1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * fs/userfaultfd.c
4 *
5 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org>
6 * Copyright (C) 2008-2009 Red Hat, Inc.
7 * Copyright (C) 2015 Red Hat, Inc.
8 *
9 * Some part derived from fs/eventfd.c (anon inode setup) and
10 * mm/ksm.c (mm hashing).
11 */
12
13 #include <linux/list.h>
14 #include <linux/hashtable.h>
15 #include <linux/sched/signal.h>
16 #include <linux/sched/mm.h>
17 #include <linux/mm.h>
18 #include <linux/mm_inline.h>
19 #include <linux/mmu_notifier.h>
20 #include <linux/poll.h>
21 #include <linux/slab.h>
22 #include <linux/seq_file.h>
23 #include <linux/file.h>
24 #include <linux/bug.h>
25 #include <linux/anon_inodes.h>
26 #include <linux/syscalls.h>
27 #include <linux/userfaultfd_k.h>
28 #include <linux/mempolicy.h>
29 #include <linux/ioctl.h>
30 #include <linux/security.h>
31 #include <linux/hugetlb.h>
32 #include <linux/swapops.h>
33 #include <linux/miscdevice.h>
34 #include <linux/uio.h>
35
36 static int sysctl_unprivileged_userfaultfd __read_mostly;
37
38 #ifdef CONFIG_SYSCTL
39 static const struct ctl_table vm_userfaultfd_table[] = {
40 {
41 .procname = "unprivileged_userfaultfd",
42 .data = &sysctl_unprivileged_userfaultfd,
43 .maxlen = sizeof(sysctl_unprivileged_userfaultfd),
44 .mode = 0644,
45 .proc_handler = proc_dointvec_minmax,
46 .extra1 = SYSCTL_ZERO,
47 .extra2 = SYSCTL_ONE,
48 },
49 };
50 #endif
51
52 static struct kmem_cache *userfaultfd_ctx_cachep __ro_after_init;
53
54 struct userfaultfd_fork_ctx {
55 struct userfaultfd_ctx *orig;
56 struct userfaultfd_ctx *new;
57 struct list_head list;
58 };
59
60 struct userfaultfd_unmap_ctx {
61 struct userfaultfd_ctx *ctx;
62 unsigned long start;
63 unsigned long end;
64 struct list_head list;
65 };
66
67 struct userfaultfd_wait_queue {
68 struct uffd_msg msg;
69 wait_queue_entry_t wq;
70 struct userfaultfd_ctx *ctx;
71 bool waken;
72 };
73
74 struct userfaultfd_wake_range {
75 unsigned long start;
76 unsigned long len;
77 };
78
79 /* internal indication that UFFD_API ioctl was successfully executed */
80 #define UFFD_FEATURE_INITIALIZED (1u << 31)
81
userfaultfd_is_initialized(struct userfaultfd_ctx * ctx)82 static bool userfaultfd_is_initialized(struct userfaultfd_ctx *ctx)
83 {
84 return ctx->features & UFFD_FEATURE_INITIALIZED;
85 }
86
userfaultfd_wp_async_ctx(struct userfaultfd_ctx * ctx)87 static bool userfaultfd_wp_async_ctx(struct userfaultfd_ctx *ctx)
88 {
89 return ctx && (ctx->features & UFFD_FEATURE_WP_ASYNC);
90 }
91
92 /*
93 * Whether WP_UNPOPULATED is enabled on the uffd context. It is only
94 * meaningful when userfaultfd_wp()==true on the vma and when it's
95 * anonymous.
96 */
userfaultfd_wp_unpopulated(struct vm_area_struct * vma)97 bool userfaultfd_wp_unpopulated(struct vm_area_struct *vma)
98 {
99 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
100
101 if (!ctx)
102 return false;
103
104 return ctx->features & UFFD_FEATURE_WP_UNPOPULATED;
105 }
106
userfaultfd_wake_function(wait_queue_entry_t * wq,unsigned mode,int wake_flags,void * key)107 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode,
108 int wake_flags, void *key)
109 {
110 struct userfaultfd_wake_range *range = key;
111 int ret;
112 struct userfaultfd_wait_queue *uwq;
113 unsigned long start, len;
114
115 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
116 ret = 0;
117 /* len == 0 means wake all */
118 start = range->start;
119 len = range->len;
120 if (len && (start > uwq->msg.arg.pagefault.address ||
121 start + len <= uwq->msg.arg.pagefault.address))
122 goto out;
123 WRITE_ONCE(uwq->waken, true);
124 /*
125 * The Program-Order guarantees provided by the scheduler
126 * ensure uwq->waken is visible before the task is woken.
127 */
128 ret = wake_up_state(wq->private, mode);
129 if (ret) {
130 /*
131 * Wake only once, autoremove behavior.
132 *
133 * After the effect of list_del_init is visible to the other
134 * CPUs, the waitqueue may disappear from under us, see the
135 * !list_empty_careful() in handle_userfault().
136 *
137 * try_to_wake_up() has an implicit smp_mb(), and the
138 * wq->private is read before calling the extern function
139 * "wake_up_state" (which in turns calls try_to_wake_up).
140 */
141 list_del_init(&wq->entry);
142 }
143 out:
144 return ret;
145 }
146
147 /**
148 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
149 * context.
150 * @ctx: [in] Pointer to the userfaultfd context.
151 */
userfaultfd_ctx_get(struct userfaultfd_ctx * ctx)152 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
153 {
154 refcount_inc(&ctx->refcount);
155 }
156
157 /**
158 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
159 * context.
160 * @ctx: [in] Pointer to userfaultfd context.
161 *
162 * The userfaultfd context reference must have been previously acquired either
163 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
164 */
userfaultfd_ctx_put(struct userfaultfd_ctx * ctx)165 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
166 {
167 if (refcount_dec_and_test(&ctx->refcount)) {
168 VM_WARN_ON_ONCE(spin_is_locked(&ctx->fault_pending_wqh.lock));
169 VM_WARN_ON_ONCE(waitqueue_active(&ctx->fault_pending_wqh));
170 VM_WARN_ON_ONCE(spin_is_locked(&ctx->fault_wqh.lock));
171 VM_WARN_ON_ONCE(waitqueue_active(&ctx->fault_wqh));
172 VM_WARN_ON_ONCE(spin_is_locked(&ctx->event_wqh.lock));
173 VM_WARN_ON_ONCE(waitqueue_active(&ctx->event_wqh));
174 VM_WARN_ON_ONCE(spin_is_locked(&ctx->fd_wqh.lock));
175 VM_WARN_ON_ONCE(waitqueue_active(&ctx->fd_wqh));
176 mmdrop(ctx->mm);
177 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
178 }
179 }
180
msg_init(struct uffd_msg * msg)181 static inline void msg_init(struct uffd_msg *msg)
182 {
183 BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
184 /*
185 * Must use memset to zero out the paddings or kernel data is
186 * leaked to userland.
187 */
188 memset(msg, 0, sizeof(struct uffd_msg));
189 }
190
userfault_msg(unsigned long address,unsigned long real_address,unsigned int flags,unsigned long reason,unsigned int features)191 static inline struct uffd_msg userfault_msg(unsigned long address,
192 unsigned long real_address,
193 unsigned int flags,
194 unsigned long reason,
195 unsigned int features)
196 {
197 struct uffd_msg msg;
198
199 msg_init(&msg);
200 msg.event = UFFD_EVENT_PAGEFAULT;
201
202 msg.arg.pagefault.address = (features & UFFD_FEATURE_EXACT_ADDRESS) ?
203 real_address : address;
204
205 /*
206 * These flags indicate why the userfault occurred:
207 * - UFFD_PAGEFAULT_FLAG_WP indicates a write protect fault.
208 * - UFFD_PAGEFAULT_FLAG_MINOR indicates a minor fault.
209 * - Neither of these flags being set indicates a MISSING fault.
210 *
211 * Separately, UFFD_PAGEFAULT_FLAG_WRITE indicates it was a write
212 * fault. Otherwise, it was a read fault.
213 */
214 if (flags & FAULT_FLAG_WRITE)
215 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
216 if (reason & VM_UFFD_WP)
217 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
218 if (reason & VM_UFFD_MINOR)
219 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_MINOR;
220 if (features & UFFD_FEATURE_THREAD_ID)
221 msg.arg.pagefault.feat.ptid = task_pid_vnr(current);
222 return msg;
223 }
224
225 #ifdef CONFIG_HUGETLB_PAGE
226 /*
227 * Same functionality as userfaultfd_must_wait below with modifications for
228 * hugepmd ranges.
229 */
userfaultfd_huge_must_wait(struct userfaultfd_ctx * ctx,struct vm_fault * vmf,unsigned long reason)230 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
231 struct vm_fault *vmf,
232 unsigned long reason)
233 {
234 struct vm_area_struct *vma = vmf->vma;
235 pte_t *ptep, pte;
236 bool ret = true;
237
238 assert_fault_locked(vmf);
239
240 ptep = hugetlb_walk(vma, vmf->address, vma_mmu_pagesize(vma));
241 if (!ptep)
242 goto out;
243
244 ret = false;
245 pte = huge_ptep_get(vma->vm_mm, vmf->address, ptep);
246
247 /*
248 * Lockless access: we're in a wait_event so it's ok if it
249 * changes under us. PTE markers should be handled the same as none
250 * ptes here.
251 */
252 if (huge_pte_none_mostly(pte))
253 ret = true;
254 if (!huge_pte_write(pte) && (reason & VM_UFFD_WP))
255 ret = true;
256 out:
257 return ret;
258 }
259 #else
userfaultfd_huge_must_wait(struct userfaultfd_ctx * ctx,struct vm_fault * vmf,unsigned long reason)260 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
261 struct vm_fault *vmf,
262 unsigned long reason)
263 {
264 return false; /* should never get here */
265 }
266 #endif /* CONFIG_HUGETLB_PAGE */
267
268 /*
269 * Verify the pagetables are still not ok after having reigstered into
270 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
271 * userfault that has already been resolved, if userfaultfd_read_iter and
272 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
273 * threads.
274 */
userfaultfd_must_wait(struct userfaultfd_ctx * ctx,struct vm_fault * vmf,unsigned long reason)275 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
276 struct vm_fault *vmf,
277 unsigned long reason)
278 {
279 struct mm_struct *mm = ctx->mm;
280 unsigned long address = vmf->address;
281 pgd_t *pgd;
282 p4d_t *p4d;
283 pud_t *pud;
284 pmd_t *pmd, _pmd;
285 pte_t *pte;
286 pte_t ptent;
287 bool ret = true;
288
289 assert_fault_locked(vmf);
290
291 pgd = pgd_offset(mm, address);
292 if (!pgd_present(*pgd))
293 goto out;
294 p4d = p4d_offset(pgd, address);
295 if (!p4d_present(*p4d))
296 goto out;
297 pud = pud_offset(p4d, address);
298 if (!pud_present(*pud))
299 goto out;
300 pmd = pmd_offset(pud, address);
301 again:
302 _pmd = pmdp_get_lockless(pmd);
303 if (pmd_none(_pmd))
304 goto out;
305
306 ret = false;
307 if (!pmd_present(_pmd))
308 goto out;
309
310 if (pmd_trans_huge(_pmd)) {
311 if (!pmd_write(_pmd) && (reason & VM_UFFD_WP))
312 ret = true;
313 goto out;
314 }
315
316 pte = pte_offset_map(pmd, address);
317 if (!pte) {
318 ret = true;
319 goto again;
320 }
321 /*
322 * Lockless access: we're in a wait_event so it's ok if it
323 * changes under us. PTE markers should be handled the same as none
324 * ptes here.
325 */
326 ptent = ptep_get(pte);
327 if (pte_none_mostly(ptent))
328 ret = true;
329 if (!pte_write(ptent) && (reason & VM_UFFD_WP))
330 ret = true;
331 pte_unmap(pte);
332
333 out:
334 return ret;
335 }
336
userfaultfd_get_blocking_state(unsigned int flags)337 static inline unsigned int userfaultfd_get_blocking_state(unsigned int flags)
338 {
339 if (flags & FAULT_FLAG_INTERRUPTIBLE)
340 return TASK_INTERRUPTIBLE;
341
342 if (flags & FAULT_FLAG_KILLABLE)
343 return TASK_KILLABLE;
344
345 return TASK_UNINTERRUPTIBLE;
346 }
347
348 /*
349 * The locking rules involved in returning VM_FAULT_RETRY depending on
350 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
351 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
352 * recommendation in __lock_page_or_retry is not an understatement.
353 *
354 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_lock must be released
355 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
356 * not set.
357 *
358 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
359 * set, VM_FAULT_RETRY can still be returned if and only if there are
360 * fatal_signal_pending()s, and the mmap_lock must be released before
361 * returning it.
362 */
handle_userfault(struct vm_fault * vmf,unsigned long reason)363 vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason)
364 {
365 struct vm_area_struct *vma = vmf->vma;
366 struct mm_struct *mm = vma->vm_mm;
367 struct userfaultfd_ctx *ctx;
368 struct userfaultfd_wait_queue uwq;
369 vm_fault_t ret = VM_FAULT_SIGBUS;
370 bool must_wait;
371 unsigned int blocking_state;
372
373 /*
374 * We don't do userfault handling for the final child pid update
375 * and when coredumping (faults triggered by get_dump_page()).
376 */
377 if (current->flags & (PF_EXITING|PF_DUMPCORE))
378 goto out;
379
380 assert_fault_locked(vmf);
381
382 ctx = vma->vm_userfaultfd_ctx.ctx;
383 if (!ctx)
384 goto out;
385
386 VM_WARN_ON_ONCE(ctx->mm != mm);
387
388 /* Any unrecognized flag is a bug. */
389 VM_WARN_ON_ONCE(reason & ~__VM_UFFD_FLAGS);
390 /* 0 or > 1 flags set is a bug; we expect exactly 1. */
391 VM_WARN_ON_ONCE(!reason || (reason & (reason - 1)));
392
393 if (ctx->features & UFFD_FEATURE_SIGBUS)
394 goto out;
395 if (!(vmf->flags & FAULT_FLAG_USER) && (ctx->flags & UFFD_USER_MODE_ONLY))
396 goto out;
397
398 /*
399 * Check that we can return VM_FAULT_RETRY.
400 *
401 * NOTE: it should become possible to return VM_FAULT_RETRY
402 * even if FAULT_FLAG_TRIED is set without leading to gup()
403 * -EBUSY failures, if the userfaultfd is to be extended for
404 * VM_UFFD_WP tracking and we intend to arm the userfault
405 * without first stopping userland access to the memory. For
406 * VM_UFFD_MISSING userfaults this is enough for now.
407 */
408 if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
409 /*
410 * Validate the invariant that nowait must allow retry
411 * to be sure not to return SIGBUS erroneously on
412 * nowait invocations.
413 */
414 VM_WARN_ON_ONCE(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
415 #ifdef CONFIG_DEBUG_VM
416 if (printk_ratelimit()) {
417 pr_warn("FAULT_FLAG_ALLOW_RETRY missing %x\n",
418 vmf->flags);
419 dump_stack();
420 }
421 #endif
422 goto out;
423 }
424
425 /*
426 * Handle nowait, not much to do other than tell it to retry
427 * and wait.
428 */
429 ret = VM_FAULT_RETRY;
430 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
431 goto out;
432
433 if (unlikely(READ_ONCE(ctx->released))) {
434 /*
435 * If a concurrent release is detected, do not return
436 * VM_FAULT_SIGBUS or VM_FAULT_NOPAGE, but instead always
437 * return VM_FAULT_RETRY with lock released proactively.
438 *
439 * If we were to return VM_FAULT_SIGBUS here, the non
440 * cooperative manager would be instead forced to
441 * always call UFFDIO_UNREGISTER before it can safely
442 * close the uffd, to avoid involuntary SIGBUS triggered.
443 *
444 * If we were to return VM_FAULT_NOPAGE, it would work for
445 * the fault path, in which the lock will be released
446 * later. However for GUP, faultin_page() does nothing
447 * special on NOPAGE, so GUP would spin retrying without
448 * releasing the mmap read lock, causing possible livelock.
449 *
450 * Here only VM_FAULT_RETRY would make sure the mmap lock
451 * be released immediately, so that the thread concurrently
452 * releasing the userfault would always make progress.
453 */
454 release_fault_lock(vmf);
455 goto out;
456 }
457
458 /* take the reference before dropping the mmap_lock */
459 userfaultfd_ctx_get(ctx);
460
461 init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
462 uwq.wq.private = current;
463 uwq.msg = userfault_msg(vmf->address, vmf->real_address, vmf->flags,
464 reason, ctx->features);
465 uwq.ctx = ctx;
466 uwq.waken = false;
467
468 blocking_state = userfaultfd_get_blocking_state(vmf->flags);
469
470 /*
471 * Take the vma lock now, in order to safely call
472 * userfaultfd_huge_must_wait() later. Since acquiring the
473 * (sleepable) vma lock can modify the current task state, that
474 * must be before explicitly calling set_current_state().
475 */
476 if (is_vm_hugetlb_page(vma))
477 hugetlb_vma_lock_read(vma);
478
479 spin_lock_irq(&ctx->fault_pending_wqh.lock);
480 /*
481 * After the __add_wait_queue the uwq is visible to userland
482 * through poll/read().
483 */
484 __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
485 /*
486 * The smp_mb() after __set_current_state prevents the reads
487 * following the spin_unlock to happen before the list_add in
488 * __add_wait_queue.
489 */
490 set_current_state(blocking_state);
491 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
492
493 if (!is_vm_hugetlb_page(vma))
494 must_wait = userfaultfd_must_wait(ctx, vmf, reason);
495 else
496 must_wait = userfaultfd_huge_must_wait(ctx, vmf, reason);
497 if (is_vm_hugetlb_page(vma))
498 hugetlb_vma_unlock_read(vma);
499 release_fault_lock(vmf);
500
501 if (likely(must_wait && !READ_ONCE(ctx->released))) {
502 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
503 schedule();
504 }
505
506 __set_current_state(TASK_RUNNING);
507
508 /*
509 * Here we race with the list_del; list_add in
510 * userfaultfd_ctx_read(), however because we don't ever run
511 * list_del_init() to refile across the two lists, the prev
512 * and next pointers will never point to self. list_add also
513 * would never let any of the two pointers to point to
514 * self. So list_empty_careful won't risk to see both pointers
515 * pointing to self at any time during the list refile. The
516 * only case where list_del_init() is called is the full
517 * removal in the wake function and there we don't re-list_add
518 * and it's fine not to block on the spinlock. The uwq on this
519 * kernel stack can be released after the list_del_init.
520 */
521 if (!list_empty_careful(&uwq.wq.entry)) {
522 spin_lock_irq(&ctx->fault_pending_wqh.lock);
523 /*
524 * No need of list_del_init(), the uwq on the stack
525 * will be freed shortly anyway.
526 */
527 list_del(&uwq.wq.entry);
528 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
529 }
530
531 /*
532 * ctx may go away after this if the userfault pseudo fd is
533 * already released.
534 */
535 userfaultfd_ctx_put(ctx);
536
537 out:
538 return ret;
539 }
540
userfaultfd_event_wait_completion(struct userfaultfd_ctx * ctx,struct userfaultfd_wait_queue * ewq)541 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
542 struct userfaultfd_wait_queue *ewq)
543 {
544 struct userfaultfd_ctx *release_new_ctx;
545
546 if (WARN_ON_ONCE(current->flags & PF_EXITING))
547 goto out;
548
549 ewq->ctx = ctx;
550 init_waitqueue_entry(&ewq->wq, current);
551 release_new_ctx = NULL;
552
553 spin_lock_irq(&ctx->event_wqh.lock);
554 /*
555 * After the __add_wait_queue the uwq is visible to userland
556 * through poll/read().
557 */
558 __add_wait_queue(&ctx->event_wqh, &ewq->wq);
559 for (;;) {
560 set_current_state(TASK_KILLABLE);
561 if (ewq->msg.event == 0)
562 break;
563 if (READ_ONCE(ctx->released) ||
564 fatal_signal_pending(current)) {
565 /*
566 * &ewq->wq may be queued in fork_event, but
567 * __remove_wait_queue ignores the head
568 * parameter. It would be a problem if it
569 * didn't.
570 */
571 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
572 if (ewq->msg.event == UFFD_EVENT_FORK) {
573 struct userfaultfd_ctx *new;
574
575 new = (struct userfaultfd_ctx *)
576 (unsigned long)
577 ewq->msg.arg.reserved.reserved1;
578 release_new_ctx = new;
579 }
580 break;
581 }
582
583 spin_unlock_irq(&ctx->event_wqh.lock);
584
585 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
586 schedule();
587
588 spin_lock_irq(&ctx->event_wqh.lock);
589 }
590 __set_current_state(TASK_RUNNING);
591 spin_unlock_irq(&ctx->event_wqh.lock);
592
593 if (release_new_ctx) {
594 userfaultfd_release_new(release_new_ctx);
595 userfaultfd_ctx_put(release_new_ctx);
596 }
597
598 /*
599 * ctx may go away after this if the userfault pseudo fd is
600 * already released.
601 */
602 out:
603 atomic_dec(&ctx->mmap_changing);
604 VM_WARN_ON_ONCE(atomic_read(&ctx->mmap_changing) < 0);
605 userfaultfd_ctx_put(ctx);
606 }
607
userfaultfd_event_complete(struct userfaultfd_ctx * ctx,struct userfaultfd_wait_queue * ewq)608 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
609 struct userfaultfd_wait_queue *ewq)
610 {
611 ewq->msg.event = 0;
612 wake_up_locked(&ctx->event_wqh);
613 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
614 }
615
dup_userfaultfd(struct vm_area_struct * vma,struct list_head * fcs)616 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
617 {
618 struct userfaultfd_ctx *ctx = NULL, *octx;
619 struct userfaultfd_fork_ctx *fctx;
620
621 octx = vma->vm_userfaultfd_ctx.ctx;
622 if (!octx)
623 return 0;
624
625 if (!(octx->features & UFFD_FEATURE_EVENT_FORK)) {
626 userfaultfd_reset_ctx(vma);
627 return 0;
628 }
629
630 list_for_each_entry(fctx, fcs, list)
631 if (fctx->orig == octx) {
632 ctx = fctx->new;
633 break;
634 }
635
636 if (!ctx) {
637 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
638 if (!fctx)
639 return -ENOMEM;
640
641 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
642 if (!ctx) {
643 kfree(fctx);
644 return -ENOMEM;
645 }
646
647 refcount_set(&ctx->refcount, 1);
648 ctx->flags = octx->flags;
649 ctx->features = octx->features;
650 ctx->released = false;
651 init_rwsem(&ctx->map_changing_lock);
652 atomic_set(&ctx->mmap_changing, 0);
653 ctx->mm = vma->vm_mm;
654 mmgrab(ctx->mm);
655
656 userfaultfd_ctx_get(octx);
657 down_write(&octx->map_changing_lock);
658 atomic_inc(&octx->mmap_changing);
659 up_write(&octx->map_changing_lock);
660 fctx->orig = octx;
661 fctx->new = ctx;
662 list_add_tail(&fctx->list, fcs);
663 }
664
665 vma->vm_userfaultfd_ctx.ctx = ctx;
666 return 0;
667 }
668
dup_fctx(struct userfaultfd_fork_ctx * fctx)669 static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
670 {
671 struct userfaultfd_ctx *ctx = fctx->orig;
672 struct userfaultfd_wait_queue ewq;
673
674 msg_init(&ewq.msg);
675
676 ewq.msg.event = UFFD_EVENT_FORK;
677 ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
678
679 userfaultfd_event_wait_completion(ctx, &ewq);
680 }
681
dup_userfaultfd_complete(struct list_head * fcs)682 void dup_userfaultfd_complete(struct list_head *fcs)
683 {
684 struct userfaultfd_fork_ctx *fctx, *n;
685
686 list_for_each_entry_safe(fctx, n, fcs, list) {
687 dup_fctx(fctx);
688 list_del(&fctx->list);
689 kfree(fctx);
690 }
691 }
692
dup_userfaultfd_fail(struct list_head * fcs)693 void dup_userfaultfd_fail(struct list_head *fcs)
694 {
695 struct userfaultfd_fork_ctx *fctx, *n;
696
697 /*
698 * An error has occurred on fork, we will tear memory down, but have
699 * allocated memory for fctx's and raised reference counts for both the
700 * original and child contexts (and on the mm for each as a result).
701 *
702 * These would ordinarily be taken care of by a user handling the event,
703 * but we are no longer doing so, so manually clean up here.
704 *
705 * mm tear down will take care of cleaning up VMA contexts.
706 */
707 list_for_each_entry_safe(fctx, n, fcs, list) {
708 struct userfaultfd_ctx *octx = fctx->orig;
709 struct userfaultfd_ctx *ctx = fctx->new;
710
711 atomic_dec(&octx->mmap_changing);
712 VM_WARN_ON_ONCE(atomic_read(&octx->mmap_changing) < 0);
713 userfaultfd_ctx_put(octx);
714 userfaultfd_ctx_put(ctx);
715
716 list_del(&fctx->list);
717 kfree(fctx);
718 }
719 }
720
mremap_userfaultfd_prep(struct vm_area_struct * vma,struct vm_userfaultfd_ctx * vm_ctx)721 void mremap_userfaultfd_prep(struct vm_area_struct *vma,
722 struct vm_userfaultfd_ctx *vm_ctx)
723 {
724 struct userfaultfd_ctx *ctx;
725
726 ctx = vma->vm_userfaultfd_ctx.ctx;
727
728 if (!ctx)
729 return;
730
731 if (ctx->features & UFFD_FEATURE_EVENT_REMAP) {
732 vm_ctx->ctx = ctx;
733 userfaultfd_ctx_get(ctx);
734 down_write(&ctx->map_changing_lock);
735 atomic_inc(&ctx->mmap_changing);
736 up_write(&ctx->map_changing_lock);
737 } else {
738 /* Drop uffd context if remap feature not enabled */
739 userfaultfd_reset_ctx(vma);
740 }
741 }
742
mremap_userfaultfd_complete(struct vm_userfaultfd_ctx * vm_ctx,unsigned long from,unsigned long to,unsigned long len)743 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
744 unsigned long from, unsigned long to,
745 unsigned long len)
746 {
747 struct userfaultfd_ctx *ctx = vm_ctx->ctx;
748 struct userfaultfd_wait_queue ewq;
749
750 if (!ctx)
751 return;
752
753 msg_init(&ewq.msg);
754
755 ewq.msg.event = UFFD_EVENT_REMAP;
756 ewq.msg.arg.remap.from = from;
757 ewq.msg.arg.remap.to = to;
758 ewq.msg.arg.remap.len = len;
759
760 userfaultfd_event_wait_completion(ctx, &ewq);
761 }
762
mremap_userfaultfd_fail(struct vm_userfaultfd_ctx * vm_ctx)763 void mremap_userfaultfd_fail(struct vm_userfaultfd_ctx *vm_ctx)
764 {
765 struct userfaultfd_ctx *ctx = vm_ctx->ctx;
766
767 if (!ctx)
768 return;
769
770 userfaultfd_ctx_put(ctx);
771 }
772
userfaultfd_remove(struct vm_area_struct * vma,unsigned long start,unsigned long end)773 bool userfaultfd_remove(struct vm_area_struct *vma,
774 unsigned long start, unsigned long end)
775 {
776 struct mm_struct *mm = vma->vm_mm;
777 struct userfaultfd_ctx *ctx;
778 struct userfaultfd_wait_queue ewq;
779
780 ctx = vma->vm_userfaultfd_ctx.ctx;
781 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
782 return true;
783
784 userfaultfd_ctx_get(ctx);
785 down_write(&ctx->map_changing_lock);
786 atomic_inc(&ctx->mmap_changing);
787 up_write(&ctx->map_changing_lock);
788 mmap_read_unlock(mm);
789
790 msg_init(&ewq.msg);
791
792 ewq.msg.event = UFFD_EVENT_REMOVE;
793 ewq.msg.arg.remove.start = start;
794 ewq.msg.arg.remove.end = end;
795
796 userfaultfd_event_wait_completion(ctx, &ewq);
797
798 return false;
799 }
800
has_unmap_ctx(struct userfaultfd_ctx * ctx,struct list_head * unmaps,unsigned long start,unsigned long end)801 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
802 unsigned long start, unsigned long end)
803 {
804 struct userfaultfd_unmap_ctx *unmap_ctx;
805
806 list_for_each_entry(unmap_ctx, unmaps, list)
807 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
808 unmap_ctx->end == end)
809 return true;
810
811 return false;
812 }
813
userfaultfd_unmap_prep(struct vm_area_struct * vma,unsigned long start,unsigned long end,struct list_head * unmaps)814 int userfaultfd_unmap_prep(struct vm_area_struct *vma, unsigned long start,
815 unsigned long end, struct list_head *unmaps)
816 {
817 struct userfaultfd_unmap_ctx *unmap_ctx;
818 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
819
820 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
821 has_unmap_ctx(ctx, unmaps, start, end))
822 return 0;
823
824 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
825 if (!unmap_ctx)
826 return -ENOMEM;
827
828 userfaultfd_ctx_get(ctx);
829 down_write(&ctx->map_changing_lock);
830 atomic_inc(&ctx->mmap_changing);
831 up_write(&ctx->map_changing_lock);
832 unmap_ctx->ctx = ctx;
833 unmap_ctx->start = start;
834 unmap_ctx->end = end;
835 list_add_tail(&unmap_ctx->list, unmaps);
836
837 return 0;
838 }
839
userfaultfd_unmap_complete(struct mm_struct * mm,struct list_head * uf)840 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
841 {
842 struct userfaultfd_unmap_ctx *ctx, *n;
843 struct userfaultfd_wait_queue ewq;
844
845 list_for_each_entry_safe(ctx, n, uf, list) {
846 msg_init(&ewq.msg);
847
848 ewq.msg.event = UFFD_EVENT_UNMAP;
849 ewq.msg.arg.remove.start = ctx->start;
850 ewq.msg.arg.remove.end = ctx->end;
851
852 userfaultfd_event_wait_completion(ctx->ctx, &ewq);
853
854 list_del(&ctx->list);
855 kfree(ctx);
856 }
857 }
858
userfaultfd_release(struct inode * inode,struct file * file)859 static int userfaultfd_release(struct inode *inode, struct file *file)
860 {
861 struct userfaultfd_ctx *ctx = file->private_data;
862 struct mm_struct *mm = ctx->mm;
863 /* len == 0 means wake all */
864 struct userfaultfd_wake_range range = { .len = 0, };
865
866 WRITE_ONCE(ctx->released, true);
867
868 userfaultfd_release_all(mm, ctx);
869
870 /*
871 * After no new page faults can wait on this fault_*wqh, flush
872 * the last page faults that may have been already waiting on
873 * the fault_*wqh.
874 */
875 spin_lock_irq(&ctx->fault_pending_wqh.lock);
876 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
877 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range);
878 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
879
880 /* Flush pending events that may still wait on event_wqh */
881 wake_up_all(&ctx->event_wqh);
882
883 wake_up_poll(&ctx->fd_wqh, EPOLLHUP);
884 userfaultfd_ctx_put(ctx);
885 return 0;
886 }
887
888 /* fault_pending_wqh.lock must be hold by the caller */
find_userfault_in(wait_queue_head_t * wqh)889 static inline struct userfaultfd_wait_queue *find_userfault_in(
890 wait_queue_head_t *wqh)
891 {
892 wait_queue_entry_t *wq;
893 struct userfaultfd_wait_queue *uwq;
894
895 lockdep_assert_held(&wqh->lock);
896
897 uwq = NULL;
898 if (!waitqueue_active(wqh))
899 goto out;
900 /* walk in reverse to provide FIFO behavior to read userfaults */
901 wq = list_last_entry(&wqh->head, typeof(*wq), entry);
902 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
903 out:
904 return uwq;
905 }
906
find_userfault(struct userfaultfd_ctx * ctx)907 static inline struct userfaultfd_wait_queue *find_userfault(
908 struct userfaultfd_ctx *ctx)
909 {
910 return find_userfault_in(&ctx->fault_pending_wqh);
911 }
912
find_userfault_evt(struct userfaultfd_ctx * ctx)913 static inline struct userfaultfd_wait_queue *find_userfault_evt(
914 struct userfaultfd_ctx *ctx)
915 {
916 return find_userfault_in(&ctx->event_wqh);
917 }
918
userfaultfd_poll(struct file * file,poll_table * wait)919 static __poll_t userfaultfd_poll(struct file *file, poll_table *wait)
920 {
921 struct userfaultfd_ctx *ctx = file->private_data;
922 __poll_t ret;
923
924 poll_wait(file, &ctx->fd_wqh, wait);
925
926 if (!userfaultfd_is_initialized(ctx))
927 return EPOLLERR;
928
929 /*
930 * poll() never guarantees that read won't block.
931 * userfaults can be waken before they're read().
932 */
933 if (unlikely(!(file->f_flags & O_NONBLOCK)))
934 return EPOLLERR;
935 /*
936 * lockless access to see if there are pending faults
937 * __pollwait last action is the add_wait_queue but
938 * the spin_unlock would allow the waitqueue_active to
939 * pass above the actual list_add inside
940 * add_wait_queue critical section. So use a full
941 * memory barrier to serialize the list_add write of
942 * add_wait_queue() with the waitqueue_active read
943 * below.
944 */
945 ret = 0;
946 smp_mb();
947 if (waitqueue_active(&ctx->fault_pending_wqh))
948 ret = EPOLLIN;
949 else if (waitqueue_active(&ctx->event_wqh))
950 ret = EPOLLIN;
951
952 return ret;
953 }
954
955 static const struct file_operations userfaultfd_fops;
956
resolve_userfault_fork(struct userfaultfd_ctx * new,struct inode * inode,struct uffd_msg * msg)957 static int resolve_userfault_fork(struct userfaultfd_ctx *new,
958 struct inode *inode,
959 struct uffd_msg *msg)
960 {
961 int fd;
962
963 fd = anon_inode_create_getfd("[userfaultfd]", &userfaultfd_fops, new,
964 O_RDONLY | (new->flags & UFFD_SHARED_FCNTL_FLAGS), inode);
965 if (fd < 0)
966 return fd;
967
968 msg->arg.reserved.reserved1 = 0;
969 msg->arg.fork.ufd = fd;
970 return 0;
971 }
972
userfaultfd_ctx_read(struct userfaultfd_ctx * ctx,int no_wait,struct uffd_msg * msg,struct inode * inode)973 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
974 struct uffd_msg *msg, struct inode *inode)
975 {
976 ssize_t ret;
977 DECLARE_WAITQUEUE(wait, current);
978 struct userfaultfd_wait_queue *uwq;
979 /*
980 * Handling fork event requires sleeping operations, so
981 * we drop the event_wqh lock, then do these ops, then
982 * lock it back and wake up the waiter. While the lock is
983 * dropped the ewq may go away so we keep track of it
984 * carefully.
985 */
986 LIST_HEAD(fork_event);
987 struct userfaultfd_ctx *fork_nctx = NULL;
988
989 /* always take the fd_wqh lock before the fault_pending_wqh lock */
990 spin_lock_irq(&ctx->fd_wqh.lock);
991 __add_wait_queue(&ctx->fd_wqh, &wait);
992 for (;;) {
993 set_current_state(TASK_INTERRUPTIBLE);
994 spin_lock(&ctx->fault_pending_wqh.lock);
995 uwq = find_userfault(ctx);
996 if (uwq) {
997 /*
998 * Use a seqcount to repeat the lockless check
999 * in wake_userfault() to avoid missing
1000 * wakeups because during the refile both
1001 * waitqueue could become empty if this is the
1002 * only userfault.
1003 */
1004 write_seqcount_begin(&ctx->refile_seq);
1005
1006 /*
1007 * The fault_pending_wqh.lock prevents the uwq
1008 * to disappear from under us.
1009 *
1010 * Refile this userfault from
1011 * fault_pending_wqh to fault_wqh, it's not
1012 * pending anymore after we read it.
1013 *
1014 * Use list_del() by hand (as
1015 * userfaultfd_wake_function also uses
1016 * list_del_init() by hand) to be sure nobody
1017 * changes __remove_wait_queue() to use
1018 * list_del_init() in turn breaking the
1019 * !list_empty_careful() check in
1020 * handle_userfault(). The uwq->wq.head list
1021 * must never be empty at any time during the
1022 * refile, or the waitqueue could disappear
1023 * from under us. The "wait_queue_head_t"
1024 * parameter of __remove_wait_queue() is unused
1025 * anyway.
1026 */
1027 list_del(&uwq->wq.entry);
1028 add_wait_queue(&ctx->fault_wqh, &uwq->wq);
1029
1030 write_seqcount_end(&ctx->refile_seq);
1031
1032 /* careful to always initialize msg if ret == 0 */
1033 *msg = uwq->msg;
1034 spin_unlock(&ctx->fault_pending_wqh.lock);
1035 ret = 0;
1036 break;
1037 }
1038 spin_unlock(&ctx->fault_pending_wqh.lock);
1039
1040 spin_lock(&ctx->event_wqh.lock);
1041 uwq = find_userfault_evt(ctx);
1042 if (uwq) {
1043 *msg = uwq->msg;
1044
1045 if (uwq->msg.event == UFFD_EVENT_FORK) {
1046 fork_nctx = (struct userfaultfd_ctx *)
1047 (unsigned long)
1048 uwq->msg.arg.reserved.reserved1;
1049 list_move(&uwq->wq.entry, &fork_event);
1050 /*
1051 * fork_nctx can be freed as soon as
1052 * we drop the lock, unless we take a
1053 * reference on it.
1054 */
1055 userfaultfd_ctx_get(fork_nctx);
1056 spin_unlock(&ctx->event_wqh.lock);
1057 ret = 0;
1058 break;
1059 }
1060
1061 userfaultfd_event_complete(ctx, uwq);
1062 spin_unlock(&ctx->event_wqh.lock);
1063 ret = 0;
1064 break;
1065 }
1066 spin_unlock(&ctx->event_wqh.lock);
1067
1068 if (signal_pending(current)) {
1069 ret = -ERESTARTSYS;
1070 break;
1071 }
1072 if (no_wait) {
1073 ret = -EAGAIN;
1074 break;
1075 }
1076 spin_unlock_irq(&ctx->fd_wqh.lock);
1077 schedule();
1078 spin_lock_irq(&ctx->fd_wqh.lock);
1079 }
1080 __remove_wait_queue(&ctx->fd_wqh, &wait);
1081 __set_current_state(TASK_RUNNING);
1082 spin_unlock_irq(&ctx->fd_wqh.lock);
1083
1084 if (!ret && msg->event == UFFD_EVENT_FORK) {
1085 ret = resolve_userfault_fork(fork_nctx, inode, msg);
1086 spin_lock_irq(&ctx->event_wqh.lock);
1087 if (!list_empty(&fork_event)) {
1088 /*
1089 * The fork thread didn't abort, so we can
1090 * drop the temporary refcount.
1091 */
1092 userfaultfd_ctx_put(fork_nctx);
1093
1094 uwq = list_first_entry(&fork_event,
1095 typeof(*uwq),
1096 wq.entry);
1097 /*
1098 * If fork_event list wasn't empty and in turn
1099 * the event wasn't already released by fork
1100 * (the event is allocated on fork kernel
1101 * stack), put the event back to its place in
1102 * the event_wq. fork_event head will be freed
1103 * as soon as we return so the event cannot
1104 * stay queued there no matter the current
1105 * "ret" value.
1106 */
1107 list_del(&uwq->wq.entry);
1108 __add_wait_queue(&ctx->event_wqh, &uwq->wq);
1109
1110 /*
1111 * Leave the event in the waitqueue and report
1112 * error to userland if we failed to resolve
1113 * the userfault fork.
1114 */
1115 if (likely(!ret))
1116 userfaultfd_event_complete(ctx, uwq);
1117 } else {
1118 /*
1119 * Here the fork thread aborted and the
1120 * refcount from the fork thread on fork_nctx
1121 * has already been released. We still hold
1122 * the reference we took before releasing the
1123 * lock above. If resolve_userfault_fork
1124 * failed we've to drop it because the
1125 * fork_nctx has to be freed in such case. If
1126 * it succeeded we'll hold it because the new
1127 * uffd references it.
1128 */
1129 if (ret)
1130 userfaultfd_ctx_put(fork_nctx);
1131 }
1132 spin_unlock_irq(&ctx->event_wqh.lock);
1133 }
1134
1135 return ret;
1136 }
1137
userfaultfd_read_iter(struct kiocb * iocb,struct iov_iter * to)1138 static ssize_t userfaultfd_read_iter(struct kiocb *iocb, struct iov_iter *to)
1139 {
1140 struct file *file = iocb->ki_filp;
1141 struct userfaultfd_ctx *ctx = file->private_data;
1142 ssize_t _ret, ret = 0;
1143 struct uffd_msg msg;
1144 struct inode *inode = file_inode(file);
1145 bool no_wait;
1146
1147 if (!userfaultfd_is_initialized(ctx))
1148 return -EINVAL;
1149
1150 no_wait = file->f_flags & O_NONBLOCK || iocb->ki_flags & IOCB_NOWAIT;
1151 for (;;) {
1152 if (iov_iter_count(to) < sizeof(msg))
1153 return ret ? ret : -EINVAL;
1154 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg, inode);
1155 if (_ret < 0)
1156 return ret ? ret : _ret;
1157 _ret = !copy_to_iter_full(&msg, sizeof(msg), to);
1158 if (_ret)
1159 return ret ? ret : -EFAULT;
1160 ret += sizeof(msg);
1161 /*
1162 * Allow to read more than one fault at time but only
1163 * block if waiting for the very first one.
1164 */
1165 no_wait = true;
1166 }
1167 }
1168
__wake_userfault(struct userfaultfd_ctx * ctx,struct userfaultfd_wake_range * range)1169 static void __wake_userfault(struct userfaultfd_ctx *ctx,
1170 struct userfaultfd_wake_range *range)
1171 {
1172 spin_lock_irq(&ctx->fault_pending_wqh.lock);
1173 /* wake all in the range and autoremove */
1174 if (waitqueue_active(&ctx->fault_pending_wqh))
1175 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
1176 range);
1177 if (waitqueue_active(&ctx->fault_wqh))
1178 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range);
1179 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
1180 }
1181
wake_userfault(struct userfaultfd_ctx * ctx,struct userfaultfd_wake_range * range)1182 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1183 struct userfaultfd_wake_range *range)
1184 {
1185 unsigned seq;
1186 bool need_wakeup;
1187
1188 /*
1189 * To be sure waitqueue_active() is not reordered by the CPU
1190 * before the pagetable update, use an explicit SMP memory
1191 * barrier here. PT lock release or mmap_read_unlock(mm) still
1192 * have release semantics that can allow the
1193 * waitqueue_active() to be reordered before the pte update.
1194 */
1195 smp_mb();
1196
1197 /*
1198 * Use waitqueue_active because it's very frequent to
1199 * change the address space atomically even if there are no
1200 * userfaults yet. So we take the spinlock only when we're
1201 * sure we've userfaults to wake.
1202 */
1203 do {
1204 seq = read_seqcount_begin(&ctx->refile_seq);
1205 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1206 waitqueue_active(&ctx->fault_wqh);
1207 cond_resched();
1208 } while (read_seqcount_retry(&ctx->refile_seq, seq));
1209 if (need_wakeup)
1210 __wake_userfault(ctx, range);
1211 }
1212
validate_unaligned_range(struct mm_struct * mm,__u64 start,__u64 len)1213 static __always_inline int validate_unaligned_range(
1214 struct mm_struct *mm, __u64 start, __u64 len)
1215 {
1216 __u64 task_size = mm->task_size;
1217
1218 if (len & ~PAGE_MASK)
1219 return -EINVAL;
1220 if (!len)
1221 return -EINVAL;
1222 if (start < mmap_min_addr)
1223 return -EINVAL;
1224 if (start >= task_size)
1225 return -EINVAL;
1226 if (len > task_size - start)
1227 return -EINVAL;
1228 if (start + len <= start)
1229 return -EINVAL;
1230 return 0;
1231 }
1232
validate_range(struct mm_struct * mm,__u64 start,__u64 len)1233 static __always_inline int validate_range(struct mm_struct *mm,
1234 __u64 start, __u64 len)
1235 {
1236 if (start & ~PAGE_MASK)
1237 return -EINVAL;
1238
1239 return validate_unaligned_range(mm, start, len);
1240 }
1241
userfaultfd_register(struct userfaultfd_ctx * ctx,unsigned long arg)1242 static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1243 unsigned long arg)
1244 {
1245 struct mm_struct *mm = ctx->mm;
1246 struct vm_area_struct *vma, *cur;
1247 int ret;
1248 struct uffdio_register uffdio_register;
1249 struct uffdio_register __user *user_uffdio_register;
1250 vm_flags_t vm_flags;
1251 bool found;
1252 bool basic_ioctls;
1253 unsigned long start, end;
1254 struct vma_iterator vmi;
1255 bool wp_async = userfaultfd_wp_async_ctx(ctx);
1256
1257 user_uffdio_register = (struct uffdio_register __user *) arg;
1258
1259 ret = -EFAULT;
1260 if (copy_from_user(&uffdio_register, user_uffdio_register,
1261 sizeof(uffdio_register)-sizeof(__u64)))
1262 goto out;
1263
1264 ret = -EINVAL;
1265 if (!uffdio_register.mode)
1266 goto out;
1267 if (uffdio_register.mode & ~UFFD_API_REGISTER_MODES)
1268 goto out;
1269 vm_flags = 0;
1270 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1271 vm_flags |= VM_UFFD_MISSING;
1272 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
1273 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP
1274 goto out;
1275 #endif
1276 vm_flags |= VM_UFFD_WP;
1277 }
1278 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR) {
1279 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
1280 goto out;
1281 #endif
1282 vm_flags |= VM_UFFD_MINOR;
1283 }
1284
1285 ret = validate_range(mm, uffdio_register.range.start,
1286 uffdio_register.range.len);
1287 if (ret)
1288 goto out;
1289
1290 start = uffdio_register.range.start;
1291 end = start + uffdio_register.range.len;
1292
1293 ret = -ENOMEM;
1294 if (!mmget_not_zero(mm))
1295 goto out;
1296
1297 ret = -EINVAL;
1298 mmap_write_lock(mm);
1299 vma_iter_init(&vmi, mm, start);
1300 vma = vma_find(&vmi, end);
1301 if (!vma)
1302 goto out_unlock;
1303
1304 /*
1305 * If the first vma contains huge pages, make sure start address
1306 * is aligned to huge page size.
1307 */
1308 if (is_vm_hugetlb_page(vma)) {
1309 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1310
1311 if (start & (vma_hpagesize - 1))
1312 goto out_unlock;
1313 }
1314
1315 /*
1316 * Search for not compatible vmas.
1317 */
1318 found = false;
1319 basic_ioctls = false;
1320 cur = vma;
1321 do {
1322 cond_resched();
1323
1324 VM_WARN_ON_ONCE(!!cur->vm_userfaultfd_ctx.ctx ^
1325 !!(cur->vm_flags & __VM_UFFD_FLAGS));
1326
1327 /* check not compatible vmas */
1328 ret = -EINVAL;
1329 if (!vma_can_userfault(cur, vm_flags, wp_async))
1330 goto out_unlock;
1331
1332 /*
1333 * UFFDIO_COPY will fill file holes even without
1334 * PROT_WRITE. This check enforces that if this is a
1335 * MAP_SHARED, the process has write permission to the backing
1336 * file. If VM_MAYWRITE is set it also enforces that on a
1337 * MAP_SHARED vma: there is no F_WRITE_SEAL and no further
1338 * F_WRITE_SEAL can be taken until the vma is destroyed.
1339 */
1340 ret = -EPERM;
1341 if (unlikely(!(cur->vm_flags & VM_MAYWRITE)))
1342 goto out_unlock;
1343
1344 /*
1345 * If this vma contains ending address, and huge pages
1346 * check alignment.
1347 */
1348 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1349 end > cur->vm_start) {
1350 unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1351
1352 ret = -EINVAL;
1353
1354 if (end & (vma_hpagesize - 1))
1355 goto out_unlock;
1356 }
1357 if ((vm_flags & VM_UFFD_WP) && !(cur->vm_flags & VM_MAYWRITE))
1358 goto out_unlock;
1359
1360 /*
1361 * Check that this vma isn't already owned by a
1362 * different userfaultfd. We can't allow more than one
1363 * userfaultfd to own a single vma simultaneously or we
1364 * wouldn't know which one to deliver the userfaults to.
1365 */
1366 ret = -EBUSY;
1367 if (cur->vm_userfaultfd_ctx.ctx &&
1368 cur->vm_userfaultfd_ctx.ctx != ctx)
1369 goto out_unlock;
1370
1371 /*
1372 * Note vmas containing huge pages
1373 */
1374 if (is_vm_hugetlb_page(cur))
1375 basic_ioctls = true;
1376
1377 found = true;
1378 } for_each_vma_range(vmi, cur, end);
1379 VM_WARN_ON_ONCE(!found);
1380
1381 ret = userfaultfd_register_range(ctx, vma, vm_flags, start, end,
1382 wp_async);
1383
1384 out_unlock:
1385 mmap_write_unlock(mm);
1386 mmput(mm);
1387 if (!ret) {
1388 __u64 ioctls_out;
1389
1390 ioctls_out = basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC :
1391 UFFD_API_RANGE_IOCTLS;
1392
1393 /*
1394 * Declare the WP ioctl only if the WP mode is
1395 * specified and all checks passed with the range
1396 */
1397 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_WP))
1398 ioctls_out &= ~((__u64)1 << _UFFDIO_WRITEPROTECT);
1399
1400 /* CONTINUE ioctl is only supported for MINOR ranges. */
1401 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR))
1402 ioctls_out &= ~((__u64)1 << _UFFDIO_CONTINUE);
1403
1404 /*
1405 * Now that we scanned all vmas we can already tell
1406 * userland which ioctls methods are guaranteed to
1407 * succeed on this range.
1408 */
1409 if (put_user(ioctls_out, &user_uffdio_register->ioctls))
1410 ret = -EFAULT;
1411 }
1412 out:
1413 return ret;
1414 }
1415
userfaultfd_unregister(struct userfaultfd_ctx * ctx,unsigned long arg)1416 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1417 unsigned long arg)
1418 {
1419 struct mm_struct *mm = ctx->mm;
1420 struct vm_area_struct *vma, *prev, *cur;
1421 int ret;
1422 struct uffdio_range uffdio_unregister;
1423 bool found;
1424 unsigned long start, end, vma_end;
1425 const void __user *buf = (void __user *)arg;
1426 struct vma_iterator vmi;
1427 bool wp_async = userfaultfd_wp_async_ctx(ctx);
1428
1429 ret = -EFAULT;
1430 if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1431 goto out;
1432
1433 ret = validate_range(mm, uffdio_unregister.start,
1434 uffdio_unregister.len);
1435 if (ret)
1436 goto out;
1437
1438 start = uffdio_unregister.start;
1439 end = start + uffdio_unregister.len;
1440
1441 ret = -ENOMEM;
1442 if (!mmget_not_zero(mm))
1443 goto out;
1444
1445 mmap_write_lock(mm);
1446 ret = -EINVAL;
1447 vma_iter_init(&vmi, mm, start);
1448 vma = vma_find(&vmi, end);
1449 if (!vma)
1450 goto out_unlock;
1451
1452 /*
1453 * If the first vma contains huge pages, make sure start address
1454 * is aligned to huge page size.
1455 */
1456 if (is_vm_hugetlb_page(vma)) {
1457 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1458
1459 if (start & (vma_hpagesize - 1))
1460 goto out_unlock;
1461 }
1462
1463 /*
1464 * Search for not compatible vmas.
1465 */
1466 found = false;
1467 cur = vma;
1468 do {
1469 cond_resched();
1470
1471 VM_WARN_ON_ONCE(!!cur->vm_userfaultfd_ctx.ctx ^
1472 !!(cur->vm_flags & __VM_UFFD_FLAGS));
1473
1474 /*
1475 * Prevent unregistering through a different userfaultfd than
1476 * the one used for registration.
1477 */
1478 if (cur->vm_userfaultfd_ctx.ctx &&
1479 cur->vm_userfaultfd_ctx.ctx != ctx)
1480 goto out_unlock;
1481
1482 /*
1483 * Check not compatible vmas, not strictly required
1484 * here as not compatible vmas cannot have an
1485 * userfaultfd_ctx registered on them, but this
1486 * provides for more strict behavior to notice
1487 * unregistration errors.
1488 */
1489 if (!vma_can_userfault(cur, cur->vm_flags, wp_async))
1490 goto out_unlock;
1491
1492 found = true;
1493 } for_each_vma_range(vmi, cur, end);
1494 VM_WARN_ON_ONCE(!found);
1495
1496 vma_iter_set(&vmi, start);
1497 prev = vma_prev(&vmi);
1498 if (vma->vm_start < start)
1499 prev = vma;
1500
1501 ret = 0;
1502 for_each_vma_range(vmi, vma, end) {
1503 cond_resched();
1504
1505 /* VMA not registered with userfaultfd. */
1506 if (!vma->vm_userfaultfd_ctx.ctx)
1507 goto skip;
1508
1509 VM_WARN_ON_ONCE(vma->vm_userfaultfd_ctx.ctx != ctx);
1510 VM_WARN_ON_ONCE(!vma_can_userfault(vma, vma->vm_flags, wp_async));
1511 VM_WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE));
1512
1513 if (vma->vm_start > start)
1514 start = vma->vm_start;
1515 vma_end = min(end, vma->vm_end);
1516
1517 if (userfaultfd_missing(vma)) {
1518 /*
1519 * Wake any concurrent pending userfault while
1520 * we unregister, so they will not hang
1521 * permanently and it avoids userland to call
1522 * UFFDIO_WAKE explicitly.
1523 */
1524 struct userfaultfd_wake_range range;
1525 range.start = start;
1526 range.len = vma_end - start;
1527 wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1528 }
1529
1530 vma = userfaultfd_clear_vma(&vmi, prev, vma,
1531 start, vma_end);
1532 if (IS_ERR(vma)) {
1533 ret = PTR_ERR(vma);
1534 break;
1535 }
1536
1537 skip:
1538 prev = vma;
1539 start = vma->vm_end;
1540 }
1541
1542 out_unlock:
1543 mmap_write_unlock(mm);
1544 mmput(mm);
1545 out:
1546 return ret;
1547 }
1548
1549 /*
1550 * userfaultfd_wake may be used in combination with the
1551 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1552 */
userfaultfd_wake(struct userfaultfd_ctx * ctx,unsigned long arg)1553 static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1554 unsigned long arg)
1555 {
1556 int ret;
1557 struct uffdio_range uffdio_wake;
1558 struct userfaultfd_wake_range range;
1559 const void __user *buf = (void __user *)arg;
1560
1561 ret = -EFAULT;
1562 if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1563 goto out;
1564
1565 ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
1566 if (ret)
1567 goto out;
1568
1569 range.start = uffdio_wake.start;
1570 range.len = uffdio_wake.len;
1571
1572 /*
1573 * len == 0 means wake all and we don't want to wake all here,
1574 * so check it again to be sure.
1575 */
1576 VM_WARN_ON_ONCE(!range.len);
1577
1578 wake_userfault(ctx, &range);
1579 ret = 0;
1580
1581 out:
1582 return ret;
1583 }
1584
userfaultfd_copy(struct userfaultfd_ctx * ctx,unsigned long arg)1585 static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1586 unsigned long arg)
1587 {
1588 __s64 ret;
1589 struct uffdio_copy uffdio_copy;
1590 struct uffdio_copy __user *user_uffdio_copy;
1591 struct userfaultfd_wake_range range;
1592 uffd_flags_t flags = 0;
1593
1594 user_uffdio_copy = (struct uffdio_copy __user *) arg;
1595
1596 ret = -EAGAIN;
1597 if (unlikely(atomic_read(&ctx->mmap_changing))) {
1598 if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1599 return -EFAULT;
1600 goto out;
1601 }
1602
1603 ret = -EFAULT;
1604 if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1605 /* don't copy "copy" last field */
1606 sizeof(uffdio_copy)-sizeof(__s64)))
1607 goto out;
1608
1609 ret = validate_unaligned_range(ctx->mm, uffdio_copy.src,
1610 uffdio_copy.len);
1611 if (ret)
1612 goto out;
1613 ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
1614 if (ret)
1615 goto out;
1616
1617 ret = -EINVAL;
1618 if (uffdio_copy.mode & ~(UFFDIO_COPY_MODE_DONTWAKE|UFFDIO_COPY_MODE_WP))
1619 goto out;
1620 if (uffdio_copy.mode & UFFDIO_COPY_MODE_WP)
1621 flags |= MFILL_ATOMIC_WP;
1622 if (mmget_not_zero(ctx->mm)) {
1623 ret = mfill_atomic_copy(ctx, uffdio_copy.dst, uffdio_copy.src,
1624 uffdio_copy.len, flags);
1625 mmput(ctx->mm);
1626 } else {
1627 return -ESRCH;
1628 }
1629 if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1630 return -EFAULT;
1631 if (ret < 0)
1632 goto out;
1633 VM_WARN_ON_ONCE(!ret);
1634 /* len == 0 would wake all */
1635 range.len = ret;
1636 if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1637 range.start = uffdio_copy.dst;
1638 wake_userfault(ctx, &range);
1639 }
1640 ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1641 out:
1642 return ret;
1643 }
1644
userfaultfd_zeropage(struct userfaultfd_ctx * ctx,unsigned long arg)1645 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1646 unsigned long arg)
1647 {
1648 __s64 ret;
1649 struct uffdio_zeropage uffdio_zeropage;
1650 struct uffdio_zeropage __user *user_uffdio_zeropage;
1651 struct userfaultfd_wake_range range;
1652
1653 user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1654
1655 ret = -EAGAIN;
1656 if (unlikely(atomic_read(&ctx->mmap_changing))) {
1657 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1658 return -EFAULT;
1659 goto out;
1660 }
1661
1662 ret = -EFAULT;
1663 if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1664 /* don't copy "zeropage" last field */
1665 sizeof(uffdio_zeropage)-sizeof(__s64)))
1666 goto out;
1667
1668 ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
1669 uffdio_zeropage.range.len);
1670 if (ret)
1671 goto out;
1672 ret = -EINVAL;
1673 if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1674 goto out;
1675
1676 if (mmget_not_zero(ctx->mm)) {
1677 ret = mfill_atomic_zeropage(ctx, uffdio_zeropage.range.start,
1678 uffdio_zeropage.range.len);
1679 mmput(ctx->mm);
1680 } else {
1681 return -ESRCH;
1682 }
1683 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1684 return -EFAULT;
1685 if (ret < 0)
1686 goto out;
1687 /* len == 0 would wake all */
1688 VM_WARN_ON_ONCE(!ret);
1689 range.len = ret;
1690 if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1691 range.start = uffdio_zeropage.range.start;
1692 wake_userfault(ctx, &range);
1693 }
1694 ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1695 out:
1696 return ret;
1697 }
1698
userfaultfd_writeprotect(struct userfaultfd_ctx * ctx,unsigned long arg)1699 static int userfaultfd_writeprotect(struct userfaultfd_ctx *ctx,
1700 unsigned long arg)
1701 {
1702 int ret;
1703 struct uffdio_writeprotect uffdio_wp;
1704 struct uffdio_writeprotect __user *user_uffdio_wp;
1705 struct userfaultfd_wake_range range;
1706 bool mode_wp, mode_dontwake;
1707
1708 if (atomic_read(&ctx->mmap_changing))
1709 return -EAGAIN;
1710
1711 user_uffdio_wp = (struct uffdio_writeprotect __user *) arg;
1712
1713 if (copy_from_user(&uffdio_wp, user_uffdio_wp,
1714 sizeof(struct uffdio_writeprotect)))
1715 return -EFAULT;
1716
1717 ret = validate_range(ctx->mm, uffdio_wp.range.start,
1718 uffdio_wp.range.len);
1719 if (ret)
1720 return ret;
1721
1722 if (uffdio_wp.mode & ~(UFFDIO_WRITEPROTECT_MODE_DONTWAKE |
1723 UFFDIO_WRITEPROTECT_MODE_WP))
1724 return -EINVAL;
1725
1726 mode_wp = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_WP;
1727 mode_dontwake = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_DONTWAKE;
1728
1729 if (mode_wp && mode_dontwake)
1730 return -EINVAL;
1731
1732 if (mmget_not_zero(ctx->mm)) {
1733 ret = mwriteprotect_range(ctx, uffdio_wp.range.start,
1734 uffdio_wp.range.len, mode_wp);
1735 mmput(ctx->mm);
1736 } else {
1737 return -ESRCH;
1738 }
1739
1740 if (ret)
1741 return ret;
1742
1743 if (!mode_wp && !mode_dontwake) {
1744 range.start = uffdio_wp.range.start;
1745 range.len = uffdio_wp.range.len;
1746 wake_userfault(ctx, &range);
1747 }
1748 return ret;
1749 }
1750
userfaultfd_continue(struct userfaultfd_ctx * ctx,unsigned long arg)1751 static int userfaultfd_continue(struct userfaultfd_ctx *ctx, unsigned long arg)
1752 {
1753 __s64 ret;
1754 struct uffdio_continue uffdio_continue;
1755 struct uffdio_continue __user *user_uffdio_continue;
1756 struct userfaultfd_wake_range range;
1757 uffd_flags_t flags = 0;
1758
1759 user_uffdio_continue = (struct uffdio_continue __user *)arg;
1760
1761 ret = -EAGAIN;
1762 if (unlikely(atomic_read(&ctx->mmap_changing))) {
1763 if (unlikely(put_user(ret, &user_uffdio_continue->mapped)))
1764 return -EFAULT;
1765 goto out;
1766 }
1767
1768 ret = -EFAULT;
1769 if (copy_from_user(&uffdio_continue, user_uffdio_continue,
1770 /* don't copy the output fields */
1771 sizeof(uffdio_continue) - (sizeof(__s64))))
1772 goto out;
1773
1774 ret = validate_range(ctx->mm, uffdio_continue.range.start,
1775 uffdio_continue.range.len);
1776 if (ret)
1777 goto out;
1778
1779 ret = -EINVAL;
1780 if (uffdio_continue.mode & ~(UFFDIO_CONTINUE_MODE_DONTWAKE |
1781 UFFDIO_CONTINUE_MODE_WP))
1782 goto out;
1783 if (uffdio_continue.mode & UFFDIO_CONTINUE_MODE_WP)
1784 flags |= MFILL_ATOMIC_WP;
1785
1786 if (mmget_not_zero(ctx->mm)) {
1787 ret = mfill_atomic_continue(ctx, uffdio_continue.range.start,
1788 uffdio_continue.range.len, flags);
1789 mmput(ctx->mm);
1790 } else {
1791 return -ESRCH;
1792 }
1793
1794 if (unlikely(put_user(ret, &user_uffdio_continue->mapped)))
1795 return -EFAULT;
1796 if (ret < 0)
1797 goto out;
1798
1799 /* len == 0 would wake all */
1800 VM_WARN_ON_ONCE(!ret);
1801 range.len = ret;
1802 if (!(uffdio_continue.mode & UFFDIO_CONTINUE_MODE_DONTWAKE)) {
1803 range.start = uffdio_continue.range.start;
1804 wake_userfault(ctx, &range);
1805 }
1806 ret = range.len == uffdio_continue.range.len ? 0 : -EAGAIN;
1807
1808 out:
1809 return ret;
1810 }
1811
userfaultfd_poison(struct userfaultfd_ctx * ctx,unsigned long arg)1812 static inline int userfaultfd_poison(struct userfaultfd_ctx *ctx, unsigned long arg)
1813 {
1814 __s64 ret;
1815 struct uffdio_poison uffdio_poison;
1816 struct uffdio_poison __user *user_uffdio_poison;
1817 struct userfaultfd_wake_range range;
1818
1819 user_uffdio_poison = (struct uffdio_poison __user *)arg;
1820
1821 ret = -EAGAIN;
1822 if (unlikely(atomic_read(&ctx->mmap_changing))) {
1823 if (unlikely(put_user(ret, &user_uffdio_poison->updated)))
1824 return -EFAULT;
1825 goto out;
1826 }
1827
1828 ret = -EFAULT;
1829 if (copy_from_user(&uffdio_poison, user_uffdio_poison,
1830 /* don't copy the output fields */
1831 sizeof(uffdio_poison) - (sizeof(__s64))))
1832 goto out;
1833
1834 ret = validate_range(ctx->mm, uffdio_poison.range.start,
1835 uffdio_poison.range.len);
1836 if (ret)
1837 goto out;
1838
1839 ret = -EINVAL;
1840 if (uffdio_poison.mode & ~UFFDIO_POISON_MODE_DONTWAKE)
1841 goto out;
1842
1843 if (mmget_not_zero(ctx->mm)) {
1844 ret = mfill_atomic_poison(ctx, uffdio_poison.range.start,
1845 uffdio_poison.range.len, 0);
1846 mmput(ctx->mm);
1847 } else {
1848 return -ESRCH;
1849 }
1850
1851 if (unlikely(put_user(ret, &user_uffdio_poison->updated)))
1852 return -EFAULT;
1853 if (ret < 0)
1854 goto out;
1855
1856 /* len == 0 would wake all */
1857 VM_WARN_ON_ONCE(!ret);
1858 range.len = ret;
1859 if (!(uffdio_poison.mode & UFFDIO_POISON_MODE_DONTWAKE)) {
1860 range.start = uffdio_poison.range.start;
1861 wake_userfault(ctx, &range);
1862 }
1863 ret = range.len == uffdio_poison.range.len ? 0 : -EAGAIN;
1864
1865 out:
1866 return ret;
1867 }
1868
userfaultfd_wp_async(struct vm_area_struct * vma)1869 bool userfaultfd_wp_async(struct vm_area_struct *vma)
1870 {
1871 return userfaultfd_wp_async_ctx(vma->vm_userfaultfd_ctx.ctx);
1872 }
1873
uffd_ctx_features(__u64 user_features)1874 static inline unsigned int uffd_ctx_features(__u64 user_features)
1875 {
1876 /*
1877 * For the current set of features the bits just coincide. Set
1878 * UFFD_FEATURE_INITIALIZED to mark the features as enabled.
1879 */
1880 return (unsigned int)user_features | UFFD_FEATURE_INITIALIZED;
1881 }
1882
userfaultfd_move(struct userfaultfd_ctx * ctx,unsigned long arg)1883 static int userfaultfd_move(struct userfaultfd_ctx *ctx,
1884 unsigned long arg)
1885 {
1886 __s64 ret;
1887 struct uffdio_move uffdio_move;
1888 struct uffdio_move __user *user_uffdio_move;
1889 struct userfaultfd_wake_range range;
1890 struct mm_struct *mm = ctx->mm;
1891
1892 user_uffdio_move = (struct uffdio_move __user *) arg;
1893
1894 ret = -EAGAIN;
1895 if (unlikely(atomic_read(&ctx->mmap_changing))) {
1896 if (unlikely(put_user(ret, &user_uffdio_move->move)))
1897 return -EFAULT;
1898 goto out;
1899 }
1900
1901 if (copy_from_user(&uffdio_move, user_uffdio_move,
1902 /* don't copy "move" last field */
1903 sizeof(uffdio_move)-sizeof(__s64)))
1904 return -EFAULT;
1905
1906 /* Do not allow cross-mm moves. */
1907 if (mm != current->mm)
1908 return -EINVAL;
1909
1910 ret = validate_range(mm, uffdio_move.dst, uffdio_move.len);
1911 if (ret)
1912 return ret;
1913
1914 ret = validate_range(mm, uffdio_move.src, uffdio_move.len);
1915 if (ret)
1916 return ret;
1917
1918 if (uffdio_move.mode & ~(UFFDIO_MOVE_MODE_ALLOW_SRC_HOLES|
1919 UFFDIO_MOVE_MODE_DONTWAKE))
1920 return -EINVAL;
1921
1922 if (mmget_not_zero(mm)) {
1923 ret = move_pages(ctx, uffdio_move.dst, uffdio_move.src,
1924 uffdio_move.len, uffdio_move.mode);
1925 mmput(mm);
1926 } else {
1927 return -ESRCH;
1928 }
1929
1930 if (unlikely(put_user(ret, &user_uffdio_move->move)))
1931 return -EFAULT;
1932 if (ret < 0)
1933 goto out;
1934
1935 /* len == 0 would wake all */
1936 VM_WARN_ON(!ret);
1937 range.len = ret;
1938 if (!(uffdio_move.mode & UFFDIO_MOVE_MODE_DONTWAKE)) {
1939 range.start = uffdio_move.dst;
1940 wake_userfault(ctx, &range);
1941 }
1942 ret = range.len == uffdio_move.len ? 0 : -EAGAIN;
1943
1944 out:
1945 return ret;
1946 }
1947
1948 /*
1949 * userland asks for a certain API version and we return which bits
1950 * and ioctl commands are implemented in this kernel for such API
1951 * version or -EINVAL if unknown.
1952 */
userfaultfd_api(struct userfaultfd_ctx * ctx,unsigned long arg)1953 static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1954 unsigned long arg)
1955 {
1956 struct uffdio_api uffdio_api;
1957 void __user *buf = (void __user *)arg;
1958 unsigned int ctx_features;
1959 int ret;
1960 __u64 features;
1961
1962 ret = -EFAULT;
1963 if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
1964 goto out;
1965 features = uffdio_api.features;
1966 ret = -EINVAL;
1967 if (uffdio_api.api != UFFD_API)
1968 goto err_out;
1969 ret = -EPERM;
1970 if ((features & UFFD_FEATURE_EVENT_FORK) && !capable(CAP_SYS_PTRACE))
1971 goto err_out;
1972
1973 /* WP_ASYNC relies on WP_UNPOPULATED, choose it unconditionally */
1974 if (features & UFFD_FEATURE_WP_ASYNC)
1975 features |= UFFD_FEATURE_WP_UNPOPULATED;
1976
1977 /* report all available features and ioctls to userland */
1978 uffdio_api.features = UFFD_API_FEATURES;
1979 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
1980 uffdio_api.features &=
1981 ~(UFFD_FEATURE_MINOR_HUGETLBFS | UFFD_FEATURE_MINOR_SHMEM);
1982 #endif
1983 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP
1984 uffdio_api.features &= ~UFFD_FEATURE_PAGEFAULT_FLAG_WP;
1985 #endif
1986 #ifndef CONFIG_PTE_MARKER_UFFD_WP
1987 uffdio_api.features &= ~UFFD_FEATURE_WP_HUGETLBFS_SHMEM;
1988 uffdio_api.features &= ~UFFD_FEATURE_WP_UNPOPULATED;
1989 uffdio_api.features &= ~UFFD_FEATURE_WP_ASYNC;
1990 #endif
1991
1992 ret = -EINVAL;
1993 if (features & ~uffdio_api.features)
1994 goto err_out;
1995
1996 uffdio_api.ioctls = UFFD_API_IOCTLS;
1997 ret = -EFAULT;
1998 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1999 goto out;
2000
2001 /* only enable the requested features for this uffd context */
2002 ctx_features = uffd_ctx_features(features);
2003 ret = -EINVAL;
2004 if (cmpxchg(&ctx->features, 0, ctx_features) != 0)
2005 goto err_out;
2006
2007 ret = 0;
2008 out:
2009 return ret;
2010 err_out:
2011 memset(&uffdio_api, 0, sizeof(uffdio_api));
2012 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
2013 ret = -EFAULT;
2014 goto out;
2015 }
2016
userfaultfd_ioctl(struct file * file,unsigned cmd,unsigned long arg)2017 static long userfaultfd_ioctl(struct file *file, unsigned cmd,
2018 unsigned long arg)
2019 {
2020 int ret = -EINVAL;
2021 struct userfaultfd_ctx *ctx = file->private_data;
2022
2023 if (cmd != UFFDIO_API && !userfaultfd_is_initialized(ctx))
2024 return -EINVAL;
2025
2026 switch(cmd) {
2027 case UFFDIO_API:
2028 ret = userfaultfd_api(ctx, arg);
2029 break;
2030 case UFFDIO_REGISTER:
2031 ret = userfaultfd_register(ctx, arg);
2032 break;
2033 case UFFDIO_UNREGISTER:
2034 ret = userfaultfd_unregister(ctx, arg);
2035 break;
2036 case UFFDIO_WAKE:
2037 ret = userfaultfd_wake(ctx, arg);
2038 break;
2039 case UFFDIO_COPY:
2040 ret = userfaultfd_copy(ctx, arg);
2041 break;
2042 case UFFDIO_ZEROPAGE:
2043 ret = userfaultfd_zeropage(ctx, arg);
2044 break;
2045 case UFFDIO_MOVE:
2046 ret = userfaultfd_move(ctx, arg);
2047 break;
2048 case UFFDIO_WRITEPROTECT:
2049 ret = userfaultfd_writeprotect(ctx, arg);
2050 break;
2051 case UFFDIO_CONTINUE:
2052 ret = userfaultfd_continue(ctx, arg);
2053 break;
2054 case UFFDIO_POISON:
2055 ret = userfaultfd_poison(ctx, arg);
2056 break;
2057 }
2058 return ret;
2059 }
2060
2061 #ifdef CONFIG_PROC_FS
userfaultfd_show_fdinfo(struct seq_file * m,struct file * f)2062 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
2063 {
2064 struct userfaultfd_ctx *ctx = f->private_data;
2065 wait_queue_entry_t *wq;
2066 unsigned long pending = 0, total = 0;
2067
2068 spin_lock_irq(&ctx->fault_pending_wqh.lock);
2069 list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) {
2070 pending++;
2071 total++;
2072 }
2073 list_for_each_entry(wq, &ctx->fault_wqh.head, entry) {
2074 total++;
2075 }
2076 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
2077
2078 /*
2079 * If more protocols will be added, there will be all shown
2080 * separated by a space. Like this:
2081 * protocols: aa:... bb:...
2082 */
2083 seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
2084 pending, total, UFFD_API, ctx->features,
2085 UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
2086 }
2087 #endif
2088
2089 static const struct file_operations userfaultfd_fops = {
2090 #ifdef CONFIG_PROC_FS
2091 .show_fdinfo = userfaultfd_show_fdinfo,
2092 #endif
2093 .release = userfaultfd_release,
2094 .poll = userfaultfd_poll,
2095 .read_iter = userfaultfd_read_iter,
2096 .unlocked_ioctl = userfaultfd_ioctl,
2097 .compat_ioctl = compat_ptr_ioctl,
2098 .llseek = noop_llseek,
2099 };
2100
init_once_userfaultfd_ctx(void * mem)2101 static void init_once_userfaultfd_ctx(void *mem)
2102 {
2103 struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
2104
2105 init_waitqueue_head(&ctx->fault_pending_wqh);
2106 init_waitqueue_head(&ctx->fault_wqh);
2107 init_waitqueue_head(&ctx->event_wqh);
2108 init_waitqueue_head(&ctx->fd_wqh);
2109 seqcount_spinlock_init(&ctx->refile_seq, &ctx->fault_pending_wqh.lock);
2110 }
2111
new_userfaultfd(int flags)2112 static int new_userfaultfd(int flags)
2113 {
2114 struct userfaultfd_ctx *ctx;
2115 struct file *file;
2116 int fd;
2117
2118 VM_WARN_ON_ONCE(!current->mm);
2119
2120 /* Check the UFFD_* constants for consistency. */
2121 BUILD_BUG_ON(UFFD_USER_MODE_ONLY & UFFD_SHARED_FCNTL_FLAGS);
2122
2123 if (flags & ~(UFFD_SHARED_FCNTL_FLAGS | UFFD_USER_MODE_ONLY))
2124 return -EINVAL;
2125
2126 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
2127 if (!ctx)
2128 return -ENOMEM;
2129
2130 refcount_set(&ctx->refcount, 1);
2131 ctx->flags = flags;
2132 ctx->features = 0;
2133 ctx->released = false;
2134 init_rwsem(&ctx->map_changing_lock);
2135 atomic_set(&ctx->mmap_changing, 0);
2136 ctx->mm = current->mm;
2137
2138 fd = get_unused_fd_flags(flags & UFFD_SHARED_FCNTL_FLAGS);
2139 if (fd < 0)
2140 goto err_out;
2141
2142 /* Create a new inode so that the LSM can block the creation. */
2143 file = anon_inode_create_getfile("[userfaultfd]", &userfaultfd_fops, ctx,
2144 O_RDONLY | (flags & UFFD_SHARED_FCNTL_FLAGS), NULL);
2145 if (IS_ERR(file)) {
2146 put_unused_fd(fd);
2147 fd = PTR_ERR(file);
2148 goto err_out;
2149 }
2150 /* prevent the mm struct to be freed */
2151 mmgrab(ctx->mm);
2152 file->f_mode |= FMODE_NOWAIT;
2153 fd_install(fd, file);
2154 return fd;
2155 err_out:
2156 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
2157 return fd;
2158 }
2159
userfaultfd_syscall_allowed(int flags)2160 static inline bool userfaultfd_syscall_allowed(int flags)
2161 {
2162 /* Userspace-only page faults are always allowed */
2163 if (flags & UFFD_USER_MODE_ONLY)
2164 return true;
2165
2166 /*
2167 * The user is requesting a userfaultfd which can handle kernel faults.
2168 * Privileged users are always allowed to do this.
2169 */
2170 if (capable(CAP_SYS_PTRACE))
2171 return true;
2172
2173 /* Otherwise, access to kernel fault handling is sysctl controlled. */
2174 return sysctl_unprivileged_userfaultfd;
2175 }
2176
SYSCALL_DEFINE1(userfaultfd,int,flags)2177 SYSCALL_DEFINE1(userfaultfd, int, flags)
2178 {
2179 if (!userfaultfd_syscall_allowed(flags))
2180 return -EPERM;
2181
2182 return new_userfaultfd(flags);
2183 }
2184
userfaultfd_dev_ioctl(struct file * file,unsigned int cmd,unsigned long flags)2185 static long userfaultfd_dev_ioctl(struct file *file, unsigned int cmd, unsigned long flags)
2186 {
2187 if (cmd != USERFAULTFD_IOC_NEW)
2188 return -EINVAL;
2189
2190 return new_userfaultfd(flags);
2191 }
2192
2193 static const struct file_operations userfaultfd_dev_fops = {
2194 .unlocked_ioctl = userfaultfd_dev_ioctl,
2195 .compat_ioctl = userfaultfd_dev_ioctl,
2196 .owner = THIS_MODULE,
2197 .llseek = noop_llseek,
2198 };
2199
2200 static struct miscdevice userfaultfd_misc = {
2201 .minor = MISC_DYNAMIC_MINOR,
2202 .name = "userfaultfd",
2203 .fops = &userfaultfd_dev_fops
2204 };
2205
userfaultfd_init(void)2206 static int __init userfaultfd_init(void)
2207 {
2208 int ret;
2209
2210 ret = misc_register(&userfaultfd_misc);
2211 if (ret)
2212 return ret;
2213
2214 userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
2215 sizeof(struct userfaultfd_ctx),
2216 0,
2217 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2218 init_once_userfaultfd_ctx);
2219 #ifdef CONFIG_SYSCTL
2220 register_sysctl_init("vm", vm_userfaultfd_table);
2221 #endif
2222 return 0;
2223 }
2224 __initcall(userfaultfd_init);
2225