1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation.
4 */
5
6 #include <linux/sched.h>
7 #include <linux/mm_types.h>
8 #include <linux/memblock.h>
9 #include <linux/memremap.h>
10 #include <linux/pkeys.h>
11 #include <linux/debugfs.h>
12 #include <linux/proc_fs.h>
13
14 #include <asm/pgalloc.h>
15 #include <asm/tlb.h>
16 #include <asm/trace.h>
17 #include <asm/powernv.h>
18 #include <asm/firmware.h>
19 #include <asm/ultravisor.h>
20 #include <asm/kexec.h>
21
22 #include <mm/mmu_decl.h>
23 #include <trace/events/thp.h>
24
25 #include "internal.h"
26
27 struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
28 EXPORT_SYMBOL_GPL(mmu_psize_defs);
29
30 #ifdef CONFIG_SPARSEMEM_VMEMMAP
31 int mmu_vmemmap_psize = MMU_PAGE_4K;
32 #endif
33
34 unsigned long __pmd_frag_nr;
35 EXPORT_SYMBOL(__pmd_frag_nr);
36 unsigned long __pmd_frag_size_shift;
37 EXPORT_SYMBOL(__pmd_frag_size_shift);
38
39 #ifdef CONFIG_KFENCE
40 extern bool kfence_early_init;
parse_kfence_early_init(char * arg)41 static int __init parse_kfence_early_init(char *arg)
42 {
43 int val;
44
45 if (get_option(&arg, &val))
46 kfence_early_init = !!val;
47 return 0;
48 }
49 early_param("kfence.sample_interval", parse_kfence_early_init);
50 #endif
51
52 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
53 /*
54 * This is called when relaxing access to a hugepage. It's also called in the page
55 * fault path when we don't hit any of the major fault cases, ie, a minor
56 * update of _PAGE_ACCESSED, _PAGE_DIRTY, etc... The generic code will have
57 * handled those two for us, we additionally deal with missing execute
58 * permission here on some processors
59 */
pmdp_set_access_flags(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp,pmd_t entry,int dirty)60 int pmdp_set_access_flags(struct vm_area_struct *vma, unsigned long address,
61 pmd_t *pmdp, pmd_t entry, int dirty)
62 {
63 int changed;
64 #ifdef CONFIG_DEBUG_VM
65 WARN_ON(!pmd_trans_huge(*pmdp));
66 assert_spin_locked(pmd_lockptr(vma->vm_mm, pmdp));
67 #endif
68 changed = !pmd_same(*(pmdp), entry);
69 if (changed) {
70 /*
71 * We can use MMU_PAGE_2M here, because only radix
72 * path look at the psize.
73 */
74 __ptep_set_access_flags(vma, pmdp_ptep(pmdp),
75 pmd_pte(entry), address, MMU_PAGE_2M);
76 }
77 return changed;
78 }
79
pudp_set_access_flags(struct vm_area_struct * vma,unsigned long address,pud_t * pudp,pud_t entry,int dirty)80 int pudp_set_access_flags(struct vm_area_struct *vma, unsigned long address,
81 pud_t *pudp, pud_t entry, int dirty)
82 {
83 int changed;
84 #ifdef CONFIG_DEBUG_VM
85 assert_spin_locked(pud_lockptr(vma->vm_mm, pudp));
86 #endif
87 changed = !pud_same(*(pudp), entry);
88 if (changed) {
89 /*
90 * We can use MMU_PAGE_1G here, because only radix
91 * path look at the psize.
92 */
93 __ptep_set_access_flags(vma, pudp_ptep(pudp),
94 pud_pte(entry), address, MMU_PAGE_1G);
95 }
96 return changed;
97 }
98
99
pmdp_test_and_clear_young(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)100 int pmdp_test_and_clear_young(struct vm_area_struct *vma,
101 unsigned long address, pmd_t *pmdp)
102 {
103 return __pmdp_test_and_clear_young(vma->vm_mm, address, pmdp);
104 }
105
pudp_test_and_clear_young(struct vm_area_struct * vma,unsigned long address,pud_t * pudp)106 int pudp_test_and_clear_young(struct vm_area_struct *vma,
107 unsigned long address, pud_t *pudp)
108 {
109 return __pudp_test_and_clear_young(vma->vm_mm, address, pudp);
110 }
111
112 /*
113 * set a new huge pmd. We should not be called for updating
114 * an existing pmd entry. That should go via pmd_hugepage_update.
115 */
set_pmd_at(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp,pmd_t pmd)116 void set_pmd_at(struct mm_struct *mm, unsigned long addr,
117 pmd_t *pmdp, pmd_t pmd)
118 {
119 #ifdef CONFIG_DEBUG_VM
120 /*
121 * Make sure hardware valid bit is not set. We don't do
122 * tlb flush for this update.
123 */
124
125 WARN_ON(pte_hw_valid(pmd_pte(*pmdp)) && !pte_protnone(pmd_pte(*pmdp)));
126 assert_spin_locked(pmd_lockptr(mm, pmdp));
127 WARN_ON(!(pmd_leaf(pmd)));
128 #endif
129 trace_hugepage_set_pmd(addr, pmd_val(pmd));
130 return set_pte_at(mm, addr, pmdp_ptep(pmdp), pmd_pte(pmd));
131 }
132
set_pud_at(struct mm_struct * mm,unsigned long addr,pud_t * pudp,pud_t pud)133 void set_pud_at(struct mm_struct *mm, unsigned long addr,
134 pud_t *pudp, pud_t pud)
135 {
136 #ifdef CONFIG_DEBUG_VM
137 /*
138 * Make sure hardware valid bit is not set. We don't do
139 * tlb flush for this update.
140 */
141
142 WARN_ON(pte_hw_valid(pud_pte(*pudp)));
143 assert_spin_locked(pud_lockptr(mm, pudp));
144 WARN_ON(!(pud_leaf(pud)));
145 #endif
146 trace_hugepage_set_pud(addr, pud_val(pud));
147 return set_pte_at(mm, addr, pudp_ptep(pudp), pud_pte(pud));
148 }
149
do_serialize(void * arg)150 static void do_serialize(void *arg)
151 {
152 /* We've taken the IPI, so try to trim the mask while here */
153 if (radix_enabled()) {
154 struct mm_struct *mm = arg;
155 exit_lazy_flush_tlb(mm, false);
156 }
157 }
158
159 /*
160 * Serialize against __find_linux_pte() which does lock-less
161 * lookup in page tables with local interrupts disabled. For huge pages
162 * it casts pmd_t to pte_t. Since format of pte_t is different from
163 * pmd_t we want to prevent transit from pmd pointing to page table
164 * to pmd pointing to huge page (and back) while interrupts are disabled.
165 * We clear pmd to possibly replace it with page table pointer in
166 * different code paths. So make sure we wait for the parallel
167 * __find_linux_pte() to finish.
168 */
serialize_against_pte_lookup(struct mm_struct * mm)169 void serialize_against_pte_lookup(struct mm_struct *mm)
170 {
171 smp_mb();
172 smp_call_function_many(mm_cpumask(mm), do_serialize, mm, 1);
173 }
174
175 /*
176 * We use this to invalidate a pmdp entry before switching from a
177 * hugepte to regular pmd entry.
178 */
pmdp_invalidate(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)179 pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
180 pmd_t *pmdp)
181 {
182 unsigned long old_pmd;
183
184 VM_WARN_ON_ONCE(!pmd_present(*pmdp));
185 old_pmd = pmd_hugepage_update(vma->vm_mm, address, pmdp, _PAGE_PRESENT, _PAGE_INVALID);
186 flush_pmd_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
187 return __pmd(old_pmd);
188 }
189
pudp_invalidate(struct vm_area_struct * vma,unsigned long address,pud_t * pudp)190 pud_t pudp_invalidate(struct vm_area_struct *vma, unsigned long address,
191 pud_t *pudp)
192 {
193 unsigned long old_pud;
194
195 VM_WARN_ON_ONCE(!pud_present(*pudp));
196 old_pud = pud_hugepage_update(vma->vm_mm, address, pudp, _PAGE_PRESENT, _PAGE_INVALID);
197 flush_pud_tlb_range(vma, address, address + HPAGE_PUD_SIZE);
198 return __pud(old_pud);
199 }
200
pmdp_huge_get_and_clear_full(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp,int full)201 pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
202 unsigned long addr, pmd_t *pmdp, int full)
203 {
204 pmd_t pmd;
205 VM_BUG_ON(addr & ~HPAGE_PMD_MASK);
206 VM_BUG_ON((pmd_present(*pmdp) && !pmd_trans_huge(*pmdp)) ||
207 !pmd_present(*pmdp));
208 pmd = pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
209 /*
210 * if it not a fullmm flush, then we can possibly end up converting
211 * this PMD pte entry to a regular level 0 PTE by a parallel page fault.
212 * Make sure we flush the tlb in this case.
213 */
214 if (!full)
215 flush_pmd_tlb_range(vma, addr, addr + HPAGE_PMD_SIZE);
216 return pmd;
217 }
218
pudp_huge_get_and_clear_full(struct vm_area_struct * vma,unsigned long addr,pud_t * pudp,int full)219 pud_t pudp_huge_get_and_clear_full(struct vm_area_struct *vma,
220 unsigned long addr, pud_t *pudp, int full)
221 {
222 pud_t pud;
223
224 VM_BUG_ON(addr & ~HPAGE_PMD_MASK);
225 VM_BUG_ON(!pud_present(*pudp));
226 pud = pudp_huge_get_and_clear(vma->vm_mm, addr, pudp);
227 /*
228 * if it not a fullmm flush, then we can possibly end up converting
229 * this PMD pte entry to a regular level 0 PTE by a parallel page fault.
230 * Make sure we flush the tlb in this case.
231 */
232 if (!full)
233 flush_pud_tlb_range(vma, addr, addr + HPAGE_PUD_SIZE);
234 return pud;
235 }
236
pmd_set_protbits(pmd_t pmd,pgprot_t pgprot)237 static pmd_t pmd_set_protbits(pmd_t pmd, pgprot_t pgprot)
238 {
239 return __pmd(pmd_val(pmd) | pgprot_val(pgprot));
240 }
241
pud_set_protbits(pud_t pud,pgprot_t pgprot)242 static pud_t pud_set_protbits(pud_t pud, pgprot_t pgprot)
243 {
244 return __pud(pud_val(pud) | pgprot_val(pgprot));
245 }
246
247 /*
248 * At some point we should be able to get rid of
249 * pmd_mkhuge() and mk_huge_pmd() when we update all the
250 * other archs to mark the pmd huge in pfn_pmd()
251 */
pfn_pmd(unsigned long pfn,pgprot_t pgprot)252 pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot)
253 {
254 unsigned long pmdv;
255
256 pmdv = (pfn << PAGE_SHIFT) & PTE_RPN_MASK;
257
258 return __pmd_mkhuge(pmd_set_protbits(__pmd(pmdv), pgprot));
259 }
260
pfn_pud(unsigned long pfn,pgprot_t pgprot)261 pud_t pfn_pud(unsigned long pfn, pgprot_t pgprot)
262 {
263 unsigned long pudv;
264
265 pudv = (pfn << PAGE_SHIFT) & PTE_RPN_MASK;
266
267 return __pud_mkhuge(pud_set_protbits(__pud(pudv), pgprot));
268 }
269
pmd_modify(pmd_t pmd,pgprot_t newprot)270 pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
271 {
272 unsigned long pmdv;
273
274 pmdv = pmd_val(pmd);
275 pmdv &= _HPAGE_CHG_MASK;
276 return pmd_set_protbits(__pmd(pmdv), newprot);
277 }
278
pud_modify(pud_t pud,pgprot_t newprot)279 pud_t pud_modify(pud_t pud, pgprot_t newprot)
280 {
281 unsigned long pudv;
282
283 pudv = pud_val(pud);
284 pudv &= _HPAGE_CHG_MASK;
285 return pud_set_protbits(__pud(pudv), newprot);
286 }
287 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
288
289 /* For use by kexec, called with MMU off */
mmu_cleanup_all(void)290 notrace void mmu_cleanup_all(void)
291 {
292 if (radix_enabled())
293 radix__mmu_cleanup_all();
294 else if (mmu_hash_ops.hpte_clear_all)
295 mmu_hash_ops.hpte_clear_all();
296
297 reset_sprs();
298 }
299
300 #ifdef CONFIG_MEMORY_HOTPLUG
create_section_mapping(unsigned long start,unsigned long end,int nid,pgprot_t prot)301 int __meminit create_section_mapping(unsigned long start, unsigned long end,
302 int nid, pgprot_t prot)
303 {
304 if (radix_enabled())
305 return radix__create_section_mapping(start, end, nid, prot);
306
307 return hash__create_section_mapping(start, end, nid, prot);
308 }
309
remove_section_mapping(unsigned long start,unsigned long end)310 int __meminit remove_section_mapping(unsigned long start, unsigned long end)
311 {
312 if (radix_enabled())
313 return radix__remove_section_mapping(start, end);
314
315 return hash__remove_section_mapping(start, end);
316 }
317 #endif /* CONFIG_MEMORY_HOTPLUG */
318
mmu_partition_table_init(void)319 void __init mmu_partition_table_init(void)
320 {
321 unsigned long patb_size = 1UL << PATB_SIZE_SHIFT;
322 unsigned long ptcr;
323
324 /* Initialize the Partition Table with no entries */
325 partition_tb = memblock_alloc_or_panic(patb_size, patb_size);
326 ptcr = __pa(partition_tb) | (PATB_SIZE_SHIFT - 12);
327 set_ptcr_when_no_uv(ptcr);
328 powernv_set_nmmu_ptcr(ptcr);
329 }
330
flush_partition(unsigned int lpid,bool radix)331 static void flush_partition(unsigned int lpid, bool radix)
332 {
333 if (radix) {
334 radix__flush_all_lpid(lpid);
335 radix__flush_all_lpid_guest(lpid);
336 } else {
337 asm volatile("ptesync" : : : "memory");
338 asm volatile(PPC_TLBIE_5(%0,%1,2,0,0) : :
339 "r" (TLBIEL_INVAL_SET_LPID), "r" (lpid));
340 /* do we need fixup here ?*/
341 asm volatile("eieio; tlbsync; ptesync" : : : "memory");
342 trace_tlbie(lpid, 0, TLBIEL_INVAL_SET_LPID, lpid, 2, 0, 0);
343 }
344 }
345
mmu_partition_table_set_entry(unsigned int lpid,unsigned long dw0,unsigned long dw1,bool flush)346 void mmu_partition_table_set_entry(unsigned int lpid, unsigned long dw0,
347 unsigned long dw1, bool flush)
348 {
349 unsigned long old = be64_to_cpu(partition_tb[lpid].patb0);
350
351 /*
352 * When ultravisor is enabled, the partition table is stored in secure
353 * memory and can only be accessed doing an ultravisor call. However, we
354 * maintain a copy of the partition table in normal memory to allow Nest
355 * MMU translations to occur (for normal VMs).
356 *
357 * Therefore, here we always update partition_tb, regardless of whether
358 * we are running under an ultravisor or not.
359 */
360 partition_tb[lpid].patb0 = cpu_to_be64(dw0);
361 partition_tb[lpid].patb1 = cpu_to_be64(dw1);
362
363 /*
364 * If ultravisor is enabled, we do an ultravisor call to register the
365 * partition table entry (PATE), which also do a global flush of TLBs
366 * and partition table caches for the lpid. Otherwise, just do the
367 * flush. The type of flush (hash or radix) depends on what the previous
368 * use of the partition ID was, not the new use.
369 */
370 if (firmware_has_feature(FW_FEATURE_ULTRAVISOR)) {
371 uv_register_pate(lpid, dw0, dw1);
372 pr_info("PATE registered by ultravisor: dw0 = 0x%lx, dw1 = 0x%lx\n",
373 dw0, dw1);
374 } else if (flush) {
375 /*
376 * Boot does not need to flush, because MMU is off and each
377 * CPU does a tlbiel_all() before switching them on, which
378 * flushes everything.
379 */
380 flush_partition(lpid, (old & PATB_HR));
381 }
382 }
383 EXPORT_SYMBOL_GPL(mmu_partition_table_set_entry);
384
get_pmd_from_cache(struct mm_struct * mm)385 static pmd_t *get_pmd_from_cache(struct mm_struct *mm)
386 {
387 void *pmd_frag, *ret;
388
389 if (PMD_FRAG_NR == 1)
390 return NULL;
391
392 spin_lock(&mm->page_table_lock);
393 ret = mm->context.pmd_frag;
394 if (ret) {
395 pmd_frag = ret + PMD_FRAG_SIZE;
396 /*
397 * If we have taken up all the fragments mark PTE page NULL
398 */
399 if (((unsigned long)pmd_frag & ~PAGE_MASK) == 0)
400 pmd_frag = NULL;
401 mm->context.pmd_frag = pmd_frag;
402 }
403 spin_unlock(&mm->page_table_lock);
404 return (pmd_t *)ret;
405 }
406
__alloc_for_pmdcache(struct mm_struct * mm)407 static pmd_t *__alloc_for_pmdcache(struct mm_struct *mm)
408 {
409 void *ret = NULL;
410 struct ptdesc *ptdesc;
411 gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO;
412
413 if (mm == &init_mm)
414 gfp &= ~__GFP_ACCOUNT;
415 ptdesc = pagetable_alloc(gfp, 0);
416 if (!ptdesc)
417 return NULL;
418 if (!pagetable_pmd_ctor(mm, ptdesc)) {
419 pagetable_free(ptdesc);
420 return NULL;
421 }
422
423 atomic_set(&ptdesc->pt_frag_refcount, 1);
424
425 ret = ptdesc_address(ptdesc);
426 /*
427 * if we support only one fragment just return the
428 * allocated page.
429 */
430 if (PMD_FRAG_NR == 1)
431 return ret;
432
433 spin_lock(&mm->page_table_lock);
434 /*
435 * If we find ptdesc_page set, we return
436 * the allocated page with single fragment
437 * count.
438 */
439 if (likely(!mm->context.pmd_frag)) {
440 atomic_set(&ptdesc->pt_frag_refcount, PMD_FRAG_NR);
441 mm->context.pmd_frag = ret + PMD_FRAG_SIZE;
442 }
443 spin_unlock(&mm->page_table_lock);
444
445 return (pmd_t *)ret;
446 }
447
pmd_fragment_alloc(struct mm_struct * mm,unsigned long vmaddr)448 pmd_t *pmd_fragment_alloc(struct mm_struct *mm, unsigned long vmaddr)
449 {
450 pmd_t *pmd;
451
452 pmd = get_pmd_from_cache(mm);
453 if (pmd)
454 return pmd;
455
456 return __alloc_for_pmdcache(mm);
457 }
458
pmd_fragment_free(unsigned long * pmd)459 void pmd_fragment_free(unsigned long *pmd)
460 {
461 struct ptdesc *ptdesc = virt_to_ptdesc(pmd);
462
463 if (pagetable_is_reserved(ptdesc))
464 return free_reserved_ptdesc(ptdesc);
465
466 BUG_ON(atomic_read(&ptdesc->pt_frag_refcount) <= 0);
467 if (atomic_dec_and_test(&ptdesc->pt_frag_refcount)) {
468 pagetable_dtor(ptdesc);
469 pagetable_free(ptdesc);
470 }
471 }
472
pgtable_free(void * table,int index)473 static inline void pgtable_free(void *table, int index)
474 {
475 switch (index) {
476 case PTE_INDEX:
477 pte_fragment_free(table, 0);
478 break;
479 case PMD_INDEX:
480 pmd_fragment_free(table);
481 break;
482 case PUD_INDEX:
483 __pud_free(table);
484 break;
485 /* We don't free pgd table via RCU callback */
486 default:
487 BUG();
488 }
489 }
490
pgtable_free_tlb(struct mmu_gather * tlb,void * table,int index)491 void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int index)
492 {
493 unsigned long pgf = (unsigned long)table;
494
495 BUG_ON(index > MAX_PGTABLE_INDEX_SIZE);
496 pgf |= index;
497 tlb_remove_table(tlb, (void *)pgf);
498 }
499
__tlb_remove_table(void * _table)500 void __tlb_remove_table(void *_table)
501 {
502 void *table = (void *)((unsigned long)_table & ~MAX_PGTABLE_INDEX_SIZE);
503 unsigned int index = (unsigned long)_table & MAX_PGTABLE_INDEX_SIZE;
504
505 return pgtable_free(table, index);
506 }
507
508 #ifdef CONFIG_PROC_FS
509 atomic_long_t direct_pages_count[MMU_PAGE_COUNT];
510
arch_report_meminfo(struct seq_file * m)511 void arch_report_meminfo(struct seq_file *m)
512 {
513 /*
514 * Hash maps the memory with one size mmu_linear_psize.
515 * So don't bother to print these on hash
516 */
517 if (!radix_enabled())
518 return;
519 seq_printf(m, "DirectMap4k: %8lu kB\n",
520 atomic_long_read(&direct_pages_count[MMU_PAGE_4K]) << 2);
521 seq_printf(m, "DirectMap64k: %8lu kB\n",
522 atomic_long_read(&direct_pages_count[MMU_PAGE_64K]) << 6);
523 seq_printf(m, "DirectMap2M: %8lu kB\n",
524 atomic_long_read(&direct_pages_count[MMU_PAGE_2M]) << 11);
525 seq_printf(m, "DirectMap1G: %8lu kB\n",
526 atomic_long_read(&direct_pages_count[MMU_PAGE_1G]) << 20);
527 }
528 #endif /* CONFIG_PROC_FS */
529
ptep_modify_prot_start(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)530 pte_t ptep_modify_prot_start(struct vm_area_struct *vma, unsigned long addr,
531 pte_t *ptep)
532 {
533 unsigned long pte_val;
534
535 /*
536 * Clear the _PAGE_PRESENT so that no hardware parallel update is
537 * possible. Also keep the pte_present true so that we don't take
538 * wrong fault.
539 */
540 pte_val = pte_update(vma->vm_mm, addr, ptep, _PAGE_PRESENT, _PAGE_INVALID, 0);
541
542 return __pte(pte_val);
543
544 }
545
ptep_modify_prot_commit(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,pte_t old_pte,pte_t pte)546 void ptep_modify_prot_commit(struct vm_area_struct *vma, unsigned long addr,
547 pte_t *ptep, pte_t old_pte, pte_t pte)
548 {
549 if (radix_enabled())
550 return radix__ptep_modify_prot_commit(vma, addr,
551 ptep, old_pte, pte);
552 set_pte_at(vma->vm_mm, addr, ptep, pte);
553 }
554
555 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
556 /*
557 * For hash translation mode, we use the deposited table to store hash slot
558 * information and they are stored at PTRS_PER_PMD offset from related pmd
559 * location. Hence a pmd move requires deposit and withdraw.
560 *
561 * For radix translation with split pmd ptl, we store the deposited table in the
562 * pmd page. Hence if we have different pmd page we need to withdraw during pmd
563 * move.
564 *
565 * With hash we use deposited table always irrespective of anon or not.
566 * With radix we use deposited table only for anonymous mapping.
567 */
pmd_move_must_withdraw(struct spinlock * new_pmd_ptl,struct spinlock * old_pmd_ptl,struct vm_area_struct * vma)568 int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl,
569 struct spinlock *old_pmd_ptl,
570 struct vm_area_struct *vma)
571 {
572 if (radix_enabled())
573 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
574
575 return true;
576 }
577 #endif
578
579 /*
580 * Does the CPU support tlbie?
581 */
582 bool tlbie_capable __read_mostly = IS_ENABLED(CONFIG_PPC_RADIX_BROADCAST_TLBIE);
583 EXPORT_SYMBOL(tlbie_capable);
584
585 /*
586 * Should tlbie be used for management of CPU TLBs, for kernel and process
587 * address spaces? tlbie may still be used for nMMU accelerators, and for KVM
588 * guest address spaces.
589 */
590 bool tlbie_enabled __read_mostly = IS_ENABLED(CONFIG_PPC_RADIX_BROADCAST_TLBIE);
591
setup_disable_tlbie(char * str)592 static int __init setup_disable_tlbie(char *str)
593 {
594 if (!radix_enabled()) {
595 pr_err("disable_tlbie: Unable to disable TLBIE with Hash MMU.\n");
596 return 1;
597 }
598
599 tlbie_capable = false;
600 tlbie_enabled = false;
601
602 return 1;
603 }
604 __setup("disable_tlbie", setup_disable_tlbie);
605
pgtable_debugfs_setup(void)606 static int __init pgtable_debugfs_setup(void)
607 {
608 if (!tlbie_capable)
609 return 0;
610
611 /*
612 * There is no locking vs tlb flushing when changing this value.
613 * The tlb flushers will see one value or another, and use either
614 * tlbie or tlbiel with IPIs. In both cases the TLBs will be
615 * invalidated as expected.
616 */
617 debugfs_create_bool("tlbie_enabled", 0600,
618 arch_debugfs_dir,
619 &tlbie_enabled);
620
621 return 0;
622 }
623 arch_initcall(pgtable_debugfs_setup);
624
625 #if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_ARCH_HAS_MEMREMAP_COMPAT_ALIGN)
626 /*
627 * Override the generic version in mm/memremap.c.
628 *
629 * With hash translation, the direct-map range is mapped with just one
630 * page size selected by htab_init_page_sizes(). Consult
631 * mmu_psize_defs[] to determine the minimum page size alignment.
632 */
memremap_compat_align(void)633 unsigned long memremap_compat_align(void)
634 {
635 if (!radix_enabled()) {
636 unsigned int shift = mmu_psize_defs[mmu_linear_psize].shift;
637 return max(SUBSECTION_SIZE, 1UL << shift);
638 }
639
640 return SUBSECTION_SIZE;
641 }
642 EXPORT_SYMBOL_GPL(memremap_compat_align);
643 #endif
644
vm_get_page_prot(vm_flags_t vm_flags)645 pgprot_t vm_get_page_prot(vm_flags_t vm_flags)
646 {
647 unsigned long prot;
648
649 /* Radix supports execute-only, but protection_map maps X -> RX */
650 if (!radix_enabled() && ((vm_flags & VM_ACCESS_FLAGS) == VM_EXEC))
651 vm_flags |= VM_READ;
652
653 prot = pgprot_val(protection_map[vm_flags & (VM_ACCESS_FLAGS | VM_SHARED)]);
654
655 if (vm_flags & VM_SAO)
656 prot |= _PAGE_SAO;
657
658 #ifdef CONFIG_PPC_MEM_KEYS
659 prot |= vmflag_to_pte_pkey_bits(vm_flags);
660 #endif
661
662 return __pgprot(prot);
663 }
664 EXPORT_SYMBOL(vm_get_page_prot);
665