1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2010 Red Hat, Inc.
4 * Copyright (C) 2016-2023 Christoph Hellwig.
5 */
6 #include <linux/iomap.h>
7 #include <linux/buffer_head.h>
8 #include <linux/writeback.h>
9 #include <linux/swap.h>
10 #include <linux/migrate.h>
11 #include "trace.h"
12
13 #include "../internal.h"
14
15 /*
16 * Structure allocated for each folio to track per-block uptodate, dirty state
17 * and I/O completions.
18 */
19 struct iomap_folio_state {
20 spinlock_t state_lock;
21 unsigned int read_bytes_pending;
22 atomic_t write_bytes_pending;
23
24 /*
25 * Each block has two bits in this bitmap:
26 * Bits [0..blocks_per_folio) has the uptodate status.
27 * Bits [b_p_f...(2*b_p_f)) has the dirty status.
28 */
29 unsigned long state[];
30 };
31
ifs_is_fully_uptodate(struct folio * folio,struct iomap_folio_state * ifs)32 static inline bool ifs_is_fully_uptodate(struct folio *folio,
33 struct iomap_folio_state *ifs)
34 {
35 struct inode *inode = folio->mapping->host;
36
37 return bitmap_full(ifs->state, i_blocks_per_folio(inode, folio));
38 }
39
ifs_block_is_uptodate(struct iomap_folio_state * ifs,unsigned int block)40 static inline bool ifs_block_is_uptodate(struct iomap_folio_state *ifs,
41 unsigned int block)
42 {
43 return test_bit(block, ifs->state);
44 }
45
ifs_set_range_uptodate(struct folio * folio,struct iomap_folio_state * ifs,size_t off,size_t len)46 static bool ifs_set_range_uptodate(struct folio *folio,
47 struct iomap_folio_state *ifs, size_t off, size_t len)
48 {
49 struct inode *inode = folio->mapping->host;
50 unsigned int first_blk = off >> inode->i_blkbits;
51 unsigned int last_blk = (off + len - 1) >> inode->i_blkbits;
52 unsigned int nr_blks = last_blk - first_blk + 1;
53
54 bitmap_set(ifs->state, first_blk, nr_blks);
55 return ifs_is_fully_uptodate(folio, ifs);
56 }
57
iomap_set_range_uptodate(struct folio * folio,size_t off,size_t len)58 static void iomap_set_range_uptodate(struct folio *folio, size_t off,
59 size_t len)
60 {
61 struct iomap_folio_state *ifs = folio->private;
62 unsigned long flags;
63 bool uptodate = true;
64
65 if (folio_test_uptodate(folio))
66 return;
67
68 if (ifs) {
69 spin_lock_irqsave(&ifs->state_lock, flags);
70 uptodate = ifs_set_range_uptodate(folio, ifs, off, len);
71 spin_unlock_irqrestore(&ifs->state_lock, flags);
72 }
73
74 if (uptodate)
75 folio_mark_uptodate(folio);
76 }
77
ifs_block_is_dirty(struct folio * folio,struct iomap_folio_state * ifs,int block)78 static inline bool ifs_block_is_dirty(struct folio *folio,
79 struct iomap_folio_state *ifs, int block)
80 {
81 struct inode *inode = folio->mapping->host;
82 unsigned int blks_per_folio = i_blocks_per_folio(inode, folio);
83
84 return test_bit(block + blks_per_folio, ifs->state);
85 }
86
ifs_find_dirty_range(struct folio * folio,struct iomap_folio_state * ifs,u64 * range_start,u64 range_end)87 static unsigned ifs_find_dirty_range(struct folio *folio,
88 struct iomap_folio_state *ifs, u64 *range_start, u64 range_end)
89 {
90 struct inode *inode = folio->mapping->host;
91 unsigned start_blk =
92 offset_in_folio(folio, *range_start) >> inode->i_blkbits;
93 unsigned end_blk = min_not_zero(
94 offset_in_folio(folio, range_end) >> inode->i_blkbits,
95 i_blocks_per_folio(inode, folio));
96 unsigned nblks = 1;
97
98 while (!ifs_block_is_dirty(folio, ifs, start_blk))
99 if (++start_blk == end_blk)
100 return 0;
101
102 while (start_blk + nblks < end_blk) {
103 if (!ifs_block_is_dirty(folio, ifs, start_blk + nblks))
104 break;
105 nblks++;
106 }
107
108 *range_start = folio_pos(folio) + (start_blk << inode->i_blkbits);
109 return nblks << inode->i_blkbits;
110 }
111
iomap_find_dirty_range(struct folio * folio,u64 * range_start,u64 range_end)112 static unsigned iomap_find_dirty_range(struct folio *folio, u64 *range_start,
113 u64 range_end)
114 {
115 struct iomap_folio_state *ifs = folio->private;
116
117 if (*range_start >= range_end)
118 return 0;
119
120 if (ifs)
121 return ifs_find_dirty_range(folio, ifs, range_start, range_end);
122 return range_end - *range_start;
123 }
124
ifs_clear_range_dirty(struct folio * folio,struct iomap_folio_state * ifs,size_t off,size_t len)125 static void ifs_clear_range_dirty(struct folio *folio,
126 struct iomap_folio_state *ifs, size_t off, size_t len)
127 {
128 struct inode *inode = folio->mapping->host;
129 unsigned int blks_per_folio = i_blocks_per_folio(inode, folio);
130 unsigned int first_blk = (off >> inode->i_blkbits);
131 unsigned int last_blk = (off + len - 1) >> inode->i_blkbits;
132 unsigned int nr_blks = last_blk - first_blk + 1;
133 unsigned long flags;
134
135 spin_lock_irqsave(&ifs->state_lock, flags);
136 bitmap_clear(ifs->state, first_blk + blks_per_folio, nr_blks);
137 spin_unlock_irqrestore(&ifs->state_lock, flags);
138 }
139
iomap_clear_range_dirty(struct folio * folio,size_t off,size_t len)140 static void iomap_clear_range_dirty(struct folio *folio, size_t off, size_t len)
141 {
142 struct iomap_folio_state *ifs = folio->private;
143
144 if (ifs)
145 ifs_clear_range_dirty(folio, ifs, off, len);
146 }
147
ifs_set_range_dirty(struct folio * folio,struct iomap_folio_state * ifs,size_t off,size_t len)148 static void ifs_set_range_dirty(struct folio *folio,
149 struct iomap_folio_state *ifs, size_t off, size_t len)
150 {
151 struct inode *inode = folio->mapping->host;
152 unsigned int blks_per_folio = i_blocks_per_folio(inode, folio);
153 unsigned int first_blk = (off >> inode->i_blkbits);
154 unsigned int last_blk = (off + len - 1) >> inode->i_blkbits;
155 unsigned int nr_blks = last_blk - first_blk + 1;
156 unsigned long flags;
157
158 spin_lock_irqsave(&ifs->state_lock, flags);
159 bitmap_set(ifs->state, first_blk + blks_per_folio, nr_blks);
160 spin_unlock_irqrestore(&ifs->state_lock, flags);
161 }
162
iomap_set_range_dirty(struct folio * folio,size_t off,size_t len)163 static void iomap_set_range_dirty(struct folio *folio, size_t off, size_t len)
164 {
165 struct iomap_folio_state *ifs = folio->private;
166
167 if (ifs)
168 ifs_set_range_dirty(folio, ifs, off, len);
169 }
170
ifs_alloc(struct inode * inode,struct folio * folio,unsigned int flags)171 static struct iomap_folio_state *ifs_alloc(struct inode *inode,
172 struct folio *folio, unsigned int flags)
173 {
174 struct iomap_folio_state *ifs = folio->private;
175 unsigned int nr_blocks = i_blocks_per_folio(inode, folio);
176 gfp_t gfp;
177
178 if (ifs || nr_blocks <= 1)
179 return ifs;
180
181 if (flags & IOMAP_NOWAIT)
182 gfp = GFP_NOWAIT;
183 else
184 gfp = GFP_NOFS | __GFP_NOFAIL;
185
186 /*
187 * ifs->state tracks two sets of state flags when the
188 * filesystem block size is smaller than the folio size.
189 * The first state tracks per-block uptodate and the
190 * second tracks per-block dirty state.
191 */
192 ifs = kzalloc(struct_size(ifs, state,
193 BITS_TO_LONGS(2 * nr_blocks)), gfp);
194 if (!ifs)
195 return ifs;
196
197 spin_lock_init(&ifs->state_lock);
198 if (folio_test_uptodate(folio))
199 bitmap_set(ifs->state, 0, nr_blocks);
200 if (folio_test_dirty(folio))
201 bitmap_set(ifs->state, nr_blocks, nr_blocks);
202 folio_attach_private(folio, ifs);
203
204 return ifs;
205 }
206
ifs_free(struct folio * folio)207 static void ifs_free(struct folio *folio)
208 {
209 struct iomap_folio_state *ifs = folio_detach_private(folio);
210
211 if (!ifs)
212 return;
213 WARN_ON_ONCE(ifs->read_bytes_pending != 0);
214 WARN_ON_ONCE(atomic_read(&ifs->write_bytes_pending));
215 WARN_ON_ONCE(ifs_is_fully_uptodate(folio, ifs) !=
216 folio_test_uptodate(folio));
217 kfree(ifs);
218 }
219
220 /*
221 * Calculate the range inside the folio that we actually need to read.
222 */
iomap_adjust_read_range(struct inode * inode,struct folio * folio,loff_t * pos,loff_t length,size_t * offp,size_t * lenp)223 static void iomap_adjust_read_range(struct inode *inode, struct folio *folio,
224 loff_t *pos, loff_t length, size_t *offp, size_t *lenp)
225 {
226 struct iomap_folio_state *ifs = folio->private;
227 loff_t orig_pos = *pos;
228 loff_t isize = i_size_read(inode);
229 unsigned block_bits = inode->i_blkbits;
230 unsigned block_size = (1 << block_bits);
231 size_t poff = offset_in_folio(folio, *pos);
232 size_t plen = min_t(loff_t, folio_size(folio) - poff, length);
233 size_t orig_plen = plen;
234 unsigned first = poff >> block_bits;
235 unsigned last = (poff + plen - 1) >> block_bits;
236
237 /*
238 * If the block size is smaller than the page size, we need to check the
239 * per-block uptodate status and adjust the offset and length if needed
240 * to avoid reading in already uptodate ranges.
241 */
242 if (ifs) {
243 unsigned int i;
244
245 /* move forward for each leading block marked uptodate */
246 for (i = first; i <= last; i++) {
247 if (!ifs_block_is_uptodate(ifs, i))
248 break;
249 *pos += block_size;
250 poff += block_size;
251 plen -= block_size;
252 first++;
253 }
254
255 /* truncate len if we find any trailing uptodate block(s) */
256 while (++i <= last) {
257 if (ifs_block_is_uptodate(ifs, i)) {
258 plen -= (last - i + 1) * block_size;
259 last = i - 1;
260 break;
261 }
262 }
263 }
264
265 /*
266 * If the extent spans the block that contains the i_size, we need to
267 * handle both halves separately so that we properly zero data in the
268 * page cache for blocks that are entirely outside of i_size.
269 */
270 if (orig_pos <= isize && orig_pos + orig_plen > isize) {
271 unsigned end = offset_in_folio(folio, isize - 1) >> block_bits;
272
273 if (first <= end && last > end)
274 plen -= (last - end) * block_size;
275 }
276
277 *offp = poff;
278 *lenp = plen;
279 }
280
iomap_block_needs_zeroing(const struct iomap_iter * iter,loff_t pos)281 static inline bool iomap_block_needs_zeroing(const struct iomap_iter *iter,
282 loff_t pos)
283 {
284 const struct iomap *srcmap = iomap_iter_srcmap(iter);
285
286 return srcmap->type != IOMAP_MAPPED ||
287 (srcmap->flags & IOMAP_F_NEW) ||
288 pos >= i_size_read(iter->inode);
289 }
290
291 /**
292 * iomap_read_inline_data - copy inline data into the page cache
293 * @iter: iteration structure
294 * @folio: folio to copy to
295 *
296 * Copy the inline data in @iter into @folio and zero out the rest of the folio.
297 * Only a single IOMAP_INLINE extent is allowed at the end of each file.
298 * Returns zero for success to complete the read, or the usual negative errno.
299 */
iomap_read_inline_data(const struct iomap_iter * iter,struct folio * folio)300 static int iomap_read_inline_data(const struct iomap_iter *iter,
301 struct folio *folio)
302 {
303 const struct iomap *iomap = iomap_iter_srcmap(iter);
304 size_t size = i_size_read(iter->inode) - iomap->offset;
305 size_t offset = offset_in_folio(folio, iomap->offset);
306
307 if (folio_test_uptodate(folio))
308 return 0;
309
310 if (WARN_ON_ONCE(size > iomap->length))
311 return -EIO;
312 if (offset > 0)
313 ifs_alloc(iter->inode, folio, iter->flags);
314
315 folio_fill_tail(folio, offset, iomap->inline_data, size);
316 iomap_set_range_uptodate(folio, offset, folio_size(folio) - offset);
317 return 0;
318 }
319
320 #ifdef CONFIG_BLOCK
iomap_finish_folio_read(struct folio * folio,size_t off,size_t len,int error)321 static void iomap_finish_folio_read(struct folio *folio, size_t off,
322 size_t len, int error)
323 {
324 struct iomap_folio_state *ifs = folio->private;
325 bool uptodate = !error;
326 bool finished = true;
327
328 if (ifs) {
329 unsigned long flags;
330
331 spin_lock_irqsave(&ifs->state_lock, flags);
332 if (!error)
333 uptodate = ifs_set_range_uptodate(folio, ifs, off, len);
334 ifs->read_bytes_pending -= len;
335 finished = !ifs->read_bytes_pending;
336 spin_unlock_irqrestore(&ifs->state_lock, flags);
337 }
338
339 if (finished)
340 folio_end_read(folio, uptodate);
341 }
342
iomap_read_end_io(struct bio * bio)343 static void iomap_read_end_io(struct bio *bio)
344 {
345 int error = blk_status_to_errno(bio->bi_status);
346 struct folio_iter fi;
347
348 bio_for_each_folio_all(fi, bio)
349 iomap_finish_folio_read(fi.folio, fi.offset, fi.length, error);
350 bio_put(bio);
351 }
352
353 struct iomap_readpage_ctx {
354 struct folio *cur_folio;
355 bool cur_folio_in_bio;
356 struct bio *bio;
357 struct readahead_control *rac;
358 };
359
iomap_readpage_iter(struct iomap_iter * iter,struct iomap_readpage_ctx * ctx)360 static int iomap_readpage_iter(struct iomap_iter *iter,
361 struct iomap_readpage_ctx *ctx)
362 {
363 const struct iomap *iomap = &iter->iomap;
364 loff_t pos = iter->pos;
365 loff_t length = iomap_length(iter);
366 struct folio *folio = ctx->cur_folio;
367 struct iomap_folio_state *ifs;
368 size_t poff, plen;
369 sector_t sector;
370 int ret;
371
372 if (iomap->type == IOMAP_INLINE) {
373 ret = iomap_read_inline_data(iter, folio);
374 if (ret)
375 return ret;
376 return iomap_iter_advance(iter, &length);
377 }
378
379 /* zero post-eof blocks as the page may be mapped */
380 ifs = ifs_alloc(iter->inode, folio, iter->flags);
381 iomap_adjust_read_range(iter->inode, folio, &pos, length, &poff, &plen);
382 if (plen == 0)
383 goto done;
384
385 if (iomap_block_needs_zeroing(iter, pos)) {
386 folio_zero_range(folio, poff, plen);
387 iomap_set_range_uptodate(folio, poff, plen);
388 goto done;
389 }
390
391 ctx->cur_folio_in_bio = true;
392 if (ifs) {
393 spin_lock_irq(&ifs->state_lock);
394 ifs->read_bytes_pending += plen;
395 spin_unlock_irq(&ifs->state_lock);
396 }
397
398 sector = iomap_sector(iomap, pos);
399 if (!ctx->bio ||
400 bio_end_sector(ctx->bio) != sector ||
401 !bio_add_folio(ctx->bio, folio, plen, poff)) {
402 gfp_t gfp = mapping_gfp_constraint(folio->mapping, GFP_KERNEL);
403 gfp_t orig_gfp = gfp;
404 unsigned int nr_vecs = DIV_ROUND_UP(length, PAGE_SIZE);
405
406 if (ctx->bio)
407 submit_bio(ctx->bio);
408
409 if (ctx->rac) /* same as readahead_gfp_mask */
410 gfp |= __GFP_NORETRY | __GFP_NOWARN;
411 ctx->bio = bio_alloc(iomap->bdev, bio_max_segs(nr_vecs),
412 REQ_OP_READ, gfp);
413 /*
414 * If the bio_alloc fails, try it again for a single page to
415 * avoid having to deal with partial page reads. This emulates
416 * what do_mpage_read_folio does.
417 */
418 if (!ctx->bio) {
419 ctx->bio = bio_alloc(iomap->bdev, 1, REQ_OP_READ,
420 orig_gfp);
421 }
422 if (ctx->rac)
423 ctx->bio->bi_opf |= REQ_RAHEAD;
424 ctx->bio->bi_iter.bi_sector = sector;
425 ctx->bio->bi_end_io = iomap_read_end_io;
426 bio_add_folio_nofail(ctx->bio, folio, plen, poff);
427 }
428
429 done:
430 /*
431 * Move the caller beyond our range so that it keeps making progress.
432 * For that, we have to include any leading non-uptodate ranges, but
433 * we can skip trailing ones as they will be handled in the next
434 * iteration.
435 */
436 length = pos - iter->pos + plen;
437 return iomap_iter_advance(iter, &length);
438 }
439
iomap_read_folio_iter(struct iomap_iter * iter,struct iomap_readpage_ctx * ctx)440 static int iomap_read_folio_iter(struct iomap_iter *iter,
441 struct iomap_readpage_ctx *ctx)
442 {
443 int ret;
444
445 while (iomap_length(iter)) {
446 ret = iomap_readpage_iter(iter, ctx);
447 if (ret)
448 return ret;
449 }
450
451 return 0;
452 }
453
iomap_read_folio(struct folio * folio,const struct iomap_ops * ops)454 int iomap_read_folio(struct folio *folio, const struct iomap_ops *ops)
455 {
456 struct iomap_iter iter = {
457 .inode = folio->mapping->host,
458 .pos = folio_pos(folio),
459 .len = folio_size(folio),
460 };
461 struct iomap_readpage_ctx ctx = {
462 .cur_folio = folio,
463 };
464 int ret;
465
466 trace_iomap_readpage(iter.inode, 1);
467
468 while ((ret = iomap_iter(&iter, ops)) > 0)
469 iter.status = iomap_read_folio_iter(&iter, &ctx);
470
471 if (ctx.bio) {
472 submit_bio(ctx.bio);
473 WARN_ON_ONCE(!ctx.cur_folio_in_bio);
474 } else {
475 WARN_ON_ONCE(ctx.cur_folio_in_bio);
476 folio_unlock(folio);
477 }
478
479 /*
480 * Just like mpage_readahead and block_read_full_folio, we always
481 * return 0 and just set the folio error flag on errors. This
482 * should be cleaned up throughout the stack eventually.
483 */
484 return 0;
485 }
486 EXPORT_SYMBOL_GPL(iomap_read_folio);
487
iomap_readahead_iter(struct iomap_iter * iter,struct iomap_readpage_ctx * ctx)488 static int iomap_readahead_iter(struct iomap_iter *iter,
489 struct iomap_readpage_ctx *ctx)
490 {
491 int ret;
492
493 while (iomap_length(iter)) {
494 if (ctx->cur_folio &&
495 offset_in_folio(ctx->cur_folio, iter->pos) == 0) {
496 if (!ctx->cur_folio_in_bio)
497 folio_unlock(ctx->cur_folio);
498 ctx->cur_folio = NULL;
499 }
500 if (!ctx->cur_folio) {
501 ctx->cur_folio = readahead_folio(ctx->rac);
502 ctx->cur_folio_in_bio = false;
503 }
504 ret = iomap_readpage_iter(iter, ctx);
505 if (ret)
506 return ret;
507 }
508
509 return 0;
510 }
511
512 /**
513 * iomap_readahead - Attempt to read pages from a file.
514 * @rac: Describes the pages to be read.
515 * @ops: The operations vector for the filesystem.
516 *
517 * This function is for filesystems to call to implement their readahead
518 * address_space operation.
519 *
520 * Context: The @ops callbacks may submit I/O (eg to read the addresses of
521 * blocks from disc), and may wait for it. The caller may be trying to
522 * access a different page, and so sleeping excessively should be avoided.
523 * It may allocate memory, but should avoid costly allocations. This
524 * function is called with memalloc_nofs set, so allocations will not cause
525 * the filesystem to be reentered.
526 */
iomap_readahead(struct readahead_control * rac,const struct iomap_ops * ops)527 void iomap_readahead(struct readahead_control *rac, const struct iomap_ops *ops)
528 {
529 struct iomap_iter iter = {
530 .inode = rac->mapping->host,
531 .pos = readahead_pos(rac),
532 .len = readahead_length(rac),
533 };
534 struct iomap_readpage_ctx ctx = {
535 .rac = rac,
536 };
537
538 trace_iomap_readahead(rac->mapping->host, readahead_count(rac));
539
540 while (iomap_iter(&iter, ops) > 0)
541 iter.status = iomap_readahead_iter(&iter, &ctx);
542
543 if (ctx.bio)
544 submit_bio(ctx.bio);
545 if (ctx.cur_folio) {
546 if (!ctx.cur_folio_in_bio)
547 folio_unlock(ctx.cur_folio);
548 }
549 }
550 EXPORT_SYMBOL_GPL(iomap_readahead);
551
iomap_read_folio_range(const struct iomap_iter * iter,struct folio * folio,loff_t pos,size_t len)552 static int iomap_read_folio_range(const struct iomap_iter *iter,
553 struct folio *folio, loff_t pos, size_t len)
554 {
555 const struct iomap *srcmap = iomap_iter_srcmap(iter);
556 struct bio_vec bvec;
557 struct bio bio;
558
559 bio_init(&bio, srcmap->bdev, &bvec, 1, REQ_OP_READ);
560 bio.bi_iter.bi_sector = iomap_sector(srcmap, pos);
561 bio_add_folio_nofail(&bio, folio, len, offset_in_folio(folio, pos));
562 return submit_bio_wait(&bio);
563 }
564 #else
iomap_read_folio_range(const struct iomap_iter * iter,struct folio * folio,loff_t pos,size_t len)565 static int iomap_read_folio_range(const struct iomap_iter *iter,
566 struct folio *folio, loff_t pos, size_t len)
567 {
568 WARN_ON_ONCE(1);
569 return -EIO;
570 }
571 #endif /* CONFIG_BLOCK */
572
573 /*
574 * iomap_is_partially_uptodate checks whether blocks within a folio are
575 * uptodate or not.
576 *
577 * Returns true if all blocks which correspond to the specified part
578 * of the folio are uptodate.
579 */
iomap_is_partially_uptodate(struct folio * folio,size_t from,size_t count)580 bool iomap_is_partially_uptodate(struct folio *folio, size_t from, size_t count)
581 {
582 struct iomap_folio_state *ifs = folio->private;
583 struct inode *inode = folio->mapping->host;
584 unsigned first, last, i;
585
586 if (!ifs)
587 return false;
588
589 /* Caller's range may extend past the end of this folio */
590 count = min(folio_size(folio) - from, count);
591
592 /* First and last blocks in range within folio */
593 first = from >> inode->i_blkbits;
594 last = (from + count - 1) >> inode->i_blkbits;
595
596 for (i = first; i <= last; i++)
597 if (!ifs_block_is_uptodate(ifs, i))
598 return false;
599 return true;
600 }
601 EXPORT_SYMBOL_GPL(iomap_is_partially_uptodate);
602
603 /**
604 * iomap_get_folio - get a folio reference for writing
605 * @iter: iteration structure
606 * @pos: start offset of write
607 * @len: Suggested size of folio to create.
608 *
609 * Returns a locked reference to the folio at @pos, or an error pointer if the
610 * folio could not be obtained.
611 */
iomap_get_folio(struct iomap_iter * iter,loff_t pos,size_t len)612 struct folio *iomap_get_folio(struct iomap_iter *iter, loff_t pos, size_t len)
613 {
614 fgf_t fgp = FGP_WRITEBEGIN | FGP_NOFS;
615
616 if (iter->flags & IOMAP_NOWAIT)
617 fgp |= FGP_NOWAIT;
618 if (iter->flags & IOMAP_DONTCACHE)
619 fgp |= FGP_DONTCACHE;
620 fgp |= fgf_set_order(len);
621
622 return __filemap_get_folio(iter->inode->i_mapping, pos >> PAGE_SHIFT,
623 fgp, mapping_gfp_mask(iter->inode->i_mapping));
624 }
625 EXPORT_SYMBOL_GPL(iomap_get_folio);
626
iomap_release_folio(struct folio * folio,gfp_t gfp_flags)627 bool iomap_release_folio(struct folio *folio, gfp_t gfp_flags)
628 {
629 trace_iomap_release_folio(folio->mapping->host, folio_pos(folio),
630 folio_size(folio));
631
632 /*
633 * If the folio is dirty, we refuse to release our metadata because
634 * it may be partially dirty. Once we track per-block dirty state,
635 * we can release the metadata if every block is dirty.
636 */
637 if (folio_test_dirty(folio))
638 return false;
639 ifs_free(folio);
640 return true;
641 }
642 EXPORT_SYMBOL_GPL(iomap_release_folio);
643
iomap_invalidate_folio(struct folio * folio,size_t offset,size_t len)644 void iomap_invalidate_folio(struct folio *folio, size_t offset, size_t len)
645 {
646 trace_iomap_invalidate_folio(folio->mapping->host,
647 folio_pos(folio) + offset, len);
648
649 /*
650 * If we're invalidating the entire folio, clear the dirty state
651 * from it and release it to avoid unnecessary buildup of the LRU.
652 */
653 if (offset == 0 && len == folio_size(folio)) {
654 WARN_ON_ONCE(folio_test_writeback(folio));
655 folio_cancel_dirty(folio);
656 ifs_free(folio);
657 }
658 }
659 EXPORT_SYMBOL_GPL(iomap_invalidate_folio);
660
iomap_dirty_folio(struct address_space * mapping,struct folio * folio)661 bool iomap_dirty_folio(struct address_space *mapping, struct folio *folio)
662 {
663 struct inode *inode = mapping->host;
664 size_t len = folio_size(folio);
665
666 ifs_alloc(inode, folio, 0);
667 iomap_set_range_dirty(folio, 0, len);
668 return filemap_dirty_folio(mapping, folio);
669 }
670 EXPORT_SYMBOL_GPL(iomap_dirty_folio);
671
672 static void
iomap_write_failed(struct inode * inode,loff_t pos,unsigned len)673 iomap_write_failed(struct inode *inode, loff_t pos, unsigned len)
674 {
675 loff_t i_size = i_size_read(inode);
676
677 /*
678 * Only truncate newly allocated pages beyoned EOF, even if the
679 * write started inside the existing inode size.
680 */
681 if (pos + len > i_size)
682 truncate_pagecache_range(inode, max(pos, i_size),
683 pos + len - 1);
684 }
685
__iomap_write_begin(const struct iomap_iter * iter,const struct iomap_write_ops * write_ops,size_t len,struct folio * folio)686 static int __iomap_write_begin(const struct iomap_iter *iter,
687 const struct iomap_write_ops *write_ops, size_t len,
688 struct folio *folio)
689 {
690 struct iomap_folio_state *ifs;
691 loff_t pos = iter->pos;
692 loff_t block_size = i_blocksize(iter->inode);
693 loff_t block_start = round_down(pos, block_size);
694 loff_t block_end = round_up(pos + len, block_size);
695 unsigned int nr_blocks = i_blocks_per_folio(iter->inode, folio);
696 size_t from = offset_in_folio(folio, pos), to = from + len;
697 size_t poff, plen;
698
699 /*
700 * If the write or zeroing completely overlaps the current folio, then
701 * entire folio will be dirtied so there is no need for
702 * per-block state tracking structures to be attached to this folio.
703 * For the unshare case, we must read in the ondisk contents because we
704 * are not changing pagecache contents.
705 */
706 if (!(iter->flags & IOMAP_UNSHARE) && pos <= folio_pos(folio) &&
707 pos + len >= folio_pos(folio) + folio_size(folio))
708 return 0;
709
710 ifs = ifs_alloc(iter->inode, folio, iter->flags);
711 if ((iter->flags & IOMAP_NOWAIT) && !ifs && nr_blocks > 1)
712 return -EAGAIN;
713
714 if (folio_test_uptodate(folio))
715 return 0;
716
717 do {
718 iomap_adjust_read_range(iter->inode, folio, &block_start,
719 block_end - block_start, &poff, &plen);
720 if (plen == 0)
721 break;
722
723 if (!(iter->flags & IOMAP_UNSHARE) &&
724 (from <= poff || from >= poff + plen) &&
725 (to <= poff || to >= poff + plen))
726 continue;
727
728 if (iomap_block_needs_zeroing(iter, block_start)) {
729 if (WARN_ON_ONCE(iter->flags & IOMAP_UNSHARE))
730 return -EIO;
731 folio_zero_segments(folio, poff, from, to, poff + plen);
732 } else {
733 int status;
734
735 if (iter->flags & IOMAP_NOWAIT)
736 return -EAGAIN;
737
738 if (write_ops && write_ops->read_folio_range)
739 status = write_ops->read_folio_range(iter,
740 folio, block_start, plen);
741 else
742 status = iomap_read_folio_range(iter,
743 folio, block_start, plen);
744 if (status)
745 return status;
746 }
747 iomap_set_range_uptodate(folio, poff, plen);
748 } while ((block_start += plen) < block_end);
749
750 return 0;
751 }
752
__iomap_get_folio(struct iomap_iter * iter,const struct iomap_write_ops * write_ops,size_t len)753 static struct folio *__iomap_get_folio(struct iomap_iter *iter,
754 const struct iomap_write_ops *write_ops, size_t len)
755 {
756 loff_t pos = iter->pos;
757
758 if (!mapping_large_folio_support(iter->inode->i_mapping))
759 len = min_t(size_t, len, PAGE_SIZE - offset_in_page(pos));
760
761 if (write_ops && write_ops->get_folio)
762 return write_ops->get_folio(iter, pos, len);
763 return iomap_get_folio(iter, pos, len);
764 }
765
__iomap_put_folio(struct iomap_iter * iter,const struct iomap_write_ops * write_ops,size_t ret,struct folio * folio)766 static void __iomap_put_folio(struct iomap_iter *iter,
767 const struct iomap_write_ops *write_ops, size_t ret,
768 struct folio *folio)
769 {
770 loff_t pos = iter->pos;
771
772 if (write_ops && write_ops->put_folio) {
773 write_ops->put_folio(iter->inode, pos, ret, folio);
774 } else {
775 folio_unlock(folio);
776 folio_put(folio);
777 }
778 }
779
780 /* trim pos and bytes to within a given folio */
iomap_trim_folio_range(struct iomap_iter * iter,struct folio * folio,size_t * offset,u64 * bytes)781 static loff_t iomap_trim_folio_range(struct iomap_iter *iter,
782 struct folio *folio, size_t *offset, u64 *bytes)
783 {
784 loff_t pos = iter->pos;
785 size_t fsize = folio_size(folio);
786
787 WARN_ON_ONCE(pos < folio_pos(folio));
788 WARN_ON_ONCE(pos >= folio_pos(folio) + fsize);
789
790 *offset = offset_in_folio(folio, pos);
791 *bytes = min(*bytes, fsize - *offset);
792
793 return pos;
794 }
795
iomap_write_begin_inline(const struct iomap_iter * iter,struct folio * folio)796 static int iomap_write_begin_inline(const struct iomap_iter *iter,
797 struct folio *folio)
798 {
799 /* needs more work for the tailpacking case; disable for now */
800 if (WARN_ON_ONCE(iomap_iter_srcmap(iter)->offset != 0))
801 return -EIO;
802 return iomap_read_inline_data(iter, folio);
803 }
804
805 /*
806 * Grab and prepare a folio for write based on iter state. Returns the folio,
807 * offset, and length. Callers can optionally pass a max length *plen,
808 * otherwise init to zero.
809 */
iomap_write_begin(struct iomap_iter * iter,const struct iomap_write_ops * write_ops,struct folio ** foliop,size_t * poffset,u64 * plen)810 static int iomap_write_begin(struct iomap_iter *iter,
811 const struct iomap_write_ops *write_ops, struct folio **foliop,
812 size_t *poffset, u64 *plen)
813 {
814 const struct iomap *srcmap = iomap_iter_srcmap(iter);
815 loff_t pos = iter->pos;
816 u64 len = min_t(u64, SIZE_MAX, iomap_length(iter));
817 struct folio *folio;
818 int status = 0;
819
820 len = min_not_zero(len, *plen);
821 BUG_ON(pos + len > iter->iomap.offset + iter->iomap.length);
822 if (srcmap != &iter->iomap)
823 BUG_ON(pos + len > srcmap->offset + srcmap->length);
824
825 if (fatal_signal_pending(current))
826 return -EINTR;
827
828 folio = __iomap_get_folio(iter, write_ops, len);
829 if (IS_ERR(folio))
830 return PTR_ERR(folio);
831
832 /*
833 * Now we have a locked folio, before we do anything with it we need to
834 * check that the iomap we have cached is not stale. The inode extent
835 * mapping can change due to concurrent IO in flight (e.g.
836 * IOMAP_UNWRITTEN state can change and memory reclaim could have
837 * reclaimed a previously partially written page at this index after IO
838 * completion before this write reaches this file offset) and hence we
839 * could do the wrong thing here (zero a page range incorrectly or fail
840 * to zero) and corrupt data.
841 */
842 if (write_ops && write_ops->iomap_valid) {
843 bool iomap_valid = write_ops->iomap_valid(iter->inode,
844 &iter->iomap);
845 if (!iomap_valid) {
846 iter->iomap.flags |= IOMAP_F_STALE;
847 status = 0;
848 goto out_unlock;
849 }
850 }
851
852 pos = iomap_trim_folio_range(iter, folio, poffset, &len);
853
854 if (srcmap->type == IOMAP_INLINE)
855 status = iomap_write_begin_inline(iter, folio);
856 else if (srcmap->flags & IOMAP_F_BUFFER_HEAD)
857 status = __block_write_begin_int(folio, pos, len, NULL, srcmap);
858 else
859 status = __iomap_write_begin(iter, write_ops, len, folio);
860
861 if (unlikely(status))
862 goto out_unlock;
863
864 *foliop = folio;
865 *plen = len;
866 return 0;
867
868 out_unlock:
869 __iomap_put_folio(iter, write_ops, 0, folio);
870 return status;
871 }
872
__iomap_write_end(struct inode * inode,loff_t pos,size_t len,size_t copied,struct folio * folio)873 static bool __iomap_write_end(struct inode *inode, loff_t pos, size_t len,
874 size_t copied, struct folio *folio)
875 {
876 flush_dcache_folio(folio);
877
878 /*
879 * The blocks that were entirely written will now be uptodate, so we
880 * don't have to worry about a read_folio reading them and overwriting a
881 * partial write. However, if we've encountered a short write and only
882 * partially written into a block, it will not be marked uptodate, so a
883 * read_folio might come in and destroy our partial write.
884 *
885 * Do the simplest thing and just treat any short write to a
886 * non-uptodate page as a zero-length write, and force the caller to
887 * redo the whole thing.
888 */
889 if (unlikely(copied < len && !folio_test_uptodate(folio)))
890 return false;
891 iomap_set_range_uptodate(folio, offset_in_folio(folio, pos), len);
892 iomap_set_range_dirty(folio, offset_in_folio(folio, pos), copied);
893 filemap_dirty_folio(inode->i_mapping, folio);
894 return true;
895 }
896
iomap_write_end_inline(const struct iomap_iter * iter,struct folio * folio,loff_t pos,size_t copied)897 static void iomap_write_end_inline(const struct iomap_iter *iter,
898 struct folio *folio, loff_t pos, size_t copied)
899 {
900 const struct iomap *iomap = &iter->iomap;
901 void *addr;
902
903 WARN_ON_ONCE(!folio_test_uptodate(folio));
904 BUG_ON(!iomap_inline_data_valid(iomap));
905
906 flush_dcache_folio(folio);
907 addr = kmap_local_folio(folio, pos);
908 memcpy(iomap_inline_data(iomap, pos), addr, copied);
909 kunmap_local(addr);
910
911 mark_inode_dirty(iter->inode);
912 }
913
914 /*
915 * Returns true if all copied bytes have been written to the pagecache,
916 * otherwise return false.
917 */
iomap_write_end(struct iomap_iter * iter,size_t len,size_t copied,struct folio * folio)918 static bool iomap_write_end(struct iomap_iter *iter, size_t len, size_t copied,
919 struct folio *folio)
920 {
921 const struct iomap *srcmap = iomap_iter_srcmap(iter);
922 loff_t pos = iter->pos;
923
924 if (srcmap->type == IOMAP_INLINE) {
925 iomap_write_end_inline(iter, folio, pos, copied);
926 return true;
927 }
928
929 if (srcmap->flags & IOMAP_F_BUFFER_HEAD) {
930 size_t bh_written;
931
932 bh_written = block_write_end(pos, len, copied, folio);
933 WARN_ON_ONCE(bh_written != copied && bh_written != 0);
934 return bh_written == copied;
935 }
936
937 return __iomap_write_end(iter->inode, pos, len, copied, folio);
938 }
939
iomap_write_iter(struct iomap_iter * iter,struct iov_iter * i,const struct iomap_write_ops * write_ops)940 static int iomap_write_iter(struct iomap_iter *iter, struct iov_iter *i,
941 const struct iomap_write_ops *write_ops)
942 {
943 ssize_t total_written = 0;
944 int status = 0;
945 struct address_space *mapping = iter->inode->i_mapping;
946 size_t chunk = mapping_max_folio_size(mapping);
947 unsigned int bdp_flags = (iter->flags & IOMAP_NOWAIT) ? BDP_ASYNC : 0;
948
949 do {
950 struct folio *folio;
951 loff_t old_size;
952 size_t offset; /* Offset into folio */
953 u64 bytes; /* Bytes to write to folio */
954 size_t copied; /* Bytes copied from user */
955 u64 written; /* Bytes have been written */
956 loff_t pos;
957
958 bytes = iov_iter_count(i);
959 retry:
960 offset = iter->pos & (chunk - 1);
961 bytes = min(chunk - offset, bytes);
962 status = balance_dirty_pages_ratelimited_flags(mapping,
963 bdp_flags);
964 if (unlikely(status))
965 break;
966
967 if (bytes > iomap_length(iter))
968 bytes = iomap_length(iter);
969
970 /*
971 * Bring in the user page that we'll copy from _first_.
972 * Otherwise there's a nasty deadlock on copying from the
973 * same page as we're writing to, without it being marked
974 * up-to-date.
975 *
976 * For async buffered writes the assumption is that the user
977 * page has already been faulted in. This can be optimized by
978 * faulting the user page.
979 */
980 if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) {
981 status = -EFAULT;
982 break;
983 }
984
985 status = iomap_write_begin(iter, write_ops, &folio, &offset,
986 &bytes);
987 if (unlikely(status)) {
988 iomap_write_failed(iter->inode, iter->pos, bytes);
989 break;
990 }
991 if (iter->iomap.flags & IOMAP_F_STALE)
992 break;
993
994 pos = iter->pos;
995
996 if (mapping_writably_mapped(mapping))
997 flush_dcache_folio(folio);
998
999 copied = copy_folio_from_iter_atomic(folio, offset, bytes, i);
1000 written = iomap_write_end(iter, bytes, copied, folio) ?
1001 copied : 0;
1002
1003 /*
1004 * Update the in-memory inode size after copying the data into
1005 * the page cache. It's up to the file system to write the
1006 * updated size to disk, preferably after I/O completion so that
1007 * no stale data is exposed. Only once that's done can we
1008 * unlock and release the folio.
1009 */
1010 old_size = iter->inode->i_size;
1011 if (pos + written > old_size) {
1012 i_size_write(iter->inode, pos + written);
1013 iter->iomap.flags |= IOMAP_F_SIZE_CHANGED;
1014 }
1015 __iomap_put_folio(iter, write_ops, written, folio);
1016
1017 if (old_size < pos)
1018 pagecache_isize_extended(iter->inode, old_size, pos);
1019
1020 cond_resched();
1021 if (unlikely(written == 0)) {
1022 /*
1023 * A short copy made iomap_write_end() reject the
1024 * thing entirely. Might be memory poisoning
1025 * halfway through, might be a race with munmap,
1026 * might be severe memory pressure.
1027 */
1028 iomap_write_failed(iter->inode, pos, bytes);
1029 iov_iter_revert(i, copied);
1030
1031 if (chunk > PAGE_SIZE)
1032 chunk /= 2;
1033 if (copied) {
1034 bytes = copied;
1035 goto retry;
1036 }
1037 } else {
1038 total_written += written;
1039 iomap_iter_advance(iter, &written);
1040 }
1041 } while (iov_iter_count(i) && iomap_length(iter));
1042
1043 return total_written ? 0 : status;
1044 }
1045
1046 ssize_t
iomap_file_buffered_write(struct kiocb * iocb,struct iov_iter * i,const struct iomap_ops * ops,const struct iomap_write_ops * write_ops,void * private)1047 iomap_file_buffered_write(struct kiocb *iocb, struct iov_iter *i,
1048 const struct iomap_ops *ops,
1049 const struct iomap_write_ops *write_ops, void *private)
1050 {
1051 struct iomap_iter iter = {
1052 .inode = iocb->ki_filp->f_mapping->host,
1053 .pos = iocb->ki_pos,
1054 .len = iov_iter_count(i),
1055 .flags = IOMAP_WRITE,
1056 .private = private,
1057 };
1058 ssize_t ret;
1059
1060 if (iocb->ki_flags & IOCB_NOWAIT)
1061 iter.flags |= IOMAP_NOWAIT;
1062 if (iocb->ki_flags & IOCB_DONTCACHE)
1063 iter.flags |= IOMAP_DONTCACHE;
1064
1065 while ((ret = iomap_iter(&iter, ops)) > 0)
1066 iter.status = iomap_write_iter(&iter, i, write_ops);
1067
1068 if (unlikely(iter.pos == iocb->ki_pos))
1069 return ret;
1070 ret = iter.pos - iocb->ki_pos;
1071 iocb->ki_pos = iter.pos;
1072 return ret;
1073 }
1074 EXPORT_SYMBOL_GPL(iomap_file_buffered_write);
1075
iomap_write_delalloc_ifs_punch(struct inode * inode,struct folio * folio,loff_t start_byte,loff_t end_byte,struct iomap * iomap,iomap_punch_t punch)1076 static void iomap_write_delalloc_ifs_punch(struct inode *inode,
1077 struct folio *folio, loff_t start_byte, loff_t end_byte,
1078 struct iomap *iomap, iomap_punch_t punch)
1079 {
1080 unsigned int first_blk, last_blk, i;
1081 loff_t last_byte;
1082 u8 blkbits = inode->i_blkbits;
1083 struct iomap_folio_state *ifs;
1084
1085 /*
1086 * When we have per-block dirty tracking, there can be
1087 * blocks within a folio which are marked uptodate
1088 * but not dirty. In that case it is necessary to punch
1089 * out such blocks to avoid leaking any delalloc blocks.
1090 */
1091 ifs = folio->private;
1092 if (!ifs)
1093 return;
1094
1095 last_byte = min_t(loff_t, end_byte - 1,
1096 folio_pos(folio) + folio_size(folio) - 1);
1097 first_blk = offset_in_folio(folio, start_byte) >> blkbits;
1098 last_blk = offset_in_folio(folio, last_byte) >> blkbits;
1099 for (i = first_blk; i <= last_blk; i++) {
1100 if (!ifs_block_is_dirty(folio, ifs, i))
1101 punch(inode, folio_pos(folio) + (i << blkbits),
1102 1 << blkbits, iomap);
1103 }
1104 }
1105
iomap_write_delalloc_punch(struct inode * inode,struct folio * folio,loff_t * punch_start_byte,loff_t start_byte,loff_t end_byte,struct iomap * iomap,iomap_punch_t punch)1106 static void iomap_write_delalloc_punch(struct inode *inode, struct folio *folio,
1107 loff_t *punch_start_byte, loff_t start_byte, loff_t end_byte,
1108 struct iomap *iomap, iomap_punch_t punch)
1109 {
1110 if (!folio_test_dirty(folio))
1111 return;
1112
1113 /* if dirty, punch up to offset */
1114 if (start_byte > *punch_start_byte) {
1115 punch(inode, *punch_start_byte, start_byte - *punch_start_byte,
1116 iomap);
1117 }
1118
1119 /* Punch non-dirty blocks within folio */
1120 iomap_write_delalloc_ifs_punch(inode, folio, start_byte, end_byte,
1121 iomap, punch);
1122
1123 /*
1124 * Make sure the next punch start is correctly bound to
1125 * the end of this data range, not the end of the folio.
1126 */
1127 *punch_start_byte = min_t(loff_t, end_byte,
1128 folio_pos(folio) + folio_size(folio));
1129 }
1130
1131 /*
1132 * Scan the data range passed to us for dirty page cache folios. If we find a
1133 * dirty folio, punch out the preceding range and update the offset from which
1134 * the next punch will start from.
1135 *
1136 * We can punch out storage reservations under clean pages because they either
1137 * contain data that has been written back - in which case the delalloc punch
1138 * over that range is a no-op - or they have been read faults in which case they
1139 * contain zeroes and we can remove the delalloc backing range and any new
1140 * writes to those pages will do the normal hole filling operation...
1141 *
1142 * This makes the logic simple: we only need to keep the delalloc extents only
1143 * over the dirty ranges of the page cache.
1144 *
1145 * This function uses [start_byte, end_byte) intervals (i.e. open ended) to
1146 * simplify range iterations.
1147 */
iomap_write_delalloc_scan(struct inode * inode,loff_t * punch_start_byte,loff_t start_byte,loff_t end_byte,struct iomap * iomap,iomap_punch_t punch)1148 static void iomap_write_delalloc_scan(struct inode *inode,
1149 loff_t *punch_start_byte, loff_t start_byte, loff_t end_byte,
1150 struct iomap *iomap, iomap_punch_t punch)
1151 {
1152 while (start_byte < end_byte) {
1153 struct folio *folio;
1154
1155 /* grab locked page */
1156 folio = filemap_lock_folio(inode->i_mapping,
1157 start_byte >> PAGE_SHIFT);
1158 if (IS_ERR(folio)) {
1159 start_byte = ALIGN_DOWN(start_byte, PAGE_SIZE) +
1160 PAGE_SIZE;
1161 continue;
1162 }
1163
1164 iomap_write_delalloc_punch(inode, folio, punch_start_byte,
1165 start_byte, end_byte, iomap, punch);
1166
1167 /* move offset to start of next folio in range */
1168 start_byte = folio_pos(folio) + folio_size(folio);
1169 folio_unlock(folio);
1170 folio_put(folio);
1171 }
1172 }
1173
1174 /*
1175 * When a short write occurs, the filesystem might need to use ->iomap_end
1176 * to remove space reservations created in ->iomap_begin.
1177 *
1178 * For filesystems that use delayed allocation, there can be dirty pages over
1179 * the delalloc extent outside the range of a short write but still within the
1180 * delalloc extent allocated for this iomap if the write raced with page
1181 * faults.
1182 *
1183 * Punch out all the delalloc blocks in the range given except for those that
1184 * have dirty data still pending in the page cache - those are going to be
1185 * written and so must still retain the delalloc backing for writeback.
1186 *
1187 * The punch() callback *must* only punch delalloc extents in the range passed
1188 * to it. It must skip over all other types of extents in the range and leave
1189 * them completely unchanged. It must do this punch atomically with respect to
1190 * other extent modifications.
1191 *
1192 * The punch() callback may be called with a folio locked to prevent writeback
1193 * extent allocation racing at the edge of the range we are currently punching.
1194 * The locked folio may or may not cover the range being punched, so it is not
1195 * safe for the punch() callback to lock folios itself.
1196 *
1197 * Lock order is:
1198 *
1199 * inode->i_rwsem (shared or exclusive)
1200 * inode->i_mapping->invalidate_lock (exclusive)
1201 * folio_lock()
1202 * ->punch
1203 * internal filesystem allocation lock
1204 *
1205 * As we are scanning the page cache for data, we don't need to reimplement the
1206 * wheel - mapping_seek_hole_data() does exactly what we need to identify the
1207 * start and end of data ranges correctly even for sub-folio block sizes. This
1208 * byte range based iteration is especially convenient because it means we
1209 * don't have to care about variable size folios, nor where the start or end of
1210 * the data range lies within a folio, if they lie within the same folio or even
1211 * if there are multiple discontiguous data ranges within the folio.
1212 *
1213 * It should be noted that mapping_seek_hole_data() is not aware of EOF, and so
1214 * can return data ranges that exist in the cache beyond EOF. e.g. a page fault
1215 * spanning EOF will initialise the post-EOF data to zeroes and mark it up to
1216 * date. A write page fault can then mark it dirty. If we then fail a write()
1217 * beyond EOF into that up to date cached range, we allocate a delalloc block
1218 * beyond EOF and then have to punch it out. Because the range is up to date,
1219 * mapping_seek_hole_data() will return it, and we will skip the punch because
1220 * the folio is dirty. THis is incorrect - we always need to punch out delalloc
1221 * beyond EOF in this case as writeback will never write back and covert that
1222 * delalloc block beyond EOF. Hence we limit the cached data scan range to EOF,
1223 * resulting in always punching out the range from the EOF to the end of the
1224 * range the iomap spans.
1225 *
1226 * Intervals are of the form [start_byte, end_byte) (i.e. open ended) because it
1227 * matches the intervals returned by mapping_seek_hole_data(). i.e. SEEK_DATA
1228 * returns the start of a data range (start_byte), and SEEK_HOLE(start_byte)
1229 * returns the end of the data range (data_end). Using closed intervals would
1230 * require sprinkling this code with magic "+ 1" and "- 1" arithmetic and expose
1231 * the code to subtle off-by-one bugs....
1232 */
iomap_write_delalloc_release(struct inode * inode,loff_t start_byte,loff_t end_byte,unsigned flags,struct iomap * iomap,iomap_punch_t punch)1233 void iomap_write_delalloc_release(struct inode *inode, loff_t start_byte,
1234 loff_t end_byte, unsigned flags, struct iomap *iomap,
1235 iomap_punch_t punch)
1236 {
1237 loff_t punch_start_byte = start_byte;
1238 loff_t scan_end_byte = min(i_size_read(inode), end_byte);
1239
1240 /*
1241 * The caller must hold invalidate_lock to avoid races with page faults
1242 * re-instantiating folios and dirtying them via ->page_mkwrite whilst
1243 * we walk the cache and perform delalloc extent removal. Failing to do
1244 * this can leave dirty pages with no space reservation in the cache.
1245 */
1246 lockdep_assert_held_write(&inode->i_mapping->invalidate_lock);
1247
1248 while (start_byte < scan_end_byte) {
1249 loff_t data_end;
1250
1251 start_byte = mapping_seek_hole_data(inode->i_mapping,
1252 start_byte, scan_end_byte, SEEK_DATA);
1253 /*
1254 * If there is no more data to scan, all that is left is to
1255 * punch out the remaining range.
1256 *
1257 * Note that mapping_seek_hole_data is only supposed to return
1258 * either an offset or -ENXIO, so WARN on any other error as
1259 * that would be an API change without updating the callers.
1260 */
1261 if (start_byte == -ENXIO || start_byte == scan_end_byte)
1262 break;
1263 if (WARN_ON_ONCE(start_byte < 0))
1264 return;
1265 WARN_ON_ONCE(start_byte < punch_start_byte);
1266 WARN_ON_ONCE(start_byte > scan_end_byte);
1267
1268 /*
1269 * We find the end of this contiguous cached data range by
1270 * seeking from start_byte to the beginning of the next hole.
1271 */
1272 data_end = mapping_seek_hole_data(inode->i_mapping, start_byte,
1273 scan_end_byte, SEEK_HOLE);
1274 if (WARN_ON_ONCE(data_end < 0))
1275 return;
1276
1277 /*
1278 * If we race with post-direct I/O invalidation of the page cache,
1279 * there might be no data left at start_byte.
1280 */
1281 if (data_end == start_byte)
1282 continue;
1283
1284 WARN_ON_ONCE(data_end < start_byte);
1285 WARN_ON_ONCE(data_end > scan_end_byte);
1286
1287 iomap_write_delalloc_scan(inode, &punch_start_byte, start_byte,
1288 data_end, iomap, punch);
1289
1290 /* The next data search starts at the end of this one. */
1291 start_byte = data_end;
1292 }
1293
1294 if (punch_start_byte < end_byte)
1295 punch(inode, punch_start_byte, end_byte - punch_start_byte,
1296 iomap);
1297 }
1298 EXPORT_SYMBOL_GPL(iomap_write_delalloc_release);
1299
iomap_unshare_iter(struct iomap_iter * iter,const struct iomap_write_ops * write_ops)1300 static int iomap_unshare_iter(struct iomap_iter *iter,
1301 const struct iomap_write_ops *write_ops)
1302 {
1303 struct iomap *iomap = &iter->iomap;
1304 u64 bytes = iomap_length(iter);
1305 int status;
1306
1307 if (!iomap_want_unshare_iter(iter))
1308 return iomap_iter_advance(iter, &bytes);
1309
1310 do {
1311 struct folio *folio;
1312 size_t offset;
1313 bool ret;
1314
1315 bytes = min_t(u64, SIZE_MAX, bytes);
1316 status = iomap_write_begin(iter, write_ops, &folio, &offset,
1317 &bytes);
1318 if (unlikely(status))
1319 return status;
1320 if (iomap->flags & IOMAP_F_STALE)
1321 break;
1322
1323 ret = iomap_write_end(iter, bytes, bytes, folio);
1324 __iomap_put_folio(iter, write_ops, bytes, folio);
1325 if (WARN_ON_ONCE(!ret))
1326 return -EIO;
1327
1328 cond_resched();
1329
1330 balance_dirty_pages_ratelimited(iter->inode->i_mapping);
1331
1332 status = iomap_iter_advance(iter, &bytes);
1333 if (status)
1334 break;
1335 } while (bytes > 0);
1336
1337 return status;
1338 }
1339
1340 int
iomap_file_unshare(struct inode * inode,loff_t pos,loff_t len,const struct iomap_ops * ops,const struct iomap_write_ops * write_ops)1341 iomap_file_unshare(struct inode *inode, loff_t pos, loff_t len,
1342 const struct iomap_ops *ops,
1343 const struct iomap_write_ops *write_ops)
1344 {
1345 struct iomap_iter iter = {
1346 .inode = inode,
1347 .pos = pos,
1348 .flags = IOMAP_WRITE | IOMAP_UNSHARE,
1349 };
1350 loff_t size = i_size_read(inode);
1351 int ret;
1352
1353 if (pos < 0 || pos >= size)
1354 return 0;
1355
1356 iter.len = min(len, size - pos);
1357 while ((ret = iomap_iter(&iter, ops)) > 0)
1358 iter.status = iomap_unshare_iter(&iter, write_ops);
1359 return ret;
1360 }
1361 EXPORT_SYMBOL_GPL(iomap_file_unshare);
1362
1363 /*
1364 * Flush the remaining range of the iter and mark the current mapping stale.
1365 * This is used when zero range sees an unwritten mapping that may have had
1366 * dirty pagecache over it.
1367 */
iomap_zero_iter_flush_and_stale(struct iomap_iter * i)1368 static inline int iomap_zero_iter_flush_and_stale(struct iomap_iter *i)
1369 {
1370 struct address_space *mapping = i->inode->i_mapping;
1371 loff_t end = i->pos + i->len - 1;
1372
1373 i->iomap.flags |= IOMAP_F_STALE;
1374 return filemap_write_and_wait_range(mapping, i->pos, end);
1375 }
1376
iomap_zero_iter(struct iomap_iter * iter,bool * did_zero,const struct iomap_write_ops * write_ops)1377 static int iomap_zero_iter(struct iomap_iter *iter, bool *did_zero,
1378 const struct iomap_write_ops *write_ops)
1379 {
1380 u64 bytes = iomap_length(iter);
1381 int status;
1382
1383 do {
1384 struct folio *folio;
1385 size_t offset;
1386 bool ret;
1387
1388 bytes = min_t(u64, SIZE_MAX, bytes);
1389 status = iomap_write_begin(iter, write_ops, &folio, &offset,
1390 &bytes);
1391 if (status)
1392 return status;
1393 if (iter->iomap.flags & IOMAP_F_STALE)
1394 break;
1395
1396 /* warn about zeroing folios beyond eof that won't write back */
1397 WARN_ON_ONCE(folio_pos(folio) > iter->inode->i_size);
1398
1399 folio_zero_range(folio, offset, bytes);
1400 folio_mark_accessed(folio);
1401
1402 ret = iomap_write_end(iter, bytes, bytes, folio);
1403 __iomap_put_folio(iter, write_ops, bytes, folio);
1404 if (WARN_ON_ONCE(!ret))
1405 return -EIO;
1406
1407 status = iomap_iter_advance(iter, &bytes);
1408 if (status)
1409 break;
1410 } while (bytes > 0);
1411
1412 if (did_zero)
1413 *did_zero = true;
1414 return status;
1415 }
1416
1417 int
iomap_zero_range(struct inode * inode,loff_t pos,loff_t len,bool * did_zero,const struct iomap_ops * ops,const struct iomap_write_ops * write_ops,void * private)1418 iomap_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero,
1419 const struct iomap_ops *ops,
1420 const struct iomap_write_ops *write_ops, void *private)
1421 {
1422 struct iomap_iter iter = {
1423 .inode = inode,
1424 .pos = pos,
1425 .len = len,
1426 .flags = IOMAP_ZERO,
1427 .private = private,
1428 };
1429 struct address_space *mapping = inode->i_mapping;
1430 unsigned int blocksize = i_blocksize(inode);
1431 unsigned int off = pos & (blocksize - 1);
1432 loff_t plen = min_t(loff_t, len, blocksize - off);
1433 int ret;
1434 bool range_dirty;
1435
1436 /*
1437 * Zero range can skip mappings that are zero on disk so long as
1438 * pagecache is clean. If pagecache was dirty prior to zero range, the
1439 * mapping converts on writeback completion and so must be zeroed.
1440 *
1441 * The simplest way to deal with this across a range is to flush
1442 * pagecache and process the updated mappings. To avoid excessive
1443 * flushing on partial eof zeroing, special case it to zero the
1444 * unaligned start portion if already dirty in pagecache.
1445 */
1446 if (off &&
1447 filemap_range_needs_writeback(mapping, pos, pos + plen - 1)) {
1448 iter.len = plen;
1449 while ((ret = iomap_iter(&iter, ops)) > 0)
1450 iter.status = iomap_zero_iter(&iter, did_zero,
1451 write_ops);
1452
1453 iter.len = len - (iter.pos - pos);
1454 if (ret || !iter.len)
1455 return ret;
1456 }
1457
1458 /*
1459 * To avoid an unconditional flush, check pagecache state and only flush
1460 * if dirty and the fs returns a mapping that might convert on
1461 * writeback.
1462 */
1463 range_dirty = filemap_range_needs_writeback(inode->i_mapping,
1464 iter.pos, iter.pos + iter.len - 1);
1465 while ((ret = iomap_iter(&iter, ops)) > 0) {
1466 const struct iomap *srcmap = iomap_iter_srcmap(&iter);
1467
1468 if (srcmap->type == IOMAP_HOLE ||
1469 srcmap->type == IOMAP_UNWRITTEN) {
1470 s64 status;
1471
1472 if (range_dirty) {
1473 range_dirty = false;
1474 status = iomap_zero_iter_flush_and_stale(&iter);
1475 } else {
1476 status = iomap_iter_advance_full(&iter);
1477 }
1478 iter.status = status;
1479 continue;
1480 }
1481
1482 iter.status = iomap_zero_iter(&iter, did_zero, write_ops);
1483 }
1484 return ret;
1485 }
1486 EXPORT_SYMBOL_GPL(iomap_zero_range);
1487
1488 int
iomap_truncate_page(struct inode * inode,loff_t pos,bool * did_zero,const struct iomap_ops * ops,const struct iomap_write_ops * write_ops,void * private)1489 iomap_truncate_page(struct inode *inode, loff_t pos, bool *did_zero,
1490 const struct iomap_ops *ops,
1491 const struct iomap_write_ops *write_ops, void *private)
1492 {
1493 unsigned int blocksize = i_blocksize(inode);
1494 unsigned int off = pos & (blocksize - 1);
1495
1496 /* Block boundary? Nothing to do */
1497 if (!off)
1498 return 0;
1499 return iomap_zero_range(inode, pos, blocksize - off, did_zero, ops,
1500 write_ops, private);
1501 }
1502 EXPORT_SYMBOL_GPL(iomap_truncate_page);
1503
iomap_folio_mkwrite_iter(struct iomap_iter * iter,struct folio * folio)1504 static int iomap_folio_mkwrite_iter(struct iomap_iter *iter,
1505 struct folio *folio)
1506 {
1507 loff_t length = iomap_length(iter);
1508 int ret;
1509
1510 if (iter->iomap.flags & IOMAP_F_BUFFER_HEAD) {
1511 ret = __block_write_begin_int(folio, iter->pos, length, NULL,
1512 &iter->iomap);
1513 if (ret)
1514 return ret;
1515 block_commit_write(folio, 0, length);
1516 } else {
1517 WARN_ON_ONCE(!folio_test_uptodate(folio));
1518 folio_mark_dirty(folio);
1519 }
1520
1521 return iomap_iter_advance(iter, &length);
1522 }
1523
iomap_page_mkwrite(struct vm_fault * vmf,const struct iomap_ops * ops,void * private)1524 vm_fault_t iomap_page_mkwrite(struct vm_fault *vmf, const struct iomap_ops *ops,
1525 void *private)
1526 {
1527 struct iomap_iter iter = {
1528 .inode = file_inode(vmf->vma->vm_file),
1529 .flags = IOMAP_WRITE | IOMAP_FAULT,
1530 .private = private,
1531 };
1532 struct folio *folio = page_folio(vmf->page);
1533 ssize_t ret;
1534
1535 folio_lock(folio);
1536 ret = folio_mkwrite_check_truncate(folio, iter.inode);
1537 if (ret < 0)
1538 goto out_unlock;
1539 iter.pos = folio_pos(folio);
1540 iter.len = ret;
1541 while ((ret = iomap_iter(&iter, ops)) > 0)
1542 iter.status = iomap_folio_mkwrite_iter(&iter, folio);
1543
1544 if (ret < 0)
1545 goto out_unlock;
1546 folio_wait_stable(folio);
1547 return VM_FAULT_LOCKED;
1548 out_unlock:
1549 folio_unlock(folio);
1550 return vmf_fs_error(ret);
1551 }
1552 EXPORT_SYMBOL_GPL(iomap_page_mkwrite);
1553
iomap_start_folio_write(struct inode * inode,struct folio * folio,size_t len)1554 void iomap_start_folio_write(struct inode *inode, struct folio *folio,
1555 size_t len)
1556 {
1557 struct iomap_folio_state *ifs = folio->private;
1558
1559 WARN_ON_ONCE(i_blocks_per_folio(inode, folio) > 1 && !ifs);
1560 if (ifs)
1561 atomic_add(len, &ifs->write_bytes_pending);
1562 }
1563 EXPORT_SYMBOL_GPL(iomap_start_folio_write);
1564
iomap_finish_folio_write(struct inode * inode,struct folio * folio,size_t len)1565 void iomap_finish_folio_write(struct inode *inode, struct folio *folio,
1566 size_t len)
1567 {
1568 struct iomap_folio_state *ifs = folio->private;
1569
1570 WARN_ON_ONCE(i_blocks_per_folio(inode, folio) > 1 && !ifs);
1571 WARN_ON_ONCE(ifs && atomic_read(&ifs->write_bytes_pending) <= 0);
1572
1573 if (!ifs || atomic_sub_and_test(len, &ifs->write_bytes_pending))
1574 folio_end_writeback(folio);
1575 }
1576 EXPORT_SYMBOL_GPL(iomap_finish_folio_write);
1577
iomap_writeback_range(struct iomap_writepage_ctx * wpc,struct folio * folio,u64 pos,u32 rlen,u64 end_pos,bool * wb_pending)1578 static int iomap_writeback_range(struct iomap_writepage_ctx *wpc,
1579 struct folio *folio, u64 pos, u32 rlen, u64 end_pos,
1580 bool *wb_pending)
1581 {
1582 do {
1583 ssize_t ret;
1584
1585 ret = wpc->ops->writeback_range(wpc, folio, pos, rlen, end_pos);
1586 if (WARN_ON_ONCE(ret == 0 || ret > rlen))
1587 return -EIO;
1588 if (ret < 0)
1589 return ret;
1590 rlen -= ret;
1591 pos += ret;
1592
1593 /*
1594 * Holes are not be written back by ->writeback_range, so track
1595 * if we did handle anything that is not a hole here.
1596 */
1597 if (wpc->iomap.type != IOMAP_HOLE)
1598 *wb_pending = true;
1599 } while (rlen);
1600
1601 return 0;
1602 }
1603
1604 /*
1605 * Check interaction of the folio with the file end.
1606 *
1607 * If the folio is entirely beyond i_size, return false. If it straddles
1608 * i_size, adjust end_pos and zero all data beyond i_size.
1609 */
iomap_writeback_handle_eof(struct folio * folio,struct inode * inode,u64 * end_pos)1610 static bool iomap_writeback_handle_eof(struct folio *folio, struct inode *inode,
1611 u64 *end_pos)
1612 {
1613 u64 isize = i_size_read(inode);
1614
1615 if (*end_pos > isize) {
1616 size_t poff = offset_in_folio(folio, isize);
1617 pgoff_t end_index = isize >> PAGE_SHIFT;
1618
1619 /*
1620 * If the folio is entirely ouside of i_size, skip it.
1621 *
1622 * This can happen due to a truncate operation that is in
1623 * progress and in that case truncate will finish it off once
1624 * we've dropped the folio lock.
1625 *
1626 * Note that the pgoff_t used for end_index is an unsigned long.
1627 * If the given offset is greater than 16TB on a 32-bit system,
1628 * then if we checked if the folio is fully outside i_size with
1629 * "if (folio->index >= end_index + 1)", "end_index + 1" would
1630 * overflow and evaluate to 0. Hence this folio would be
1631 * redirtied and written out repeatedly, which would result in
1632 * an infinite loop; the user program performing this operation
1633 * would hang. Instead, we can detect this situation by
1634 * checking if the folio is totally beyond i_size or if its
1635 * offset is just equal to the EOF.
1636 */
1637 if (folio->index > end_index ||
1638 (folio->index == end_index && poff == 0))
1639 return false;
1640
1641 /*
1642 * The folio straddles i_size.
1643 *
1644 * It must be zeroed out on each and every writepage invocation
1645 * because it may be mmapped:
1646 *
1647 * A file is mapped in multiples of the page size. For a
1648 * file that is not a multiple of the page size, the
1649 * remaining memory is zeroed when mapped, and writes to that
1650 * region are not written out to the file.
1651 *
1652 * Also adjust the end_pos to the end of file and skip writeback
1653 * for all blocks entirely beyond i_size.
1654 */
1655 folio_zero_segment(folio, poff, folio_size(folio));
1656 *end_pos = isize;
1657 }
1658
1659 return true;
1660 }
1661
iomap_writeback_folio(struct iomap_writepage_ctx * wpc,struct folio * folio)1662 int iomap_writeback_folio(struct iomap_writepage_ctx *wpc, struct folio *folio)
1663 {
1664 struct iomap_folio_state *ifs = folio->private;
1665 struct inode *inode = wpc->inode;
1666 u64 pos = folio_pos(folio);
1667 u64 end_pos = pos + folio_size(folio);
1668 u64 end_aligned = 0;
1669 bool wb_pending = false;
1670 int error = 0;
1671 u32 rlen;
1672
1673 WARN_ON_ONCE(!folio_test_locked(folio));
1674 WARN_ON_ONCE(folio_test_dirty(folio));
1675 WARN_ON_ONCE(folio_test_writeback(folio));
1676
1677 trace_iomap_writeback_folio(inode, pos, folio_size(folio));
1678
1679 if (!iomap_writeback_handle_eof(folio, inode, &end_pos))
1680 return 0;
1681 WARN_ON_ONCE(end_pos <= pos);
1682
1683 if (i_blocks_per_folio(inode, folio) > 1) {
1684 if (!ifs) {
1685 ifs = ifs_alloc(inode, folio, 0);
1686 iomap_set_range_dirty(folio, 0, end_pos - pos);
1687 }
1688
1689 /*
1690 * Keep the I/O completion handler from clearing the writeback
1691 * bit until we have submitted all blocks by adding a bias to
1692 * ifs->write_bytes_pending, which is dropped after submitting
1693 * all blocks.
1694 */
1695 WARN_ON_ONCE(atomic_read(&ifs->write_bytes_pending) != 0);
1696 iomap_start_folio_write(inode, folio, 1);
1697 }
1698
1699 /*
1700 * Set the writeback bit ASAP, as the I/O completion for the single
1701 * block per folio case happen hit as soon as we're submitting the bio.
1702 */
1703 folio_start_writeback(folio);
1704
1705 /*
1706 * Walk through the folio to find dirty areas to write back.
1707 */
1708 end_aligned = round_up(end_pos, i_blocksize(inode));
1709 while ((rlen = iomap_find_dirty_range(folio, &pos, end_aligned))) {
1710 error = iomap_writeback_range(wpc, folio, pos, rlen, end_pos,
1711 &wb_pending);
1712 if (error)
1713 break;
1714 pos += rlen;
1715 }
1716
1717 if (wb_pending)
1718 wpc->nr_folios++;
1719
1720 /*
1721 * We can have dirty bits set past end of file in page_mkwrite path
1722 * while mapping the last partial folio. Hence it's better to clear
1723 * all the dirty bits in the folio here.
1724 */
1725 iomap_clear_range_dirty(folio, 0, folio_size(folio));
1726
1727 /*
1728 * Usually the writeback bit is cleared by the I/O completion handler.
1729 * But we may end up either not actually writing any blocks, or (when
1730 * there are multiple blocks in a folio) all I/O might have finished
1731 * already at this point. In that case we need to clear the writeback
1732 * bit ourselves right after unlocking the page.
1733 */
1734 if (ifs) {
1735 if (atomic_dec_and_test(&ifs->write_bytes_pending))
1736 folio_end_writeback(folio);
1737 } else {
1738 if (!wb_pending)
1739 folio_end_writeback(folio);
1740 }
1741 mapping_set_error(inode->i_mapping, error);
1742 return error;
1743 }
1744 EXPORT_SYMBOL_GPL(iomap_writeback_folio);
1745
1746 int
iomap_writepages(struct iomap_writepage_ctx * wpc)1747 iomap_writepages(struct iomap_writepage_ctx *wpc)
1748 {
1749 struct address_space *mapping = wpc->inode->i_mapping;
1750 struct folio *folio = NULL;
1751 int error;
1752
1753 /*
1754 * Writeback from reclaim context should never happen except in the case
1755 * of a VM regression so warn about it and refuse to write the data.
1756 */
1757 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC | PF_KSWAPD)) ==
1758 PF_MEMALLOC))
1759 return -EIO;
1760
1761 while ((folio = writeback_iter(mapping, wpc->wbc, folio, &error))) {
1762 error = iomap_writeback_folio(wpc, folio);
1763 folio_unlock(folio);
1764 }
1765
1766 /*
1767 * If @error is non-zero, it means that we have a situation where some
1768 * part of the submission process has failed after we've marked pages
1769 * for writeback.
1770 *
1771 * We cannot cancel the writeback directly in that case, so always call
1772 * ->writeback_submit to run the I/O completion handler to clear the
1773 * writeback bit and let the file system proess the errors.
1774 */
1775 if (wpc->wb_ctx)
1776 return wpc->ops->writeback_submit(wpc, error);
1777 return error;
1778 }
1779 EXPORT_SYMBOL_GPL(iomap_writepages);
1780