xref: /qemu/target/xtensa/mmu_helper.c (revision 7cef6d686309e2792186504ae17cf4f3eb57ef68)
1 /*
2  * Copyright (c) 2011 - 2019, Max Filippov, Open Source and Linux Lab.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions are met:
7  *     * Redistributions of source code must retain the above copyright
8  *       notice, this list of conditions and the following disclaimer.
9  *     * Redistributions in binary form must reproduce the above copyright
10  *       notice, this list of conditions and the following disclaimer in the
11  *       documentation and/or other materials provided with the distribution.
12  *     * Neither the name of the Open Source and Linux Lab nor the
13  *       names of its contributors may be used to endorse or promote products
14  *       derived from this software without specific prior written permission.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
17  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
20  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
23  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  */
27 
28 #include "qemu/osdep.h"
29 #include "qemu/log.h"
30 #include "qemu/qemu-print.h"
31 #include "qemu/units.h"
32 #include "cpu.h"
33 #include "exec/helper-proto.h"
34 #include "qemu/host-utils.h"
35 #include "exec/cputlb.h"
36 #include "accel/tcg/cpu-mmu-index.h"
37 #include "accel/tcg/probe.h"
38 #include "exec/page-protection.h"
39 #include "exec/target_page.h"
40 #include "system/memory.h"
41 
42 #define XTENSA_MPU_SEGMENT_MASK 0x0000001f
43 #define XTENSA_MPU_ACC_RIGHTS_MASK 0x00000f00
44 #define XTENSA_MPU_ACC_RIGHTS_SHIFT 8
45 #define XTENSA_MPU_MEM_TYPE_MASK 0x001ff000
46 #define XTENSA_MPU_MEM_TYPE_SHIFT 12
47 #define XTENSA_MPU_ATTR_MASK 0x001fff00
48 
49 #define XTENSA_MPU_PROBE_B 0x40000000
50 #define XTENSA_MPU_PROBE_V 0x80000000
51 
52 #define XTENSA_MPU_SYSTEM_TYPE_DEVICE 0x0001
53 #define XTENSA_MPU_SYSTEM_TYPE_NC     0x0002
54 #define XTENSA_MPU_SYSTEM_TYPE_C      0x0003
55 #define XTENSA_MPU_SYSTEM_TYPE_MASK   0x0003
56 
57 #define XTENSA_MPU_TYPE_SYS_C     0x0010
58 #define XTENSA_MPU_TYPE_SYS_W     0x0020
59 #define XTENSA_MPU_TYPE_SYS_R     0x0040
60 #define XTENSA_MPU_TYPE_CPU_C     0x0100
61 #define XTENSA_MPU_TYPE_CPU_W     0x0200
62 #define XTENSA_MPU_TYPE_CPU_R     0x0400
63 #define XTENSA_MPU_TYPE_CPU_CACHE 0x0800
64 #define XTENSA_MPU_TYPE_B         0x1000
65 #define XTENSA_MPU_TYPE_INT       0x2000
66 
HELPER(itlb_hit_test)67 void HELPER(itlb_hit_test)(CPUXtensaState *env, uint32_t vaddr)
68 {
69     /*
70      * Probe the memory; we don't care about the result but
71      * only the side-effects (ie any MMU or other exception)
72      */
73     probe_access(env, vaddr, 1, MMU_INST_FETCH,
74                  cpu_mmu_index(env_cpu(env), true), GETPC());
75 }
76 
HELPER(wsr_rasid)77 void HELPER(wsr_rasid)(CPUXtensaState *env, uint32_t v)
78 {
79     v = (v & 0xffffff00) | 0x1;
80     if (v != env->sregs[RASID]) {
81         env->sregs[RASID] = v;
82         tlb_flush(env_cpu(env));
83     }
84 }
85 
get_page_size(const CPUXtensaState * env,bool dtlb,uint32_t way)86 static uint32_t get_page_size(const CPUXtensaState *env,
87                               bool dtlb, uint32_t way)
88 {
89     uint32_t tlbcfg = env->sregs[dtlb ? DTLBCFG : ITLBCFG];
90 
91     switch (way) {
92     case 4:
93         return (tlbcfg >> 16) & 0x3;
94 
95     case 5:
96         return (tlbcfg >> 20) & 0x1;
97 
98     case 6:
99         return (tlbcfg >> 24) & 0x1;
100 
101     default:
102         return 0;
103     }
104 }
105 
106 /*!
107  * Get bit mask for the virtual address bits translated by the TLB way
108  */
xtensa_tlb_get_addr_mask(const CPUXtensaState * env,bool dtlb,uint32_t way)109 static uint32_t xtensa_tlb_get_addr_mask(const CPUXtensaState *env,
110                                          bool dtlb, uint32_t way)
111 {
112     if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
113         bool varway56 = dtlb ?
114             env->config->dtlb.varway56 :
115             env->config->itlb.varway56;
116 
117         switch (way) {
118         case 4:
119             return 0xfff00000 << get_page_size(env, dtlb, way) * 2;
120 
121         case 5:
122             if (varway56) {
123                 return 0xf8000000 << get_page_size(env, dtlb, way);
124             } else {
125                 return 0xf8000000;
126             }
127 
128         case 6:
129             if (varway56) {
130                 return 0xf0000000 << (1 - get_page_size(env, dtlb, way));
131             } else {
132                 return 0xf0000000;
133             }
134 
135         default:
136             return 0xfffff000;
137         }
138     } else {
139         return REGION_PAGE_MASK;
140     }
141 }
142 
143 /*!
144  * Get bit mask for the 'VPN without index' field.
145  * See ISA, 4.6.5.6, data format for RxTLB0
146  */
get_vpn_mask(const CPUXtensaState * env,bool dtlb,uint32_t way)147 static uint32_t get_vpn_mask(const CPUXtensaState *env, bool dtlb, uint32_t way)
148 {
149     if (way < 4) {
150         bool is32 = (dtlb ?
151                 env->config->dtlb.nrefillentries :
152                 env->config->itlb.nrefillentries) == 32;
153         return is32 ? 0xffff8000 : 0xffffc000;
154     } else if (way == 4) {
155         return xtensa_tlb_get_addr_mask(env, dtlb, way) << 2;
156     } else if (way <= 6) {
157         uint32_t mask = xtensa_tlb_get_addr_mask(env, dtlb, way);
158         bool varway56 = dtlb ?
159             env->config->dtlb.varway56 :
160             env->config->itlb.varway56;
161 
162         if (varway56) {
163             return mask << (way == 5 ? 2 : 3);
164         } else {
165             return mask << 1;
166         }
167     } else {
168         return 0xfffff000;
169     }
170 }
171 
172 /*!
173  * Split virtual address into VPN (with index) and entry index
174  * for the given TLB way
175  */
split_tlb_entry_spec_way(const CPUXtensaState * env,uint32_t v,bool dtlb,uint32_t * vpn,uint32_t wi,uint32_t * ei)176 static void split_tlb_entry_spec_way(const CPUXtensaState *env, uint32_t v,
177                                      bool dtlb, uint32_t *vpn,
178                                      uint32_t wi, uint32_t *ei)
179 {
180     bool varway56 = dtlb ?
181         env->config->dtlb.varway56 :
182         env->config->itlb.varway56;
183 
184     if (!dtlb) {
185         wi &= 7;
186     }
187 
188     if (wi < 4) {
189         bool is32 = (dtlb ?
190                 env->config->dtlb.nrefillentries :
191                 env->config->itlb.nrefillentries) == 32;
192         *ei = (v >> 12) & (is32 ? 0x7 : 0x3);
193     } else {
194         switch (wi) {
195         case 4:
196             {
197                 uint32_t eibase = 20 + get_page_size(env, dtlb, wi) * 2;
198                 *ei = (v >> eibase) & 0x3;
199             }
200             break;
201 
202         case 5:
203             if (varway56) {
204                 uint32_t eibase = 27 + get_page_size(env, dtlb, wi);
205                 *ei = (v >> eibase) & 0x3;
206             } else {
207                 *ei = (v >> 27) & 0x1;
208             }
209             break;
210 
211         case 6:
212             if (varway56) {
213                 uint32_t eibase = 29 - get_page_size(env, dtlb, wi);
214                 *ei = (v >> eibase) & 0x7;
215             } else {
216                 *ei = (v >> 28) & 0x1;
217             }
218             break;
219 
220         default:
221             *ei = 0;
222             break;
223         }
224     }
225     *vpn = v & xtensa_tlb_get_addr_mask(env, dtlb, wi);
226 }
227 
228 /*!
229  * Split TLB address into TLB way, entry index and VPN (with index).
230  * See ISA, 4.6.5.5 - 4.6.5.8 for the TLB addressing format
231  */
split_tlb_entry_spec(CPUXtensaState * env,uint32_t v,bool dtlb,uint32_t * vpn,uint32_t * wi,uint32_t * ei)232 static bool split_tlb_entry_spec(CPUXtensaState *env, uint32_t v, bool dtlb,
233                                  uint32_t *vpn, uint32_t *wi, uint32_t *ei)
234 {
235     if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
236         *wi = v & (dtlb ? 0xf : 0x7);
237         if (*wi < (dtlb ? env->config->dtlb.nways : env->config->itlb.nways)) {
238             split_tlb_entry_spec_way(env, v, dtlb, vpn, *wi, ei);
239             return true;
240         } else {
241             return false;
242         }
243     } else {
244         *vpn = v & REGION_PAGE_MASK;
245         *wi = 0;
246         *ei = (v >> 29) & 0x7;
247         return true;
248     }
249 }
250 
xtensa_tlb_get_entry(CPUXtensaState * env,bool dtlb,unsigned wi,unsigned ei)251 static xtensa_tlb_entry *xtensa_tlb_get_entry(CPUXtensaState *env, bool dtlb,
252                                               unsigned wi, unsigned ei)
253 {
254     const xtensa_tlb *tlb = dtlb ? &env->config->dtlb : &env->config->itlb;
255 
256     assert(wi < tlb->nways && ei < tlb->way_size[wi]);
257     return dtlb ?
258         env->dtlb[wi] + ei :
259         env->itlb[wi] + ei;
260 }
261 
get_tlb_entry(CPUXtensaState * env,uint32_t v,bool dtlb,uint32_t * pwi)262 static xtensa_tlb_entry *get_tlb_entry(CPUXtensaState *env,
263         uint32_t v, bool dtlb, uint32_t *pwi)
264 {
265     uint32_t vpn;
266     uint32_t wi;
267     uint32_t ei;
268 
269     if (split_tlb_entry_spec(env, v, dtlb, &vpn, &wi, &ei)) {
270         if (pwi) {
271             *pwi = wi;
272         }
273         return xtensa_tlb_get_entry(env, dtlb, wi, ei);
274     } else {
275         return NULL;
276     }
277 }
278 
xtensa_tlb_set_entry_mmu(const CPUXtensaState * env,xtensa_tlb_entry * entry,bool dtlb,unsigned wi,unsigned ei,uint32_t vpn,uint32_t pte)279 static void xtensa_tlb_set_entry_mmu(const CPUXtensaState *env,
280                                      xtensa_tlb_entry *entry, bool dtlb,
281                                      unsigned wi, unsigned ei, uint32_t vpn,
282                                      uint32_t pte)
283 {
284     entry->vaddr = vpn;
285     entry->paddr = pte & xtensa_tlb_get_addr_mask(env, dtlb, wi);
286     entry->asid = (env->sregs[RASID] >> ((pte >> 1) & 0x18)) & 0xff;
287     entry->attr = pte & 0xf;
288 }
289 
xtensa_tlb_set_entry(CPUXtensaState * env,bool dtlb,unsigned wi,unsigned ei,uint32_t vpn,uint32_t pte)290 static void xtensa_tlb_set_entry(CPUXtensaState *env, bool dtlb,
291                                  unsigned wi, unsigned ei,
292                                  uint32_t vpn, uint32_t pte)
293 {
294     CPUState *cs = env_cpu(env);
295     xtensa_tlb_entry *entry = xtensa_tlb_get_entry(env, dtlb, wi, ei);
296 
297     if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
298         if (entry->variable) {
299             if (entry->asid) {
300                 tlb_flush_page(cs, entry->vaddr);
301             }
302             xtensa_tlb_set_entry_mmu(env, entry, dtlb, wi, ei, vpn, pte);
303             tlb_flush_page(cs, entry->vaddr);
304         } else {
305             qemu_log_mask(LOG_GUEST_ERROR,
306                           "%s %d, %d, %d trying to set immutable entry\n",
307                           __func__, dtlb, wi, ei);
308         }
309     } else {
310         tlb_flush_page(cs, entry->vaddr);
311         if (xtensa_option_enabled(env->config,
312                     XTENSA_OPTION_REGION_TRANSLATION)) {
313             entry->paddr = pte & REGION_PAGE_MASK;
314         }
315         entry->attr = pte & 0xf;
316     }
317 }
318 
xtensa_cpu_get_phys_page_debug(CPUState * cs,vaddr addr)319 hwaddr xtensa_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
320 {
321     XtensaCPU *cpu = XTENSA_CPU(cs);
322     uint32_t paddr;
323     uint32_t page_size;
324     unsigned access;
325 
326     if (xtensa_get_physical_addr(&cpu->env, false, addr, 0, 0,
327                 &paddr, &page_size, &access) == 0) {
328         return paddr;
329     }
330     if (xtensa_get_physical_addr(&cpu->env, false, addr, 2, 0,
331                 &paddr, &page_size, &access) == 0) {
332         return paddr;
333     }
334     return ~0;
335 }
336 
reset_tlb_mmu_all_ways(CPUXtensaState * env,const xtensa_tlb * tlb,xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])337 static void reset_tlb_mmu_all_ways(CPUXtensaState *env,
338                                    const xtensa_tlb *tlb,
339                                    xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])
340 {
341     unsigned wi, ei;
342 
343     for (wi = 0; wi < tlb->nways; ++wi) {
344         for (ei = 0; ei < tlb->way_size[wi]; ++ei) {
345             entry[wi][ei].asid = 0;
346             entry[wi][ei].variable = true;
347         }
348     }
349 }
350 
reset_tlb_mmu_ways56(CPUXtensaState * env,const xtensa_tlb * tlb,xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])351 static void reset_tlb_mmu_ways56(CPUXtensaState *env,
352                                  const xtensa_tlb *tlb,
353                                  xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])
354 {
355     if (!tlb->varway56) {
356         static const xtensa_tlb_entry way5[] = {
357             {
358                 .vaddr = 0xd0000000,
359                 .paddr = 0,
360                 .asid = 1,
361                 .attr = 7,
362                 .variable = false,
363             }, {
364                 .vaddr = 0xd8000000,
365                 .paddr = 0,
366                 .asid = 1,
367                 .attr = 3,
368                 .variable = false,
369             }
370         };
371         static const xtensa_tlb_entry way6[] = {
372             {
373                 .vaddr = 0xe0000000,
374                 .paddr = 0xf0000000,
375                 .asid = 1,
376                 .attr = 7,
377                 .variable = false,
378             }, {
379                 .vaddr = 0xf0000000,
380                 .paddr = 0xf0000000,
381                 .asid = 1,
382                 .attr = 3,
383                 .variable = false,
384             }
385         };
386         memcpy(entry[5], way5, sizeof(way5));
387         memcpy(entry[6], way6, sizeof(way6));
388     } else {
389         uint32_t ei;
390         for (ei = 0; ei < 8; ++ei) {
391             entry[6][ei].vaddr = ei << 29;
392             entry[6][ei].paddr = ei << 29;
393             entry[6][ei].asid = 1;
394             entry[6][ei].attr = 3;
395         }
396     }
397 }
398 
reset_tlb_region_way0(CPUXtensaState * env,xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])399 static void reset_tlb_region_way0(CPUXtensaState *env,
400                                   xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])
401 {
402     unsigned ei;
403 
404     for (ei = 0; ei < 8; ++ei) {
405         entry[0][ei].vaddr = ei << 29;
406         entry[0][ei].paddr = ei << 29;
407         entry[0][ei].asid = 1;
408         entry[0][ei].attr = 2;
409         entry[0][ei].variable = true;
410     }
411 }
412 
reset_mmu(CPUXtensaState * env)413 void reset_mmu(CPUXtensaState *env)
414 {
415     if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
416         env->sregs[RASID] = 0x04030201;
417         env->sregs[ITLBCFG] = 0;
418         env->sregs[DTLBCFG] = 0;
419         env->autorefill_idx = 0;
420         reset_tlb_mmu_all_ways(env, &env->config->itlb, env->itlb);
421         reset_tlb_mmu_all_ways(env, &env->config->dtlb, env->dtlb);
422         reset_tlb_mmu_ways56(env, &env->config->itlb, env->itlb);
423         reset_tlb_mmu_ways56(env, &env->config->dtlb, env->dtlb);
424     } else if (xtensa_option_enabled(env->config, XTENSA_OPTION_MPU)) {
425         unsigned i;
426 
427         env->sregs[MPUENB] = 0;
428         env->sregs[MPUCFG] = env->config->n_mpu_fg_segments;
429         env->sregs[CACHEADRDIS] = 0;
430         assert(env->config->n_mpu_bg_segments > 0 &&
431                env->config->mpu_bg[0].vaddr == 0);
432         for (i = 1; i < env->config->n_mpu_bg_segments; ++i) {
433             assert(env->config->mpu_bg[i].vaddr >=
434                    env->config->mpu_bg[i - 1].vaddr);
435         }
436     } else {
437         env->sregs[CACHEATTR] = 0x22222222;
438         reset_tlb_region_way0(env, env->itlb);
439         reset_tlb_region_way0(env, env->dtlb);
440     }
441 }
442 
get_ring(const CPUXtensaState * env,uint8_t asid)443 static unsigned get_ring(const CPUXtensaState *env, uint8_t asid)
444 {
445     unsigned i;
446     for (i = 0; i < 4; ++i) {
447         if (((env->sregs[RASID] >> i * 8) & 0xff) == asid) {
448             return i;
449         }
450     }
451     return 0xff;
452 }
453 
454 /*!
455  * Lookup xtensa TLB for the given virtual address.
456  * See ISA, 4.6.2.2
457  *
458  * \param pwi: [out] way index
459  * \param pei: [out] entry index
460  * \param pring: [out] access ring
461  * \return 0 if ok, exception cause code otherwise
462  */
xtensa_tlb_lookup(const CPUXtensaState * env,uint32_t addr,bool dtlb,uint32_t * pwi,uint32_t * pei,uint8_t * pring)463 static int xtensa_tlb_lookup(const CPUXtensaState *env,
464                              uint32_t addr, bool dtlb,
465                              uint32_t *pwi, uint32_t *pei, uint8_t *pring)
466 {
467     const xtensa_tlb *tlb = dtlb ?
468         &env->config->dtlb : &env->config->itlb;
469     const xtensa_tlb_entry (*entry)[MAX_TLB_WAY_SIZE] = dtlb ?
470         env->dtlb : env->itlb;
471 
472     int nhits = 0;
473     unsigned wi;
474 
475     for (wi = 0; wi < tlb->nways; ++wi) {
476         uint32_t vpn;
477         uint32_t ei;
478         split_tlb_entry_spec_way(env, addr, dtlb, &vpn, wi, &ei);
479         if (entry[wi][ei].vaddr == vpn && entry[wi][ei].asid) {
480             unsigned ring = get_ring(env, entry[wi][ei].asid);
481             if (ring < 4) {
482                 if (++nhits > 1) {
483                     return dtlb ?
484                         LOAD_STORE_TLB_MULTI_HIT_CAUSE :
485                         INST_TLB_MULTI_HIT_CAUSE;
486                 }
487                 *pwi = wi;
488                 *pei = ei;
489                 *pring = ring;
490             }
491         }
492     }
493     return nhits ? 0 :
494         (dtlb ? LOAD_STORE_TLB_MISS_CAUSE : INST_TLB_MISS_CAUSE);
495 }
496 
HELPER(rtlb0)497 uint32_t HELPER(rtlb0)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
498 {
499     if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
500         uint32_t wi;
501         const xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, &wi);
502 
503         if (entry) {
504             return (entry->vaddr & get_vpn_mask(env, dtlb, wi)) | entry->asid;
505         } else {
506             return 0;
507         }
508     } else {
509         return v & REGION_PAGE_MASK;
510     }
511 }
512 
HELPER(rtlb1)513 uint32_t HELPER(rtlb1)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
514 {
515     const xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, NULL);
516 
517     if (entry) {
518         return entry->paddr | entry->attr;
519     } else {
520         return 0;
521     }
522 }
523 
HELPER(itlb)524 void HELPER(itlb)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
525 {
526     if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
527         uint32_t wi;
528         xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, &wi);
529         if (entry && entry->variable && entry->asid) {
530             tlb_flush_page(env_cpu(env), entry->vaddr);
531             entry->asid = 0;
532         }
533     }
534 }
535 
HELPER(ptlb)536 uint32_t HELPER(ptlb)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
537 {
538     if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
539         uint32_t wi;
540         uint32_t ei;
541         uint8_t ring;
542         int res = xtensa_tlb_lookup(env, v, dtlb, &wi, &ei, &ring);
543 
544         switch (res) {
545         case 0:
546             if (ring >= xtensa_get_ring(env)) {
547                 return (v & 0xfffff000) | wi | (dtlb ? 0x10 : 0x8);
548             }
549             break;
550 
551         case INST_TLB_MULTI_HIT_CAUSE:
552         case LOAD_STORE_TLB_MULTI_HIT_CAUSE:
553             HELPER(exception_cause_vaddr)(env, env->pc, res, v);
554             break;
555         }
556         return 0;
557     } else {
558         return (v & REGION_PAGE_MASK) | 0x1;
559     }
560 }
561 
HELPER(wtlb)562 void HELPER(wtlb)(CPUXtensaState *env, uint32_t p, uint32_t v, uint32_t dtlb)
563 {
564     uint32_t vpn;
565     uint32_t wi;
566     uint32_t ei;
567     if (split_tlb_entry_spec(env, v, dtlb, &vpn, &wi, &ei)) {
568         xtensa_tlb_set_entry(env, dtlb, wi, ei, vpn, p);
569     }
570 }
571 
572 /*!
573  * Convert MMU ATTR to PAGE_{READ,WRITE,EXEC} mask.
574  * See ISA, 4.6.5.10
575  */
mmu_attr_to_access(uint32_t attr)576 static unsigned mmu_attr_to_access(uint32_t attr)
577 {
578     unsigned access = 0;
579 
580     if (attr < 12) {
581         access |= PAGE_READ;
582         if (attr & 0x1) {
583             access |= PAGE_EXEC;
584         }
585         if (attr & 0x2) {
586             access |= PAGE_WRITE;
587         }
588 
589         switch (attr & 0xc) {
590         case 0:
591             access |= PAGE_CACHE_BYPASS;
592             break;
593 
594         case 4:
595             access |= PAGE_CACHE_WB;
596             break;
597 
598         case 8:
599             access |= PAGE_CACHE_WT;
600             break;
601         }
602     } else if (attr == 13) {
603         access |= PAGE_READ | PAGE_WRITE | PAGE_CACHE_ISOLATE;
604     }
605     return access;
606 }
607 
608 /*!
609  * Convert region protection ATTR to PAGE_{READ,WRITE,EXEC} mask.
610  * See ISA, 4.6.3.3
611  */
region_attr_to_access(uint32_t attr)612 static unsigned region_attr_to_access(uint32_t attr)
613 {
614     static const unsigned access[16] = {
615          [0] = PAGE_READ | PAGE_WRITE             | PAGE_CACHE_WT,
616          [1] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WT,
617          [2] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_BYPASS,
618          [3] =                          PAGE_EXEC | PAGE_CACHE_WB,
619          [4] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WB,
620          [5] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WB,
621         [14] = PAGE_READ | PAGE_WRITE             | PAGE_CACHE_ISOLATE,
622     };
623 
624     return access[attr & 0xf];
625 }
626 
627 /*!
628  * Convert cacheattr to PAGE_{READ,WRITE,EXEC} mask.
629  * See ISA, A.2.14 The Cache Attribute Register
630  */
cacheattr_attr_to_access(uint32_t attr)631 static unsigned cacheattr_attr_to_access(uint32_t attr)
632 {
633     static const unsigned access[16] = {
634          [0] = PAGE_READ | PAGE_WRITE             | PAGE_CACHE_WT,
635          [1] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WT,
636          [2] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_BYPASS,
637          [3] =                          PAGE_EXEC | PAGE_CACHE_WB,
638          [4] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WB,
639         [14] = PAGE_READ | PAGE_WRITE             | PAGE_CACHE_ISOLATE,
640     };
641 
642     return access[attr & 0xf];
643 }
644 
645 struct attr_pattern {
646     uint32_t mask;
647     uint32_t value;
648 };
649 
attr_pattern_match(uint32_t attr,const struct attr_pattern * pattern,size_t n)650 static int attr_pattern_match(uint32_t attr,
651                               const struct attr_pattern *pattern,
652                               size_t n)
653 {
654     size_t i;
655 
656     for (i = 0; i < n; ++i) {
657         if ((attr & pattern[i].mask) == pattern[i].value) {
658             return 1;
659         }
660     }
661     return 0;
662 }
663 
mpu_attr_to_cpu_cache(uint32_t attr)664 static unsigned mpu_attr_to_cpu_cache(uint32_t attr)
665 {
666     static const struct attr_pattern cpu_c[] = {
667         { .mask = 0x18f, .value = 0x089 },
668         { .mask = 0x188, .value = 0x080 },
669         { .mask = 0x180, .value = 0x180 },
670     };
671 
672     unsigned type = 0;
673 
674     if (attr_pattern_match(attr, cpu_c, ARRAY_SIZE(cpu_c))) {
675         type |= XTENSA_MPU_TYPE_CPU_CACHE;
676         if (attr & 0x10) {
677             type |= XTENSA_MPU_TYPE_CPU_C;
678         }
679         if (attr & 0x20) {
680             type |= XTENSA_MPU_TYPE_CPU_W;
681         }
682         if (attr & 0x40) {
683             type |= XTENSA_MPU_TYPE_CPU_R;
684         }
685     }
686     return type;
687 }
688 
mpu_attr_to_type(uint32_t attr)689 static unsigned mpu_attr_to_type(uint32_t attr)
690 {
691     static const struct attr_pattern device_type[] = {
692         { .mask = 0x1f6, .value = 0x000 },
693         { .mask = 0x1f6, .value = 0x006 },
694     };
695     static const struct attr_pattern sys_nc_type[] = {
696         { .mask = 0x1fe, .value = 0x018 },
697         { .mask = 0x1fe, .value = 0x01e },
698         { .mask = 0x18f, .value = 0x089 },
699     };
700     static const struct attr_pattern sys_c_type[] = {
701         { .mask = 0x1f8, .value = 0x010 },
702         { .mask = 0x188, .value = 0x080 },
703         { .mask = 0x1f0, .value = 0x030 },
704         { .mask = 0x180, .value = 0x180 },
705     };
706     static const struct attr_pattern b[] = {
707         { .mask = 0x1f7, .value = 0x001 },
708         { .mask = 0x1f7, .value = 0x007 },
709         { .mask = 0x1ff, .value = 0x019 },
710         { .mask = 0x1ff, .value = 0x01f },
711     };
712 
713     unsigned type = 0;
714 
715     attr = (attr & XTENSA_MPU_MEM_TYPE_MASK) >> XTENSA_MPU_MEM_TYPE_SHIFT;
716     if (attr_pattern_match(attr, device_type, ARRAY_SIZE(device_type))) {
717         type |= XTENSA_MPU_SYSTEM_TYPE_DEVICE;
718         if (attr & 0x80) {
719             type |= XTENSA_MPU_TYPE_INT;
720         }
721     }
722     if (attr_pattern_match(attr, sys_nc_type, ARRAY_SIZE(sys_nc_type))) {
723         type |= XTENSA_MPU_SYSTEM_TYPE_NC;
724     }
725     if (attr_pattern_match(attr, sys_c_type, ARRAY_SIZE(sys_c_type))) {
726         type |= XTENSA_MPU_SYSTEM_TYPE_C;
727         if (attr & 0x1) {
728             type |= XTENSA_MPU_TYPE_SYS_C;
729         }
730         if (attr & 0x2) {
731             type |= XTENSA_MPU_TYPE_SYS_W;
732         }
733         if (attr & 0x4) {
734             type |= XTENSA_MPU_TYPE_SYS_R;
735         }
736     }
737     if (attr_pattern_match(attr, b, ARRAY_SIZE(b))) {
738         type |= XTENSA_MPU_TYPE_B;
739     }
740     type |= mpu_attr_to_cpu_cache(attr);
741 
742     return type;
743 }
744 
mpu_attr_to_access(uint32_t attr,unsigned ring)745 static unsigned mpu_attr_to_access(uint32_t attr, unsigned ring)
746 {
747     static const unsigned access[2][16] = {
748         [0] = {
749              [4] = PAGE_READ,
750              [5] = PAGE_READ              | PAGE_EXEC,
751              [6] = PAGE_READ | PAGE_WRITE,
752              [7] = PAGE_READ | PAGE_WRITE | PAGE_EXEC,
753              [8] =             PAGE_WRITE,
754              [9] = PAGE_READ | PAGE_WRITE,
755             [10] = PAGE_READ | PAGE_WRITE,
756             [11] = PAGE_READ | PAGE_WRITE | PAGE_EXEC,
757             [12] = PAGE_READ,
758             [13] = PAGE_READ              | PAGE_EXEC,
759             [14] = PAGE_READ | PAGE_WRITE,
760             [15] = PAGE_READ | PAGE_WRITE | PAGE_EXEC,
761         },
762         [1] = {
763              [8] =             PAGE_WRITE,
764              [9] = PAGE_READ | PAGE_WRITE | PAGE_EXEC,
765             [10] = PAGE_READ,
766             [11] = PAGE_READ              | PAGE_EXEC,
767             [12] = PAGE_READ,
768             [13] = PAGE_READ              | PAGE_EXEC,
769             [14] = PAGE_READ | PAGE_WRITE,
770             [15] = PAGE_READ | PAGE_WRITE | PAGE_EXEC,
771         },
772     };
773     unsigned rv;
774     unsigned type;
775 
776     type = mpu_attr_to_cpu_cache(attr);
777     rv = access[ring != 0][(attr & XTENSA_MPU_ACC_RIGHTS_MASK) >>
778         XTENSA_MPU_ACC_RIGHTS_SHIFT];
779 
780     if (type & XTENSA_MPU_TYPE_CPU_CACHE) {
781         rv |= (type & XTENSA_MPU_TYPE_CPU_C) ? PAGE_CACHE_WB : PAGE_CACHE_WT;
782     } else {
783         rv |= PAGE_CACHE_BYPASS;
784     }
785     return rv;
786 }
787 
is_access_granted(unsigned access,int is_write)788 static bool is_access_granted(unsigned access, int is_write)
789 {
790     switch (is_write) {
791     case 0:
792         return access & PAGE_READ;
793 
794     case 1:
795         return access & PAGE_WRITE;
796 
797     case 2:
798         return access & PAGE_EXEC;
799 
800     default:
801         return 0;
802     }
803 }
804 
805 static bool get_pte(CPUXtensaState *env, uint32_t vaddr, uint32_t *pte);
806 
get_physical_addr_mmu(CPUXtensaState * env,bool update_tlb,uint32_t vaddr,int is_write,int mmu_idx,uint32_t * paddr,uint32_t * page_size,unsigned * access,bool may_lookup_pt)807 static int get_physical_addr_mmu(CPUXtensaState *env, bool update_tlb,
808                                  uint32_t vaddr, int is_write, int mmu_idx,
809                                  uint32_t *paddr, uint32_t *page_size,
810                                  unsigned *access, bool may_lookup_pt)
811 {
812     bool dtlb = is_write != 2;
813     uint32_t wi;
814     uint32_t ei;
815     uint8_t ring;
816     uint32_t vpn;
817     uint32_t pte;
818     const xtensa_tlb_entry *entry = NULL;
819     xtensa_tlb_entry tmp_entry;
820     int ret = xtensa_tlb_lookup(env, vaddr, dtlb, &wi, &ei, &ring);
821 
822     if ((ret == INST_TLB_MISS_CAUSE || ret == LOAD_STORE_TLB_MISS_CAUSE) &&
823         may_lookup_pt && get_pte(env, vaddr, &pte)) {
824         ring = (pte >> 4) & 0x3;
825         wi = 0;
826         split_tlb_entry_spec_way(env, vaddr, dtlb, &vpn, wi, &ei);
827 
828         if (update_tlb) {
829             wi = ++env->autorefill_idx & 0x3;
830             xtensa_tlb_set_entry(env, dtlb, wi, ei, vpn, pte);
831             env->sregs[EXCVADDR] = vaddr;
832             qemu_log_mask(CPU_LOG_MMU, "%s: autorefill(%08x): %08x -> %08x\n",
833                           __func__, vaddr, vpn, pte);
834         } else {
835             xtensa_tlb_set_entry_mmu(env, &tmp_entry, dtlb, wi, ei, vpn, pte);
836             entry = &tmp_entry;
837         }
838         ret = 0;
839     }
840     if (ret != 0) {
841         return ret;
842     }
843 
844     if (entry == NULL) {
845         entry = xtensa_tlb_get_entry(env, dtlb, wi, ei);
846     }
847 
848     if (ring < mmu_idx) {
849         return dtlb ?
850             LOAD_STORE_PRIVILEGE_CAUSE :
851             INST_FETCH_PRIVILEGE_CAUSE;
852     }
853 
854     *access = mmu_attr_to_access(entry->attr) &
855         ~(dtlb ? PAGE_EXEC : PAGE_READ | PAGE_WRITE);
856     if (!is_access_granted(*access, is_write)) {
857         return dtlb ?
858             (is_write ?
859              STORE_PROHIBITED_CAUSE :
860              LOAD_PROHIBITED_CAUSE) :
861             INST_FETCH_PROHIBITED_CAUSE;
862     }
863 
864     *paddr = entry->paddr | (vaddr & ~xtensa_tlb_get_addr_mask(env, dtlb, wi));
865     *page_size = ~xtensa_tlb_get_addr_mask(env, dtlb, wi) + 1;
866 
867     return 0;
868 }
869 
get_pte(CPUXtensaState * env,uint32_t vaddr,uint32_t * pte)870 static bool get_pte(CPUXtensaState *env, uint32_t vaddr, uint32_t *pte)
871 {
872     CPUState *cs = env_cpu(env);
873     uint32_t paddr;
874     uint32_t page_size;
875     unsigned access;
876     uint32_t pt_vaddr =
877         (env->sregs[PTEVADDR] | (vaddr >> 10)) & 0xfffffffc;
878     int ret = get_physical_addr_mmu(env, false, pt_vaddr, 0, 0,
879                                     &paddr, &page_size, &access, false);
880 
881     if (ret == 0) {
882         qemu_log_mask(CPU_LOG_MMU,
883                       "%s: autorefill(%08x): PTE va = %08x, pa = %08x\n",
884                       __func__, vaddr, pt_vaddr, paddr);
885     } else {
886         qemu_log_mask(CPU_LOG_MMU,
887                       "%s: autorefill(%08x): PTE va = %08x, failed (%d)\n",
888                       __func__, vaddr, pt_vaddr, ret);
889     }
890 
891     if (ret == 0) {
892         MemTxResult result;
893 
894         *pte = address_space_ldl(cs->as, paddr, MEMTXATTRS_UNSPECIFIED,
895                                  &result);
896         if (result != MEMTX_OK) {
897             qemu_log_mask(CPU_LOG_MMU,
898                           "%s: couldn't load PTE: transaction failed (%u)\n",
899                           __func__, (unsigned)result);
900             ret = 1;
901         }
902     }
903     return ret == 0;
904 }
905 
get_physical_addr_region(CPUXtensaState * env,uint32_t vaddr,int is_write,int mmu_idx,uint32_t * paddr,uint32_t * page_size,unsigned * access)906 static int get_physical_addr_region(CPUXtensaState *env,
907                                     uint32_t vaddr, int is_write, int mmu_idx,
908                                     uint32_t *paddr, uint32_t *page_size,
909                                     unsigned *access)
910 {
911     bool dtlb = is_write != 2;
912     uint32_t wi = 0;
913     uint32_t ei = (vaddr >> 29) & 0x7;
914     const xtensa_tlb_entry *entry =
915         xtensa_tlb_get_entry(env, dtlb, wi, ei);
916 
917     *access = region_attr_to_access(entry->attr);
918     if (!is_access_granted(*access, is_write)) {
919         return dtlb ?
920             (is_write ?
921              STORE_PROHIBITED_CAUSE :
922              LOAD_PROHIBITED_CAUSE) :
923             INST_FETCH_PROHIBITED_CAUSE;
924     }
925 
926     *paddr = entry->paddr | (vaddr & ~REGION_PAGE_MASK);
927     *page_size = ~REGION_PAGE_MASK + 1;
928 
929     return 0;
930 }
931 
xtensa_mpu_lookup(const xtensa_mpu_entry * entry,unsigned n,uint32_t vaddr,unsigned * segment)932 static int xtensa_mpu_lookup(const xtensa_mpu_entry *entry, unsigned n,
933                              uint32_t vaddr, unsigned *segment)
934 {
935     unsigned nhits = 0;
936     unsigned i;
937 
938     for (i = 0; i < n; ++i) {
939         if (vaddr >= entry[i].vaddr &&
940             (i == n - 1 || vaddr < entry[i + 1].vaddr)) {
941             if (nhits++) {
942                 break;
943             }
944             *segment = i;
945         }
946     }
947     return nhits;
948 }
949 
HELPER(wsr_mpuenb)950 void HELPER(wsr_mpuenb)(CPUXtensaState *env, uint32_t v)
951 {
952     v &= (2u << (env->config->n_mpu_fg_segments - 1)) - 1;
953 
954     if (v != env->sregs[MPUENB]) {
955         env->sregs[MPUENB] = v;
956         tlb_flush(env_cpu(env));
957     }
958 }
959 
HELPER(wptlb)960 void HELPER(wptlb)(CPUXtensaState *env, uint32_t p, uint32_t v)
961 {
962     unsigned segment = p & XTENSA_MPU_SEGMENT_MASK;
963 
964     if (segment < env->config->n_mpu_fg_segments) {
965         env->mpu_fg[segment].vaddr = v & -env->config->mpu_align;
966         env->mpu_fg[segment].attr = p & XTENSA_MPU_ATTR_MASK;
967         env->sregs[MPUENB] = deposit32(env->sregs[MPUENB], segment, 1, v);
968         tlb_flush(env_cpu(env));
969     }
970 }
971 
HELPER(rptlb0)972 uint32_t HELPER(rptlb0)(CPUXtensaState *env, uint32_t s)
973 {
974     unsigned segment = s & XTENSA_MPU_SEGMENT_MASK;
975 
976     if (segment < env->config->n_mpu_fg_segments) {
977         return env->mpu_fg[segment].vaddr |
978             extract32(env->sregs[MPUENB], segment, 1);
979     } else {
980         return 0;
981     }
982 }
983 
HELPER(rptlb1)984 uint32_t HELPER(rptlb1)(CPUXtensaState *env, uint32_t s)
985 {
986     unsigned segment = s & XTENSA_MPU_SEGMENT_MASK;
987 
988     if (segment < env->config->n_mpu_fg_segments) {
989         return env->mpu_fg[segment].attr;
990     } else {
991         return 0;
992     }
993 }
994 
HELPER(pptlb)995 uint32_t HELPER(pptlb)(CPUXtensaState *env, uint32_t v)
996 {
997     unsigned nhits;
998     unsigned segment;
999     unsigned bg_segment;
1000 
1001     nhits = xtensa_mpu_lookup(env->mpu_fg, env->config->n_mpu_fg_segments,
1002                               v, &segment);
1003     if (nhits > 1) {
1004         HELPER(exception_cause_vaddr)(env, env->pc,
1005                                       LOAD_STORE_TLB_MULTI_HIT_CAUSE, v);
1006     } else if (nhits == 1 && (env->sregs[MPUENB] & (1u << segment))) {
1007         return env->mpu_fg[segment].attr | segment | XTENSA_MPU_PROBE_V;
1008     } else {
1009         xtensa_mpu_lookup(env->config->mpu_bg,
1010                           env->config->n_mpu_bg_segments,
1011                           v, &bg_segment);
1012         return env->config->mpu_bg[bg_segment].attr | XTENSA_MPU_PROBE_B;
1013     }
1014 }
1015 
get_physical_addr_mpu(CPUXtensaState * env,uint32_t vaddr,int is_write,int mmu_idx,uint32_t * paddr,uint32_t * page_size,unsigned * access)1016 static int get_physical_addr_mpu(CPUXtensaState *env,
1017                                  uint32_t vaddr, int is_write, int mmu_idx,
1018                                  uint32_t *paddr, uint32_t *page_size,
1019                                  unsigned *access)
1020 {
1021     unsigned nhits;
1022     unsigned segment;
1023     uint32_t attr;
1024 
1025     nhits = xtensa_mpu_lookup(env->mpu_fg, env->config->n_mpu_fg_segments,
1026                               vaddr, &segment);
1027     if (nhits > 1) {
1028         return is_write < 2 ?
1029             LOAD_STORE_TLB_MULTI_HIT_CAUSE :
1030             INST_TLB_MULTI_HIT_CAUSE;
1031     } else if (nhits == 1 && (env->sregs[MPUENB] & (1u << segment))) {
1032         attr = env->mpu_fg[segment].attr;
1033     } else {
1034         xtensa_mpu_lookup(env->config->mpu_bg,
1035                           env->config->n_mpu_bg_segments,
1036                           vaddr, &segment);
1037         attr = env->config->mpu_bg[segment].attr;
1038     }
1039 
1040     *access = mpu_attr_to_access(attr, mmu_idx);
1041     if (!is_access_granted(*access, is_write)) {
1042         return is_write < 2 ?
1043             (is_write ?
1044              STORE_PROHIBITED_CAUSE :
1045              LOAD_PROHIBITED_CAUSE) :
1046             INST_FETCH_PROHIBITED_CAUSE;
1047     }
1048     *paddr = vaddr;
1049     *page_size = env->config->mpu_align;
1050     return 0;
1051 }
1052 
1053 /*!
1054  * Convert virtual address to physical addr.
1055  * MMU may issue pagewalk and change xtensa autorefill TLB way entry.
1056  *
1057  * \return 0 if ok, exception cause code otherwise
1058  */
xtensa_get_physical_addr(CPUXtensaState * env,bool update_tlb,uint32_t vaddr,int is_write,int mmu_idx,uint32_t * paddr,uint32_t * page_size,unsigned * access)1059 int xtensa_get_physical_addr(CPUXtensaState *env, bool update_tlb,
1060                              uint32_t vaddr, int is_write, int mmu_idx,
1061                              uint32_t *paddr, uint32_t *page_size,
1062                              unsigned *access)
1063 {
1064     if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
1065         return get_physical_addr_mmu(env, update_tlb,
1066                                      vaddr, is_write, mmu_idx, paddr,
1067                                      page_size, access, true);
1068     } else if (xtensa_option_bits_enabled(env->config,
1069                 XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_PROTECTION) |
1070                 XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_TRANSLATION))) {
1071         return get_physical_addr_region(env, vaddr, is_write, mmu_idx,
1072                                         paddr, page_size, access);
1073     } else if (xtensa_option_enabled(env->config, XTENSA_OPTION_MPU)) {
1074         return get_physical_addr_mpu(env, vaddr, is_write, mmu_idx,
1075                                      paddr, page_size, access);
1076     } else {
1077         *paddr = vaddr;
1078         *page_size = TARGET_PAGE_SIZE;
1079         *access = cacheattr_attr_to_access(env->sregs[CACHEATTR] >>
1080                                            ((vaddr & 0xe0000000) >> 27));
1081         return 0;
1082     }
1083 }
1084 
dump_tlb(CPUXtensaState * env,bool dtlb)1085 static void dump_tlb(CPUXtensaState *env, bool dtlb)
1086 {
1087     unsigned wi, ei;
1088     const xtensa_tlb *conf =
1089         dtlb ? &env->config->dtlb : &env->config->itlb;
1090     unsigned (*attr_to_access)(uint32_t) =
1091         xtensa_option_enabled(env->config, XTENSA_OPTION_MMU) ?
1092         mmu_attr_to_access : region_attr_to_access;
1093 
1094     for (wi = 0; wi < conf->nways; ++wi) {
1095         uint32_t sz = ~xtensa_tlb_get_addr_mask(env, dtlb, wi) + 1;
1096         const char *sz_text;
1097         bool print_header = true;
1098 
1099         if (sz >= 0x100000) {
1100             sz /= MiB;
1101             sz_text = "MB";
1102         } else {
1103             sz /= KiB;
1104             sz_text = "KB";
1105         }
1106 
1107         for (ei = 0; ei < conf->way_size[wi]; ++ei) {
1108             const xtensa_tlb_entry *entry =
1109                 xtensa_tlb_get_entry(env, dtlb, wi, ei);
1110 
1111             if (entry->asid) {
1112                 static const char * const cache_text[8] = {
1113                     [PAGE_CACHE_BYPASS >> PAGE_CACHE_SHIFT] = "Bypass",
1114                     [PAGE_CACHE_WT >> PAGE_CACHE_SHIFT] = "WT",
1115                     [PAGE_CACHE_WB >> PAGE_CACHE_SHIFT] = "WB",
1116                     [PAGE_CACHE_ISOLATE >> PAGE_CACHE_SHIFT] = "Isolate",
1117                 };
1118                 unsigned access = attr_to_access(entry->attr);
1119                 unsigned cache_idx = (access & PAGE_CACHE_MASK) >>
1120                     PAGE_CACHE_SHIFT;
1121 
1122                 if (print_header) {
1123                     print_header = false;
1124                     qemu_printf("Way %u (%d %s)\n", wi, sz, sz_text);
1125                     qemu_printf("\tVaddr       Paddr       ASID  Attr RWX Cache\n"
1126                                 "\t----------  ----------  ----  ---- --- -------\n");
1127                 }
1128                 qemu_printf("\t0x%08x  0x%08x  0x%02x  0x%02x %c%c%c %s\n",
1129                             entry->vaddr,
1130                             entry->paddr,
1131                             entry->asid,
1132                             entry->attr,
1133                             (access & PAGE_READ) ? 'R' : '-',
1134                             (access & PAGE_WRITE) ? 'W' : '-',
1135                             (access & PAGE_EXEC) ? 'X' : '-',
1136                             cache_text[cache_idx] ?
1137                             cache_text[cache_idx] : "Invalid");
1138             }
1139         }
1140     }
1141 }
1142 
dump_mpu(CPUXtensaState * env,const xtensa_mpu_entry * entry,unsigned n)1143 static void dump_mpu(CPUXtensaState *env,
1144                      const xtensa_mpu_entry *entry, unsigned n)
1145 {
1146     unsigned i;
1147 
1148     qemu_printf("\t%s  Vaddr       Attr        Ring0  Ring1  System Type    CPU cache\n"
1149                 "\t%s  ----------  ----------  -----  -----  -------------  ---------\n",
1150                 env ? "En" : "  ",
1151                 env ? "--" : "  ");
1152 
1153     for (i = 0; i < n; ++i) {
1154         uint32_t attr = entry[i].attr;
1155         unsigned access0 = mpu_attr_to_access(attr, 0);
1156         unsigned access1 = mpu_attr_to_access(attr, 1);
1157         unsigned type = mpu_attr_to_type(attr);
1158         char cpu_cache = (type & XTENSA_MPU_TYPE_CPU_CACHE) ? '-' : ' ';
1159 
1160         qemu_printf("\t %c  0x%08x  0x%08x   %c%c%c    %c%c%c   ",
1161                     env ?
1162                     ((env->sregs[MPUENB] & (1u << i)) ? '+' : '-') : ' ',
1163                     entry[i].vaddr, attr,
1164                     (access0 & PAGE_READ) ? 'R' : '-',
1165                     (access0 & PAGE_WRITE) ? 'W' : '-',
1166                     (access0 & PAGE_EXEC) ? 'X' : '-',
1167                     (access1 & PAGE_READ) ? 'R' : '-',
1168                     (access1 & PAGE_WRITE) ? 'W' : '-',
1169                     (access1 & PAGE_EXEC) ? 'X' : '-');
1170 
1171         switch (type & XTENSA_MPU_SYSTEM_TYPE_MASK) {
1172         case XTENSA_MPU_SYSTEM_TYPE_DEVICE:
1173             qemu_printf("Device %cB %3s\n",
1174                         (type & XTENSA_MPU_TYPE_B) ? ' ' : 'n',
1175                         (type & XTENSA_MPU_TYPE_INT) ? "int" : "");
1176             break;
1177         case XTENSA_MPU_SYSTEM_TYPE_NC:
1178             qemu_printf("Sys NC %cB      %c%c%c\n",
1179                         (type & XTENSA_MPU_TYPE_B) ? ' ' : 'n',
1180                         (type & XTENSA_MPU_TYPE_CPU_R) ? 'r' : cpu_cache,
1181                         (type & XTENSA_MPU_TYPE_CPU_W) ? 'w' : cpu_cache,
1182                         (type & XTENSA_MPU_TYPE_CPU_C) ? 'c' : cpu_cache);
1183             break;
1184         case XTENSA_MPU_SYSTEM_TYPE_C:
1185             qemu_printf("Sys  C %c%c%c     %c%c%c\n",
1186                         (type & XTENSA_MPU_TYPE_SYS_R) ? 'R' : '-',
1187                         (type & XTENSA_MPU_TYPE_SYS_W) ? 'W' : '-',
1188                         (type & XTENSA_MPU_TYPE_SYS_C) ? 'C' : '-',
1189                         (type & XTENSA_MPU_TYPE_CPU_R) ? 'r' : cpu_cache,
1190                         (type & XTENSA_MPU_TYPE_CPU_W) ? 'w' : cpu_cache,
1191                         (type & XTENSA_MPU_TYPE_CPU_C) ? 'c' : cpu_cache);
1192             break;
1193         default:
1194             qemu_printf("Unknown\n");
1195             break;
1196         }
1197     }
1198 }
1199 
dump_mmu(CPUXtensaState * env)1200 void dump_mmu(CPUXtensaState *env)
1201 {
1202     if (xtensa_option_bits_enabled(env->config,
1203                 XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_PROTECTION) |
1204                 XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_TRANSLATION) |
1205                 XTENSA_OPTION_BIT(XTENSA_OPTION_MMU))) {
1206 
1207         qemu_printf("ITLB:\n");
1208         dump_tlb(env, false);
1209         qemu_printf("\nDTLB:\n");
1210         dump_tlb(env, true);
1211     } else if (xtensa_option_enabled(env->config, XTENSA_OPTION_MPU)) {
1212         qemu_printf("Foreground map:\n");
1213         dump_mpu(env, env->mpu_fg, env->config->n_mpu_fg_segments);
1214         qemu_printf("\nBackground map:\n");
1215         dump_mpu(NULL, env->config->mpu_bg, env->config->n_mpu_bg_segments);
1216     } else {
1217         qemu_printf("No TLB for this CPU core\n");
1218     }
1219 }
1220