xref: /linux/fs/mpage.c (revision ab93e0dd72c37d378dd936f031ffb83ff2bd87ce)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/mpage.c
4  *
5  * Copyright (C) 2002, Linus Torvalds.
6  *
7  * Contains functions related to preparing and submitting BIOs which contain
8  * multiple pagecache pages.
9  *
10  * 15May2002	Andrew Morton
11  *		Initial version
12  * 27Jun2002	axboe@suse.de
13  *		use bio_add_page() to build bio's just the right size
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/mm.h>
19 #include <linux/kdev_t.h>
20 #include <linux/gfp.h>
21 #include <linux/bio.h>
22 #include <linux/fs.h>
23 #include <linux/buffer_head.h>
24 #include <linux/blkdev.h>
25 #include <linux/highmem.h>
26 #include <linux/prefetch.h>
27 #include <linux/mpage.h>
28 #include <linux/mm_inline.h>
29 #include <linux/writeback.h>
30 #include <linux/backing-dev.h>
31 #include <linux/pagevec.h>
32 #include "internal.h"
33 
34 /*
35  * I/O completion handler for multipage BIOs.
36  *
37  * The mpage code never puts partial pages into a BIO (except for end-of-file).
38  * If a page does not map to a contiguous run of blocks then it simply falls
39  * back to block_read_full_folio().
40  *
41  * Why is this?  If a page's completion depends on a number of different BIOs
42  * which can complete in any order (or at the same time) then determining the
43  * status of that page is hard.  See end_buffer_async_read() for the details.
44  * There is no point in duplicating all that complexity.
45  */
mpage_read_end_io(struct bio * bio)46 static void mpage_read_end_io(struct bio *bio)
47 {
48 	struct folio_iter fi;
49 	int err = blk_status_to_errno(bio->bi_status);
50 
51 	bio_for_each_folio_all(fi, bio)
52 		folio_end_read(fi.folio, err == 0);
53 
54 	bio_put(bio);
55 }
56 
mpage_write_end_io(struct bio * bio)57 static void mpage_write_end_io(struct bio *bio)
58 {
59 	struct folio_iter fi;
60 	int err = blk_status_to_errno(bio->bi_status);
61 
62 	bio_for_each_folio_all(fi, bio) {
63 		if (err)
64 			mapping_set_error(fi.folio->mapping, err);
65 		folio_end_writeback(fi.folio);
66 	}
67 
68 	bio_put(bio);
69 }
70 
mpage_bio_submit_read(struct bio * bio)71 static struct bio *mpage_bio_submit_read(struct bio *bio)
72 {
73 	bio->bi_end_io = mpage_read_end_io;
74 	guard_bio_eod(bio);
75 	submit_bio(bio);
76 	return NULL;
77 }
78 
mpage_bio_submit_write(struct bio * bio)79 static struct bio *mpage_bio_submit_write(struct bio *bio)
80 {
81 	bio->bi_end_io = mpage_write_end_io;
82 	guard_bio_eod(bio);
83 	submit_bio(bio);
84 	return NULL;
85 }
86 
87 /*
88  * support function for mpage_readahead.  The fs supplied get_block might
89  * return an up to date buffer.  This is used to map that buffer into
90  * the page, which allows read_folio to avoid triggering a duplicate call
91  * to get_block.
92  *
93  * The idea is to avoid adding buffers to pages that don't already have
94  * them.  So when the buffer is up to date and the page size == block size,
95  * this marks the page up to date instead of adding new buffers.
96  */
map_buffer_to_folio(struct folio * folio,struct buffer_head * bh,int page_block)97 static void map_buffer_to_folio(struct folio *folio, struct buffer_head *bh,
98 		int page_block)
99 {
100 	struct inode *inode = folio->mapping->host;
101 	struct buffer_head *page_bh, *head;
102 	int block = 0;
103 
104 	head = folio_buffers(folio);
105 	if (!head) {
106 		/*
107 		 * don't make any buffers if there is only one buffer on
108 		 * the folio and the folio just needs to be set up to date
109 		 */
110 		if (inode->i_blkbits == folio_shift(folio) &&
111 		    buffer_uptodate(bh)) {
112 			folio_mark_uptodate(folio);
113 			return;
114 		}
115 		head = create_empty_buffers(folio, i_blocksize(inode), 0);
116 	}
117 
118 	page_bh = head;
119 	do {
120 		if (block == page_block) {
121 			page_bh->b_state = bh->b_state;
122 			page_bh->b_bdev = bh->b_bdev;
123 			page_bh->b_blocknr = bh->b_blocknr;
124 			break;
125 		}
126 		page_bh = page_bh->b_this_page;
127 		block++;
128 	} while (page_bh != head);
129 }
130 
131 struct mpage_readpage_args {
132 	struct bio *bio;
133 	struct folio *folio;
134 	unsigned int nr_pages;
135 	bool is_readahead;
136 	sector_t last_block_in_bio;
137 	struct buffer_head map_bh;
138 	unsigned long first_logical_block;
139 	get_block_t *get_block;
140 };
141 
142 /*
143  * This is the worker routine which does all the work of mapping the disk
144  * blocks and constructs largest possible bios, submits them for IO if the
145  * blocks are not contiguous on the disk.
146  *
147  * We pass a buffer_head back and forth and use its buffer_mapped() flag to
148  * represent the validity of its disk mapping and to decide when to do the next
149  * get_block() call.
150  */
do_mpage_readpage(struct mpage_readpage_args * args)151 static struct bio *do_mpage_readpage(struct mpage_readpage_args *args)
152 {
153 	struct folio *folio = args->folio;
154 	struct inode *inode = folio->mapping->host;
155 	const unsigned blkbits = inode->i_blkbits;
156 	const unsigned blocks_per_folio = folio_size(folio) >> blkbits;
157 	const unsigned blocksize = 1 << blkbits;
158 	struct buffer_head *map_bh = &args->map_bh;
159 	sector_t block_in_file;
160 	sector_t last_block;
161 	sector_t last_block_in_file;
162 	sector_t first_block;
163 	unsigned page_block;
164 	unsigned first_hole = blocks_per_folio;
165 	struct block_device *bdev = NULL;
166 	int length;
167 	int fully_mapped = 1;
168 	blk_opf_t opf = REQ_OP_READ;
169 	unsigned nblocks;
170 	unsigned relative_block;
171 	gfp_t gfp = mapping_gfp_constraint(folio->mapping, GFP_KERNEL);
172 
173 	if (args->is_readahead) {
174 		opf |= REQ_RAHEAD;
175 		gfp |= __GFP_NORETRY | __GFP_NOWARN;
176 	}
177 
178 	if (folio_buffers(folio))
179 		goto confused;
180 
181 	block_in_file = folio_pos(folio) >> blkbits;
182 	last_block = block_in_file + ((args->nr_pages * PAGE_SIZE) >> blkbits);
183 	last_block_in_file = (i_size_read(inode) + blocksize - 1) >> blkbits;
184 	if (last_block > last_block_in_file)
185 		last_block = last_block_in_file;
186 	page_block = 0;
187 
188 	/*
189 	 * Map blocks using the result from the previous get_blocks call first.
190 	 */
191 	nblocks = map_bh->b_size >> blkbits;
192 	if (buffer_mapped(map_bh) &&
193 			block_in_file > args->first_logical_block &&
194 			block_in_file < (args->first_logical_block + nblocks)) {
195 		unsigned map_offset = block_in_file - args->first_logical_block;
196 		unsigned last = nblocks - map_offset;
197 
198 		first_block = map_bh->b_blocknr + map_offset;
199 		for (relative_block = 0; ; relative_block++) {
200 			if (relative_block == last) {
201 				clear_buffer_mapped(map_bh);
202 				break;
203 			}
204 			if (page_block == blocks_per_folio)
205 				break;
206 			page_block++;
207 			block_in_file++;
208 		}
209 		bdev = map_bh->b_bdev;
210 	}
211 
212 	/*
213 	 * Then do more get_blocks calls until we are done with this folio.
214 	 */
215 	map_bh->b_folio = folio;
216 	while (page_block < blocks_per_folio) {
217 		map_bh->b_state = 0;
218 		map_bh->b_size = 0;
219 
220 		if (block_in_file < last_block) {
221 			map_bh->b_size = (last_block-block_in_file) << blkbits;
222 			if (args->get_block(inode, block_in_file, map_bh, 0))
223 				goto confused;
224 			args->first_logical_block = block_in_file;
225 		}
226 
227 		if (!buffer_mapped(map_bh)) {
228 			fully_mapped = 0;
229 			if (first_hole == blocks_per_folio)
230 				first_hole = page_block;
231 			page_block++;
232 			block_in_file++;
233 			continue;
234 		}
235 
236 		/* some filesystems will copy data into the page during
237 		 * the get_block call, in which case we don't want to
238 		 * read it again.  map_buffer_to_folio copies the data
239 		 * we just collected from get_block into the folio's buffers
240 		 * so read_folio doesn't have to repeat the get_block call
241 		 */
242 		if (buffer_uptodate(map_bh)) {
243 			map_buffer_to_folio(folio, map_bh, page_block);
244 			goto confused;
245 		}
246 
247 		if (first_hole != blocks_per_folio)
248 			goto confused;		/* hole -> non-hole */
249 
250 		/* Contiguous blocks? */
251 		if (!page_block)
252 			first_block = map_bh->b_blocknr;
253 		else if (first_block + page_block != map_bh->b_blocknr)
254 			goto confused;
255 		nblocks = map_bh->b_size >> blkbits;
256 		for (relative_block = 0; ; relative_block++) {
257 			if (relative_block == nblocks) {
258 				clear_buffer_mapped(map_bh);
259 				break;
260 			} else if (page_block == blocks_per_folio)
261 				break;
262 			page_block++;
263 			block_in_file++;
264 		}
265 		bdev = map_bh->b_bdev;
266 	}
267 
268 	if (first_hole != blocks_per_folio) {
269 		folio_zero_segment(folio, first_hole << blkbits, folio_size(folio));
270 		if (first_hole == 0) {
271 			folio_mark_uptodate(folio);
272 			folio_unlock(folio);
273 			goto out;
274 		}
275 	} else if (fully_mapped) {
276 		folio_set_mappedtodisk(folio);
277 	}
278 
279 	/*
280 	 * This folio will go to BIO.  Do we need to send this BIO off first?
281 	 */
282 	if (args->bio && (args->last_block_in_bio != first_block - 1))
283 		args->bio = mpage_bio_submit_read(args->bio);
284 
285 alloc_new:
286 	if (args->bio == NULL) {
287 		args->bio = bio_alloc(bdev, bio_max_segs(args->nr_pages), opf,
288 				      gfp);
289 		if (args->bio == NULL)
290 			goto confused;
291 		args->bio->bi_iter.bi_sector = first_block << (blkbits - 9);
292 	}
293 
294 	length = first_hole << blkbits;
295 	if (!bio_add_folio(args->bio, folio, length, 0)) {
296 		args->bio = mpage_bio_submit_read(args->bio);
297 		goto alloc_new;
298 	}
299 
300 	relative_block = block_in_file - args->first_logical_block;
301 	nblocks = map_bh->b_size >> blkbits;
302 	if ((buffer_boundary(map_bh) && relative_block == nblocks) ||
303 	    (first_hole != blocks_per_folio))
304 		args->bio = mpage_bio_submit_read(args->bio);
305 	else
306 		args->last_block_in_bio = first_block + blocks_per_folio - 1;
307 out:
308 	return args->bio;
309 
310 confused:
311 	if (args->bio)
312 		args->bio = mpage_bio_submit_read(args->bio);
313 	if (!folio_test_uptodate(folio))
314 		block_read_full_folio(folio, args->get_block);
315 	else
316 		folio_unlock(folio);
317 	goto out;
318 }
319 
320 /**
321  * mpage_readahead - start reads against pages
322  * @rac: Describes which pages to read.
323  * @get_block: The filesystem's block mapper function.
324  *
325  * This function walks the pages and the blocks within each page, building and
326  * emitting large BIOs.
327  *
328  * If anything unusual happens, such as:
329  *
330  * - encountering a page which has buffers
331  * - encountering a page which has a non-hole after a hole
332  * - encountering a page with non-contiguous blocks
333  *
334  * then this code just gives up and calls the buffer_head-based read function.
335  * It does handle a page which has holes at the end - that is a common case:
336  * the end-of-file on blocksize < PAGE_SIZE setups.
337  *
338  * BH_Boundary explanation:
339  *
340  * There is a problem.  The mpage read code assembles several pages, gets all
341  * their disk mappings, and then submits them all.  That's fine, but obtaining
342  * the disk mappings may require I/O.  Reads of indirect blocks, for example.
343  *
344  * So an mpage read of the first 16 blocks of an ext2 file will cause I/O to be
345  * submitted in the following order:
346  *
347  * 	12 0 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16
348  *
349  * because the indirect block has to be read to get the mappings of blocks
350  * 13,14,15,16.  Obviously, this impacts performance.
351  *
352  * So what we do it to allow the filesystem's get_block() function to set
353  * BH_Boundary when it maps block 11.  BH_Boundary says: mapping of the block
354  * after this one will require I/O against a block which is probably close to
355  * this one.  So you should push what I/O you have currently accumulated.
356  *
357  * This all causes the disk requests to be issued in the correct order.
358  */
mpage_readahead(struct readahead_control * rac,get_block_t get_block)359 void mpage_readahead(struct readahead_control *rac, get_block_t get_block)
360 {
361 	struct folio *folio;
362 	struct mpage_readpage_args args = {
363 		.get_block = get_block,
364 		.is_readahead = true,
365 	};
366 
367 	while ((folio = readahead_folio(rac))) {
368 		prefetchw(&folio->flags);
369 		args.folio = folio;
370 		args.nr_pages = readahead_count(rac);
371 		args.bio = do_mpage_readpage(&args);
372 	}
373 	if (args.bio)
374 		mpage_bio_submit_read(args.bio);
375 }
376 EXPORT_SYMBOL(mpage_readahead);
377 
378 /*
379  * This isn't called much at all
380  */
mpage_read_folio(struct folio * folio,get_block_t get_block)381 int mpage_read_folio(struct folio *folio, get_block_t get_block)
382 {
383 	struct mpage_readpage_args args = {
384 		.folio = folio,
385 		.nr_pages = folio_nr_pages(folio),
386 		.get_block = get_block,
387 	};
388 
389 	args.bio = do_mpage_readpage(&args);
390 	if (args.bio)
391 		mpage_bio_submit_read(args.bio);
392 	return 0;
393 }
394 EXPORT_SYMBOL(mpage_read_folio);
395 
396 /*
397  * Writing is not so simple.
398  *
399  * If the page has buffers then they will be used for obtaining the disk
400  * mapping.  We only support pages which are fully mapped-and-dirty, with a
401  * special case for pages which are unmapped at the end: end-of-file.
402  *
403  * If the page has no buffers (preferred) then the page is mapped here.
404  *
405  * If all blocks are found to be contiguous then the page can go into the
406  * BIO.  Otherwise fall back to the mapping's writepage().
407  *
408  * FIXME: This code wants an estimate of how many pages are still to be
409  * written, so it can intelligently allocate a suitably-sized BIO.  For now,
410  * just allocate full-size (16-page) BIOs.
411  */
412 
413 struct mpage_data {
414 	struct bio *bio;
415 	sector_t last_block_in_bio;
416 	get_block_t *get_block;
417 };
418 
419 /*
420  * We have our BIO, so we can now mark the buffers clean.  Make
421  * sure to only clean buffers which we know we'll be writing.
422  */
clean_buffers(struct folio * folio,unsigned first_unmapped)423 static void clean_buffers(struct folio *folio, unsigned first_unmapped)
424 {
425 	unsigned buffer_counter = 0;
426 	struct buffer_head *bh, *head = folio_buffers(folio);
427 
428 	if (!head)
429 		return;
430 	bh = head;
431 
432 	do {
433 		if (buffer_counter++ == first_unmapped)
434 			break;
435 		clear_buffer_dirty(bh);
436 		bh = bh->b_this_page;
437 	} while (bh != head);
438 
439 	/*
440 	 * we cannot drop the bh if the page is not uptodate or a concurrent
441 	 * read_folio would fail to serialize with the bh and it would read from
442 	 * disk before we reach the platter.
443 	 */
444 	if (buffer_heads_over_limit && folio_test_uptodate(folio))
445 		try_to_free_buffers(folio);
446 }
447 
mpage_write_folio(struct writeback_control * wbc,struct folio * folio,struct mpage_data * mpd)448 static int mpage_write_folio(struct writeback_control *wbc, struct folio *folio,
449 		struct mpage_data *mpd)
450 {
451 	struct bio *bio = mpd->bio;
452 	struct address_space *mapping = folio->mapping;
453 	struct inode *inode = mapping->host;
454 	const unsigned blkbits = inode->i_blkbits;
455 	const unsigned blocks_per_folio = folio_size(folio) >> blkbits;
456 	sector_t last_block;
457 	sector_t block_in_file;
458 	sector_t first_block;
459 	unsigned page_block;
460 	unsigned first_unmapped = blocks_per_folio;
461 	struct block_device *bdev = NULL;
462 	int boundary = 0;
463 	sector_t boundary_block = 0;
464 	struct block_device *boundary_bdev = NULL;
465 	size_t length;
466 	struct buffer_head map_bh;
467 	loff_t i_size = i_size_read(inode);
468 	int ret = 0;
469 	struct buffer_head *head = folio_buffers(folio);
470 
471 	if (head) {
472 		struct buffer_head *bh = head;
473 
474 		/* If they're all mapped and dirty, do it */
475 		page_block = 0;
476 		do {
477 			BUG_ON(buffer_locked(bh));
478 			if (!buffer_mapped(bh)) {
479 				/*
480 				 * unmapped dirty buffers are created by
481 				 * block_dirty_folio -> mmapped data
482 				 */
483 				if (buffer_dirty(bh))
484 					goto confused;
485 				if (first_unmapped == blocks_per_folio)
486 					first_unmapped = page_block;
487 				continue;
488 			}
489 
490 			if (first_unmapped != blocks_per_folio)
491 				goto confused;	/* hole -> non-hole */
492 
493 			if (!buffer_dirty(bh) || !buffer_uptodate(bh))
494 				goto confused;
495 			if (page_block) {
496 				if (bh->b_blocknr != first_block + page_block)
497 					goto confused;
498 			} else {
499 				first_block = bh->b_blocknr;
500 			}
501 			page_block++;
502 			boundary = buffer_boundary(bh);
503 			if (boundary) {
504 				boundary_block = bh->b_blocknr;
505 				boundary_bdev = bh->b_bdev;
506 			}
507 			bdev = bh->b_bdev;
508 		} while ((bh = bh->b_this_page) != head);
509 
510 		if (first_unmapped)
511 			goto page_is_mapped;
512 
513 		/*
514 		 * Page has buffers, but they are all unmapped. The page was
515 		 * created by pagein or read over a hole which was handled by
516 		 * block_read_full_folio().  If this address_space is also
517 		 * using mpage_readahead then this can rarely happen.
518 		 */
519 		goto confused;
520 	}
521 
522 	/*
523 	 * The page has no buffers: map it to disk
524 	 */
525 	BUG_ON(!folio_test_uptodate(folio));
526 	block_in_file = folio_pos(folio) >> blkbits;
527 	/*
528 	 * Whole page beyond EOF? Skip allocating blocks to avoid leaking
529 	 * space.
530 	 */
531 	if (block_in_file >= (i_size + (1 << blkbits) - 1) >> blkbits)
532 		goto page_is_mapped;
533 	last_block = (i_size - 1) >> blkbits;
534 	map_bh.b_folio = folio;
535 	for (page_block = 0; page_block < blocks_per_folio; ) {
536 
537 		map_bh.b_state = 0;
538 		map_bh.b_size = 1 << blkbits;
539 		if (mpd->get_block(inode, block_in_file, &map_bh, 1))
540 			goto confused;
541 		if (!buffer_mapped(&map_bh))
542 			goto confused;
543 		if (buffer_new(&map_bh))
544 			clean_bdev_bh_alias(&map_bh);
545 		if (buffer_boundary(&map_bh)) {
546 			boundary_block = map_bh.b_blocknr;
547 			boundary_bdev = map_bh.b_bdev;
548 		}
549 		if (page_block) {
550 			if (map_bh.b_blocknr != first_block + page_block)
551 				goto confused;
552 		} else {
553 			first_block = map_bh.b_blocknr;
554 		}
555 		page_block++;
556 		boundary = buffer_boundary(&map_bh);
557 		bdev = map_bh.b_bdev;
558 		if (block_in_file == last_block)
559 			break;
560 		block_in_file++;
561 	}
562 	BUG_ON(page_block == 0);
563 
564 	first_unmapped = page_block;
565 
566 page_is_mapped:
567 	/* Don't bother writing beyond EOF, truncate will discard the folio */
568 	if (folio_pos(folio) >= i_size)
569 		goto confused;
570 	length = folio_size(folio);
571 	if (folio_pos(folio) + length > i_size) {
572 		/*
573 		 * The page straddles i_size.  It must be zeroed out on each
574 		 * and every writepage invocation because it may be mmapped.
575 		 * "A file is mapped in multiples of the page size.  For a file
576 		 * that is not a multiple of the page size, the remaining memory
577 		 * is zeroed when mapped, and writes to that region are not
578 		 * written out to the file."
579 		 */
580 		length = i_size - folio_pos(folio);
581 		folio_zero_segment(folio, length, folio_size(folio));
582 	}
583 
584 	/*
585 	 * This page will go to BIO.  Do we need to send this BIO off first?
586 	 */
587 	if (bio && mpd->last_block_in_bio != first_block - 1)
588 		bio = mpage_bio_submit_write(bio);
589 
590 alloc_new:
591 	if (bio == NULL) {
592 		bio = bio_alloc(bdev, BIO_MAX_VECS,
593 				REQ_OP_WRITE | wbc_to_write_flags(wbc),
594 				GFP_NOFS);
595 		bio->bi_iter.bi_sector = first_block << (blkbits - 9);
596 		wbc_init_bio(wbc, bio);
597 		bio->bi_write_hint = inode->i_write_hint;
598 	}
599 
600 	/*
601 	 * Must try to add the page before marking the buffer clean or
602 	 * the confused fail path above (OOM) will be very confused when
603 	 * it finds all bh marked clean (i.e. it will not write anything)
604 	 */
605 	wbc_account_cgroup_owner(wbc, folio, folio_size(folio));
606 	length = first_unmapped << blkbits;
607 	if (!bio_add_folio(bio, folio, length, 0)) {
608 		bio = mpage_bio_submit_write(bio);
609 		goto alloc_new;
610 	}
611 
612 	clean_buffers(folio, first_unmapped);
613 
614 	BUG_ON(folio_test_writeback(folio));
615 	folio_start_writeback(folio);
616 	folio_unlock(folio);
617 	if (boundary || (first_unmapped != blocks_per_folio)) {
618 		bio = mpage_bio_submit_write(bio);
619 		if (boundary_block) {
620 			write_boundary_block(boundary_bdev,
621 					boundary_block, 1 << blkbits);
622 		}
623 	} else {
624 		mpd->last_block_in_bio = first_block + blocks_per_folio - 1;
625 	}
626 	goto out;
627 
628 confused:
629 	if (bio)
630 		bio = mpage_bio_submit_write(bio);
631 
632 	/*
633 	 * The caller has a ref on the inode, so *mapping is stable
634 	 */
635 	ret = block_write_full_folio(folio, wbc, mpd->get_block);
636 	mapping_set_error(mapping, ret);
637 out:
638 	mpd->bio = bio;
639 	return ret;
640 }
641 
642 /**
643  * mpage_writepages - walk the list of dirty pages of the given address space & writepage() all of them
644  * @mapping: address space structure to write
645  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
646  * @get_block: the filesystem's block mapper function.
647  *
648  * This is a library function, which implements the writepages()
649  * address_space_operation.
650  */
651 int
mpage_writepages(struct address_space * mapping,struct writeback_control * wbc,get_block_t get_block)652 mpage_writepages(struct address_space *mapping,
653 		struct writeback_control *wbc, get_block_t get_block)
654 {
655 	struct mpage_data mpd = {
656 		.get_block	= get_block,
657 	};
658 	struct folio *folio = NULL;
659 	struct blk_plug plug;
660 	int error;
661 
662 	blk_start_plug(&plug);
663 	while ((folio = writeback_iter(mapping, wbc, folio, &error)))
664 		error = mpage_write_folio(wbc, folio, &mpd);
665 	if (mpd.bio)
666 		mpage_bio_submit_write(mpd.bio);
667 	blk_finish_plug(&plug);
668 	return error;
669 }
670 EXPORT_SYMBOL(mpage_writepages);
671