1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2014-2019 Intel Corporation
4 */
5
6 #include <linux/debugfs.h>
7 #include <linux/string_helpers.h>
8
9 #include "gt/intel_gt.h"
10 #include "i915_drv.h"
11 #include "i915_irq.h"
12 #include "i915_memcpy.h"
13 #include "intel_guc_capture.h"
14 #include "intel_guc_log.h"
15 #include "intel_guc_print.h"
16
17 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GUC)
18 #define GUC_LOG_DEFAULT_CRASH_BUFFER_SIZE SZ_2M
19 #define GUC_LOG_DEFAULT_DEBUG_BUFFER_SIZE SZ_16M
20 #define GUC_LOG_DEFAULT_CAPTURE_BUFFER_SIZE SZ_1M
21 #elif IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
22 #define GUC_LOG_DEFAULT_CRASH_BUFFER_SIZE SZ_1M
23 #define GUC_LOG_DEFAULT_DEBUG_BUFFER_SIZE SZ_2M
24 #define GUC_LOG_DEFAULT_CAPTURE_BUFFER_SIZE SZ_1M
25 #else
26 #define GUC_LOG_DEFAULT_CRASH_BUFFER_SIZE SZ_8K
27 #define GUC_LOG_DEFAULT_DEBUG_BUFFER_SIZE SZ_64K
28 #define GUC_LOG_DEFAULT_CAPTURE_BUFFER_SIZE SZ_1M
29 #endif
30
31 static void guc_log_copy_debuglogs_for_relay(struct intel_guc_log *log);
32
33 struct guc_log_section {
34 u32 max;
35 u32 flag;
36 u32 default_val;
37 const char *name;
38 };
39
_guc_log_init_sizes(struct intel_guc_log * log)40 static void _guc_log_init_sizes(struct intel_guc_log *log)
41 {
42 struct intel_guc *guc = log_to_guc(log);
43 static const struct guc_log_section sections[GUC_LOG_SECTIONS_LIMIT] = {
44 {
45 GUC_LOG_CRASH_MASK >> GUC_LOG_CRASH_SHIFT,
46 GUC_LOG_LOG_ALLOC_UNITS,
47 GUC_LOG_DEFAULT_CRASH_BUFFER_SIZE,
48 "crash dump"
49 },
50 {
51 GUC_LOG_DEBUG_MASK >> GUC_LOG_DEBUG_SHIFT,
52 GUC_LOG_LOG_ALLOC_UNITS,
53 GUC_LOG_DEFAULT_DEBUG_BUFFER_SIZE,
54 "debug",
55 },
56 {
57 GUC_LOG_CAPTURE_MASK >> GUC_LOG_CAPTURE_SHIFT,
58 GUC_LOG_CAPTURE_ALLOC_UNITS,
59 GUC_LOG_DEFAULT_CAPTURE_BUFFER_SIZE,
60 "capture",
61 }
62 };
63 int i;
64
65 for (i = 0; i < GUC_LOG_SECTIONS_LIMIT; i++)
66 log->sizes[i].bytes = sections[i].default_val;
67
68 /* If debug size > 1MB then bump default crash size to keep the same units */
69 if (log->sizes[GUC_LOG_SECTIONS_DEBUG].bytes >= SZ_1M &&
70 GUC_LOG_DEFAULT_CRASH_BUFFER_SIZE < SZ_1M)
71 log->sizes[GUC_LOG_SECTIONS_CRASH].bytes = SZ_1M;
72
73 /* Prepare the GuC API structure fields: */
74 for (i = 0; i < GUC_LOG_SECTIONS_LIMIT; i++) {
75 /* Convert to correct units */
76 if ((log->sizes[i].bytes % SZ_1M) == 0) {
77 log->sizes[i].units = SZ_1M;
78 log->sizes[i].flag = sections[i].flag;
79 } else {
80 log->sizes[i].units = SZ_4K;
81 log->sizes[i].flag = 0;
82 }
83
84 if (!IS_ALIGNED(log->sizes[i].bytes, log->sizes[i].units))
85 guc_err(guc, "Mis-aligned log %s size: 0x%X vs 0x%X!\n",
86 sections[i].name, log->sizes[i].bytes, log->sizes[i].units);
87 log->sizes[i].count = log->sizes[i].bytes / log->sizes[i].units;
88
89 if (!log->sizes[i].count) {
90 guc_err(guc, "Zero log %s size!\n", sections[i].name);
91 } else {
92 /* Size is +1 unit */
93 log->sizes[i].count--;
94 }
95
96 /* Clip to field size */
97 if (log->sizes[i].count > sections[i].max) {
98 guc_err(guc, "log %s size too large: %d vs %d!\n",
99 sections[i].name, log->sizes[i].count + 1, sections[i].max + 1);
100 log->sizes[i].count = sections[i].max;
101 }
102 }
103
104 if (log->sizes[GUC_LOG_SECTIONS_CRASH].units != log->sizes[GUC_LOG_SECTIONS_DEBUG].units) {
105 guc_err(guc, "Unit mismatch for crash and debug sections: %d vs %d!\n",
106 log->sizes[GUC_LOG_SECTIONS_CRASH].units,
107 log->sizes[GUC_LOG_SECTIONS_DEBUG].units);
108 log->sizes[GUC_LOG_SECTIONS_CRASH].units = log->sizes[GUC_LOG_SECTIONS_DEBUG].units;
109 log->sizes[GUC_LOG_SECTIONS_CRASH].count = 0;
110 }
111
112 log->sizes_initialised = true;
113 }
114
guc_log_init_sizes(struct intel_guc_log * log)115 static void guc_log_init_sizes(struct intel_guc_log *log)
116 {
117 if (log->sizes_initialised)
118 return;
119
120 _guc_log_init_sizes(log);
121 }
122
intel_guc_log_section_size_crash(struct intel_guc_log * log)123 static u32 intel_guc_log_section_size_crash(struct intel_guc_log *log)
124 {
125 guc_log_init_sizes(log);
126
127 return log->sizes[GUC_LOG_SECTIONS_CRASH].bytes;
128 }
129
intel_guc_log_section_size_debug(struct intel_guc_log * log)130 static u32 intel_guc_log_section_size_debug(struct intel_guc_log *log)
131 {
132 guc_log_init_sizes(log);
133
134 return log->sizes[GUC_LOG_SECTIONS_DEBUG].bytes;
135 }
136
intel_guc_log_section_size_capture(struct intel_guc_log * log)137 u32 intel_guc_log_section_size_capture(struct intel_guc_log *log)
138 {
139 guc_log_init_sizes(log);
140
141 return log->sizes[GUC_LOG_SECTIONS_CAPTURE].bytes;
142 }
143
intel_guc_log_size(struct intel_guc_log * log)144 static u32 intel_guc_log_size(struct intel_guc_log *log)
145 {
146 /*
147 * GuC Log buffer Layout:
148 *
149 * NB: Ordering must follow "enum guc_log_buffer_type".
150 *
151 * +===============================+ 00B
152 * | Debug state header |
153 * +-------------------------------+ 32B
154 * | Crash dump state header |
155 * +-------------------------------+ 64B
156 * | Capture state header |
157 * +-------------------------------+ 96B
158 * | |
159 * +===============================+ PAGE_SIZE (4KB)
160 * | Debug logs |
161 * +===============================+ + DEBUG_SIZE
162 * | Crash Dump logs |
163 * +===============================+ + CRASH_SIZE
164 * | Capture logs |
165 * +===============================+ + CAPTURE_SIZE
166 */
167 return PAGE_SIZE +
168 intel_guc_log_section_size_crash(log) +
169 intel_guc_log_section_size_debug(log) +
170 intel_guc_log_section_size_capture(log);
171 }
172
173 /**
174 * DOC: GuC firmware log
175 *
176 * Firmware log is enabled by setting i915.guc_log_level to the positive level.
177 * Log data is printed out via reading debugfs i915_guc_log_dump. Reading from
178 * i915_guc_load_status will print out firmware loading status and scratch
179 * registers value.
180 */
181
guc_action_flush_log_complete(struct intel_guc * guc)182 static int guc_action_flush_log_complete(struct intel_guc *guc)
183 {
184 u32 action[] = {
185 INTEL_GUC_ACTION_LOG_BUFFER_FILE_FLUSH_COMPLETE,
186 GUC_DEBUG_LOG_BUFFER
187 };
188
189 return intel_guc_send_nb(guc, action, ARRAY_SIZE(action), 0);
190 }
191
guc_action_flush_log(struct intel_guc * guc)192 static int guc_action_flush_log(struct intel_guc *guc)
193 {
194 u32 action[] = {
195 INTEL_GUC_ACTION_FORCE_LOG_BUFFER_FLUSH,
196 0
197 };
198
199 return intel_guc_send(guc, action, ARRAY_SIZE(action));
200 }
201
guc_action_control_log(struct intel_guc * guc,bool enable,bool default_logging,u32 verbosity)202 static int guc_action_control_log(struct intel_guc *guc, bool enable,
203 bool default_logging, u32 verbosity)
204 {
205 u32 action[] = {
206 INTEL_GUC_ACTION_UK_LOG_ENABLE_LOGGING,
207 (enable ? GUC_LOG_CONTROL_LOGGING_ENABLED : 0) |
208 (verbosity << GUC_LOG_CONTROL_VERBOSITY_SHIFT) |
209 (default_logging ? GUC_LOG_CONTROL_DEFAULT_LOGGING : 0)
210 };
211
212 GEM_BUG_ON(verbosity > GUC_LOG_VERBOSITY_MAX);
213
214 return intel_guc_send(guc, action, ARRAY_SIZE(action));
215 }
216
217 /*
218 * Sub buffer switch callback. Called whenever relay has to switch to a new
219 * sub buffer, relay stays on the same sub buffer if 0 is returned.
220 */
subbuf_start_callback(struct rchan_buf * buf,void * subbuf,void * prev_subbuf)221 static int subbuf_start_callback(struct rchan_buf *buf,
222 void *subbuf,
223 void *prev_subbuf)
224 {
225 /*
226 * Use no-overwrite mode by default, where relay will stop accepting
227 * new data if there are no empty sub buffers left.
228 * There is no strict synchronization enforced by relay between Consumer
229 * and Producer. In overwrite mode, there is a possibility of getting
230 * inconsistent/garbled data, the producer could be writing on to the
231 * same sub buffer from which Consumer is reading. This can't be avoided
232 * unless Consumer is fast enough and can always run in tandem with
233 * Producer.
234 */
235 if (relay_buf_full(buf))
236 return 0;
237
238 return 1;
239 }
240
241 /*
242 * file_create() callback. Creates relay file in debugfs.
243 */
create_buf_file_callback(const char * filename,struct dentry * parent,umode_t mode,struct rchan_buf * buf,int * is_global)244 static struct dentry *create_buf_file_callback(const char *filename,
245 struct dentry *parent,
246 umode_t mode,
247 struct rchan_buf *buf,
248 int *is_global)
249 {
250 struct dentry *buf_file;
251
252 /*
253 * This to enable the use of a single buffer for the relay channel and
254 * correspondingly have a single file exposed to User, through which
255 * it can collect the logs in order without any post-processing.
256 * Need to set 'is_global' even if parent is NULL for early logging.
257 */
258 *is_global = 1;
259
260 if (!parent)
261 return NULL;
262
263 buf_file = debugfs_create_file(filename, mode,
264 parent, buf, &relay_file_operations);
265 if (IS_ERR(buf_file))
266 return NULL;
267
268 return buf_file;
269 }
270
271 /*
272 * file_remove() default callback. Removes relay file in debugfs.
273 */
remove_buf_file_callback(struct dentry * dentry)274 static int remove_buf_file_callback(struct dentry *dentry)
275 {
276 debugfs_remove(dentry);
277 return 0;
278 }
279
280 /* relay channel callbacks */
281 static const struct rchan_callbacks relay_callbacks = {
282 .subbuf_start = subbuf_start_callback,
283 .create_buf_file = create_buf_file_callback,
284 .remove_buf_file = remove_buf_file_callback,
285 };
286
guc_move_to_next_buf(struct intel_guc_log * log)287 static void guc_move_to_next_buf(struct intel_guc_log *log)
288 {
289 /*
290 * Make sure the updates made in the sub buffer are visible when
291 * Consumer sees the following update to offset inside the sub buffer.
292 */
293 smp_wmb();
294
295 /* All data has been written, so now move the offset of sub buffer. */
296 relay_reserve(log->relay.channel, log->vma->obj->base.size -
297 intel_guc_log_section_size_capture(log));
298
299 /* Switch to the next sub buffer */
300 relay_flush(log->relay.channel);
301 }
302
guc_get_write_buffer(struct intel_guc_log * log)303 static void *guc_get_write_buffer(struct intel_guc_log *log)
304 {
305 /*
306 * Just get the base address of a new sub buffer and copy data into it
307 * ourselves. NULL will be returned in no-overwrite mode, if all sub
308 * buffers are full. Could have used the relay_write() to indirectly
309 * copy the data, but that would have been bit convoluted, as we need to
310 * write to only certain locations inside a sub buffer which cannot be
311 * done without using relay_reserve() along with relay_write(). So its
312 * better to use relay_reserve() alone.
313 */
314 return relay_reserve(log->relay.channel, 0);
315 }
316
intel_guc_check_log_buf_overflow(struct intel_guc_log * log,enum guc_log_buffer_type type,unsigned int full_cnt)317 bool intel_guc_check_log_buf_overflow(struct intel_guc_log *log,
318 enum guc_log_buffer_type type,
319 unsigned int full_cnt)
320 {
321 unsigned int prev_full_cnt = log->stats[type].sampled_overflow;
322 bool overflow = false;
323
324 if (full_cnt != prev_full_cnt) {
325 overflow = true;
326
327 log->stats[type].overflow = full_cnt;
328 log->stats[type].sampled_overflow += full_cnt - prev_full_cnt;
329
330 if (full_cnt < prev_full_cnt) {
331 /* buffer_full_cnt is a 4 bit counter */
332 log->stats[type].sampled_overflow += 16;
333 }
334
335 guc_notice_ratelimited(log_to_guc(log), "log buffer overflow\n");
336 }
337
338 return overflow;
339 }
340
intel_guc_get_log_buffer_size(struct intel_guc_log * log,enum guc_log_buffer_type type)341 unsigned int intel_guc_get_log_buffer_size(struct intel_guc_log *log,
342 enum guc_log_buffer_type type)
343 {
344 switch (type) {
345 case GUC_DEBUG_LOG_BUFFER:
346 return intel_guc_log_section_size_debug(log);
347 case GUC_CRASH_DUMP_LOG_BUFFER:
348 return intel_guc_log_section_size_crash(log);
349 case GUC_CAPTURE_LOG_BUFFER:
350 return intel_guc_log_section_size_capture(log);
351 default:
352 MISSING_CASE(type);
353 }
354
355 return 0;
356 }
357
intel_guc_get_log_buffer_offset(struct intel_guc_log * log,enum guc_log_buffer_type type)358 size_t intel_guc_get_log_buffer_offset(struct intel_guc_log *log,
359 enum guc_log_buffer_type type)
360 {
361 enum guc_log_buffer_type i;
362 size_t offset = PAGE_SIZE;/* for the log_buffer_states */
363
364 for (i = GUC_DEBUG_LOG_BUFFER; i < GUC_MAX_LOG_BUFFER; ++i) {
365 if (i == type)
366 break;
367 offset += intel_guc_get_log_buffer_size(log, i);
368 }
369
370 return offset;
371 }
372
_guc_log_copy_debuglogs_for_relay(struct intel_guc_log * log)373 static void _guc_log_copy_debuglogs_for_relay(struct intel_guc_log *log)
374 {
375 struct intel_guc *guc = log_to_guc(log);
376 unsigned int buffer_size, read_offset, write_offset, bytes_to_copy, full_cnt;
377 struct guc_log_buffer_state *log_buf_state, *log_buf_snapshot_state;
378 struct guc_log_buffer_state log_buf_state_local;
379 enum guc_log_buffer_type type;
380 void *src_data, *dst_data;
381 bool new_overflow;
382
383 mutex_lock(&log->relay.lock);
384
385 if (guc_WARN_ON(guc, !intel_guc_log_relay_created(log)))
386 goto out_unlock;
387
388 /* Get the pointer to shared GuC log buffer */
389 src_data = log->buf_addr;
390 log_buf_state = src_data;
391
392 /* Get the pointer to local buffer to store the logs */
393 log_buf_snapshot_state = dst_data = guc_get_write_buffer(log);
394
395 if (unlikely(!log_buf_snapshot_state)) {
396 /*
397 * Used rate limited to avoid deluge of messages, logs might be
398 * getting consumed by User at a slow rate.
399 */
400 guc_err_ratelimited(guc, "no sub-buffer to copy general logs\n");
401 log->relay.full_count++;
402
403 goto out_unlock;
404 }
405
406 /* Actual logs are present from the 2nd page */
407 src_data += PAGE_SIZE;
408 dst_data += PAGE_SIZE;
409
410 /* For relay logging, we exclude error state capture */
411 for (type = GUC_DEBUG_LOG_BUFFER; type <= GUC_CRASH_DUMP_LOG_BUFFER; type++) {
412 /*
413 * Make a copy of the state structure, inside GuC log buffer
414 * (which is uncached mapped), on the stack to avoid reading
415 * from it multiple times.
416 */
417 memcpy(&log_buf_state_local, log_buf_state,
418 sizeof(struct guc_log_buffer_state));
419 buffer_size = intel_guc_get_log_buffer_size(log, type);
420 read_offset = log_buf_state_local.read_ptr;
421 write_offset = log_buf_state_local.sampled_write_ptr;
422 full_cnt = log_buf_state_local.buffer_full_cnt;
423
424 /* Bookkeeping stuff */
425 log->stats[type].flush += log_buf_state_local.flush_to_file;
426 new_overflow = intel_guc_check_log_buf_overflow(log, type, full_cnt);
427
428 /* Update the state of shared log buffer */
429 log_buf_state->read_ptr = write_offset;
430 log_buf_state->flush_to_file = 0;
431 log_buf_state++;
432
433 /* First copy the state structure in snapshot buffer */
434 memcpy(log_buf_snapshot_state, &log_buf_state_local,
435 sizeof(struct guc_log_buffer_state));
436
437 /*
438 * The write pointer could have been updated by GuC firmware,
439 * after sending the flush interrupt to Host, for consistency
440 * set write pointer value to same value of sampled_write_ptr
441 * in the snapshot buffer.
442 */
443 log_buf_snapshot_state->write_ptr = write_offset;
444 log_buf_snapshot_state++;
445
446 /* Now copy the actual logs. */
447 if (unlikely(new_overflow)) {
448 /* copy the whole buffer in case of overflow */
449 read_offset = 0;
450 write_offset = buffer_size;
451 } else if (unlikely((read_offset > buffer_size) ||
452 (write_offset > buffer_size))) {
453 guc_err(guc, "invalid log buffer state\n");
454 /* copy whole buffer as offsets are unreliable */
455 read_offset = 0;
456 write_offset = buffer_size;
457 }
458
459 /* Just copy the newly written data */
460 if (read_offset > write_offset) {
461 i915_memcpy_from_wc(dst_data, src_data, write_offset);
462 bytes_to_copy = buffer_size - read_offset;
463 } else {
464 bytes_to_copy = write_offset - read_offset;
465 }
466 i915_memcpy_from_wc(dst_data + read_offset,
467 src_data + read_offset, bytes_to_copy);
468
469 src_data += buffer_size;
470 dst_data += buffer_size;
471 }
472
473 guc_move_to_next_buf(log);
474
475 out_unlock:
476 mutex_unlock(&log->relay.lock);
477 }
478
copy_debug_logs_work(struct work_struct * work)479 static void copy_debug_logs_work(struct work_struct *work)
480 {
481 struct intel_guc_log *log =
482 container_of(work, struct intel_guc_log, relay.flush_work);
483
484 guc_log_copy_debuglogs_for_relay(log);
485 }
486
guc_log_relay_map(struct intel_guc_log * log)487 static int guc_log_relay_map(struct intel_guc_log *log)
488 {
489 lockdep_assert_held(&log->relay.lock);
490
491 if (!log->vma || !log->buf_addr)
492 return -ENODEV;
493
494 /*
495 * WC vmalloc mapping of log buffer pages was done at
496 * GuC Log Init time, but lets keep a ref for book-keeping
497 */
498 i915_gem_object_get(log->vma->obj);
499 log->relay.buf_in_use = true;
500
501 return 0;
502 }
503
guc_log_relay_unmap(struct intel_guc_log * log)504 static void guc_log_relay_unmap(struct intel_guc_log *log)
505 {
506 lockdep_assert_held(&log->relay.lock);
507
508 i915_gem_object_put(log->vma->obj);
509 log->relay.buf_in_use = false;
510 }
511
intel_guc_log_init_early(struct intel_guc_log * log)512 void intel_guc_log_init_early(struct intel_guc_log *log)
513 {
514 mutex_init(&log->relay.lock);
515 INIT_WORK(&log->relay.flush_work, copy_debug_logs_work);
516 log->relay.started = false;
517 }
518
guc_log_relay_create(struct intel_guc_log * log)519 static int guc_log_relay_create(struct intel_guc_log *log)
520 {
521 struct intel_guc *guc = log_to_guc(log);
522 struct drm_i915_private *i915 = guc_to_i915(guc);
523 struct rchan *guc_log_relay_chan;
524 size_t n_subbufs, subbuf_size;
525 int ret;
526
527 lockdep_assert_held(&log->relay.lock);
528 GEM_BUG_ON(!log->vma);
529
530 /*
531 * Keep the size of sub buffers same as shared log buffer
532 * but GuC log-events excludes the error-state-capture logs
533 */
534 subbuf_size = log->vma->size - intel_guc_log_section_size_capture(log);
535
536 /*
537 * Store up to 8 snapshots, which is large enough to buffer sufficient
538 * boot time logs and provides enough leeway to User, in terms of
539 * latency, for consuming the logs from relay. Also doesn't take
540 * up too much memory.
541 */
542 n_subbufs = 8;
543
544 if (!guc->dbgfs_node)
545 return -ENOENT;
546
547 guc_log_relay_chan = relay_open("guc_log",
548 guc->dbgfs_node,
549 subbuf_size, n_subbufs,
550 &relay_callbacks, i915);
551 if (!guc_log_relay_chan) {
552 guc_err(guc, "Couldn't create relay channel for logging\n");
553
554 ret = -ENOMEM;
555 return ret;
556 }
557
558 GEM_BUG_ON(guc_log_relay_chan->subbuf_size < subbuf_size);
559 log->relay.channel = guc_log_relay_chan;
560
561 return 0;
562 }
563
guc_log_relay_destroy(struct intel_guc_log * log)564 static void guc_log_relay_destroy(struct intel_guc_log *log)
565 {
566 lockdep_assert_held(&log->relay.lock);
567
568 relay_close(log->relay.channel);
569 log->relay.channel = NULL;
570 }
571
guc_log_copy_debuglogs_for_relay(struct intel_guc_log * log)572 static void guc_log_copy_debuglogs_for_relay(struct intel_guc_log *log)
573 {
574 struct intel_guc *guc = log_to_guc(log);
575 struct drm_i915_private *i915 = guc_to_i915(guc);
576 intel_wakeref_t wakeref;
577
578 _guc_log_copy_debuglogs_for_relay(log);
579
580 /*
581 * Generally device is expected to be active only at this
582 * time, so get/put should be really quick.
583 */
584 with_intel_runtime_pm(&i915->runtime_pm, wakeref)
585 guc_action_flush_log_complete(guc);
586 }
587
__get_default_log_level(struct intel_guc_log * log)588 static u32 __get_default_log_level(struct intel_guc_log *log)
589 {
590 struct intel_guc *guc = log_to_guc(log);
591 struct drm_i915_private *i915 = guc_to_i915(guc);
592
593 /* A negative value means "use platform/config default" */
594 if (i915->params.guc_log_level < 0) {
595 return (IS_ENABLED(CONFIG_DRM_I915_DEBUG) ||
596 IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) ?
597 GUC_LOG_LEVEL_MAX : GUC_LOG_LEVEL_NON_VERBOSE;
598 }
599
600 if (i915->params.guc_log_level > GUC_LOG_LEVEL_MAX) {
601 guc_warn(guc, "Log verbosity param out of range: %d > %d!\n",
602 i915->params.guc_log_level, GUC_LOG_LEVEL_MAX);
603 return (IS_ENABLED(CONFIG_DRM_I915_DEBUG) ||
604 IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) ?
605 GUC_LOG_LEVEL_MAX : GUC_LOG_LEVEL_DISABLED;
606 }
607
608 GEM_BUG_ON(i915->params.guc_log_level < GUC_LOG_LEVEL_DISABLED);
609 GEM_BUG_ON(i915->params.guc_log_level > GUC_LOG_LEVEL_MAX);
610 return i915->params.guc_log_level;
611 }
612
intel_guc_log_create(struct intel_guc_log * log)613 int intel_guc_log_create(struct intel_guc_log *log)
614 {
615 struct intel_guc *guc = log_to_guc(log);
616 struct i915_vma *vma;
617 void *vaddr;
618 u32 guc_log_size;
619 int ret;
620
621 GEM_BUG_ON(log->vma);
622
623 guc_log_size = intel_guc_log_size(log);
624
625 vma = intel_guc_allocate_vma(guc, guc_log_size);
626 if (IS_ERR(vma)) {
627 ret = PTR_ERR(vma);
628 goto err;
629 }
630
631 log->vma = vma;
632 /*
633 * Create a WC (Uncached for read) vmalloc mapping up front immediate access to
634 * data from memory during critical events such as error capture
635 */
636 vaddr = i915_gem_object_pin_map_unlocked(log->vma->obj, I915_MAP_WC);
637 if (IS_ERR(vaddr)) {
638 ret = PTR_ERR(vaddr);
639 i915_vma_unpin_and_release(&log->vma, 0);
640 goto err;
641 }
642 log->buf_addr = vaddr;
643
644 log->level = __get_default_log_level(log);
645 guc_dbg(guc, "guc_log_level=%d (%s, verbose:%s, verbosity:%d)\n",
646 log->level, str_enabled_disabled(log->level),
647 str_yes_no(GUC_LOG_LEVEL_IS_VERBOSE(log->level)),
648 GUC_LOG_LEVEL_TO_VERBOSITY(log->level));
649
650 return 0;
651
652 err:
653 guc_err(guc, "Failed to allocate or map log buffer %pe\n", ERR_PTR(ret));
654 return ret;
655 }
656
intel_guc_log_destroy(struct intel_guc_log * log)657 void intel_guc_log_destroy(struct intel_guc_log *log)
658 {
659 log->buf_addr = NULL;
660 i915_vma_unpin_and_release(&log->vma, I915_VMA_RELEASE_MAP);
661 }
662
intel_guc_log_set_level(struct intel_guc_log * log,u32 level)663 int intel_guc_log_set_level(struct intel_guc_log *log, u32 level)
664 {
665 struct intel_guc *guc = log_to_guc(log);
666 struct drm_i915_private *i915 = guc_to_i915(guc);
667 intel_wakeref_t wakeref;
668 int ret = 0;
669
670 BUILD_BUG_ON(GUC_LOG_VERBOSITY_MIN != 0);
671 GEM_BUG_ON(!log->vma);
672
673 /*
674 * GuC is recognizing log levels starting from 0 to max, we're using 0
675 * as indication that logging should be disabled.
676 */
677 if (level < GUC_LOG_LEVEL_DISABLED || level > GUC_LOG_LEVEL_MAX)
678 return -EINVAL;
679
680 mutex_lock(&i915->drm.struct_mutex);
681
682 if (log->level == level)
683 goto out_unlock;
684
685 with_intel_runtime_pm(&i915->runtime_pm, wakeref)
686 ret = guc_action_control_log(guc,
687 GUC_LOG_LEVEL_IS_VERBOSE(level),
688 GUC_LOG_LEVEL_IS_ENABLED(level),
689 GUC_LOG_LEVEL_TO_VERBOSITY(level));
690 if (ret) {
691 guc_dbg(guc, "guc_log_control action failed %pe\n", ERR_PTR(ret));
692 goto out_unlock;
693 }
694
695 log->level = level;
696
697 out_unlock:
698 mutex_unlock(&i915->drm.struct_mutex);
699
700 return ret;
701 }
702
intel_guc_log_relay_created(const struct intel_guc_log * log)703 bool intel_guc_log_relay_created(const struct intel_guc_log *log)
704 {
705 return log->buf_addr;
706 }
707
intel_guc_log_relay_open(struct intel_guc_log * log)708 int intel_guc_log_relay_open(struct intel_guc_log *log)
709 {
710 int ret;
711
712 if (!log->vma)
713 return -ENODEV;
714
715 mutex_lock(&log->relay.lock);
716
717 if (intel_guc_log_relay_created(log)) {
718 ret = -EEXIST;
719 goto out_unlock;
720 }
721
722 /*
723 * We require SSE 4.1 for fast reads from the GuC log buffer and
724 * it should be present on the chipsets supporting GuC based
725 * submissions.
726 */
727 if (!i915_has_memcpy_from_wc()) {
728 ret = -ENXIO;
729 goto out_unlock;
730 }
731
732 ret = guc_log_relay_create(log);
733 if (ret)
734 goto out_unlock;
735
736 ret = guc_log_relay_map(log);
737 if (ret)
738 goto out_relay;
739
740 mutex_unlock(&log->relay.lock);
741
742 return 0;
743
744 out_relay:
745 guc_log_relay_destroy(log);
746 out_unlock:
747 mutex_unlock(&log->relay.lock);
748
749 return ret;
750 }
751
intel_guc_log_relay_start(struct intel_guc_log * log)752 int intel_guc_log_relay_start(struct intel_guc_log *log)
753 {
754 if (log->relay.started)
755 return -EEXIST;
756
757 /*
758 * When GuC is logging without us relaying to userspace, we're ignoring
759 * the flush notification. This means that we need to unconditionally
760 * flush on relay enabling, since GuC only notifies us once.
761 */
762 queue_work(system_highpri_wq, &log->relay.flush_work);
763
764 log->relay.started = true;
765
766 return 0;
767 }
768
intel_guc_log_relay_flush(struct intel_guc_log * log)769 void intel_guc_log_relay_flush(struct intel_guc_log *log)
770 {
771 struct intel_guc *guc = log_to_guc(log);
772 intel_wakeref_t wakeref;
773
774 if (!log->relay.started)
775 return;
776
777 /*
778 * Before initiating the forceful flush, wait for any pending/ongoing
779 * flush to complete otherwise forceful flush may not actually happen.
780 */
781 flush_work(&log->relay.flush_work);
782
783 with_intel_runtime_pm(guc_to_gt(guc)->uncore->rpm, wakeref)
784 guc_action_flush_log(guc);
785
786 /* GuC would have updated log buffer by now, so copy it */
787 guc_log_copy_debuglogs_for_relay(log);
788 }
789
790 /*
791 * Stops the relay log. Called from intel_guc_log_relay_close(), so no
792 * possibility of race with start/flush since relay_write cannot race
793 * relay_close.
794 */
guc_log_relay_stop(struct intel_guc_log * log)795 static void guc_log_relay_stop(struct intel_guc_log *log)
796 {
797 struct intel_guc *guc = log_to_guc(log);
798 struct drm_i915_private *i915 = guc_to_i915(guc);
799
800 if (!log->relay.started)
801 return;
802
803 intel_synchronize_irq(i915);
804
805 flush_work(&log->relay.flush_work);
806
807 log->relay.started = false;
808 }
809
intel_guc_log_relay_close(struct intel_guc_log * log)810 void intel_guc_log_relay_close(struct intel_guc_log *log)
811 {
812 guc_log_relay_stop(log);
813
814 mutex_lock(&log->relay.lock);
815 GEM_BUG_ON(!intel_guc_log_relay_created(log));
816 guc_log_relay_unmap(log);
817 guc_log_relay_destroy(log);
818 mutex_unlock(&log->relay.lock);
819 }
820
intel_guc_log_handle_flush_event(struct intel_guc_log * log)821 void intel_guc_log_handle_flush_event(struct intel_guc_log *log)
822 {
823 if (log->relay.started)
824 queue_work(system_highpri_wq, &log->relay.flush_work);
825 }
826
827 static const char *
stringify_guc_log_type(enum guc_log_buffer_type type)828 stringify_guc_log_type(enum guc_log_buffer_type type)
829 {
830 switch (type) {
831 case GUC_DEBUG_LOG_BUFFER:
832 return "DEBUG";
833 case GUC_CRASH_DUMP_LOG_BUFFER:
834 return "CRASH";
835 case GUC_CAPTURE_LOG_BUFFER:
836 return "CAPTURE";
837 default:
838 MISSING_CASE(type);
839 }
840
841 return "";
842 }
843
844 /**
845 * intel_guc_log_info - dump information about GuC log relay
846 * @log: the GuC log
847 * @p: the &drm_printer
848 *
849 * Pretty printer for GuC log info
850 */
intel_guc_log_info(struct intel_guc_log * log,struct drm_printer * p)851 void intel_guc_log_info(struct intel_guc_log *log, struct drm_printer *p)
852 {
853 enum guc_log_buffer_type type;
854
855 if (!intel_guc_log_relay_created(log)) {
856 drm_puts(p, "GuC log relay not created\n");
857 return;
858 }
859
860 drm_puts(p, "GuC logging stats:\n");
861
862 drm_printf(p, "\tRelay full count: %u\n", log->relay.full_count);
863
864 for (type = GUC_DEBUG_LOG_BUFFER; type < GUC_MAX_LOG_BUFFER; type++) {
865 drm_printf(p, "\t%s:\tflush count %10u, overflow count %10u\n",
866 stringify_guc_log_type(type),
867 log->stats[type].flush,
868 log->stats[type].sampled_overflow);
869 }
870 }
871
872 /**
873 * intel_guc_log_dump - dump the contents of the GuC log
874 * @log: the GuC log
875 * @p: the &drm_printer
876 * @dump_load_err: dump the log saved on GuC load error
877 *
878 * Pretty printer for the GuC log
879 */
intel_guc_log_dump(struct intel_guc_log * log,struct drm_printer * p,bool dump_load_err)880 int intel_guc_log_dump(struct intel_guc_log *log, struct drm_printer *p,
881 bool dump_load_err)
882 {
883 struct intel_guc *guc = log_to_guc(log);
884 struct intel_uc *uc = container_of(guc, struct intel_uc, guc);
885 struct drm_i915_gem_object *obj = NULL;
886 void *map;
887 u32 *page;
888 int i, j;
889
890 if (!intel_guc_is_supported(guc))
891 return -ENODEV;
892
893 if (dump_load_err)
894 obj = uc->load_err_log;
895 else if (guc->log.vma)
896 obj = guc->log.vma->obj;
897
898 if (!obj)
899 return 0;
900
901 page = (u32 *)__get_free_page(GFP_KERNEL);
902 if (!page)
903 return -ENOMEM;
904
905 intel_guc_dump_time_info(guc, p);
906
907 map = i915_gem_object_pin_map_unlocked(obj, I915_MAP_WC);
908 if (IS_ERR(map)) {
909 guc_dbg(guc, "Failed to pin log object: %pe\n", map);
910 drm_puts(p, "(log data unaccessible)\n");
911 free_page((unsigned long)page);
912 return PTR_ERR(map);
913 }
914
915 for (i = 0; i < obj->base.size; i += PAGE_SIZE) {
916 if (!i915_memcpy_from_wc(page, map + i, PAGE_SIZE))
917 memcpy(page, map + i, PAGE_SIZE);
918
919 for (j = 0; j < PAGE_SIZE / sizeof(u32); j += 4)
920 drm_printf(p, "0x%08x 0x%08x 0x%08x 0x%08x\n",
921 *(page + j + 0), *(page + j + 1),
922 *(page + j + 2), *(page + j + 3));
923 }
924
925 drm_puts(p, "\n");
926
927 i915_gem_object_unpin_map(obj);
928 free_page((unsigned long)page);
929
930 return 0;
931 }
932