1 /* SPDX-License-Identifier: MIT */
2 /*
3 * Copyright (C) 2017 Google, Inc.
4 * Copyright _ 2017-2019, Intel Corporation.
5 *
6 * Authors:
7 * Sean Paul <seanpaul@chromium.org>
8 * Ramalingam C <ramalingam.c@intel.com>
9 */
10
11 #include <linux/component.h>
12 #include <linux/debugfs.h>
13 #include <linux/i2c.h>
14 #include <linux/random.h>
15
16 #include <drm/display/drm_hdcp_helper.h>
17 #include <drm/drm_print.h>
18 #include <drm/intel/i915_component.h>
19
20 #include "i915_reg.h"
21 #include "i915_utils.h"
22 #include "intel_connector.h"
23 #include "intel_de.h"
24 #include "intel_display_power.h"
25 #include "intel_display_power_well.h"
26 #include "intel_display_regs.h"
27 #include "intel_display_rpm.h"
28 #include "intel_display_types.h"
29 #include "intel_dp_mst.h"
30 #include "intel_hdcp.h"
31 #include "intel_hdcp_gsc.h"
32 #include "intel_hdcp_gsc_message.h"
33 #include "intel_hdcp_regs.h"
34 #include "intel_hdcp_shim.h"
35 #include "intel_pcode.h"
36 #include "intel_step.h"
37
38 #define USE_HDCP_GSC(__display) (DISPLAY_VER(__display) >= 14)
39
40 #define KEY_LOAD_TRIES 5
41 #define HDCP2_LC_RETRY_CNT 3
42
43 static void
intel_hdcp_adjust_hdcp_line_rekeying(struct intel_encoder * encoder,struct intel_hdcp * hdcp,bool enable)44 intel_hdcp_adjust_hdcp_line_rekeying(struct intel_encoder *encoder,
45 struct intel_hdcp *hdcp,
46 bool enable)
47 {
48 struct intel_display *display = to_intel_display(encoder);
49 i915_reg_t rekey_reg;
50 u32 rekey_bit = 0;
51
52 /* Here we assume HDMI is in TMDS mode of operation */
53 if (!intel_encoder_is_hdmi(encoder))
54 return;
55
56 if (DISPLAY_VER(display) >= 30) {
57 rekey_reg = TRANS_DDI_FUNC_CTL(display, hdcp->cpu_transcoder);
58 rekey_bit = XE3_TRANS_DDI_HDCP_LINE_REKEY_DISABLE;
59 } else if (IS_DISPLAY_VERx100_STEP(display, 1401, STEP_B0, STEP_FOREVER) ||
60 IS_DISPLAY_VERx100_STEP(display, 2000, STEP_B0, STEP_FOREVER)) {
61 rekey_reg = TRANS_DDI_FUNC_CTL(display, hdcp->cpu_transcoder);
62 rekey_bit = TRANS_DDI_HDCP_LINE_REKEY_DISABLE;
63 } else if (IS_DISPLAY_VERx100_STEP(display, 1400, STEP_D0, STEP_FOREVER)) {
64 rekey_reg = CHICKEN_TRANS(display, hdcp->cpu_transcoder);
65 rekey_bit = HDCP_LINE_REKEY_DISABLE;
66 }
67
68 if (rekey_bit)
69 intel_de_rmw(display, rekey_reg, rekey_bit, enable ? 0 : rekey_bit);
70 }
71
intel_conn_to_vcpi(struct intel_atomic_state * state,struct intel_connector * connector)72 static int intel_conn_to_vcpi(struct intel_atomic_state *state,
73 struct intel_connector *connector)
74 {
75 struct drm_dp_mst_topology_mgr *mgr;
76 struct drm_dp_mst_atomic_payload *payload;
77 struct drm_dp_mst_topology_state *mst_state;
78 int vcpi = 0;
79
80 /* For HDMI this is forced to be 0x0. For DP SST also this is 0x0. */
81 if (!connector->mst.port)
82 return 0;
83 mgr = connector->mst.port->mgr;
84
85 drm_modeset_lock(&mgr->base.lock, state->base.acquire_ctx);
86 mst_state = to_drm_dp_mst_topology_state(mgr->base.state);
87 payload = drm_atomic_get_mst_payload_state(mst_state, connector->mst.port);
88 if (drm_WARN_ON(mgr->dev, !payload))
89 goto out;
90
91 vcpi = payload->vcpi;
92 if (drm_WARN_ON(mgr->dev, vcpi < 0)) {
93 vcpi = 0;
94 goto out;
95 }
96 out:
97 return vcpi;
98 }
99
100 /*
101 * intel_hdcp_required_content_stream selects the most highest common possible HDCP
102 * content_type for all streams in DP MST topology because security f/w doesn't
103 * have any provision to mark content_type for each stream separately, it marks
104 * all available streams with the content_type proivided at the time of port
105 * authentication. This may prohibit the userspace to use type1 content on
106 * HDCP 2.2 capable sink because of other sink are not capable of HDCP 2.2 in
107 * DP MST topology. Though it is not compulsory, security fw should change its
108 * policy to mark different content_types for different streams.
109 */
110 static int
intel_hdcp_required_content_stream(struct intel_atomic_state * state,struct intel_digital_port * dig_port)111 intel_hdcp_required_content_stream(struct intel_atomic_state *state,
112 struct intel_digital_port *dig_port)
113 {
114 struct intel_display *display = to_intel_display(state);
115 struct drm_connector_list_iter conn_iter;
116 struct intel_digital_port *conn_dig_port;
117 struct intel_connector *connector;
118 struct hdcp_port_data *data = &dig_port->hdcp.port_data;
119 bool enforce_type0 = false;
120 int k;
121
122 if (dig_port->hdcp.auth_status)
123 return 0;
124
125 data->k = 0;
126
127 if (!dig_port->hdcp.mst_type1_capable)
128 enforce_type0 = true;
129
130 drm_connector_list_iter_begin(display->drm, &conn_iter);
131 for_each_intel_connector_iter(connector, &conn_iter) {
132 if (connector->base.status == connector_status_disconnected)
133 continue;
134
135 if (!intel_encoder_is_mst(intel_attached_encoder(connector)))
136 continue;
137
138 conn_dig_port = intel_attached_dig_port(connector);
139 if (conn_dig_port != dig_port)
140 continue;
141
142 data->streams[data->k].stream_id =
143 intel_conn_to_vcpi(state, connector);
144 data->k++;
145
146 /* if there is only one active stream */
147 if (intel_dp_mst_active_streams(&dig_port->dp) <= 1)
148 break;
149 }
150 drm_connector_list_iter_end(&conn_iter);
151
152 if (drm_WARN_ON(display->drm, data->k > INTEL_NUM_PIPES(display) || data->k == 0))
153 return -EINVAL;
154
155 /*
156 * Apply common protection level across all streams in DP MST Topology.
157 * Use highest supported content type for all streams in DP MST Topology.
158 */
159 for (k = 0; k < data->k; k++)
160 data->streams[k].stream_type =
161 enforce_type0 ? DRM_MODE_HDCP_CONTENT_TYPE0 : DRM_MODE_HDCP_CONTENT_TYPE1;
162
163 return 0;
164 }
165
intel_hdcp_prepare_streams(struct intel_atomic_state * state,struct intel_connector * connector)166 static int intel_hdcp_prepare_streams(struct intel_atomic_state *state,
167 struct intel_connector *connector)
168 {
169 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
170 struct hdcp_port_data *data = &dig_port->hdcp.port_data;
171 struct intel_hdcp *hdcp = &connector->hdcp;
172
173 if (intel_encoder_is_mst(intel_attached_encoder(connector)))
174 return intel_hdcp_required_content_stream(state, dig_port);
175
176 data->k = 1;
177 data->streams[0].stream_id = 0;
178 data->streams[0].stream_type = hdcp->content_type;
179
180 return 0;
181 }
182
183 static
intel_hdcp_is_ksv_valid(u8 * ksv)184 bool intel_hdcp_is_ksv_valid(u8 *ksv)
185 {
186 int i, ones = 0;
187 /* KSV has 20 1's and 20 0's */
188 for (i = 0; i < DRM_HDCP_KSV_LEN; i++)
189 ones += hweight8(ksv[i]);
190 if (ones != 20)
191 return false;
192
193 return true;
194 }
195
196 static
intel_hdcp_read_valid_bksv(struct intel_digital_port * dig_port,const struct intel_hdcp_shim * shim,u8 * bksv)197 int intel_hdcp_read_valid_bksv(struct intel_digital_port *dig_port,
198 const struct intel_hdcp_shim *shim, u8 *bksv)
199 {
200 struct intel_display *display = to_intel_display(dig_port);
201 int ret, i, tries = 2;
202
203 /* HDCP spec states that we must retry the bksv if it is invalid */
204 for (i = 0; i < tries; i++) {
205 ret = shim->read_bksv(dig_port, bksv);
206 if (ret)
207 return ret;
208 if (intel_hdcp_is_ksv_valid(bksv))
209 break;
210 }
211 if (i == tries) {
212 drm_dbg_kms(display->drm, "Bksv is invalid\n");
213 return -ENODEV;
214 }
215
216 return 0;
217 }
218
219 /* Is HDCP1.4 capable on Platform and Sink */
intel_hdcp_get_capability(struct intel_connector * connector)220 static bool intel_hdcp_get_capability(struct intel_connector *connector)
221 {
222 struct intel_digital_port *dig_port;
223 const struct intel_hdcp_shim *shim = connector->hdcp.shim;
224 bool capable = false;
225 u8 bksv[5];
226
227 if (!intel_attached_encoder(connector))
228 return capable;
229
230 dig_port = intel_attached_dig_port(connector);
231
232 if (!shim)
233 return capable;
234
235 if (shim->hdcp_get_capability) {
236 shim->hdcp_get_capability(dig_port, &capable);
237 } else {
238 if (!intel_hdcp_read_valid_bksv(dig_port, shim, bksv))
239 capable = true;
240 }
241
242 return capable;
243 }
244
245 /*
246 * Check if the source has all the building blocks ready to make
247 * HDCP 2.2 work
248 */
intel_hdcp2_prerequisite(struct intel_connector * connector)249 static bool intel_hdcp2_prerequisite(struct intel_connector *connector)
250 {
251 struct intel_display *display = to_intel_display(connector);
252 struct intel_hdcp *hdcp = &connector->hdcp;
253
254 /* I915 support for HDCP2.2 */
255 if (!hdcp->hdcp2_supported)
256 return false;
257
258 /* If MTL+ make sure gsc is loaded and proxy is setup */
259 if (USE_HDCP_GSC(display)) {
260 if (!intel_hdcp_gsc_check_status(display->drm))
261 return false;
262 }
263
264 /* MEI/GSC interface is solid depending on which is used */
265 mutex_lock(&display->hdcp.hdcp_mutex);
266 if (!display->hdcp.comp_added || !display->hdcp.arbiter) {
267 mutex_unlock(&display->hdcp.hdcp_mutex);
268 return false;
269 }
270 mutex_unlock(&display->hdcp.hdcp_mutex);
271
272 return true;
273 }
274
275 /* Is HDCP2.2 capable on Platform and Sink */
intel_hdcp2_get_capability(struct intel_connector * connector)276 static bool intel_hdcp2_get_capability(struct intel_connector *connector)
277 {
278 struct intel_hdcp *hdcp = &connector->hdcp;
279 bool capable = false;
280
281 if (!intel_hdcp2_prerequisite(connector))
282 return false;
283
284 /* Sink's capability for HDCP2.2 */
285 hdcp->shim->hdcp_2_2_get_capability(connector, &capable);
286
287 return capable;
288 }
289
intel_hdcp_get_remote_capability(struct intel_connector * connector,bool * hdcp_capable,bool * hdcp2_capable)290 static void intel_hdcp_get_remote_capability(struct intel_connector *connector,
291 bool *hdcp_capable,
292 bool *hdcp2_capable)
293 {
294 struct intel_hdcp *hdcp = &connector->hdcp;
295
296 if (!hdcp->shim->get_remote_hdcp_capability)
297 return;
298
299 hdcp->shim->get_remote_hdcp_capability(connector, hdcp_capable,
300 hdcp2_capable);
301
302 if (!intel_hdcp2_prerequisite(connector))
303 *hdcp2_capable = false;
304 }
305
intel_hdcp_in_use(struct intel_display * display,enum transcoder cpu_transcoder,enum port port)306 static bool intel_hdcp_in_use(struct intel_display *display,
307 enum transcoder cpu_transcoder, enum port port)
308 {
309 return intel_de_read(display,
310 HDCP_STATUS(display, cpu_transcoder, port)) &
311 HDCP_STATUS_ENC;
312 }
313
intel_hdcp2_in_use(struct intel_display * display,enum transcoder cpu_transcoder,enum port port)314 static bool intel_hdcp2_in_use(struct intel_display *display,
315 enum transcoder cpu_transcoder, enum port port)
316 {
317 return intel_de_read(display,
318 HDCP2_STATUS(display, cpu_transcoder, port)) &
319 LINK_ENCRYPTION_STATUS;
320 }
321
intel_hdcp_poll_ksv_fifo(struct intel_digital_port * dig_port,const struct intel_hdcp_shim * shim)322 static int intel_hdcp_poll_ksv_fifo(struct intel_digital_port *dig_port,
323 const struct intel_hdcp_shim *shim)
324 {
325 int ret, read_ret;
326 bool ksv_ready;
327
328 /* Poll for ksv list ready (spec says max time allowed is 5s) */
329 ret = __wait_for(read_ret = shim->read_ksv_ready(dig_port,
330 &ksv_ready),
331 read_ret || ksv_ready, 5 * 1000 * 1000, 1000,
332 100 * 1000);
333 if (ret)
334 return ret;
335 if (read_ret)
336 return read_ret;
337 if (!ksv_ready)
338 return -ETIMEDOUT;
339
340 return 0;
341 }
342
hdcp_key_loadable(struct intel_display * display)343 static bool hdcp_key_loadable(struct intel_display *display)
344 {
345 enum i915_power_well_id id;
346 bool enabled = false;
347
348 /*
349 * On HSW and BDW, Display HW loads the Key as soon as Display resumes.
350 * On all BXT+, SW can load the keys only when the PW#1 is turned on.
351 */
352 if (display->platform.haswell || display->platform.broadwell)
353 id = HSW_DISP_PW_GLOBAL;
354 else
355 id = SKL_DISP_PW_1;
356
357 /* PG1 (power well #1) needs to be enabled */
358 with_intel_display_rpm(display)
359 enabled = intel_display_power_well_is_enabled(display, id);
360
361 /*
362 * Another req for hdcp key loadability is enabled state of pll for
363 * cdclk. Without active crtc we won't land here. So we are assuming that
364 * cdclk is already on.
365 */
366
367 return enabled;
368 }
369
intel_hdcp_clear_keys(struct intel_display * display)370 static void intel_hdcp_clear_keys(struct intel_display *display)
371 {
372 intel_de_write(display, HDCP_KEY_CONF, HDCP_CLEAR_KEYS_TRIGGER);
373 intel_de_write(display, HDCP_KEY_STATUS,
374 HDCP_KEY_LOAD_DONE | HDCP_KEY_LOAD_STATUS | HDCP_FUSE_IN_PROGRESS | HDCP_FUSE_ERROR | HDCP_FUSE_DONE);
375 }
376
intel_hdcp_load_keys(struct intel_display * display)377 static int intel_hdcp_load_keys(struct intel_display *display)
378 {
379 int ret;
380 u32 val;
381
382 val = intel_de_read(display, HDCP_KEY_STATUS);
383 if ((val & HDCP_KEY_LOAD_DONE) && (val & HDCP_KEY_LOAD_STATUS))
384 return 0;
385
386 /*
387 * On HSW and BDW HW loads the HDCP1.4 Key when Display comes
388 * out of reset. So if Key is not already loaded, its an error state.
389 */
390 if (display->platform.haswell || display->platform.broadwell)
391 if (!(intel_de_read(display, HDCP_KEY_STATUS) & HDCP_KEY_LOAD_DONE))
392 return -ENXIO;
393
394 /*
395 * Initiate loading the HDCP key from fuses.
396 *
397 * BXT+ platforms, HDCP key needs to be loaded by SW. Only display
398 * version 9 platforms (minus BXT) differ in the key load trigger
399 * process from other platforms. These platforms use the GT Driver
400 * Mailbox interface.
401 */
402 if (DISPLAY_VER(display) == 9 && !display->platform.broxton) {
403 ret = intel_pcode_write(display->drm, SKL_PCODE_LOAD_HDCP_KEYS, 1);
404 if (ret) {
405 drm_err(display->drm,
406 "Failed to initiate HDCP key load (%d)\n",
407 ret);
408 return ret;
409 }
410 } else {
411 intel_de_write(display, HDCP_KEY_CONF, HDCP_KEY_LOAD_TRIGGER);
412 }
413
414 /* Wait for the keys to load (500us) */
415 ret = intel_de_wait_custom(display, HDCP_KEY_STATUS,
416 HDCP_KEY_LOAD_DONE, HDCP_KEY_LOAD_DONE,
417 10, 1, &val);
418 if (ret)
419 return ret;
420 else if (!(val & HDCP_KEY_LOAD_STATUS))
421 return -ENXIO;
422
423 /* Send Aksv over to PCH display for use in authentication */
424 intel_de_write(display, HDCP_KEY_CONF, HDCP_AKSV_SEND_TRIGGER);
425
426 return 0;
427 }
428
429 /* Returns updated SHA-1 index */
intel_write_sha_text(struct intel_display * display,u32 sha_text)430 static int intel_write_sha_text(struct intel_display *display, u32 sha_text)
431 {
432 intel_de_write(display, HDCP_SHA_TEXT, sha_text);
433 if (intel_de_wait_for_set(display, HDCP_REP_CTL, HDCP_SHA1_READY, 1)) {
434 drm_err(display->drm, "Timed out waiting for SHA1 ready\n");
435 return -ETIMEDOUT;
436 }
437 return 0;
438 }
439
440 static
intel_hdcp_get_repeater_ctl(struct intel_display * display,enum transcoder cpu_transcoder,enum port port)441 u32 intel_hdcp_get_repeater_ctl(struct intel_display *display,
442 enum transcoder cpu_transcoder, enum port port)
443 {
444 if (DISPLAY_VER(display) >= 12) {
445 switch (cpu_transcoder) {
446 case TRANSCODER_A:
447 return HDCP_TRANSA_REP_PRESENT |
448 HDCP_TRANSA_SHA1_M0;
449 case TRANSCODER_B:
450 return HDCP_TRANSB_REP_PRESENT |
451 HDCP_TRANSB_SHA1_M0;
452 case TRANSCODER_C:
453 return HDCP_TRANSC_REP_PRESENT |
454 HDCP_TRANSC_SHA1_M0;
455 case TRANSCODER_D:
456 return HDCP_TRANSD_REP_PRESENT |
457 HDCP_TRANSD_SHA1_M0;
458 default:
459 drm_err(display->drm, "Unknown transcoder %d\n",
460 cpu_transcoder);
461 return 0;
462 }
463 }
464
465 switch (port) {
466 case PORT_A:
467 return HDCP_DDIA_REP_PRESENT | HDCP_DDIA_SHA1_M0;
468 case PORT_B:
469 return HDCP_DDIB_REP_PRESENT | HDCP_DDIB_SHA1_M0;
470 case PORT_C:
471 return HDCP_DDIC_REP_PRESENT | HDCP_DDIC_SHA1_M0;
472 case PORT_D:
473 return HDCP_DDID_REP_PRESENT | HDCP_DDID_SHA1_M0;
474 case PORT_E:
475 return HDCP_DDIE_REP_PRESENT | HDCP_DDIE_SHA1_M0;
476 default:
477 drm_err(display->drm, "Unknown port %d\n", port);
478 return 0;
479 }
480 }
481
482 static
intel_hdcp_validate_v_prime(struct intel_connector * connector,const struct intel_hdcp_shim * shim,u8 * ksv_fifo,u8 num_downstream,u8 * bstatus)483 int intel_hdcp_validate_v_prime(struct intel_connector *connector,
484 const struct intel_hdcp_shim *shim,
485 u8 *ksv_fifo, u8 num_downstream, u8 *bstatus)
486 {
487 struct intel_display *display = to_intel_display(connector);
488 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
489 enum transcoder cpu_transcoder = connector->hdcp.cpu_transcoder;
490 enum port port = dig_port->base.port;
491 u32 vprime, sha_text, sha_leftovers, rep_ctl;
492 int ret, i, j, sha_idx;
493
494 /* Process V' values from the receiver */
495 for (i = 0; i < DRM_HDCP_V_PRIME_NUM_PARTS; i++) {
496 ret = shim->read_v_prime_part(dig_port, i, &vprime);
497 if (ret)
498 return ret;
499 intel_de_write(display, HDCP_SHA_V_PRIME(i), vprime);
500 }
501
502 /*
503 * We need to write the concatenation of all device KSVs, BINFO (DP) ||
504 * BSTATUS (HDMI), and M0 (which is added via HDCP_REP_CTL). This byte
505 * stream is written via the HDCP_SHA_TEXT register in 32-bit
506 * increments. Every 64 bytes, we need to write HDCP_REP_CTL again. This
507 * index will keep track of our progress through the 64 bytes as well as
508 * helping us work the 40-bit KSVs through our 32-bit register.
509 *
510 * NOTE: data passed via HDCP_SHA_TEXT should be big-endian
511 */
512 sha_idx = 0;
513 sha_text = 0;
514 sha_leftovers = 0;
515 rep_ctl = intel_hdcp_get_repeater_ctl(display, cpu_transcoder, port);
516 intel_de_write(display, HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32);
517 for (i = 0; i < num_downstream; i++) {
518 unsigned int sha_empty;
519 u8 *ksv = &ksv_fifo[i * DRM_HDCP_KSV_LEN];
520
521 /* Fill up the empty slots in sha_text and write it out */
522 sha_empty = sizeof(sha_text) - sha_leftovers;
523 for (j = 0; j < sha_empty; j++) {
524 u8 off = ((sizeof(sha_text) - j - 1 - sha_leftovers) * 8);
525 sha_text |= ksv[j] << off;
526 }
527
528 ret = intel_write_sha_text(display, sha_text);
529 if (ret < 0)
530 return ret;
531
532 /* Programming guide writes this every 64 bytes */
533 sha_idx += sizeof(sha_text);
534 if (!(sha_idx % 64))
535 intel_de_write(display, HDCP_REP_CTL,
536 rep_ctl | HDCP_SHA1_TEXT_32);
537
538 /* Store the leftover bytes from the ksv in sha_text */
539 sha_leftovers = DRM_HDCP_KSV_LEN - sha_empty;
540 sha_text = 0;
541 for (j = 0; j < sha_leftovers; j++)
542 sha_text |= ksv[sha_empty + j] <<
543 ((sizeof(sha_text) - j - 1) * 8);
544
545 /*
546 * If we still have room in sha_text for more data, continue.
547 * Otherwise, write it out immediately.
548 */
549 if (sizeof(sha_text) > sha_leftovers)
550 continue;
551
552 ret = intel_write_sha_text(display, sha_text);
553 if (ret < 0)
554 return ret;
555 sha_leftovers = 0;
556 sha_text = 0;
557 sha_idx += sizeof(sha_text);
558 }
559
560 /*
561 * We need to write BINFO/BSTATUS, and M0 now. Depending on how many
562 * bytes are leftover from the last ksv, we might be able to fit them
563 * all in sha_text (first 2 cases), or we might need to split them up
564 * into 2 writes (last 2 cases).
565 */
566 if (sha_leftovers == 0) {
567 /* Write 16 bits of text, 16 bits of M0 */
568 intel_de_write(display, HDCP_REP_CTL,
569 rep_ctl | HDCP_SHA1_TEXT_16);
570 ret = intel_write_sha_text(display,
571 bstatus[0] << 8 | bstatus[1]);
572 if (ret < 0)
573 return ret;
574 sha_idx += sizeof(sha_text);
575
576 /* Write 32 bits of M0 */
577 intel_de_write(display, HDCP_REP_CTL,
578 rep_ctl | HDCP_SHA1_TEXT_0);
579 ret = intel_write_sha_text(display, 0);
580 if (ret < 0)
581 return ret;
582 sha_idx += sizeof(sha_text);
583
584 /* Write 16 bits of M0 */
585 intel_de_write(display, HDCP_REP_CTL,
586 rep_ctl | HDCP_SHA1_TEXT_16);
587 ret = intel_write_sha_text(display, 0);
588 if (ret < 0)
589 return ret;
590 sha_idx += sizeof(sha_text);
591
592 } else if (sha_leftovers == 1) {
593 /* Write 24 bits of text, 8 bits of M0 */
594 intel_de_write(display, HDCP_REP_CTL,
595 rep_ctl | HDCP_SHA1_TEXT_24);
596 sha_text |= bstatus[0] << 16 | bstatus[1] << 8;
597 /* Only 24-bits of data, must be in the LSB */
598 sha_text = (sha_text & 0xffffff00) >> 8;
599 ret = intel_write_sha_text(display, sha_text);
600 if (ret < 0)
601 return ret;
602 sha_idx += sizeof(sha_text);
603
604 /* Write 32 bits of M0 */
605 intel_de_write(display, HDCP_REP_CTL,
606 rep_ctl | HDCP_SHA1_TEXT_0);
607 ret = intel_write_sha_text(display, 0);
608 if (ret < 0)
609 return ret;
610 sha_idx += sizeof(sha_text);
611
612 /* Write 24 bits of M0 */
613 intel_de_write(display, HDCP_REP_CTL,
614 rep_ctl | HDCP_SHA1_TEXT_8);
615 ret = intel_write_sha_text(display, 0);
616 if (ret < 0)
617 return ret;
618 sha_idx += sizeof(sha_text);
619
620 } else if (sha_leftovers == 2) {
621 /* Write 32 bits of text */
622 intel_de_write(display, HDCP_REP_CTL,
623 rep_ctl | HDCP_SHA1_TEXT_32);
624 sha_text |= bstatus[0] << 8 | bstatus[1];
625 ret = intel_write_sha_text(display, sha_text);
626 if (ret < 0)
627 return ret;
628 sha_idx += sizeof(sha_text);
629
630 /* Write 64 bits of M0 */
631 intel_de_write(display, HDCP_REP_CTL,
632 rep_ctl | HDCP_SHA1_TEXT_0);
633 for (i = 0; i < 2; i++) {
634 ret = intel_write_sha_text(display, 0);
635 if (ret < 0)
636 return ret;
637 sha_idx += sizeof(sha_text);
638 }
639
640 /*
641 * Terminate the SHA-1 stream by hand. For the other leftover
642 * cases this is appended by the hardware.
643 */
644 intel_de_write(display, HDCP_REP_CTL,
645 rep_ctl | HDCP_SHA1_TEXT_32);
646 sha_text = DRM_HDCP_SHA1_TERMINATOR << 24;
647 ret = intel_write_sha_text(display, sha_text);
648 if (ret < 0)
649 return ret;
650 sha_idx += sizeof(sha_text);
651 } else if (sha_leftovers == 3) {
652 /* Write 32 bits of text (filled from LSB) */
653 intel_de_write(display, HDCP_REP_CTL,
654 rep_ctl | HDCP_SHA1_TEXT_32);
655 sha_text |= bstatus[0];
656 ret = intel_write_sha_text(display, sha_text);
657 if (ret < 0)
658 return ret;
659 sha_idx += sizeof(sha_text);
660
661 /* Write 8 bits of text (filled from LSB), 24 bits of M0 */
662 intel_de_write(display, HDCP_REP_CTL,
663 rep_ctl | HDCP_SHA1_TEXT_8);
664 ret = intel_write_sha_text(display, bstatus[1]);
665 if (ret < 0)
666 return ret;
667 sha_idx += sizeof(sha_text);
668
669 /* Write 32 bits of M0 */
670 intel_de_write(display, HDCP_REP_CTL,
671 rep_ctl | HDCP_SHA1_TEXT_0);
672 ret = intel_write_sha_text(display, 0);
673 if (ret < 0)
674 return ret;
675 sha_idx += sizeof(sha_text);
676
677 /* Write 8 bits of M0 */
678 intel_de_write(display, HDCP_REP_CTL,
679 rep_ctl | HDCP_SHA1_TEXT_24);
680 ret = intel_write_sha_text(display, 0);
681 if (ret < 0)
682 return ret;
683 sha_idx += sizeof(sha_text);
684 } else {
685 drm_dbg_kms(display->drm, "Invalid number of leftovers %d\n",
686 sha_leftovers);
687 return -EINVAL;
688 }
689
690 intel_de_write(display, HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32);
691 /* Fill up to 64-4 bytes with zeros (leave the last write for length) */
692 while ((sha_idx % 64) < (64 - sizeof(sha_text))) {
693 ret = intel_write_sha_text(display, 0);
694 if (ret < 0)
695 return ret;
696 sha_idx += sizeof(sha_text);
697 }
698
699 /*
700 * Last write gets the length of the concatenation in bits. That is:
701 * - 5 bytes per device
702 * - 10 bytes for BINFO/BSTATUS(2), M0(8)
703 */
704 sha_text = (num_downstream * 5 + 10) * 8;
705 ret = intel_write_sha_text(display, sha_text);
706 if (ret < 0)
707 return ret;
708
709 /* Tell the HW we're done with the hash and wait for it to ACK */
710 intel_de_write(display, HDCP_REP_CTL,
711 rep_ctl | HDCP_SHA1_COMPLETE_HASH);
712 if (intel_de_wait_for_set(display, HDCP_REP_CTL,
713 HDCP_SHA1_COMPLETE, 1)) {
714 drm_err(display->drm, "Timed out waiting for SHA1 complete\n");
715 return -ETIMEDOUT;
716 }
717 if (!(intel_de_read(display, HDCP_REP_CTL) & HDCP_SHA1_V_MATCH)) {
718 drm_dbg_kms(display->drm, "SHA-1 mismatch, HDCP failed\n");
719 return -ENXIO;
720 }
721
722 return 0;
723 }
724
725 /* Implements Part 2 of the HDCP authorization procedure */
726 static
intel_hdcp_auth_downstream(struct intel_connector * connector)727 int intel_hdcp_auth_downstream(struct intel_connector *connector)
728 {
729 struct intel_display *display = to_intel_display(connector);
730 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
731 const struct intel_hdcp_shim *shim = connector->hdcp.shim;
732 u8 bstatus[2], num_downstream, *ksv_fifo;
733 int ret, i, tries = 3;
734
735 ret = intel_hdcp_poll_ksv_fifo(dig_port, shim);
736 if (ret) {
737 drm_dbg_kms(display->drm,
738 "KSV list failed to become ready (%d)\n", ret);
739 return ret;
740 }
741
742 ret = shim->read_bstatus(dig_port, bstatus);
743 if (ret)
744 return ret;
745
746 if (DRM_HDCP_MAX_DEVICE_EXCEEDED(bstatus[0]) ||
747 DRM_HDCP_MAX_CASCADE_EXCEEDED(bstatus[1])) {
748 drm_dbg_kms(display->drm, "Max Topology Limit Exceeded\n");
749 return -EPERM;
750 }
751
752 /*
753 * When repeater reports 0 device count, HDCP1.4 spec allows disabling
754 * the HDCP encryption. That implies that repeater can't have its own
755 * display. As there is no consumption of encrypted content in the
756 * repeater with 0 downstream devices, we are failing the
757 * authentication.
758 */
759 num_downstream = DRM_HDCP_NUM_DOWNSTREAM(bstatus[0]);
760 if (num_downstream == 0) {
761 drm_dbg_kms(display->drm,
762 "Repeater with zero downstream devices\n");
763 return -EINVAL;
764 }
765
766 ksv_fifo = kcalloc(DRM_HDCP_KSV_LEN, num_downstream, GFP_KERNEL);
767 if (!ksv_fifo) {
768 drm_dbg_kms(display->drm, "Out of mem: ksv_fifo\n");
769 return -ENOMEM;
770 }
771
772 ret = shim->read_ksv_fifo(dig_port, num_downstream, ksv_fifo);
773 if (ret)
774 goto err;
775
776 if (drm_hdcp_check_ksvs_revoked(display->drm, ksv_fifo,
777 num_downstream) > 0) {
778 drm_err(display->drm, "Revoked Ksv(s) in ksv_fifo\n");
779 ret = -EPERM;
780 goto err;
781 }
782
783 /*
784 * When V prime mismatches, DP Spec mandates re-read of
785 * V prime atleast twice.
786 */
787 for (i = 0; i < tries; i++) {
788 ret = intel_hdcp_validate_v_prime(connector, shim,
789 ksv_fifo, num_downstream,
790 bstatus);
791 if (!ret)
792 break;
793 }
794
795 if (i == tries) {
796 drm_dbg_kms(display->drm,
797 "V Prime validation failed.(%d)\n", ret);
798 goto err;
799 }
800
801 drm_dbg_kms(display->drm, "HDCP is enabled (%d downstream devices)\n",
802 num_downstream);
803 ret = 0;
804 err:
805 kfree(ksv_fifo);
806 return ret;
807 }
808
809 /* Implements Part 1 of the HDCP authorization procedure */
intel_hdcp_auth(struct intel_connector * connector)810 static int intel_hdcp_auth(struct intel_connector *connector)
811 {
812 struct intel_display *display = to_intel_display(connector);
813 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
814 struct intel_hdcp *hdcp = &connector->hdcp;
815 const struct intel_hdcp_shim *shim = hdcp->shim;
816 enum transcoder cpu_transcoder = connector->hdcp.cpu_transcoder;
817 enum port port = dig_port->base.port;
818 unsigned long r0_prime_gen_start;
819 int ret, i, tries = 2;
820 union {
821 u32 reg[2];
822 u8 shim[DRM_HDCP_AN_LEN];
823 } an;
824 union {
825 u32 reg[2];
826 u8 shim[DRM_HDCP_KSV_LEN];
827 } bksv;
828 union {
829 u32 reg;
830 u8 shim[DRM_HDCP_RI_LEN];
831 } ri;
832 bool repeater_present, hdcp_capable;
833
834 /*
835 * Detects whether the display is HDCP capable. Although we check for
836 * valid Bksv below, the HDCP over DP spec requires that we check
837 * whether the display supports HDCP before we write An. For HDMI
838 * displays, this is not necessary.
839 */
840 if (shim->hdcp_get_capability) {
841 ret = shim->hdcp_get_capability(dig_port, &hdcp_capable);
842 if (ret)
843 return ret;
844 if (!hdcp_capable) {
845 drm_dbg_kms(display->drm,
846 "Panel is not HDCP capable\n");
847 return -EINVAL;
848 }
849 }
850
851 /* Initialize An with 2 random values and acquire it */
852 for (i = 0; i < 2; i++)
853 intel_de_write(display,
854 HDCP_ANINIT(display, cpu_transcoder, port),
855 get_random_u32());
856 intel_de_write(display, HDCP_CONF(display, cpu_transcoder, port),
857 HDCP_CONF_CAPTURE_AN);
858
859 /* Wait for An to be acquired */
860 if (intel_de_wait_for_set(display,
861 HDCP_STATUS(display, cpu_transcoder, port),
862 HDCP_STATUS_AN_READY, 1)) {
863 drm_err(display->drm, "Timed out waiting for An\n");
864 return -ETIMEDOUT;
865 }
866
867 an.reg[0] = intel_de_read(display,
868 HDCP_ANLO(display, cpu_transcoder, port));
869 an.reg[1] = intel_de_read(display,
870 HDCP_ANHI(display, cpu_transcoder, port));
871 ret = shim->write_an_aksv(dig_port, an.shim);
872 if (ret)
873 return ret;
874
875 r0_prime_gen_start = jiffies;
876
877 memset(&bksv, 0, sizeof(bksv));
878
879 ret = intel_hdcp_read_valid_bksv(dig_port, shim, bksv.shim);
880 if (ret < 0)
881 return ret;
882
883 if (drm_hdcp_check_ksvs_revoked(display->drm, bksv.shim, 1) > 0) {
884 drm_err(display->drm, "BKSV is revoked\n");
885 return -EPERM;
886 }
887
888 intel_de_write(display, HDCP_BKSVLO(display, cpu_transcoder, port),
889 bksv.reg[0]);
890 intel_de_write(display, HDCP_BKSVHI(display, cpu_transcoder, port),
891 bksv.reg[1]);
892
893 ret = shim->repeater_present(dig_port, &repeater_present);
894 if (ret)
895 return ret;
896 if (repeater_present)
897 intel_de_write(display, HDCP_REP_CTL,
898 intel_hdcp_get_repeater_ctl(display, cpu_transcoder, port));
899
900 ret = shim->toggle_signalling(dig_port, cpu_transcoder, true);
901 if (ret)
902 return ret;
903
904 intel_de_write(display, HDCP_CONF(display, cpu_transcoder, port),
905 HDCP_CONF_AUTH_AND_ENC);
906
907 /* Wait for R0 ready */
908 if (wait_for(intel_de_read(display, HDCP_STATUS(display, cpu_transcoder, port)) &
909 (HDCP_STATUS_R0_READY | HDCP_STATUS_ENC), 1)) {
910 drm_err(display->drm, "Timed out waiting for R0 ready\n");
911 return -ETIMEDOUT;
912 }
913
914 /*
915 * Wait for R0' to become available. The spec says 100ms from Aksv, but
916 * some monitors can take longer than this. We'll set the timeout at
917 * 300ms just to be sure.
918 *
919 * On DP, there's an R0_READY bit available but no such bit
920 * exists on HDMI. Since the upper-bound is the same, we'll just do
921 * the stupid thing instead of polling on one and not the other.
922 */
923 wait_remaining_ms_from_jiffies(r0_prime_gen_start, 300);
924
925 tries = 3;
926
927 /*
928 * DP HDCP Spec mandates the two more reattempt to read R0, incase
929 * of R0 mismatch.
930 */
931 for (i = 0; i < tries; i++) {
932 ri.reg = 0;
933 ret = shim->read_ri_prime(dig_port, ri.shim);
934 if (ret)
935 return ret;
936 intel_de_write(display,
937 HDCP_RPRIME(display, cpu_transcoder, port),
938 ri.reg);
939
940 /* Wait for Ri prime match */
941 if (!wait_for(intel_de_read(display, HDCP_STATUS(display, cpu_transcoder, port)) &
942 (HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC), 1))
943 break;
944 }
945
946 if (i == tries) {
947 drm_dbg_kms(display->drm,
948 "Timed out waiting for Ri prime match (%x)\n",
949 intel_de_read(display,
950 HDCP_STATUS(display, cpu_transcoder, port)));
951 return -ETIMEDOUT;
952 }
953
954 /* Wait for encryption confirmation */
955 if (intel_de_wait_for_set(display,
956 HDCP_STATUS(display, cpu_transcoder, port),
957 HDCP_STATUS_ENC,
958 HDCP_ENCRYPT_STATUS_CHANGE_TIMEOUT_MS)) {
959 drm_err(display->drm, "Timed out waiting for encryption\n");
960 return -ETIMEDOUT;
961 }
962
963 /* DP MST Auth Part 1 Step 2.a and Step 2.b */
964 if (shim->stream_encryption) {
965 ret = shim->stream_encryption(connector, true);
966 if (ret) {
967 drm_err(display->drm, "[CONNECTOR:%d:%s] Failed to enable HDCP 1.4 stream enc\n",
968 connector->base.base.id, connector->base.name);
969 return ret;
970 }
971 drm_dbg_kms(display->drm, "HDCP 1.4 transcoder: %s stream encrypted\n",
972 transcoder_name(hdcp->stream_transcoder));
973 }
974
975 if (repeater_present)
976 return intel_hdcp_auth_downstream(connector);
977
978 drm_dbg_kms(display->drm, "HDCP is enabled (no repeater present)\n");
979 return 0;
980 }
981
_intel_hdcp_disable(struct intel_connector * connector)982 static int _intel_hdcp_disable(struct intel_connector *connector)
983 {
984 struct intel_display *display = to_intel_display(connector);
985 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
986 struct intel_hdcp *hdcp = &connector->hdcp;
987 enum port port = dig_port->base.port;
988 enum transcoder cpu_transcoder = hdcp->cpu_transcoder;
989 u32 repeater_ctl;
990 int ret;
991
992 drm_dbg_kms(display->drm, "[CONNECTOR:%d:%s] HDCP is being disabled...\n",
993 connector->base.base.id, connector->base.name);
994
995 if (hdcp->shim->stream_encryption) {
996 ret = hdcp->shim->stream_encryption(connector, false);
997 if (ret) {
998 drm_err(display->drm, "[CONNECTOR:%d:%s] Failed to disable HDCP 1.4 stream enc\n",
999 connector->base.base.id, connector->base.name);
1000 return ret;
1001 }
1002 drm_dbg_kms(display->drm, "HDCP 1.4 transcoder: %s stream encryption disabled\n",
1003 transcoder_name(hdcp->stream_transcoder));
1004 /*
1005 * If there are other connectors on this port using HDCP,
1006 * don't disable it until it disabled HDCP encryption for
1007 * all connectors in MST topology.
1008 */
1009 if (dig_port->hdcp.num_streams > 0)
1010 return 0;
1011 }
1012
1013 hdcp->hdcp_encrypted = false;
1014 intel_de_write(display, HDCP_CONF(display, cpu_transcoder, port), 0);
1015 if (intel_de_wait_for_clear(display,
1016 HDCP_STATUS(display, cpu_transcoder, port),
1017 ~0, HDCP_ENCRYPT_STATUS_CHANGE_TIMEOUT_MS)) {
1018 drm_err(display->drm,
1019 "Failed to disable HDCP, timeout clearing status\n");
1020 return -ETIMEDOUT;
1021 }
1022
1023 repeater_ctl = intel_hdcp_get_repeater_ctl(display, cpu_transcoder,
1024 port);
1025 intel_de_rmw(display, HDCP_REP_CTL, repeater_ctl, 0);
1026
1027 ret = hdcp->shim->toggle_signalling(dig_port, cpu_transcoder, false);
1028 if (ret) {
1029 drm_err(display->drm, "Failed to disable HDCP signalling\n");
1030 return ret;
1031 }
1032
1033 drm_dbg_kms(display->drm, "HDCP is disabled\n");
1034 return 0;
1035 }
1036
intel_hdcp1_enable(struct intel_connector * connector)1037 static int intel_hdcp1_enable(struct intel_connector *connector)
1038 {
1039 struct intel_display *display = to_intel_display(connector);
1040 struct intel_hdcp *hdcp = &connector->hdcp;
1041 int i, ret, tries = 3;
1042
1043 drm_dbg_kms(display->drm, "[CONNECTOR:%d:%s] HDCP is being enabled...\n",
1044 connector->base.base.id, connector->base.name);
1045
1046 if (!hdcp_key_loadable(display)) {
1047 drm_err(display->drm, "HDCP key Load is not possible\n");
1048 return -ENXIO;
1049 }
1050
1051 for (i = 0; i < KEY_LOAD_TRIES; i++) {
1052 ret = intel_hdcp_load_keys(display);
1053 if (!ret)
1054 break;
1055 intel_hdcp_clear_keys(display);
1056 }
1057 if (ret) {
1058 drm_err(display->drm, "Could not load HDCP keys, (%d)\n",
1059 ret);
1060 return ret;
1061 }
1062
1063 intel_hdcp_adjust_hdcp_line_rekeying(connector->encoder, hdcp, true);
1064
1065 /* Incase of authentication failures, HDCP spec expects reauth. */
1066 for (i = 0; i < tries; i++) {
1067 ret = intel_hdcp_auth(connector);
1068 if (!ret) {
1069 hdcp->hdcp_encrypted = true;
1070 return 0;
1071 }
1072
1073 drm_dbg_kms(display->drm, "HDCP Auth failure (%d)\n", ret);
1074
1075 /* Ensuring HDCP encryption and signalling are stopped. */
1076 _intel_hdcp_disable(connector);
1077 }
1078
1079 drm_dbg_kms(display->drm,
1080 "HDCP authentication failed (%d tries/%d)\n", tries, ret);
1081 return ret;
1082 }
1083
intel_hdcp_to_connector(struct intel_hdcp * hdcp)1084 static struct intel_connector *intel_hdcp_to_connector(struct intel_hdcp *hdcp)
1085 {
1086 return container_of(hdcp, struct intel_connector, hdcp);
1087 }
1088
intel_hdcp_update_value(struct intel_connector * connector,u64 value,bool update_property)1089 static void intel_hdcp_update_value(struct intel_connector *connector,
1090 u64 value, bool update_property)
1091 {
1092 struct intel_display *display = to_intel_display(connector);
1093 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1094 struct intel_hdcp *hdcp = &connector->hdcp;
1095
1096 drm_WARN_ON(display->drm, !mutex_is_locked(&hdcp->mutex));
1097
1098 if (hdcp->value == value)
1099 return;
1100
1101 drm_WARN_ON(display->drm, !mutex_is_locked(&dig_port->hdcp.mutex));
1102
1103 if (hdcp->value == DRM_MODE_CONTENT_PROTECTION_ENABLED) {
1104 if (!drm_WARN_ON(display->drm, dig_port->hdcp.num_streams == 0))
1105 dig_port->hdcp.num_streams--;
1106 } else if (value == DRM_MODE_CONTENT_PROTECTION_ENABLED) {
1107 dig_port->hdcp.num_streams++;
1108 }
1109
1110 hdcp->value = value;
1111 if (update_property) {
1112 drm_connector_get(&connector->base);
1113 if (!queue_work(display->wq.unordered, &hdcp->prop_work))
1114 drm_connector_put(&connector->base);
1115 }
1116 }
1117
1118 /* Implements Part 3 of the HDCP authorization procedure */
intel_hdcp_check_link(struct intel_connector * connector)1119 static int intel_hdcp_check_link(struct intel_connector *connector)
1120 {
1121 struct intel_display *display = to_intel_display(connector);
1122 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1123 struct intel_hdcp *hdcp = &connector->hdcp;
1124 enum port port = dig_port->base.port;
1125 enum transcoder cpu_transcoder;
1126 int ret = 0;
1127
1128 mutex_lock(&hdcp->mutex);
1129 mutex_lock(&dig_port->hdcp.mutex);
1130
1131 cpu_transcoder = hdcp->cpu_transcoder;
1132
1133 /* Check_link valid only when HDCP1.4 is enabled */
1134 if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_ENABLED ||
1135 !hdcp->hdcp_encrypted) {
1136 ret = -EINVAL;
1137 goto out;
1138 }
1139
1140 if (drm_WARN_ON(display->drm,
1141 !intel_hdcp_in_use(display, cpu_transcoder, port))) {
1142 drm_err(display->drm,
1143 "[CONNECTOR:%d:%s] HDCP link stopped encryption,%x\n",
1144 connector->base.base.id, connector->base.name,
1145 intel_de_read(display, HDCP_STATUS(display, cpu_transcoder, port)));
1146 ret = -ENXIO;
1147 intel_hdcp_update_value(connector,
1148 DRM_MODE_CONTENT_PROTECTION_DESIRED,
1149 true);
1150 goto out;
1151 }
1152
1153 if (hdcp->shim->check_link(dig_port, connector)) {
1154 if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED) {
1155 intel_hdcp_update_value(connector,
1156 DRM_MODE_CONTENT_PROTECTION_ENABLED, true);
1157 }
1158 goto out;
1159 }
1160
1161 drm_dbg_kms(display->drm,
1162 "[CONNECTOR:%d:%s] HDCP link failed, retrying authentication\n",
1163 connector->base.base.id, connector->base.name);
1164
1165 ret = _intel_hdcp_disable(connector);
1166 if (ret) {
1167 drm_err(display->drm, "Failed to disable hdcp (%d)\n", ret);
1168 intel_hdcp_update_value(connector,
1169 DRM_MODE_CONTENT_PROTECTION_DESIRED,
1170 true);
1171 goto out;
1172 }
1173
1174 ret = intel_hdcp1_enable(connector);
1175 if (ret) {
1176 drm_err(display->drm, "Failed to enable hdcp (%d)\n", ret);
1177 intel_hdcp_update_value(connector,
1178 DRM_MODE_CONTENT_PROTECTION_DESIRED,
1179 true);
1180 goto out;
1181 }
1182
1183 out:
1184 mutex_unlock(&dig_port->hdcp.mutex);
1185 mutex_unlock(&hdcp->mutex);
1186 return ret;
1187 }
1188
intel_hdcp_prop_work(struct work_struct * work)1189 static void intel_hdcp_prop_work(struct work_struct *work)
1190 {
1191 struct intel_hdcp *hdcp = container_of(work, struct intel_hdcp,
1192 prop_work);
1193 struct intel_connector *connector = intel_hdcp_to_connector(hdcp);
1194 struct intel_display *display = to_intel_display(connector);
1195
1196 drm_modeset_lock(&display->drm->mode_config.connection_mutex, NULL);
1197 mutex_lock(&hdcp->mutex);
1198
1199 /*
1200 * This worker is only used to flip between ENABLED/DESIRED. Either of
1201 * those to UNDESIRED is handled by core. If value == UNDESIRED,
1202 * we're running just after hdcp has been disabled, so just exit
1203 */
1204 if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED)
1205 drm_hdcp_update_content_protection(&connector->base,
1206 hdcp->value);
1207
1208 mutex_unlock(&hdcp->mutex);
1209 drm_modeset_unlock(&display->drm->mode_config.connection_mutex);
1210
1211 drm_connector_put(&connector->base);
1212 }
1213
is_hdcp_supported(struct intel_display * display,enum port port)1214 bool is_hdcp_supported(struct intel_display *display, enum port port)
1215 {
1216 return DISPLAY_RUNTIME_INFO(display)->has_hdcp &&
1217 (DISPLAY_VER(display) >= 12 || port < PORT_E);
1218 }
1219
1220 static int
hdcp2_prepare_ake_init(struct intel_connector * connector,struct hdcp2_ake_init * ake_data)1221 hdcp2_prepare_ake_init(struct intel_connector *connector,
1222 struct hdcp2_ake_init *ake_data)
1223 {
1224 struct intel_display *display = to_intel_display(connector);
1225 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1226 struct hdcp_port_data *data = &dig_port->hdcp.port_data;
1227 struct i915_hdcp_arbiter *arbiter;
1228 int ret;
1229
1230 mutex_lock(&display->hdcp.hdcp_mutex);
1231 arbiter = display->hdcp.arbiter;
1232
1233 if (!arbiter || !arbiter->ops) {
1234 mutex_unlock(&display->hdcp.hdcp_mutex);
1235 return -EINVAL;
1236 }
1237
1238 ret = arbiter->ops->initiate_hdcp2_session(arbiter->hdcp_dev, data, ake_data);
1239 if (ret)
1240 drm_dbg_kms(display->drm, "Prepare_ake_init failed. %d\n",
1241 ret);
1242 mutex_unlock(&display->hdcp.hdcp_mutex);
1243
1244 return ret;
1245 }
1246
1247 static int
hdcp2_verify_rx_cert_prepare_km(struct intel_connector * connector,struct hdcp2_ake_send_cert * rx_cert,bool * paired,struct hdcp2_ake_no_stored_km * ek_pub_km,size_t * msg_sz)1248 hdcp2_verify_rx_cert_prepare_km(struct intel_connector *connector,
1249 struct hdcp2_ake_send_cert *rx_cert,
1250 bool *paired,
1251 struct hdcp2_ake_no_stored_km *ek_pub_km,
1252 size_t *msg_sz)
1253 {
1254 struct intel_display *display = to_intel_display(connector);
1255 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1256 struct hdcp_port_data *data = &dig_port->hdcp.port_data;
1257 struct i915_hdcp_arbiter *arbiter;
1258 int ret;
1259
1260 mutex_lock(&display->hdcp.hdcp_mutex);
1261 arbiter = display->hdcp.arbiter;
1262
1263 if (!arbiter || !arbiter->ops) {
1264 mutex_unlock(&display->hdcp.hdcp_mutex);
1265 return -EINVAL;
1266 }
1267
1268 ret = arbiter->ops->verify_receiver_cert_prepare_km(arbiter->hdcp_dev, data,
1269 rx_cert, paired,
1270 ek_pub_km, msg_sz);
1271 if (ret < 0)
1272 drm_dbg_kms(display->drm, "Verify rx_cert failed. %d\n",
1273 ret);
1274 mutex_unlock(&display->hdcp.hdcp_mutex);
1275
1276 return ret;
1277 }
1278
hdcp2_verify_hprime(struct intel_connector * connector,struct hdcp2_ake_send_hprime * rx_hprime)1279 static int hdcp2_verify_hprime(struct intel_connector *connector,
1280 struct hdcp2_ake_send_hprime *rx_hprime)
1281 {
1282 struct intel_display *display = to_intel_display(connector);
1283 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1284 struct hdcp_port_data *data = &dig_port->hdcp.port_data;
1285 struct i915_hdcp_arbiter *arbiter;
1286 int ret;
1287
1288 mutex_lock(&display->hdcp.hdcp_mutex);
1289 arbiter = display->hdcp.arbiter;
1290
1291 if (!arbiter || !arbiter->ops) {
1292 mutex_unlock(&display->hdcp.hdcp_mutex);
1293 return -EINVAL;
1294 }
1295
1296 ret = arbiter->ops->verify_hprime(arbiter->hdcp_dev, data, rx_hprime);
1297 if (ret < 0)
1298 drm_dbg_kms(display->drm, "Verify hprime failed. %d\n", ret);
1299 mutex_unlock(&display->hdcp.hdcp_mutex);
1300
1301 return ret;
1302 }
1303
1304 static int
hdcp2_store_pairing_info(struct intel_connector * connector,struct hdcp2_ake_send_pairing_info * pairing_info)1305 hdcp2_store_pairing_info(struct intel_connector *connector,
1306 struct hdcp2_ake_send_pairing_info *pairing_info)
1307 {
1308 struct intel_display *display = to_intel_display(connector);
1309 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1310 struct hdcp_port_data *data = &dig_port->hdcp.port_data;
1311 struct i915_hdcp_arbiter *arbiter;
1312 int ret;
1313
1314 mutex_lock(&display->hdcp.hdcp_mutex);
1315 arbiter = display->hdcp.arbiter;
1316
1317 if (!arbiter || !arbiter->ops) {
1318 mutex_unlock(&display->hdcp.hdcp_mutex);
1319 return -EINVAL;
1320 }
1321
1322 ret = arbiter->ops->store_pairing_info(arbiter->hdcp_dev, data, pairing_info);
1323 if (ret < 0)
1324 drm_dbg_kms(display->drm, "Store pairing info failed. %d\n",
1325 ret);
1326 mutex_unlock(&display->hdcp.hdcp_mutex);
1327
1328 return ret;
1329 }
1330
1331 static int
hdcp2_prepare_lc_init(struct intel_connector * connector,struct hdcp2_lc_init * lc_init)1332 hdcp2_prepare_lc_init(struct intel_connector *connector,
1333 struct hdcp2_lc_init *lc_init)
1334 {
1335 struct intel_display *display = to_intel_display(connector);
1336 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1337 struct hdcp_port_data *data = &dig_port->hdcp.port_data;
1338 struct i915_hdcp_arbiter *arbiter;
1339 int ret;
1340
1341 mutex_lock(&display->hdcp.hdcp_mutex);
1342 arbiter = display->hdcp.arbiter;
1343
1344 if (!arbiter || !arbiter->ops) {
1345 mutex_unlock(&display->hdcp.hdcp_mutex);
1346 return -EINVAL;
1347 }
1348
1349 ret = arbiter->ops->initiate_locality_check(arbiter->hdcp_dev, data, lc_init);
1350 if (ret < 0)
1351 drm_dbg_kms(display->drm, "Prepare lc_init failed. %d\n",
1352 ret);
1353 mutex_unlock(&display->hdcp.hdcp_mutex);
1354
1355 return ret;
1356 }
1357
1358 static int
hdcp2_verify_lprime(struct intel_connector * connector,struct hdcp2_lc_send_lprime * rx_lprime)1359 hdcp2_verify_lprime(struct intel_connector *connector,
1360 struct hdcp2_lc_send_lprime *rx_lprime)
1361 {
1362 struct intel_display *display = to_intel_display(connector);
1363 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1364 struct hdcp_port_data *data = &dig_port->hdcp.port_data;
1365 struct i915_hdcp_arbiter *arbiter;
1366 int ret;
1367
1368 mutex_lock(&display->hdcp.hdcp_mutex);
1369 arbiter = display->hdcp.arbiter;
1370
1371 if (!arbiter || !arbiter->ops) {
1372 mutex_unlock(&display->hdcp.hdcp_mutex);
1373 return -EINVAL;
1374 }
1375
1376 ret = arbiter->ops->verify_lprime(arbiter->hdcp_dev, data, rx_lprime);
1377 if (ret < 0)
1378 drm_dbg_kms(display->drm, "Verify L_Prime failed. %d\n",
1379 ret);
1380 mutex_unlock(&display->hdcp.hdcp_mutex);
1381
1382 return ret;
1383 }
1384
hdcp2_prepare_skey(struct intel_connector * connector,struct hdcp2_ske_send_eks * ske_data)1385 static int hdcp2_prepare_skey(struct intel_connector *connector,
1386 struct hdcp2_ske_send_eks *ske_data)
1387 {
1388 struct intel_display *display = to_intel_display(connector);
1389 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1390 struct hdcp_port_data *data = &dig_port->hdcp.port_data;
1391 struct i915_hdcp_arbiter *arbiter;
1392 int ret;
1393
1394 mutex_lock(&display->hdcp.hdcp_mutex);
1395 arbiter = display->hdcp.arbiter;
1396
1397 if (!arbiter || !arbiter->ops) {
1398 mutex_unlock(&display->hdcp.hdcp_mutex);
1399 return -EINVAL;
1400 }
1401
1402 ret = arbiter->ops->get_session_key(arbiter->hdcp_dev, data, ske_data);
1403 if (ret < 0)
1404 drm_dbg_kms(display->drm, "Get session key failed. %d\n",
1405 ret);
1406 mutex_unlock(&display->hdcp.hdcp_mutex);
1407
1408 return ret;
1409 }
1410
1411 static int
hdcp2_verify_rep_topology_prepare_ack(struct intel_connector * connector,struct hdcp2_rep_send_receiverid_list * rep_topology,struct hdcp2_rep_send_ack * rep_send_ack)1412 hdcp2_verify_rep_topology_prepare_ack(struct intel_connector *connector,
1413 struct hdcp2_rep_send_receiverid_list
1414 *rep_topology,
1415 struct hdcp2_rep_send_ack *rep_send_ack)
1416 {
1417 struct intel_display *display = to_intel_display(connector);
1418 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1419 struct hdcp_port_data *data = &dig_port->hdcp.port_data;
1420 struct i915_hdcp_arbiter *arbiter;
1421 int ret;
1422
1423 mutex_lock(&display->hdcp.hdcp_mutex);
1424 arbiter = display->hdcp.arbiter;
1425
1426 if (!arbiter || !arbiter->ops) {
1427 mutex_unlock(&display->hdcp.hdcp_mutex);
1428 return -EINVAL;
1429 }
1430
1431 ret = arbiter->ops->repeater_check_flow_prepare_ack(arbiter->hdcp_dev,
1432 data,
1433 rep_topology,
1434 rep_send_ack);
1435 if (ret < 0)
1436 drm_dbg_kms(display->drm,
1437 "Verify rep topology failed. %d\n", ret);
1438 mutex_unlock(&display->hdcp.hdcp_mutex);
1439
1440 return ret;
1441 }
1442
1443 static int
hdcp2_verify_mprime(struct intel_connector * connector,struct hdcp2_rep_stream_ready * stream_ready)1444 hdcp2_verify_mprime(struct intel_connector *connector,
1445 struct hdcp2_rep_stream_ready *stream_ready)
1446 {
1447 struct intel_display *display = to_intel_display(connector);
1448 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1449 struct hdcp_port_data *data = &dig_port->hdcp.port_data;
1450 struct i915_hdcp_arbiter *arbiter;
1451 int ret;
1452
1453 mutex_lock(&display->hdcp.hdcp_mutex);
1454 arbiter = display->hdcp.arbiter;
1455
1456 if (!arbiter || !arbiter->ops) {
1457 mutex_unlock(&display->hdcp.hdcp_mutex);
1458 return -EINVAL;
1459 }
1460
1461 ret = arbiter->ops->verify_mprime(arbiter->hdcp_dev, data, stream_ready);
1462 if (ret < 0)
1463 drm_dbg_kms(display->drm, "Verify mprime failed. %d\n", ret);
1464 mutex_unlock(&display->hdcp.hdcp_mutex);
1465
1466 return ret;
1467 }
1468
hdcp2_authenticate_port(struct intel_connector * connector)1469 static int hdcp2_authenticate_port(struct intel_connector *connector)
1470 {
1471 struct intel_display *display = to_intel_display(connector);
1472 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1473 struct hdcp_port_data *data = &dig_port->hdcp.port_data;
1474 struct i915_hdcp_arbiter *arbiter;
1475 int ret;
1476
1477 mutex_lock(&display->hdcp.hdcp_mutex);
1478 arbiter = display->hdcp.arbiter;
1479
1480 if (!arbiter || !arbiter->ops) {
1481 mutex_unlock(&display->hdcp.hdcp_mutex);
1482 return -EINVAL;
1483 }
1484
1485 ret = arbiter->ops->enable_hdcp_authentication(arbiter->hdcp_dev, data);
1486 if (ret < 0)
1487 drm_dbg_kms(display->drm, "Enable hdcp auth failed. %d\n",
1488 ret);
1489 mutex_unlock(&display->hdcp.hdcp_mutex);
1490
1491 return ret;
1492 }
1493
hdcp2_close_session(struct intel_connector * connector)1494 static int hdcp2_close_session(struct intel_connector *connector)
1495 {
1496 struct intel_display *display = to_intel_display(connector);
1497 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1498 struct i915_hdcp_arbiter *arbiter;
1499 int ret;
1500
1501 mutex_lock(&display->hdcp.hdcp_mutex);
1502 arbiter = display->hdcp.arbiter;
1503
1504 if (!arbiter || !arbiter->ops) {
1505 mutex_unlock(&display->hdcp.hdcp_mutex);
1506 return -EINVAL;
1507 }
1508
1509 ret = arbiter->ops->close_hdcp_session(arbiter->hdcp_dev,
1510 &dig_port->hdcp.port_data);
1511 mutex_unlock(&display->hdcp.hdcp_mutex);
1512
1513 return ret;
1514 }
1515
hdcp2_deauthenticate_port(struct intel_connector * connector)1516 static int hdcp2_deauthenticate_port(struct intel_connector *connector)
1517 {
1518 return hdcp2_close_session(connector);
1519 }
1520
1521 /* Authentication flow starts from here */
hdcp2_authentication_key_exchange(struct intel_connector * connector)1522 static int hdcp2_authentication_key_exchange(struct intel_connector *connector)
1523 {
1524 struct intel_display *display = to_intel_display(connector);
1525 struct intel_digital_port *dig_port =
1526 intel_attached_dig_port(connector);
1527 struct intel_hdcp *hdcp = &connector->hdcp;
1528 union {
1529 struct hdcp2_ake_init ake_init;
1530 struct hdcp2_ake_send_cert send_cert;
1531 struct hdcp2_ake_no_stored_km no_stored_km;
1532 struct hdcp2_ake_send_hprime send_hprime;
1533 struct hdcp2_ake_send_pairing_info pairing_info;
1534 } msgs;
1535 const struct intel_hdcp_shim *shim = hdcp->shim;
1536 size_t size;
1537 int ret, i, max_retries;
1538
1539 /* Init for seq_num */
1540 hdcp->seq_num_v = 0;
1541 hdcp->seq_num_m = 0;
1542
1543 if (intel_encoder_is_dp(&dig_port->base) ||
1544 intel_encoder_is_mst(&dig_port->base))
1545 max_retries = 10;
1546 else
1547 max_retries = 1;
1548
1549 ret = hdcp2_prepare_ake_init(connector, &msgs.ake_init);
1550 if (ret < 0)
1551 return ret;
1552
1553 /*
1554 * Retry the first read and write to downstream at least 10 times
1555 * with a 50ms delay if not hdcp2 capable for DP/DPMST encoders
1556 * (dock decides to stop advertising hdcp2 capability for some reason).
1557 * The reason being that during suspend resume dock usually keeps the
1558 * HDCP2 registers inaccessible causing AUX error. This wouldn't be a
1559 * big problem if the userspace just kept retrying with some delay while
1560 * it continues to play low value content but most userspace applications
1561 * end up throwing an error when it receives one from KMD. This makes
1562 * sure we give the dock and the sink devices to complete its power cycle
1563 * and then try HDCP authentication. The values of 10 and delay of 50ms
1564 * was decided based on multiple trial and errors.
1565 */
1566 for (i = 0; i < max_retries; i++) {
1567 if (!intel_hdcp2_get_capability(connector)) {
1568 msleep(50);
1569 continue;
1570 }
1571
1572 ret = shim->write_2_2_msg(connector, &msgs.ake_init,
1573 sizeof(msgs.ake_init));
1574 if (ret < 0)
1575 continue;
1576
1577 ret = shim->read_2_2_msg(connector, HDCP_2_2_AKE_SEND_CERT,
1578 &msgs.send_cert, sizeof(msgs.send_cert));
1579 if (ret > 0)
1580 break;
1581 }
1582
1583 if (ret < 0)
1584 return ret;
1585
1586 if (msgs.send_cert.rx_caps[0] != HDCP_2_2_RX_CAPS_VERSION_VAL) {
1587 drm_dbg_kms(display->drm, "cert.rx_caps dont claim HDCP2.2\n");
1588 return -EINVAL;
1589 }
1590
1591 hdcp->is_repeater = HDCP_2_2_RX_REPEATER(msgs.send_cert.rx_caps[2]);
1592
1593 if (drm_hdcp_check_ksvs_revoked(display->drm,
1594 msgs.send_cert.cert_rx.receiver_id,
1595 1) > 0) {
1596 drm_err(display->drm, "Receiver ID is revoked\n");
1597 return -EPERM;
1598 }
1599
1600 /*
1601 * Here msgs.no_stored_km will hold msgs corresponding to the km
1602 * stored also.
1603 */
1604 ret = hdcp2_verify_rx_cert_prepare_km(connector, &msgs.send_cert,
1605 &hdcp->is_paired,
1606 &msgs.no_stored_km, &size);
1607 if (ret < 0)
1608 return ret;
1609
1610 ret = shim->write_2_2_msg(connector, &msgs.no_stored_km, size);
1611 if (ret < 0)
1612 return ret;
1613
1614 ret = shim->read_2_2_msg(connector, HDCP_2_2_AKE_SEND_HPRIME,
1615 &msgs.send_hprime, sizeof(msgs.send_hprime));
1616 if (ret < 0)
1617 return ret;
1618
1619 ret = hdcp2_verify_hprime(connector, &msgs.send_hprime);
1620 if (ret < 0)
1621 return ret;
1622
1623 if (!hdcp->is_paired) {
1624 /* Pairing is required */
1625 ret = shim->read_2_2_msg(connector,
1626 HDCP_2_2_AKE_SEND_PAIRING_INFO,
1627 &msgs.pairing_info,
1628 sizeof(msgs.pairing_info));
1629 if (ret < 0)
1630 return ret;
1631
1632 ret = hdcp2_store_pairing_info(connector, &msgs.pairing_info);
1633 if (ret < 0)
1634 return ret;
1635 hdcp->is_paired = true;
1636 }
1637
1638 return 0;
1639 }
1640
hdcp2_locality_check(struct intel_connector * connector)1641 static int hdcp2_locality_check(struct intel_connector *connector)
1642 {
1643 struct intel_hdcp *hdcp = &connector->hdcp;
1644 union {
1645 struct hdcp2_lc_init lc_init;
1646 struct hdcp2_lc_send_lprime send_lprime;
1647 } msgs;
1648 const struct intel_hdcp_shim *shim = hdcp->shim;
1649 int tries = HDCP2_LC_RETRY_CNT, ret, i;
1650
1651 for (i = 0; i < tries; i++) {
1652 ret = hdcp2_prepare_lc_init(connector, &msgs.lc_init);
1653 if (ret < 0)
1654 continue;
1655
1656 ret = shim->write_2_2_msg(connector, &msgs.lc_init,
1657 sizeof(msgs.lc_init));
1658 if (ret < 0)
1659 continue;
1660
1661 ret = shim->read_2_2_msg(connector,
1662 HDCP_2_2_LC_SEND_LPRIME,
1663 &msgs.send_lprime,
1664 sizeof(msgs.send_lprime));
1665 if (ret < 0)
1666 continue;
1667
1668 ret = hdcp2_verify_lprime(connector, &msgs.send_lprime);
1669 if (!ret)
1670 break;
1671 }
1672
1673 return ret;
1674 }
1675
hdcp2_session_key_exchange(struct intel_connector * connector)1676 static int hdcp2_session_key_exchange(struct intel_connector *connector)
1677 {
1678 struct intel_hdcp *hdcp = &connector->hdcp;
1679 struct hdcp2_ske_send_eks send_eks;
1680 int ret;
1681
1682 ret = hdcp2_prepare_skey(connector, &send_eks);
1683 if (ret < 0)
1684 return ret;
1685
1686 ret = hdcp->shim->write_2_2_msg(connector, &send_eks,
1687 sizeof(send_eks));
1688 if (ret < 0)
1689 return ret;
1690
1691 return 0;
1692 }
1693
1694 static
_hdcp2_propagate_stream_management_info(struct intel_connector * connector)1695 int _hdcp2_propagate_stream_management_info(struct intel_connector *connector)
1696 {
1697 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1698 struct hdcp_port_data *data = &dig_port->hdcp.port_data;
1699 struct intel_hdcp *hdcp = &connector->hdcp;
1700 union {
1701 struct hdcp2_rep_stream_manage stream_manage;
1702 struct hdcp2_rep_stream_ready stream_ready;
1703 } msgs;
1704 const struct intel_hdcp_shim *shim = hdcp->shim;
1705 int ret, streams_size_delta, i;
1706
1707 if (connector->hdcp.seq_num_m > HDCP_2_2_SEQ_NUM_MAX)
1708 return -ERANGE;
1709
1710 /* Prepare RepeaterAuth_Stream_Manage msg */
1711 msgs.stream_manage.msg_id = HDCP_2_2_REP_STREAM_MANAGE;
1712 drm_hdcp_cpu_to_be24(msgs.stream_manage.seq_num_m, hdcp->seq_num_m);
1713
1714 msgs.stream_manage.k = cpu_to_be16(data->k);
1715
1716 for (i = 0; i < data->k; i++) {
1717 msgs.stream_manage.streams[i].stream_id = data->streams[i].stream_id;
1718 msgs.stream_manage.streams[i].stream_type = data->streams[i].stream_type;
1719 }
1720
1721 streams_size_delta = (HDCP_2_2_MAX_CONTENT_STREAMS_CNT - data->k) *
1722 sizeof(struct hdcp2_streamid_type);
1723 /* Send it to Repeater */
1724 ret = shim->write_2_2_msg(connector, &msgs.stream_manage,
1725 sizeof(msgs.stream_manage) - streams_size_delta);
1726 if (ret < 0)
1727 goto out;
1728
1729 ret = shim->read_2_2_msg(connector, HDCP_2_2_REP_STREAM_READY,
1730 &msgs.stream_ready, sizeof(msgs.stream_ready));
1731 if (ret < 0)
1732 goto out;
1733
1734 data->seq_num_m = hdcp->seq_num_m;
1735
1736 ret = hdcp2_verify_mprime(connector, &msgs.stream_ready);
1737
1738 out:
1739 hdcp->seq_num_m++;
1740
1741 return ret;
1742 }
1743
1744 static
hdcp2_authenticate_repeater_topology(struct intel_connector * connector)1745 int hdcp2_authenticate_repeater_topology(struct intel_connector *connector)
1746 {
1747 struct intel_display *display = to_intel_display(connector);
1748 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1749 struct intel_hdcp *hdcp = &connector->hdcp;
1750 union {
1751 struct hdcp2_rep_send_receiverid_list recvid_list;
1752 struct hdcp2_rep_send_ack rep_ack;
1753 } msgs;
1754 const struct intel_hdcp_shim *shim = hdcp->shim;
1755 u32 seq_num_v, device_cnt;
1756 u8 *rx_info;
1757 int ret;
1758
1759 ret = shim->read_2_2_msg(connector, HDCP_2_2_REP_SEND_RECVID_LIST,
1760 &msgs.recvid_list, sizeof(msgs.recvid_list));
1761 if (ret < 0)
1762 return ret;
1763
1764 rx_info = msgs.recvid_list.rx_info;
1765
1766 if (HDCP_2_2_MAX_CASCADE_EXCEEDED(rx_info[1]) ||
1767 HDCP_2_2_MAX_DEVS_EXCEEDED(rx_info[1])) {
1768 drm_dbg_kms(display->drm, "Topology Max Size Exceeded\n");
1769 return -EINVAL;
1770 }
1771
1772 /*
1773 * MST topology is not Type 1 capable if it contains a downstream
1774 * device that is only HDCP 1.x or Legacy HDCP 2.0/2.1 compliant.
1775 */
1776 dig_port->hdcp.mst_type1_capable =
1777 !HDCP_2_2_HDCP1_DEVICE_CONNECTED(rx_info[1]) &&
1778 !HDCP_2_2_HDCP_2_0_REP_CONNECTED(rx_info[1]);
1779
1780 if (!dig_port->hdcp.mst_type1_capable && hdcp->content_type) {
1781 drm_dbg_kms(display->drm,
1782 "HDCP1.x or 2.0 Legacy Device Downstream\n");
1783 return -EINVAL;
1784 }
1785
1786 /* Converting and Storing the seq_num_v to local variable as DWORD */
1787 seq_num_v =
1788 drm_hdcp_be24_to_cpu((const u8 *)msgs.recvid_list.seq_num_v);
1789
1790 if (!hdcp->hdcp2_encrypted && seq_num_v) {
1791 drm_dbg_kms(display->drm,
1792 "Non zero Seq_num_v at first RecvId_List msg\n");
1793 return -EINVAL;
1794 }
1795
1796 if (seq_num_v < hdcp->seq_num_v) {
1797 /* Roll over of the seq_num_v from repeater. Reauthenticate. */
1798 drm_dbg_kms(display->drm, "Seq_num_v roll over.\n");
1799 return -EINVAL;
1800 }
1801
1802 device_cnt = (HDCP_2_2_DEV_COUNT_HI(rx_info[0]) << 4 |
1803 HDCP_2_2_DEV_COUNT_LO(rx_info[1]));
1804 if (drm_hdcp_check_ksvs_revoked(display->drm,
1805 msgs.recvid_list.receiver_ids,
1806 device_cnt) > 0) {
1807 drm_err(display->drm, "Revoked receiver ID(s) is in list\n");
1808 return -EPERM;
1809 }
1810
1811 ret = hdcp2_verify_rep_topology_prepare_ack(connector,
1812 &msgs.recvid_list,
1813 &msgs.rep_ack);
1814 if (ret < 0)
1815 return ret;
1816
1817 hdcp->seq_num_v = seq_num_v;
1818 ret = shim->write_2_2_msg(connector, &msgs.rep_ack,
1819 sizeof(msgs.rep_ack));
1820 if (ret < 0)
1821 return ret;
1822
1823 return 0;
1824 }
1825
hdcp2_authenticate_sink(struct intel_connector * connector)1826 static int hdcp2_authenticate_sink(struct intel_connector *connector)
1827 {
1828 struct intel_display *display = to_intel_display(connector);
1829 struct intel_hdcp *hdcp = &connector->hdcp;
1830 const struct intel_hdcp_shim *shim = hdcp->shim;
1831 int ret;
1832
1833 ret = hdcp2_authentication_key_exchange(connector);
1834 if (ret < 0) {
1835 drm_dbg_kms(display->drm, "AKE Failed. Err : %d\n", ret);
1836 return ret;
1837 }
1838
1839 ret = hdcp2_locality_check(connector);
1840 if (ret < 0) {
1841 drm_dbg_kms(display->drm,
1842 "Locality Check failed. Err : %d\n", ret);
1843 return ret;
1844 }
1845
1846 ret = hdcp2_session_key_exchange(connector);
1847 if (ret < 0) {
1848 drm_dbg_kms(display->drm, "SKE Failed. Err : %d\n", ret);
1849 return ret;
1850 }
1851
1852 if (shim->config_stream_type) {
1853 ret = shim->config_stream_type(connector,
1854 hdcp->is_repeater,
1855 hdcp->content_type);
1856 if (ret < 0)
1857 return ret;
1858 }
1859
1860 if (hdcp->is_repeater) {
1861 ret = hdcp2_authenticate_repeater_topology(connector);
1862 if (ret < 0) {
1863 drm_dbg_kms(display->drm,
1864 "Repeater Auth Failed. Err: %d\n", ret);
1865 return ret;
1866 }
1867 }
1868
1869 return ret;
1870 }
1871
hdcp2_enable_stream_encryption(struct intel_connector * connector)1872 static int hdcp2_enable_stream_encryption(struct intel_connector *connector)
1873 {
1874 struct intel_display *display = to_intel_display(connector);
1875 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1876 struct hdcp_port_data *data = &dig_port->hdcp.port_data;
1877 struct intel_hdcp *hdcp = &connector->hdcp;
1878 enum transcoder cpu_transcoder = hdcp->cpu_transcoder;
1879 enum port port = dig_port->base.port;
1880 int ret = 0;
1881
1882 if (!(intel_de_read(display, HDCP2_STATUS(display, cpu_transcoder, port)) &
1883 LINK_ENCRYPTION_STATUS)) {
1884 drm_err(display->drm, "[CONNECTOR:%d:%s] HDCP 2.2 Link is not encrypted\n",
1885 connector->base.base.id, connector->base.name);
1886 ret = -EPERM;
1887 goto link_recover;
1888 }
1889
1890 if (hdcp->shim->stream_2_2_encryption) {
1891 ret = hdcp->shim->stream_2_2_encryption(connector, true);
1892 if (ret) {
1893 drm_err(display->drm, "[CONNECTOR:%d:%s] Failed to enable HDCP 2.2 stream enc\n",
1894 connector->base.base.id, connector->base.name);
1895 return ret;
1896 }
1897 drm_dbg_kms(display->drm, "HDCP 2.2 transcoder: %s stream encrypted\n",
1898 transcoder_name(hdcp->stream_transcoder));
1899 }
1900
1901 return 0;
1902
1903 link_recover:
1904 if (hdcp2_deauthenticate_port(connector) < 0)
1905 drm_dbg_kms(display->drm, "Port deauth failed.\n");
1906
1907 dig_port->hdcp.auth_status = false;
1908 data->k = 0;
1909
1910 return ret;
1911 }
1912
hdcp2_enable_encryption(struct intel_connector * connector)1913 static int hdcp2_enable_encryption(struct intel_connector *connector)
1914 {
1915 struct intel_display *display = to_intel_display(connector);
1916 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1917 struct intel_hdcp *hdcp = &connector->hdcp;
1918 enum port port = dig_port->base.port;
1919 enum transcoder cpu_transcoder = hdcp->cpu_transcoder;
1920 int ret;
1921
1922 drm_WARN_ON(display->drm,
1923 intel_de_read(display, HDCP2_STATUS(display, cpu_transcoder, port)) &
1924 LINK_ENCRYPTION_STATUS);
1925 if (hdcp->shim->toggle_signalling) {
1926 ret = hdcp->shim->toggle_signalling(dig_port, cpu_transcoder,
1927 true);
1928 if (ret) {
1929 drm_err(display->drm,
1930 "Failed to enable HDCP signalling. %d\n",
1931 ret);
1932 return ret;
1933 }
1934 }
1935
1936 if (intel_de_read(display, HDCP2_STATUS(display, cpu_transcoder, port)) &
1937 LINK_AUTH_STATUS)
1938 /* Link is Authenticated. Now set for Encryption */
1939 intel_de_rmw(display, HDCP2_CTL(display, cpu_transcoder, port),
1940 0, CTL_LINK_ENCRYPTION_REQ);
1941
1942 ret = intel_de_wait_for_set(display,
1943 HDCP2_STATUS(display, cpu_transcoder,
1944 port),
1945 LINK_ENCRYPTION_STATUS,
1946 HDCP_ENCRYPT_STATUS_CHANGE_TIMEOUT_MS);
1947 dig_port->hdcp.auth_status = true;
1948
1949 return ret;
1950 }
1951
hdcp2_disable_encryption(struct intel_connector * connector)1952 static int hdcp2_disable_encryption(struct intel_connector *connector)
1953 {
1954 struct intel_display *display = to_intel_display(connector);
1955 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1956 struct intel_hdcp *hdcp = &connector->hdcp;
1957 enum port port = dig_port->base.port;
1958 enum transcoder cpu_transcoder = hdcp->cpu_transcoder;
1959 int ret;
1960
1961 drm_WARN_ON(display->drm,
1962 !(intel_de_read(display, HDCP2_STATUS(display, cpu_transcoder, port)) &
1963 LINK_ENCRYPTION_STATUS));
1964
1965 intel_de_rmw(display, HDCP2_CTL(display, cpu_transcoder, port),
1966 CTL_LINK_ENCRYPTION_REQ, 0);
1967
1968 ret = intel_de_wait_for_clear(display,
1969 HDCP2_STATUS(display, cpu_transcoder,
1970 port),
1971 LINK_ENCRYPTION_STATUS,
1972 HDCP_ENCRYPT_STATUS_CHANGE_TIMEOUT_MS);
1973 if (ret == -ETIMEDOUT)
1974 drm_dbg_kms(display->drm, "Disable Encryption Timedout");
1975
1976 if (hdcp->shim->toggle_signalling) {
1977 ret = hdcp->shim->toggle_signalling(dig_port, cpu_transcoder,
1978 false);
1979 if (ret) {
1980 drm_err(display->drm,
1981 "Failed to disable HDCP signalling. %d\n",
1982 ret);
1983 return ret;
1984 }
1985 }
1986
1987 return ret;
1988 }
1989
1990 static int
hdcp2_propagate_stream_management_info(struct intel_connector * connector)1991 hdcp2_propagate_stream_management_info(struct intel_connector *connector)
1992 {
1993 struct intel_display *display = to_intel_display(connector);
1994 int i, tries = 3, ret;
1995
1996 if (!connector->hdcp.is_repeater)
1997 return 0;
1998
1999 for (i = 0; i < tries; i++) {
2000 ret = _hdcp2_propagate_stream_management_info(connector);
2001 if (!ret)
2002 break;
2003
2004 /* Lets restart the auth incase of seq_num_m roll over */
2005 if (connector->hdcp.seq_num_m > HDCP_2_2_SEQ_NUM_MAX) {
2006 drm_dbg_kms(display->drm,
2007 "seq_num_m roll over.(%d)\n", ret);
2008 break;
2009 }
2010
2011 drm_dbg_kms(display->drm,
2012 "HDCP2 stream management %d of %d Failed.(%d)\n",
2013 i + 1, tries, ret);
2014 }
2015
2016 return ret;
2017 }
2018
hdcp2_authenticate_and_encrypt(struct intel_atomic_state * state,struct intel_connector * connector)2019 static int hdcp2_authenticate_and_encrypt(struct intel_atomic_state *state,
2020 struct intel_connector *connector)
2021 {
2022 struct intel_display *display = to_intel_display(connector);
2023 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
2024 int ret = 0, i, tries = 3;
2025
2026 for (i = 0; i < tries && !dig_port->hdcp.auth_status; i++) {
2027 ret = hdcp2_authenticate_sink(connector);
2028 if (!ret) {
2029 ret = intel_hdcp_prepare_streams(state, connector);
2030 if (ret) {
2031 drm_dbg_kms(display->drm,
2032 "Prepare stream failed.(%d)\n",
2033 ret);
2034 break;
2035 }
2036
2037 ret = hdcp2_propagate_stream_management_info(connector);
2038 if (ret) {
2039 drm_dbg_kms(display->drm,
2040 "Stream management failed.(%d)\n",
2041 ret);
2042 break;
2043 }
2044
2045 ret = hdcp2_authenticate_port(connector);
2046 if (!ret)
2047 break;
2048 drm_dbg_kms(display->drm, "HDCP2 port auth failed.(%d)\n",
2049 ret);
2050 }
2051
2052 /* Clearing the mei hdcp session */
2053 drm_dbg_kms(display->drm, "HDCP2.2 Auth %d of %d Failed.(%d)\n",
2054 i + 1, tries, ret);
2055 if (hdcp2_deauthenticate_port(connector) < 0)
2056 drm_dbg_kms(display->drm, "Port deauth failed.\n");
2057 }
2058
2059 if (!ret && !dig_port->hdcp.auth_status) {
2060 /*
2061 * Ensuring the required 200mSec min time interval between
2062 * Session Key Exchange and encryption.
2063 */
2064 msleep(HDCP_2_2_DELAY_BEFORE_ENCRYPTION_EN);
2065 ret = hdcp2_enable_encryption(connector);
2066 if (ret < 0) {
2067 drm_dbg_kms(display->drm,
2068 "Encryption Enable Failed.(%d)\n", ret);
2069 if (hdcp2_deauthenticate_port(connector) < 0)
2070 drm_dbg_kms(display->drm, "Port deauth failed.\n");
2071 }
2072 }
2073
2074 if (!ret)
2075 ret = hdcp2_enable_stream_encryption(connector);
2076
2077 return ret;
2078 }
2079
_intel_hdcp2_enable(struct intel_atomic_state * state,struct intel_connector * connector)2080 static int _intel_hdcp2_enable(struct intel_atomic_state *state,
2081 struct intel_connector *connector)
2082 {
2083 struct intel_display *display = to_intel_display(connector);
2084 struct intel_hdcp *hdcp = &connector->hdcp;
2085 int ret;
2086
2087 drm_dbg_kms(display->drm, "[CONNECTOR:%d:%s] HDCP2.2 is being enabled. Type: %d\n",
2088 connector->base.base.id, connector->base.name,
2089 hdcp->content_type);
2090
2091 intel_hdcp_adjust_hdcp_line_rekeying(connector->encoder, hdcp, false);
2092
2093 ret = hdcp2_authenticate_and_encrypt(state, connector);
2094 if (ret) {
2095 drm_dbg_kms(display->drm, "HDCP2 Type%d Enabling Failed. (%d)\n",
2096 hdcp->content_type, ret);
2097 return ret;
2098 }
2099
2100 drm_dbg_kms(display->drm, "[CONNECTOR:%d:%s] HDCP2.2 is enabled. Type %d\n",
2101 connector->base.base.id, connector->base.name,
2102 hdcp->content_type);
2103
2104 hdcp->hdcp2_encrypted = true;
2105 return 0;
2106 }
2107
2108 static int
_intel_hdcp2_disable(struct intel_connector * connector,bool hdcp2_link_recovery)2109 _intel_hdcp2_disable(struct intel_connector *connector, bool hdcp2_link_recovery)
2110 {
2111 struct intel_display *display = to_intel_display(connector);
2112 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
2113 struct hdcp_port_data *data = &dig_port->hdcp.port_data;
2114 struct intel_hdcp *hdcp = &connector->hdcp;
2115 int ret;
2116
2117 drm_dbg_kms(display->drm, "[CONNECTOR:%d:%s] HDCP2.2 is being Disabled\n",
2118 connector->base.base.id, connector->base.name);
2119
2120 if (hdcp->shim->stream_2_2_encryption) {
2121 ret = hdcp->shim->stream_2_2_encryption(connector, false);
2122 if (ret) {
2123 drm_err(display->drm, "[CONNECTOR:%d:%s] Failed to disable HDCP 2.2 stream enc\n",
2124 connector->base.base.id, connector->base.name);
2125 return ret;
2126 }
2127 drm_dbg_kms(display->drm, "HDCP 2.2 transcoder: %s stream encryption disabled\n",
2128 transcoder_name(hdcp->stream_transcoder));
2129
2130 if (dig_port->hdcp.num_streams > 0 && !hdcp2_link_recovery)
2131 return 0;
2132 }
2133
2134 ret = hdcp2_disable_encryption(connector);
2135
2136 if (hdcp2_deauthenticate_port(connector) < 0)
2137 drm_dbg_kms(display->drm, "Port deauth failed.\n");
2138
2139 connector->hdcp.hdcp2_encrypted = false;
2140 dig_port->hdcp.auth_status = false;
2141 data->k = 0;
2142
2143 return ret;
2144 }
2145
2146 /* Implements the Link Integrity Check for HDCP2.2 */
intel_hdcp2_check_link(struct intel_connector * connector)2147 static int intel_hdcp2_check_link(struct intel_connector *connector)
2148 {
2149 struct intel_display *display = to_intel_display(connector);
2150 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
2151 struct intel_hdcp *hdcp = &connector->hdcp;
2152 enum port port = dig_port->base.port;
2153 enum transcoder cpu_transcoder;
2154 int ret = 0;
2155
2156 mutex_lock(&hdcp->mutex);
2157 mutex_lock(&dig_port->hdcp.mutex);
2158 cpu_transcoder = hdcp->cpu_transcoder;
2159
2160 /* hdcp2_check_link is expected only when HDCP2.2 is Enabled */
2161 if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_ENABLED ||
2162 !hdcp->hdcp2_encrypted) {
2163 ret = -EINVAL;
2164 goto out;
2165 }
2166
2167 if (drm_WARN_ON(display->drm,
2168 !intel_hdcp2_in_use(display, cpu_transcoder, port))) {
2169 drm_err(display->drm,
2170 "HDCP2.2 link stopped the encryption, %x\n",
2171 intel_de_read(display, HDCP2_STATUS(display, cpu_transcoder, port)));
2172 ret = -ENXIO;
2173 _intel_hdcp2_disable(connector, true);
2174 intel_hdcp_update_value(connector,
2175 DRM_MODE_CONTENT_PROTECTION_DESIRED,
2176 true);
2177 goto out;
2178 }
2179
2180 ret = hdcp->shim->check_2_2_link(dig_port, connector);
2181 if (ret == HDCP_LINK_PROTECTED) {
2182 if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED) {
2183 intel_hdcp_update_value(connector,
2184 DRM_MODE_CONTENT_PROTECTION_ENABLED,
2185 true);
2186 }
2187 goto out;
2188 }
2189
2190 if (ret == HDCP_TOPOLOGY_CHANGE) {
2191 if (hdcp->value == DRM_MODE_CONTENT_PROTECTION_UNDESIRED)
2192 goto out;
2193
2194 drm_dbg_kms(display->drm,
2195 "HDCP2.2 Downstream topology change\n");
2196
2197 ret = hdcp2_authenticate_repeater_topology(connector);
2198 if (!ret) {
2199 intel_hdcp_update_value(connector,
2200 DRM_MODE_CONTENT_PROTECTION_ENABLED,
2201 true);
2202 goto out;
2203 }
2204
2205 drm_dbg_kms(display->drm,
2206 "[CONNECTOR:%d:%s] Repeater topology auth failed.(%d)\n",
2207 connector->base.base.id, connector->base.name,
2208 ret);
2209 } else {
2210 drm_dbg_kms(display->drm,
2211 "[CONNECTOR:%d:%s] HDCP2.2 link failed, retrying auth\n",
2212 connector->base.base.id, connector->base.name);
2213 }
2214
2215 ret = _intel_hdcp2_disable(connector, true);
2216 if (ret) {
2217 drm_err(display->drm,
2218 "[CONNECTOR:%d:%s] Failed to disable hdcp2.2 (%d)\n",
2219 connector->base.base.id, connector->base.name, ret);
2220 intel_hdcp_update_value(connector,
2221 DRM_MODE_CONTENT_PROTECTION_DESIRED, true);
2222 goto out;
2223 }
2224
2225 intel_hdcp_update_value(connector,
2226 DRM_MODE_CONTENT_PROTECTION_DESIRED, true);
2227 out:
2228 mutex_unlock(&dig_port->hdcp.mutex);
2229 mutex_unlock(&hdcp->mutex);
2230 return ret;
2231 }
2232
intel_hdcp_check_work(struct work_struct * work)2233 static void intel_hdcp_check_work(struct work_struct *work)
2234 {
2235 struct intel_hdcp *hdcp = container_of(to_delayed_work(work),
2236 struct intel_hdcp,
2237 check_work);
2238 struct intel_connector *connector = intel_hdcp_to_connector(hdcp);
2239 struct intel_display *display = to_intel_display(connector);
2240
2241 if (drm_connector_is_unregistered(&connector->base))
2242 return;
2243
2244 if (!intel_hdcp2_check_link(connector))
2245 queue_delayed_work(display->wq.unordered, &hdcp->check_work,
2246 DRM_HDCP2_CHECK_PERIOD_MS);
2247 else if (!intel_hdcp_check_link(connector))
2248 queue_delayed_work(display->wq.unordered, &hdcp->check_work,
2249 DRM_HDCP_CHECK_PERIOD_MS);
2250 }
2251
i915_hdcp_component_bind(struct device * drv_kdev,struct device * mei_kdev,void * data)2252 static int i915_hdcp_component_bind(struct device *drv_kdev,
2253 struct device *mei_kdev, void *data)
2254 {
2255 struct intel_display *display = to_intel_display(drv_kdev);
2256
2257 drm_dbg(display->drm, "I915 HDCP comp bind\n");
2258 mutex_lock(&display->hdcp.hdcp_mutex);
2259 display->hdcp.arbiter = (struct i915_hdcp_arbiter *)data;
2260 display->hdcp.arbiter->hdcp_dev = mei_kdev;
2261 mutex_unlock(&display->hdcp.hdcp_mutex);
2262
2263 return 0;
2264 }
2265
i915_hdcp_component_unbind(struct device * drv_kdev,struct device * mei_kdev,void * data)2266 static void i915_hdcp_component_unbind(struct device *drv_kdev,
2267 struct device *mei_kdev, void *data)
2268 {
2269 struct intel_display *display = to_intel_display(drv_kdev);
2270
2271 drm_dbg(display->drm, "I915 HDCP comp unbind\n");
2272 mutex_lock(&display->hdcp.hdcp_mutex);
2273 display->hdcp.arbiter = NULL;
2274 mutex_unlock(&display->hdcp.hdcp_mutex);
2275 }
2276
2277 static const struct component_ops i915_hdcp_ops = {
2278 .bind = i915_hdcp_component_bind,
2279 .unbind = i915_hdcp_component_unbind,
2280 };
2281
intel_get_hdcp_ddi_index(enum port port)2282 static enum hdcp_ddi intel_get_hdcp_ddi_index(enum port port)
2283 {
2284 switch (port) {
2285 case PORT_A:
2286 return HDCP_DDI_A;
2287 case PORT_B ... PORT_F:
2288 return (enum hdcp_ddi)port;
2289 default:
2290 return HDCP_DDI_INVALID_PORT;
2291 }
2292 }
2293
intel_get_hdcp_transcoder(enum transcoder cpu_transcoder)2294 static enum hdcp_transcoder intel_get_hdcp_transcoder(enum transcoder cpu_transcoder)
2295 {
2296 switch (cpu_transcoder) {
2297 case TRANSCODER_A ... TRANSCODER_D:
2298 return (enum hdcp_transcoder)(cpu_transcoder | 0x10);
2299 default: /* eDP, DSI TRANSCODERS are non HDCP capable */
2300 return HDCP_INVALID_TRANSCODER;
2301 }
2302 }
2303
initialize_hdcp_port_data(struct intel_connector * connector,struct intel_digital_port * dig_port,const struct intel_hdcp_shim * shim)2304 static int initialize_hdcp_port_data(struct intel_connector *connector,
2305 struct intel_digital_port *dig_port,
2306 const struct intel_hdcp_shim *shim)
2307 {
2308 struct intel_display *display = to_intel_display(connector);
2309 struct hdcp_port_data *data = &dig_port->hdcp.port_data;
2310 enum port port = dig_port->base.port;
2311
2312 if (DISPLAY_VER(display) < 12)
2313 data->hdcp_ddi = intel_get_hdcp_ddi_index(port);
2314 else
2315 /*
2316 * As per ME FW API expectation, for GEN 12+, hdcp_ddi is filled
2317 * with zero(INVALID PORT index).
2318 */
2319 data->hdcp_ddi = HDCP_DDI_INVALID_PORT;
2320
2321 /*
2322 * As associated transcoder is set and modified at modeset, here hdcp_transcoder
2323 * is initialized to zero (invalid transcoder index). This will be
2324 * retained for <Gen12 forever.
2325 */
2326 data->hdcp_transcoder = HDCP_INVALID_TRANSCODER;
2327
2328 data->port_type = (u8)HDCP_PORT_TYPE_INTEGRATED;
2329 data->protocol = (u8)shim->protocol;
2330
2331 if (!data->streams)
2332 data->streams = kcalloc(INTEL_NUM_PIPES(display),
2333 sizeof(struct hdcp2_streamid_type),
2334 GFP_KERNEL);
2335 if (!data->streams) {
2336 drm_err(display->drm, "Out of Memory\n");
2337 return -ENOMEM;
2338 }
2339
2340 return 0;
2341 }
2342
is_hdcp2_supported(struct intel_display * display)2343 static bool is_hdcp2_supported(struct intel_display *display)
2344 {
2345 if (USE_HDCP_GSC(display))
2346 return true;
2347
2348 if (!IS_ENABLED(CONFIG_INTEL_MEI_HDCP))
2349 return false;
2350
2351 return DISPLAY_VER(display) >= 10 ||
2352 display->platform.kabylake ||
2353 display->platform.coffeelake ||
2354 display->platform.cometlake;
2355 }
2356
intel_hdcp_component_init(struct intel_display * display)2357 void intel_hdcp_component_init(struct intel_display *display)
2358 {
2359 int ret;
2360
2361 if (!is_hdcp2_supported(display))
2362 return;
2363
2364 mutex_lock(&display->hdcp.hdcp_mutex);
2365 drm_WARN_ON(display->drm, display->hdcp.comp_added);
2366
2367 display->hdcp.comp_added = true;
2368 mutex_unlock(&display->hdcp.hdcp_mutex);
2369 if (USE_HDCP_GSC(display))
2370 ret = intel_hdcp_gsc_init(display);
2371 else
2372 ret = component_add_typed(display->drm->dev, &i915_hdcp_ops,
2373 I915_COMPONENT_HDCP);
2374
2375 if (ret < 0) {
2376 drm_dbg_kms(display->drm, "Failed at fw component add(%d)\n",
2377 ret);
2378 mutex_lock(&display->hdcp.hdcp_mutex);
2379 display->hdcp.comp_added = false;
2380 mutex_unlock(&display->hdcp.hdcp_mutex);
2381 return;
2382 }
2383 }
2384
intel_hdcp2_init(struct intel_connector * connector,struct intel_digital_port * dig_port,const struct intel_hdcp_shim * shim)2385 static void intel_hdcp2_init(struct intel_connector *connector,
2386 struct intel_digital_port *dig_port,
2387 const struct intel_hdcp_shim *shim)
2388 {
2389 struct intel_display *display = to_intel_display(connector);
2390 struct intel_hdcp *hdcp = &connector->hdcp;
2391 int ret;
2392
2393 ret = initialize_hdcp_port_data(connector, dig_port, shim);
2394 if (ret) {
2395 drm_dbg_kms(display->drm, "Mei hdcp data init failed\n");
2396 return;
2397 }
2398
2399 hdcp->hdcp2_supported = true;
2400 }
2401
intel_hdcp_init(struct intel_connector * connector,struct intel_digital_port * dig_port,const struct intel_hdcp_shim * shim)2402 int intel_hdcp_init(struct intel_connector *connector,
2403 struct intel_digital_port *dig_port,
2404 const struct intel_hdcp_shim *shim)
2405 {
2406 struct intel_display *display = to_intel_display(connector);
2407 struct intel_hdcp *hdcp = &connector->hdcp;
2408 int ret;
2409
2410 if (!shim)
2411 return -EINVAL;
2412
2413 if (is_hdcp2_supported(display))
2414 intel_hdcp2_init(connector, dig_port, shim);
2415
2416 ret = drm_connector_attach_content_protection_property(&connector->base,
2417 hdcp->hdcp2_supported);
2418 if (ret) {
2419 hdcp->hdcp2_supported = false;
2420 kfree(dig_port->hdcp.port_data.streams);
2421 return ret;
2422 }
2423
2424 hdcp->shim = shim;
2425 mutex_init(&hdcp->mutex);
2426 INIT_DELAYED_WORK(&hdcp->check_work, intel_hdcp_check_work);
2427 INIT_WORK(&hdcp->prop_work, intel_hdcp_prop_work);
2428 init_waitqueue_head(&hdcp->cp_irq_queue);
2429
2430 return 0;
2431 }
2432
_intel_hdcp_enable(struct intel_atomic_state * state,struct intel_encoder * encoder,const struct intel_crtc_state * pipe_config,const struct drm_connector_state * conn_state)2433 static int _intel_hdcp_enable(struct intel_atomic_state *state,
2434 struct intel_encoder *encoder,
2435 const struct intel_crtc_state *pipe_config,
2436 const struct drm_connector_state *conn_state)
2437 {
2438 struct intel_display *display = to_intel_display(encoder);
2439 struct intel_connector *connector =
2440 to_intel_connector(conn_state->connector);
2441 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
2442 struct intel_hdcp *hdcp = &connector->hdcp;
2443 unsigned long check_link_interval = DRM_HDCP_CHECK_PERIOD_MS;
2444 int ret = -EINVAL;
2445
2446 if (!hdcp->shim)
2447 return -ENOENT;
2448
2449 if (!connector->encoder) {
2450 drm_err(display->drm, "[CONNECTOR:%d:%s] encoder is not initialized\n",
2451 connector->base.base.id, connector->base.name);
2452 return -ENODEV;
2453 }
2454
2455 mutex_lock(&hdcp->mutex);
2456 mutex_lock(&dig_port->hdcp.mutex);
2457 drm_WARN_ON(display->drm,
2458 hdcp->value == DRM_MODE_CONTENT_PROTECTION_ENABLED);
2459 hdcp->content_type = (u8)conn_state->hdcp_content_type;
2460
2461 if (intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DP_MST)) {
2462 hdcp->cpu_transcoder = pipe_config->mst_master_transcoder;
2463 hdcp->stream_transcoder = pipe_config->cpu_transcoder;
2464 } else {
2465 hdcp->cpu_transcoder = pipe_config->cpu_transcoder;
2466 hdcp->stream_transcoder = INVALID_TRANSCODER;
2467 }
2468
2469 if (DISPLAY_VER(display) >= 12)
2470 dig_port->hdcp.port_data.hdcp_transcoder =
2471 intel_get_hdcp_transcoder(hdcp->cpu_transcoder);
2472
2473 /*
2474 * Considering that HDCP2.2 is more secure than HDCP1.4, If the setup
2475 * is capable of HDCP2.2, it is preferred to use HDCP2.2.
2476 */
2477 if (!hdcp->force_hdcp14 && intel_hdcp2_get_capability(connector)) {
2478 ret = _intel_hdcp2_enable(state, connector);
2479 if (!ret)
2480 check_link_interval =
2481 DRM_HDCP2_CHECK_PERIOD_MS;
2482 }
2483
2484 if (hdcp->force_hdcp14)
2485 drm_dbg_kms(display->drm, "Forcing HDCP 1.4\n");
2486
2487 /*
2488 * When HDCP2.2 fails and Content Type is not Type1, HDCP1.4 will
2489 * be attempted.
2490 */
2491 if (ret && intel_hdcp_get_capability(connector) &&
2492 hdcp->content_type != DRM_MODE_HDCP_CONTENT_TYPE1) {
2493 ret = intel_hdcp1_enable(connector);
2494 }
2495
2496 if (!ret) {
2497 queue_delayed_work(display->wq.unordered, &hdcp->check_work,
2498 check_link_interval);
2499 intel_hdcp_update_value(connector,
2500 DRM_MODE_CONTENT_PROTECTION_ENABLED,
2501 true);
2502 }
2503
2504 mutex_unlock(&dig_port->hdcp.mutex);
2505 mutex_unlock(&hdcp->mutex);
2506 return ret;
2507 }
2508
intel_hdcp_enable(struct intel_atomic_state * state,struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state,const struct drm_connector_state * conn_state)2509 void intel_hdcp_enable(struct intel_atomic_state *state,
2510 struct intel_encoder *encoder,
2511 const struct intel_crtc_state *crtc_state,
2512 const struct drm_connector_state *conn_state)
2513 {
2514 struct intel_connector *connector =
2515 to_intel_connector(conn_state->connector);
2516 struct intel_hdcp *hdcp = &connector->hdcp;
2517
2518 /*
2519 * Enable hdcp if it's desired or if userspace is enabled and
2520 * driver set its state to undesired
2521 */
2522 if (conn_state->content_protection ==
2523 DRM_MODE_CONTENT_PROTECTION_DESIRED ||
2524 (conn_state->content_protection ==
2525 DRM_MODE_CONTENT_PROTECTION_ENABLED && hdcp->value ==
2526 DRM_MODE_CONTENT_PROTECTION_UNDESIRED))
2527 _intel_hdcp_enable(state, encoder, crtc_state, conn_state);
2528 }
2529
intel_hdcp_disable(struct intel_connector * connector)2530 int intel_hdcp_disable(struct intel_connector *connector)
2531 {
2532 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
2533 struct intel_hdcp *hdcp = &connector->hdcp;
2534 int ret = 0;
2535
2536 if (!hdcp->shim)
2537 return -ENOENT;
2538
2539 mutex_lock(&hdcp->mutex);
2540 mutex_lock(&dig_port->hdcp.mutex);
2541
2542 if (hdcp->value == DRM_MODE_CONTENT_PROTECTION_UNDESIRED)
2543 goto out;
2544
2545 intel_hdcp_update_value(connector,
2546 DRM_MODE_CONTENT_PROTECTION_UNDESIRED, false);
2547 if (hdcp->hdcp2_encrypted)
2548 ret = _intel_hdcp2_disable(connector, false);
2549 else if (hdcp->hdcp_encrypted)
2550 ret = _intel_hdcp_disable(connector);
2551
2552 out:
2553 mutex_unlock(&dig_port->hdcp.mutex);
2554 mutex_unlock(&hdcp->mutex);
2555 cancel_delayed_work_sync(&hdcp->check_work);
2556 return ret;
2557 }
2558
intel_hdcp_update_pipe(struct intel_atomic_state * state,struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state,const struct drm_connector_state * conn_state)2559 void intel_hdcp_update_pipe(struct intel_atomic_state *state,
2560 struct intel_encoder *encoder,
2561 const struct intel_crtc_state *crtc_state,
2562 const struct drm_connector_state *conn_state)
2563 {
2564 struct intel_connector *connector =
2565 to_intel_connector(conn_state->connector);
2566 struct intel_hdcp *hdcp = &connector->hdcp;
2567 bool content_protection_type_changed, desired_and_not_enabled = false;
2568 struct intel_display *display = to_intel_display(connector);
2569
2570 if (!connector->hdcp.shim)
2571 return;
2572
2573 content_protection_type_changed =
2574 (conn_state->hdcp_content_type != hdcp->content_type &&
2575 conn_state->content_protection !=
2576 DRM_MODE_CONTENT_PROTECTION_UNDESIRED);
2577
2578 /*
2579 * During the HDCP encryption session if Type change is requested,
2580 * disable the HDCP and re-enable it with new TYPE value.
2581 */
2582 if (conn_state->content_protection ==
2583 DRM_MODE_CONTENT_PROTECTION_UNDESIRED ||
2584 content_protection_type_changed)
2585 intel_hdcp_disable(connector);
2586
2587 /*
2588 * Mark the hdcp state as DESIRED after the hdcp disable of type
2589 * change procedure.
2590 */
2591 if (content_protection_type_changed) {
2592 mutex_lock(&hdcp->mutex);
2593 hdcp->value = DRM_MODE_CONTENT_PROTECTION_DESIRED;
2594 drm_connector_get(&connector->base);
2595 if (!queue_work(display->wq.unordered, &hdcp->prop_work))
2596 drm_connector_put(&connector->base);
2597 mutex_unlock(&hdcp->mutex);
2598 }
2599
2600 if (conn_state->content_protection ==
2601 DRM_MODE_CONTENT_PROTECTION_DESIRED) {
2602 mutex_lock(&hdcp->mutex);
2603 /* Avoid enabling hdcp, if it already ENABLED */
2604 desired_and_not_enabled =
2605 hdcp->value != DRM_MODE_CONTENT_PROTECTION_ENABLED;
2606 mutex_unlock(&hdcp->mutex);
2607 /*
2608 * If HDCP already ENABLED and CP property is DESIRED, schedule
2609 * prop_work to update correct CP property to user space.
2610 */
2611 if (!desired_and_not_enabled && !content_protection_type_changed) {
2612 drm_connector_get(&connector->base);
2613 if (!queue_work(display->wq.unordered, &hdcp->prop_work))
2614 drm_connector_put(&connector->base);
2615
2616 }
2617 }
2618
2619 if (desired_and_not_enabled || content_protection_type_changed)
2620 _intel_hdcp_enable(state, encoder, crtc_state, conn_state);
2621 }
2622
intel_hdcp_cancel_works(struct intel_connector * connector)2623 void intel_hdcp_cancel_works(struct intel_connector *connector)
2624 {
2625 if (!connector->hdcp.shim)
2626 return;
2627
2628 cancel_delayed_work_sync(&connector->hdcp.check_work);
2629 cancel_work_sync(&connector->hdcp.prop_work);
2630 }
2631
intel_hdcp_component_fini(struct intel_display * display)2632 void intel_hdcp_component_fini(struct intel_display *display)
2633 {
2634 mutex_lock(&display->hdcp.hdcp_mutex);
2635 if (!display->hdcp.comp_added) {
2636 mutex_unlock(&display->hdcp.hdcp_mutex);
2637 return;
2638 }
2639
2640 display->hdcp.comp_added = false;
2641 mutex_unlock(&display->hdcp.hdcp_mutex);
2642
2643 if (USE_HDCP_GSC(display))
2644 intel_hdcp_gsc_fini(display);
2645 else
2646 component_del(display->drm->dev, &i915_hdcp_ops);
2647 }
2648
intel_hdcp_cleanup(struct intel_connector * connector)2649 void intel_hdcp_cleanup(struct intel_connector *connector)
2650 {
2651 struct intel_hdcp *hdcp = &connector->hdcp;
2652
2653 if (!hdcp->shim)
2654 return;
2655
2656 /*
2657 * If the connector is registered, it's possible userspace could kick
2658 * off another HDCP enable, which would re-spawn the workers.
2659 */
2660 drm_WARN_ON(connector->base.dev,
2661 connector->base.registration_state == DRM_CONNECTOR_REGISTERED);
2662
2663 /*
2664 * Now that the connector is not registered, check_work won't be run,
2665 * but cancel any outstanding instances of it
2666 */
2667 cancel_delayed_work_sync(&hdcp->check_work);
2668
2669 /*
2670 * We don't cancel prop_work in the same way as check_work since it
2671 * requires connection_mutex which could be held while calling this
2672 * function. Instead, we rely on the connector references grabbed before
2673 * scheduling prop_work to ensure the connector is alive when prop_work
2674 * is run. So if we're in the destroy path (which is where this
2675 * function should be called), we're "guaranteed" that prop_work is not
2676 * active (tl;dr This Should Never Happen).
2677 */
2678 drm_WARN_ON(connector->base.dev, work_pending(&hdcp->prop_work));
2679
2680 mutex_lock(&hdcp->mutex);
2681 hdcp->shim = NULL;
2682 mutex_unlock(&hdcp->mutex);
2683 }
2684
intel_hdcp_atomic_check(struct drm_connector * connector,struct drm_connector_state * old_state,struct drm_connector_state * new_state)2685 void intel_hdcp_atomic_check(struct drm_connector *connector,
2686 struct drm_connector_state *old_state,
2687 struct drm_connector_state *new_state)
2688 {
2689 u64 old_cp = old_state->content_protection;
2690 u64 new_cp = new_state->content_protection;
2691 struct drm_crtc_state *crtc_state;
2692
2693 if (!new_state->crtc) {
2694 /*
2695 * If the connector is being disabled with CP enabled, mark it
2696 * desired so it's re-enabled when the connector is brought back
2697 */
2698 if (old_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED)
2699 new_state->content_protection =
2700 DRM_MODE_CONTENT_PROTECTION_DESIRED;
2701 return;
2702 }
2703
2704 crtc_state = drm_atomic_get_new_crtc_state(new_state->state,
2705 new_state->crtc);
2706 /*
2707 * Fix the HDCP uapi content protection state in case of modeset.
2708 * FIXME: As per HDCP content protection property uapi doc, an uevent()
2709 * need to be sent if there is transition from ENABLED->DESIRED.
2710 */
2711 if (drm_atomic_crtc_needs_modeset(crtc_state) &&
2712 (old_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED &&
2713 new_cp != DRM_MODE_CONTENT_PROTECTION_UNDESIRED))
2714 new_state->content_protection =
2715 DRM_MODE_CONTENT_PROTECTION_DESIRED;
2716
2717 /*
2718 * Nothing to do if the state didn't change, or HDCP was activated since
2719 * the last commit. And also no change in hdcp content type.
2720 */
2721 if (old_cp == new_cp ||
2722 (old_cp == DRM_MODE_CONTENT_PROTECTION_DESIRED &&
2723 new_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED)) {
2724 if (old_state->hdcp_content_type ==
2725 new_state->hdcp_content_type)
2726 return;
2727 }
2728
2729 crtc_state->mode_changed = true;
2730 }
2731
2732 /* Handles the CP_IRQ raised from the DP HDCP sink */
intel_hdcp_handle_cp_irq(struct intel_connector * connector)2733 void intel_hdcp_handle_cp_irq(struct intel_connector *connector)
2734 {
2735 struct intel_hdcp *hdcp = &connector->hdcp;
2736 struct intel_display *display = to_intel_display(connector);
2737
2738 if (!hdcp->shim)
2739 return;
2740
2741 atomic_inc(&connector->hdcp.cp_irq_count);
2742 wake_up_all(&connector->hdcp.cp_irq_queue);
2743
2744 queue_delayed_work(display->wq.unordered, &hdcp->check_work, 0);
2745 }
2746
__intel_hdcp_info(struct seq_file * m,struct intel_connector * connector,bool remote_req)2747 static void __intel_hdcp_info(struct seq_file *m, struct intel_connector *connector,
2748 bool remote_req)
2749 {
2750 bool hdcp_cap = false, hdcp2_cap = false;
2751
2752 if (!connector->hdcp.shim) {
2753 seq_puts(m, "No Connector Support");
2754 goto out;
2755 }
2756
2757 if (remote_req) {
2758 intel_hdcp_get_remote_capability(connector, &hdcp_cap, &hdcp2_cap);
2759 } else {
2760 hdcp_cap = intel_hdcp_get_capability(connector);
2761 hdcp2_cap = intel_hdcp2_get_capability(connector);
2762 }
2763
2764 if (hdcp_cap)
2765 seq_puts(m, "HDCP1.4 ");
2766 if (hdcp2_cap)
2767 seq_puts(m, "HDCP2.2 ");
2768
2769 if (!hdcp_cap && !hdcp2_cap)
2770 seq_puts(m, "None");
2771
2772 out:
2773 seq_puts(m, "\n");
2774 }
2775
intel_hdcp_info(struct seq_file * m,struct intel_connector * connector)2776 void intel_hdcp_info(struct seq_file *m, struct intel_connector *connector)
2777 {
2778 seq_puts(m, "\tHDCP version: ");
2779 if (connector->mst.dp) {
2780 __intel_hdcp_info(m, connector, true);
2781 seq_puts(m, "\tMST Hub HDCP version: ");
2782 }
2783 __intel_hdcp_info(m, connector, false);
2784 }
2785
intel_hdcp_sink_capability_show(struct seq_file * m,void * data)2786 static int intel_hdcp_sink_capability_show(struct seq_file *m, void *data)
2787 {
2788 struct intel_connector *connector = m->private;
2789 struct intel_display *display = to_intel_display(connector);
2790 int ret;
2791
2792 ret = drm_modeset_lock_single_interruptible(&display->drm->mode_config.connection_mutex);
2793 if (ret)
2794 return ret;
2795
2796 if (!connector->base.encoder ||
2797 connector->base.status != connector_status_connected) {
2798 ret = -ENODEV;
2799 goto out;
2800 }
2801
2802 seq_printf(m, "%s:%d HDCP version: ", connector->base.name,
2803 connector->base.base.id);
2804 __intel_hdcp_info(m, connector, false);
2805
2806 out:
2807 drm_modeset_unlock(&display->drm->mode_config.connection_mutex);
2808
2809 return ret;
2810 }
2811 DEFINE_SHOW_ATTRIBUTE(intel_hdcp_sink_capability);
2812
intel_hdcp_force_14_write(struct file * file,const char __user * ubuf,size_t len,loff_t * offp)2813 static ssize_t intel_hdcp_force_14_write(struct file *file,
2814 const char __user *ubuf,
2815 size_t len, loff_t *offp)
2816 {
2817 struct seq_file *m = file->private_data;
2818 struct intel_connector *connector = m->private;
2819 struct intel_hdcp *hdcp = &connector->hdcp;
2820 bool force_hdcp14 = false;
2821 int ret;
2822
2823 if (len == 0)
2824 return 0;
2825
2826 ret = kstrtobool_from_user(ubuf, len, &force_hdcp14);
2827 if (ret < 0)
2828 return ret;
2829
2830 hdcp->force_hdcp14 = force_hdcp14;
2831 *offp += len;
2832
2833 return len;
2834 }
2835
intel_hdcp_force_14_show(struct seq_file * m,void * data)2836 static int intel_hdcp_force_14_show(struct seq_file *m, void *data)
2837 {
2838 struct intel_connector *connector = m->private;
2839 struct intel_display *display = to_intel_display(connector);
2840 struct intel_encoder *encoder = intel_attached_encoder(connector);
2841 struct intel_hdcp *hdcp = &connector->hdcp;
2842 struct drm_crtc *crtc;
2843 int ret;
2844
2845 if (!encoder)
2846 return -ENODEV;
2847
2848 ret = drm_modeset_lock_single_interruptible(&display->drm->mode_config.connection_mutex);
2849 if (ret)
2850 return ret;
2851
2852 crtc = connector->base.state->crtc;
2853 if (connector->base.status != connector_status_connected || !crtc) {
2854 ret = -ENODEV;
2855 goto out;
2856 }
2857
2858 seq_printf(m, "%s\n",
2859 str_yes_no(hdcp->force_hdcp14));
2860 out:
2861 drm_modeset_unlock(&display->drm->mode_config.connection_mutex);
2862
2863 return ret;
2864 }
2865
intel_hdcp_force_14_open(struct inode * inode,struct file * file)2866 static int intel_hdcp_force_14_open(struct inode *inode,
2867 struct file *file)
2868 {
2869 return single_open(file, intel_hdcp_force_14_show,
2870 inode->i_private);
2871 }
2872
2873 static const struct file_operations intel_hdcp_force_14_fops = {
2874 .owner = THIS_MODULE,
2875 .open = intel_hdcp_force_14_open,
2876 .read = seq_read,
2877 .llseek = seq_lseek,
2878 .release = single_release,
2879 .write = intel_hdcp_force_14_write
2880 };
2881
intel_hdcp_connector_debugfs_add(struct intel_connector * connector)2882 void intel_hdcp_connector_debugfs_add(struct intel_connector *connector)
2883 {
2884 struct dentry *root = connector->base.debugfs_entry;
2885 int connector_type = connector->base.connector_type;
2886
2887 if (connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
2888 connector_type == DRM_MODE_CONNECTOR_HDMIA ||
2889 connector_type == DRM_MODE_CONNECTOR_HDMIB) {
2890 debugfs_create_file("i915_hdcp_sink_capability", 0444, root,
2891 connector, &intel_hdcp_sink_capability_fops);
2892 debugfs_create_file("i915_force_hdcp14", 0644, root,
2893 connector, &intel_hdcp_force_14_fops);
2894 }
2895 }
2896