xref: /linux/fs/iomap/buffered-io.c (revision ab93e0dd72c37d378dd936f031ffb83ff2bd87ce)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2010 Red Hat, Inc.
4  * Copyright (C) 2016-2023 Christoph Hellwig.
5  */
6 #include <linux/iomap.h>
7 #include <linux/buffer_head.h>
8 #include <linux/writeback.h>
9 #include <linux/swap.h>
10 #include <linux/migrate.h>
11 #include "trace.h"
12 
13 #include "../internal.h"
14 
15 /*
16  * Structure allocated for each folio to track per-block uptodate, dirty state
17  * and I/O completions.
18  */
19 struct iomap_folio_state {
20 	spinlock_t		state_lock;
21 	unsigned int		read_bytes_pending;
22 	atomic_t		write_bytes_pending;
23 
24 	/*
25 	 * Each block has two bits in this bitmap:
26 	 * Bits [0..blocks_per_folio) has the uptodate status.
27 	 * Bits [b_p_f...(2*b_p_f))   has the dirty status.
28 	 */
29 	unsigned long		state[];
30 };
31 
ifs_is_fully_uptodate(struct folio * folio,struct iomap_folio_state * ifs)32 static inline bool ifs_is_fully_uptodate(struct folio *folio,
33 		struct iomap_folio_state *ifs)
34 {
35 	struct inode *inode = folio->mapping->host;
36 
37 	return bitmap_full(ifs->state, i_blocks_per_folio(inode, folio));
38 }
39 
ifs_block_is_uptodate(struct iomap_folio_state * ifs,unsigned int block)40 static inline bool ifs_block_is_uptodate(struct iomap_folio_state *ifs,
41 		unsigned int block)
42 {
43 	return test_bit(block, ifs->state);
44 }
45 
ifs_set_range_uptodate(struct folio * folio,struct iomap_folio_state * ifs,size_t off,size_t len)46 static bool ifs_set_range_uptodate(struct folio *folio,
47 		struct iomap_folio_state *ifs, size_t off, size_t len)
48 {
49 	struct inode *inode = folio->mapping->host;
50 	unsigned int first_blk = off >> inode->i_blkbits;
51 	unsigned int last_blk = (off + len - 1) >> inode->i_blkbits;
52 	unsigned int nr_blks = last_blk - first_blk + 1;
53 
54 	bitmap_set(ifs->state, first_blk, nr_blks);
55 	return ifs_is_fully_uptodate(folio, ifs);
56 }
57 
iomap_set_range_uptodate(struct folio * folio,size_t off,size_t len)58 static void iomap_set_range_uptodate(struct folio *folio, size_t off,
59 		size_t len)
60 {
61 	struct iomap_folio_state *ifs = folio->private;
62 	unsigned long flags;
63 	bool uptodate = true;
64 
65 	if (folio_test_uptodate(folio))
66 		return;
67 
68 	if (ifs) {
69 		spin_lock_irqsave(&ifs->state_lock, flags);
70 		uptodate = ifs_set_range_uptodate(folio, ifs, off, len);
71 		spin_unlock_irqrestore(&ifs->state_lock, flags);
72 	}
73 
74 	if (uptodate)
75 		folio_mark_uptodate(folio);
76 }
77 
ifs_block_is_dirty(struct folio * folio,struct iomap_folio_state * ifs,int block)78 static inline bool ifs_block_is_dirty(struct folio *folio,
79 		struct iomap_folio_state *ifs, int block)
80 {
81 	struct inode *inode = folio->mapping->host;
82 	unsigned int blks_per_folio = i_blocks_per_folio(inode, folio);
83 
84 	return test_bit(block + blks_per_folio, ifs->state);
85 }
86 
ifs_find_dirty_range(struct folio * folio,struct iomap_folio_state * ifs,u64 * range_start,u64 range_end)87 static unsigned ifs_find_dirty_range(struct folio *folio,
88 		struct iomap_folio_state *ifs, u64 *range_start, u64 range_end)
89 {
90 	struct inode *inode = folio->mapping->host;
91 	unsigned start_blk =
92 		offset_in_folio(folio, *range_start) >> inode->i_blkbits;
93 	unsigned end_blk = min_not_zero(
94 		offset_in_folio(folio, range_end) >> inode->i_blkbits,
95 		i_blocks_per_folio(inode, folio));
96 	unsigned nblks = 1;
97 
98 	while (!ifs_block_is_dirty(folio, ifs, start_blk))
99 		if (++start_blk == end_blk)
100 			return 0;
101 
102 	while (start_blk + nblks < end_blk) {
103 		if (!ifs_block_is_dirty(folio, ifs, start_blk + nblks))
104 			break;
105 		nblks++;
106 	}
107 
108 	*range_start = folio_pos(folio) + (start_blk << inode->i_blkbits);
109 	return nblks << inode->i_blkbits;
110 }
111 
iomap_find_dirty_range(struct folio * folio,u64 * range_start,u64 range_end)112 static unsigned iomap_find_dirty_range(struct folio *folio, u64 *range_start,
113 		u64 range_end)
114 {
115 	struct iomap_folio_state *ifs = folio->private;
116 
117 	if (*range_start >= range_end)
118 		return 0;
119 
120 	if (ifs)
121 		return ifs_find_dirty_range(folio, ifs, range_start, range_end);
122 	return range_end - *range_start;
123 }
124 
ifs_clear_range_dirty(struct folio * folio,struct iomap_folio_state * ifs,size_t off,size_t len)125 static void ifs_clear_range_dirty(struct folio *folio,
126 		struct iomap_folio_state *ifs, size_t off, size_t len)
127 {
128 	struct inode *inode = folio->mapping->host;
129 	unsigned int blks_per_folio = i_blocks_per_folio(inode, folio);
130 	unsigned int first_blk = (off >> inode->i_blkbits);
131 	unsigned int last_blk = (off + len - 1) >> inode->i_blkbits;
132 	unsigned int nr_blks = last_blk - first_blk + 1;
133 	unsigned long flags;
134 
135 	spin_lock_irqsave(&ifs->state_lock, flags);
136 	bitmap_clear(ifs->state, first_blk + blks_per_folio, nr_blks);
137 	spin_unlock_irqrestore(&ifs->state_lock, flags);
138 }
139 
iomap_clear_range_dirty(struct folio * folio,size_t off,size_t len)140 static void iomap_clear_range_dirty(struct folio *folio, size_t off, size_t len)
141 {
142 	struct iomap_folio_state *ifs = folio->private;
143 
144 	if (ifs)
145 		ifs_clear_range_dirty(folio, ifs, off, len);
146 }
147 
ifs_set_range_dirty(struct folio * folio,struct iomap_folio_state * ifs,size_t off,size_t len)148 static void ifs_set_range_dirty(struct folio *folio,
149 		struct iomap_folio_state *ifs, size_t off, size_t len)
150 {
151 	struct inode *inode = folio->mapping->host;
152 	unsigned int blks_per_folio = i_blocks_per_folio(inode, folio);
153 	unsigned int first_blk = (off >> inode->i_blkbits);
154 	unsigned int last_blk = (off + len - 1) >> inode->i_blkbits;
155 	unsigned int nr_blks = last_blk - first_blk + 1;
156 	unsigned long flags;
157 
158 	spin_lock_irqsave(&ifs->state_lock, flags);
159 	bitmap_set(ifs->state, first_blk + blks_per_folio, nr_blks);
160 	spin_unlock_irqrestore(&ifs->state_lock, flags);
161 }
162 
iomap_set_range_dirty(struct folio * folio,size_t off,size_t len)163 static void iomap_set_range_dirty(struct folio *folio, size_t off, size_t len)
164 {
165 	struct iomap_folio_state *ifs = folio->private;
166 
167 	if (ifs)
168 		ifs_set_range_dirty(folio, ifs, off, len);
169 }
170 
ifs_alloc(struct inode * inode,struct folio * folio,unsigned int flags)171 static struct iomap_folio_state *ifs_alloc(struct inode *inode,
172 		struct folio *folio, unsigned int flags)
173 {
174 	struct iomap_folio_state *ifs = folio->private;
175 	unsigned int nr_blocks = i_blocks_per_folio(inode, folio);
176 	gfp_t gfp;
177 
178 	if (ifs || nr_blocks <= 1)
179 		return ifs;
180 
181 	if (flags & IOMAP_NOWAIT)
182 		gfp = GFP_NOWAIT;
183 	else
184 		gfp = GFP_NOFS | __GFP_NOFAIL;
185 
186 	/*
187 	 * ifs->state tracks two sets of state flags when the
188 	 * filesystem block size is smaller than the folio size.
189 	 * The first state tracks per-block uptodate and the
190 	 * second tracks per-block dirty state.
191 	 */
192 	ifs = kzalloc(struct_size(ifs, state,
193 		      BITS_TO_LONGS(2 * nr_blocks)), gfp);
194 	if (!ifs)
195 		return ifs;
196 
197 	spin_lock_init(&ifs->state_lock);
198 	if (folio_test_uptodate(folio))
199 		bitmap_set(ifs->state, 0, nr_blocks);
200 	if (folio_test_dirty(folio))
201 		bitmap_set(ifs->state, nr_blocks, nr_blocks);
202 	folio_attach_private(folio, ifs);
203 
204 	return ifs;
205 }
206 
ifs_free(struct folio * folio)207 static void ifs_free(struct folio *folio)
208 {
209 	struct iomap_folio_state *ifs = folio_detach_private(folio);
210 
211 	if (!ifs)
212 		return;
213 	WARN_ON_ONCE(ifs->read_bytes_pending != 0);
214 	WARN_ON_ONCE(atomic_read(&ifs->write_bytes_pending));
215 	WARN_ON_ONCE(ifs_is_fully_uptodate(folio, ifs) !=
216 			folio_test_uptodate(folio));
217 	kfree(ifs);
218 }
219 
220 /*
221  * Calculate the range inside the folio that we actually need to read.
222  */
iomap_adjust_read_range(struct inode * inode,struct folio * folio,loff_t * pos,loff_t length,size_t * offp,size_t * lenp)223 static void iomap_adjust_read_range(struct inode *inode, struct folio *folio,
224 		loff_t *pos, loff_t length, size_t *offp, size_t *lenp)
225 {
226 	struct iomap_folio_state *ifs = folio->private;
227 	loff_t orig_pos = *pos;
228 	loff_t isize = i_size_read(inode);
229 	unsigned block_bits = inode->i_blkbits;
230 	unsigned block_size = (1 << block_bits);
231 	size_t poff = offset_in_folio(folio, *pos);
232 	size_t plen = min_t(loff_t, folio_size(folio) - poff, length);
233 	size_t orig_plen = plen;
234 	unsigned first = poff >> block_bits;
235 	unsigned last = (poff + plen - 1) >> block_bits;
236 
237 	/*
238 	 * If the block size is smaller than the page size, we need to check the
239 	 * per-block uptodate status and adjust the offset and length if needed
240 	 * to avoid reading in already uptodate ranges.
241 	 */
242 	if (ifs) {
243 		unsigned int i;
244 
245 		/* move forward for each leading block marked uptodate */
246 		for (i = first; i <= last; i++) {
247 			if (!ifs_block_is_uptodate(ifs, i))
248 				break;
249 			*pos += block_size;
250 			poff += block_size;
251 			plen -= block_size;
252 			first++;
253 		}
254 
255 		/* truncate len if we find any trailing uptodate block(s) */
256 		while (++i <= last) {
257 			if (ifs_block_is_uptodate(ifs, i)) {
258 				plen -= (last - i + 1) * block_size;
259 				last = i - 1;
260 				break;
261 			}
262 		}
263 	}
264 
265 	/*
266 	 * If the extent spans the block that contains the i_size, we need to
267 	 * handle both halves separately so that we properly zero data in the
268 	 * page cache for blocks that are entirely outside of i_size.
269 	 */
270 	if (orig_pos <= isize && orig_pos + orig_plen > isize) {
271 		unsigned end = offset_in_folio(folio, isize - 1) >> block_bits;
272 
273 		if (first <= end && last > end)
274 			plen -= (last - end) * block_size;
275 	}
276 
277 	*offp = poff;
278 	*lenp = plen;
279 }
280 
iomap_block_needs_zeroing(const struct iomap_iter * iter,loff_t pos)281 static inline bool iomap_block_needs_zeroing(const struct iomap_iter *iter,
282 		loff_t pos)
283 {
284 	const struct iomap *srcmap = iomap_iter_srcmap(iter);
285 
286 	return srcmap->type != IOMAP_MAPPED ||
287 		(srcmap->flags & IOMAP_F_NEW) ||
288 		pos >= i_size_read(iter->inode);
289 }
290 
291 /**
292  * iomap_read_inline_data - copy inline data into the page cache
293  * @iter: iteration structure
294  * @folio: folio to copy to
295  *
296  * Copy the inline data in @iter into @folio and zero out the rest of the folio.
297  * Only a single IOMAP_INLINE extent is allowed at the end of each file.
298  * Returns zero for success to complete the read, or the usual negative errno.
299  */
iomap_read_inline_data(const struct iomap_iter * iter,struct folio * folio)300 static int iomap_read_inline_data(const struct iomap_iter *iter,
301 		struct folio *folio)
302 {
303 	const struct iomap *iomap = iomap_iter_srcmap(iter);
304 	size_t size = i_size_read(iter->inode) - iomap->offset;
305 	size_t offset = offset_in_folio(folio, iomap->offset);
306 
307 	if (folio_test_uptodate(folio))
308 		return 0;
309 
310 	if (WARN_ON_ONCE(size > iomap->length))
311 		return -EIO;
312 	if (offset > 0)
313 		ifs_alloc(iter->inode, folio, iter->flags);
314 
315 	folio_fill_tail(folio, offset, iomap->inline_data, size);
316 	iomap_set_range_uptodate(folio, offset, folio_size(folio) - offset);
317 	return 0;
318 }
319 
320 #ifdef CONFIG_BLOCK
iomap_finish_folio_read(struct folio * folio,size_t off,size_t len,int error)321 static void iomap_finish_folio_read(struct folio *folio, size_t off,
322 		size_t len, int error)
323 {
324 	struct iomap_folio_state *ifs = folio->private;
325 	bool uptodate = !error;
326 	bool finished = true;
327 
328 	if (ifs) {
329 		unsigned long flags;
330 
331 		spin_lock_irqsave(&ifs->state_lock, flags);
332 		if (!error)
333 			uptodate = ifs_set_range_uptodate(folio, ifs, off, len);
334 		ifs->read_bytes_pending -= len;
335 		finished = !ifs->read_bytes_pending;
336 		spin_unlock_irqrestore(&ifs->state_lock, flags);
337 	}
338 
339 	if (finished)
340 		folio_end_read(folio, uptodate);
341 }
342 
iomap_read_end_io(struct bio * bio)343 static void iomap_read_end_io(struct bio *bio)
344 {
345 	int error = blk_status_to_errno(bio->bi_status);
346 	struct folio_iter fi;
347 
348 	bio_for_each_folio_all(fi, bio)
349 		iomap_finish_folio_read(fi.folio, fi.offset, fi.length, error);
350 	bio_put(bio);
351 }
352 
353 struct iomap_readpage_ctx {
354 	struct folio		*cur_folio;
355 	bool			cur_folio_in_bio;
356 	struct bio		*bio;
357 	struct readahead_control *rac;
358 };
359 
iomap_readpage_iter(struct iomap_iter * iter,struct iomap_readpage_ctx * ctx)360 static int iomap_readpage_iter(struct iomap_iter *iter,
361 		struct iomap_readpage_ctx *ctx)
362 {
363 	const struct iomap *iomap = &iter->iomap;
364 	loff_t pos = iter->pos;
365 	loff_t length = iomap_length(iter);
366 	struct folio *folio = ctx->cur_folio;
367 	struct iomap_folio_state *ifs;
368 	size_t poff, plen;
369 	sector_t sector;
370 	int ret;
371 
372 	if (iomap->type == IOMAP_INLINE) {
373 		ret = iomap_read_inline_data(iter, folio);
374 		if (ret)
375 			return ret;
376 		return iomap_iter_advance(iter, &length);
377 	}
378 
379 	/* zero post-eof blocks as the page may be mapped */
380 	ifs = ifs_alloc(iter->inode, folio, iter->flags);
381 	iomap_adjust_read_range(iter->inode, folio, &pos, length, &poff, &plen);
382 	if (plen == 0)
383 		goto done;
384 
385 	if (iomap_block_needs_zeroing(iter, pos)) {
386 		folio_zero_range(folio, poff, plen);
387 		iomap_set_range_uptodate(folio, poff, plen);
388 		goto done;
389 	}
390 
391 	ctx->cur_folio_in_bio = true;
392 	if (ifs) {
393 		spin_lock_irq(&ifs->state_lock);
394 		ifs->read_bytes_pending += plen;
395 		spin_unlock_irq(&ifs->state_lock);
396 	}
397 
398 	sector = iomap_sector(iomap, pos);
399 	if (!ctx->bio ||
400 	    bio_end_sector(ctx->bio) != sector ||
401 	    !bio_add_folio(ctx->bio, folio, plen, poff)) {
402 		gfp_t gfp = mapping_gfp_constraint(folio->mapping, GFP_KERNEL);
403 		gfp_t orig_gfp = gfp;
404 		unsigned int nr_vecs = DIV_ROUND_UP(length, PAGE_SIZE);
405 
406 		if (ctx->bio)
407 			submit_bio(ctx->bio);
408 
409 		if (ctx->rac) /* same as readahead_gfp_mask */
410 			gfp |= __GFP_NORETRY | __GFP_NOWARN;
411 		ctx->bio = bio_alloc(iomap->bdev, bio_max_segs(nr_vecs),
412 				     REQ_OP_READ, gfp);
413 		/*
414 		 * If the bio_alloc fails, try it again for a single page to
415 		 * avoid having to deal with partial page reads.  This emulates
416 		 * what do_mpage_read_folio does.
417 		 */
418 		if (!ctx->bio) {
419 			ctx->bio = bio_alloc(iomap->bdev, 1, REQ_OP_READ,
420 					     orig_gfp);
421 		}
422 		if (ctx->rac)
423 			ctx->bio->bi_opf |= REQ_RAHEAD;
424 		ctx->bio->bi_iter.bi_sector = sector;
425 		ctx->bio->bi_end_io = iomap_read_end_io;
426 		bio_add_folio_nofail(ctx->bio, folio, plen, poff);
427 	}
428 
429 done:
430 	/*
431 	 * Move the caller beyond our range so that it keeps making progress.
432 	 * For that, we have to include any leading non-uptodate ranges, but
433 	 * we can skip trailing ones as they will be handled in the next
434 	 * iteration.
435 	 */
436 	length = pos - iter->pos + plen;
437 	return iomap_iter_advance(iter, &length);
438 }
439 
iomap_read_folio_iter(struct iomap_iter * iter,struct iomap_readpage_ctx * ctx)440 static int iomap_read_folio_iter(struct iomap_iter *iter,
441 		struct iomap_readpage_ctx *ctx)
442 {
443 	int ret;
444 
445 	while (iomap_length(iter)) {
446 		ret = iomap_readpage_iter(iter, ctx);
447 		if (ret)
448 			return ret;
449 	}
450 
451 	return 0;
452 }
453 
iomap_read_folio(struct folio * folio,const struct iomap_ops * ops)454 int iomap_read_folio(struct folio *folio, const struct iomap_ops *ops)
455 {
456 	struct iomap_iter iter = {
457 		.inode		= folio->mapping->host,
458 		.pos		= folio_pos(folio),
459 		.len		= folio_size(folio),
460 	};
461 	struct iomap_readpage_ctx ctx = {
462 		.cur_folio	= folio,
463 	};
464 	int ret;
465 
466 	trace_iomap_readpage(iter.inode, 1);
467 
468 	while ((ret = iomap_iter(&iter, ops)) > 0)
469 		iter.status = iomap_read_folio_iter(&iter, &ctx);
470 
471 	if (ctx.bio) {
472 		submit_bio(ctx.bio);
473 		WARN_ON_ONCE(!ctx.cur_folio_in_bio);
474 	} else {
475 		WARN_ON_ONCE(ctx.cur_folio_in_bio);
476 		folio_unlock(folio);
477 	}
478 
479 	/*
480 	 * Just like mpage_readahead and block_read_full_folio, we always
481 	 * return 0 and just set the folio error flag on errors.  This
482 	 * should be cleaned up throughout the stack eventually.
483 	 */
484 	return 0;
485 }
486 EXPORT_SYMBOL_GPL(iomap_read_folio);
487 
iomap_readahead_iter(struct iomap_iter * iter,struct iomap_readpage_ctx * ctx)488 static int iomap_readahead_iter(struct iomap_iter *iter,
489 		struct iomap_readpage_ctx *ctx)
490 {
491 	int ret;
492 
493 	while (iomap_length(iter)) {
494 		if (ctx->cur_folio &&
495 		    offset_in_folio(ctx->cur_folio, iter->pos) == 0) {
496 			if (!ctx->cur_folio_in_bio)
497 				folio_unlock(ctx->cur_folio);
498 			ctx->cur_folio = NULL;
499 		}
500 		if (!ctx->cur_folio) {
501 			ctx->cur_folio = readahead_folio(ctx->rac);
502 			ctx->cur_folio_in_bio = false;
503 		}
504 		ret = iomap_readpage_iter(iter, ctx);
505 		if (ret)
506 			return ret;
507 	}
508 
509 	return 0;
510 }
511 
512 /**
513  * iomap_readahead - Attempt to read pages from a file.
514  * @rac: Describes the pages to be read.
515  * @ops: The operations vector for the filesystem.
516  *
517  * This function is for filesystems to call to implement their readahead
518  * address_space operation.
519  *
520  * Context: The @ops callbacks may submit I/O (eg to read the addresses of
521  * blocks from disc), and may wait for it.  The caller may be trying to
522  * access a different page, and so sleeping excessively should be avoided.
523  * It may allocate memory, but should avoid costly allocations.  This
524  * function is called with memalloc_nofs set, so allocations will not cause
525  * the filesystem to be reentered.
526  */
iomap_readahead(struct readahead_control * rac,const struct iomap_ops * ops)527 void iomap_readahead(struct readahead_control *rac, const struct iomap_ops *ops)
528 {
529 	struct iomap_iter iter = {
530 		.inode	= rac->mapping->host,
531 		.pos	= readahead_pos(rac),
532 		.len	= readahead_length(rac),
533 	};
534 	struct iomap_readpage_ctx ctx = {
535 		.rac	= rac,
536 	};
537 
538 	trace_iomap_readahead(rac->mapping->host, readahead_count(rac));
539 
540 	while (iomap_iter(&iter, ops) > 0)
541 		iter.status = iomap_readahead_iter(&iter, &ctx);
542 
543 	if (ctx.bio)
544 		submit_bio(ctx.bio);
545 	if (ctx.cur_folio) {
546 		if (!ctx.cur_folio_in_bio)
547 			folio_unlock(ctx.cur_folio);
548 	}
549 }
550 EXPORT_SYMBOL_GPL(iomap_readahead);
551 
iomap_read_folio_range(const struct iomap_iter * iter,struct folio * folio,loff_t pos,size_t len)552 static int iomap_read_folio_range(const struct iomap_iter *iter,
553 		struct folio *folio, loff_t pos, size_t len)
554 {
555 	const struct iomap *srcmap = iomap_iter_srcmap(iter);
556 	struct bio_vec bvec;
557 	struct bio bio;
558 
559 	bio_init(&bio, srcmap->bdev, &bvec, 1, REQ_OP_READ);
560 	bio.bi_iter.bi_sector = iomap_sector(srcmap, pos);
561 	bio_add_folio_nofail(&bio, folio, len, offset_in_folio(folio, pos));
562 	return submit_bio_wait(&bio);
563 }
564 #else
iomap_read_folio_range(const struct iomap_iter * iter,struct folio * folio,loff_t pos,size_t len)565 static int iomap_read_folio_range(const struct iomap_iter *iter,
566 		struct folio *folio, loff_t pos, size_t len)
567 {
568 	WARN_ON_ONCE(1);
569 	return -EIO;
570 }
571 #endif /* CONFIG_BLOCK */
572 
573 /*
574  * iomap_is_partially_uptodate checks whether blocks within a folio are
575  * uptodate or not.
576  *
577  * Returns true if all blocks which correspond to the specified part
578  * of the folio are uptodate.
579  */
iomap_is_partially_uptodate(struct folio * folio,size_t from,size_t count)580 bool iomap_is_partially_uptodate(struct folio *folio, size_t from, size_t count)
581 {
582 	struct iomap_folio_state *ifs = folio->private;
583 	struct inode *inode = folio->mapping->host;
584 	unsigned first, last, i;
585 
586 	if (!ifs)
587 		return false;
588 
589 	/* Caller's range may extend past the end of this folio */
590 	count = min(folio_size(folio) - from, count);
591 
592 	/* First and last blocks in range within folio */
593 	first = from >> inode->i_blkbits;
594 	last = (from + count - 1) >> inode->i_blkbits;
595 
596 	for (i = first; i <= last; i++)
597 		if (!ifs_block_is_uptodate(ifs, i))
598 			return false;
599 	return true;
600 }
601 EXPORT_SYMBOL_GPL(iomap_is_partially_uptodate);
602 
603 /**
604  * iomap_get_folio - get a folio reference for writing
605  * @iter: iteration structure
606  * @pos: start offset of write
607  * @len: Suggested size of folio to create.
608  *
609  * Returns a locked reference to the folio at @pos, or an error pointer if the
610  * folio could not be obtained.
611  */
iomap_get_folio(struct iomap_iter * iter,loff_t pos,size_t len)612 struct folio *iomap_get_folio(struct iomap_iter *iter, loff_t pos, size_t len)
613 {
614 	fgf_t fgp = FGP_WRITEBEGIN | FGP_NOFS;
615 
616 	if (iter->flags & IOMAP_NOWAIT)
617 		fgp |= FGP_NOWAIT;
618 	if (iter->flags & IOMAP_DONTCACHE)
619 		fgp |= FGP_DONTCACHE;
620 	fgp |= fgf_set_order(len);
621 
622 	return __filemap_get_folio(iter->inode->i_mapping, pos >> PAGE_SHIFT,
623 			fgp, mapping_gfp_mask(iter->inode->i_mapping));
624 }
625 EXPORT_SYMBOL_GPL(iomap_get_folio);
626 
iomap_release_folio(struct folio * folio,gfp_t gfp_flags)627 bool iomap_release_folio(struct folio *folio, gfp_t gfp_flags)
628 {
629 	trace_iomap_release_folio(folio->mapping->host, folio_pos(folio),
630 			folio_size(folio));
631 
632 	/*
633 	 * If the folio is dirty, we refuse to release our metadata because
634 	 * it may be partially dirty.  Once we track per-block dirty state,
635 	 * we can release the metadata if every block is dirty.
636 	 */
637 	if (folio_test_dirty(folio))
638 		return false;
639 	ifs_free(folio);
640 	return true;
641 }
642 EXPORT_SYMBOL_GPL(iomap_release_folio);
643 
iomap_invalidate_folio(struct folio * folio,size_t offset,size_t len)644 void iomap_invalidate_folio(struct folio *folio, size_t offset, size_t len)
645 {
646 	trace_iomap_invalidate_folio(folio->mapping->host,
647 					folio_pos(folio) + offset, len);
648 
649 	/*
650 	 * If we're invalidating the entire folio, clear the dirty state
651 	 * from it and release it to avoid unnecessary buildup of the LRU.
652 	 */
653 	if (offset == 0 && len == folio_size(folio)) {
654 		WARN_ON_ONCE(folio_test_writeback(folio));
655 		folio_cancel_dirty(folio);
656 		ifs_free(folio);
657 	}
658 }
659 EXPORT_SYMBOL_GPL(iomap_invalidate_folio);
660 
iomap_dirty_folio(struct address_space * mapping,struct folio * folio)661 bool iomap_dirty_folio(struct address_space *mapping, struct folio *folio)
662 {
663 	struct inode *inode = mapping->host;
664 	size_t len = folio_size(folio);
665 
666 	ifs_alloc(inode, folio, 0);
667 	iomap_set_range_dirty(folio, 0, len);
668 	return filemap_dirty_folio(mapping, folio);
669 }
670 EXPORT_SYMBOL_GPL(iomap_dirty_folio);
671 
672 static void
iomap_write_failed(struct inode * inode,loff_t pos,unsigned len)673 iomap_write_failed(struct inode *inode, loff_t pos, unsigned len)
674 {
675 	loff_t i_size = i_size_read(inode);
676 
677 	/*
678 	 * Only truncate newly allocated pages beyoned EOF, even if the
679 	 * write started inside the existing inode size.
680 	 */
681 	if (pos + len > i_size)
682 		truncate_pagecache_range(inode, max(pos, i_size),
683 					 pos + len - 1);
684 }
685 
__iomap_write_begin(const struct iomap_iter * iter,const struct iomap_write_ops * write_ops,size_t len,struct folio * folio)686 static int __iomap_write_begin(const struct iomap_iter *iter,
687 		const struct iomap_write_ops *write_ops, size_t len,
688 		struct folio *folio)
689 {
690 	struct iomap_folio_state *ifs;
691 	loff_t pos = iter->pos;
692 	loff_t block_size = i_blocksize(iter->inode);
693 	loff_t block_start = round_down(pos, block_size);
694 	loff_t block_end = round_up(pos + len, block_size);
695 	unsigned int nr_blocks = i_blocks_per_folio(iter->inode, folio);
696 	size_t from = offset_in_folio(folio, pos), to = from + len;
697 	size_t poff, plen;
698 
699 	/*
700 	 * If the write or zeroing completely overlaps the current folio, then
701 	 * entire folio will be dirtied so there is no need for
702 	 * per-block state tracking structures to be attached to this folio.
703 	 * For the unshare case, we must read in the ondisk contents because we
704 	 * are not changing pagecache contents.
705 	 */
706 	if (!(iter->flags & IOMAP_UNSHARE) && pos <= folio_pos(folio) &&
707 	    pos + len >= folio_pos(folio) + folio_size(folio))
708 		return 0;
709 
710 	ifs = ifs_alloc(iter->inode, folio, iter->flags);
711 	if ((iter->flags & IOMAP_NOWAIT) && !ifs && nr_blocks > 1)
712 		return -EAGAIN;
713 
714 	if (folio_test_uptodate(folio))
715 		return 0;
716 
717 	do {
718 		iomap_adjust_read_range(iter->inode, folio, &block_start,
719 				block_end - block_start, &poff, &plen);
720 		if (plen == 0)
721 			break;
722 
723 		if (!(iter->flags & IOMAP_UNSHARE) &&
724 		    (from <= poff || from >= poff + plen) &&
725 		    (to <= poff || to >= poff + plen))
726 			continue;
727 
728 		if (iomap_block_needs_zeroing(iter, block_start)) {
729 			if (WARN_ON_ONCE(iter->flags & IOMAP_UNSHARE))
730 				return -EIO;
731 			folio_zero_segments(folio, poff, from, to, poff + plen);
732 		} else {
733 			int status;
734 
735 			if (iter->flags & IOMAP_NOWAIT)
736 				return -EAGAIN;
737 
738 			if (write_ops && write_ops->read_folio_range)
739 				status = write_ops->read_folio_range(iter,
740 						folio, block_start, plen);
741 			else
742 				status = iomap_read_folio_range(iter,
743 						folio, block_start, plen);
744 			if (status)
745 				return status;
746 		}
747 		iomap_set_range_uptodate(folio, poff, plen);
748 	} while ((block_start += plen) < block_end);
749 
750 	return 0;
751 }
752 
__iomap_get_folio(struct iomap_iter * iter,const struct iomap_write_ops * write_ops,size_t len)753 static struct folio *__iomap_get_folio(struct iomap_iter *iter,
754 		const struct iomap_write_ops *write_ops, size_t len)
755 {
756 	loff_t pos = iter->pos;
757 
758 	if (!mapping_large_folio_support(iter->inode->i_mapping))
759 		len = min_t(size_t, len, PAGE_SIZE - offset_in_page(pos));
760 
761 	if (write_ops && write_ops->get_folio)
762 		return write_ops->get_folio(iter, pos, len);
763 	return iomap_get_folio(iter, pos, len);
764 }
765 
__iomap_put_folio(struct iomap_iter * iter,const struct iomap_write_ops * write_ops,size_t ret,struct folio * folio)766 static void __iomap_put_folio(struct iomap_iter *iter,
767 		const struct iomap_write_ops *write_ops, size_t ret,
768 		struct folio *folio)
769 {
770 	loff_t pos = iter->pos;
771 
772 	if (write_ops && write_ops->put_folio) {
773 		write_ops->put_folio(iter->inode, pos, ret, folio);
774 	} else {
775 		folio_unlock(folio);
776 		folio_put(folio);
777 	}
778 }
779 
780 /* trim pos and bytes to within a given folio */
iomap_trim_folio_range(struct iomap_iter * iter,struct folio * folio,size_t * offset,u64 * bytes)781 static loff_t iomap_trim_folio_range(struct iomap_iter *iter,
782 		struct folio *folio, size_t *offset, u64 *bytes)
783 {
784 	loff_t pos = iter->pos;
785 	size_t fsize = folio_size(folio);
786 
787 	WARN_ON_ONCE(pos < folio_pos(folio));
788 	WARN_ON_ONCE(pos >= folio_pos(folio) + fsize);
789 
790 	*offset = offset_in_folio(folio, pos);
791 	*bytes = min(*bytes, fsize - *offset);
792 
793 	return pos;
794 }
795 
iomap_write_begin_inline(const struct iomap_iter * iter,struct folio * folio)796 static int iomap_write_begin_inline(const struct iomap_iter *iter,
797 		struct folio *folio)
798 {
799 	/* needs more work for the tailpacking case; disable for now */
800 	if (WARN_ON_ONCE(iomap_iter_srcmap(iter)->offset != 0))
801 		return -EIO;
802 	return iomap_read_inline_data(iter, folio);
803 }
804 
805 /*
806  * Grab and prepare a folio for write based on iter state. Returns the folio,
807  * offset, and length. Callers can optionally pass a max length *plen,
808  * otherwise init to zero.
809  */
iomap_write_begin(struct iomap_iter * iter,const struct iomap_write_ops * write_ops,struct folio ** foliop,size_t * poffset,u64 * plen)810 static int iomap_write_begin(struct iomap_iter *iter,
811 		const struct iomap_write_ops *write_ops, struct folio **foliop,
812 		size_t *poffset, u64 *plen)
813 {
814 	const struct iomap *srcmap = iomap_iter_srcmap(iter);
815 	loff_t pos = iter->pos;
816 	u64 len = min_t(u64, SIZE_MAX, iomap_length(iter));
817 	struct folio *folio;
818 	int status = 0;
819 
820 	len = min_not_zero(len, *plen);
821 	BUG_ON(pos + len > iter->iomap.offset + iter->iomap.length);
822 	if (srcmap != &iter->iomap)
823 		BUG_ON(pos + len > srcmap->offset + srcmap->length);
824 
825 	if (fatal_signal_pending(current))
826 		return -EINTR;
827 
828 	folio = __iomap_get_folio(iter, write_ops, len);
829 	if (IS_ERR(folio))
830 		return PTR_ERR(folio);
831 
832 	/*
833 	 * Now we have a locked folio, before we do anything with it we need to
834 	 * check that the iomap we have cached is not stale. The inode extent
835 	 * mapping can change due to concurrent IO in flight (e.g.
836 	 * IOMAP_UNWRITTEN state can change and memory reclaim could have
837 	 * reclaimed a previously partially written page at this index after IO
838 	 * completion before this write reaches this file offset) and hence we
839 	 * could do the wrong thing here (zero a page range incorrectly or fail
840 	 * to zero) and corrupt data.
841 	 */
842 	if (write_ops && write_ops->iomap_valid) {
843 		bool iomap_valid = write_ops->iomap_valid(iter->inode,
844 							 &iter->iomap);
845 		if (!iomap_valid) {
846 			iter->iomap.flags |= IOMAP_F_STALE;
847 			status = 0;
848 			goto out_unlock;
849 		}
850 	}
851 
852 	pos = iomap_trim_folio_range(iter, folio, poffset, &len);
853 
854 	if (srcmap->type == IOMAP_INLINE)
855 		status = iomap_write_begin_inline(iter, folio);
856 	else if (srcmap->flags & IOMAP_F_BUFFER_HEAD)
857 		status = __block_write_begin_int(folio, pos, len, NULL, srcmap);
858 	else
859 		status = __iomap_write_begin(iter, write_ops, len, folio);
860 
861 	if (unlikely(status))
862 		goto out_unlock;
863 
864 	*foliop = folio;
865 	*plen = len;
866 	return 0;
867 
868 out_unlock:
869 	__iomap_put_folio(iter, write_ops, 0, folio);
870 	return status;
871 }
872 
__iomap_write_end(struct inode * inode,loff_t pos,size_t len,size_t copied,struct folio * folio)873 static bool __iomap_write_end(struct inode *inode, loff_t pos, size_t len,
874 		size_t copied, struct folio *folio)
875 {
876 	flush_dcache_folio(folio);
877 
878 	/*
879 	 * The blocks that were entirely written will now be uptodate, so we
880 	 * don't have to worry about a read_folio reading them and overwriting a
881 	 * partial write.  However, if we've encountered a short write and only
882 	 * partially written into a block, it will not be marked uptodate, so a
883 	 * read_folio might come in and destroy our partial write.
884 	 *
885 	 * Do the simplest thing and just treat any short write to a
886 	 * non-uptodate page as a zero-length write, and force the caller to
887 	 * redo the whole thing.
888 	 */
889 	if (unlikely(copied < len && !folio_test_uptodate(folio)))
890 		return false;
891 	iomap_set_range_uptodate(folio, offset_in_folio(folio, pos), len);
892 	iomap_set_range_dirty(folio, offset_in_folio(folio, pos), copied);
893 	filemap_dirty_folio(inode->i_mapping, folio);
894 	return true;
895 }
896 
iomap_write_end_inline(const struct iomap_iter * iter,struct folio * folio,loff_t pos,size_t copied)897 static void iomap_write_end_inline(const struct iomap_iter *iter,
898 		struct folio *folio, loff_t pos, size_t copied)
899 {
900 	const struct iomap *iomap = &iter->iomap;
901 	void *addr;
902 
903 	WARN_ON_ONCE(!folio_test_uptodate(folio));
904 	BUG_ON(!iomap_inline_data_valid(iomap));
905 
906 	flush_dcache_folio(folio);
907 	addr = kmap_local_folio(folio, pos);
908 	memcpy(iomap_inline_data(iomap, pos), addr, copied);
909 	kunmap_local(addr);
910 
911 	mark_inode_dirty(iter->inode);
912 }
913 
914 /*
915  * Returns true if all copied bytes have been written to the pagecache,
916  * otherwise return false.
917  */
iomap_write_end(struct iomap_iter * iter,size_t len,size_t copied,struct folio * folio)918 static bool iomap_write_end(struct iomap_iter *iter, size_t len, size_t copied,
919 		struct folio *folio)
920 {
921 	const struct iomap *srcmap = iomap_iter_srcmap(iter);
922 	loff_t pos = iter->pos;
923 
924 	if (srcmap->type == IOMAP_INLINE) {
925 		iomap_write_end_inline(iter, folio, pos, copied);
926 		return true;
927 	}
928 
929 	if (srcmap->flags & IOMAP_F_BUFFER_HEAD) {
930 		size_t bh_written;
931 
932 		bh_written = block_write_end(pos, len, copied, folio);
933 		WARN_ON_ONCE(bh_written != copied && bh_written != 0);
934 		return bh_written == copied;
935 	}
936 
937 	return __iomap_write_end(iter->inode, pos, len, copied, folio);
938 }
939 
iomap_write_iter(struct iomap_iter * iter,struct iov_iter * i,const struct iomap_write_ops * write_ops)940 static int iomap_write_iter(struct iomap_iter *iter, struct iov_iter *i,
941 		const struct iomap_write_ops *write_ops)
942 {
943 	ssize_t total_written = 0;
944 	int status = 0;
945 	struct address_space *mapping = iter->inode->i_mapping;
946 	size_t chunk = mapping_max_folio_size(mapping);
947 	unsigned int bdp_flags = (iter->flags & IOMAP_NOWAIT) ? BDP_ASYNC : 0;
948 
949 	do {
950 		struct folio *folio;
951 		loff_t old_size;
952 		size_t offset;		/* Offset into folio */
953 		u64 bytes;		/* Bytes to write to folio */
954 		size_t copied;		/* Bytes copied from user */
955 		u64 written;		/* Bytes have been written */
956 		loff_t pos;
957 
958 		bytes = iov_iter_count(i);
959 retry:
960 		offset = iter->pos & (chunk - 1);
961 		bytes = min(chunk - offset, bytes);
962 		status = balance_dirty_pages_ratelimited_flags(mapping,
963 							       bdp_flags);
964 		if (unlikely(status))
965 			break;
966 
967 		if (bytes > iomap_length(iter))
968 			bytes = iomap_length(iter);
969 
970 		/*
971 		 * Bring in the user page that we'll copy from _first_.
972 		 * Otherwise there's a nasty deadlock on copying from the
973 		 * same page as we're writing to, without it being marked
974 		 * up-to-date.
975 		 *
976 		 * For async buffered writes the assumption is that the user
977 		 * page has already been faulted in. This can be optimized by
978 		 * faulting the user page.
979 		 */
980 		if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) {
981 			status = -EFAULT;
982 			break;
983 		}
984 
985 		status = iomap_write_begin(iter, write_ops, &folio, &offset,
986 				&bytes);
987 		if (unlikely(status)) {
988 			iomap_write_failed(iter->inode, iter->pos, bytes);
989 			break;
990 		}
991 		if (iter->iomap.flags & IOMAP_F_STALE)
992 			break;
993 
994 		pos = iter->pos;
995 
996 		if (mapping_writably_mapped(mapping))
997 			flush_dcache_folio(folio);
998 
999 		copied = copy_folio_from_iter_atomic(folio, offset, bytes, i);
1000 		written = iomap_write_end(iter, bytes, copied, folio) ?
1001 			  copied : 0;
1002 
1003 		/*
1004 		 * Update the in-memory inode size after copying the data into
1005 		 * the page cache.  It's up to the file system to write the
1006 		 * updated size to disk, preferably after I/O completion so that
1007 		 * no stale data is exposed.  Only once that's done can we
1008 		 * unlock and release the folio.
1009 		 */
1010 		old_size = iter->inode->i_size;
1011 		if (pos + written > old_size) {
1012 			i_size_write(iter->inode, pos + written);
1013 			iter->iomap.flags |= IOMAP_F_SIZE_CHANGED;
1014 		}
1015 		__iomap_put_folio(iter, write_ops, written, folio);
1016 
1017 		if (old_size < pos)
1018 			pagecache_isize_extended(iter->inode, old_size, pos);
1019 
1020 		cond_resched();
1021 		if (unlikely(written == 0)) {
1022 			/*
1023 			 * A short copy made iomap_write_end() reject the
1024 			 * thing entirely.  Might be memory poisoning
1025 			 * halfway through, might be a race with munmap,
1026 			 * might be severe memory pressure.
1027 			 */
1028 			iomap_write_failed(iter->inode, pos, bytes);
1029 			iov_iter_revert(i, copied);
1030 
1031 			if (chunk > PAGE_SIZE)
1032 				chunk /= 2;
1033 			if (copied) {
1034 				bytes = copied;
1035 				goto retry;
1036 			}
1037 		} else {
1038 			total_written += written;
1039 			iomap_iter_advance(iter, &written);
1040 		}
1041 	} while (iov_iter_count(i) && iomap_length(iter));
1042 
1043 	return total_written ? 0 : status;
1044 }
1045 
1046 ssize_t
iomap_file_buffered_write(struct kiocb * iocb,struct iov_iter * i,const struct iomap_ops * ops,const struct iomap_write_ops * write_ops,void * private)1047 iomap_file_buffered_write(struct kiocb *iocb, struct iov_iter *i,
1048 		const struct iomap_ops *ops,
1049 		const struct iomap_write_ops *write_ops, void *private)
1050 {
1051 	struct iomap_iter iter = {
1052 		.inode		= iocb->ki_filp->f_mapping->host,
1053 		.pos		= iocb->ki_pos,
1054 		.len		= iov_iter_count(i),
1055 		.flags		= IOMAP_WRITE,
1056 		.private	= private,
1057 	};
1058 	ssize_t ret;
1059 
1060 	if (iocb->ki_flags & IOCB_NOWAIT)
1061 		iter.flags |= IOMAP_NOWAIT;
1062 	if (iocb->ki_flags & IOCB_DONTCACHE)
1063 		iter.flags |= IOMAP_DONTCACHE;
1064 
1065 	while ((ret = iomap_iter(&iter, ops)) > 0)
1066 		iter.status = iomap_write_iter(&iter, i, write_ops);
1067 
1068 	if (unlikely(iter.pos == iocb->ki_pos))
1069 		return ret;
1070 	ret = iter.pos - iocb->ki_pos;
1071 	iocb->ki_pos = iter.pos;
1072 	return ret;
1073 }
1074 EXPORT_SYMBOL_GPL(iomap_file_buffered_write);
1075 
iomap_write_delalloc_ifs_punch(struct inode * inode,struct folio * folio,loff_t start_byte,loff_t end_byte,struct iomap * iomap,iomap_punch_t punch)1076 static void iomap_write_delalloc_ifs_punch(struct inode *inode,
1077 		struct folio *folio, loff_t start_byte, loff_t end_byte,
1078 		struct iomap *iomap, iomap_punch_t punch)
1079 {
1080 	unsigned int first_blk, last_blk, i;
1081 	loff_t last_byte;
1082 	u8 blkbits = inode->i_blkbits;
1083 	struct iomap_folio_state *ifs;
1084 
1085 	/*
1086 	 * When we have per-block dirty tracking, there can be
1087 	 * blocks within a folio which are marked uptodate
1088 	 * but not dirty. In that case it is necessary to punch
1089 	 * out such blocks to avoid leaking any delalloc blocks.
1090 	 */
1091 	ifs = folio->private;
1092 	if (!ifs)
1093 		return;
1094 
1095 	last_byte = min_t(loff_t, end_byte - 1,
1096 			folio_pos(folio) + folio_size(folio) - 1);
1097 	first_blk = offset_in_folio(folio, start_byte) >> blkbits;
1098 	last_blk = offset_in_folio(folio, last_byte) >> blkbits;
1099 	for (i = first_blk; i <= last_blk; i++) {
1100 		if (!ifs_block_is_dirty(folio, ifs, i))
1101 			punch(inode, folio_pos(folio) + (i << blkbits),
1102 				    1 << blkbits, iomap);
1103 	}
1104 }
1105 
iomap_write_delalloc_punch(struct inode * inode,struct folio * folio,loff_t * punch_start_byte,loff_t start_byte,loff_t end_byte,struct iomap * iomap,iomap_punch_t punch)1106 static void iomap_write_delalloc_punch(struct inode *inode, struct folio *folio,
1107 		loff_t *punch_start_byte, loff_t start_byte, loff_t end_byte,
1108 		struct iomap *iomap, iomap_punch_t punch)
1109 {
1110 	if (!folio_test_dirty(folio))
1111 		return;
1112 
1113 	/* if dirty, punch up to offset */
1114 	if (start_byte > *punch_start_byte) {
1115 		punch(inode, *punch_start_byte, start_byte - *punch_start_byte,
1116 				iomap);
1117 	}
1118 
1119 	/* Punch non-dirty blocks within folio */
1120 	iomap_write_delalloc_ifs_punch(inode, folio, start_byte, end_byte,
1121 			iomap, punch);
1122 
1123 	/*
1124 	 * Make sure the next punch start is correctly bound to
1125 	 * the end of this data range, not the end of the folio.
1126 	 */
1127 	*punch_start_byte = min_t(loff_t, end_byte,
1128 				folio_pos(folio) + folio_size(folio));
1129 }
1130 
1131 /*
1132  * Scan the data range passed to us for dirty page cache folios. If we find a
1133  * dirty folio, punch out the preceding range and update the offset from which
1134  * the next punch will start from.
1135  *
1136  * We can punch out storage reservations under clean pages because they either
1137  * contain data that has been written back - in which case the delalloc punch
1138  * over that range is a no-op - or they have been read faults in which case they
1139  * contain zeroes and we can remove the delalloc backing range and any new
1140  * writes to those pages will do the normal hole filling operation...
1141  *
1142  * This makes the logic simple: we only need to keep the delalloc extents only
1143  * over the dirty ranges of the page cache.
1144  *
1145  * This function uses [start_byte, end_byte) intervals (i.e. open ended) to
1146  * simplify range iterations.
1147  */
iomap_write_delalloc_scan(struct inode * inode,loff_t * punch_start_byte,loff_t start_byte,loff_t end_byte,struct iomap * iomap,iomap_punch_t punch)1148 static void iomap_write_delalloc_scan(struct inode *inode,
1149 		loff_t *punch_start_byte, loff_t start_byte, loff_t end_byte,
1150 		struct iomap *iomap, iomap_punch_t punch)
1151 {
1152 	while (start_byte < end_byte) {
1153 		struct folio	*folio;
1154 
1155 		/* grab locked page */
1156 		folio = filemap_lock_folio(inode->i_mapping,
1157 				start_byte >> PAGE_SHIFT);
1158 		if (IS_ERR(folio)) {
1159 			start_byte = ALIGN_DOWN(start_byte, PAGE_SIZE) +
1160 					PAGE_SIZE;
1161 			continue;
1162 		}
1163 
1164 		iomap_write_delalloc_punch(inode, folio, punch_start_byte,
1165 				start_byte, end_byte, iomap, punch);
1166 
1167 		/* move offset to start of next folio in range */
1168 		start_byte = folio_pos(folio) + folio_size(folio);
1169 		folio_unlock(folio);
1170 		folio_put(folio);
1171 	}
1172 }
1173 
1174 /*
1175  * When a short write occurs, the filesystem might need to use ->iomap_end
1176  * to remove space reservations created in ->iomap_begin.
1177  *
1178  * For filesystems that use delayed allocation, there can be dirty pages over
1179  * the delalloc extent outside the range of a short write but still within the
1180  * delalloc extent allocated for this iomap if the write raced with page
1181  * faults.
1182  *
1183  * Punch out all the delalloc blocks in the range given except for those that
1184  * have dirty data still pending in the page cache - those are going to be
1185  * written and so must still retain the delalloc backing for writeback.
1186  *
1187  * The punch() callback *must* only punch delalloc extents in the range passed
1188  * to it. It must skip over all other types of extents in the range and leave
1189  * them completely unchanged. It must do this punch atomically with respect to
1190  * other extent modifications.
1191  *
1192  * The punch() callback may be called with a folio locked to prevent writeback
1193  * extent allocation racing at the edge of the range we are currently punching.
1194  * The locked folio may or may not cover the range being punched, so it is not
1195  * safe for the punch() callback to lock folios itself.
1196  *
1197  * Lock order is:
1198  *
1199  * inode->i_rwsem (shared or exclusive)
1200  *   inode->i_mapping->invalidate_lock (exclusive)
1201  *     folio_lock()
1202  *       ->punch
1203  *         internal filesystem allocation lock
1204  *
1205  * As we are scanning the page cache for data, we don't need to reimplement the
1206  * wheel - mapping_seek_hole_data() does exactly what we need to identify the
1207  * start and end of data ranges correctly even for sub-folio block sizes. This
1208  * byte range based iteration is especially convenient because it means we
1209  * don't have to care about variable size folios, nor where the start or end of
1210  * the data range lies within a folio, if they lie within the same folio or even
1211  * if there are multiple discontiguous data ranges within the folio.
1212  *
1213  * It should be noted that mapping_seek_hole_data() is not aware of EOF, and so
1214  * can return data ranges that exist in the cache beyond EOF. e.g. a page fault
1215  * spanning EOF will initialise the post-EOF data to zeroes and mark it up to
1216  * date. A write page fault can then mark it dirty. If we then fail a write()
1217  * beyond EOF into that up to date cached range, we allocate a delalloc block
1218  * beyond EOF and then have to punch it out. Because the range is up to date,
1219  * mapping_seek_hole_data() will return it, and we will skip the punch because
1220  * the folio is dirty. THis is incorrect - we always need to punch out delalloc
1221  * beyond EOF in this case as writeback will never write back and covert that
1222  * delalloc block beyond EOF. Hence we limit the cached data scan range to EOF,
1223  * resulting in always punching out the range from the EOF to the end of the
1224  * range the iomap spans.
1225  *
1226  * Intervals are of the form [start_byte, end_byte) (i.e. open ended) because it
1227  * matches the intervals returned by mapping_seek_hole_data(). i.e. SEEK_DATA
1228  * returns the start of a data range (start_byte), and SEEK_HOLE(start_byte)
1229  * returns the end of the data range (data_end). Using closed intervals would
1230  * require sprinkling this code with magic "+ 1" and "- 1" arithmetic and expose
1231  * the code to subtle off-by-one bugs....
1232  */
iomap_write_delalloc_release(struct inode * inode,loff_t start_byte,loff_t end_byte,unsigned flags,struct iomap * iomap,iomap_punch_t punch)1233 void iomap_write_delalloc_release(struct inode *inode, loff_t start_byte,
1234 		loff_t end_byte, unsigned flags, struct iomap *iomap,
1235 		iomap_punch_t punch)
1236 {
1237 	loff_t punch_start_byte = start_byte;
1238 	loff_t scan_end_byte = min(i_size_read(inode), end_byte);
1239 
1240 	/*
1241 	 * The caller must hold invalidate_lock to avoid races with page faults
1242 	 * re-instantiating folios and dirtying them via ->page_mkwrite whilst
1243 	 * we walk the cache and perform delalloc extent removal.  Failing to do
1244 	 * this can leave dirty pages with no space reservation in the cache.
1245 	 */
1246 	lockdep_assert_held_write(&inode->i_mapping->invalidate_lock);
1247 
1248 	while (start_byte < scan_end_byte) {
1249 		loff_t		data_end;
1250 
1251 		start_byte = mapping_seek_hole_data(inode->i_mapping,
1252 				start_byte, scan_end_byte, SEEK_DATA);
1253 		/*
1254 		 * If there is no more data to scan, all that is left is to
1255 		 * punch out the remaining range.
1256 		 *
1257 		 * Note that mapping_seek_hole_data is only supposed to return
1258 		 * either an offset or -ENXIO, so WARN on any other error as
1259 		 * that would be an API change without updating the callers.
1260 		 */
1261 		if (start_byte == -ENXIO || start_byte == scan_end_byte)
1262 			break;
1263 		if (WARN_ON_ONCE(start_byte < 0))
1264 			return;
1265 		WARN_ON_ONCE(start_byte < punch_start_byte);
1266 		WARN_ON_ONCE(start_byte > scan_end_byte);
1267 
1268 		/*
1269 		 * We find the end of this contiguous cached data range by
1270 		 * seeking from start_byte to the beginning of the next hole.
1271 		 */
1272 		data_end = mapping_seek_hole_data(inode->i_mapping, start_byte,
1273 				scan_end_byte, SEEK_HOLE);
1274 		if (WARN_ON_ONCE(data_end < 0))
1275 			return;
1276 
1277 		/*
1278 		 * If we race with post-direct I/O invalidation of the page cache,
1279 		 * there might be no data left at start_byte.
1280 		 */
1281 		if (data_end == start_byte)
1282 			continue;
1283 
1284 		WARN_ON_ONCE(data_end < start_byte);
1285 		WARN_ON_ONCE(data_end > scan_end_byte);
1286 
1287 		iomap_write_delalloc_scan(inode, &punch_start_byte, start_byte,
1288 				data_end, iomap, punch);
1289 
1290 		/* The next data search starts at the end of this one. */
1291 		start_byte = data_end;
1292 	}
1293 
1294 	if (punch_start_byte < end_byte)
1295 		punch(inode, punch_start_byte, end_byte - punch_start_byte,
1296 				iomap);
1297 }
1298 EXPORT_SYMBOL_GPL(iomap_write_delalloc_release);
1299 
iomap_unshare_iter(struct iomap_iter * iter,const struct iomap_write_ops * write_ops)1300 static int iomap_unshare_iter(struct iomap_iter *iter,
1301 		const struct iomap_write_ops *write_ops)
1302 {
1303 	struct iomap *iomap = &iter->iomap;
1304 	u64 bytes = iomap_length(iter);
1305 	int status;
1306 
1307 	if (!iomap_want_unshare_iter(iter))
1308 		return iomap_iter_advance(iter, &bytes);
1309 
1310 	do {
1311 		struct folio *folio;
1312 		size_t offset;
1313 		bool ret;
1314 
1315 		bytes = min_t(u64, SIZE_MAX, bytes);
1316 		status = iomap_write_begin(iter, write_ops, &folio, &offset,
1317 				&bytes);
1318 		if (unlikely(status))
1319 			return status;
1320 		if (iomap->flags & IOMAP_F_STALE)
1321 			break;
1322 
1323 		ret = iomap_write_end(iter, bytes, bytes, folio);
1324 		__iomap_put_folio(iter, write_ops, bytes, folio);
1325 		if (WARN_ON_ONCE(!ret))
1326 			return -EIO;
1327 
1328 		cond_resched();
1329 
1330 		balance_dirty_pages_ratelimited(iter->inode->i_mapping);
1331 
1332 		status = iomap_iter_advance(iter, &bytes);
1333 		if (status)
1334 			break;
1335 	} while (bytes > 0);
1336 
1337 	return status;
1338 }
1339 
1340 int
iomap_file_unshare(struct inode * inode,loff_t pos,loff_t len,const struct iomap_ops * ops,const struct iomap_write_ops * write_ops)1341 iomap_file_unshare(struct inode *inode, loff_t pos, loff_t len,
1342 		const struct iomap_ops *ops,
1343 		const struct iomap_write_ops *write_ops)
1344 {
1345 	struct iomap_iter iter = {
1346 		.inode		= inode,
1347 		.pos		= pos,
1348 		.flags		= IOMAP_WRITE | IOMAP_UNSHARE,
1349 	};
1350 	loff_t size = i_size_read(inode);
1351 	int ret;
1352 
1353 	if (pos < 0 || pos >= size)
1354 		return 0;
1355 
1356 	iter.len = min(len, size - pos);
1357 	while ((ret = iomap_iter(&iter, ops)) > 0)
1358 		iter.status = iomap_unshare_iter(&iter, write_ops);
1359 	return ret;
1360 }
1361 EXPORT_SYMBOL_GPL(iomap_file_unshare);
1362 
1363 /*
1364  * Flush the remaining range of the iter and mark the current mapping stale.
1365  * This is used when zero range sees an unwritten mapping that may have had
1366  * dirty pagecache over it.
1367  */
iomap_zero_iter_flush_and_stale(struct iomap_iter * i)1368 static inline int iomap_zero_iter_flush_and_stale(struct iomap_iter *i)
1369 {
1370 	struct address_space *mapping = i->inode->i_mapping;
1371 	loff_t end = i->pos + i->len - 1;
1372 
1373 	i->iomap.flags |= IOMAP_F_STALE;
1374 	return filemap_write_and_wait_range(mapping, i->pos, end);
1375 }
1376 
iomap_zero_iter(struct iomap_iter * iter,bool * did_zero,const struct iomap_write_ops * write_ops)1377 static int iomap_zero_iter(struct iomap_iter *iter, bool *did_zero,
1378 		const struct iomap_write_ops *write_ops)
1379 {
1380 	u64 bytes = iomap_length(iter);
1381 	int status;
1382 
1383 	do {
1384 		struct folio *folio;
1385 		size_t offset;
1386 		bool ret;
1387 
1388 		bytes = min_t(u64, SIZE_MAX, bytes);
1389 		status = iomap_write_begin(iter, write_ops, &folio, &offset,
1390 				&bytes);
1391 		if (status)
1392 			return status;
1393 		if (iter->iomap.flags & IOMAP_F_STALE)
1394 			break;
1395 
1396 		/* warn about zeroing folios beyond eof that won't write back */
1397 		WARN_ON_ONCE(folio_pos(folio) > iter->inode->i_size);
1398 
1399 		folio_zero_range(folio, offset, bytes);
1400 		folio_mark_accessed(folio);
1401 
1402 		ret = iomap_write_end(iter, bytes, bytes, folio);
1403 		__iomap_put_folio(iter, write_ops, bytes, folio);
1404 		if (WARN_ON_ONCE(!ret))
1405 			return -EIO;
1406 
1407 		status = iomap_iter_advance(iter, &bytes);
1408 		if (status)
1409 			break;
1410 	} while (bytes > 0);
1411 
1412 	if (did_zero)
1413 		*did_zero = true;
1414 	return status;
1415 }
1416 
1417 int
iomap_zero_range(struct inode * inode,loff_t pos,loff_t len,bool * did_zero,const struct iomap_ops * ops,const struct iomap_write_ops * write_ops,void * private)1418 iomap_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero,
1419 		const struct iomap_ops *ops,
1420 		const struct iomap_write_ops *write_ops, void *private)
1421 {
1422 	struct iomap_iter iter = {
1423 		.inode		= inode,
1424 		.pos		= pos,
1425 		.len		= len,
1426 		.flags		= IOMAP_ZERO,
1427 		.private	= private,
1428 	};
1429 	struct address_space *mapping = inode->i_mapping;
1430 	unsigned int blocksize = i_blocksize(inode);
1431 	unsigned int off = pos & (blocksize - 1);
1432 	loff_t plen = min_t(loff_t, len, blocksize - off);
1433 	int ret;
1434 	bool range_dirty;
1435 
1436 	/*
1437 	 * Zero range can skip mappings that are zero on disk so long as
1438 	 * pagecache is clean. If pagecache was dirty prior to zero range, the
1439 	 * mapping converts on writeback completion and so must be zeroed.
1440 	 *
1441 	 * The simplest way to deal with this across a range is to flush
1442 	 * pagecache and process the updated mappings. To avoid excessive
1443 	 * flushing on partial eof zeroing, special case it to zero the
1444 	 * unaligned start portion if already dirty in pagecache.
1445 	 */
1446 	if (off &&
1447 	    filemap_range_needs_writeback(mapping, pos, pos + plen - 1)) {
1448 		iter.len = plen;
1449 		while ((ret = iomap_iter(&iter, ops)) > 0)
1450 			iter.status = iomap_zero_iter(&iter, did_zero,
1451 					write_ops);
1452 
1453 		iter.len = len - (iter.pos - pos);
1454 		if (ret || !iter.len)
1455 			return ret;
1456 	}
1457 
1458 	/*
1459 	 * To avoid an unconditional flush, check pagecache state and only flush
1460 	 * if dirty and the fs returns a mapping that might convert on
1461 	 * writeback.
1462 	 */
1463 	range_dirty = filemap_range_needs_writeback(inode->i_mapping,
1464 					iter.pos, iter.pos + iter.len - 1);
1465 	while ((ret = iomap_iter(&iter, ops)) > 0) {
1466 		const struct iomap *srcmap = iomap_iter_srcmap(&iter);
1467 
1468 		if (srcmap->type == IOMAP_HOLE ||
1469 		    srcmap->type == IOMAP_UNWRITTEN) {
1470 			s64 status;
1471 
1472 			if (range_dirty) {
1473 				range_dirty = false;
1474 				status = iomap_zero_iter_flush_and_stale(&iter);
1475 			} else {
1476 				status = iomap_iter_advance_full(&iter);
1477 			}
1478 			iter.status = status;
1479 			continue;
1480 		}
1481 
1482 		iter.status = iomap_zero_iter(&iter, did_zero, write_ops);
1483 	}
1484 	return ret;
1485 }
1486 EXPORT_SYMBOL_GPL(iomap_zero_range);
1487 
1488 int
iomap_truncate_page(struct inode * inode,loff_t pos,bool * did_zero,const struct iomap_ops * ops,const struct iomap_write_ops * write_ops,void * private)1489 iomap_truncate_page(struct inode *inode, loff_t pos, bool *did_zero,
1490 		const struct iomap_ops *ops,
1491 		const struct iomap_write_ops *write_ops, void *private)
1492 {
1493 	unsigned int blocksize = i_blocksize(inode);
1494 	unsigned int off = pos & (blocksize - 1);
1495 
1496 	/* Block boundary? Nothing to do */
1497 	if (!off)
1498 		return 0;
1499 	return iomap_zero_range(inode, pos, blocksize - off, did_zero, ops,
1500 			write_ops, private);
1501 }
1502 EXPORT_SYMBOL_GPL(iomap_truncate_page);
1503 
iomap_folio_mkwrite_iter(struct iomap_iter * iter,struct folio * folio)1504 static int iomap_folio_mkwrite_iter(struct iomap_iter *iter,
1505 		struct folio *folio)
1506 {
1507 	loff_t length = iomap_length(iter);
1508 	int ret;
1509 
1510 	if (iter->iomap.flags & IOMAP_F_BUFFER_HEAD) {
1511 		ret = __block_write_begin_int(folio, iter->pos, length, NULL,
1512 					      &iter->iomap);
1513 		if (ret)
1514 			return ret;
1515 		block_commit_write(folio, 0, length);
1516 	} else {
1517 		WARN_ON_ONCE(!folio_test_uptodate(folio));
1518 		folio_mark_dirty(folio);
1519 	}
1520 
1521 	return iomap_iter_advance(iter, &length);
1522 }
1523 
iomap_page_mkwrite(struct vm_fault * vmf,const struct iomap_ops * ops,void * private)1524 vm_fault_t iomap_page_mkwrite(struct vm_fault *vmf, const struct iomap_ops *ops,
1525 		void *private)
1526 {
1527 	struct iomap_iter iter = {
1528 		.inode		= file_inode(vmf->vma->vm_file),
1529 		.flags		= IOMAP_WRITE | IOMAP_FAULT,
1530 		.private	= private,
1531 	};
1532 	struct folio *folio = page_folio(vmf->page);
1533 	ssize_t ret;
1534 
1535 	folio_lock(folio);
1536 	ret = folio_mkwrite_check_truncate(folio, iter.inode);
1537 	if (ret < 0)
1538 		goto out_unlock;
1539 	iter.pos = folio_pos(folio);
1540 	iter.len = ret;
1541 	while ((ret = iomap_iter(&iter, ops)) > 0)
1542 		iter.status = iomap_folio_mkwrite_iter(&iter, folio);
1543 
1544 	if (ret < 0)
1545 		goto out_unlock;
1546 	folio_wait_stable(folio);
1547 	return VM_FAULT_LOCKED;
1548 out_unlock:
1549 	folio_unlock(folio);
1550 	return vmf_fs_error(ret);
1551 }
1552 EXPORT_SYMBOL_GPL(iomap_page_mkwrite);
1553 
iomap_start_folio_write(struct inode * inode,struct folio * folio,size_t len)1554 void iomap_start_folio_write(struct inode *inode, struct folio *folio,
1555 		size_t len)
1556 {
1557 	struct iomap_folio_state *ifs = folio->private;
1558 
1559 	WARN_ON_ONCE(i_blocks_per_folio(inode, folio) > 1 && !ifs);
1560 	if (ifs)
1561 		atomic_add(len, &ifs->write_bytes_pending);
1562 }
1563 EXPORT_SYMBOL_GPL(iomap_start_folio_write);
1564 
iomap_finish_folio_write(struct inode * inode,struct folio * folio,size_t len)1565 void iomap_finish_folio_write(struct inode *inode, struct folio *folio,
1566 		size_t len)
1567 {
1568 	struct iomap_folio_state *ifs = folio->private;
1569 
1570 	WARN_ON_ONCE(i_blocks_per_folio(inode, folio) > 1 && !ifs);
1571 	WARN_ON_ONCE(ifs && atomic_read(&ifs->write_bytes_pending) <= 0);
1572 
1573 	if (!ifs || atomic_sub_and_test(len, &ifs->write_bytes_pending))
1574 		folio_end_writeback(folio);
1575 }
1576 EXPORT_SYMBOL_GPL(iomap_finish_folio_write);
1577 
iomap_writeback_range(struct iomap_writepage_ctx * wpc,struct folio * folio,u64 pos,u32 rlen,u64 end_pos,bool * wb_pending)1578 static int iomap_writeback_range(struct iomap_writepage_ctx *wpc,
1579 		struct folio *folio, u64 pos, u32 rlen, u64 end_pos,
1580 		bool *wb_pending)
1581 {
1582 	do {
1583 		ssize_t ret;
1584 
1585 		ret = wpc->ops->writeback_range(wpc, folio, pos, rlen, end_pos);
1586 		if (WARN_ON_ONCE(ret == 0 || ret > rlen))
1587 			return -EIO;
1588 		if (ret < 0)
1589 			return ret;
1590 		rlen -= ret;
1591 		pos += ret;
1592 
1593 		/*
1594 		 * Holes are not be written back by ->writeback_range, so track
1595 		 * if we did handle anything that is not a hole here.
1596 		 */
1597 		if (wpc->iomap.type != IOMAP_HOLE)
1598 			*wb_pending = true;
1599 	} while (rlen);
1600 
1601 	return 0;
1602 }
1603 
1604 /*
1605  * Check interaction of the folio with the file end.
1606  *
1607  * If the folio is entirely beyond i_size, return false.  If it straddles
1608  * i_size, adjust end_pos and zero all data beyond i_size.
1609  */
iomap_writeback_handle_eof(struct folio * folio,struct inode * inode,u64 * end_pos)1610 static bool iomap_writeback_handle_eof(struct folio *folio, struct inode *inode,
1611 		u64 *end_pos)
1612 {
1613 	u64 isize = i_size_read(inode);
1614 
1615 	if (*end_pos > isize) {
1616 		size_t poff = offset_in_folio(folio, isize);
1617 		pgoff_t end_index = isize >> PAGE_SHIFT;
1618 
1619 		/*
1620 		 * If the folio is entirely ouside of i_size, skip it.
1621 		 *
1622 		 * This can happen due to a truncate operation that is in
1623 		 * progress and in that case truncate will finish it off once
1624 		 * we've dropped the folio lock.
1625 		 *
1626 		 * Note that the pgoff_t used for end_index is an unsigned long.
1627 		 * If the given offset is greater than 16TB on a 32-bit system,
1628 		 * then if we checked if the folio is fully outside i_size with
1629 		 * "if (folio->index >= end_index + 1)", "end_index + 1" would
1630 		 * overflow and evaluate to 0.  Hence this folio would be
1631 		 * redirtied and written out repeatedly, which would result in
1632 		 * an infinite loop; the user program performing this operation
1633 		 * would hang.  Instead, we can detect this situation by
1634 		 * checking if the folio is totally beyond i_size or if its
1635 		 * offset is just equal to the EOF.
1636 		 */
1637 		if (folio->index > end_index ||
1638 		    (folio->index == end_index && poff == 0))
1639 			return false;
1640 
1641 		/*
1642 		 * The folio straddles i_size.
1643 		 *
1644 		 * It must be zeroed out on each and every writepage invocation
1645 		 * because it may be mmapped:
1646 		 *
1647 		 *    A file is mapped in multiples of the page size.  For a
1648 		 *    file that is not a multiple of the page size, the
1649 		 *    remaining memory is zeroed when mapped, and writes to that
1650 		 *    region are not written out to the file.
1651 		 *
1652 		 * Also adjust the end_pos to the end of file and skip writeback
1653 		 * for all blocks entirely beyond i_size.
1654 		 */
1655 		folio_zero_segment(folio, poff, folio_size(folio));
1656 		*end_pos = isize;
1657 	}
1658 
1659 	return true;
1660 }
1661 
iomap_writeback_folio(struct iomap_writepage_ctx * wpc,struct folio * folio)1662 int iomap_writeback_folio(struct iomap_writepage_ctx *wpc, struct folio *folio)
1663 {
1664 	struct iomap_folio_state *ifs = folio->private;
1665 	struct inode *inode = wpc->inode;
1666 	u64 pos = folio_pos(folio);
1667 	u64 end_pos = pos + folio_size(folio);
1668 	u64 end_aligned = 0;
1669 	bool wb_pending = false;
1670 	int error = 0;
1671 	u32 rlen;
1672 
1673 	WARN_ON_ONCE(!folio_test_locked(folio));
1674 	WARN_ON_ONCE(folio_test_dirty(folio));
1675 	WARN_ON_ONCE(folio_test_writeback(folio));
1676 
1677 	trace_iomap_writeback_folio(inode, pos, folio_size(folio));
1678 
1679 	if (!iomap_writeback_handle_eof(folio, inode, &end_pos))
1680 		return 0;
1681 	WARN_ON_ONCE(end_pos <= pos);
1682 
1683 	if (i_blocks_per_folio(inode, folio) > 1) {
1684 		if (!ifs) {
1685 			ifs = ifs_alloc(inode, folio, 0);
1686 			iomap_set_range_dirty(folio, 0, end_pos - pos);
1687 		}
1688 
1689 		/*
1690 		 * Keep the I/O completion handler from clearing the writeback
1691 		 * bit until we have submitted all blocks by adding a bias to
1692 		 * ifs->write_bytes_pending, which is dropped after submitting
1693 		 * all blocks.
1694 		 */
1695 		WARN_ON_ONCE(atomic_read(&ifs->write_bytes_pending) != 0);
1696 		iomap_start_folio_write(inode, folio, 1);
1697 	}
1698 
1699 	/*
1700 	 * Set the writeback bit ASAP, as the I/O completion for the single
1701 	 * block per folio case happen hit as soon as we're submitting the bio.
1702 	 */
1703 	folio_start_writeback(folio);
1704 
1705 	/*
1706 	 * Walk through the folio to find dirty areas to write back.
1707 	 */
1708 	end_aligned = round_up(end_pos, i_blocksize(inode));
1709 	while ((rlen = iomap_find_dirty_range(folio, &pos, end_aligned))) {
1710 		error = iomap_writeback_range(wpc, folio, pos, rlen, end_pos,
1711 				&wb_pending);
1712 		if (error)
1713 			break;
1714 		pos += rlen;
1715 	}
1716 
1717 	if (wb_pending)
1718 		wpc->nr_folios++;
1719 
1720 	/*
1721 	 * We can have dirty bits set past end of file in page_mkwrite path
1722 	 * while mapping the last partial folio. Hence it's better to clear
1723 	 * all the dirty bits in the folio here.
1724 	 */
1725 	iomap_clear_range_dirty(folio, 0, folio_size(folio));
1726 
1727 	/*
1728 	 * Usually the writeback bit is cleared by the I/O completion handler.
1729 	 * But we may end up either not actually writing any blocks, or (when
1730 	 * there are multiple blocks in a folio) all I/O might have finished
1731 	 * already at this point.  In that case we need to clear the writeback
1732 	 * bit ourselves right after unlocking the page.
1733 	 */
1734 	if (ifs) {
1735 		if (atomic_dec_and_test(&ifs->write_bytes_pending))
1736 			folio_end_writeback(folio);
1737 	} else {
1738 		if (!wb_pending)
1739 			folio_end_writeback(folio);
1740 	}
1741 	mapping_set_error(inode->i_mapping, error);
1742 	return error;
1743 }
1744 EXPORT_SYMBOL_GPL(iomap_writeback_folio);
1745 
1746 int
iomap_writepages(struct iomap_writepage_ctx * wpc)1747 iomap_writepages(struct iomap_writepage_ctx *wpc)
1748 {
1749 	struct address_space *mapping = wpc->inode->i_mapping;
1750 	struct folio *folio = NULL;
1751 	int error;
1752 
1753 	/*
1754 	 * Writeback from reclaim context should never happen except in the case
1755 	 * of a VM regression so warn about it and refuse to write the data.
1756 	 */
1757 	if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC | PF_KSWAPD)) ==
1758 			PF_MEMALLOC))
1759 		return -EIO;
1760 
1761 	while ((folio = writeback_iter(mapping, wpc->wbc, folio, &error))) {
1762 		error = iomap_writeback_folio(wpc, folio);
1763 		folio_unlock(folio);
1764 	}
1765 
1766 	/*
1767 	 * If @error is non-zero, it means that we have a situation where some
1768 	 * part of the submission process has failed after we've marked pages
1769 	 * for writeback.
1770 	 *
1771 	 * We cannot cancel the writeback directly in that case, so always call
1772 	 * ->writeback_submit to run the I/O completion handler to clear the
1773 	 * writeback bit and let the file system proess the errors.
1774 	 */
1775 	if (wpc->wb_ctx)
1776 		return wpc->ops->writeback_submit(wpc, error);
1777 	return error;
1778 }
1779 EXPORT_SYMBOL_GPL(iomap_writepages);
1780