7_read, .writefn = pmsav7_write,
4178 .resetfn = arm_cp_reset_ignore },
4179 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
4180 .access = PL1_RW,
4181 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
4182 .writefn = pmsav7_rgnr_write,
4183 .resetfn = arm_cp_reset_ignore },
4184 };
4185
4186 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
4187 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
4188 .access = PL1_RW, .type = ARM_CP_ALIAS,
4189 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
4190 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
4191 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
4192 .access = PL1_RW, .type = ARM_CP_ALIAS,
4193 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
4194 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
4195 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
4196 .access = PL1_RW,
4197 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
4198 .resetvalue = 0, },
4199 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
4200 .access = PL1_RW,
4201 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
4202 .resetvalue = 0, },
4203 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
4204 .access = PL1_RW,
4205 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
4206 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
4207 .access = PL1_RW,
4208 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
4209 /* Protection region base and size registers */
4210 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
4211 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4212 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
4213 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
4214 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4215 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
4216 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
4217 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4218 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
4219 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
4220 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4221 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
4222 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
4223 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4224 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
4225 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
4226 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4227 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
4228 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
4229 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4230 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
4231 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
4232 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4233 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
4234 };
4235
vmsa_ttbcr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4236 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4237 uint64_t value)
4238 {
4239 ARMCPU *cpu = env_archcpu(env);
4240
4241 if (!arm_feature(env, ARM_FEATURE_V8)) {
4242 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
4243 /*
4244 * Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
4245 * using Long-descriptor translation table format
4246 */
4247 value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
4248 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
4249 /*
4250 * In an implementation that includes the Security Extensions
4251 * TTBCR has additional fields PD0 [4] and PD1 [5] for
4252 * Short-descriptor translation table format.
4253 */
4254 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
4255 } else {
4256 value &= TTBCR_N;
4257 }
4258 }
4259
4260 if (arm_feature(env, ARM_FEATURE_LPAE)) {
4261 /*
4262 * With LPAE the TTBCR could result in a change of ASID
4263 * via the TTBCR.A1 bit, so do a TLB flush.
4264 */
4265 tlb_flush(CPU(cpu));
4266 }
4267 raw_write(env, ri, value);
4268 }
4269
vmsa_tcr_el12_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4270 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri,
4271 uint64_t value)
4272 {
4273 ARMCPU *cpu = env_archcpu(env);
4274
4275 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
4276 tlb_flush(CPU(cpu));
4277 raw_write(env, ri, value);
4278 }
4279
vmsa_ttbr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4280 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4281 uint64_t value)
4282 {
4283 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */
4284 if (cpreg_field_is_64bit(ri) &&
4285 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
4286 ARMCPU *cpu = env_archcpu(env);
4287 tlb_flush(CPU(cpu));
4288 }
4289 raw_write(env, ri, value);
4290 }
4291
vmsa_tcr_ttbr_el2_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4292 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4293 uint64_t value)
4294 {
4295 /*
4296 * If we are running with E2&0 regime, then an ASID is active.
4297 * Flush if that might be changing. Note we're not checking
4298 * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that
4299 * holds the active ASID, only checking the field that might.
4300 */
4301 if (extract64(raw_read(env, ri) ^ value, 48, 16) &&
4302 (arm_hcr_el2_eff(env) & HCR_E2H)) {
4303 uint16_t mask = ARMMMUIdxBit_E20_2 |
4304 ARMMMUIdxBit_E20_2_PAN |
4305 ARMMMUIdxBit_E20_0;
4306 tlb_flush_by_mmuidx(env_cpu(env), mask);
4307 }
4308 raw_write(env, ri, value);
4309 }
4310
vttbr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4311 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4312 uint64_t value)
4313 {
4314 ARMCPU *cpu = env_archcpu(env);
4315 CPUState *cs = CPU(cpu);
4316
4317 /*
4318 * A change in VMID to the stage2 page table (Stage2) invalidates
4319 * the stage2 and combined stage 1&2 tlbs (EL10_1 and EL10_0).
4320 */
4321 if (extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
4322 tlb_flush_by_mmuidx(cs, alle1_tlbmask(env));
4323 }
4324 raw_write(env, ri, value);
4325 }
4326
4327 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
4328 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
4329 .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS,
4330 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
4331 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
4332 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
4333 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
4334 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
4335 offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
4336 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
4337 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
4338 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
4339 offsetof(CPUARMState, cp15.dfar_ns) } },
4340 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
4341 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
4342 .access = PL1_RW, .accessfn = access_tvm_trvm,
4343 .fgt = FGT_FAR_EL1,
4344 .nv2_redirect_offset = 0x220 | NV2_REDIR_NV1,
4345 .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
4346 .resetvalue = 0, },
4347 };
4348
4349 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
4350 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
4351 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
4352 .access = PL1_RW, .accessfn = access_tvm_trvm,
4353 .fgt = FGT_ESR_EL1,
4354 .nv2_redirect_offset = 0x138 | NV2_REDIR_NV1,
4355 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
4356 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
4357 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
4358 .access = PL1_RW, .accessfn = access_tvm_trvm,
4359 .fgt = FGT_TTBR0_EL1,
4360 .nv2_redirect_offset = 0x200 | NV2_REDIR_NV1,
4361 .writefn = vmsa_ttbr_write, .resetvalue = 0, .raw_writefn = raw_write,
4362 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4363 offsetof(CPUARMState, cp15.ttbr0_ns) } },
4364 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
4365 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
4366 .access = PL1_RW, .accessfn = access_tvm_trvm,
4367 .fgt = FGT_TTBR1_EL1,
4368 .nv2_redirect_offset = 0x210 | NV2_REDIR_NV1,
4369 .writefn = vmsa_ttbr_write, .resetvalue = 0, .raw_writefn = raw_write,
4370 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4371 offsetof(CPUARMState, cp15.ttbr1_ns) } },
4372 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
4373 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
4374 .access = PL1_RW, .accessfn = access_tvm_trvm,
4375 .fgt = FGT_TCR_EL1,
4376 .nv2_redirect_offset = 0x120 | NV2_REDIR_NV1,
4377 .writefn = vmsa_tcr_el12_write,
4378 .raw_writefn = raw_write,
4379 .resetvalue = 0,
4380 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
4381 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
4382 .access = PL1_RW, .accessfn = access_tvm_trvm,
4383 .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
4384 .raw_writefn = raw_write,
4385 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
4386 offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
4387 };
4388
4389 /*
4390 * Note that unlike TTBCR, writing to TTBCR2 does not require flushing
4391 * qemu tlbs nor adjusting cached masks.
4392 */
4393 static const ARMCPRegInfo ttbcr2_reginfo = {
4394 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3,
4395 .access = PL1_RW, .accessfn = access_tvm_trvm,
4396 .type = ARM_CP_ALIAS,
4397 .bank_fieldoffsets = {
4398 offsetofhigh32(CPUARMState, cp15.tcr_el[3]),
4399 offsetofhigh32(CPUARMState, cp15.tcr_el[1]),
4400 },
4401 };
4402
omap_ticonfig_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4403 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
4404 uint64_t value)
4405 {
4406 env->cp15.c15_ticonfig = value & 0xe7;
4407 /* The OS_TYPE bit in this register changes the reported CPUID! */
4408 env->cp15.c0_cpuid = (value & (1 << 5)) ?
4409 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
4410 }
4411
omap_threadid_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4412 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
4413 uint64_t value)
4414 {
4415 env->cp15.c15_threadid = value & 0xffff;
4416 }
4417
omap_wfi_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4418 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
4419 uint64_t value)
4420 {
4421 /* Wait-for-interrupt (deprecated) */
4422 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT);
4423 }
4424
omap_cachemaint_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4425 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
4426 uint64_t value)
4427 {
4428 /*
4429 * On OMAP there are registers indicating the max/min index of dcache lines
4430 * containing a dirty line; cache flush operations have to reset these.
4431 */
4432 env->cp15.c15_i_max = 0x000;
4433 env->cp15.c15_i_min = 0xff0;
4434 }
4435
4436 static const ARMCPRegInfo omap_cp_reginfo[] = {
4437 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
4438 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
4439 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
4440 .resetvalue = 0, },
4441 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
4442 .access = PL1_RW, .type = ARM_CP_NOP },
4443 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
4444 .access = PL1_RW,
4445 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
4446 .writefn = omap_ticonfig_write },
4447 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
4448 .access = PL1_RW,
4449 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
4450 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
4451 .access = PL1_RW, .resetvalue = 0xff0,
4452 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
4453 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
4454 .access = PL1_RW,
4455 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
4456 .writefn = omap_threadid_write },
4457 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
4458 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
4459 .type = ARM_CP_NO_RAW,
4460 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
4461 /*
4462 * TODO: Peripheral port remap register:
4463 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
4464 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
4465 * when MMU is off.
4466 */
4467 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
4468 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
4469 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
4470 .writefn = omap_cachemaint_write },
4471 { .name = "C9", .cp = 15, .crn = 9,
4472 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
4473 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
4474 };
4475
xscale_cpar_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4476 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4477 uint64_t value)
4478 {
4479 env->cp15.c15_cpar = value & 0x3fff;
4480 }
4481
4482 static const ARMCPRegInfo xscale_cp_reginfo[] = {
4483 { .name = "XSCALE_CPAR",
4484 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
4485 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
4486 .writefn = xscale_cpar_write, },
4487 { .name = "XSCALE_AUXCR",
4488 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
4489 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
4490 .resetvalue = 0, },
4491 /*
4492 * XScale specific cache-lockdown: since we have no cache we NOP these
4493 * and hope the guest does not really rely on cache behaviour.
4494 */
4495 { .name = "XSCALE_LOCK_ICACHE_LINE",
4496 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
4497 .access = PL1_W, .type = ARM_CP_NOP },
4498 { .name = "XSCALE_UNLOCK_ICACHE",
4499 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
4500 .access = PL1_W, .type = ARM_CP_NOP },
4501 { .name = "XSCALE_DCACHE_LOCK",
4502 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
4503 .access = PL1_RW, .type = ARM_CP_NOP },
4504 { .name = "XSCALE_UNLOCK_DCACHE",
4505 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
4506 .access = PL1_W, .type = ARM_CP_NOP },
4507 };
4508
4509 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
4510 /*
4511 * RAZ/WI the whole crn=15 space, when we don't have a more specific
4512 * implementation of this implementation-defined space.
4513 * Ideally this should eventually disappear in favour of actually
4514 * implementing the correct behaviour for all cores.
4515 */
4516 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
4517 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4518 .access = PL1_RW,
4519 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
4520 .resetvalue = 0 },
4521 };
4522
4523 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
4524 /* Cache status: RAZ because we have no cache so it's always clean */
4525 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
4526 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4527 .resetvalue = 0 },
4528 };
4529
4530 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
4531 /* We never have a block transfer operation in progress */
4532 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
4533 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4534 .resetvalue = 0 },
4535 /* The cache ops themselves: these all NOP for QEMU */
4536 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
4537 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4538 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
4539 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4540 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
4541 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4542 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
4543 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4544 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
4545 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4546 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
4547 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4548 };
4549
4550 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
4551 /*
4552 * The cache test-and-clean instructions always return (1 << 30)
4553 * to indicate that there are no dirty cache lines.
4554 */
4555 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
4556 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4557 .resetvalue = (1 << 30) },
4558 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
4559 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4560 .resetvalue = (1 << 30) },
4561 };
4562
4563 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
4564 /* Ignore ReadBuffer accesses */
4565 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
4566 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4567 .access = PL1_RW, .resetvalue = 0,
4568 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
4569 };
4570
midr_read(CPUARMState * env,const ARMCPRegInfo * ri)4571 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4572 {
4573 unsigned int cur_el = arm_current_el(env);
4574
4575 if (arm_is_el2_enabled(env) && cur_el == 1) {
4576 return env->cp15.vpidr_el2;
4577 }
4578 return raw_read(env, ri);
4579 }
4580
mpidr_read_val(CPUARMState * env)4581 static uint64_t mpidr_read_val(CPUARMState *env)
4582 {
4583 ARMCPU *cpu = env_archcpu(env);
4584 uint64_t mpidr = cpu->mp_affinity;
4585
4586 if (arm_feature(env, ARM_FEATURE_V7MP)) {
4587 mpidr |= (1U << 31);
4588 /*
4589 * Cores which are uniprocessor (non-coherent)
4590 * but still implement the MP extensions set
4591 * bit 30. (For instance, Cortex-R5).
4592 */
4593 if (cpu->mp_is_up) {
4594 mpidr |= (1u << 30);
4595 }
4596 }
4597 return mpidr;
4598 }
4599
mpidr_read(CPUARMState * env,const ARMCPRegInfo * ri)4600 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4601 {
4602 unsigned int cur_el = arm_current_el(env);
4603
4604 if (arm_is_el2_enabled(env) && cur_el == 1) {
4605 return env->cp15.vmpidr_el2;
4606 }
4607 return mpidr_read_val(env);
4608 }
4609
4610 static const ARMCPRegInfo lpae_cp_reginfo[] = {
4611 /* NOP AMAIR0/1 */
4612 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
4613 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
4614 .access = PL1_RW, .accessfn = access_tvm_trvm,
4615 .fgt = FGT_AMAIR_EL1,
4616 .nv2_redirect_offset = 0x148 | NV2_REDIR_NV1,
4617 .type = ARM_CP_CONST, .resetvalue = 0 },
4618 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
4619 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
4620 .access = PL1_RW, .accessfn = access_tvm_trvm,
4621 .type = ARM_CP_CONST, .resetvalue = 0 },
4622 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
4623 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
4624 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
4625 offsetof(CPUARMState, cp15.par_ns)} },
4626 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
4627 .access = PL1_RW, .accessfn = access_tvm_trvm,
4628 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4629 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4630 offsetof(CPUARMState, cp15.ttbr0_ns) },
4631 .writefn = vmsa_ttbr_write, .raw_writefn = raw_write },
4632 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
4633 .access = PL1_RW, .accessfn = access_tvm_trvm,
4634 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4635 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4636 offsetof(CPUARMState, cp15.ttbr1_ns) },
4637 .writefn = vmsa_ttbr_write, .raw_writefn = raw_write },
4638 };
4639
aa64_fpcr_read(CPUARMState * env,const ARMCPRegInfo * ri)4640 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4641 {
4642 return vfp_get_fpcr(env);
4643 }
4644
aa64_fpcr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4645 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4646 uint64_t value)
4647 {
4648 vfp_set_fpcr(env, value);
4649 }
4650
aa64_fpsr_read(CPUARMState * env,const ARMCPRegInfo * ri)4651 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4652 {
4653 return vfp_get_fpsr(env);
4654 }
4655
aa64_fpsr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4656 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4657 uint64_t value)
4658 {
4659 vfp_set_fpsr(env, value);
4660 }
4661
aa64_daif_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)4662 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
4663 bool isread)
4664 {
4665 if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) {
4666 return CP_ACCESS_TRAP_EL1;
4667 }
4668 return CP_ACCESS_OK;
4669 }
4670
aa64_daif_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4671 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
4672 uint64_t value)
4673 {
4674 env->daif = value & PSTATE_DAIF;
4675 }
4676
aa64_pan_read(CPUARMState * env,const ARMCPRegInfo * ri)4677 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri)
4678 {
4679 return env->pstate & PSTATE_PAN;
4680 }
4681
aa64_pan_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4682 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri,
4683 uint64_t value)
4684 {
4685 env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN);
4686 }
4687
4688 static const ARMCPRegInfo pan_reginfo = {
4689 .name = "PAN", .state = ARM_CP_STATE_AA64,
4690 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3,
4691 .type = ARM_CP_NO_RAW, .access = PL1_RW,
4692 .readfn = aa64_pan_read, .writefn = aa64_pan_write
4693 };
4694
aa64_uao_read(CPUARMState * env,const ARMCPRegInfo * ri)4695 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri)
4696 {
4697 return env->pstate & PSTATE_UAO;
4698 }
4699
aa64_uao_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4700 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri,
4701 uint64_t value)
4702 {
4703 env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO);
4704 }
4705
4706 static const ARMCPRegInfo uao_reginfo = {
4707 .name = "UAO", .state = ARM_CP_STATE_AA64,
4708 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4,
4709 .type = ARM_CP_NO_RAW, .access = PL1_RW,
4710 .readfn = aa64_uao_read, .writefn = aa64_uao_write
4711 };
4712
aa64_dit_read(CPUARMState * env,const ARMCPRegInfo * ri)4713 static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri)
4714 {
4715 return env->pstate & PSTATE_DIT;
4716 }
4717
aa64_dit_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4718 static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri,
4719 uint64_t value)
4720 {
4721 env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT);
4722 }
4723
4724 static const ARMCPRegInfo dit_reginfo = {
4725 .name = "DIT", .state = ARM_CP_STATE_AA64,
4726 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5,
4727 .type = ARM_CP_NO_RAW, .access = PL0_RW,
4728 .readfn = aa64_dit_read, .writefn = aa64_dit_write
4729 };
4730
aa64_ssbs_read(CPUARMState * env,const ARMCPRegInfo * ri)4731 static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri)
4732 {
4733 return env->pstate & PSTATE_SSBS;
4734 }
4735
aa64_ssbs_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4736 static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri,
4737 uint64_t value)
4738 {
4739 env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS);
4740 }
4741
4742 static const ARMCPRegInfo ssbs_reginfo = {
4743 .name = "SSBS", .state = ARM_CP_STATE_AA64,
4744 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6,
4745 .type = ARM_CP_NO_RAW, .access = PL0_RW,
4746 .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write
4747 };
4748
aa64_cacheop_poc_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)4749 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env,
4750 const ARMCPRegInfo *ri,
4751 bool isread)
4752 {
4753 /* Cache invalidate/clean to Point of Coherency or Persistence... */
4754 switch (arm_current_el(env)) {
4755 case 0:
4756 /* ... EL0 must trap to EL1 unless SCTLR_EL1.UCI is set. */
4757 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4758 return CP_ACCESS_TRAP_EL1;
4759 }
4760 /* fall through */
4761 case 1:
4762 /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set. */
4763 if (arm_hcr_el2_eff(env) & HCR_TPCP) {
4764 return CP_ACCESS_TRAP_EL2;
4765 }
4766 break;
4767 }
4768 return CP_ACCESS_OK;
4769 }
4770
do_cacheop_pou_access(CPUARMState * env,uint64_t hcrflags)4771 static CPAccessResult do_cacheop_pou_access(CPUARMState *env, uint64_t hcrflags)
4772 {
4773 /* Cache invalidate/clean to Point of Unification... */
4774 switch (arm_current_el(env)) {
4775 case 0:
4776 /* ... EL0 must trap to EL1 unless SCTLR_EL1.UCI is set. */
4777 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4778 return CP_ACCESS_TRAP_EL1;
4779 }
4780 /* fall through */
4781 case 1:
4782 /* ... EL1 must trap to EL2 if relevant HCR_EL2 flags are set. */
4783 if (arm_hcr_el2_eff(env) & hcrflags) {
4784 return CP_ACCESS_TRAP_EL2;
4785 }
4786 break;
4787 }
4788 return CP_ACCESS_OK;
4789 }
4790
access_ticab(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)4791 static CPAccessResult access_ticab(CPUARMState *env, const ARMCPRegInfo *ri,
4792 bool isread)
4793 {
4794 return do_cacheop_pou_access(env, HCR_TICAB | HCR_TPU);
4795 }
4796
access_tocu(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)4797 static CPAccessResult access_tocu(CPUARMState *env, const ARMCPRegInfo *ri,
4798 bool isread)
4799 {
4800 return do_cacheop_pou_access(env, HCR_TOCU | HCR_TPU);
4801 }
4802
aa64_zva_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)4803 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
4804 bool isread)
4805 {
4806 int cur_el = arm_current_el(env);
4807
4808 if (cur_el < 2) {
4809 uint64_t hcr = arm_hcr_el2_eff(env);
4810
4811 if (cur_el == 0) {
4812 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4813 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) {
4814 return CP_ACCESS_TRAP_EL2;
4815 }
4816 } else {
4817 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
4818 return CP_ACCESS_TRAP_EL1;
4819 }
4820 if (hcr & HCR_TDZ) {
4821 return CP_ACCESS_TRAP_EL2;
4822 }
4823 }
4824 } else if (hcr & HCR_TDZ) {
4825 return CP_ACCESS_TRAP_EL2;
4826 }
4827 }
4828 return CP_ACCESS_OK;
4829 }
4830
aa64_dczid_read(CPUARMState * env,const ARMCPRegInfo * ri)4831 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
4832 {
4833 ARMCPU *cpu = env_archcpu(env);
4834 int dzp_bit = 1 << 4;
4835
4836 /* DZP indicates whether DC ZVA access is allowed */
4837 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
4838 dzp_bit = 0;
4839 }
4840 return cpu->dcz_blocksize | dzp_bit;
4841 }
4842
sp_el0_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)4843 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
4844 bool isread)
4845 {
4846 if (!(env->pstate & PSTATE_SP)) {
4847 /*
4848 * Access to SP_EL0 is undefined if it's being used as
4849 * the stack pointer.
4850 */
4851 return CP_ACCESS_UNDEFINED;
4852 }
4853 return CP_ACCESS_OK;
4854 }
4855
spsel_read(CPUARMState * env,const ARMCPRegInfo * ri)4856 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
4857 {
4858 return env->pstate & PSTATE_SP;
4859 }
4860
spsel_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t val)4861 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
4862 {
4863 update_spsel(env, val);
4864 }
4865
sctlr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4866 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4867 uint64_t value)
4868 {
4869 ARMCPU *cpu = env_archcpu(env);
4870
4871 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
4872 /* M bit is RAZ/WI for PMSA with no MPU implemented */
4873 value &= ~SCTLR_M;
4874 }
4875
4876 /* ??? Lots of these bits are not implemented. */
4877
4878 if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) {
4879 if (ri->opc1 == 6) { /* SCTLR_EL3 */
4880 value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA);
4881 } else {
4882 value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF |
4883 SCTLR_ATA0 | SCTLR_ATA);
4884 }
4885 }
4886
4887 if (raw_read(env, ri) == value) {
4888 /*
4889 * Skip the TLB flush if nothing actually changed; Linux likes
4890 * to do a lot of pointless SCTLR writes.
4891 */
4892 return;
4893 }
4894
4895 raw_write(env, ri, value);
4896
4897 /* This may enable/disable the MMU, so do a TLB flush. */
4898 tlb_flush(CPU(cpu));
4899
4900 if (tcg_enabled() && ri->type & ARM_CP_SUPPRESS_TB_END) {
4901 /*
4902 * Normally we would always end the TB on an SCTLR write; see the
4903 * comment in ARMCPRegInfo sctlr initialization below for why Xscale
4904 * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild
4905 * of hflags from the translator, so do it here.
4906 */
4907 arm_rebuild_hflags(env);
4908 }
4909 }
4910
mdcr_el3_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4911 static void mdcr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4912 uint64_t value)
4913 {
4914 /*
4915 * Some MDCR_EL3 bits affect whether PMU counters are running:
4916 * if we are trying to change any of those then we must
4917 * bracket this update with PMU start/finish calls.
4918 */
4919 bool pmu_op = (env->cp15.mdcr_el3 ^ value) & MDCR_EL3_PMU_ENABLE_BITS;
4920
4921 if (pmu_op) {
4922 pmu_op_start(env);
4923 }
4924 env->cp15.mdcr_el3 = value;
4925 if (pmu_op) {
4926 pmu_op_finish(env);
4927 }
4928 }
4929
sdcr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4930 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4931 uint64_t value)
4932 {
4933 /* Not all bits defined for MDCR_EL3 exist in the AArch32 SDCR */
4934 mdcr_el3_write(env, ri, value & SDCR_VALID_MASK);
4935 }
4936
mdcr_el2_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4937 static void mdcr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4938 uint64_t value)
4939 {
4940 /*
4941 * Some MDCR_EL2 bits affect whether PMU counters are running:
4942 * if we are trying to change any of those then we must
4943 * bracket this update with PMU start/finish calls.
4944 */
4945 bool pmu_op = (env->cp15.mdcr_el2 ^ value) & MDCR_EL2_PMU_ENABLE_BITS;
4946
4947 if (pmu_op) {
4948 pmu_op_start(env);
4949 }
4950 env->cp15.mdcr_el2 = value;
4951 if (pmu_op) {
4952 pmu_op_finish(env);
4953 }
4954 }
4955
access_nv1(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)4956 static CPAccessResult access_nv1(CPUARMState *env, const ARMCPRegInfo *ri,
4957 bool isread)
4958 {
4959 if (arm_current_el(env) == 1) {
4960 uint64_t hcr_nv = arm_hcr_el2_eff(env) & (HCR_NV | HCR_NV1 | HCR_NV2);
4961
4962 if (hcr_nv == (HCR_NV | HCR_NV1)) {
4963 return CP_ACCESS_TRAP_EL2;
4964 }
4965 }
4966 return CP_ACCESS_OK;
4967 }
4968
4969 #ifdef CONFIG_USER_ONLY
4970 /*
4971 * `IC IVAU` is handled to improve compatibility with JITs that dual-map their
4972 * code to get around W^X restrictions, where one region is writable and the
4973 * other is executable.
4974 *
4975 * Since the executable region is never written to we cannot detect code
4976 * changes when running in user mode, and rely on the emulated JIT telling us
4977 * that the code has changed by executing this instruction.
4978 */
ic_ivau_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)4979 static void ic_ivau_write(CPUARMState *env, const ARMCPRegInfo *ri,
4980 uint64_t value)
4981 {
4982 uint64_t icache_line_mask, start_address, end_address;
4983 const ARMCPU *cpu;
4984
4985 cpu = env_archcpu(env);
4986
4987 icache_line_mask = (4 << extract32(cpu->ctr, 0, 4)) - 1;
4988 start_address = value & ~icache_line_mask;
4989 end_address = value | icache_line_mask;
4990
4991 mmap_lock();
4992
4993 tb_invalidate_phys_range(env_cpu(env), start_address, end_address);
4994
4995 mmap_unlock();
4996 }
4997 #endif
4998
4999 static const ARMCPRegInfo v8_cp_reginfo[] = {
5000 /*
5001 * Minimal set of EL0-visible registers. This will need to be expanded
5002 * significantly for system emulation of AArch64 CPUs.
5003 */
5004 { .name = "NZCV", .state = ARM_CP_STATE_AA64,
5005 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
5006 .access = PL0_RW, .type = ARM_CP_NZCV },
5007 { .name = "DAIF", .state = ARM_CP_STATE_AA64,
5008 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
5009 .type = ARM_CP_NO_RAW,
5010 .access = PL0_RW, .accessfn = aa64_daif_access,
5011 .fieldoffset = offsetof(CPUARMState, daif),
5012 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
5013 { .name = "FPCR", .state = ARM_CP_STATE_AA64,
5014 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
5015 .access = PL0_RW, .type = ARM_CP_FPU,
5016 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
5017 { .name = "FPSR", .state = ARM_CP_STATE_AA64,
5018 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
5019 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
5020 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
5021 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
5022 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
5023 .access = PL0_R, .type = ARM_CP_NO_RAW,
5024 .fgt = FGT_DCZID_EL0,
5025 .readfn = aa64_dczid_read },
5026 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
5027 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
5028 .access = PL0_W, .type = ARM_CP_DC_ZVA,
5029 #ifndef CONFIG_USER_ONLY
5030 /* Avoid overhead of an access check that always passes in user-mode */
5031 .accessfn = aa64_zva_access,
5032 .fgt = FGT_DCZVA,
5033 #endif
5034 },
5035 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
5036 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
5037 .access = PL1_R, .type = ARM_CP_CURRENTEL },
5038 /*
5039 * Instruction cache ops. All of these except `IC IVAU` NOP because we
5040 * don't emulate caches.
5041 */
5042 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
5043 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
5044 .access = PL1_W, .type = ARM_CP_NOP,
5045 .fgt = FGT_ICIALLUIS,
5046 .accessfn = access_ticab },
5047 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
5048 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
5049 .access = PL1_W, .type = ARM_CP_NOP,
5050 .fgt = FGT_ICIALLU,
5051 .accessfn = access_tocu },
5052 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
5053 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
5054 .access = PL0_W,
5055 .fgt = FGT_ICIVAU,
5056 .accessfn = access_tocu,
5057 #ifdef CONFIG_USER_ONLY
5058 .type = ARM_CP_NO_RAW,
5059 .writefn = ic_ivau_write
5060 #else
5061 .type = ARM_CP_NOP
5062 #endif
5063 },
5064 /* Cache ops: all NOPs since we don't emulate caches */
5065 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
5066 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
5067 .access = PL1_W, .accessfn = aa64_cacheop_poc_access,
5068 .fgt = FGT_DCIVAC,
5069 .type = ARM_CP_NOP },
5070 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
5071 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
5072 .fgt = FGT_DCISW,
5073 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5074 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
5075 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
5076 .access = PL0_W, .type = ARM_CP_NOP,
5077 .fgt = FGT_DCCVAC,
5078 .accessfn = aa64_cacheop_poc_access },
5079 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
5080 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
5081 .fgt = FGT_DCCSW,
5082 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5083 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
5084 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
5085 .access = PL0_W, .type = ARM_CP_NOP,
5086 .fgt = FGT_DCCVAU,
5087 .accessfn = access_tocu },
5088 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
5089 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
5090 .access = PL0_W, .type = ARM_CP_NOP,
5091 .fgt = FGT_DCCIVAC,
5092 .accessfn = aa64_cacheop_poc_access },
5093 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
5094 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
5095 .fgt = FGT_DCCISW,
5096 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5097 #ifndef CONFIG_USER_ONLY
5098 /* 64 bit address translation operations */
5099 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
5100 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
5101 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5102 .fgt = FGT_ATS1E1R,
5103 .accessfn = at_s1e01_access, .writefn = ats_write64 },
5104 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
5105 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
5106 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5107 .fgt = FGT_ATS1E1W,
5108 .accessfn = at_s1e01_access, .writefn = ats_write64 },
5109 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
5110 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
5111 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5112 .fgt = FGT_ATS1E0R,
5113 .accessfn = at_s1e01_access, .writefn = ats_write64 },
5114 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
5115 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
5116 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5117 .fgt = FGT_ATS1E0W,
5118 .accessfn = at_s1e01_access, .writefn = ats_write64 },
5119 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
5120 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
5121 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5122 .accessfn = at_e012_access, .writefn = ats_write64 },
5123 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
5124 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
5125 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5126 .accessfn = at_e012_access, .writefn = ats_write64 },
5127 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
5128 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
5129 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5130 .accessfn = at_e012_access, .writefn = ats_write64 },
5131 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
5132 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
5133 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5134 .accessfn = at_e012_access, .writefn = ats_write64 },
5135 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
5136 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
5137 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
5138 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5139 .writefn = ats_write64 },
5140 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
5141 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
5142 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5143 .writefn = ats_write64 },
5144 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
5145 .type = ARM_CP_ALIAS,
5146 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
5147 .access = PL1_RW, .resetvalue = 0,
5148 .fgt = FGT_PAR_EL1,
5149 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
5150 .writefn = par_write },
5151 #endif
5152 /* 32 bit cache operations */
5153 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
5154 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_ticab },
5155 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
5156 .type = ARM_CP_NOP, .access = PL1_W },
5157 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
5158 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
5159 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
5160 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
5161 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
5162 .type = ARM_CP_NOP, .access = PL1_W },
5163 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
5164 .type = ARM_CP_NOP, .access = PL1_W },
5165 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
5166 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5167 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
5168 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5169 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
5170 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5171 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
5172 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5173 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
5174 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
5175 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
5176 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5177 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
5178 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5179 /* MMU Domain access control / MPU write buffer control */
5180 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
5181 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
5182 .writefn = dacr_write, .raw_writefn = raw_write,
5183 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
5184 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
5185 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
5186 .type = ARM_CP_ALIAS,
5187 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
5188 .access = PL1_RW, .accessfn = access_nv1,
5189 .nv2_redirect_offset = 0x230 | NV2_REDIR_NV1,
5190 .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
5191 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
5192 .type = ARM_CP_ALIAS,
5193 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
5194 .access = PL1_RW, .accessfn = access_nv1,
5195 .nv2_redirect_offset = 0x160 | NV2_REDIR_NV1,
5196 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
5197 /*
5198 * We rely on the access checks not allowing the guest to write to the
5199 * state field when SPSel indicates that it's being used as the stack
5200 * pointer.
5201 */
5202 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
5203 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
5204 .access = PL1_RW, .accessfn = sp_el0_access,
5205 .type = ARM_CP_ALIAS,
5206 .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
5207 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
5208 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
5209 .nv2_redirect_offset = 0x240,
5210 .access = PL2_RW, .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_KEEP,
5211 .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
5212 { .name = "SPSel", .state = ARM_CP_STATE_AA64,
5213 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
5214 .type = ARM_CP_NO_RAW,
5215 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
5216 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
5217 .type = ARM_CP_ALIAS,
5218 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
5219 .access = PL2_RW,
5220 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
5221 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
5222 .type = ARM_CP_ALIAS,
5223 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
5224 .access = PL2_RW,
5225 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
5226 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
5227 .type = ARM_CP_ALIAS,
5228 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
5229 .access = PL2_RW,
5230 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
5231 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
5232 .type = ARM_CP_ALIAS,
5233 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
5234 .access = PL2_RW,
5235 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
5236 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
5237 .type = ARM_CP_IO,
5238 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
5239 .resetvalue = 0,
5240 .access = PL3_RW,
5241 .writefn = mdcr_el3_write,
5242 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
5243 { .name = "SDCR", .type = ARM_CP_ALIAS | ARM_CP_IO,
5244 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
5245 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5246 .writefn = sdcr_write,
5247 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
5248 };
5249
5250 /* These are present only when EL1 supports AArch32 */
5251 static const ARMCPRegInfo v8_aa32_el1_reginfo[] = {
5252 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
5253 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
5254 .access = PL2_RW,
5255 .type = ARM_CP_ALIAS | ARM_CP_FPU | ARM_CP_EL3_NO_EL2_KEEP,
5256 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]) },
5257 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
5258 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
5259 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP,
5260 .writefn = dacr_write, .raw_writefn = raw_write,
5261 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
5262 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
5263 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
5264 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP,
5265 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
5266 };
5267
do_hcr_write(CPUARMState * env,uint64_t value,uint64_t valid_mask)5268 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask)
5269 {
5270 ARMCPU *cpu = env_archcpu(env);
5271
5272 if (arm_feature(env, ARM_FEATURE_V8)) {
5273 valid_mask |= MAKE_64BIT_MASK(0, 34); /* ARMv8.0 */
5274 } else {
5275 valid_mask |= MAKE_64BIT_MASK(0, 28); /* ARMv7VE */
5276 }
5277
5278 if (arm_feature(env, ARM_FEATURE_EL3)) {
5279 valid_mask &= ~HCR_HCD;
5280 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
5281 /*
5282 * Architecturally HCR.TSC is RES0 if EL3 is not implemented.
5283 * However, if we're using the SMC PSCI conduit then QEMU is
5284 * effectively acting like EL3 firmware and so the guest at
5285 * EL2 should retain the ability to prevent EL1 from being
5286 * able to make SMC calls into the ersatz firmware, so in
5287 * that case HCR.TSC should be read/write.
5288 */
5289 valid_mask &= ~HCR_TSC;
5290 }
5291
5292 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5293 if (cpu_isar_feature(aa64_vh, cpu)) {
5294 valid_mask |= HCR_E2H;
5295 }
5296 if (cpu_isar_feature(aa64_ras, cpu)) {
5297 valid_mask |= HCR_TERR | HCR_TEA;
5298 }
5299 if (cpu_isar_feature(aa64_lor, cpu)) {
5300 valid_mask |= HCR_TLOR;
5301 }
5302 if (cpu_isar_feature(aa64_pauth, cpu)) {
5303 valid_mask |= HCR_API | HCR_APK;
5304 }
5305 if (cpu_isar_feature(aa64_mte, cpu)) {
5306 valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5;
5307 }
5308 if (cpu_isar_feature(aa64_scxtnum, cpu)) {
5309 valid_mask |= HCR_ENSCXT;
5310 }
5311 if (cpu_isar_feature(aa64_fwb, cpu)) {
5312 valid_mask |= HCR_FWB;
5313 }
5314 if (cpu_isar_feature(aa64_rme, cpu)) {
5315 valid_mask |= HCR_GPF;
5316 }
5317 if (cpu_isar_feature(aa64_nv, cpu)) {
5318 valid_mask |= HCR_NV | HCR_NV1 | HCR_AT;
5319 }
5320 if (cpu_isar_feature(aa64_nv2, cpu)) {
5321 valid_mask |= HCR_NV2;
5322 }
5323 }
5324
5325 if (cpu_isar_feature(any_evt, cpu)) {
5326 valid_mask |= HCR_TTLBIS | HCR_TTLBOS | HCR_TICAB | HCR_TOCU | HCR_TID4;
5327 } else if (cpu_isar_feature(any_half_evt, cpu)) {
5328 valid_mask |= HCR_TICAB | HCR_TOCU | HCR_TID4;
5329 }
5330
5331 /* Clear RES0 bits. */
5332 value &= valid_mask;
5333
5334 /* RW is RAO/WI if EL1 is AArch64 only */
5335 if (!cpu_isar_feature(aa64_aa32_el1, cpu)) {
5336 value |= HCR_RW;
5337 }
5338
5339 /*
5340 * These bits change the MMU setup:
5341 * HCR_VM enables stage 2 translation
5342 * HCR_PTW forbids certain page-table setups
5343 * HCR_DC disables stage1 and enables stage2 translation
5344 * HCR_DCT enables tagging on (disabled) stage1 translation
5345 * HCR_FWB changes the interpretation of stage2 descriptor bits
5346 * HCR_NV and HCR_NV1 affect interpretation of descriptor bits
5347 */
5348 if ((env->cp15.hcr_el2 ^ value) &
5349 (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT | HCR_FWB | HCR_NV | HCR_NV1)) {
5350 tlb_flush(CPU(cpu));
5351 }
5352 env->cp15.hcr_el2 = value;
5353
5354 /*
5355 * Updates to VI and VF require us to update the status of
5356 * virtual interrupts, which are the logical OR of these bits
5357 * and the state of the input lines from the GIC. (This requires
5358 * that we have the BQL, which is done by marking the
5359 * reginfo structs as ARM_CP_IO.)
5360 * Note that if a write to HCR pends a VIRQ or VFIQ or VINMI or
5361 * VFNMI, it is never possible for it to be taken immediately
5362 * because VIRQ, VFIQ, VINMI and VFNMI are masked unless running
5363 * at EL0 or EL1, and HCR can only be written at EL2.
5364 */
5365 g_assert(bql_locked());
5366 arm_cpu_update_virq(cpu);
5367 arm_cpu_update_vfiq(cpu);
5368 arm_cpu_update_vserr(cpu);
5369 if (cpu_isar_feature(aa64_nmi, cpu)) {
5370 arm_cpu_update_vinmi(cpu);
5371 arm_cpu_update_vfnmi(cpu);
5372 }
5373 }
5374
hcr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)5375 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
5376 {
5377 do_hcr_write(env, value, 0);
5378 }
5379
hcr_writehigh(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)5380 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri,
5381 uint64_t value)
5382 {
5383 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */
5384 value = deposit64(env->cp15.hcr_el2, 32, 32, value);
5385 do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32));
5386 }
5387
hcr_writelow(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)5388 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri,
5389 uint64_t value)
5390 {
5391 /* Handle HCR write, i.e. write to low half of HCR_EL2 */
5392 value = deposit64(env->cp15.hcr_el2, 0, 32, value);
5393 do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32));
5394 }
5395
hcr_reset(CPUARMState * env,const ARMCPRegInfo * ri)5396 static void hcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
5397 {
5398 /* hcr_write will set the RES1 bits on an AArch64-only CPU */
5399 hcr_write(env, ri, 0);
5400 }
5401
5402 /*
5403 * Return the effective value of HCR_EL2, at the given security state.
5404 * Bits that are not included here:
5405 * RW (read from SCR_EL3.RW as needed)
5406 */
arm_hcr_el2_eff_secstate(CPUARMState * env,ARMSecuritySpace space)5407 uint64_t arm_hcr_el2_eff_secstate(CPUARMState *env, ARMSecuritySpace space)
5408 {
5409 uint64_t ret = env->cp15.hcr_el2;
5410
5411 assert(space != ARMSS_Root);
5412
5413 if (!arm_is_el2_enabled_secstate(env, space)) {
5414 /*
5415 * "This register has no effect if EL2 is not enabled in the
5416 * current Security state". This is ARMv8.4-SecEL2 speak for
5417 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1).
5418 *
5419 * Prior to that, the language was "In an implementation that
5420 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves
5421 * as if this field is 0 for all purposes other than a direct
5422 * read or write access of HCR_EL2". With lots of enumeration
5423 * on a per-field basis. In current QEMU, this is condition
5424 * is arm_is_secure_below_el3.
5425 *
5426 * Since the v8.4 language applies to the entire register, and
5427 * appears to be backward compatible, use that.
5428 */
5429 return 0;
5430 }
5431
5432 /*
5433 * For a cpu that supports both aarch64 and aarch32, we can set bits
5434 * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32.
5435 * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32.
5436 */
5437 if (!arm_el_is_aa64(env, 2)) {
5438 uint64_t aa32_valid;
5439
5440 /*
5441 * These bits are up-to-date as of ARMv8.6.
5442 * For HCR, it's easiest to list just the 2 bits that are invalid.
5443 * For HCR2, list those that are valid.
5444 */
5445 aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ);
5446 aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE |
5447 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS);
5448 ret &= aa32_valid;
5449 }
5450
5451 if (ret & HCR_TGE) {
5452 /* These bits are up-to-date as of ARMv8.6. */
5453 if (ret & HCR_E2H) {
5454 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO |
5455 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE |
5456 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU |
5457 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE |
5458 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT |
5459 HCR_TTLBIS | HCR_TTLBOS | HCR_TID5);
5460 } else {
5461 ret |= HCR_FMO | HCR_IMO | HCR_AMO;
5462 }
5463 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE |
5464 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR |
5465 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM |
5466 HCR_TLOR);
5467 }
5468
5469 return ret;
5470 }
5471
arm_hcr_el2_eff(CPUARMState * env)5472 uint64_t arm_hcr_el2_eff(CPUARMState *env)
5473 {
5474 if (arm_feature(env, ARM_FEATURE_M)) {
5475 return 0;
5476 }
5477 return arm_hcr_el2_eff_secstate(env, arm_security_space_below_el3(env));
5478 }
5479
5480 /*
5481 * Corresponds to ARM pseudocode function ELIsInHost().
5482 */
el_is_in_host(CPUARMState * env,int el)5483 bool el_is_in_host(CPUARMState *env, int el)
5484 {
5485 uint64_t mask;
5486
5487 /*
5488 * Since we only care about E2H and TGE, we can skip arm_hcr_el2_eff().
5489 * Perform the simplest bit tests first, and validate EL2 afterward.
5490 */
5491 if (el & 1) {
5492 return false; /* EL1 or EL3 */
5493 }
5494
5495 /*
5496 * Note that hcr_write() checks isar_feature_aa64_vh(),
5497 * aka HaveVirtHostExt(), in allowing HCR_E2H to be set.
5498 */
5499 mask = el ? HCR_E2H : HCR_E2H | HCR_TGE;
5500 if ((env->cp15.hcr_el2 & mask) != mask) {
5501 return false;
5502 }
5503
5504 /* TGE and/or E2H set: double check those bits are currently legal. */
5505 return arm_is_el2_enabled(env) && arm_el_is_aa64(env, 2);
5506 }
5507
hcrx_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)5508 static void hcrx_write(CPUARMState *env, const ARMCPRegInfo *ri,
5509 uint64_t value)
5510 {
5511 ARMCPU *cpu = env_archcpu(env);
5512 uint64_t valid_mask = 0;
5513
5514 /* FEAT_MOPS adds MSCEn and MCE2 */
5515 if (cpu_isar_feature(aa64_mops, cpu)) {
5516 valid_mask |= HCRX_MSCEN | HCRX_MCE2;
5517 }
5518
5519 /* FEAT_NMI adds TALLINT, VINMI and VFNMI */
5520 if (cpu_isar_feature(aa64_nmi, cpu)) {
5521 valid_mask |= HCRX_TALLINT | HCRX_VINMI | HCRX_VFNMI;
5522 }
5523 /* FEAT_CMOW adds CMOW */
5524 if (cpu_isar_feature(aa64_cmow, cpu)) {
5525 valid_mask |= HCRX_CMOW;
5526 }
5527 /* FEAT_XS adds FGTnXS, FnXS */
5528 if (cpu_isar_feature(aa64_xs, cpu)) {
5529 valid_mask |= HCRX_FGTNXS | HCRX_FNXS;
5530 }
5531
5532 /* Clear RES0 bits. */
5533 env->cp15.hcrx_el2 = value & valid_mask;
5534
5535 /*
5536 * Updates to VINMI and VFNMI require us to update the status of
5537 * virtual NMI, which are the logical OR of these bits
5538 * and the state of the input lines from the GIC. (This requires
5539 * that we have the BQL, which is done by marking the
5540 * reginfo structs as ARM_CP_IO.)
5541 * Note that if a write to HCRX pends a VINMI or VFNMI it is never
5542 * possible for it to be taken immediately, because VINMI and
5543 * VFNMI are masked unless running at EL0 or EL1, and HCRX
5544 * can only be written at EL2.
5545 */
5546 if (cpu_isar_feature(aa64_nmi, cpu)) {
5547 g_assert(bql_locked());
5548 arm_cpu_update_vinmi(cpu);
5549 arm_cpu_update_vfnmi(cpu);
5550 }
5551 }
5552
access_hxen(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)5553 static CPAccessResult access_hxen(CPUARMState *env, const ARMCPRegInfo *ri,
5554 bool isread)
5555 {
5556 if (arm_current_el(env) == 2
5557 && arm_feature(env, ARM_FEATURE_EL3)
5558 && !(env->cp15.scr_el3 & SCR_HXEN)) {
5559 return CP_ACCESS_TRAP_EL3;
5560 }
5561 return CP_ACCESS_OK;
5562 }
5563
5564 static const ARMCPRegInfo hcrx_el2_reginfo = {
5565 .name = "HCRX_EL2", .state = ARM_CP_STATE_AA64,
5566 .type = ARM_CP_IO,
5567 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 2,
5568 .access = PL2_RW, .writefn = hcrx_write, .accessfn = access_hxen,
5569 .nv2_redirect_offset = 0xa0,
5570 .fieldoffset = offsetof(CPUARMState, cp15.hcrx_el2),
5571 };
5572
5573 /* Return the effective value of HCRX_EL2. */
arm_hcrx_el2_eff(CPUARMState * env)5574 uint64_t arm_hcrx_el2_eff(CPUARMState *env)
5575 {
5576 /*
5577 * The bits in this register behave as 0 for all purposes other than
5578 * direct reads of the register if SCR_EL3.HXEn is 0.
5579 * If EL2 is not enabled in the current security state, then the
5580 * bit may behave as if 0, or as if 1, depending on the bit.
5581 * For the moment, we treat the EL2-disabled case as taking
5582 * priority over the HXEn-disabled case. This is true for the only
5583 * bit for a feature which we implement where the answer is different
5584 * for the two cases (MSCEn for FEAT_MOPS).
5585 * This may need to be revisited for future bits.
5586 */
5587 if (!arm_is_el2_enabled(env)) {
5588 uint64_t hcrx = 0;
5589 if (cpu_isar_feature(aa64_mops, env_archcpu(env))) {
5590 /* MSCEn behaves as 1 if EL2 is not enabled */
5591 hcrx |= HCRX_MSCEN;
5592 }
5593 return hcrx;
5594 }
5595 if (arm_feature(env, ARM_FEATURE_EL3) && !(env->cp15.scr_el3 & SCR_HXEN)) {
5596 return 0;
5597 }
5598 return env->cp15.hcrx_el2;
5599 }
5600
cptr_el2_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)5601 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
5602 uint64_t value)
5603 {
5604 /*
5605 * For A-profile AArch32 EL3, if NSACR.CP10
5606 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
5607 */
5608 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
5609 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
5610 uint64_t mask = R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK;
5611 value = (value & ~mask) | (env->cp15.cptr_el[2] & mask);
5612 }
5613 env->cp15.cptr_el[2] = value;
5614 }
5615
cptr_el2_read(CPUARMState * env,const ARMCPRegInfo * ri)5616 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri)
5617 {
5618 /*
5619 * For A-profile AArch32 EL3, if NSACR.CP10
5620 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
5621 */
5622 uint64_t value = env->cp15.cptr_el[2];
5623
5624 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
5625 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
5626 value |= R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK;
5627 }
5628 return value;
5629 }
5630
5631 static const ARMCPRegInfo el2_cp_reginfo[] = {
5632 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
5633 .type = ARM_CP_IO,
5634 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5635 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
5636 .nv2_redirect_offset = 0x78,
5637 .resetfn = hcr_reset,
5638 .writefn = hcr_write, .raw_writefn = raw_write },
5639 { .name = "HCR", .state = ARM_CP_STATE_AA32,
5640 .type = ARM_CP_ALIAS | ARM_CP_IO,
5641 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5642 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
5643 .writefn = hcr_writelow },
5644 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
5645 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
5646 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5647 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
5648 .type = ARM_CP_ALIAS | ARM_CP_NV2_REDIRECT,
5649 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
5650 .access = PL2_RW,
5651 .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
5652 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
5653 .type = ARM_CP_NV2_REDIRECT,
5654 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
5655 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
5656 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
5657 .type = ARM_CP_NV2_REDIRECT,
5658 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
5659 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
5660 { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
5661 .type = ARM_CP_ALIAS,
5662 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
5663 .access = PL2_RW,
5664 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) },
5665 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
5666 .type = ARM_CP_ALIAS | ARM_CP_NV2_REDIRECT,
5667 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
5668 .access = PL2_RW,
5669 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
5670 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
5671 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
5672 .access = PL2_RW, .writefn = vbar_write,
5673 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
5674 .resetvalue = 0 },
5675 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
5676 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
5677 .access = PL3_RW, .type = ARM_CP_ALIAS,
5678 .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
5679 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
5680 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
5681 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
5682 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]),
5683 .readfn = cptr_el2_read, .writefn = cptr_el2_write },
5684 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
5685 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
5686 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
5687 .resetvalue = 0 },
5688 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
5689 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
5690 .access = PL2_RW, .type = ARM_CP_ALIAS,
5691 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
5692 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
5693 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
5694 .access = PL2_RW, .type = ARM_CP_CONST,
5695 .resetvalue = 0 },
5696 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
5697 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
5698 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
5699 .access = PL2_RW, .type = ARM_CP_CONST,
5700 .resetvalue = 0 },
5701 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
5702 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
5703 .access = PL2_RW, .type = ARM_CP_CONST,
5704 .resetvalue = 0 },
5705 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
5706 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
5707 .access = PL2_RW, .type = ARM_CP_CONST,
5708 .resetvalue = 0 },
5709 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
5710 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
5711 .access = PL2_RW, .writefn = vmsa_tcr_el12_write,
5712 .raw_writefn = raw_write,
5713 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
5714 { .name = "VTCR", .state = ARM_CP_STATE_AA32,
5715 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5716 .type = ARM_CP_ALIAS,
5717 .access = PL2_RW, .accessfn = access_el3_aa32ns,
5718 .fieldoffset = offsetoflow32(CPUARMState, cp15.vtcr_el2) },
5719 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
5720 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5721 .access = PL2_RW,
5722 .nv2_redirect_offset = 0x40,
5723 /* no .writefn needed as this can't cause an ASID change */
5724 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
5725 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
5726 .cp = 15, .opc1 = 6, .crm = 2,
5727 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
5728 .access = PL2_RW, .accessfn = access_el3_aa32ns,
5729 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
5730 .writefn = vttbr_write, .raw_writefn = raw_write },
5731 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
5732 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
5733 .access = PL2_RW, .writefn = vttbr_write, .raw_writefn = raw_write,
5734 .nv2_redirect_offset = 0x20,
5735 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
5736 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
5737 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
5738 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
5739 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
5740 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
5741 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
5742 .access = PL2_RW, .resetvalue = 0,
5743 .nv2_redirect_offset = 0x90,
5744 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
5745 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
5746 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
5747 .access = PL2_RW, .resetvalue = 0,
5748 .writefn = vmsa_tcr_ttbr_el2_write, .raw_writefn = raw_write,
5749 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
5750 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
5751 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
5752 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
5753 #ifndef CONFIG_USER_ONLY
5754 /*
5755 * Unlike the other EL2-related AT operations, these must
5756 * UNDEF from EL3 if EL2 is not implemented, which is why we
5757 * define them here rather than with the rest of the AT ops.
5758 */
5759 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
5760 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
5761 .access = PL2_W, .accessfn = at_s1e2_access,
5762 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF,
5763 .writefn = ats_write64 },
5764 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
5765 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
5766 .access = PL2_W, .accessfn = at_s1e2_access,
5767 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF,
5768 .writefn = ats_write64 },
5769 /*
5770 * The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
5771 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
5772 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
5773 * to behave as if SCR.NS was 1.
5774 */
5775 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
5776 .access = PL2_W,
5777 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
5778 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
5779 .access = PL2_W,
5780 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
5781 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
5782 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
5783 /*
5784 * ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
5785 * reset values as IMPDEF. We choose to reset to 3 to comply with
5786 * both ARMv7 and ARMv8.
5787 */
5788 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 3,
5789 .writefn = gt_cnthctl_write, .raw_writefn = raw_write,
5790 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
5791 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
5792 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
5793 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
5794 .writefn = gt_cntvoff_write,
5795 .nv2_redirect_offset = 0x60,
5796 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
5797 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
5798 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
5799 .writefn = gt_cntvoff_write,
5800 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
5801 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
5802 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
5803 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
5804 .type = ARM_CP_IO, .access = PL2_RW,
5805 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
5806 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
5807 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
5808 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
5809 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
5810 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
5811 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
5812 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
5813 .resetfn = gt_hyp_timer_reset,
5814 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
5815 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
5816 .type = ARM_CP_IO,
5817 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
5818 .access = PL2_RW,
5819 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
5820 .resetvalue = 0,
5821 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
5822 #endif
5823 { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
5824 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5825 .access = PL2_RW, .accessfn = access_el3_aa32ns,
5826 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
5827 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
5828 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5829 .access = PL2_RW,
5830 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
5831 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
5832 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
5833 .access = PL2_RW,
5834 .nv2_redirect_offset = 0x80,
5835 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
5836 };
5837
5838 static const ARMCPRegInfo el2_v8_cp_reginfo[] = {
5839 { .name = "HCR2", .state = ARM_CP_STATE_AA32,
5840 .type = ARM_CP_ALIAS | ARM_CP_IO,
5841 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
5842 .access = PL2_RW,
5843 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2),
5844 .writefn = hcr_writehigh },
5845 };
5846
sel2_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)5847 static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri,
5848 bool isread)
5849 {
5850 if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) {
5851 return CP_ACCESS_OK;
5852 }
5853 return CP_ACCESS_UNDEFINED;
5854 }
5855
5856 static const ARMCPRegInfo el2_sec_cp_reginfo[] = {
5857 { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64,
5858 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0,
5859 .access = PL2_RW, .accessfn = sel2_access,
5860 .nv2_redirect_offset = 0x30,
5861 .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) },
5862 { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64,
5863 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2,
5864 .access = PL2_RW, .accessfn = sel2_access,
5865 .nv2_redirect_offset = 0x48,
5866 .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) },
5867 #ifndef CONFIG_USER_ONLY
5868 /* Secure EL2 Physical Timer */
5869 { .name = "CNTHPS_TVAL_EL2", .state = ARM_CP_STATE_AA64,
5870 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 5, .opc2 = 0,
5871 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
5872 .accessfn = gt_sel2timer_access,
5873 .readfn = gt_sec_pel2_tval_read,
5874 .writefn = gt_sec_pel2_tval_write,
5875 .resetfn = gt_sec_pel2_timer_reset,
5876 },
5877 { .name = "CNTHPS_CTL_EL2", .state = ARM_CP_STATE_AA64,
5878 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 5, .opc2 = 1,
5879 .type = ARM_CP_IO, .access = PL2_RW,
5880 .accessfn = gt_sel2timer_access,
5881 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_S_EL2_PHYS].ctl),
5882 .resetvalue = 0,
5883 .writefn = gt_sec_pel2_ctl_write, .raw_writefn = raw_write,
5884 },
5885 { .name = "CNTHPS_CVAL_EL2", .state = ARM_CP_STATE_AA64,
5886 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 5, .opc2 = 2,
5887 .type = ARM_CP_IO, .access = PL2_RW,
5888 .accessfn = gt_sel2timer_access,
5889 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_S_EL2_PHYS].cval),
5890 .writefn = gt_sec_pel2_cval_write, .raw_writefn = raw_write,
5891 },
5892 /* Secure EL2 Virtual Timer */
5893 { .name = "CNTHVS_TVAL_EL2", .state = ARM_CP_STATE_AA64,
5894 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 4, .opc2 = 0,
5895 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
5896 .accessfn = gt_sel2timer_access,
5897 .readfn = gt_sec_vel2_tval_read,
5898 .writefn = gt_sec_vel2_tval_write,
5899 .resetfn = gt_sec_vel2_timer_reset,
5900 },
5901 { .name = "CNTHVS_CTL_EL2", .state = ARM_CP_STATE_AA64,
5902 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 4, .opc2 = 1,
5903 .type = ARM_CP_IO, .access = PL2_RW,
5904 .accessfn = gt_sel2timer_access,
5905 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_S_EL2_VIRT].ctl),
5906 .resetvalue = 0,
5907 .writefn = gt_sec_vel2_ctl_write, .raw_writefn = raw_write,
5908 },
5909 { .name = "CNTHVS_CVAL_EL2", .state = ARM_CP_STATE_AA64,
5910 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 4, .opc2 = 2,
5911 .type = ARM_CP_IO, .access = PL2_RW,
5912 .accessfn = gt_sel2timer_access,
5913 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_S_EL2_VIRT].cval),
5914 .writefn = gt_sec_vel2_cval_write, .raw_writefn = raw_write,
5915 },
5916 #endif
5917 };
5918
nsacr_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)5919 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
5920 bool isread)
5921 {
5922 /*
5923 * The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
5924 * At Secure EL1 it traps to EL3 or EL2.
5925 */
5926 if (arm_current_el(env) == 3) {
5927 return CP_ACCESS_OK;
5928 }
5929 if (arm_is_secure_below_el3(env)) {
5930 if (env->cp15.scr_el3 & SCR_EEL2) {
5931 return CP_ACCESS_TRAP_EL2;
5932 }
5933 return CP_ACCESS_TRAP_EL3;
5934 }
5935 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
5936 if (isread) {
5937 return CP_ACCESS_OK;
5938 }
5939 return CP_ACCESS_UNDEFINED;
5940 }
5941
5942 static const ARMCPRegInfo el3_cp_reginfo[] = {
5943 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
5944 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
5945 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
5946 .resetfn = scr_reset, .writefn = scr_write, .raw_writefn = raw_write },
5947 { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL,
5948 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
5949 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5950 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
5951 .writefn = scr_write, .raw_writefn = raw_write },
5952 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
5953 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
5954 .access = PL3_RW, .resetvalue = 0,
5955 .fieldoffset = offsetof(CPUARMState, cp15.sder) },
5956 { .name = "SDER",
5957 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
5958 .access = PL3_RW, .resetvalue = 0,
5959 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
5960 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
5961 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5962 .writefn = vbar_write, .resetvalue = 0,
5963 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
5964 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
5965 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
5966 .access = PL3_RW, .resetvalue = 0,
5967 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
5968 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
5969 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
5970 .access = PL3_RW,
5971 /* no .writefn needed as this can't cause an ASID change */
5972 .resetvalue = 0,
5973 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
5974 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
5975 .type = ARM_CP_ALIAS,
5976 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
5977 .access = PL3_RW,
5978 .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
5979 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
5980 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
5981 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
5982 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
5983 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
5984 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
5985 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
5986 .type = ARM_CP_ALIAS,
5987 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
5988 .access = PL3_RW,
5989 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
5990 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
5991 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
5992 .access = PL3_RW, .writefn = vbar_write,
5993 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
5994 .resetvalue = 0 },
5995 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
5996 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
5997 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
5998 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
5999 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
6000 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
6001 .access = PL3_RW, .resetvalue = 0,
6002 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
6003 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
6004 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
6005 .access = PL3_RW, .type = ARM_CP_CONST,
6006 .resetvalue = 0 },
6007 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
6008 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
6009 .access = PL3_RW, .type = ARM_CP_CONST,
6010 .resetvalue = 0 },
6011 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
6012 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
6013 .access = PL3_RW, .type = ARM_CP_CONST,
6014 .resetvalue = 0 },
6015 };
6016
6017 #ifndef CONFIG_USER_ONLY
6018
e2h_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)6019 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri,
6020 bool isread)
6021 {
6022 if (arm_current_el(env) == 1) {
6023 /* This must be a FEAT_NV access */
6024 return CP_ACCESS_OK;
6025 }
6026 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) {
6027 return CP_ACCESS_UNDEFINED;
6028 }
6029 return CP_ACCESS_OK;
6030 }
6031
access_el1nvpct(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)6032 static CPAccessResult access_el1nvpct(CPUARMState *env, const ARMCPRegInfo *ri,
6033 bool isread)
6034 {
6035 if (arm_current_el(env) == 1) {
6036 /* This must be a FEAT_NV access with NVx == 101 */
6037 if (FIELD_EX64(env->cp15.cnthctl_el2, CNTHCTL, EL1NVPCT)) {
6038 return CP_ACCESS_TRAP_EL2;
6039 }
6040 }
6041 return e2h_access(env, ri, isread);
6042 }
6043
access_el1nvvct(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)6044 static CPAccessResult access_el1nvvct(CPUARMState *env, const ARMCPRegInfo *ri,
6045 bool isread)
6046 {
6047 if (arm_current_el(env) == 1) {
6048 /* This must be a FEAT_NV access with NVx == 101 */
6049 if (FIELD_EX64(env->cp15.cnthctl_el2, CNTHCTL, EL1NVVCT)) {
6050 return CP_ACCESS_TRAP_EL2;
6051 }
6052 }
6053 return e2h_access(env, ri, isread);
6054 }
6055
6056 /* Test if system register redirection is to occur in the current state. */
redirect_for_e2h(CPUARMState * env)6057 static bool redirect_for_e2h(CPUARMState *env)
6058 {
6059 return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H);
6060 }
6061
el2_e2h_read(CPUARMState * env,const ARMCPRegInfo * ri)6062 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri)
6063 {
6064 CPReadFn *readfn;
6065
6066 if (redirect_for_e2h(env)) {
6067 /* Switch to the saved EL2 version of the register. */
6068 ri = ri->opaque;
6069 readfn = ri->readfn;
6070 } else {
6071 readfn = ri->orig_readfn;
6072 }
6073 if (readfn == NULL) {
6074 readfn = raw_read;
6075 }
6076 return readfn(env, ri);
6077 }
6078
el2_e2h_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)6079 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri,
6080 uint64_t value)
6081 {
6082 CPWriteFn *writefn;
6083
6084 if (redirect_for_e2h(env)) {
6085 /* Switch to the saved EL2 version of the register. */
6086 ri = ri->opaque;
6087 writefn = ri->writefn;
6088 } else {
6089 writefn = ri->orig_writefn;
6090 }
6091 if (writefn == NULL) {
6092 writefn = raw_write;
6093 }
6094 writefn(env, ri, value);
6095 }
6096
el2_e2h_e12_read(CPUARMState * env,const ARMCPRegInfo * ri)6097 static uint64_t el2_e2h_e12_read(CPUARMState *env, const ARMCPRegInfo *ri)
6098 {
6099 /* Pass the EL1 register accessor its ri, not the EL12 alias ri */
6100 return ri->orig_readfn(env, ri->opaque);
6101 }
6102
el2_e2h_e12_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)6103 static void el2_e2h_e12_write(CPUARMState *env, const ARMCPRegInfo *ri,
6104 uint64_t value)
6105 {
6106 /* Pass the EL1 register accessor its ri, not the EL12 alias ri */
6107 return ri->orig_writefn(env, ri->opaque, value);
6108 }
6109
el2_e2h_e12_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)6110 static CPAccessResult el2_e2h_e12_access(CPUARMState *env,
6111 const ARMCPRegInfo *ri,
6112 bool isread)
6113 {
6114 if (arm_current_el(env) == 1) {
6115 /*
6116 * This must be a FEAT_NV access (will either trap or redirect
6117 * to memory). None of the registers with _EL12 aliases want to
6118 * apply their trap controls for this kind of access, so don't
6119 * call the orig_accessfn or do the "UNDEF when E2H is 0" check.
6120 */
6121 return CP_ACCESS_OK;
6122 }
6123 /* FOO_EL12 aliases only exist when E2H is 1; otherwise they UNDEF */
6124 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) {
6125 return CP_ACCESS_UNDEFINED;
6126 }
6127 if (ri->orig_accessfn) {
6128 return ri->orig_accessfn(env, ri->opaque, isread);
6129 }
6130 return CP_ACCESS_OK;
6131 }
6132
define_arm_vh_e2h_redirects_aliases(ARMCPU * cpu)6133 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu)
6134 {
6135 struct E2HAlias {
6136 uint32_t src_key, dst_key, new_key;
6137 const char *src_name, *dst_name, *new_name;
6138 bool (*feature)(const ARMISARegisters *id);
6139 };
6140
6141 #define K(op0, op1, crn, crm, op2) \
6142 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2)
6143
6144 static const struct E2HAlias aliases[] = {
6145 { K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0),
6146 "SCTLR", "SCTLR_EL2", "SCTLR_EL12" },
6147 { K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2),
6148 "CPACR", "CPTR_EL2", "CPACR_EL12" },
6149 { K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0),
6150 "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" },
6151 { K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1),
6152 "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" },
6153 { K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2),
6154 "TCR_EL1", "TCR_EL2", "TCR_EL12" },
6155 { K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0),
6156 "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" },
6157 { K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1),
6158 "ELR_EL1", "ELR_EL2", "ELR_EL12" },
6159 { K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0),
6160 "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" },
6161 { K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1),
6162 "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" },
6163 { K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0),
6164 "ESR_EL1", "ESR_EL2", "ESR_EL12" },
6165 { K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0),
6166 "FAR_EL1", "FAR_EL2", "FAR_EL12" },
6167 { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0),
6168 "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" },
6169 { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0),
6170 "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" },
6171 { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0),
6172 "VBAR", "VBAR_EL2", "VBAR_EL12" },
6173 { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1),
6174 "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" },
6175 { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0),
6176 "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" },
6177
6178 /*
6179 * Note that redirection of ZCR is mentioned in the description
6180 * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but
6181 * not in the summary table.
6182 */
6183 { K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0),
6184 "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve },
6185 { K(3, 0, 1, 2, 6), K(3, 4, 1, 2, 6), K(3, 5, 1, 2, 6),
6186 "SMCR_EL1", "SMCR_EL2", "SMCR_EL12", isar_feature_aa64_sme },
6187
6188 { K(3, 0, 5, 6, 0), K(3, 4, 5, 6, 0), K(3, 5, 5, 6, 0),
6189 "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte },
6190
6191 { K(3, 0, 13, 0, 7), K(3, 4, 13, 0, 7), K(3, 5, 13, 0, 7),
6192 "SCXTNUM_EL1", "SCXTNUM_EL2", "SCXTNUM_EL12",
6193 isar_feature_aa64_scxtnum },
6194
6195 /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */
6196 /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */
6197 };
6198 #undef K
6199
6200 size_t i;
6201
6202 for (i = 0; i < ARRAY_SIZE(aliases); i++) {
6203 const struct E2HAlias *a = &aliases[i];
6204 ARMCPRegInfo *src_reg, *dst_reg, *new_reg;
6205 bool ok;
6206
6207 if (a->feature && !a->feature(&cpu->isar)) {
6208 continue;
6209 }
6210
6211 src_reg = g_hash_table_lookup(cpu->cp_regs,
6212 (gpointer)(uintptr_t)a->src_key);
6213 dst_reg = g_hash_table_lookup(cpu->cp_regs,
6214 (gpointer)(uintptr_t)a->dst_key);
6215 g_assert(src_reg != NULL);
6216 g_assert(dst_reg != NULL);
6217
6218 /* Cross-compare names to detect typos in the keys. */
6219 g_assert(strcmp(src_reg->name, a->src_name) == 0);
6220 g_assert(strcmp(dst_reg->name, a->dst_name) == 0);
6221
6222 /* None of the core system registers use opaque; we will. */
6223 g_assert(src_reg->opaque == NULL);
6224
6225 /* Create alias before redirection so we dup the right data. */
6226 new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo));
6227
6228 new_reg->name = a->new_name;
6229 new_reg->type |= ARM_CP_ALIAS;
6230 /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */
6231 new_reg->access &= PL2_RW | PL3_RW;
6232 /* The new_reg op fields are as per new_key, not the target reg */
6233 new_reg->crn = (a->new_key & CP_REG_ARM64_SYSREG_CRN_MASK)
6234 >> CP_REG_ARM64_SYSREG_CRN_SHIFT;
6235 new_reg->crm = (a->new_key & CP_REG_ARM64_SYSREG_CRM_MASK)
6236 >> CP_REG_ARM64_SYSREG_CRM_SHIFT;
6237 new_reg->opc0 = (a->new_key & CP_REG_ARM64_SYSREG_OP0_MASK)
6238 >> CP_REG_ARM64_SYSREG_OP0_SHIFT;
6239 new_reg->opc1 = (a->new_key & CP_REG_ARM64_SYSREG_OP1_MASK)
6240 >> CP_REG_ARM64_SYSREG_OP1_SHIFT;
6241 new_reg->opc2 = (a->new_key & CP_REG_ARM64_SYSREG_OP2_MASK)
6242 >> CP_REG_ARM64_SYSREG_OP2_SHIFT;
6243 new_reg->opaque = src_reg;
6244 new_reg->orig_readfn = src_reg->readfn ?: raw_read;
6245 new_reg->orig_writefn = src_reg->writefn ?: raw_write;
6246 new_reg->orig_accessfn = src_reg->accessfn;
6247 if (!new_reg->raw_readfn) {
6248 new_reg->raw_readfn = raw_read;
6249 }
6250 if (!new_reg->raw_writefn) {
6251 new_reg->raw_writefn = raw_write;
6252 }
6253 new_reg->readfn = el2_e2h_e12_read;
6254 new_reg->writefn = el2_e2h_e12_write;
6255 new_reg->accessfn = el2_e2h_e12_access;
6256
6257 /*
6258 * If the _EL1 register is redirected to memory by FEAT_NV2,
6259 * then it shares the offset with the _EL12 register,
6260 * and which one is redirected depends on HCR_EL2.NV1.
6261 */
6262 if (new_reg->nv2_redirect_offset) {
6263 assert(new_reg->nv2_redirect_offset & NV2_REDIR_NV1);
6264 new_reg->nv2_redirect_offset &= ~NV2_REDIR_NV1;
6265 new_reg->nv2_redirect_offset |= NV2_REDIR_NO_NV1;
6266 }
6267
6268 ok = g_hash_table_insert(cpu->cp_regs,
6269 (gpointer)(uintptr_t)a->new_key, new_reg);
6270 g_assert(ok);
6271
6272 src_reg->opaque = dst_reg;
6273 src_reg->orig_readfn = src_reg->readfn ?: raw_read;
6274 src_reg->orig_writefn = src_reg->writefn ?: raw_write;
6275 if (!src_reg->raw_readfn) {
6276 src_reg->raw_readfn = raw_read;
6277 }
6278 if (!src_reg->raw_writefn) {
6279 src_reg->raw_writefn = raw_write;
6280 }
6281 src_reg->readfn = el2_e2h_read;
6282 src_reg->writefn = el2_e2h_write;
6283 }
6284 }
6285 #endif
6286
ctr_el0_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)6287 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
6288 bool isread)
6289 {
6290 int cur_el = arm_current_el(env);
6291
6292 if (cur_el < 2) {
6293 uint64_t hcr = arm_hcr_el2_eff(env);
6294
6295 if (cur_el == 0) {
6296 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
6297 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) {
6298 return CP_ACCESS_TRAP_EL2;
6299 }
6300 } else {
6301 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
6302 return CP_ACCESS_TRAP_EL1;
6303 }
6304 if (hcr & HCR_TID2) {
6305 return CP_ACCESS_TRAP_EL2;
6306 }
6307 }
6308 } else if (hcr & HCR_TID2) {
6309 return CP_ACCESS_TRAP_EL2;
6310 }
6311 }
6312
6313 if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) {
6314 return CP_ACCESS_TRAP_EL2;
6315 }
6316
6317 return CP_ACCESS_OK;
6318 }
6319
6320 /*
6321 * Check for traps to RAS registers, which are controlled
6322 * by HCR_EL2.TERR and SCR_EL3.TERR.
6323 */
access_terr(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)6324 static CPAccessResult access_terr(CPUARMState *env, const ARMCPRegInfo *ri,
6325 bool isread)
6326 {
6327 int el = arm_current_el(env);
6328
6329 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TERR)) {
6330 return CP_ACCESS_TRAP_EL2;
6331 }
6332 if (!arm_is_el3_or_mon(env) && (env->cp15.scr_el3 & SCR_TERR)) {
6333 return CP_ACCESS_TRAP_EL3;
6334 }
6335 return CP_ACCESS_OK;
6336 }
6337
disr_read(CPUARMState * env,const ARMCPRegInfo * ri)6338 static uint64_t disr_read(CPUARMState *env, const ARMCPRegInfo *ri)
6339 {
6340 int el = arm_current_el(env);
6341
6342 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) {
6343 return env->cp15.vdisr_el2;
6344 }
6345 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) {
6346 return 0; /* RAZ/WI */
6347 }
6348 return env->cp15.disr_el1;
6349 }
6350
disr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t val)6351 static void disr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
6352 {
6353 int el = arm_current_el(env);
6354
6355 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) {
6356 env->cp15.vdisr_el2 = val;
6357 return;
6358 }
6359 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) {
6360 return; /* RAZ/WI */
6361 }
6362 env->cp15.disr_el1 = val;
6363 }
6364
6365 /*
6366 * Minimal RAS implementation with no Error Records.
6367 * Which means that all of the Error Record registers:
6368 * ERXADDR_EL1
6369 * ERXCTLR_EL1
6370 * ERXFR_EL1
6371 * ERXMISC0_EL1
6372 * ERXMISC1_EL1
6373 * ERXMISC2_EL1
6374 * ERXMISC3_EL1
6375 * ERXPFGCDN_EL1 (RASv1p1)
6376 * ERXPFGCTL_EL1 (RASv1p1)
6377 * ERXPFGF_EL1 (RASv1p1)
6378 * ERXSTATUS_EL1
6379 * and
6380 * ERRSELR_EL1
6381 * may generate UNDEFINED, which is the effect we get by not
6382 * listing them at all.
6383 *
6384 * These registers have fine-grained trap bits, but UNDEF-to-EL1
6385 * is higher priority than FGT-to-EL2 so we do not need to list them
6386 * in order to check for an FGT.
6387 */
6388 static const ARMCPRegInfo minimal_ras_reginfo[] = {
6389 { .name = "DISR_EL1", .state = ARM_CP_STATE_BOTH,
6390 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 1,
6391 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.disr_el1),
6392 .readfn = disr_read, .writefn = disr_write, .raw_writefn = raw_write },
6393 { .name = "ERRIDR_EL1", .state = ARM_CP_STATE_BOTH,
6394 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 3, .opc2 = 0,
6395 .access = PL1_R, .accessfn = access_terr,
6396 .fgt = FGT_ERRIDR_EL1,
6397 .type = ARM_CP_CONST, .resetvalue = 0 },
6398 { .name = "VDISR_EL2", .state = ARM_CP_STATE_BOTH,
6399 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 1, .opc2 = 1,
6400 .nv2_redirect_offset = 0x500,
6401 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vdisr_el2) },
6402 { .name = "VSESR_EL2", .state = ARM_CP_STATE_BOTH,
6403 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 3,
6404 .nv2_redirect_offset = 0x508,
6405 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vsesr_el2) },
6406 };
6407
6408 /*
6409 * Return the exception level to which exceptions should be taken
6410 * via SVEAccessTrap. This excludes the check for whether the exception
6411 * should be routed through AArch64.AdvSIMDFPAccessTrap. That can easily
6412 * be found by testing 0 < fp_exception_el < sve_exception_el.
6413 *
6414 * C.f. the ARM pseudocode function CheckSVEEnabled. Note that the
6415 * pseudocode does *not* separate out the FP trap checks, but has them
6416 * all in one function.
6417 */
sve_exception_el(CPUARMState * env,int el)6418 int sve_exception_el(CPUARMState *env, int el)
6419 {
6420 #ifndef CONFIG_USER_ONLY
6421 if (el <= 1 && !el_is_in_host(env, el)) {
6422 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, ZEN)) {
6423 case 1:
6424 if (el != 0) {
6425 break;
6426 }
6427 /* fall through */
6428 case 0:
6429 case 2:
6430 return 1;
6431 }
6432 }
6433
6434 if (el <= 2 && arm_is_el2_enabled(env)) {
6435 /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */
6436 if (env->cp15.hcr_el2 & HCR_E2H) {
6437 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, ZEN)) {
6438 case 1:
6439 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) {
6440 break;
6441 }
6442 /* fall through */
6443 case 0:
6444 case 2:
6445 return 2;
6446 }
6447 } else {
6448 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TZ)) {
6449 return 2;
6450 }
6451 }
6452 }
6453
6454 /* CPTR_EL3. Since EZ is negative we must check for EL3. */
6455 if (arm_feature(env, ARM_FEATURE_EL3)
6456 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, EZ)) {
6457 return 3;
6458 }
6459 #endif
6460 return 0;
6461 }
6462
6463 /*
6464 * Return the exception level to which exceptions should be taken for SME.
6465 * C.f. the ARM pseudocode function CheckSMEAccess.
6466 */
sme_exception_el(CPUARMState * env,int el)6467 int sme_exception_el(CPUARMState *env, int el)
6468 {
6469 #ifndef CONFIG_USER_ONLY
6470 if (el <= 1 && !el_is_in_host(env, el)) {
6471 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, SMEN)) {
6472 case 1:
6473 if (el != 0) {
6474 break;
6475 }
6476 /* fall through */
6477 case 0:
6478 case 2:
6479 return 1;
6480 }
6481 }
6482
6483 if (el <= 2 && arm_is_el2_enabled(env)) {
6484 /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */
6485 if (env->cp15.hcr_el2 & HCR_E2H) {
6486 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, SMEN)) {
6487 case 1:
6488 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) {
6489 break;
6490 }
6491 /* fall through */
6492 case 0:
6493 case 2:
6494 return 2;
6495 }
6496 } else {
6497 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TSM)) {
6498 return 2;
6499 }
6500 }
6501 }
6502
6503 /* CPTR_EL3. Since ESM is negative we must check for EL3. */
6504 if (arm_feature(env, ARM_FEATURE_EL3)
6505 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) {
6506 return 3;
6507 }
6508 #endif
6509 return 0;
6510 }
6511
6512 /*
6513 * Given that SVE is enabled, return the vector length for EL.
6514 */
sve_vqm1_for_el_sm(CPUARMState * env,int el,bool sm)6515 uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm)
6516 {
6517 ARMCPU *cpu = env_archcpu(env);
6518 uint64_t *cr = env->vfp.zcr_el;
6519 uint32_t map = cpu->sve_vq.map;
6520 uint32_t len = ARM_MAX_VQ - 1;
6521
6522 if (sm) {
6523 cr = env->vfp.smcr_el;
6524 map = cpu->sme_vq.map;
6525 }
6526
6527 if (el <= 1 && !el_is_in_host(env, el)) {
6528 len = MIN(len, 0xf & (uint32_t)cr[1]);
6529 }
6530 if (el <= 2 && arm_is_el2_enabled(env)) {
6531 len = MIN(len, 0xf & (uint32_t)cr[2]);
6532 }
6533 if (arm_feature(env, ARM_FEATURE_EL3)) {
6534 len = MIN(len, 0xf & (uint32_t)cr[3]);
6535 }
6536
6537 map &= MAKE_64BIT_MASK(0, len + 1);
6538 if (map != 0) {
6539 return 31 - clz32(map);
6540 }
6541
6542 /* Bit 0 is always set for Normal SVE -- not so for Streaming SVE. */
6543 assert(sm);
6544 return ctz32(cpu->sme_vq.map);
6545 }
6546
sve_vqm1_for_el(CPUARMState * env,int el)6547 uint32_t sve_vqm1_for_el(CPUARMState *env, int el)
6548 {
6549 return sve_vqm1_for_el_sm(env, el, FIELD_EX64(env->svcr, SVCR, SM));
6550 }
6551
zcr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)6552 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6553 uint64_t value)
6554 {
6555 int cur_el = arm_current_el(env);
6556 int old_len = sve_vqm1_for_el(env, cur_el);
6557 int new_len;
6558
6559 /* Bits other than [3:0] are RAZ/WI. */
6560 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16);
6561 raw_write(env, ri, value & 0xf);
6562
6563 /*
6564 * Because we arrived here, we know both FP and SVE are enabled;
6565 * otherwise we would have trapped access to the ZCR_ELn register.
6566 */
6567 new_len = sve_vqm1_for_el(env, cur_el);
6568 if (new_len < old_len) {
6569 aarch64_sve_narrow_vq(env, new_len + 1);
6570 }
6571 }
6572
6573 static const ARMCPRegInfo zcr_reginfo[] = {
6574 { .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
6575 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
6576 .nv2_redirect_offset = 0x1e0 | NV2_REDIR_NV1,
6577 .access = PL1_RW, .type = ARM_CP_SVE,
6578 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
6579 .writefn = zcr_write, .raw_writefn = raw_write },
6580 { .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
6581 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
6582 .access = PL2_RW, .type = ARM_CP_SVE,
6583 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
6584 .writefn = zcr_write, .raw_writefn = raw_write },
6585 { .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
6586 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
6587 .access = PL3_RW, .type = ARM_CP_SVE,
6588 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
6589 .writefn = zcr_write, .raw_writefn = raw_write },
6590 };
6591
access_tpidr2(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)6592 static CPAccessResult access_tpidr2(CPUARMState *env, const ARMCPRegInfo *ri,
6593 bool isread)
6594 {
6595 int el = arm_current_el(env);
6596
6597 if (el == 0) {
6598 uint64_t sctlr = arm_sctlr(env, el);
6599 if (!(sctlr & SCTLR_EnTP2)) {
6600 return CP_ACCESS_TRAP_EL1;
6601 }
6602 }
6603 /* TODO: FEAT_FGT */
6604 if (el < 3
6605 && arm_feature(env, ARM_FEATURE_EL3)
6606 && !(env->cp15.scr_el3 & SCR_ENTP2)) {
6607 return CP_ACCESS_TRAP_EL3;
6608 }
6609 return CP_ACCESS_OK;
6610 }
6611
access_smprimap(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)6612 static CPAccessResult access_smprimap(CPUARMState *env, const ARMCPRegInfo *ri,
6613 bool isread)
6614 {
6615 /* If EL1 this is a FEAT_NV access and CPTR_EL3.ESM doesn't apply */
6616 if (arm_current_el(env) == 2
6617 && arm_feature(env, ARM_FEATURE_EL3)
6618 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) {
6619 return CP_ACCESS_TRAP_EL3;
6620 }
6621 return CP_ACCESS_OK;
6622 }
6623
access_smpri(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)6624 static CPAccessResult access_smpri(CPUARMState *env, const ARMCPRegInfo *ri,
6625 bool isread)
6626 {
6627 if (arm_current_el(env) < 3
6628 && arm_feature(env, ARM_FEATURE_EL3)
6629 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) {
6630 return CP_ACCESS_TRAP_EL3;
6631 }
6632 return CP_ACCESS_OK;
6633 }
6634
6635 /* ResetSVEState */
arm_reset_sve_state(CPUARMState * env)6636 static void arm_reset_sve_state(CPUARMState *env)
6637 {
6638 memset(env->vfp.zregs, 0, sizeof(env->vfp.zregs));
6639 /* Recall that FFR is stored as pregs[16]. */
6640 memset(env->vfp.pregs, 0, sizeof(env->vfp.pregs));
6641 vfp_set_fpsr(env, 0x0800009f);
6642 }
6643
aarch64_set_svcr(CPUARMState * env,uint64_t new,uint64_t mask)6644 void aarch64_set_svcr(CPUARMState *env, uint64_t new, uint64_t mask)
6645 {
6646 uint64_t change = (env->svcr ^ new) & mask;
6647
6648 if (change == 0) {
6649 return;
6650 }
6651 env->svcr ^= change;
6652
6653 if (change & R_SVCR_SM_MASK) {
6654 arm_reset_sve_state(env);
6655 }
6656
6657 /*
6658 * ResetSMEState.
6659 *
6660 * SetPSTATE_ZA zeros on enable and disable. We can zero this only
6661 * on enable: while disabled, the storage is inaccessible and the
6662 * value does not matter. We're not saving the storage in vmstate
6663 * when disabled either.
6664 */
6665 if (change & new & R_SVCR_ZA_MASK) {
6666 memset(env->zarray, 0, sizeof(env->zarray));
6667 }
6668
6669 if (tcg_enabled()) {
6670 arm_rebuild_hflags(env);
6671 }
6672 }
6673
svcr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)6674 static void svcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6675 uint64_t value)
6676 {
6677 aarch64_set_svcr(env, value, -1);
6678 }
6679
smcr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)6680 static void smcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6681 uint64_t value)
6682 {
6683 int cur_el = arm_current_el(env);
6684 int old_len = sve_vqm1_for_el(env, cur_el);
6685 int new_len;
6686
6687 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > R_SMCR_LEN_MASK + 1);
6688 value &= R_SMCR_LEN_MASK | R_SMCR_FA64_MASK;
6689 raw_write(env, ri, value);
6690
6691 /*
6692 * Note that it is CONSTRAINED UNPREDICTABLE what happens to ZA storage
6693 * when SVL is widened (old values kept, or zeros). Choose to keep the
6694 * current values for simplicity. But for QEMU internals, we must still
6695 * apply the narrower SVL to the Zregs and Pregs -- see the comment
6696 * above aarch64_sve_narrow_vq.
6697 */
6698 new_len = sve_vqm1_for_el(env, cur_el);
6699 if (new_len < old_len) {
6700 aarch64_sve_narrow_vq(env, new_len + 1);
6701 }
6702 }
6703
6704 static const ARMCPRegInfo sme_reginfo[] = {
6705 { .name = "TPIDR2_EL0", .state = ARM_CP_STATE_AA64,
6706 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 5,
6707 .access = PL0_RW, .accessfn = access_tpidr2,
6708 .fgt = FGT_NTPIDR2_EL0,
6709 .fieldoffset = offsetof(CPUARMState, cp15.tpidr2_el0) },
6710 { .name = "SVCR", .state = ARM_CP_STATE_AA64,
6711 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 2,
6712 .access = PL0_RW, .type = ARM_CP_SME,
6713 .fieldoffset = offsetof(CPUARMState, svcr),
6714 .writefn = svcr_write, .raw_writefn = raw_write },
6715 { .name = "SMCR_EL1", .state = ARM_CP_STATE_AA64,
6716 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 6,
6717 .nv2_redirect_offset = 0x1f0 | NV2_REDIR_NV1,
6718 .access = PL1_RW, .type = ARM_CP_SME,
6719 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[1]),
6720 .writefn = smcr_write, .raw_writefn = raw_write },
6721 { .name = "SMCR_EL2", .state = ARM_CP_STATE_AA64,
6722 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 6,
6723 .access = PL2_RW, .type = ARM_CP_SME,
6724 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[2]),
6725 .writefn = smcr_write, .raw_writefn = raw_write },
6726 { .name = "SMCR_EL3", .state = ARM_CP_STATE_AA64,
6727 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 6,
6728 .access = PL3_RW, .type = ARM_CP_SME,
6729 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[3]),
6730 .writefn = smcr_write, .raw_writefn = raw_write },
6731 { .name = "SMIDR_EL1", .state = ARM_CP_STATE_AA64,
6732 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 6,
6733 .access = PL1_R, .accessfn = access_aa64_tid1,
6734 /*
6735 * IMPLEMENTOR = 0 (software)
6736 * REVISION = 0 (implementation defined)
6737 * SMPS = 0 (no streaming execution priority in QEMU)
6738 * AFFINITY = 0 (streaming sve mode not shared with other PEs)
6739 */
6740 .type = ARM_CP_CONST, .resetvalue = 0, },
6741 /*
6742 * Because SMIDR_EL1.SMPS is 0, SMPRI_EL1 and SMPRIMAP_EL2 are RES 0.
6743 */
6744 { .name = "SMPRI_EL1", .state = ARM_CP_STATE_AA64,
6745 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 4,
6746 .access = PL1_RW, .accessfn = access_smpri,
6747 .fgt = FGT_NSMPRI_EL1,
6748 .type = ARM_CP_CONST, .resetvalue = 0 },
6749 { .name = "SMPRIMAP_EL2", .state = ARM_CP_STATE_AA64,
6750 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 5,
6751 .nv2_redirect_offset = 0x1f8,
6752 .access = PL2_RW, .accessfn = access_smprimap,
6753 .type = ARM_CP_CONST, .resetvalue = 0 },
6754 };
6755
gpccr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)6756 static void gpccr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6757 uint64_t value)
6758 {
6759 /* L0GPTSZ is RO; other bits not mentioned are RES0. */
6760 uint64_t rw_mask = R_GPCCR_PPS_MASK | R_GPCCR_IRGN_MASK |
6761 R_GPCCR_ORGN_MASK | R_GPCCR_SH_MASK | R_GPCCR_PGS_MASK |
6762 R_GPCCR_GPC_MASK | R_GPCCR_GPCP_MASK;
6763
6764 env->cp15.gpccr_el3 = (value & rw_mask) | (env->cp15.gpccr_el3 & ~rw_mask);
6765 }
6766
gpccr_reset(CPUARMState * env,const ARMCPRegInfo * ri)6767 static void gpccr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
6768 {
6769 env->cp15.gpccr_el3 = FIELD_DP64(0, GPCCR, L0GPTSZ,
6770 env_archcpu(env)->reset_l0gptsz);
6771 }
6772
6773 static const ARMCPRegInfo rme_reginfo[] = {
6774 { .name = "GPCCR_EL3", .state = ARM_CP_STATE_AA64,
6775 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 1, .opc2 = 6,
6776 .access = PL3_RW, .writefn = gpccr_write, .resetfn = gpccr_reset,
6777 .fieldoffset = offsetof(CPUARMState, cp15.gpccr_el3) },
6778 { .name = "GPTBR_EL3", .state = ARM_CP_STATE_AA64,
6779 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 1, .opc2 = 4,
6780 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.gptbr_el3) },
6781 { .name = "MFAR_EL3", .state = ARM_CP_STATE_AA64,
6782 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 5,
6783 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mfar_el3) },
6784 { .name = "DC_CIPAPA", .state = ARM_CP_STATE_AA64,
6785 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 14, .opc2 = 1,
6786 .access = PL3_W, .type = ARM_CP_NOP },
6787 };
6788
6789 static const ARMCPRegInfo rme_mte_reginfo[] = {
6790 { .name = "DC_CIGDPAPA", .state = ARM_CP_STATE_AA64,
6791 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 14, .opc2 = 5,
6792 .access = PL3_W, .type = ARM_CP_NOP },
6793 };
6794
aa64_allint_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)6795 static void aa64_allint_write(CPUARMState *env, const ARMCPRegInfo *ri,
6796 uint64_t value)
6797 {
6798 env->pstate = (env->pstate & ~PSTATE_ALLINT) | (value & PSTATE_ALLINT);
6799 }
6800
aa64_allint_read(CPUARMState * env,const ARMCPRegInfo * ri)6801 static uint64_t aa64_allint_read(CPUARMState *env, const ARMCPRegInfo *ri)
6802 {
6803 return env->pstate & PSTATE_ALLINT;
6804 }
6805
aa64_allint_access(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)6806 static CPAccessResult aa64_allint_access(CPUARMState *env,
6807 const ARMCPRegInfo *ri, bool isread)
6808 {
6809 if (!isread && arm_current_el(env) == 1 &&
6810 (arm_hcrx_el2_eff(env) & HCRX_TALLINT)) {
6811 return CP_ACCESS_TRAP_EL2;
6812 }
6813 return CP_ACCESS_OK;
6814 }
6815
6816 static const ARMCPRegInfo nmi_reginfo[] = {
6817 { .name = "ALLINT", .state = ARM_CP_STATE_AA64,
6818 .opc0 = 3, .opc1 = 0, .opc2 = 0, .crn = 4, .crm = 3,
6819 .type = ARM_CP_NO_RAW,
6820 .access = PL1_RW, .accessfn = aa64_allint_access,
6821 .fieldoffset = offsetof(CPUARMState, pstate),
6822 .writefn = aa64_allint_write, .readfn = aa64_allint_read,
6823 .resetfn = arm_cp_reset_ignore },
6824 };
6825
define_pmu_regs(ARMCPU * cpu)6826 static void define_pmu_regs(ARMCPU *cpu)
6827 {
6828 /*
6829 * v7 performance monitor control register: same implementor
6830 * field as main ID register, and we implement four counters in
6831 * addition to the cycle count register.
6832 */
6833 unsigned int i, pmcrn = pmu_num_counters(&cpu->env);
6834 ARMCPRegInfo pmcr = {
6835 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
6836 .access = PL0_RW,
6837 .fgt = FGT_PMCR_EL0,
6838 .type = ARM_CP_IO | ARM_CP_ALIAS,
6839 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
6840 .accessfn = pmreg_access,
6841 .readfn = pmcr_read, .raw_readfn = raw_read,
6842 .writefn = pmcr_write, .raw_writefn = raw_write,
6843 };
6844 ARMCPRegInfo pmcr64 = {
6845 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
6846 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
6847 .access = PL0_RW, .accessfn = pmreg_access,
6848 .fgt = FGT_PMCR_EL0,
6849 .type = ARM_CP_IO,
6850 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
6851 .resetvalue = cpu->isar.reset_pmcr_el0,
6852 .readfn = pmcr_read, .raw_readfn = raw_read,
6853 .writefn = pmcr_write, .raw_writefn = raw_write,
6854 };
6855
6856 define_one_arm_cp_reg(cpu, &pmcr);
6857 define_one_arm_cp_reg(cpu, &pmcr64);
6858 for (i = 0; i < pmcrn; i++) {
6859 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i);
6860 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i);
6861 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i);
6862 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i);
6863 ARMCPRegInfo pmev_regs[] = {
6864 { .name = pmevcntr_name, .cp = 15, .crn = 14,
6865 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
6866 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
6867 .fgt = FGT_PMEVCNTRN_EL0,
6868 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
6869 .accessfn = pmreg_access_xevcntr },
6870 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64,
6871 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)),
6872 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access_xevcntr,
6873 .type = ARM_CP_IO,
6874 .fgt = FGT_PMEVCNTRN_EL0,
6875 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
6876 .raw_readfn = pmevcntr_rawread,
6877 .raw_writefn = pmevcntr_rawwrite },
6878 { .name = pmevtyper_name, .cp = 15, .crn = 14,
6879 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
6880 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
6881 .fgt = FGT_PMEVTYPERN_EL0,
6882 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
6883 .accessfn = pmreg_access },
6884 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64,
6885 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)),
6886 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
6887 .fgt = FGT_PMEVTYPERN_EL0,
6888 .type = ARM_CP_IO,
6889 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
6890 .raw_writefn = pmevtyper_rawwrite },
6891 };
6892 define_arm_cp_regs(cpu, pmev_regs);
6893 g_free(pmevcntr_name);
6894 g_free(pmevcntr_el0_name);
6895 g_free(pmevtyper_name);
6896 g_free(pmevtyper_el0_name);
6897 }
6898 if (cpu_isar_feature(aa32_pmuv3p1, cpu)) {
6899 ARMCPRegInfo v81_pmu_regs[] = {
6900 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32,
6901 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4,
6902 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6903 .fgt = FGT_PMCEIDN_EL0,
6904 .resetvalue = extract64(cpu->pmceid0, 32, 32) },
6905 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32,
6906 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5,
6907 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6908 .fgt = FGT_PMCEIDN_EL0,
6909 .resetvalue = extract64(cpu->pmceid1, 32, 32) },
6910 };
6911 define_arm_cp_regs(cpu, v81_pmu_regs);
6912 }
6913 if (cpu_isar_feature(any_pmuv3p4, cpu)) {
6914 static const ARMCPRegInfo v84_pmmir = {
6915 .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH,
6916 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6,
6917 .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6918 .fgt = FGT_PMMIR_EL1,
6919 .resetvalue = 0
6920 };
6921 define_one_arm_cp_reg(cpu, &v84_pmmir);
6922 }
6923 }
6924
6925 #ifndef CONFIG_USER_ONLY
6926 /*
6927 * We don't know until after realize whether there's a GICv3
6928 * attached, and that is what registers the gicv3 sysregs.
6929 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
6930 * at runtime.
6931 */
id_pfr1_read(CPUARMState * env,const ARMCPRegInfo * ri)6932 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
6933 {
6934 ARMCPU *cpu = env_archcpu(env);
6935 uint64_t pfr1 = cpu->isar.id_pfr1;
6936
6937 if (env->gicv3state) {
6938 pfr1 |= 1 << 28;
6939 }
6940 return pfr1;
6941 }
6942
id_aa64pfr0_read(CPUARMState * env,const ARMCPRegInfo * ri)6943 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
6944 {
6945 ARMCPU *cpu = env_archcpu(env);
6946 uint64_t pfr0 = cpu->isar.id_aa64pfr0;
6947
6948 if (env->gicv3state) {
6949 pfr0 |= 1 << 24;
6950 }
6951 return pfr0;
6952 }
6953 #endif
6954
6955 /*
6956 * Shared logic between LORID and the rest of the LOR* registers.
6957 * Secure state exclusion has already been dealt with.
6958 */
access_lor_ns(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)6959 static CPAccessResult access_lor_ns(CPUARMState *env,
6960 const ARMCPRegInfo *ri, bool isread)
6961 {
6962 int el = arm_current_el(env);
6963
6964 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) {
6965 return CP_ACCESS_TRAP_EL2;
6966 }
6967 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) {
6968 return CP_ACCESS_TRAP_EL3;
6969 }
6970 return CP_ACCESS_OK;
6971 }
6972
access_lor_other(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)6973 static CPAccessResult access_lor_other(CPUARMState *env,
6974 const ARMCPRegInfo *ri, bool isread)
6975 {
6976 if (arm_is_secure_below_el3(env)) {
6977 /* UNDEF if SCR_EL3.NS == 0 */
6978 return CP_ACCESS_UNDEFINED;
6979 }
6980 return access_lor_ns(env, ri, isread);
6981 }
6982
6983 /*
6984 * A trivial implementation of ARMv8.1-LOR leaves all of these
6985 * registers fixed at 0, which indicates that there are zero
6986 * supported Limited Ordering regions.
6987 */
6988 static const ARMCPRegInfo lor_reginfo[] = {
6989 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64,
6990 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0,
6991 .access = PL1_RW, .accessfn = access_lor_other,
6992 .fgt = FGT_LORSA_EL1,
6993 .type = ARM_CP_CONST, .resetvalue = 0 },
6994 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64,
6995 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1,
6996 .access = PL1_RW, .accessfn = access_lor_other,
6997 .fgt = FGT_LOREA_EL1,
6998 .type = ARM_CP_CONST, .resetvalue = 0 },
6999 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64,
7000 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2,
7001 .access = PL1_RW, .accessfn = access_lor_other,
7002 .fgt = FGT_LORN_EL1,
7003 .type = ARM_CP_CONST, .resetvalue = 0 },
7004 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64,
7005 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3,
7006 .access = PL1_RW, .accessfn = access_lor_other,
7007 .fgt = FGT_LORC_EL1,
7008 .type = ARM_CP_CONST, .resetvalue = 0 },
7009 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64,
7010 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7,
7011 .access = PL1_R, .accessfn = access_lor_ns,
7012 .fgt = FGT_LORID_EL1,
7013 .type = ARM_CP_CONST, .resetvalue = 0 },
7014 };
7015
access_pauth(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)7016 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri,
7017 bool isread)
7018 {
7019 int el = arm_current_el(env);
7020
7021 if (el < 2 &&
7022 arm_is_el2_enabled(env) &&
7023 !(arm_hcr_el2_eff(env) & HCR_APK)) {
7024 return CP_ACCESS_TRAP_EL2;
7025 }
7026 if (el < 3 &&
7027 arm_feature(env, ARM_FEATURE_EL3) &&
7028 !(env->cp15.scr_el3 & SCR_APK)) {
7029 return CP_ACCESS_TRAP_EL3;
7030 }
7031 return CP_ACCESS_OK;
7032 }
7033
7034 static const ARMCPRegInfo pauth_reginfo[] = {
7035 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7036 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0,
7037 .access = PL1_RW, .accessfn = access_pauth,
7038 .fgt = FGT_APDAKEY,
7039 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) },
7040 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7041 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1,
7042 .access = PL1_RW, .accessfn = access_pauth,
7043 .fgt = FGT_APDAKEY,
7044 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) },
7045 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7046 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2,
7047 .access = PL1_RW, .accessfn = access_pauth,
7048 .fgt = FGT_APDBKEY,
7049 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) },
7050 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7051 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3,
7052 .access = PL1_RW, .accessfn = access_pauth,
7053 .fgt = FGT_APDBKEY,
7054 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) },
7055 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7056 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0,
7057 .access = PL1_RW, .accessfn = access_pauth,
7058 .fgt = FGT_APGAKEY,
7059 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) },
7060 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7061 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1,
7062 .access = PL1_RW, .accessfn = access_pauth,
7063 .fgt = FGT_APGAKEY,
7064 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) },
7065 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7066 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0,
7067 .access = PL1_RW, .accessfn = access_pauth,
7068 .fgt = FGT_APIAKEY,
7069 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) },
7070 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7071 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1,
7072 .access = PL1_RW, .accessfn = access_pauth,
7073 .fgt = FGT_APIAKEY,
7074 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) },
7075 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7076 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2,
7077 .access = PL1_RW, .accessfn = access_pauth,
7078 .fgt = FGT_APIBKEY,
7079 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) },
7080 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7081 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3,
7082 .access = PL1_RW, .accessfn = access_pauth,
7083 .fgt = FGT_APIBKEY,
7084 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) },
7085 };
7086
rndr_readfn(CPUARMState * env,const ARMCPRegInfo * ri)7087 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
7088 {
7089 Error *err = NULL;
7090 uint64_t ret;
7091
7092 /* Success sets NZCV = 0000. */
7093 env->NF = env->CF = env->VF = 0, env->ZF = 1;
7094
7095 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) {
7096 /*
7097 * ??? Failed, for unknown reasons in the crypto subsystem.
7098 * The best we can do is log the reason and return the
7099 * timed-out indication to the guest. There is no reason
7100 * we know to expect this failure to be transitory, so the
7101 * guest may well hang retrying the operation.
7102 */
7103 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s",
7104 ri->name, error_get_pretty(err));
7105 error_free(err);
7106
7107 env->ZF = 0; /* NZCF = 0100 */
7108 return 0;
7109 }
7110 return ret;
7111 }
7112
7113 /* We do not support re-seeding, so the two registers operate the same. */
7114 static const ARMCPRegInfo rndr_reginfo[] = {
7115 { .name = "RNDR", .state = ARM_CP_STATE_AA64,
7116 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
7117 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0,
7118 .access = PL0_R, .readfn = rndr_readfn },
7119 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64,
7120 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
7121 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1,
7122 .access = PL0_R, .readfn = rndr_readfn },
7123 };
7124
dccvap_writefn(CPUARMState * env,const ARMCPRegInfo * opaque,uint64_t value)7125 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque,
7126 uint64_t value)
7127 {
7128 #ifdef CONFIG_TCG
7129 ARMCPU *cpu = env_archcpu(env);
7130 /* CTR_EL0 System register -> DminLine, bits [19:16] */
7131 uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF);
7132 uint64_t vaddr_in = (uint64_t) value;
7133 uint64_t vaddr = vaddr_in & ~(dline_size - 1);
7134 void *haddr;
7135 int mem_idx = arm_env_mmu_index(env);
7136
7137 /* This won't be crossing page boundaries */
7138 haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC());
7139 if (haddr) {
7140 #ifndef CONFIG_USER_ONLY
7141
7142 ram_addr_t offset;
7143 MemoryRegion *mr;
7144
7145 /* RCU lock is already being held */
7146 mr = memory_region_from_host(haddr, &offset);
7147
7148 if (mr) {
7149 memory_region_writeback(mr, offset, dline_size);
7150 }
7151 #endif /*CONFIG_USER_ONLY*/
7152 }
7153 #else
7154 /* Handled by hardware accelerator. */
7155 g_assert_not_reached();
7156 #endif /* CONFIG_TCG */
7157 }
7158
7159 static const ARMCPRegInfo dcpop_reg[] = {
7160 { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64,
7161 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1,
7162 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
7163 .fgt = FGT_DCCVAP,
7164 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
7165 };
7166
7167 static const ARMCPRegInfo dcpodp_reg[] = {
7168 { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64,
7169 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1,
7170 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
7171 .fgt = FGT_DCCVADP,
7172 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
7173 };
7174
access_aa64_tid5(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)7175 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri,
7176 bool isread)
7177 {
7178 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) {
7179 return CP_ACCESS_TRAP_EL2;
7180 }
7181
7182 return CP_ACCESS_OK;
7183 }
7184
access_mte(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)7185 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri,
7186 bool isread)
7187 {
7188 int el = arm_current_el(env);
7189 if (el < 2 && arm_is_el2_enabled(env)) {
7190 uint64_t hcr = arm_hcr_el2_eff(env);
7191 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
7192 return CP_ACCESS_TRAP_EL2;
7193 }
7194 }
7195 if (el < 3 &&
7196 arm_feature(env, ARM_FEATURE_EL3) &&
7197 !(env->cp15.scr_el3 & SCR_ATA)) {
7198 return CP_ACCESS_TRAP_EL3;
7199 }
7200 return CP_ACCESS_OK;
7201 }
7202
access_tfsr_el1(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)7203 static CPAccessResult access_tfsr_el1(CPUARMState *env, const ARMCPRegInfo *ri,
7204 bool isread)
7205 {
7206 CPAccessResult nv1 = access_nv1(env, ri, isread);
7207
7208 if (nv1 != CP_ACCESS_OK) {
7209 return nv1;
7210 }
7211 return access_mte(env, ri, isread);
7212 }
7213
access_tfsr_el2(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)7214 static CPAccessResult access_tfsr_el2(CPUARMState *env, const ARMCPRegInfo *ri,
7215 bool isread)
7216 {
7217 /*
7218 * TFSR_EL2: similar to generic access_mte(), but we need to
7219 * account for FEAT_NV. At EL1 this must be a FEAT_NV access;
7220 * if NV2 is enabled then we will redirect this to TFSR_EL1
7221 * after doing the HCR and SCR ATA traps; otherwise this will
7222 * be a trap to EL2 and the HCR/SCR traps do not apply.
7223 */
7224 int el = arm_current_el(env);
7225
7226 if (el == 1 && (arm_hcr_el2_eff(env) & HCR_NV2)) {
7227 return CP_ACCESS_OK;
7228 }
7229 if (el < 2 && arm_is_el2_enabled(env)) {
7230 uint64_t hcr = arm_hcr_el2_eff(env);
7231 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
7232 return CP_ACCESS_TRAP_EL2;
7233 }
7234 }
7235 if (el < 3 &&
7236 arm_feature(env, ARM_FEATURE_EL3) &&
7237 !(env->cp15.scr_el3 & SCR_ATA)) {
7238 return CP_ACCESS_TRAP_EL3;
7239 }
7240 return CP_ACCESS_OK;
7241 }
7242
tco_read(CPUARMState * env,const ARMCPRegInfo * ri)7243 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri)
7244 {
7245 return env->pstate & PSTATE_TCO;
7246 }
7247
tco_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t val)7248 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
7249 {
7250 env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO);
7251 }
7252
7253 static const ARMCPRegInfo mte_reginfo[] = {
7254 { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64,
7255 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1,
7256 .access = PL1_RW, .accessfn = access_mte,
7257 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) },
7258 { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64,
7259 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0,
7260 .access = PL1_RW, .accessfn = access_tfsr_el1,
7261 .nv2_redirect_offset = 0x190 | NV2_REDIR_NV1,
7262 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) },
7263 { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64,
7264 .type = ARM_CP_NV2_REDIRECT,
7265 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0,
7266 .access = PL2_RW, .accessfn = access_tfsr_el2,
7267 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) },
7268 { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64,
7269 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0,
7270 .access = PL3_RW,
7271 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) },
7272 { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64,
7273 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5,
7274 .access = PL1_RW, .accessfn = access_mte,
7275 .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) },
7276 { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64,
7277 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6,
7278 .access = PL1_RW, .accessfn = access_mte,
7279 .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) },
7280 { .name = "TCO", .state = ARM_CP_STATE_AA64,
7281 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
7282 .type = ARM_CP_NO_RAW,
7283 .access = PL0_RW, .readfn = tco_read, .writefn = tco_write },
7284 { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64,
7285 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3,
7286 .type = ARM_CP_NOP, .access = PL1_W,
7287 .fgt = FGT_DCIVAC,
7288 .accessfn = aa64_cacheop_poc_access },
7289 { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64,
7290 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4,
7291 .fgt = FGT_DCISW,
7292 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7293 { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64,
7294 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5,
7295 .type = ARM_CP_NOP, .access = PL1_W,
7296 .fgt = FGT_DCIVAC,
7297 .accessfn = aa64_cacheop_poc_access },
7298 { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64,
7299 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6,
7300 .fgt = FGT_DCISW,
7301 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7302 { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64,
7303 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4,
7304 .fgt = FGT_DCCSW,
7305 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7306 { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64,
7307 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6,
7308 .fgt = FGT_DCCSW,
7309 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7310 { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64,
7311 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4,
7312 .fgt = FGT_DCCISW,
7313 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7314 { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64,
7315 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6,
7316 .fgt = FGT_DCCISW,
7317 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7318 };
7319
7320 static const ARMCPRegInfo mte_tco_ro_reginfo[] = {
7321 { .name = "TCO", .state = ARM_CP_STATE_AA64,
7322 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
7323 .type = ARM_CP_CONST, .access = PL0_RW, },
7324 };
7325
7326 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = {
7327 { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64,
7328 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3,
7329 .type = ARM_CP_NOP, .access = PL0_W,
7330 .fgt = FGT_DCCVAC,
7331 .accessfn = aa64_cacheop_poc_access },
7332 { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64,
7333 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5,
7334 .type = ARM_CP_NOP, .access = PL0_W,
7335 .fgt = FGT_DCCVAC,
7336 .accessfn = aa64_cacheop_poc_access },
7337 { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64,
7338 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3,
7339 .type = ARM_CP_NOP, .access = PL0_W,
7340 .fgt = FGT_DCCVAP,
7341 .accessfn = aa64_cacheop_poc_access },
7342 { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64,
7343 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5,
7344 .type = ARM_CP_NOP, .access = PL0_W,
7345 .fgt = FGT_DCCVAP,
7346 .accessfn = aa64_cacheop_poc_access },
7347 { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64,
7348 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3,
7349 .type = ARM_CP_NOP, .access = PL0_W,
7350 .fgt = FGT_DCCVADP,
7351 .accessfn = aa64_cacheop_poc_access },
7352 { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64,
7353 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5,
7354 .type = ARM_CP_NOP, .access = PL0_W,
7355 .fgt = FGT_DCCVADP,
7356 .accessfn = aa64_cacheop_poc_access },
7357 { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64,
7358 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3,
7359 .type = ARM_CP_NOP, .access = PL0_W,
7360 .fgt = FGT_DCCIVAC,
7361 .accessfn = aa64_cacheop_poc_access },
7362 { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64,
7363 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5,
7364 .type = ARM_CP_NOP, .access = PL0_W,
7365 .fgt = FGT_DCCIVAC,
7366 .accessfn = aa64_cacheop_poc_access },
7367 { .name = "DC_GVA", .state = ARM_CP_STATE_AA64,
7368 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3,
7369 .access = PL0_W, .type = ARM_CP_DC_GVA,
7370 #ifndef CONFIG_USER_ONLY
7371 /* Avoid overhead of an access check that always passes in user-mode */
7372 .accessfn = aa64_zva_access,
7373 .fgt = FGT_DCZVA,
7374 #endif
7375 },
7376 { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64,
7377 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4,
7378 .access = PL0_W, .type = ARM_CP_DC_GZVA,
7379 #ifndef CONFIG_USER_ONLY
7380 /* Avoid overhead of an access check that always passes in user-mode */
7381 .accessfn = aa64_zva_access,
7382 .fgt = FGT_DCZVA,
7383 #endif
7384 },
7385 };
7386
access_scxtnum(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)7387 static CPAccessResult access_scxtnum(CPUARMState *env, const ARMCPRegInfo *ri,
7388 bool isread)
7389 {
7390 uint64_t hcr = arm_hcr_el2_eff(env);
7391 int el = arm_current_el(env);
7392
7393 if (el == 0 && !((hcr & HCR_E2H) && (hcr & HCR_TGE))) {
7394 if (env->cp15.sctlr_el[1] & SCTLR_TSCXT) {
7395 if (hcr & HCR_TGE) {
7396 return CP_ACCESS_TRAP_EL2;
7397 }
7398 return CP_ACCESS_TRAP_EL1;
7399 }
7400 } else if (el < 2 && (env->cp15.sctlr_el[2] & SCTLR_TSCXT)) {
7401 return CP_ACCESS_TRAP_EL2;
7402 }
7403 if (el < 2 && arm_is_el2_enabled(env) && !(hcr & HCR_ENSCXT)) {
7404 return CP_ACCESS_TRAP_EL2;
7405 }
7406 if (el < 3
7407 && arm_feature(env, ARM_FEATURE_EL3)
7408 && !(env->cp15.scr_el3 & SCR_ENSCXT)) {
7409 return CP_ACCESS_TRAP_EL3;
7410 }
7411 return CP_ACCESS_OK;
7412 }
7413
access_scxtnum_el1(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)7414 static CPAccessResult access_scxtnum_el1(CPUARMState *env,
7415 const ARMCPRegInfo *ri,
7416 bool isread)
7417 {
7418 CPAccessResult nv1 = access_nv1(env, ri, isread);
7419
7420 if (nv1 != CP_ACCESS_OK) {
7421 return nv1;
7422 }
7423 return access_scxtnum(env, ri, isread);
7424 }
7425
7426 static const ARMCPRegInfo scxtnum_reginfo[] = {
7427 { .name = "SCXTNUM_EL0", .state = ARM_CP_STATE_AA64,
7428 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 7,
7429 .access = PL0_RW, .accessfn = access_scxtnum,
7430 .fgt = FGT_SCXTNUM_EL0,
7431 .fieldoffset = offsetof(CPUARMState, scxtnum_el[0]) },
7432 { .name = "SCXTNUM_EL1", .state = ARM_CP_STATE_AA64,
7433 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 7,
7434 .access = PL1_RW, .accessfn = access_scxtnum_el1,
7435 .fgt = FGT_SCXTNUM_EL1,
7436 .nv2_redirect_offset = 0x188 | NV2_REDIR_NV1,
7437 .fieldoffset = offsetof(CPUARMState, scxtnum_el[1]) },
7438 { .name = "SCXTNUM_EL2", .state = ARM_CP_STATE_AA64,
7439 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 7,
7440 .access = PL2_RW, .accessfn = access_scxtnum,
7441 .fieldoffset = offsetof(CPUARMState, scxtnum_el[2]) },
7442 { .name = "SCXTNUM_EL3", .state = ARM_CP_STATE_AA64,
7443 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 7,
7444 .access = PL3_RW,
7445 .fieldoffset = offsetof(CPUARMState, scxtnum_el[3]) },
7446 };
7447
access_fgt(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)7448 static CPAccessResult access_fgt(CPUARMState *env, const ARMCPRegInfo *ri,
7449 bool isread)
7450 {
7451 if (arm_current_el(env) == 2 &&
7452 arm_feature(env, ARM_FEATURE_EL3) && !(env->cp15.scr_el3 & SCR_FGTEN)) {
7453 return CP_ACCESS_TRAP_EL3;
7454 }
7455 return CP_ACCESS_OK;
7456 }
7457
7458 static const ARMCPRegInfo fgt_reginfo[] = {
7459 { .name = "HFGRTR_EL2", .state = ARM_CP_STATE_AA64,
7460 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
7461 .nv2_redirect_offset = 0x1b8,
7462 .access = PL2_RW, .accessfn = access_fgt,
7463 .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HFGRTR]) },
7464 { .name = "HFGWTR_EL2", .state = ARM_CP_STATE_AA64,
7465 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 5,
7466 .nv2_redirect_offset = 0x1c0,
7467 .access = PL2_RW, .accessfn = access_fgt,
7468 .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HFGWTR]) },
7469 { .name = "HDFGRTR_EL2", .state = ARM_CP_STATE_AA64,
7470 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 4,
7471 .nv2_redirect_offset = 0x1d0,
7472 .access = PL2_RW, .accessfn = access_fgt,
7473 .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HDFGRTR]) },
7474 { .name = "HDFGWTR_EL2", .state = ARM_CP_STATE_AA64,
7475 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 5,
7476 .nv2_redirect_offset = 0x1d8,
7477 .access = PL2_RW, .accessfn = access_fgt,
7478 .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HDFGWTR]) },
7479 { .name = "HFGITR_EL2", .state = ARM_CP_STATE_AA64,
7480 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 6,
7481 .nv2_redirect_offset = 0x1c8,
7482 .access = PL2_RW, .accessfn = access_fgt,
7483 .fieldoffset = offsetof(CPUARMState, cp15.fgt_exec[FGTREG_HFGITR]) },
7484 };
7485
vncr_write(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)7486 static void vncr_write(CPUARMState *env, const ARMCPRegInfo *ri,
7487 uint64_t value)
7488 {
7489 /*
7490 * Clear the RES0 bottom 12 bits; this means at runtime we can guarantee
7491 * that VNCR_EL2 + offset is 64-bit aligned. We don't need to do anything
7492 * about the RESS bits at the top -- we choose the "generate an EL2
7493 * translation abort on use" CONSTRAINED UNPREDICTABLE option (i.e. let
7494 * the ptw.c code detect the resulting invalid address).
7495 */
7496 env->cp15.vncr_el2 = value & ~0xfffULL;
7497 }
7498
7499 static const ARMCPRegInfo nv2_reginfo[] = {
7500 { .name = "VNCR_EL2", .state = ARM_CP_STATE_AA64,
7501 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 2, .opc2 = 0,
7502 .access = PL2_RW,
7503 .writefn = vncr_write,
7504 .nv2_redirect_offset = 0xb0,
7505 .fieldoffset = offsetof(CPUARMState, cp15.vncr_el2) },
7506 };
7507
access_predinv(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)7508 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri,
7509 bool isread)
7510 {
7511 int el = arm_current_el(env);
7512
7513 if (el == 0) {
7514 uint64_t sctlr = arm_sctlr(env, el);
7515 if (!(sctlr & SCTLR_EnRCTX)) {
7516 return CP_ACCESS_TRAP_EL1;
7517 }
7518 } else if (el == 1) {
7519 uint64_t hcr = arm_hcr_el2_eff(env);
7520 if (hcr & HCR_NV) {
7521 return CP_ACCESS_TRAP_EL2;
7522 }
7523 }
7524 return CP_ACCESS_OK;
7525 }
7526
7527 static const ARMCPRegInfo predinv_reginfo[] = {
7528 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64,
7529 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4,
7530 .fgt = FGT_CFPRCTX,
7531 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7532 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64,
7533 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5,
7534 .fgt = FGT_DVPRCTX,
7535 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7536 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64,
7537 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7,
7538 .fgt = FGT_CPPRCTX,
7539 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7540 /*
7541 * Note the AArch32 opcodes have a different OPC1.
7542 */
7543 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32,
7544 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4,
7545 .fgt = FGT_CFPRCTX,
7546 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7547 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32,
7548 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5,
7549 .fgt = FGT_DVPRCTX,
7550 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7551 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32,
7552 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7,
7553 .fgt = FGT_CPPRCTX,
7554 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7555 };
7556
ccsidr2_read(CPUARMState * env,const ARMCPRegInfo * ri)7557 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri)
7558 {
7559 /* Read the high 32 bits of the current CCSIDR */
7560 return extract64(ccsidr_read(env, ri), 32, 32);
7561 }
7562
7563 static const ARMCPRegInfo ccsidr2_reginfo[] = {
7564 { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH,
7565 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2,
7566 .access = PL1_R,
7567 .accessfn = access_tid4,
7568 .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW },
7569 };
7570
access_aa64_tid3(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)7571 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
7572 bool isread)
7573 {
7574 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) {
7575 return CP_ACCESS_TRAP_EL2;
7576 }
7577
7578 return CP_ACCESS_OK;
7579 }
7580
access_aa32_tid3(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)7581 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
7582 bool isread)
7583 {
7584 if (arm_feature(env, ARM_FEATURE_V8)) {
7585 return access_aa64_tid3(env, ri, isread);
7586 }
7587
7588 return CP_ACCESS_OK;
7589 }
7590
access_jazelle(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)7591 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri,
7592 bool isread)
7593 {
7594 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) {
7595 return CP_ACCESS_TRAP_EL2;
7596 }
7597
7598 return CP_ACCESS_OK;
7599 }
7600
access_joscr_jmcr(CPUARMState * env,const ARMCPRegInfo * ri,bool isread)7601 static CPAccessResult access_joscr_jmcr(CPUARMState *env,
7602 const ARMCPRegInfo *ri, bool isread)
7603 {
7604 /*
7605 * HSTR.TJDBX traps JOSCR and JMCR accesses, but it exists only
7606 * in v7A, not in v8A.
7607 */
7608 if (!arm_feature(env, ARM_FEATURE_V8) &&
7609 arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) &&
7610 (env->cp15.hstr_el2 & HSTR_TJDBX)) {
7611 return CP_ACCESS_TRAP_EL2;
7612 }
7613 return CP_ACCESS_OK;
7614 }
7615
7616 static const ARMCPRegInfo jazelle_regs[] = {
7617 { .name = "JIDR",
7618 .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0,
7619 .access = PL1_R, .accessfn = access_jazelle,
7620 .type = ARM_CP_CONST, .resetvalue = 0 },
7621 { .name = "JOSCR",
7622 .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0,
7623 .accessfn = access_joscr_jmcr,
7624 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
7625 { .name = "JMCR",
7626 .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0,
7627 .accessfn = access_joscr_jmcr,
7628 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
7629 };
7630
7631 static const ARMCPRegInfo contextidr_el2 = {
7632 .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64,
7633 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1,
7634 .access = PL2_RW,
7635 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2])
7636 };
7637
7638 static const ARMCPRegInfo vhe_reginfo[] = {
7639 { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64,
7640 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1,
7641 .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write,
7642 .raw_writefn = raw_write,
7643 .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) },
7644 #ifndef CONFIG_USER_ONLY
7645 { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64,
7646 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2,
7647 .fieldoffset =
7648 offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval),
7649 .type = ARM_CP_IO, .access = PL2_RW,
7650 .writefn = gt_hv_cval_write, .raw_writefn = raw_write },
7651 { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
7652 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0,
7653 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
7654 .resetfn = gt_hv_timer_reset,
7655 .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write },
7656 { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH,
7657 .type = ARM_CP_IO,
7658 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1,
7659 .access = PL2_RW,
7660 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl),
7661 .writefn = gt_hv_ctl_write, .raw_writefn = raw_write },
7662 { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64,
7663 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1,
7664 .type = ARM_CP_IO | ARM_CP_ALIAS,
7665 .access = PL2_RW, .accessfn = access_el1nvpct,
7666 .nv2_redirect_offset = 0x180 | NV2_REDIR_NO_NV1,
7667 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
7668 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write },
7669 { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64,
7670 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1,
7671 .type = ARM_CP_IO | ARM_CP_ALIAS,
7672 .access = PL2_RW, .accessfn = access_el1nvvct,
7673 .nv2_redirect_offset = 0x170 | NV2_REDIR_NO_NV1,
7674 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
7675 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write },
7676 { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64,
7677 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0,
7678 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
7679 .access = PL2_RW, .accessfn = e2h_access,
7680 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write },
7681 { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64,
7682 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0,
7683 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
7684 .access = PL2_RW, .accessfn = e2h_access,
7685 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write },
7686 { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64,
7687 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2,
7688 .type = ARM_CP_IO | ARM_CP_ALIAS,
7689 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
7690 .nv2_redirect_offset = 0x178 | NV2_REDIR_NO_NV1,
7691 .access = PL2_RW, .accessfn = access_el1nvpct,
7692 .writefn = gt_phys_cval_write, .raw_writefn = raw_write },
7693 { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64,
7694 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2,
7695 .type = ARM_CP_IO | ARM_CP_ALIAS,
7696 .nv2_redirect_offset = 0x168 | NV2_REDIR_NO_NV1,
7697 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
7698 .access = PL2_RW, .accessfn = access_el1nvvct,
7699 .writefn = gt_virt_cval_write, .raw_writefn = raw_write },
7700 #endif
7701 };
7702
7703 #ifndef CONFIG_USER_ONLY
7704 static const ARMCPRegInfo ats1e1_reginfo[] = {
7705 { .name = "AT_S1E1RP", .state = ARM_CP_STATE_AA64,
7706 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
7707 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7708 .fgt = FGT_ATS1E1RP,
7709 .accessfn = at_s1e01_access, .writefn = ats_write64 },
7710 { .name = "AT_S1E1WP", .state = ARM_CP_STATE_AA64,
7711 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
7712 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7713 .fgt = FGT_ATS1E1WP,
7714 .accessfn = at_s1e01_access, .writefn = ats_write64 },
7715 };
7716
7717 static const ARMCPRegInfo ats1cp_reginfo[] = {
7718 { .name = "ATS1CPRP",
7719 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
7720 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7721 .writefn = ats_write },
7722 { .name = "ATS1CPWP",
7723 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
7724 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7725 .writefn = ats_write },
7726 };
7727 #endif
7728
7729 /*
7730 * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and
7731 * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field
7732 * is non-zero, which is never for ARMv7, optionally in ARMv8
7733 * and mandatorily for ARMv8.2 and up.
7734 * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's
7735 * implementation is RAZ/WI we can ignore this detail, as we
7736 * do for ACTLR.
7737 */
7738 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = {
7739 { .name = "ACTLR2", .state = ARM_CP_STATE_AA32,
7740 .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3,
7741 .access = PL1_RW, .accessfn = access_tacr,
7742 .type = ARM_CP_CONST, .resetvalue = 0 },
7743 { .name = "HACTLR2", .state = ARM_CP_STATE_AA32,
7744 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3,
7745 .access = PL2_RW, .type = ARM_CP_CONST,
7746 .resetvalue = 0 },
7747 };
7748
register_cp_regs_for_features(ARMCPU * cpu)7749 void register_cp_regs_for_features(ARMCPU *cpu)
7750 {
7751 /* Register all the coprocessor registers based on feature bits */
7752 CPUARMState *env = &cpu->env;
7753 if (arm_feature(env, ARM_FEATURE_M)) {
7754 /* M profile has no coprocessor registers */
7755 return;
7756 }
7757
7758 define_arm_cp_regs(cpu, cp_reginfo);
7759 if (!arm_feature(env, ARM_FEATURE_V8)) {
7760 /*
7761 * Must go early as it is full of wildcards that may be
7762 * overridden by later definitions.
7763 */
7764 define_arm_cp_regs(cpu, not_v8_cp_reginfo);
7765 }
7766
7767 #ifndef CONFIG_USER_ONLY
7768 define_tlb_insn_regs(cpu);
7769 #endif
7770
7771 if (arm_feature(env, ARM_FEATURE_V6)) {
7772 /* The ID registers all have impdef reset values */
7773 ARMCPRegInfo v6_idregs[] = {
7774 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
7775 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
7776 .access = PL1_R, .type = ARM_CP_CONST,
7777 .accessfn = access_aa32_tid3,
7778 .resetvalue = cpu->isar.id_pfr0 },
7779 /*
7780 * ID_PFR1 is not a plain ARM_CP_CONST because we don't know
7781 * the value of the GIC field until after we define these regs.
7782 */
7783 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
7784 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
7785 .access = PL1_R, .type = ARM_CP_NO_RAW,
7786 .accessfn = access_aa32_tid3,
7787 #ifdef CONFIG_USER_ONLY
7788 .type = ARM_CP_CONST,
7789 .resetvalue = cpu->isar.id_pfr1,
7790 #else
7791 .type = ARM_CP_NO_RAW,
7792 .accessfn = access_aa32_tid3,
7793 .readfn = id_pfr1_read,
7794 .writefn = arm_cp_write_ignore
7795 #endif
7796 },
7797 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
7798 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
7799 .access = PL1_R, .type = ARM_CP_CONST,
7800 .accessfn = access_aa32_tid3,
7801 .resetvalue = cpu->isar.id_dfr0 },
7802 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
7803 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
7804 .access = PL1_R, .type = ARM_CP_CONST,
7805 .accessfn = access_aa32_tid3,
7806 .resetvalue = cpu->id_afr0 },
7807 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
7808 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
7809 .access = PL1_R, .type = ARM_CP_CONST,
7810 .accessfn = access_aa32_tid3,
7811 .resetvalue = cpu->isar.id_mmfr0 },
7812 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
7813 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
7814 .access = PL1_R, .type = ARM_CP_CONST,
7815 .accessfn = access_aa32_tid3,
7816 .resetvalue = cpu->isar.id_mmfr1 },
7817 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
7818 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
7819 .access = PL1_R, .type = ARM_CP_CONST,
7820 .accessfn = access_aa32_tid3,
7821 .resetvalue = cpu->isar.id_mmfr2 },
7822 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
7823 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
7824 .access = PL1_R, .type = ARM_CP_CONST,
7825 .accessfn = access_aa32_tid3,
7826 .resetvalue = cpu->isar.id_mmfr3 },
7827 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
7828 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
7829 .access = PL1_R, .type = ARM_CP_CONST,
7830 .accessfn = access_aa32_tid3,
7831 .resetvalue = cpu->isar.id_isar0 },
7832 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
7833 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
7834 .access = PL1_R, .type = ARM_CP_CONST,
7835 .accessfn = access_aa32_tid3,
7836 .resetvalue = cpu->isar.id_isar1 },
7837 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
7838 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
7839 .access = PL1_R, .type = ARM_CP_CONST,
7840 .accessfn = access_aa32_tid3,
7841 .resetvalue = cpu->isar.id_isar2 },
7842 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
7843 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
7844 .access = PL1_R, .type = ARM_CP_CONST,
7845 .accessfn = access_aa32_tid3,
7846 .resetvalue = cpu->isar.id_isar3 },
7847 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
7848 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
7849 .access = PL1_R, .type = ARM_CP_CONST,
7850 .accessfn = access_aa32_tid3,
7851 .resetvalue = cpu->isar.id_isar4 },
7852 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
7853 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
7854 .access = PL1_R, .type = ARM_CP_CONST,
7855 .accessfn = access_aa32_tid3,
7856 .resetvalue = cpu->isar.id_isar5 },
7857 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
7858 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
7859 .access = PL1_R, .type = ARM_CP_CONST,
7860 .accessfn = access_aa32_tid3,
7861 .resetvalue = cpu->isar.id_mmfr4 },
7862 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH,
7863 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
7864 .access = PL1_R, .type = ARM_CP_CONST,
7865 .accessfn = access_aa32_tid3,
7866 .resetvalue = cpu->isar.id_isar6 },
7867 };
7868 define_arm_cp_regs(cpu, v6_idregs);
7869 define_arm_cp_regs(cpu, v6_cp_reginfo);
7870 } else {
7871 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
7872 }
7873 if (arm_feature(env, ARM_FEATURE_V6K)) {
7874 define_arm_cp_regs(cpu, v6k_cp_reginfo);
7875 }
7876 if (arm_feature(env, ARM_FEATURE_V7VE)) {
7877 define_arm_cp_regs(cpu, pmovsset_cp_reginfo);
7878 }
7879 if (arm_feature(env, ARM_FEATURE_V7)) {
7880 ARMCPRegInfo clidr = {
7881 .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
7882 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
7883 .access = PL1_R, .type = ARM_CP_CONST,
7884 .accessfn = access_tid4,
7885 .fgt = FGT_CLIDR_EL1,
7886 .resetvalue = cpu->clidr
7887 };
7888 define_one_arm_cp_reg(cpu, &clidr);
7889 define_arm_cp_regs(cpu, v7_cp_reginfo);
7890 define_debug_regs(cpu);
7891 define_pmu_regs(cpu);
7892 } else {
7893 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
7894 }
7895 if (arm_feature(env, ARM_FEATURE_V8)) {
7896 /*
7897 * v8 ID registers, which all have impdef reset values.
7898 * Note that within the ID register ranges the unused slots
7899 * must all RAZ, not UNDEF; future architecture versions may
7900 * define new registers here.
7901 * ID registers which are AArch64 views of the AArch32 ID registers
7902 * which already existed in v6 and v7 are handled elsewhere,
7903 * in v6_idregs[].
7904 */
7905 int i;
7906 ARMCPRegInfo v8_idregs[] = {
7907 /*
7908 * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system
7909 * emulation because we don't know the right value for the
7910 * GIC field until after we define these regs.
7911 */
7912 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
7913 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
7914 .access = PL1_R,
7915 #ifdef CONFIG_USER_ONLY
7916 .type = ARM_CP_CONST,
7917 .resetvalue = cpu->isar.id_aa64pfr0
7918 #else
7919 .type = ARM_CP_NO_RAW,
7920 .accessfn = access_aa64_tid3,
7921 .readfn = id_aa64pfr0_read,
7922 .writefn = arm_cp_write_ignore
7923 #endif
7924 },
7925 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
7926 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
7927 .access = PL1_R, .type = ARM_CP_CONST,
7928 .accessfn = access_aa64_tid3,
7929 .resetvalue = cpu->isar.id_aa64pfr1},
7930 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7931 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
7932 .access = PL1_R, .type = ARM_CP_CONST,
7933 .accessfn = access_aa64_tid3,
7934 .resetvalue = 0 },
7935 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7936 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
7937 .access = PL1_R, .type = ARM_CP_CONST,
7938 .accessfn = access_aa64_tid3,
7939 .resetvalue = 0 },
7940 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64,
7941 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
7942 .access = PL1_R, .type = ARM_CP_CONST,
7943 .accessfn = access_aa64_tid3,
7944 .resetvalue = cpu->isar.id_aa64zfr0 },
7945 { .name = "ID_AA64SMFR0_EL1", .state = ARM_CP_STATE_AA64,
7946 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
7947 .access = PL1_R, .type = ARM_CP_CONST,
7948 .accessfn = access_aa64_tid3,
7949 .resetvalue = cpu->isar.id_aa64smfr0 },
7950 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7951 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
7952 .access = PL1_R, .type = ARM_CP_CONST,
7953 .accessfn = access_aa64_tid3,
7954 .resetvalue = 0 },
7955 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7956 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
7957 .access = PL1_R, .type = ARM_CP_CONST,
7958 .accessfn = access_aa64_tid3,
7959 .resetvalue = 0 },
7960 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
7961 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
7962 .access = PL1_R, .type = ARM_CP_CONST,
7963 .accessfn = access_aa64_tid3,
7964 .resetvalue = cpu->isar.id_aa64dfr0 },
7965 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
7966 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
7967 .access = PL1_R, .type = ARM_CP_CONST,
7968 .accessfn = access_aa64_tid3,
7969 .resetvalue = cpu->isar.id_aa64dfr1 },
7970 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7971 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
7972 .access = PL1_R, .type = ARM_CP_CONST,
7973 .accessfn = access_aa64_tid3,
7974 .resetvalue = 0 },
7975 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7976 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
7977 .access = PL1_R, .type = ARM_CP_CONST,
7978 .accessfn = access_aa64_tid3,
7979 .resetvalue = 0 },
7980 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
7981 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
7982 .access = PL1_R, .type = ARM_CP_CONST,
7983 .accessfn = access_aa64_tid3,
7984 .resetvalue = cpu->id_aa64afr0 },
7985 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
7986 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
7987 .access = PL1_R, .type = ARM_CP_CONST,
7988 .accessfn = access_aa64_tid3,
7989 .resetvalue = cpu->id_aa64afr1 },
7990 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7991 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
7992 .access = PL1_R, .type = ARM_CP_CONST,
7993 .accessfn = access_aa64_tid3,
7994 .resetvalue = 0 },
7995 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7996 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
7997 .access = PL1_R, .type = ARM_CP_CONST,
7998 .accessfn = access_aa64_tid3,
7999 .resetvalue = 0 },
8000 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
8001 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
8002 .access = PL1_R, .type = ARM_CP_CONST,
8003 .accessfn = access_aa64_tid3,
8004 .resetvalue = cpu->isar.id_aa64isar0 },
8005 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
8006 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
8007 .access = PL1_R, .type = ARM_CP_CONST,
8008 .accessfn = access_aa64_tid3,
8009 .resetvalue = cpu->isar.id_aa64isar1 },
8010 { .name = "ID_AA64ISAR2_EL1", .state = ARM_CP_STATE_AA64,
8011 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
8012 .access = PL1_R, .type = ARM_CP_CONST,
8013 .accessfn = access_aa64_tid3,
8014 .resetvalue = cpu->isar.id_aa64isar2 },
8015 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8016 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
8017 .access = PL1_R, .type = ARM_CP_CONST,
8018 .accessfn = access_aa64_tid3,
8019 .resetvalue = 0 },
8020 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8021 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
8022 .access = PL1_R, .type = ARM_CP_CONST,
8023 .accessfn = access_aa64_tid3,
8024 .resetvalue = 0 },
8025 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8026 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
8027 .access = PL1_R, .type = ARM_CP_CONST,
8028 .accessfn = access_aa64_tid3,
8029 .resetvalue = 0 },
8030 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8031 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
8032 .access = PL1_R, .type = ARM_CP_CONST,
8033 .accessfn = access_aa64_tid3,
8034 .resetvalue = 0 },
8035 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8036 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
8037 .access = PL1_R, .type = ARM_CP_CONST,
8038 .accessfn = access_aa64_tid3,
8039 .resetvalue = 0 },
8040 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
8041 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
8042 .access = PL1_R, .type = ARM_CP_CONST,
8043 .accessfn = access_aa64_tid3,
8044 .resetvalue = cpu->isar.id_aa64mmfr0 },
8045 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
8046 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
8047 .access = PL1_R, .type = ARM_CP_CONST,
8048 .accessfn = access_aa64_tid3,
8049 .resetvalue = cpu->isar.id_aa64mmfr1 },
8050 { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64,
8051 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
8052 .access = PL1_R, .type = ARM_CP_CONST,
8053 .accessfn = access_aa64_tid3,
8054 .resetvalue = cpu->isar.id_aa64mmfr2 },
8055 { .name = "ID_AA64MMFR3_EL1", .state = ARM_CP_STATE_AA64,
8056 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
8057 .access = PL1_R, .type = ARM_CP_CONST,
8058 .accessfn = access_aa64_tid3,
8059 .resetvalue = cpu->isar.id_aa64mmfr3 },
8060 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8061 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
8062 .access = PL1_R, .type = ARM_CP_CONST,
8063 .accessfn = access_aa64_tid3,
8064 .resetvalue = 0 },
8065 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8066 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
8067 .access = PL1_R, .type = ARM_CP_CONST,
8068 .accessfn = access_aa64_tid3,
8069 .resetvalue = 0 },
8070 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8071 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
8072 .access = PL1_R, .type = ARM_CP_CONST,
8073 .accessfn = access_aa64_tid3,
8074 .resetvalue = 0 },
8075 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8076 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
8077 .access = PL1_R, .type = ARM_CP_CONST,
8078 .accessfn = access_aa64_tid3,
8079 .resetvalue = 0 },
8080 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
8081 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
8082 .access = PL1_R, .type = ARM_CP_CONST,
8083 .accessfn = access_aa64_tid3,
8084 .resetvalue = cpu->isar.mvfr0 },
8085 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
8086 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
8087 .access = PL1_R, .type = ARM_CP_CONST,
8088 .accessfn = access_aa64_tid3,
8089 .resetvalue = cpu->isar.mvfr1 },
8090 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
8091 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
8092 .access = PL1_R, .type = ARM_CP_CONST,
8093 .accessfn = access_aa64_tid3,
8094 .resetvalue = cpu->isar.mvfr2 },
8095 /*
8096 * "0, c0, c3, {0,1,2}" are the encodings corresponding to
8097 * AArch64 MVFR[012]_EL1. Define the STATE_AA32 encoding
8098 * as RAZ, since it is in the "reserved for future ID
8099 * registers, RAZ" part of the AArch32 encoding space.
8100 */
8101 { .name = "RES_0_C0_C3_0", .state = ARM_CP_STATE_AA32,
8102 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
8103 .access = PL1_R, .type = ARM_CP_CONST,
8104 .accessfn = access_aa64_tid3,
8105 .resetvalue = 0 },
8106 { .name = "RES_0_C0_C3_1", .state = ARM_CP_STATE_AA32,
8107 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
8108 .access = PL1_R, .type = ARM_CP_CONST,
8109 .accessfn = access_aa64_tid3,
8110 .resetvalue = 0 },
8111 { .name = "RES_0_C0_C3_2", .state = ARM_CP_STATE_AA32,
8112 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
8113 .access = PL1_R, .type = ARM_CP_CONST,
8114 .accessfn = access_aa64_tid3,
8115 .resetvalue = 0 },
8116 /*
8117 * Other encodings in "0, c0, c3, ..." are STATE_BOTH because
8118 * they're also RAZ for AArch64, and in v8 are gradually
8119 * being filled with AArch64-view-of-AArch32-ID-register
8120 * for new ID registers.
8121 */
8122 { .name = "RES_0_C0_C3_3", .state = ARM_CP_STATE_BOTH,
8123 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
8124 .access = PL1_R, .type = ARM_CP_CONST,
8125 .accessfn = access_aa64_tid3,
8126 .resetvalue = 0 },
8127 { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH,
8128 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
8129 .access = PL1_R, .type = ARM_CP_CONST,
8130 .accessfn = access_aa64_tid3,
8131 .resetvalue = cpu->isar.id_pfr2 },
8132 { .name = "ID_DFR1", .state = ARM_CP_STATE_BOTH,
8133 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
8134 .access = PL1_R, .type = ARM_CP_CONST,
8135 .accessfn = access_aa64_tid3,
8136 .resetvalue = cpu->isar.id_dfr1 },
8137 { .name = "ID_MMFR5", .state = ARM_CP_STATE_BOTH,
8138 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
8139 .access = PL1_R, .type = ARM_CP_CONST,
8140 .accessfn = access_aa64_tid3,
8141 .resetvalue = cpu->isar.id_mmfr5 },
8142 { .name = "RES_0_C0_C3_7", .state = ARM_CP_STATE_BOTH,
8143 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
8144 .access = PL1_R, .type = ARM_CP_CONST,
8145 .accessfn = access_aa64_tid3,
8146 .resetvalue = 0 },
8147 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
8148 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
8149 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8150 .fgt = FGT_PMCEIDN_EL0,
8151 .resetvalue = extract64(cpu->pmceid0, 0, 32) },
8152 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
8153 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
8154 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8155 .fgt = FGT_PMCEIDN_EL0,
8156 .resetvalue = cpu->pmceid0 },
8157 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
8158 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
8159 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8160 .fgt = FGT_PMCEIDN_EL0,
8161 .resetvalue = extract64(cpu->pmceid1, 0, 32) },
8162 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
8163 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
8164 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8165 .fgt = FGT_PMCEIDN_EL0,
8166 .resetvalue = cpu->pmceid1 },
8167 };
8168 #ifdef CONFIG_USER_ONLY
8169 static const ARMCPRegUserSpaceInfo v8_user_idregs[] = {
8170 { .name = "ID_AA64PFR0_EL1",
8171 .exported_bits = R_ID_AA64PFR0_FP_MASK |
8172 R_ID_AA64PFR0_ADVSIMD_MASK |
8173 R_ID_AA64PFR0_SVE_MASK |
8174 R_ID_AA64PFR0_DIT_MASK,
8175 .fixed_bits = (0x1u << R_ID_AA64PFR0_EL0_SHIFT) |
8176 (0x1u << R_ID_AA64PFR0_EL1_SHIFT) },
8177 { .name = "ID_AA64PFR1_EL1",
8178 .exported_bits = R_ID_AA64PFR1_BT_MASK |
8179 R_ID_AA64PFR1_SSBS_MASK |
8180 R_ID_AA64PFR1_MTE_MASK |
8181 R_ID_AA64PFR1_SME_MASK },
8182 { .name = "ID_AA64PFR*_EL1_RESERVED",
8183 .is_glob = true },
8184 { .name = "ID_AA64ZFR0_EL1",
8185 .exported_bits = R_ID_AA64ZFR0_SVEVER_MASK |
8186 R_ID_AA64ZFR0_AES_MASK |
8187 R_ID_AA64ZFR0_BITPERM_MASK |
8188 R_ID_AA64ZFR0_BFLOAT16_MASK |
8189 R_ID_AA64ZFR0_B16B16_MASK |
8190 R_ID_AA64ZFR0_SHA3_MASK |
8191 R_ID_AA64ZFR0_SM4_MASK |
8192 R_ID_AA64ZFR0_I8MM_MASK |
8193 R_ID_AA64ZFR0_F32MM_MASK |
8194 R_ID_AA64ZFR0_F64MM_MASK },
8195 { .name = "ID_AA64SMFR0_EL1",
8196 .exported_bits = R_ID_AA64SMFR0_F32F32_MASK |
8197 R_ID_AA64SMFR0_BI32I32_MASK |
8198 R_ID_AA64SMFR0_B16F32_MASK |
8199 R_ID_AA64SMFR0_F16F32_MASK |
8200 R_ID_AA64SMFR0_I8I32_MASK |
8201 R_ID_AA64SMFR0_F16F16_MASK |
8202 R_ID_AA64SMFR0_B16B16_MASK |
8203 R_ID_AA64SMFR0_I16I32_MASK |
8204 R_ID_AA64SMFR0_F64F64_MASK |
8205 R_ID_AA64SMFR0_I16I64_MASK |
8206 R_ID_AA64SMFR0_SMEVER_MASK |
8207 R_ID_AA64SMFR0_FA64_MASK },
8208 { .name = "ID_AA64MMFR0_EL1",
8209 .exported_bits = R_ID_AA64MMFR0_ECV_MASK,
8210 .fixed_bits = (0xfu << R_ID_AA64MMFR0_TGRAN64_SHIFT) |
8211 (0xfu << R_ID_AA64MMFR0_TGRAN4_SHIFT) },
8212 { .name = "ID_AA64MMFR1_EL1",
8213 .exported_bits = R_ID_AA64MMFR1_AFP_MASK },
8214 { .name = "ID_AA64MMFR2_EL1",
8215 .exported_bits = R_ID_AA64MMFR2_AT_MASK },
8216 { .name = "ID_AA64MMFR3_EL1",
8217 .exported_bits = 0 },
8218 { .name = "ID_AA64MMFR*_EL1_RESERVED",
8219 .is_glob = true },
8220 { .name = "ID_AA64DFR0_EL1",
8221 .fixed_bits = (0x6u << R_ID_AA64DFR0_DEBUGVER_SHIFT) },
8222 { .name = "ID_AA64DFR1_EL1" },
8223 { .name = "ID_AA64DFR*_EL1_RESERVED",
8224 .is_glob = true },
8225 { .name = "ID_AA64AFR*",
8226 .is_glob = true },
8227 { .name = "ID_AA64ISAR0_EL1",
8228 .exported_bits = R_ID_AA64ISAR0_AES_MASK |
8229 R_ID_AA64ISAR0_SHA1_MASK |
8230 R_ID_AA64ISAR0_SHA2_MASK |
8231 R_ID_AA64ISAR0_CRC32_MASK |
8232 R_ID_AA64ISAR0_ATOMIC_MASK |
8233 R_ID_AA64ISAR0_RDM_MASK |
8234 R_ID_AA64ISAR0_SHA3_MASK |
8235 R_ID_AA64ISAR0_SM3_MASK |
8236 R_ID_AA64ISAR0_SM4_MASK |
8237 R_ID_AA64ISAR0_DP_MASK |
8238 R_ID_AA64ISAR0_FHM_MASK |
8239 R_ID_AA64ISAR0_TS_MASK |
8240 R_ID_AA64ISAR0_RNDR_MASK },
8241 { .name = "ID_AA64ISAR1_EL1",
8242 .exported_bits = R_ID_AA64ISAR1_DPB_MASK |
8243 R_ID_AA64ISAR1_APA_MASK |
8244 R_ID_AA64ISAR1_API_MASK |
8245 R_ID_AA64ISAR1_JSCVT_MASK |
8246 R_ID_AA64ISAR1_FCMA_MASK |
8247 R_ID_AA64ISAR1_LRCPC_MASK |
8248 R_ID_AA64ISAR1_GPA_MASK |
8249 R_ID_AA64ISAR1_GPI_MASK |
8250 R_ID_AA64ISAR1_FRINTTS_MASK |
8251 R_ID_AA64ISAR1_SB_MASK |
8252 R_ID_AA64ISAR1_BF16_MASK |
8253 R_ID_AA64ISAR1_DGH_MASK |
8254 R_ID_AA64ISAR1_I8MM_MASK },
8255 { .name = "ID_AA64ISAR2_EL1",
8256 .exported_bits = R_ID_AA64ISAR2_WFXT_MASK |
8257 R_ID_AA64ISAR2_RPRES_MASK |
8258 R_ID_AA64ISAR2_GPA3_MASK |
8259 R_ID_AA64ISAR2_APA3_MASK |
8260 R_ID_AA64ISAR2_MOPS_MASK |
8261 R_ID_AA64ISAR2_BC_MASK |
8262 R_ID_AA64ISAR2_RPRFM_MASK |
8263 R_ID_AA64ISAR2_CSSC_MASK },
8264 { .name = "ID_AA64ISAR*_EL1_RESERVED",
8265 .is_glob = true },
8266 };
8267 modify_arm_cp_regs(v8_idregs, v8_user_idregs);
8268 #endif
8269 /*
8270 * RVBAR_EL1 and RMR_EL1 only implemented if EL1 is the highest EL.
8271 * TODO: For RMR, a write with bit 1 set should do something with
8272 * cpu_reset(). In the meantime, "the bit is strictly a request",
8273 * so we are in spec just ignoring writes.
8274 */
8275 if (!arm_feature(env, ARM_FEATURE_EL3) &&
8276 !arm_feature(env, ARM_FEATURE_EL2)) {
8277 ARMCPRegInfo el1_reset_regs[] = {
8278 { .name = "RVBAR_EL1", .state = ARM_CP_STATE_BOTH,
8279 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
8280 .access = PL1_R,
8281 .fieldoffset = offsetof(CPUARMState, cp15.rvbar) },
8282 { .name = "RMR_EL1", .state = ARM_CP_STATE_BOTH,
8283 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 2,
8284 .access = PL1_RW, .type = ARM_CP_CONST,
8285 .resetvalue = arm_feature(env, ARM_FEATURE_AARCH64) }
8286 };
8287 define_arm_cp_regs(cpu, el1_reset_regs);
8288 }
8289 define_arm_cp_regs(cpu, v8_idregs);
8290 define_arm_cp_regs(cpu, v8_cp_reginfo);
8291 if (cpu_isar_feature(aa64_aa32_el1, cpu)) {
8292 define_arm_cp_regs(cpu, v8_aa32_el1_reginfo);
8293 }
8294
8295 for (i = 4; i < 16; i++) {
8296 /*
8297 * Encodings in "0, c0, {c4-c7}, {0-7}" are RAZ for AArch32.
8298 * For pre-v8 cores there are RAZ patterns for these in
8299 * id_pre_v8_midr_cp_reginfo[]; for v8 we do that here.
8300 * v8 extends the "must RAZ" part of the ID register space
8301 * to also cover c0, 0, c{8-15}, {0-7}.
8302 * These are STATE_AA32 because in the AArch64 sysreg space
8303 * c4-c7 is where the AArch64 ID registers live (and we've
8304 * already defined those in v8_idregs[]), and c8-c15 are not
8305 * "must RAZ" for AArch64.
8306 */
8307 g_autofree char *name = g_strdup_printf("RES_0_C0_C%d_X", i);
8308 ARMCPRegInfo v8_aa32_raz_idregs = {
8309 .name = name,
8310 .state = ARM_CP_STATE_AA32,
8311 .cp = 15, .opc1 = 0, .crn = 0, .crm = i, .opc2 = CP_ANY,
8312 .access = PL1_R, .type = ARM_CP_CONST,
8313 .accessfn = access_aa64_tid3,
8314 .resetvalue = 0 };
8315 define_one_arm_cp_reg(cpu, &v8_aa32_raz_idregs);
8316 }
8317 }
8318
8319 /*
8320 * Register the base EL2 cpregs.
8321 * Pre v8, these registers are implemented only as part of the
8322 * Virtualization Extensions (EL2 present). Beginning with v8,
8323 * if EL2 is missing but EL3 is enabled, mostly these become
8324 * RES0 from EL3, with some specific exceptions.
8325 */
8326 if (arm_feature(env, ARM_FEATURE_EL2)
8327 || (arm_feature(env, ARM_FEATURE_EL3)
8328 && arm_feature(env, ARM_FEATURE_V8))) {
8329 uint64_t vmpidr_def = mpidr_read_val(env);
8330 ARMCPRegInfo vpidr_regs[] = {
8331 { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
8332 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
8333 .access = PL2_RW, .accessfn = access_el3_aa32ns,
8334 .resetvalue = cpu->midr,
8335 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ,
8336 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) },
8337 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
8338 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
8339 .access = PL2_RW, .resetvalue = cpu->midr,
8340 .type = ARM_CP_EL3_NO_EL2_C_NZ,
8341 .nv2_redirect_offset = 0x88,
8342 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
8343 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
8344 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
8345 .access = PL2_RW, .accessfn = access_el3_aa32ns,
8346 .resetvalue = vmpidr_def,
8347 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ,
8348 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) },
8349 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
8350 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
8351 .access = PL2_RW, .resetvalue = vmpidr_def,
8352 .type = ARM_CP_EL3_NO_EL2_C_NZ,
8353 .nv2_redirect_offset = 0x50,
8354 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
8355 };
8356 /*
8357 * The only field of MDCR_EL2 that has a defined architectural reset
8358 * value is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N.
8359 */
8360 ARMCPRegInfo mdcr_el2 = {
8361 .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, .type = ARM_CP_IO,
8362 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
8363 .writefn = mdcr_el2_write,
8364 .access = PL2_RW, .resetvalue = pmu_num_counters(env),
8365 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2),
8366 };
8367 define_one_arm_cp_reg(cpu, &mdcr_el2);
8368 define_arm_cp_regs(cpu, vpidr_regs);
8369 define_arm_cp_regs(cpu, el2_cp_reginfo);
8370 if (arm_feature(env, ARM_FEATURE_V8)) {
8371 define_arm_cp_regs(cpu, el2_v8_cp_reginfo);
8372 }
8373 if (cpu_isar_feature(aa64_sel2, cpu)) {
8374 define_arm_cp_regs(cpu, el2_sec_cp_reginfo);
8375 }
8376 /*
8377 * RVBAR_EL2 and RMR_EL2 only implemented if EL2 is the highest EL.
8378 * See commentary near RMR_EL1.
8379 */
8380 if (!arm_feature(env, ARM_FEATURE_EL3)) {
8381 static const ARMCPRegInfo el2_reset_regs[] = {
8382 { .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
8383 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
8384 .access = PL2_R,
8385 .fieldoffset = offsetof(CPUARMState, cp15.rvbar) },
8386 { .name = "RVBAR", .type = ARM_CP_ALIAS,
8387 .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
8388 .access = PL2_R,
8389 .fieldoffset = offsetof(CPUARMState, cp15.rvbar) },
8390 { .name = "RMR_EL2", .state = ARM_CP_STATE_AA64,
8391 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 2,
8392 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 1 },
8393 };
8394 define_arm_cp_regs(cpu, el2_reset_regs);
8395 }
8396 }
8397
8398 /* Register the base EL3 cpregs. */
8399 if (arm_feature(env, ARM_FEATURE_EL3)) {
8400 define_arm_cp_regs(cpu, el3_cp_reginfo);
8401 ARMCPRegInfo el3_regs[] = {
8402 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
8403 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
8404 .access = PL3_R,
8405 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), },
8406 { .name = "RMR_EL3", .state = ARM_CP_STATE_AA64,
8407 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 2,
8408 .access = PL3_RW, .type = ARM_CP_CONST, .resetvalue = 1 },
8409 { .name = "RMR", .state = ARM_CP_STATE_AA32,
8410 .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 2,
8411 .access = PL3_RW, .type = ARM_CP_CONST,
8412 .resetvalue = arm_feature(env, ARM_FEATURE_AARCH64) },
8413 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
8414 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
8415 .access = PL3_RW,
8416 .raw_writefn = raw_write, .writefn = sctlr_write,
8417 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
8418 .resetvalue = cpu->reset_sctlr },
8419 };
8420
8421 define_arm_cp_regs(cpu, el3_regs);
8422 }
8423 /*
8424 * The behaviour of NSACR is sufficiently various that we don't
8425 * try to describe it in a single reginfo:
8426 * if EL3 is 64 bit, then trap to EL3 from S EL1,
8427 * reads as constant 0xc00 from NS EL1 and NS EL2
8428 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
8429 * if v7 without EL3, register doesn't exist
8430 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
8431 */
8432 if (arm_feature(env, ARM_FEATURE_EL3)) {
8433 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
8434 static const ARMCPRegInfo nsacr = {
8435 .name = "NSACR", .type = ARM_CP_CONST,
8436 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
8437 .access = PL1_RW, .accessfn = nsacr_access,
8438 .resetvalue = 0xc00
8439 };
8440 define_one_arm_cp_reg(cpu, &nsacr);
8441 } else {
8442 static const ARMCPRegInfo nsacr = {
8443 .name = "NSACR",
8444 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
8445 .access = PL3_RW | PL1_R,
8446 .resetvalue = 0,
8447 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
8448 };
8449 define_one_arm_cp_reg(cpu, &nsacr);
8450 }
8451 } else {
8452 if (arm_feature(env, ARM_FEATURE_V8)) {
8453 static const ARMCPRegInfo nsacr = {
8454 .name = "NSACR", .type = ARM_CP_CONST,
8455 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
8456 .access = PL1_R,
8457 .resetvalue = 0xc00
8458 };
8459 define_one_arm_cp_reg(cpu, &nsacr);
8460 }
8461 }
8462
8463 if (arm_feature(env, ARM_FEATURE_PMSA)) {
8464 if (arm_feature(env, ARM_FEATURE_V6)) {
8465 /* PMSAv6 not implemented */
8466 assert(arm_feature(env, ARM_FEATURE_V7));
8467 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
8468 define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
8469 } else {
8470 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
8471 }
8472 } else {
8473 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
8474 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
8475 /* TTCBR2 is introduced with ARMv8.2-AA32HPD. */
8476 if (cpu_isar_feature(aa32_hpd, cpu)) {
8477 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo);
8478 }
8479 }
8480 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
8481 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
8482 }
8483 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
8484 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
8485 }
8486 if (cpu_isar_feature(aa64_ecv_traps, cpu)) {
8487 define_arm_cp_regs(cpu, gen_timer_ecv_cp_reginfo);
8488 }
8489 #ifndef CONFIG_USER_ONLY
8490 if (cpu_isar_feature(aa64_ecv, cpu)) {
8491 define_one_arm_cp_reg(cpu, &gen_timer_cntpoff_reginfo);
8492 }
8493 #endif
8494 if (arm_feature(env, ARM_FEATURE_VAPA)) {
8495 ARMCPRegInfo vapa_cp_reginfo[] = {
8496 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
8497 .access = PL1_RW, .resetvalue = 0,
8498 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
8499 offsetoflow32(CPUARMState, cp15.par_ns) },
8500 .writefn = par_write},
8501 #ifndef CONFIG_USER_ONLY
8502 /* This underdecoding is safe because the reginfo is NO_RAW. */
8503 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
8504 .access = PL1_W, .accessfn = ats_access,
8505 .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
8506 #endif
8507 };
8508
8509 /*
8510 * When LPAE exists this 32-bit PAR register is an alias of the
8511 * 64-bit AArch32 PAR register defined in lpae_cp_reginfo[]
8512 */
8513 if (arm_feature(env, ARM_FEATURE_LPAE)) {
8514 vapa_cp_reginfo[0].type = ARM_CP_ALIAS | ARM_CP_NO_GDB;
8515 }
8516 define_arm_cp_regs(cpu, vapa_cp_reginfo);
8517 }
8518 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
8519 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
8520 }
8521 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
8522 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
8523 }
8524 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
8525 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
8526 }
8527 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
8528 define_arm_cp_regs(cpu, omap_cp_reginfo);
8529 }
8530 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
8531 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
8532 }
8533 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
8534 define_arm_cp_regs(cpu, xscale_cp_reginfo);
8535 }
8536 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
8537 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
8538 }
8539 if (arm_feature(env, ARM_FEATURE_LPAE)) {
8540 define_arm_cp_regs(cpu, lpae_cp_reginfo);
8541 }
8542 if (cpu_isar_feature(aa32_jazelle, cpu)) {
8543 define_arm_cp_regs(cpu, jazelle_regs);
8544 }
8545 /*
8546 * Slightly awkwardly, the OMAP and StrongARM cores need all of
8547 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
8548 * be read-only (ie write causes UNDEF exception).
8549 */
8550 {
8551 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
8552 /*
8553 * Pre-v8 MIDR space.
8554 * Note that the MIDR isn't a simple constant register because
8555 * of the TI925 behaviour where writes to another register can
8556 * cause the MIDR value to change.
8557 *
8558 * Unimplemented registers in the c15 0 0 0 space default to
8559 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
8560 * and friends override accordingly.
8561 */
8562 { .name = "MIDR",
8563 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
8564 .access = PL1_R, .resetvalue = cpu->midr,
8565 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
8566 .readfn = midr_read,
8567 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
8568 .type = ARM_CP_OVERRIDE },
8569 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
8570 { .name = "DUMMY",
8571 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
8572 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8573 { .name = "DUMMY",
8574 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
8575 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8576 { .name = "DUMMY",
8577 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
8578 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8579 { .name = "DUMMY",
8580 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
8581 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8582 { .name = "DUMMY",
8583 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
8584 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8585 };
8586 ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
8587 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
8588 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
8589 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
8590 .fgt = FGT_MIDR_EL1,
8591 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
8592 .readfn = midr_read },
8593 /* crn = 0 op1 = 0 crm = 0 op2 = 7 : AArch32 aliases of MIDR */
8594 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
8595 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
8596 .access = PL1_R, .resetvalue = cpu->midr },
8597 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
8598 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
8599 .access = PL1_R,
8600 .accessfn = access_aa64_tid1,
8601 .fgt = FGT_REVIDR_EL1,
8602 .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
8603 };
8604 ARMCPRegInfo id_v8_midr_alias_cp_reginfo = {
8605 .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST | ARM_CP_NO_GDB,
8606 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
8607 .access = PL1_R, .resetvalue = cpu->midr
8608 };
8609 ARMCPRegInfo id_cp_reginfo[] = {
8610 /* These are common to v8 and pre-v8 */
8611 { .name = "CTR",
8612 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
8613 .access = PL1_R, .accessfn = ctr_el0_access,
8614 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
8615 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
8616 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
8617 .access = PL0_R, .accessfn = ctr_el0_access,
8618 .fgt = FGT_CTR_EL0,
8619 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
8620 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
8621 { .name = "TCMTR",
8622 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
8623 .access = PL1_R,
8624 .accessfn = access_aa32_tid1,
8625 .type = ARM_CP_CONST, .resetvalue = 0 },
8626 };
8627 /* TLBTR is specific to VMSA */
8628 ARMCPRegInfo id_tlbtr_reginfo = {
8629 .name = "TLBTR",
8630 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
8631 .access = PL1_R,
8632 .accessfn = access_aa32_tid1,
8633 .type = ARM_CP_CONST, .resetvalue = 0,
8634 };
8635 /* MPUIR is specific to PMSA V6+ */
8636 ARMCPRegInfo id_mpuir_reginfo = {
8637 .name = "MPUIR",
8638 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
8639 .access = PL1_R, .type = ARM_CP_CONST,
8640 .resetvalue = cpu->pmsav7_dregion << 8
8641 };
8642 /* HMPUIR is specific to PMSA V8 */
8643 ARMCPRegInfo id_hmpuir_reginfo = {
8644 .name = "HMPUIR",
8645 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 4,
8646 .access = PL2_R, .type = ARM_CP_CONST,
8647 .resetvalue = cpu->pmsav8r_hdregion
8648 };
8649 static const ARMCPRegInfo crn0_wi_reginfo = {
8650 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
8651 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
8652 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
8653 };
8654 #ifdef CONFIG_USER_ONLY
8655 static const ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = {
8656 { .name = "MIDR_EL1",
8657 .exported_bits = R_MIDR_EL1_REVISION_MASK |
8658 R_MIDR_EL1_PARTNUM_MASK |
8659 R_MIDR_EL1_ARCHITECTURE_MASK |
8660 R_MIDR_EL1_VARIANT_MASK |
8661 R_MIDR_EL1_IMPLEMENTER_MASK },
8662 { .name = "REVIDR_EL1" },
8663 };
8664 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo);
8665 #endif
8666 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
8667 arm_feature(env, ARM_FEATURE_STRONGARM)) {
8668 size_t i;
8669 /*
8670 * Register the blanket "writes ignored" value first to cover the
8671 * whole space. Then update the specific ID registers to allow write
8672 * access, so that they ignore writes rather than causing them to
8673 * UNDEF.
8674 */
8675 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
8676 for (i = 0; i < ARRAY_SIZE(id_pre_v8_midr_cp_reginfo); ++i) {
8677 id_pre_v8_midr_cp_reginfo[i].access = PL1_RW;
8678 }
8679 for (i = 0; i < ARRAY_SIZE(id_cp_reginfo); ++i) {
8680 id_cp_reginfo[i].access = PL1_RW;
8681 }
8682 id_mpuir_reginfo.access = PL1_RW;
8683 id_tlbtr_reginfo.access = PL1_RW;
8684 }
8685 if (arm_feature(env, ARM_FEATURE_V8)) {
8686 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
8687 if (!arm_feature(env, ARM_FEATURE_PMSA)) {
8688 define_one_arm_cp_reg(cpu, &id_v8_midr_alias_cp_reginfo);
8689 }
8690 } else {
8691 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
8692 }
8693 define_arm_cp_regs(cpu, id_cp_reginfo);
8694 if (!arm_feature(env, ARM_FEATURE_PMSA)) {
8695 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
8696 } else if (arm_feature(env, ARM_FEATURE_PMSA) &&
8697 arm_feature(env, ARM_FEATURE_V8)) {
8698 uint32_t i = 0;
8699 char *tmp_string;
8700
8701 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
8702 define_one_arm_cp_reg(cpu, &id_hmpuir_reginfo);
8703 define_arm_cp_regs(cpu, pmsav8r_cp_reginfo);
8704
8705 /* Register alias is only valid for first 32 indexes */
8706 for (i = 0; i < MIN(cpu->pmsav7_dregion, 32); ++i) {
8707 uint8_t crm = 0b1000 | extract32(i, 1, 3);
8708 uint8_t opc1 = extract32(i, 4, 1);
8709 uint8_t opc2 = extract32(i, 0, 1) << 2;
8710
8711 tmp_string = g_strdup_printf("PRBAR%u", i);
8712 ARMCPRegInfo tmp_prbarn_reginfo = {
8713 .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW,
8714 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
8715 .access = PL1_RW, .resetvalue = 0,
8716 .accessfn = access_tvm_trvm,
8717 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
8718 };
8719 define_one_arm_cp_reg(cpu, &tmp_prbarn_reginfo);
8720 g_free(tmp_string);
8721
8722 opc2 = extract32(i, 0, 1) << 2 | 0x1;
8723 tmp_string = g_strdup_printf("PRLAR%u", i);
8724 ARMCPRegInfo tmp_prlarn_reginfo = {
8725 .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW,
8726 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
8727 .access = PL1_RW, .resetvalue = 0,
8728 .accessfn = access_tvm_trvm,
8729 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
8730 };
8731 define_one_arm_cp_reg(cpu, &tmp_prlarn_reginfo);
8732 g_free(tmp_string);
8733 }
8734
8735 /* Register alias is only valid for first 32 indexes */
8736 for (i = 0; i < MIN(cpu->pmsav8r_hdregion, 32); ++i) {
8737 uint8_t crm = 0b1000 | extract32(i, 1, 3);
8738 uint8_t opc1 = 0b100 | extract32(i, 4, 1);
8739 uint8_t opc2 = extract32(i, 0, 1) << 2;
8740
8741 tmp_string = g_strdup_printf("HPRBAR%u", i);
8742 ARMCPRegInfo tmp_hprbarn_reginfo = {
8743 .name = tmp_string,
8744 .type = ARM_CP_NO_RAW,
8745 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
8746 .access = PL2_RW, .resetvalue = 0,
8747 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
8748 };
8749 define_one_arm_cp_reg(cpu, &tmp_hprbarn_reginfo);
8750 g_free(tmp_string);
8751
8752 opc2 = extract32(i, 0, 1) << 2 | 0x1;
8753 tmp_string = g_strdup_printf("HPRLAR%u", i);
8754 ARMCPRegInfo tmp_hprlarn_reginfo = {
8755 .name = tmp_string,
8756 .type = ARM_CP_NO_RAW,
8757 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
8758 .access = PL2_RW, .resetvalue = 0,
8759 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
8760 };
8761 define_one_arm_cp_reg(cpu, &tmp_hprlarn_reginfo);
8762 g_free(tmp_string);
8763 }
8764 } else if (arm_feature(env, ARM_FEATURE_V7)) {
8765 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
8766 }
8767 }
8768
8769 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
8770 ARMCPRegInfo mpidr_cp_reginfo[] = {
8771 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH,
8772 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
8773 .fgt = FGT_MPIDR_EL1,
8774 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
8775 };
8776 #ifdef CONFIG_USER_ONLY
8777 static const ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = {
8778 { .name = "MPIDR_EL1",
8779 .fixed_bits = 0x0000000080000000 },
8780 };
8781 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo);
8782 #endif
8783 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
8784 }
8785
8786 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
8787 ARMCPRegInfo auxcr_reginfo[] = {
8788 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
8789 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
8790 .access = PL1_RW, .accessfn = access_tacr,
8791 .nv2_redirect_offset = 0x118,
8792 .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr },
8793 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
8794 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
8795 .access = PL2_RW, .type = ARM_CP_CONST,
8796 .resetvalue = 0 },
8797 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
8798 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
8799 .access = PL3_RW, .type = ARM_CP_CONST,
8800 .resetvalue = 0 },
8801 };
8802 define_arm_cp_regs(cpu, auxcr_reginfo);
8803 if (cpu_isar_feature(aa32_ac2, cpu)) {
8804 define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo);
8805 }
8806 }
8807
8808 if (arm_feature(env, ARM_FEATURE_CBAR)) {
8809 /*
8810 * CBAR is IMPDEF, but common on Arm Cortex-A implementations.
8811 * There are two flavours:
8812 * (1) older 32-bit only cores have a simple 32-bit CBAR
8813 * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a
8814 * 32-bit register visible to AArch32 at a different encoding
8815 * to the "flavour 1" register and with the bits rearranged to
8816 * be able to squash a 64-bit address into the 32-bit view.
8817 * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but
8818 * in future if we support AArch32-only configs of some of the
8819 * AArch64 cores we might need to add a specific feature flag
8820 * to indicate cores with "flavour 2" CBAR.
8821 */
8822 if (arm_feature(env, ARM_FEATURE_V8)) {
8823 /* 32 bit view is [31:18] 0...0 [43:32]. */
8824 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
8825 | extract64(cpu->reset_cbar, 32, 12);
8826 ARMCPRegInfo cbar_reginfo[] = {
8827 { .name = "CBAR",
8828 .type = ARM_CP_CONST,
8829 .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0,
8830 .access = PL1_R, .resetvalue = cbar32 },
8831 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
8832 .type = ARM_CP_CONST,
8833 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
8834 .access = PL1_R, .resetvalue = cpu->reset_cbar },
8835 };
8836 /* We don't implement a r/w 64 bit CBAR currently */
8837 assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
8838 define_arm_cp_regs(cpu, cbar_reginfo);
8839 } else {
8840 ARMCPRegInfo cbar = {
8841 .name = "CBAR",
8842 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
8843 .access = PL1_R | PL3_W, .resetvalue = cpu->reset_cbar,
8844 .fieldoffset = offsetof(CPUARMState,
8845 cp15.c15_config_base_address)
8846 };
8847 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
8848 cbar.access = PL1_R;
8849 cbar.fieldoffset = 0;
8850 cbar.type = ARM_CP_CONST;
8851 }
8852 define_one_arm_cp_reg(cpu, &cbar);
8853 }
8854 }
8855
8856 if (arm_feature(env, ARM_FEATURE_VBAR)) {
8857 static const ARMCPRegInfo vbar_cp_reginfo[] = {
8858 { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
8859 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
8860 .access = PL1_RW, .writefn = vbar_write,
8861 .accessfn = access_nv1,
8862 .fgt = FGT_VBAR_EL1,
8863 .nv2_redirect_offset = 0x250 | NV2_REDIR_NV1,
8864 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
8865 offsetof(CPUARMState, cp15.vbar_ns) },
8866 .resetvalue = 0 },
8867 };
8868 define_arm_cp_regs(cpu, vbar_cp_reginfo);
8869 }
8870
8871 /* Generic registers whose values depend on the implementation */
8872 {
8873 ARMCPRegInfo sctlr = {
8874 .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
8875 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
8876 .access = PL1_RW, .accessfn = access_tvm_trvm,
8877 .fgt = FGT_SCTLR_EL1,
8878 .nv2_redirect_offset = 0x110 | NV2_REDIR_NV1,
8879 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
8880 offsetof(CPUARMState, cp15.sctlr_ns) },
8881 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
8882 .raw_writefn = raw_write,
8883 };
8884 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
8885 /*
8886 * Normally we would always end the TB on an SCTLR write, but Linux
8887 * arch/arm/mach-pxa/sleep.S expects two instructions following
8888 * an MMU enable to execute from cache. Imitate this behaviour.
8889 */
8890 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
8891 }
8892 define_one_arm_cp_reg(cpu, &sctlr);
8893
8894 if (arm_feature(env, ARM_FEATURE_PMSA) &&
8895 arm_feature(env, ARM_FEATURE_V8)) {
8896 ARMCPRegInfo vsctlr = {
8897 .name = "VSCTLR", .state = ARM_CP_STATE_AA32,
8898 .cp = 15, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
8899 .access = PL2_RW, .resetvalue = 0x0,
8900 .fieldoffset = offsetoflow32(CPUARMState, cp15.vsctlr),
8901 };
8902 define_one_arm_cp_reg(cpu, &vsctlr);
8903 }
8904 }
8905
8906 if (cpu_isar_feature(aa64_lor, cpu)) {
8907 define_arm_cp_regs(cpu, lor_reginfo);
8908 }
8909 if (cpu_isar_feature(aa64_pan, cpu)) {
8910 define_one_arm_cp_reg(cpu, &pan_reginfo);
8911 }
8912 #ifndef CONFIG_USER_ONLY
8913 if (cpu_isar_feature(aa64_ats1e1, cpu)) {
8914 define_arm_cp_regs(cpu, ats1e1_reginfo);
8915 }
8916 if (cpu_isar_feature(aa32_ats1e1, cpu)) {
8917 define_arm_cp_regs(cpu, ats1cp_reginfo);
8918 }
8919 #endif
8920 if (cpu_isar_feature(aa64_uao, cpu)) {
8921 define_one_arm_cp_reg(cpu, &uao_reginfo);
8922 }
8923
8924 if (cpu_isar_feature(aa64_dit, cpu)) {
8925 define_one_arm_cp_reg(cpu, &dit_reginfo);
8926 }
8927 if (cpu_isar_feature(aa64_ssbs, cpu)) {
8928 define_one_arm_cp_reg(cpu, &ssbs_reginfo);
8929 }
8930 if (cpu_isar_feature(any_ras, cpu)) {
8931 define_arm_cp_regs(cpu, minimal_ras_reginfo);
8932 }
8933
8934 if (cpu_isar_feature(aa64_vh, cpu) ||
8935 cpu_isar_feature(aa64_debugv8p2, cpu)) {
8936 define_one_arm_cp_reg(cpu, &contextidr_el2);
8937 }
8938 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
8939 define_arm_cp_regs(cpu, vhe_reginfo);
8940 }
8941
8942 if (cpu_isar_feature(aa64_sve, cpu)) {
8943 define_arm_cp_regs(cpu, zcr_reginfo);
8944 }
8945
8946 if (cpu_isar_feature(aa64_hcx, cpu)) {
8947 define_one_arm_cp_reg(cpu, &hcrx_el2_reginfo);
8948 }
8949
8950 if (cpu_isar_feature(aa64_sme, cpu)) {
8951 define_arm_cp_regs(cpu, sme_reginfo);
8952 }
8953 if (cpu_isar_feature(aa64_pauth, cpu)) {
8954 define_arm_cp_regs(cpu, pauth_reginfo);
8955 }
8956 if (cpu_isar_feature(aa64_rndr, cpu)) {
8957 define_arm_cp_regs(cpu, rndr_reginfo);
8958 }
8959 /* Data Cache clean instructions up to PoP */
8960 if (cpu_isar_feature(aa64_dcpop, cpu)) {
8961 define_one_arm_cp_reg(cpu, dcpop_reg);
8962
8963 if (cpu_isar_feature(aa64_dcpodp, cpu)) {
8964 define_one_arm_cp_reg(cpu, dcpodp_reg);
8965 }
8966 }
8967
8968 /*
8969 * If full MTE is enabled, add all of the system registers.
8970 * If only "instructions available at EL0" are enabled,
8971 * then define only a RAZ/WI version of PSTATE.TCO.
8972 */
8973 if (cpu_isar_feature(aa64_mte, cpu)) {
8974 ARMCPRegInfo gmid_reginfo = {
8975 .name = "GMID_EL1", .state = ARM_CP_STATE_AA64,
8976 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4,
8977 .access = PL1_R, .accessfn = access_aa64_tid5,
8978 .type = ARM_CP_CONST, .resetvalue = cpu->gm_blocksize,
8979 };
8980 define_one_arm_cp_reg(cpu, &gmid_reginfo);
8981 define_arm_cp_regs(cpu, mte_reginfo);
8982 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
8983 } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) {
8984 define_arm_cp_regs(cpu, mte_tco_ro_reginfo);
8985 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
8986 }
8987
8988 if (cpu_isar_feature(aa64_scxtnum, cpu)) {
8989 define_arm_cp_regs(cpu, scxtnum_reginfo);
8990 }
8991
8992 if (cpu_isar_feature(aa64_fgt, cpu)) {
8993 define_arm_cp_regs(cpu, fgt_reginfo);
8994 }
8995
8996 if (cpu_isar_feature(aa64_rme, cpu)) {
8997 define_arm_cp_regs(cpu, rme_reginfo);
8998 if (cpu_isar_feature(aa64_mte, cpu)) {
8999 define_arm_cp_regs(cpu, rme_mte_reginfo);
9000 }
9001 }
9002
9003 if (cpu_isar_feature(aa64_nv2, cpu)) {
9004 define_arm_cp_regs(cpu, nv2_reginfo);
9005 }
9006
9007 if (cpu_isar_feature(aa64_nmi, cpu)) {
9008 define_arm_cp_regs(cpu, nmi_reginfo);
9009 }
9010
9011 if (cpu_isar_feature(any_predinv, cpu)) {
9012 define_arm_cp_regs(cpu, predinv_reginfo);
9013 }
9014
9015 if (cpu_isar_feature(any_ccidx, cpu)) {
9016 define_arm_cp_regs(cpu, ccsidr2_reginfo);
9017 }
9018
9019 #ifndef CONFIG_USER_ONLY
9020 /*
9021 * Register redirections and aliases must be done last,
9022 * after the registers from the other extensions have been defined.
9023 */
9024 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
9025 define_arm_vh_e2h_redirects_aliases(cpu);
9026 }
9027 #endif
9028 }
9029
9030 /*
9031 * Private utility function for define_one_arm_cp_reg_with_opaque():
9032 * add a single reginfo struct to the hash table.
9033 */
add_cpreg_to_hashtable(ARMCPU * cpu,const ARMCPRegInfo * r,void * opaque,CPState state,CPSecureState secstate,int crm,int opc1,int opc2,const char * name)9034 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
9035 void *opaque, CPState state,
9036 CPSecureState secstate,
9037 int crm, int opc1, int opc2,
9038 const char *name)
9039 {
9040 CPUARMState *env = &cpu->env;
9041 uint32_t key;
9042 ARMCPRegInfo *r2;
9043 bool is64 = r->type & ARM_CP_64BIT;
9044 bool ns = secstate & ARM_CP_SECSTATE_NS;
9045 int cp = r->cp;
9046 size_t name_len;
9047 bool make_const;
9048
9049 switch (state) {
9050 case ARM_CP_STATE_AA32:
9051 /* We assume it is a cp15 register if the .cp field is left unset. */
9052 if (cp == 0 && r->state == ARM_CP_STATE_BOTH) {
9053 cp = 15;
9054 }
9055 key = ENCODE_CP_REG(cp, is64, ns, r->crn, crm, opc1, opc2);
9056 break;
9057 case ARM_CP_STATE_AA64:
9058 /*
9059 * To allow abbreviation of ARMCPRegInfo definitions, we treat
9060 * cp == 0 as equivalent to the value for "standard guest-visible
9061 * sysreg". STATE_BOTH definitions are also always "standard sysreg"
9062 * in their AArch64 view (the .cp value may be non-zero for the
9063 * benefit of the AArch32 view).
9064 */
9065 if (cp == 0 || r->state == ARM_CP_STATE_BOTH) {
9066 cp = CP_REG_ARM64_SYSREG_CP;
9067 }
9068 key = ENCODE_AA64_CP_REG(cp, r->crn, crm, r->opc0, opc1, opc2);
9069 break;
9070 default:
9071 g_assert_not_reached();
9072 }
9073
9074 /* Overriding of an existing definition must be explicitly requested. */
9075 if (!(r->type & ARM_CP_OVERRIDE)) {
9076 const ARMCPRegInfo *oldreg = get_arm_cp_reginfo(cpu->cp_regs, key);
9077 if (oldreg) {
9078 assert(oldreg->type & ARM_CP_OVERRIDE);
9079 }
9080 }
9081
9082 /*
9083 * Eliminate registers that are not present because the EL is missing.
9084 * Doing this here makes it easier to put all registers for a given
9085 * feature into the same ARMCPRegInfo array and define them all at once.
9086 */
9087 make_const = false;
9088 if (arm_feature(env, ARM_FEATURE_EL3)) {
9089 /*
9090 * An EL2 register without EL2 but with EL3 is (usually) RES0.
9091 * See rule RJFFP in section D1.1.3 of DDI0487H.a.
9092 */
9093 int min_el = ctz32(r->access) / 2;
9094 if (min_el == 2 && !arm_feature(env, ARM_FEATURE_EL2)) {
9095 if (r->type & ARM_CP_EL3_NO_EL2_UNDEF) {
9096 return;
9097 }
9098 make_const = !(r->type & ARM_CP_EL3_NO_EL2_KEEP);
9099 }
9100 } else {
9101 CPAccessRights max_el = (arm_feature(env, ARM_FEATURE_EL2)
9102 ? PL2_RW : PL1_RW);
9103 if ((r->access & max_el) == 0) {
9104 return;
9105 }
9106 }
9107
9108 /* Combine cpreg and name into one allocation. */
9109 name_len = strlen(name) + 1;
9110 r2 = g_malloc(sizeof(*r2) + name_len);
9111 *r2 = *r;
9112 r2->name = memcpy(r2 + 1, name, name_len);
9113
9114 /*
9115 * Update fields to match the instantiation, overwiting wildcards
9116 * such as CP_ANY, ARM_CP_STATE_BOTH, or ARM_CP_SECSTATE_BOTH.
9117 */
9118 r2->cp = cp;
9119 r2->crm = crm;
9120 r2->opc1 = opc1;
9121 r2->opc2 = opc2;
9122 r2->state = state;
9123 r2->secure = secstate;
9124 if (opaque) {
9125 r2->opaque = opaque;
9126 }
9127
9128 if (make_const) {
9129 /* This should not have been a very special register to begin. */
9130 int old_special = r2->type & ARM_CP_SPECIAL_MASK;
9131 assert(old_special == 0 || old_special == ARM_CP_NOP);
9132 /*
9133 * Set the special function to CONST, retaining the other flags.
9134 * This is important for e.g. ARM_CP_SVE so that we still
9135 * take the SVE trap if CPTR_EL3.EZ == 0.
9136 */
9137 r2->type = (r2->type & ~ARM_CP_SPECIAL_MASK) | ARM_CP_CONST;
9138 /*
9139 * Usually, these registers become RES0, but there are a few
9140 * special cases like VPIDR_EL2 which have a constant non-zero
9141 * value with writes ignored.
9142 */
9143 if (!(r->type & ARM_CP_EL3_NO_EL2_C_NZ)) {
9144 r2->resetvalue = 0;
9145 }
9146 /*
9147 * ARM_CP_CONST has precedence, so removing the callbacks and
9148 * offsets are not strictly necessary, but it is potentially
9149 * less confusing to debug later.
9150 */
9151 r2->readfn = NULL;
9152 r2->writefn = NULL;
9153 r2->raw_readfn = NULL;
9154 r2->raw_writefn = NULL;
9155 r2->resetfn = NULL;
9156 r2->fieldoffset = 0;
9157 r2->bank_fieldoffsets[0] = 0;
9158 r2->bank_fieldoffsets[1] = 0;
9159 } else {
9160 bool isbanked = r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1];
9161
9162 if (isbanked) {
9163 /*
9164 * Register is banked (using both entries in array).
9165 * Overwriting fieldoffset as the array is only used to define
9166 * banked registers but later only fieldoffset is used.
9167 */
9168 r2->fieldoffset = r->bank_fieldoffsets[ns];
9169 }
9170 if (state == ARM_CP_STATE_AA32) {
9171 if (isbanked) {
9172 /*
9173 * If the register is banked then we don't need to migrate or
9174 * reset the 32-bit instance in certain cases:
9175 *
9176 * 1) If the register has both 32-bit and 64-bit instances
9177 * then we can count on the 64-bit instance taking care
9178 * of the non-secure bank.
9179 * 2) If ARMv8 is enabled then we can count on a 64-bit
9180 * version taking care of the secure bank. This requires
9181 * that separate 32 and 64-bit definitions are provided.
9182 */
9183 if ((r->state == ARM_CP_STATE_BOTH && ns) ||
9184 (arm_feature(env, ARM_FEATURE_V8) && !ns)) {
9185 r2->type |= ARM_CP_ALIAS;
9186 }
9187 } else if ((secstate != r->secure) && !ns) {
9188 /*
9189 * The register is not banked so we only want to allow
9190 * migration of the non-secure instance.
9191 */
9192 r2->type |= ARM_CP_ALIAS;
9193 }
9194
9195 if (HOST_BIG_ENDIAN &&
9196 r->state == ARM_CP_STATE_BOTH && r2->fieldoffset) {
9197 r2->fieldoffset += sizeof(uint32_t);
9198 }
9199 }
9200 }
9201
9202 /*
9203 * By convention, for wildcarded registers only the first
9204 * entry is used for migration; the others are marked as
9205 * ALIAS so we don't try to transfer the register
9206 * multiple times. Special registers (ie NOP/WFI) are
9207 * never migratable and not even raw-accessible.
9208 */
9209 if (r2->type & ARM_CP_SPECIAL_MASK) {
9210 r2->type |= ARM_CP_NO_RAW;
9211 }
9212 if (((r->crm == CP_ANY) && crm != 0) ||
9213 ((r->opc1 == CP_ANY) && opc1 != 0) ||
9214 ((r->opc2 == CP_ANY) && opc2 != 0)) {
9215 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB;
9216 }
9217
9218 /*
9219 * Check that raw accesses are either forbidden or handled. Note that
9220 * we can't assert this earlier because the setup of fieldoffset for
9221 * banked registers has to be done first.
9222 */
9223 if (!(r2->type & ARM_CP_NO_RAW)) {
9224 assert(!raw_accessors_invalid(r2));
9225 }
9226
9227 g_hash_table_insert(cpu->cp_regs, (gpointer)(uintptr_t)key, r2);
9228 }
9229
9230
define_one_arm_cp_reg_with_opaque(ARMCPU * cpu,const ARMCPRegInfo * r,void * opaque)9231 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
9232 const ARMCPRegInfo *r, void *opaque)
9233 {
9234 /*
9235 * Define implementations of coprocessor registers.
9236 * We store these in a hashtable because typically
9237 * there are less than 150 registers in a space which
9238 * is 16*16*16*8*8 = 262144 in size.
9239 * Wildcarding is supported for the crm, opc1 and opc2 fields.
9240 * If a register is defined twice then the second definition is
9241 * used, so this can be used to define some generic registers and
9242 * then override them with implementation specific variations.
9243 * At least one of the original and the second definition should
9244 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
9245 * against accidental use.
9246 *
9247 * The state field defines whether the register is to be
9248 * visible in the AArch32 or AArch64 execution state. If the
9249 * state is set to ARM_CP_STATE_BOTH then we synthesise a
9250 * reginfo structure for the AArch32 view, which sees the lower
9251 * 32 bits of the 64 bit register.
9252 *
9253 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
9254 * be wildcarded. AArch64 registers are always considered to be 64
9255 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
9256 * the register, if any.
9257 */
9258 int crm, opc1, opc2;
9259 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
9260 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
9261 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
9262 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
9263 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
9264 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
9265 CPState state;
9266
9267 /* 64 bit registers have only CRm and Opc1 fields */
9268 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
9269 /* op0 only exists in the AArch64 encodings */
9270 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
9271 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
9272 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
9273 /*
9274 * This API is only for Arm's system coprocessors (14 and 15) or
9275 * (M-profile or v7A-and-earlier only) for implementation defined
9276 * coprocessors in the range 0..7. Our decode assumes this, since
9277 * 8..13 can be used for other insns including VFP and Neon. See
9278 * valid_cp() in translate.c. Assert here that we haven't tried
9279 * to use an invalid coprocessor number.
9280 */
9281 switch (r->state) {
9282 case ARM_CP_STATE_BOTH:
9283 /* 0 has a special meaning, but otherwise the same rules as AA32. */
9284 if (r->cp == 0) {
9285 break;
9286 }
9287 /* fall through */
9288 case ARM_CP_STATE_AA32:
9289 if (arm_feature(&cpu->env, ARM_FEATURE_V8) &&
9290 !arm_feature(&cpu->env, ARM_FEATURE_M)) {
9291 assert(r->cp >= 14 && r->cp <= 15);
9292 } else {
9293 assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15));
9294 }
9295 break;
9296 case ARM_CP_STATE_AA64:
9297 assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP);
9298 break;
9299 default:
9300 g_assert_not_reached();
9301 }
9302 /*
9303 * The AArch64 pseudocode CheckSystemAccess() specifies that op1
9304 * encodes a minimum access level for the register. We roll this
9305 * runtime check into our general permission check code, so check
9306 * here that the reginfo's specified permissions are strict enough
9307 * to encompass the generic architectural permission check.
9308 */
9309 if (r->state != ARM_CP_STATE_AA32) {
9310 CPAccessRights mask;
9311 switch (r->opc1) {
9312 case 0:
9313 /* min_EL EL1, but some accessible to EL0 via kernel ABI */
9314 mask = PL0U_R | PL1_RW;
9315 break;
9316 case 1: case 2:
9317 /* min_EL EL1 */
9318 mask = PL1_RW;
9319 break;
9320 case 3:
9321 /* min_EL EL0 */
9322 mask = PL0_RW;
9323 break;
9324 case 4:
9325 case 5:
9326 /* min_EL EL2 */
9327 mask = PL2_RW;
9328 break;
9329 case 6:
9330 /* min_EL EL3 */
9331 mask = PL3_RW;
9332 break;
9333 case 7:
9334 /* min_EL EL1, secure mode only (we don't check the latter) */
9335 mask = PL1_RW;
9336 break;
9337 default:
9338 /* broken reginfo with out-of-range opc1 */
9339 g_assert_not_reached();
9340 }
9341 /* assert our permissions are not too lax (stricter is fine) */
9342 assert((r->access & ~mask) == 0);
9343 }
9344
9345 /*
9346 * Check that the register definition has enough info to handle
9347 * reads and writes if they are permitted.
9348 */
9349 if (!(r->type & (ARM_CP_SPECIAL_MASK | ARM_CP_CONST))) {
9350 if (r->access & PL3_R) {
9351 assert((r->fieldoffset ||
9352 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
9353 r->readfn);
9354 }
9355 if (r->access & PL3_W) {
9356 assert((r->fieldoffset ||
9357 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
9358 r->writefn);
9359 }
9360 }
9361
9362 for (crm = crmmin; crm <= crmmax; crm++) {
9363 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
9364 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
9365 for (state = ARM_CP_STATE_AA32;
9366 state <= ARM_CP_STATE_AA64; state++) {
9367 if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
9368 continue;
9369 }
9370 if ((r->type & ARM_CP_ADD_TLBI_NXS) &&
9371 cpu_isar_feature(aa64_xs, cpu)) {
9372 /*
9373 * This is a TLBI insn which has an NXS variant. The
9374 * NXS variant is at the same encoding except that
9375 * crn is +1, and has the same behaviour except for
9376 * fine-grained trapping. Add the NXS insn here and
9377 * then fall through to add the normal register.
9378 * add_cpreg_to_hashtable() copies the cpreg struct
9379 * and name that it is passed, so it's OK to use
9380 * a local struct here.
9381 */
9382 ARMCPRegInfo nxs_ri = *r;
9383 g_autofree char *name = g_strdup_printf("%sNXS", r->name);
9384
9385 assert(state == ARM_CP_STATE_AA64);
9386 assert(nxs_ri.crn < 0xf);
9387 nxs_ri.crn++;
9388 if (nxs_ri.fgt) {
9389 nxs_ri.fgt |= R_FGT_NXS_MASK;
9390 }
9391 add_cpreg_to_hashtable(cpu, &nxs_ri, opaque, state,
9392 ARM_CP_SECSTATE_NS,
9393 crm, opc1, opc2, name);
9394 }
9395 if (state == ARM_CP_STATE_AA32) {
9396 /*
9397 * Under AArch32 CP registers can be common
9398 * (same for secure and non-secure world) or banked.
9399 */
9400 char *name;
9401
9402 switch (r->secure) {
9403 case ARM_CP_SECSTATE_S:
9404 case ARM_CP_SECSTATE_NS:
9405 add_cpreg_to_hashtable(cpu, r, opaque, state,
9406 r->secure, crm, opc1, opc2,
9407 r->name);
9408 break;
9409 case ARM_CP_SECSTATE_BOTH:
9410 name = g_strdup_printf("%s_S", r->name);
9411 add_cpreg_to_hashtable(cpu, r, opaque, state,
9412 ARM_CP_SECSTATE_S,
9413 crm, opc1, opc2, name);
9414 g_free(name);
9415 add_cpreg_to_hashtable(cpu, r, opaque, state,
9416 ARM_CP_SECSTATE_NS,
9417 crm, opc1, opc2, r->name);
9418 break;
9419 default:
9420 g_assert_not_reached();
9421 }
9422 } else {
9423 /*
9424 * AArch64 registers get mapped to non-secure instance
9425 * of AArch32
9426 */
9427 add_cpreg_to_hashtable(cpu, r, opaque, state,
9428 ARM_CP_SECSTATE_NS,
9429 crm, opc1, opc2, r->name);
9430 }
9431 }
9432 }
9433 }
9434 }
9435 }
9436
9437 /* Define a whole list of registers */
define_arm_cp_regs_with_opaque_len(ARMCPU * cpu,const ARMCPRegInfo * regs,void * opaque,size_t len)9438 void define_arm_cp_regs_with_opaque_len(ARMCPU *cpu, const ARMCPRegInfo *regs,
9439 void *opaque, size_t len)
9440 {
9441 size_t i;
9442 for (i = 0; i < len; ++i) {
9443 define_one_arm_cp_reg_with_opaque(cpu, regs + i, opaque);
9444 }
9445 }
9446
9447 /*
9448 * Modify ARMCPRegInfo for access from userspace.
9449 *
9450 * This is a data driven modification directed by
9451 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as
9452 * user-space cannot alter any values and dynamic values pertaining to
9453 * execution state are hidden from user space view anyway.
9454 */
modify_arm_cp_regs_with_len(ARMCPRegInfo * regs,size_t regs_len,const ARMCPRegUserSpaceInfo * mods,size_t mods_len)9455 void modify_arm_cp_regs_with_len(ARMCPRegInfo *regs, size_t regs_len,
9456 const ARMCPRegUserSpaceInfo *mods,
9457 size_t mods_len)
9458 {
9459 for (size_t mi = 0; mi < mods_len; ++mi) {
9460 const ARMCPRegUserSpaceInfo *m = mods + mi;
9461 GPatternSpec *pat = NULL;
9462
9463 if (m->is_glob) {
9464 pat = g_pattern_spec_new(m->name);
9465 }
9466 for (size_t ri = 0; ri < regs_len; ++ri) {
9467 ARMCPRegInfo *r = regs + ri;
9468
9469 if (pat && g_pattern_match_string(pat, r->name)) {
9470 r->type = ARM_CP_CONST;
9471 r->access = PL0U_R;
9472 r->resetvalue = 0;
9473 /* continue */
9474 } else if (strcmp(r->name, m->name) == 0) {
9475 r->type = ARM_CP_CONST;
9476 r->access = PL0U_R;
9477 r->resetvalue &= m->exported_bits;
9478 r->resetvalue |= m->fixed_bits;
9479 break;
9480 }
9481 }
9482 if (pat) {
9483 g_pattern_spec_free(pat);
9484 }
9485 }
9486 }
9487
get_arm_cp_reginfo(GHashTable * cpregs,uint32_t encoded_cp)9488 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
9489 {
9490 return g_hash_table_lookup(cpregs, (gpointer)(uintptr_t)encoded_cp);
9491 }
9492
arm_cp_write_ignore(CPUARMState * env,const ARMCPRegInfo * ri,uint64_t value)9493 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
9494 uint64_t value)
9495 {
9496 /* Helper coprocessor write function for write-ignore registers */
9497 }
9498
arm_cp_read_zero(CPUARMState * env,const ARMCPRegInfo * ri)9499 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
9500 {
9501 /* Helper coprocessor write function for read-as-zero registers */
9502 return 0;
9503 }
9504
arm_cp_reset_ignore(CPUARMState * env,const ARMCPRegInfo * opaque)9505 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
9506 {
9507 /* Helper coprocessor reset function for do-nothing-on-reset registers */
9508 }
9509
bad_mode_switch(CPUARMState * env,int mode,CPSRWriteType write_type)9510 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
9511 {
9512 /*
9513 * Return true if it is not valid for us to switch to
9514 * this CPU mode (ie all the UNPREDICTABLE cases in
9515 * the ARM ARM CPSRWriteByInstr pseudocode).
9516 */
9517
9518 /* Changes to or from Hyp via MSR and CPS are illegal. */
9519 if (write_type == CPSRWriteByInstr &&
9520 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
9521 mode == ARM_CPU_MODE_HYP)) {
9522 return 1;
9523 }
9524
9525 switch (mode) {
9526 case ARM_CPU_MODE_USR:
9527 return 0;
9528 case ARM_CPU_MODE_SYS:
9529 case ARM_CPU_MODE_SVC:
9530 case ARM_CPU_MODE_ABT:
9531 case ARM_CPU_MODE_UND:
9532 case ARM_CPU_MODE_IRQ:
9533 case ARM_CPU_MODE_FIQ:
9534 /*
9535 * Note that we don't implement the IMPDEF NSACR.RFR which in v7
9536 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
9537 */
9538 /*
9539 * If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
9540 * and CPS are treated as illegal mode changes.
9541 */
9542 if (write_type == CPSRWriteByInstr &&
9543 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
9544 (arm_hcr_el2_eff(env) & HCR_TGE)) {
9545 return 1;
9546 }
9547 return 0;
9548 case ARM_CPU_MODE_HYP:
9549 return !arm_is_el2_enabled(env) || arm_current_el(env) < 2;
9550 case ARM_CPU_MODE_MON:
9551 return arm_current_el(env) < 3;
9552 default:
9553 return 1;
9554 }
9555 }
9556
cpsr_read(CPUARMState * env)9557 uint32_t cpsr_read(CPUARMState *env)
9558 {
9559 int ZF;
9560 ZF = (env->ZF == 0);
9561 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
9562 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
9563 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
9564 | ((env->condexec_bits & 0xfc) << 8)
9565 | (env->GE << 16) | (env->daif & CPSR_AIF);
9566 }
9567
cpsr_write(CPUARMState * env,uint32_t val,uint32_t mask,CPSRWriteType write_type)9568 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
9569 CPSRWriteType write_type)
9570 {
9571 uint32_t changed_daif;
9572 bool rebuild_hflags = (write_type != CPSRWriteRaw) &&
9573 (mask & (CPSR_M | CPSR_E | CPSR_IL));
9574
9575 if (mask & CPSR_NZCV) {
9576 env->ZF = (~val) & CPSR_Z;
9577 env->NF = val;
9578 env->CF = (val >> 29) & 1;
9579 env->VF = (val << 3) & 0x80000000;
9580 }
9581 if (mask & CPSR_Q) {
9582 env->QF = ((val & CPSR_Q) != 0);
9583 }
9584 if (mask & CPSR_T) {
9585 env->thumb = ((val & CPSR_T) != 0);
9586 }
9587 if (mask & CPSR_IT_0_1) {
9588 env->condexec_bits &= ~3;
9589 env->condexec_bits |= (val >> 25) & 3;
9590 }
9591 if (mask & CPSR_IT_2_7) {
9592 env->condexec_bits &= 3;
9593 env->condexec_bits |= (val >> 8) & 0xfc;
9594 }
9595 if (mask & CPSR_GE) {
9596 env->GE = (val >> 16) & 0xf;
9597 }
9598
9599 /*
9600 * In a V7 implementation that includes the security extensions but does
9601 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
9602 * whether non-secure software is allowed to change the CPSR_F and CPSR_A
9603 * bits respectively.
9604 *
9605 * In a V8 implementation, it is permitted for privileged software to
9606 * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
9607 */
9608 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
9609 arm_feature(env, ARM_FEATURE_EL3) &&
9610 !arm_feature(env, ARM_FEATURE_EL2) &&
9611 !arm_is_secure(env)) {
9612
9613 changed_daif = (env->daif ^ val) & mask;
9614
9615 if (changed_daif & CPSR_A) {
9616 /*
9617 * Check to see if we are allowed to change the masking of async
9618 * abort exceptions from a non-secure state.
9619 */
9620 if (!(env->cp15.scr_el3 & SCR_AW)) {
9621 qemu_log_mask(LOG_GUEST_ERROR,
9622 "Ignoring attempt to switch CPSR_A flag from "
9623 "non-secure world with SCR.AW bit clear\n");
9624 mask &= ~CPSR_A;
9625 }
9626 }
9627
9628 if (changed_daif & CPSR_F) {
9629 /*
9630 * Check to see if we are allowed to change the masking of FIQ
9631 * exceptions from a non-secure state.
9632 */
9633 if (!(env->cp15.scr_el3 & SCR_FW)) {
9634 qemu_log_mask(LOG_GUEST_ERROR,
9635 "Ignoring attempt to switch CPSR_F flag from "
9636 "non-secure world with SCR.FW bit clear\n");
9637 mask &= ~CPSR_F;
9638 }
9639
9640 /*
9641 * Check whether non-maskable FIQ (NMFI) support is enabled.
9642 * If this bit is set software is not allowed to mask
9643 * FIQs, but is allowed to set CPSR_F to 0.
9644 */
9645 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
9646 (val & CPSR_F)) {
9647 qemu_log_mask(LOG_GUEST_ERROR,
9648 "Ignoring attempt to enable CPSR_F flag "
9649 "(non-maskable FIQ [NMFI] support enabled)\n");
9650 mask &= ~CPSR_F;
9651 }
9652 }
9653 }
9654
9655 env->daif &= ~(CPSR_AIF & mask);
9656 env->daif |= val & CPSR_AIF & mask;
9657
9658 if (write_type != CPSRWriteRaw &&
9659 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
9660 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
9661 /*
9662 * Note that we can only get here in USR mode if this is a
9663 * gdb stub write; for this case we follow the architectural
9664 * behaviour for guest writes in USR mode of ignoring an attempt
9665 * to switch mode. (Those are caught by translate.c for writes
9666 * triggered by guest instructions.)
9667 */
9668 mask &= ~CPSR_M;
9669 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
9670 /*
9671 * Attempt to switch to an invalid mode: this is UNPREDICTABLE in
9672 * v7, and has defined behaviour in v8:
9673 * + leave CPSR.M untouched
9674 * + allow changes to the other CPSR fields
9675 * + set PSTATE.IL
9676 * For user changes via the GDB stub, we don't set PSTATE.IL,
9677 * as this would be unnecessarily harsh for a user error.
9678 */
9679 mask &= ~CPSR_M;
9680 if (write_type != CPSRWriteByGDBStub &&
9681 arm_feature(env, ARM_FEATURE_V8)) {
9682 mask |= CPSR_IL;
9683 val |= CPSR_IL;
9684 }
9685 qemu_log_mask(LOG_GUEST_ERROR,
9686 "Illegal AArch32 mode switch attempt from %s to %s\n",
9687 aarch32_mode_name(env->uncached_cpsr),
9688 aarch32_mode_name(val));
9689 } else {
9690 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n",
9691 write_type == CPSRWriteExceptionReturn ?
9692 "Exception return from AArch32" :
9693 "AArch32 mode switch from",
9694 aarch32_mode_name(env->uncached_cpsr),
9695 aarch32_mode_name(val), env->regs[15]);
9696 switch_mode(env, val & CPSR_M);
9697 }
9698 }
9699 mask &= ~CACHED_CPSR_BITS;
9700 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
9701 if (tcg_enabled() && rebuild_hflags) {
9702 arm_rebuild_hflags(env);
9703 }
9704 }
9705
9706 #ifdef CONFIG_USER_ONLY
9707
switch_mode(CPUARMState * env,int mode)9708 static void switch_mode(CPUARMState *env, int mode)
9709 {
9710 ARMCPU *cpu = env_archcpu(env);
9711
9712 if (mode != ARM_CPU_MODE_USR) {
9713 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
9714 }
9715 }
9716
arm_phys_excp_target_el(CPUState * cs,uint32_t excp_idx,uint32_t cur_el,bool secure)9717 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
9718 uint32_t cur_el, bool secure)
9719 {
9720 return 1;
9721 }
9722
aarch64_sync_64_to_32(CPUARMState * env)9723 void aarch64_sync_64_to_32(CPUARMState *env)
9724 {
9725 g_assert_not_reached();
9726 }
9727
9728 #else
9729
switch_mode(CPUARMState * env,int mode)9730 static void switch_mode(CPUARMState *env, int mode)
9731 {
9732 int old_mode;
9733 int i;
9734
9735 old_mode = env->uncached_cpsr & CPSR_M;
9736 if (mode == old_mode) {
9737 return;
9738 }
9739
9740 if (old_mode == ARM_CPU_MODE_FIQ) {
9741 memcpy(env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
9742 memcpy(env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
9743 } else if (mode == ARM_CPU_MODE_FIQ) {
9744 memcpy(env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
9745 memcpy(env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
9746 }
9747
9748 i = bank_number(old_mode);
9749 env->banked_r13[i] = env->regs[13];
9750 env->banked_spsr[i] = env->spsr;
9751
9752 i = bank_number(mode);
9753 env->regs[13] = env->banked_r13[i];
9754 env->spsr = env->banked_spsr[i];
9755
9756 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14];
9757 env->regs[14] = env->banked_r14[r14_bank_number(mode)];
9758 }
9759
9760 /*
9761 * Physical Interrupt Target EL Lookup Table
9762 *
9763 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
9764 *
9765 * The below multi-dimensional table is used for looking up the target
9766 * exception level given numerous condition criteria. Specifically, the
9767 * target EL is based on SCR and HCR routing controls as well as the
9768 * currently executing EL and secure state.
9769 *
9770 * Dimensions:
9771 * target_el_table[2][2][2][2][2][4]
9772 * | | | | | +--- Current EL
9773 * | | | | +------ Non-secure(0)/Secure(1)
9774 * | | | +--------- HCR mask override
9775 * | | +------------ SCR exec state control
9776 * | +--------------- SCR mask override
9777 * +------------------ 32-bit(0)/64-bit(1) EL3
9778 *
9779 * The table values are as such:
9780 * 0-3 = EL0-EL3
9781 * -1 = Cannot occur
9782 *
9783 * The ARM ARM target EL table includes entries indicating that an "exception
9784 * is not taken". The two cases where this is applicable are:
9785 * 1) An exception is taken from EL3 but the SCR does not have the exception
9786 * routed to EL3.
9787 * 2) An exception is taken from EL2 but the HCR does not have the exception
9788 * routed to EL2.
9789 * In these two cases, the below table contain a target of EL1. This value is
9790 * returned as it is expected that the consumer of the table data will check
9791 * for "target EL >= current EL" to ensure the exception is not taken.
9792 *
9793 * SCR HCR
9794 * 64 EA AMO From
9795 * BIT IRQ IMO Non-secure Secure
9796 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3
9797 */
9798 static const int8_t target_el_table[2][2][2][2][2][4] = {
9799 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
9800 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},
9801 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
9802 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},},
9803 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
9804 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},
9805 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
9806 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},},
9807 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },},
9808 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 2, 2, -1, 1 },},},
9809 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, 1, 1 },},
9810 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 2, 2, 2, 1 },},},},
9811 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
9812 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},
9813 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},
9814 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},},},},
9815 };
9816
9817 /*
9818 * Determine the target EL for physical exceptions
9819 */
arm_phys_excp_target_el(CPUState * cs,uint32_t excp_idx,uint32_t cur_el,bool secure)9820 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
9821 uint32_t cur_el, bool secure)
9822 {
9823 CPUARMState *env = cpu_env(cs);
9824 bool rw;
9825 bool scr;
9826 bool hcr;
9827 int target_el;
9828 /* Is the highest EL AArch64? */
9829 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64);
9830 uint64_t hcr_el2;
9831
9832 if (arm_feature(env, ARM_FEATURE_EL3)) {
9833 rw = arm_scr_rw_eff(env);
9834 } else {
9835 /*
9836 * Either EL2 is the highest EL (and so the EL2 register width
9837 * is given by is64); or there is no EL2 or EL3, in which case
9838 * the value of 'rw' does not affect the table lookup anyway.
9839 */
9840 rw = is64;
9841 }
9842
9843 hcr_el2 = arm_hcr_el2_eff(env);
9844 switch (excp_idx) {
9845 case EXCP_IRQ:
9846 case EXCP_NMI:
9847 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
9848 hcr = hcr_el2 & HCR_IMO;
9849 break;
9850 case EXCP_FIQ:
9851 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
9852 hcr = hcr_el2 & HCR_FMO;
9853 break;
9854 default:
9855 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
9856 hcr = hcr_el2 & HCR_AMO;
9857 break;
9858 };
9859
9860 /*
9861 * For these purposes, TGE and AMO/IMO/FMO both force the
9862 * interrupt to EL2. Fold TGE into the bit extracted above.
9863 */
9864 hcr |= (hcr_el2 & HCR_TGE) != 0;
9865
9866 /* Perform a table-lookup for the target EL given the current state */
9867 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
9868
9869 assert(target_el > 0);
9870
9871 return target_el;
9872 }
9873
arm_log_exception(CPUState * cs)9874 void arm_log_exception(CPUState *cs)
9875 {
9876 int idx = cs->exception_index;
9877
9878 if (qemu_loglevel_mask(CPU_LOG_INT)) {
9879 const char *exc = NULL;
9880 static const char * const excnames[] = {
9881 [EXCP_UDEF] = "Undefined Instruction",
9882 [EXCP_SWI] = "SVC",
9883 [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
9884 [EXCP_DATA_ABORT] = "Data Abort",
9885 [EXCP_IRQ] = "IRQ",
9886 [EXCP_FIQ] = "FIQ",
9887 [EXCP_BKPT] = "Breakpoint",
9888 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
9889 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
9890 [EXCP_HVC] = "Hypervisor Call",
9891 [EXCP_HYP_TRAP] = "Hypervisor Trap",
9892 [EXCP_SMC] = "Secure Monitor Call",
9893 [EXCP_VIRQ] = "Virtual IRQ",
9894 [EXCP_VFIQ] = "Virtual FIQ",
9895 [EXCP_SEMIHOST] = "Semihosting call",
9896 [EXCP_NOCP] = "v7M NOCP UsageFault",
9897 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
9898 [EXCP_STKOF] = "v8M STKOF UsageFault",
9899 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking",
9900 [EXCP_LSERR] = "v8M LSERR UsageFault",
9901 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault",
9902 [EXCP_DIVBYZERO] = "v7M DIVBYZERO UsageFault",
9903 [EXCP_VSERR] = "Virtual SERR",
9904 [EXCP_GPC] = "Granule Protection Check",
9905 [EXCP_NMI] = "NMI",
9906 [EXCP_VINMI] = "Virtual IRQ NMI",
9907 [EXCP_VFNMI] = "Virtual FIQ NMI",
9908 [EXCP_MON_TRAP] = "Monitor Trap",
9909 };
9910
9911 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
9912 exc = excnames[idx];
9913 }
9914 if (!exc) {
9915 exc = "unknown";
9916 }
9917 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s] on CPU %d\n",
9918 idx, exc, cs->cpu_index);
9919 }
9920 }
9921
9922 /*
9923 * Function used to synchronize QEMU's AArch64 register set with AArch32
9924 * register set. This is necessary when switching between AArch32 and AArch64
9925 * execution state.
9926 */
aarch64_sync_32_to_64(CPUARMState * env)9927 void aarch64_sync_32_to_64(CPUARMState *env)
9928 {
9929 int i;
9930 uint32_t mode = env->uncached_cpsr & CPSR_M;
9931
9932 /* We can blanket copy R[0:7] to X[0:7] */
9933 for (i = 0; i < 8; i++) {
9934 env->xregs[i] = env->regs[i];
9935 }
9936
9937 /*
9938 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
9939 * Otherwise, they come from the banked user regs.
9940 */
9941 if (mode == ARM_CPU_MODE_FIQ) {
9942 for (i = 8; i < 13; i++) {
9943 env->xregs[i] = env->usr_regs[i - 8];
9944 }
9945 } else {
9946 for (i = 8; i < 13; i++) {
9947 env->xregs[i] = env->regs[i];
9948 }
9949 }
9950
9951 /*
9952 * Registers x13-x23 are the various mode SP and FP registers. Registers
9953 * r13 and r14 are only copied if we are in that mode, otherwise we copy
9954 * from the mode banked register.
9955 */
9956 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
9957 env->xregs[13] = env->regs[13];
9958 env->xregs[14] = env->regs[14];
9959 } else {
9960 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
9961 /* HYP is an exception in that it is copied from r14 */
9962 if (mode == ARM_CPU_MODE_HYP) {
9963 env->xregs[14] = env->regs[14];
9964 } else {
9965 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)];
9966 }
9967 }
9968
9969 if (mode == ARM_CPU_MODE_HYP) {
9970 env->xregs[15] = env->regs[13];
9971 } else {
9972 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
9973 }
9974
9975 if (mode == ARM_CPU_MODE_IRQ) {
9976 env->xregs[16] = env->regs[14];
9977 env->xregs[17] = env->regs[13];
9978 } else {
9979 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)];
9980 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
9981 }
9982
9983 if (mode == ARM_CPU_MODE_SVC) {
9984 env->xregs[18] = env->regs[14];
9985 env->xregs[19] = env->regs[13];
9986 } else {
9987 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)];
9988 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
9989 }
9990
9991 if (mode == ARM_CPU_MODE_ABT) {
9992 env->xregs[20] = env->regs[14];
9993 env->xregs[21] = env->regs[13];
9994 } else {
9995 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)];
9996 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
9997 }
9998
9999 if (mode == ARM_CPU_MODE_UND) {
10000 env->xregs[22] = env->regs[14];
10001 env->xregs[23] = env->regs[13];
10002 } else {
10003 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)];
10004 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
10005 }
10006
10007 /*
10008 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
10009 * mode, then we can copy from r8-r14. Otherwise, we copy from the
10010 * FIQ bank for r8-r14.
10011 */
10012 if (mode == ARM_CPU_MODE_FIQ) {
10013 for (i = 24; i < 31; i++) {
10014 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */
10015 }
10016 } else {
10017 for (i = 24; i < 29; i++) {
10018 env->xregs[i] = env->fiq_regs[i - 24];
10019 }
10020 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
10021 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)];
10022 }
10023
10024 env->pc = env->regs[15];
10025 }
10026
10027 /*
10028 * Function used to synchronize QEMU's AArch32 register set with AArch64
10029 * register set. This is necessary when switching between AArch32 and AArch64
10030 * execution state.
10031 */
aarch64_sync_64_to_32(CPUARMState * env)10032 void aarch64_sync_64_to_32(CPUARMState *env)
10033 {
10034 int i;
10035 uint32_t mode = env->uncached_cpsr & CPSR_M;
10036
10037 /* We can blanket copy X[0:7] to R[0:7] */
10038 for (i = 0; i < 8; i++) {
10039 env->regs[i] = env->xregs[i];
10040 }
10041
10042 /*
10043 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
10044 * Otherwise, we copy x8-x12 into the banked user regs.
10045 */
10046 if (mode == ARM_CPU_MODE_FIQ) {
10047 for (i = 8; i < 13; i++) {
10048 env->usr_regs[i - 8] = env->xregs[i];
10049 }
10050 } else {
10051 for (i = 8; i < 13; i++) {
10052 env->regs[i] = env->xregs[i];
10053 }
10054 }
10055
10056 /*
10057 * Registers r13 & r14 depend on the current mode.
10058 * If we are in a given mode, we copy the corresponding x registers to r13
10059 * and r14. Otherwise, we copy the x register to the banked r13 and r14
10060 * for the mode.
10061 */
10062 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
10063 env->regs[13] = env->xregs[13];
10064 env->regs[14] = env->xregs[14];
10065 } else {
10066 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
10067
10068 /*
10069 * HYP is an exception in that it does not have its own banked r14 but
10070 * shares the USR r14
10071 */
10072 if (mode == ARM_CPU_MODE_HYP) {
10073 env->regs[14] = env->xregs[14];
10074 } else {
10075 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
10076 }
10077 }
10078
10079 if (mode == ARM_CPU_MODE_HYP) {
10080 env->regs[13] = env->xregs[15];
10081 } else {
10082 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
10083 }
10084
10085 if (mode == ARM_CPU_MODE_IRQ) {
10086 env->regs[14] = env->xregs[16];
10087 env->regs[13] = env->xregs[17];
10088 } else {
10089 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
10090 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
10091 }
10092
10093 if (mode == ARM_CPU_MODE_SVC) {
10094 env->regs[14] = env->xregs[18];
10095 env->regs[13] = env->xregs[19];
10096 } else {
10097 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
10098 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
10099 }
10100
10101 if (mode == ARM_CPU_MODE_ABT) {
10102 env->regs[14] = env->xregs[20];
10103 env->regs[13] = env->xregs[21];
10104 } else {
10105 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
10106 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
10107 }
10108
10109 if (mode == ARM_CPU_MODE_UND) {
10110 env->regs[14] = env->xregs[22];
10111 env->regs[13] = env->xregs[23];
10112 } else {
10113 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
10114 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
10115 }
10116
10117 /*
10118 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
10119 * mode, then we can copy to r8-r14. Otherwise, we copy to the
10120 * FIQ bank for r8-r14.
10121 */
10122 if (mode == ARM_CPU_MODE_FIQ) {
10123 for (i = 24; i < 31; i++) {
10124 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */
10125 }
10126 } else {
10127 for (i = 24; i < 29; i++) {
10128 env->fiq_regs[i - 24] = env->xregs[i];
10129 }
10130 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
10131 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
10132 }
10133
10134 env->regs[15] = env->pc;
10135 }
10136
take_aarch32_exception(CPUARMState * env,int new_mode,uint32_t mask,uint32_t offset,uint32_t newpc)10137 static void take_aarch32_exception(CPUARMState *env, int new_mode,
10138 uint32_t mask, uint32_t offset,
10139 uint32_t newpc)
10140 {
10141 int new_el;
10142
10143 /* Change the CPU state so as to actually take the exception. */
10144 switch_mode(env, new_mode);
10145
10146 /*
10147 * For exceptions taken to AArch32 we must clear the SS bit in both
10148 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
10149 */
10150 env->pstate &= ~PSTATE_SS;
10151 env->spsr = cpsr_read(env);
10152 /* Clear IT bits. */
10153 env->condexec_bits = 0;
10154 /* Switch to the new mode, and to the correct instruction set. */
10155 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
10156
10157 /* This must be after mode switching. */
10158 new_el = arm_current_el(env);
10159
10160 /* Set new mode endianness */
10161 env->uncached_cpsr &= ~CPSR_E;
10162 if (env->cp15.sctlr_el[new_el] & SCTLR_EE) {
10163 env->uncached_cpsr |= CPSR_E;
10164 }
10165 /* J and IL must always be cleared for exception entry */
10166 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J);
10167 env->daif |= mask;
10168
10169 if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) {
10170 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) {
10171 env->uncached_cpsr |= CPSR_SSBS;
10172 } else {
10173 env->uncached_cpsr &= ~CPSR_SSBS;
10174 }
10175 }
10176
10177 if (new_mode == ARM_CPU_MODE_HYP) {
10178 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0;
10179 env->elr_el[2] = env->regs[15];
10180 } else {
10181 /* CPSR.PAN is normally preserved preserved unless... */
10182 if (cpu_isar_feature(aa32_pan, env_archcpu(env))) {
10183 switch (new_el) {
10184 case 3:
10185 if (!arm_is_secure_below_el3(env)) {
10186 /* ... the target is EL3, from non-secure state. */
10187 env->uncached_cpsr &= ~CPSR_PAN;
10188 break;
10189 }
10190 /* ... the target is EL3, from secure state ... */
10191 /* fall through */
10192 case 1:
10193 /* ... the target is EL1 and SCTLR.SPAN is 0. */
10194 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) {
10195 env->uncached_cpsr |= CPSR_PAN;
10196 }
10197 break;
10198 }
10199 }
10200 /*
10201 * this is a lie, as there was no c1_sys on V4T/V5, but who cares
10202 * and we should just guard the thumb mode on V4
10203 */
10204 if (arm_feature(env, ARM_FEATURE_V4T)) {
10205 env->thumb =
10206 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
10207 }
10208 env->regs[14] = env->regs[15] + offset;
10209 }
10210 env->regs[15] = newpc;
10211
10212 if (tcg_enabled()) {
10213 arm_rebuild_hflags(env);
10214 }
10215 }
10216
arm_cpu_do_interrupt_aarch32_hyp(CPUState * cs)10217 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs)
10218 {
10219 /*
10220 * Handle exception entry to Hyp mode; this is sufficiently
10221 * different to entry to other AArch32 modes that we handle it
10222 * separately here.
10223 *
10224 * The vector table entry used is always the 0x14 Hyp mode entry point,
10225 * unless this is an UNDEF/SVC/HVC/abort taken from Hyp to Hyp.
10226 * The offset applied to the preferred return address is always zero
10227 * (see DDI0487C.a section G1.12.3).
10228 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values.
10229 */
10230 uint32_t addr, mask;
10231 ARMCPU *cpu = ARM_CPU(cs);
10232 CPUARMState *env = &cpu->env;
10233
10234 switch (cs->exception_index) {
10235 case EXCP_UDEF:
10236 addr = 0x04;
10237 break;
10238 case EXCP_SWI:
10239 addr = 0x08;
10240 break;
10241 case EXCP_BKPT:
10242 /* Fall through to prefetch abort. */
10243 case EXCP_PREFETCH_ABORT:
10244 env->cp15.ifar_s = env->exception.vaddress;
10245 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n",
10246 (uint32_t)env->exception.vaddress);
10247 addr = 0x0c;
10248 break;
10249 case EXCP_DATA_ABORT:
10250 env->cp15.dfar_s = env->exception.vaddress;
10251 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n",
10252 (uint32_t)env->exception.vaddress);
10253 addr = 0x10;
10254 break;
10255 case EXCP_IRQ:
10256 addr = 0x18;
10257 break;
10258 case EXCP_FIQ:
10259 addr = 0x1c;
10260 break;
10261 case EXCP_HVC:
10262 addr = 0x08;
10263 break;
10264 case EXCP_HYP_TRAP:
10265 addr = 0x14;
10266 break;
10267 default:
10268 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
10269 }
10270
10271 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) {
10272 if (!arm_feature(env, ARM_FEATURE_V8)) {
10273 /*
10274 * QEMU syndrome values are v8-style. v7 has the IL bit
10275 * UNK/SBZP for "field not valid" cases, where v8 uses RES1.
10276 * If this is a v7 CPU, squash the IL bit in those cases.
10277 */
10278 if (cs->exception_index == EXCP_PREFETCH_ABORT ||
10279 (cs->exception_index == EXCP_DATA_ABORT &&
10280 !(env->exception.syndrome & ARM_EL_ISV)) ||
10281 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) {
10282 env->exception.syndrome &= ~ARM_EL_IL;
10283 }
10284 }
10285 env->cp15.esr_el[2] = env->exception.syndrome;
10286 }
10287
10288 if (arm_current_el(env) != 2 && addr < 0x14) {
10289 addr = 0x14;
10290 }
10291
10292 mask = 0;
10293 if (!(env->cp15.scr_el3 & SCR_EA)) {
10294 mask |= CPSR_A;
10295 }
10296 if (!(env->cp15.scr_el3 & SCR_IRQ)) {
10297 mask |= CPSR_I;
10298 }
10299 if (!(env->cp15.scr_el3 & SCR_FIQ)) {
10300 mask |= CPSR_F;
10301 }
10302
10303 addr += env->cp15.hvbar;
10304
10305 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr);
10306 }
10307
arm_cpu_do_interrupt_aarch32(CPUState * cs)10308 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
10309 {
10310 ARMCPU *cpu = ARM_CPU(cs);
10311 CPUARMState *env = &cpu->env;
10312 uint32_t addr;
10313 uint32_t mask;
10314 int new_mode;
10315 uint32_t offset;
10316 uint32_t moe;
10317
10318 /* If this is a debug exception we must update the DBGDSCR.MOE bits */
10319 switch (syn_get_ec(env->exception.syndrome)) {
10320 case EC_BREAKPOINT:
10321 case EC_BREAKPOINT_SAME_EL:
10322 moe = 1;
10323 break;
10324 case EC_WATCHPOINT:
10325 case EC_WATCHPOINT_SAME_EL:
10326 moe = 10;
10327 break;
10328 case EC_AA32_BKPT:
10329 moe = 3;
10330 break;
10331 case EC_VECTORCATCH:
10332 moe = 5;
10333 break;
10334 default:
10335 moe = 0;
10336 break;
10337 }
10338
10339 if (moe) {
10340 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
10341 }
10342
10343 if (env->exception.target_el == 2) {
10344 /* Debug exceptions are reported differently on AArch32 */
10345 switch (syn_get_ec(env->exception.syndrome)) {
10346 case EC_BREAKPOINT:
10347 case EC_BREAKPOINT_SAME_EL:
10348 case EC_AA32_BKPT:
10349 case EC_VECTORCATCH:
10350 env->exception.syndrome = syn_insn_abort(arm_current_el(env) == 2,
10351 0, 0, 0x22);
10352 break;
10353 case EC_WATCHPOINT:
10354 env->exception.syndrome = syn_set_ec(env->exception.syndrome,
10355 EC_DATAABORT);
10356 break;
10357 case EC_WATCHPOINT_SAME_EL:
10358 env->exception.syndrome = syn_set_ec(env->exception.syndrome,
10359 EC_DATAABORT_SAME_EL);
10360 break;
10361 }
10362 arm_cpu_do_interrupt_aarch32_hyp(cs);
10363 return;
10364 }
10365
10366 switch (cs->exception_index) {
10367 case EXCP_UDEF:
10368 new_mode = ARM_CPU_MODE_UND;
10369 addr = 0x04;
10370 mask = CPSR_I;
10371 if (env->thumb) {
10372 offset = 2;
10373 } else {
10374 offset = 4;
10375 }
10376 break;
10377 case EXCP_SWI:
10378 new_mode = ARM_CPU_MODE_SVC;
10379 addr = 0x08;
10380 mask = CPSR_I;
10381 /* The PC already points to the next instruction. */
10382 offset = 0;
10383 break;
10384 case EXCP_BKPT:
10385 /* Fall through to prefetch abort. */
10386 case EXCP_PREFETCH_ABORT:
10387 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
10388 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
10389 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
10390 env->exception.fsr, (uint32_t)env->exception.vaddress);
10391 new_mode = ARM_CPU_MODE_ABT;
10392 addr = 0x0c;
10393 mask = CPSR_A | CPSR_I;
10394 offset = 4;
10395 break;
10396 case EXCP_DATA_ABORT:
10397 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
10398 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
10399 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
10400 env->exception.fsr,
10401 (uint32_t)env->exception.vaddress);
10402 new_mode = ARM_CPU_MODE_ABT;
10403 addr = 0x10;
10404 mask = CPSR_A | CPSR_I;
10405 offset = 8;
10406 break;
10407 case EXCP_IRQ:
10408 new_mode = ARM_CPU_MODE_IRQ;
10409 addr = 0x18;
10410 /* Disable IRQ and imprecise data aborts. */
10411 mask = CPSR_A | CPSR_I;
10412 offset = 4;
10413 if (env->cp15.scr_el3 & SCR_IRQ) {
10414 /* IRQ routed to monitor mode */
10415 new_mode = ARM_CPU_MODE_MON;
10416 mask |= CPSR_F;
10417 }
10418 break;
10419 case EXCP_FIQ:
10420 new_mode = ARM_CPU_MODE_FIQ;
10421 addr = 0x1c;
10422 /* Disable FIQ, IRQ and imprecise data aborts. */
10423 mask = CPSR_A | CPSR_I | CPSR_F;
10424 if (env->cp15.scr_el3 & SCR_FIQ) {
10425 /* FIQ routed to monitor mode */
10426 new_mode = ARM_CPU_MODE_MON;
10427 }
10428 offset = 4;
10429 break;
10430 case EXCP_VIRQ:
10431 new_mode = ARM_CPU_MODE_IRQ;
10432 addr = 0x18;
10433 /* Disable IRQ and imprecise data aborts. */
10434 mask = CPSR_A | CPSR_I;
10435 offset = 4;
10436 break;
10437 case EXCP_VFIQ:
10438 new_mode = ARM_CPU_MODE_FIQ;
10439 addr = 0x1c;
10440 /* Disable FIQ, IRQ and imprecise data aborts. */
10441 mask = CPSR_A | CPSR_I | CPSR_F;
10442 offset = 4;
10443 break;
10444 case EXCP_VSERR:
10445 {
10446 /*
10447 * Note that this is reported as a data abort, but the DFAR
10448 * has an UNKNOWN value. Construct the SError syndrome from
10449 * AET and ExT fields.
10450 */
10451 ARMMMUFaultInfo fi = { .type = ARMFault_AsyncExternal, };
10452
10453 if (extended_addresses_enabled(env)) {
10454 env->exception.fsr = arm_fi_to_lfsc(&fi);
10455 } else {
10456 env->exception.fsr = arm_fi_to_sfsc(&fi);
10457 }
10458 env->exception.fsr |= env->cp15.vsesr_el2 & 0xd000;
10459 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
10460 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x\n",
10461 env->exception.fsr);
10462
10463 new_mode = ARM_CPU_MODE_ABT;
10464 addr = 0x10;
10465 mask = CPSR_A | CPSR_I;
10466 offset = 8;
10467 }
10468 break;
10469 case EXCP_SMC:
10470 new_mode = ARM_CPU_MODE_MON;
10471 addr = 0x08;
10472 mask = CPSR_A | CPSR_I | CPSR_F;
10473 offset = 0;
10474 break;
10475 case EXCP_MON_TRAP:
10476 new_mode = ARM_CPU_MODE_MON;
10477 addr = 0x04;
10478 mask = CPSR_A | CPSR_I | CPSR_F;
10479 if (env->thumb) {
10480 offset = 2;
10481 } else {
10482 offset = 4;
10483 }
10484 break;
10485 default:
10486 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
10487 return; /* Never happens. Keep compiler happy. */
10488 }
10489
10490 if (new_mode == ARM_CPU_MODE_MON) {
10491 addr += env->cp15.mvbar;
10492 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
10493 /* High vectors. When enabled, base address cannot be remapped. */
10494 addr += 0xffff0000;
10495 } else {
10496 /*
10497 * ARM v7 architectures provide a vector base address register to remap
10498 * the interrupt vector table.
10499 * This register is only followed in non-monitor mode, and is banked.
10500 * Note: only bits 31:5 are valid.
10501 */
10502 addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
10503 }
10504
10505 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
10506 env->cp15.scr_el3 &= ~SCR_NS;
10507 }
10508
10509 take_aarch32_exception(env, new_mode, mask, offset, addr);
10510 }
10511
aarch64_regnum(CPUARMState * env,int aarch32_reg)10512 static int aarch64_regnum(CPUARMState *env, int aarch32_reg)
10513 {
10514 /*
10515 * Return the register number of the AArch64 view of the AArch32
10516 * register @aarch32_reg. The CPUARMState CPSR is assumed to still
10517 * be that of the AArch32 mode the exception came from.
10518 */
10519 int mode = env->uncached_cpsr & CPSR_M;
10520
10521 switch (aarch32_reg) {
10522 case 0 ... 7:
10523 return aarch32_reg;
10524 case 8 ... 12:
10525 return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg;
10526 case 13:
10527 switch (mode) {
10528 case ARM_CPU_MODE_USR:
10529 case ARM_CPU_MODE_SYS:
10530 return 13;
10531 case ARM_CPU_MODE_HYP:
10532 return 15;
10533 case ARM_CPU_MODE_IRQ:
10534 return 17;
10535 case ARM_CPU_MODE_SVC:
10536 return 19;
10537 case ARM_CPU_MODE_ABT:
10538 return 21;
10539 case ARM_CPU_MODE_UND:
10540 return 23;
10541 case ARM_CPU_MODE_FIQ:
10542 return 29;
10543 default:
10544 g_assert_not_reached();
10545 }
10546 case 14:
10547 switch (mode) {
10548 case ARM_CPU_MODE_USR:
10549 case ARM_CPU_MODE_SYS:
10550 case ARM_CPU_MODE_HYP:
10551 return 14;
10552 case ARM_CPU_MODE_IRQ:
10553 return 16;
10554 case ARM_CPU_MODE_SVC:
10555 return 18;
10556 case ARM_CPU_MODE_ABT:
10557 return 20;
10558 case ARM_CPU_MODE_UND:
10559 return 22;
10560 case ARM_CPU_MODE_FIQ:
10561 return 30;
10562 default:
10563 g_assert_not_reached();
10564 }
10565 case 15:
10566 return 31;
10567 default:
10568 g_assert_not_reached();
10569 }
10570 }
10571
cpsr_read_for_spsr_elx(CPUARMState * env)10572 static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env)
10573 {
10574 uint32_t ret = cpsr_read(env);
10575
10576 /* Move DIT to the correct location for SPSR_ELx */
10577 if (ret & CPSR_DIT) {
10578 ret &= ~CPSR_DIT;
10579 ret |= PSTATE_DIT;
10580 }
10581 /* Merge PSTATE.SS into SPSR_ELx */
10582 ret |= env->pstate & PSTATE_SS;
10583
10584 return ret;
10585 }
10586
syndrome_is_sync_extabt(uint32_t syndrome)10587 static bool syndrome_is_sync_extabt(uint32_t syndrome)
10588 {
10589 /* Return true if this syndrome value is a synchronous external abort */
10590 switch (syn_get_ec(syndrome)) {
10591 case EC_INSNABORT:
10592 case EC_INSNABORT_SAME_EL:
10593 case EC_DATAABORT:
10594 case EC_DATAABORT_SAME_EL:
10595 /* Look at fault status code for all the synchronous ext abort cases */
10596 switch (syndrome & 0x3f) {
10597 case 0x10:
10598 case 0x13:
10599 case 0x14:
10600 case 0x15:
10601 case 0x16:
10602 case 0x17:
10603 return true;
10604 default:
10605 return false;
10606 }
10607 default:
10608 return false;
10609 }
10610 }
10611
10612 /* Handle exception entry to a target EL which is using AArch64 */
arm_cpu_do_interrupt_aarch64(CPUState * cs)10613 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
10614 {
10615 ARMCPU *cpu = ARM_CPU(cs);
10616 CPUARMState *env = &cpu->env;
10617 unsigned int new_el = env->exception.target_el;
10618 vaddr addr = env->cp15.vbar_el[new_el];
10619 unsigned int new_mode = aarch64_pstate_mode(new_el, true);
10620 unsigned int old_mode;
10621 unsigned int cur_el = arm_current_el(env);
10622 int rt;
10623
10624 if (tcg_enabled()) {
10625 /*
10626 * Note that new_el can never be 0. If cur_el is 0, then
10627 * el0_a64 is is_a64(), else el0_a64 is ignored.
10628 */
10629 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env));
10630 }
10631
10632 if (cur_el < new_el) {
10633 /*
10634 * Entry vector offset depends on whether the implemented EL
10635 * immediately lower than the target level is using AArch32 or AArch64
10636 */
10637 bool is_aa64;
10638 uint64_t hcr;
10639
10640 switch (new_el) {
10641 case 3:
10642 is_aa64 = arm_scr_rw_eff(env);
10643 break;
10644 case 2:
10645 hcr = arm_hcr_el2_eff(env);
10646 if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
10647 is_aa64 = (hcr & HCR_RW) != 0;
10648 break;
10649 }
10650 /* fall through */
10651 case 1:
10652 is_aa64 = is_a64(env);
10653 break;
10654 default:
10655 g_assert_not_reached();
10656 }
10657
10658 if (is_aa64) {
10659 addr += 0x400;
10660 } else {
10661 addr += 0x600;
10662 }
10663 } else if (pstate_read(env) & PSTATE_SP) {
10664 addr += 0x200;
10665 }
10666
10667 switch (cs->exception_index) {
10668 case EXCP_GPC:
10669 qemu_log_mask(CPU_LOG_INT, "...with MFAR 0x%" PRIx64 "\n",
10670 env->cp15.mfar_el3);
10671 /* fall through */
10672 case EXCP_PREFETCH_ABORT:
10673 case EXCP_DATA_ABORT:
10674 /*
10675 * FEAT_DoubleFault allows synchronous external aborts taken to EL3
10676 * to be taken to the SError vector entrypoint.
10677 */
10678 if (new_el == 3 && (env->cp15.scr_el3 & SCR_EASE) &&
10679 syndrome_is_sync_extabt(env->exception.syndrome)) {
10680 addr += 0x180;
10681 }
10682 env->cp15.far_el[new_el] = env->exception.vaddress;
10683 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
10684 env->cp15.far_el[new_el]);
10685 /* fall through */
10686 case EXCP_BKPT:
10687 case EXCP_UDEF:
10688 case EXCP_SWI:
10689 case EXCP_HVC:
10690 case EXCP_HYP_TRAP:
10691 case EXCP_SMC:
10692 switch (syn_get_ec(env->exception.syndrome)) {
10693 case EC_ADVSIMDFPACCESSTRAP:
10694 /*
10695 * QEMU internal FP/SIMD syndromes from AArch32 include the
10696 * TA and coproc fields which are only exposed if the exception
10697 * is taken to AArch32 Hyp mode. Mask them out to get a valid
10698 * AArch64 format syndrome.
10699 */
10700 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20);
10701 break;
10702 case EC_CP14RTTRAP:
10703 case EC_CP15RTTRAP:
10704 case EC_CP14DTTRAP:
10705 /*
10706 * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently
10707 * the raw register field from the insn; when taking this to
10708 * AArch64 we must convert it to the AArch64 view of the register
10709 * number. Notice that we read a 4-bit AArch32 register number and
10710 * write back a 5-bit AArch64 one.
10711 */
10712 rt = extract32(env->exception.syndrome, 5, 4);
10713 rt = aarch64_regnum(env, rt);
10714 env->exception.syndrome = deposit32(env->exception.syndrome,
10715 5, 5, rt);
10716 break;
10717 case EC_CP15RRTTRAP:
10718 case EC_CP14RRTTRAP:
10719 /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */
10720 rt = extract32(env->exception.syndrome, 5, 4);
10721 rt = aarch64_regnum(env, rt);
10722 env->exception.syndrome = deposit32(env->exception.syndrome,
10723 5, 5, rt);
10724 rt = extract32(env->exception.syndrome, 10, 4);
10725 rt = aarch64_regnum(env, rt);
10726 env->exception.syndrome = deposit32(env->exception.syndrome,
10727 10, 5, rt);
10728 break;
10729 }
10730 env->cp15.esr_el[new_el] = env->exception.syndrome;
10731 break;
10732 case EXCP_IRQ:
10733 case EXCP_VIRQ:
10734 case EXCP_NMI:
10735 case EXCP_VINMI:
10736 addr += 0x80;
10737 break;
10738 case EXCP_FIQ:
10739 case EXCP_VFIQ:
10740 case EXCP_VFNMI:
10741 addr += 0x100;
10742 break;
10743 case EXCP_VSERR:
10744 addr += 0x180;
10745 /* Construct the SError syndrome from IDS and ISS fields. */
10746 env->exception.syndrome = syn_serror(env->cp15.vsesr_el2 & 0x1ffffff);
10747 env->cp15.esr_el[new_el] = env->exception.syndrome;
10748 break;
10749 default:
10750 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
10751 }
10752
10753 if (is_a64(env)) {
10754 old_mode = pstate_read(env);
10755 aarch64_save_sp(env, arm_current_el(env));
10756 env->elr_el[new_el] = env->pc;
10757
10758 if (cur_el == 1 && new_el == 1) {
10759 uint64_t hcr = arm_hcr_el2_eff(env);
10760 if ((hcr & (HCR_NV | HCR_NV1 | HCR_NV2)) == HCR_NV ||
10761 (hcr & (HCR_NV | HCR_NV2)) == (HCR_NV | HCR_NV2)) {
10762 /*
10763 * FEAT_NV, FEAT_NV2 may need to report EL2 in the SPSR
10764 * by setting M[3:2] to 0b10.
10765 * If NV2 is disabled, change SPSR when NV,NV1 == 1,0 (I_ZJRNN)
10766 * If NV2 is enabled, change SPSR when NV is 1 (I_DBTLM)
10767 */
10768 old_mode = deposit32(old_mode, 2, 2, 2);
10769 }
10770 }
10771 } else {
10772 old_mode = cpsr_read_for_spsr_elx(env);
10773 env->elr_el[new_el] = env->regs[15];
10774
10775 aarch64_sync_32_to_64(env);
10776
10777 env->condexec_bits = 0;
10778 }
10779 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode;
10780
10781 qemu_log_mask(CPU_LOG_INT, "...with SPSR 0x%x\n", old_mode);
10782 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
10783 env->elr_el[new_el]);
10784
10785 if (cpu_isar_feature(aa64_pan, cpu)) {
10786 /* The value of PSTATE.PAN is normally preserved, except when ... */
10787 new_mode |= old_mode & PSTATE_PAN;
10788 switch (new_el) {
10789 case 2:
10790 /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ... */
10791 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE))
10792 != (HCR_E2H | HCR_TGE)) {
10793 break;
10794 }
10795 /* fall through */
10796 case 1:
10797 /* ... the target is EL1 ... */
10798 /* ... and SCTLR_ELx.SPAN == 0, then set to 1. */
10799 if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) {
10800 new_mode |= PSTATE_PAN;
10801 }
10802 break;
10803 }
10804 }
10805 if (cpu_isar_feature(aa64_mte, cpu)) {
10806 new_mode |= PSTATE_TCO;
10807 }
10808
10809 if (cpu_isar_feature(aa64_ssbs, cpu)) {
10810 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) {
10811 new_mode |= PSTATE_SSBS;
10812 } else {
10813 new_mode &= ~PSTATE_SSBS;
10814 }
10815 }
10816
10817 if (cpu_isar_feature(aa64_nmi, cpu)) {
10818 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPINTMASK)) {
10819 new_mode |= PSTATE_ALLINT;
10820 } else {
10821 new_mode &= ~PSTATE_ALLINT;
10822 }
10823 }
10824
10825 pstate_write(env, PSTATE_DAIF | new_mode);
10826 env->aarch64 = true;
10827 aarch64_restore_sp(env, new_el);
10828
10829 if (tcg_enabled()) {
10830 helper_rebuild_hflags_a64(env, new_el);
10831 }
10832
10833 env->pc = addr;
10834
10835 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
10836 new_el, env->pc, pstate_read(env));
10837 }
10838
10839 /*
10840 * Do semihosting call and set the appropriate return value. All the
10841 * permission and validity checks have been done at translate time.
10842 *
10843 * We only see semihosting exceptions in TCG only as they are not
10844 * trapped to the hypervisor in KVM.
10845 */
10846 #ifdef CONFIG_TCG
tcg_handle_semihosting(CPUState * cs)10847 static void tcg_handle_semihosting(CPUState *cs)
10848 {
10849 ARMCPU *cpu = ARM_CPU(cs);
10850 CPUARMState *env = &cpu->env;
10851
10852 if (is_a64(env)) {
10853 qemu_log_mask(CPU_LOG_INT,
10854 "...handling as semihosting call 0x%" PRIx64 "\n",
10855 env->xregs[0]);
10856 do_common_semihosting(cs);
10857 env->pc += 4;
10858 } else {
10859 qemu_log_mask(CPU_LOG_INT,
10860 "...handling as semihosting call 0x%x\n",
10861 env->regs[0]);
10862 do_common_semihosting(cs);
10863 env->regs[15] += env->thumb ? 2 : 4;
10864 }
10865 }
10866 #endif
10867
10868 /*
10869 * Handle a CPU exception for A and R profile CPUs.
10870 * Do any appropriate logging, handle PSCI calls, and then hand off
10871 * to the AArch64-entry or AArch32-entry function depending on the
10872 * target exception level's register width.
10873 *
10874 * Note: this is used for both TCG (as the do_interrupt tcg op),
10875 * and KVM to re-inject guest debug exceptions, and to
10876 * inject a Synchronous-External-Abort.
10877 */
arm_cpu_do_interrupt(CPUState * cs)10878 void arm_cpu_do_interrupt(CPUState *cs)
10879 {
10880 ARMCPU *cpu = ARM_CPU(cs);
10881 CPUARMState *env = &cpu->env;
10882 unsigned int new_el = env->exception.target_el;
10883
10884 assert(!arm_feature(env, ARM_FEATURE_M));
10885
10886 arm_log_exception(cs);
10887 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
10888 new_el);
10889 if (qemu_loglevel_mask(CPU_LOG_INT)
10890 && !excp_is_internal(cs->exception_index)) {
10891 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
10892 syn_get_ec(env->exception.syndrome),
10893 env->exception.syndrome);
10894 }
10895
10896 if (tcg_enabled() && arm_is_psci_call(cpu, cs->exception_index)) {
10897 arm_handle_psci_call(cpu);
10898 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
10899 return;
10900 }
10901
10902 /*
10903 * Semihosting semantics depend on the register width of the code
10904 * that caused the exception, not the target exception level, so
10905 * must be handled here.
10906 */
10907 #ifdef CONFIG_TCG
10908 if (cs->exception_index == EXCP_SEMIHOST) {
10909 tcg_handle_semihosting(cs);
10910 return;
10911 }
10912 #endif
10913
10914 /*
10915 * Hooks may change global state so BQL should be held, also the
10916 * BQL needs to be held for any modification of
10917 * cs->interrupt_request.
10918 */
10919 g_assert(bql_locked());
10920
10921 arm_call_pre_el_change_hook(cpu);
10922
10923 assert(!excp_is_internal(cs->exception_index));
10924 if (arm_el_is_aa64(env, new_el)) {
10925 arm_cpu_do_interrupt_aarch64(cs);
10926 } else {
10927 arm_cpu_do_interrupt_aarch32(cs);
10928 }
10929
10930 arm_call_el_change_hook(cpu);
10931
10932 if (!kvm_enabled()) {
10933 cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
10934 }
10935 }
10936 #endif /* !CONFIG_USER_ONLY */
10937
arm_sctlr(CPUARMState * env,int el)10938 uint64_t arm_sctlr(CPUARMState *env, int el)
10939 {
10940 /* Only EL0 needs to be adjusted for EL1&0 or EL2&0 or EL3&0 */
10941 if (el == 0) {
10942 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0);
10943 switch (mmu_idx) {
10944 case ARMMMUIdx_E20_0:
10945 el = 2;
10946 break;
10947 case ARMMMUIdx_E30_0:
10948 el = 3;
10949 break;
10950 default:
10951 el = 1;
10952 break;
10953 }
10954 }
10955 return env->cp15.sctlr_el[el];
10956 }
10957
aa64_va_parameter_tbi(uint64_t tcr,ARMMMUIdx mmu_idx)10958 int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx)
10959 {
10960 if (regime_has_2_ranges(mmu_idx)) {
10961 return extract64(tcr, 37, 2);
10962 } else if (regime_is_stage2(mmu_idx)) {
10963 return 0; /* VTCR_EL2 */
10964 } else {
10965 /* Replicate the single TBI bit so we always have 2 bits. */
10966 return extract32(tcr, 20, 1) * 3;
10967 }
10968 }
10969
aa64_va_parameter_tbid(uint64_t tcr,ARMMMUIdx mmu_idx)10970 int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx)
10971 {
10972 if (regime_has_2_ranges(mmu_idx)) {
10973 return extract64(tcr, 51, 2);
10974 } else if (regime_is_stage2(mmu_idx)) {
10975 return 0; /* VTCR_EL2 */
10976 } else {
10977 /* Replicate the single TBID bit so we always have 2 bits. */
10978 return extract32(tcr, 29, 1) * 3;
10979 }
10980 }
10981
aa64_va_parameter_tcma(uint64_t tcr,ARMMMUIdx mmu_idx)10982 int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx)
10983 {
10984 if (regime_has_2_ranges(mmu_idx)) {
10985 return extract64(tcr, 57, 2);
10986 } else {
10987 /* Replicate the single TCMA bit so we always have 2 bits. */
10988 return extract32(tcr, 30, 1) * 3;
10989 }
10990 }
10991
tg0_to_gran_size(int tg)10992 static ARMGranuleSize tg0_to_gran_size(int tg)
10993 {
10994 switch (tg) {
10995 case 0:
10996 return Gran4K;
10997 case 1:
10998 return Gran64K;
10999 case 2:
11000 return Gran16K;
11001 default:
11002 return GranInvalid;
11003 }
11004 }
11005
tg1_to_gran_size(int tg)11006 static ARMGranuleSize tg1_to_gran_size(int tg)
11007 {
11008 switch (tg) {
11009 case 1:
11010 return Gran16K;
11011 case 2:
11012 return Gran4K;
11013 case 3:
11014 return Gran64K;
11015 default:
11016 return GranInvalid;
11017 }
11018 }
11019
have4k(ARMCPU * cpu,bool stage2)11020 static inline bool have4k(ARMCPU *cpu, bool stage2)
11021 {
11022 return stage2 ? cpu_isar_feature(aa64_tgran4_2, cpu)
11023 : cpu_isar_feature(aa64_tgran4, cpu);
11024 }
11025
have16k(ARMCPU * cpu,bool stage2)11026 static inline bool have16k(ARMCPU *cpu, bool stage2)
11027 {
11028 return stage2 ? cpu_isar_feature(aa64_tgran16_2, cpu)
11029 : cpu_isar_feature(aa64_tgran16, cpu);
11030 }
11031
have64k(ARMCPU * cpu,bool stage2)11032 static inline bool have64k(ARMCPU *cpu, bool stage2)
11033 {
11034 return stage2 ? cpu_isar_feature(aa64_tgran64_2, cpu)
11035 : cpu_isar_feature(aa64_tgran64, cpu);
11036 }
11037
sanitize_gran_size(ARMCPU * cpu,ARMGranuleSize gran,bool stage2)11038 static ARMGranuleSize sanitize_gran_size(ARMCPU *cpu, ARMGranuleSize gran,
11039 bool stage2)
11040 {
11041 switch (gran) {
11042 case Gran4K:
11043 if (have4k(cpu, stage2)) {
11044 return gran;
11045 }
11046 break;
11047 case Gran16K:
11048 if (have16k(cpu, stage2)) {
11049 return gran;
11050 }
11051 break;
11052 case Gran64K:
11053 if (have64k(cpu, stage2)) {
11054 return gran;
11055 }
11056 break;
11057 case GranInvalid:
11058 break;
11059 }
11060 /*
11061 * If the guest selects a granule size that isn't implemented,
11062 * the architecture requires that we behave as if it selected one
11063 * that is (with an IMPDEF choice of which one to pick). We choose
11064 * to implement the smallest supported granule size.
11065 */
11066 if (have4k(cpu, stage2)) {
11067 return Gran4K;
11068 }
11069 if (have16k(cpu, stage2)) {
11070 return Gran16K;
11071 }
11072 assert(have64k(cpu, stage2));
11073 return Gran64K;
11074 }
11075
aa64_va_parameters(CPUARMState * env,uint64_t va,ARMMMUIdx mmu_idx,bool data,bool el1_is_aa32)11076 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
11077 ARMMMUIdx mmu_idx, bool data,
11078 bool el1_is_aa32)
11079 {
11080 uint64_t tcr = regime_tcr(env, mmu_idx);
11081 bool epd, hpd, tsz_oob, ds, ha, hd;
11082 int select, tsz, tbi, max_tsz, min_tsz, ps, sh;
11083 ARMGranuleSize gran;
11084 ARMCPU *cpu = env_archcpu(env);
11085 bool stage2 = regime_is_stage2(mmu_idx);
11086
11087 if (!regime_has_2_ranges(mmu_idx)) {
11088 select = 0;
11089 tsz = extract32(tcr, 0, 6);
11090 gran = tg0_to_gran_size(extract32(tcr, 14, 2));
11091 if (stage2) {
11092 /* VTCR_EL2 */
11093 hpd = false;
11094 } else {
11095 hpd = extract32(tcr, 24, 1);
11096 }
11097 epd = false;
11098 sh = extract32(tcr, 12, 2);
11099 ps = extract32(tcr, 16, 3);
11100 ha = extract32(tcr, 21, 1) && cpu_isar_feature(aa64_hafs, cpu);
11101 hd = extract32(tcr, 22, 1) && cpu_isar_feature(aa64_hdbs, cpu);
11102 ds = extract64(tcr, 32, 1);
11103 } else {
11104 bool e0pd;
11105
11106 /*
11107 * Bit 55 is always between the two regions, and is canonical for
11108 * determining if address tagging is enabled.
11109 */
11110 select = extract64(va, 55, 1);
11111 if (!select) {
11112 tsz = extract32(tcr, 0, 6);
11113 gran = tg0_to_gran_size(extract32(tcr, 14, 2));
11114 epd = extract32(tcr, 7, 1);
11115 sh = extract32(tcr, 12, 2);
11116 hpd = extract64(tcr, 41, 1);
11117 e0pd = extract64(tcr, 55, 1);
11118 } else {
11119 tsz = extract32(tcr, 16, 6);
11120 gran = tg1_to_gran_size(extract32(tcr, 30, 2));
11121 epd = extract32(tcr, 23, 1);
11122 sh = extract32(tcr, 28, 2);
11123 hpd = extract64(tcr, 42, 1);
11124 e0pd = extract64(tcr, 56, 1);
11125 }
11126 ps = extract64(tcr, 32, 3);
11127 ha = extract64(tcr, 39, 1) && cpu_isar_feature(aa64_hafs, cpu);
11128 hd = extract64(tcr, 40, 1) && cpu_isar_feature(aa64_hdbs, cpu);
11129 ds = extract64(tcr, 59, 1);
11130
11131 if (e0pd && cpu_isar_feature(aa64_e0pd, cpu) &&
11132 regime_is_user(env, mmu_idx)) {
11133 epd = true;
11134 }
11135 }
11136
11137 gran = sanitize_gran_size(cpu, gran, stage2);
11138
11139 if (cpu_isar_feature(aa64_st, cpu)) {
11140 max_tsz = 48 - (gran == Gran64K);
11141 } else {
11142 max_tsz = 39;
11143 }
11144
11145 /*
11146 * DS is RES0 unless FEAT_LPA2 is supported for the given page size;
11147 * adjust the effective value of DS, as documented.
11148 */
11149 min_tsz = 16;
11150 if (gran == Gran64K) {
11151 if (cpu_isar_feature(aa64_lva, cpu)) {
11152 min_tsz = 12;
11153 }
11154 ds = false;
11155 } else if (ds) {
11156 if (regime_is_stage2(mmu_idx)) {
11157 if (gran == Gran16K) {
11158 ds = cpu_isar_feature(aa64_tgran16_2_lpa2, cpu);
11159 } else {
11160 ds = cpu_isar_feature(aa64_tgran4_2_lpa2, cpu);
11161 }
11162 } else {
11163 if (gran == Gran16K) {
11164 ds = cpu_isar_feature(aa64_tgran16_lpa2, cpu);
11165 } else {
11166 ds = cpu_isar_feature(aa64_tgran4_lpa2, cpu);
11167 }
11168 }
11169 if (ds) {
11170 min_tsz = 12;
11171 }
11172 }
11173
11174 if (stage2 && el1_is_aa32) {
11175 /*
11176 * For AArch32 EL1 the min txsz (and thus max IPA size) requirements
11177 * are loosened: a configured IPA of 40 bits is permitted even if
11178 * the implemented PA is less than that (and so a 40 bit IPA would
11179 * fault for an AArch64 EL1). See R_DTLMN.
11180 */
11181 min_tsz = MIN(min_tsz, 24);
11182 }
11183
11184 if (tsz > max_tsz) {
11185 tsz = max_tsz;
11186 tsz_oob = true;
11187 } else if (tsz < min_tsz) {
11188 tsz = min_tsz;
11189 tsz_oob = true;
11190 } else {
11191 tsz_oob = false;
11192 }
11193
11194 /* Present TBI as a composite with TBID. */
11195 tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
11196 if (!data) {
11197 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
11198 }
11199 tbi = (tbi >> select) & 1;
11200
11201 return (ARMVAParameters) {
11202 .tsz = tsz,
11203 .ps = ps,
11204 .sh = sh,
11205 .select = select,
11206 .tbi = tbi,
11207 .epd = epd,
11208 .hpd = hpd,
11209 .tsz_oob = tsz_oob,
11210 .ds = ds,
11211 .ha = ha,
11212 .hd = ha && hd,
11213 .gran = gran,
11214 };
11215 }
11216
11217
11218 /*
11219 * Return the exception level to which FP-disabled exceptions should
11220 * be taken, or 0 if FP is enabled.
11221 */
fp_exception_el(CPUARMState * env,int cur_el)11222 int fp_exception_el(CPUARMState *env, int cur_el)
11223 {
11224 #ifndef CONFIG_USER_ONLY
11225 uint64_t hcr_el2;
11226
11227 /*
11228 * CPACR and the CPTR registers don't exist before v6, so FP is
11229 * always accessible
11230 */
11231 if (!arm_feature(env, ARM_FEATURE_V6)) {
11232 return 0;
11233 }
11234
11235 if (arm_feature(env, ARM_FEATURE_M)) {
11236 /* CPACR can cause a NOCP UsageFault taken to current security state */
11237 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) {
11238 return 1;
11239 }
11240
11241 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) {
11242 if (!extract32(env->v7m.nsacr, 10, 1)) {
11243 /* FP insns cause a NOCP UsageFault taken to Secure */
11244 return 3;
11245 }
11246 }
11247
11248 return 0;
11249 }
11250
11251 hcr_el2 = arm_hcr_el2_eff(env);
11252
11253 /*
11254 * The CPACR controls traps to EL1, or PL1 if we're 32 bit:
11255 * 0, 2 : trap EL0 and EL1/PL1 accesses
11256 * 1 : trap only EL0 accesses
11257 * 3 : trap no accesses
11258 * This register is ignored if E2H+TGE are both set.
11259 */
11260 if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
11261 int fpen = FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, FPEN);
11262
11263 switch (fpen) {
11264 case 1:
11265 if (cur_el != 0) {
11266 break;
11267 }
11268 /* fall through */
11269 case 0:
11270 case 2:
11271 /* Trap from Secure PL0 or PL1 to Secure PL1. */
11272 if (!arm_el_is_aa64(env, 3)
11273 && (cur_el == 3 || arm_is_secure_below_el3(env))) {
11274 return 3;
11275 }
11276 if (cur_el <= 1) {
11277 return 1;
11278 }
11279 break;
11280 }
11281 }
11282
11283 /*
11284 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode
11285 * to control non-secure access to the FPU. It doesn't have any
11286 * effect if EL3 is AArch64 or if EL3 doesn't exist at all.
11287 */
11288 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
11289 cur_el <= 2 && !arm_is_secure_below_el3(env))) {
11290 if (!extract32(env->cp15.nsacr, 10, 1)) {
11291 /* FP insns act as UNDEF */
11292 return cur_el == 2 ? 2 : 1;
11293 }
11294 }
11295
11296 /*
11297 * CPTR_EL2 is present in v7VE or v8, and changes format
11298 * with HCR_EL2.E2H (regardless of TGE).
11299 */
11300 if (cur_el <= 2) {
11301 if (hcr_el2 & HCR_E2H) {
11302 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, FPEN)) {
11303 case 1:
11304 if (cur_el != 0 || !(hcr_el2 & HCR_TGE)) {
11305 break;
11306 }
11307 /* fall through */
11308 case 0:
11309 case 2:
11310 return 2;
11311 }
11312 } else if (arm_is_el2_enabled(env)) {
11313 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TFP)) {
11314 return 2;
11315 }
11316 }
11317 }
11318
11319 /* CPTR_EL3 : present in v8 */
11320 if (FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TFP)) {
11321 /* Trap all FP ops to EL3 */
11322 return 3;
11323 }
11324 #endif
11325 return 0;
11326 }
11327
11328 /* Return the exception level we're running at if this is our mmu_idx */
arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)11329 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
11330 {
11331 if (mmu_idx & ARM_MMU_IDX_M) {
11332 return mmu_idx & ARM_MMU_IDX_M_PRIV;
11333 }
11334
11335 switch (mmu_idx) {
11336 case ARMMMUIdx_E10_0:
11337 case ARMMMUIdx_E20_0:
11338 case ARMMMUIdx_E30_0:
11339 return 0;
11340 case ARMMMUIdx_E10_1:
11341 case ARMMMUIdx_E10_1_PAN:
11342 return 1;
11343 case ARMMMUIdx_E2:
11344 case ARMMMUIdx_E20_2:
11345 case ARMMMUIdx_E20_2_PAN:
11346 return 2;
11347 case ARMMMUIdx_E3:
11348 case ARMMMUIdx_E30_3_PAN:
11349 return 3;
11350 default:
11351 g_assert_not_reached();
11352 }
11353 }
11354
11355 #ifndef CONFIG_TCG
arm_v7m_mmu_idx_for_secstate(CPUARMState * env,bool secstate)11356 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate)
11357 {
11358 g_assert_not_reached();
11359 }
11360 #endif
11361
arm_mmu_idx_el(CPUARMState * env,int el)11362 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el)
11363 {
11364 ARMMMUIdx idx;
11365 uint64_t hcr;
11366
11367 if (arm_feature(env, ARM_FEATURE_M)) {
11368 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
11369 }
11370
11371 /* See ARM pseudo-function ELIsInHost. */
11372 switch (el) {
11373 case 0:
11374 hcr = arm_hcr_el2_eff(env);
11375 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
11376 idx = ARMMMUIdx_E20_0;
11377 } else if (arm_is_secure_below_el3(env) &&
11378 !arm_el_is_aa64(env, 3)) {
11379 idx = ARMMMUIdx_E30_0;
11380 } else {
11381 idx = ARMMMUIdx_E10_0;
11382 }
11383 break;
11384 case 1:
11385 if (arm_pan_enabled(env)) {
11386 idx = ARMMMUIdx_E10_1_PAN;
11387 } else {
11388 idx = ARMMMUIdx_E10_1;
11389 }
11390 break;
11391 case 2:
11392 /* Note that TGE does not apply at EL2. */
11393 if (arm_hcr_el2_eff(env) & HCR_E2H) {
11394 if (arm_pan_enabled(env)) {
11395 idx = ARMMMUIdx_E20_2_PAN;
11396 } else {
11397 idx = ARMMMUIdx_E20_2;
11398 }
11399 } else {
11400 idx = ARMMMUIdx_E2;
11401 }
11402 break;
11403 case 3:
11404 if (!arm_el_is_aa64(env, 3) && arm_pan_enabled(env)) {
11405 return ARMMMUIdx_E30_3_PAN;
11406 }
11407 return ARMMMUIdx_E3;
11408 default:
11409 g_assert_not_reached();
11410 }
11411
11412 return idx;
11413 }
11414
arm_mmu_idx(CPUARMState * env)11415 ARMMMUIdx arm_mmu_idx(CPUARMState *env)
11416 {
11417 return arm_mmu_idx_el(env, arm_current_el(env));
11418 }
11419
11420 /*
11421 * The manual says that when SVE is enabled and VQ is widened the
11422 * implementation is allowed to zero the previously inaccessible
11423 * portion of the registers. The corollary to that is that when
11424 * SVE is enabled and VQ is narrowed we are also allowed to zero
11425 * the now inaccessible portion of the registers.
11426 *
11427 * The intent of this is that no predicate bit beyond VQ is ever set.
11428 * Which means that some operations on predicate registers themselves
11429 * may operate on full uint64_t or even unrolled across the maximum
11430 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally
11431 * may well be cheaper than conditionals to restrict the operation
11432 * to the relevant portion of a uint16_t[16].
11433 */
aarch64_sve_narrow_vq(CPUARMState * env,unsigned vq)11434 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq)
11435 {
11436 int i, j;
11437 uint64_t pmask;
11438
11439 assert(vq >= 1 && vq <= ARM_MAX_VQ);
11440 assert(vq <= env_archcpu(env)->sve_max_vq);
11441
11442 /* Zap the high bits of the zregs. */
11443 for (i = 0; i < 32; i++) {
11444 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq));
11445 }
11446
11447 /* Zap the high bits of the pregs and ffr. */
11448 pmask = 0;
11449 if (vq & 3) {
11450 pmask = ~(-1ULL << (16 * (vq & 3)));
11451 }
11452 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) {
11453 for (i = 0; i < 17; ++i) {
11454 env->vfp.pregs[i].p[j] &= pmask;
11455 }
11456 pmask = 0;
11457 }
11458 }
11459
sve_vqm1_for_el_sm_ena(CPUARMState * env,int el,bool sm)11460 static uint32_t sve_vqm1_for_el_sm_ena(CPUARMState *env, int el, bool sm)
11461 {
11462 int exc_el;
11463
11464 if (sm) {
11465 exc_el = sme_exception_el(env, el);
11466 } else {
11467 exc_el = sve_exception_el(env, el);
11468 }
11469 if (exc_el) {
11470 return 0; /* disabled */
11471 }
11472 return sve_vqm1_for_el_sm(env, el, sm);
11473 }
11474
11475 /*
11476 * Notice a change in SVE vector size when changing EL.
11477 */
aarch64_sve_change_el(CPUARMState * env,int old_el,int new_el,bool el0_a64)11478 void aarch64_sve_change_el(CPUARMState *env, int old_el,
11479 int new_el, bool el0_a64)
11480 {
11481 ARMCPU *cpu = env_archcpu(env);
11482 int old_len, new_len;
11483 bool old_a64, new_a64, sm;
11484
11485 /* Nothing to do if no SVE. */
11486 if (!cpu_isar_feature(aa64_sve, cpu)) {
11487 return;
11488 }
11489
11490 /* Nothing to do if FP is disabled in either EL. */
11491 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) {
11492 return;
11493 }
11494
11495 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64;
11496 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64;
11497
11498 /*
11499 * Both AArch64.TakeException and AArch64.ExceptionReturn
11500 * invoke ResetSVEState when taking an exception from, or
11501 * returning to, AArch32 state when PSTATE.SM is enabled.
11502 */
11503 sm = FIELD_EX64(env->svcr, SVCR, SM);
11504 if (old_a64 != new_a64 && sm) {
11505 arm_reset_sve_state(env);
11506 return;
11507 }
11508
11509 /*
11510 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped
11511 * at ELx, or not available because the EL is in AArch32 state, then
11512 * for all purposes other than a direct read, the ZCR_ELx.LEN field
11513 * has an effective value of 0".
11514 *
11515 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0).
11516 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition
11517 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that
11518 * we already have the correct register contents when encountering the
11519 * vq0->vq0 transition between EL0->EL1.
11520 */
11521 old_len = new_len = 0;
11522 if (old_a64) {
11523 old_len = sve_vqm1_for_el_sm_ena(env, old_el, sm);
11524 }
11525 if (new_a64) {
11526 new_len = sve_vqm1_for_el_sm_ena(env, new_el, sm);
11527 }
11528
11529 /* When changing vector length, clear inaccessible state. */
11530 if (new_len < old_len) {
11531 aarch64_sve_narrow_vq(env, new_len + 1);
11532 }
11533 }
11534
11535 #ifndef CONFIG_USER_ONLY
arm_security_space(CPUARMState * env)11536 ARMSecuritySpace arm_security_space(CPUARMState *env)
11537 {
11538 if (arm_feature(env, ARM_FEATURE_M)) {
11539 return arm_secure_to_space(env->v7m.secure);
11540 }
11541
11542 /*
11543 * If EL3 is not supported then the secure state is implementation
11544 * defined, in which case QEMU defaults to non-secure.
11545 */
11546 if (!arm_feature(env, ARM_FEATURE_EL3)) {
11547 return ARMSS_NonSecure;
11548 }
11549
11550 /* Check for AArch64 EL3 or AArch32 Mon. */
11551 if (is_a64(env)) {
11552 if (extract32(env->pstate, 2, 2) == 3) {
11553 if (cpu_isar_feature(aa64_rme, env_archcpu(env))) {
11554 return ARMSS_Root;
11555 } else {
11556 return ARMSS_Secure;
11557 }
11558 }
11559 } else {
11560 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
11561 return ARMSS_Secure;
11562 }
11563 }
11564
11565 return arm_security_space_below_el3(env);
11566 }
11567
arm_security_space_below_el3(CPUARMState * env)11568 ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env)
11569 {
11570 assert(!arm_feature(env, ARM_FEATURE_M));
11571
11572 /*
11573 * If EL3 is not supported then the secure state is implementation
11574 * defined, in which case QEMU defaults to non-secure.
11575 */
11576 if (!arm_feature(env, ARM_FEATURE_EL3)) {
11577 return ARMSS_NonSecure;
11578 }
11579
11580 /*
11581 * Note NSE cannot be set without RME, and NSE & !NS is Reserved.
11582 * Ignoring NSE when !NS retains consistency without having to
11583 * modify other predicates.
11584 */
11585 if (!(env->cp15.scr_el3 & SCR_NS)) {
11586 return ARMSS_Secure;
11587 } else if (env->cp15.scr_el3 & SCR_NSE) {
11588 return ARMSS_Realm;
11589 } else {
11590 return ARMSS_NonSecure;
11591 }
11592 }
11593 #endif /* !CONFIG_USER_ONLY */
11594