xref: /linux/rust/kernel/types.rs (revision 0074281bb6316108e0cff094bd4db78ab3eee236)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 //! Kernel types.
4 
5 use crate::ffi::c_void;
6 use core::{
7     cell::UnsafeCell,
8     marker::{PhantomData, PhantomPinned},
9     mem::MaybeUninit,
10     ops::{Deref, DerefMut},
11 };
12 use pin_init::{PinInit, Wrapper, Zeroable};
13 
14 pub use crate::sync::aref::{ARef, AlwaysRefCounted};
15 
16 /// Used to transfer ownership to and from foreign (non-Rust) languages.
17 ///
18 /// Ownership is transferred from Rust to a foreign language by calling [`Self::into_foreign`] and
19 /// later may be transferred back to Rust by calling [`Self::from_foreign`].
20 ///
21 /// This trait is meant to be used in cases when Rust objects are stored in C objects and
22 /// eventually "freed" back to Rust.
23 ///
24 /// # Safety
25 ///
26 /// - Implementations must satisfy the guarantees of [`Self::into_foreign`].
27 pub unsafe trait ForeignOwnable: Sized {
28     /// The alignment of pointers returned by `into_foreign`.
29     const FOREIGN_ALIGN: usize;
30 
31     /// Type used to immutably borrow a value that is currently foreign-owned.
32     type Borrowed<'a>;
33 
34     /// Type used to mutably borrow a value that is currently foreign-owned.
35     type BorrowedMut<'a>;
36 
37     /// Converts a Rust-owned object to a foreign-owned one.
38     ///
39     /// The foreign representation is a pointer to void. Aside from the guarantees listed below,
40     /// there are no other guarantees for this pointer. For example, it might be invalid, dangling
41     /// or pointing to uninitialized memory. Using it in any way except for [`from_foreign`],
42     /// [`try_from_foreign`], [`borrow`], or [`borrow_mut`] can result in undefined behavior.
43     ///
44     /// # Guarantees
45     ///
46     /// - Minimum alignment of returned pointer is [`Self::FOREIGN_ALIGN`].
47     /// - The returned pointer is not null.
48     ///
49     /// [`from_foreign`]: Self::from_foreign
50     /// [`try_from_foreign`]: Self::try_from_foreign
51     /// [`borrow`]: Self::borrow
52     /// [`borrow_mut`]: Self::borrow_mut
into_foreign(self) -> *mut c_void53     fn into_foreign(self) -> *mut c_void;
54 
55     /// Converts a foreign-owned object back to a Rust-owned one.
56     ///
57     /// # Safety
58     ///
59     /// The provided pointer must have been returned by a previous call to [`into_foreign`], and it
60     /// must not be passed to `from_foreign` more than once.
61     ///
62     /// [`into_foreign`]: Self::into_foreign
from_foreign(ptr: *mut c_void) -> Self63     unsafe fn from_foreign(ptr: *mut c_void) -> Self;
64 
65     /// Tries to convert a foreign-owned object back to a Rust-owned one.
66     ///
67     /// A convenience wrapper over [`ForeignOwnable::from_foreign`] that returns [`None`] if `ptr`
68     /// is null.
69     ///
70     /// # Safety
71     ///
72     /// `ptr` must either be null or satisfy the safety requirements for [`from_foreign`].
73     ///
74     /// [`from_foreign`]: Self::from_foreign
try_from_foreign(ptr: *mut c_void) -> Option<Self>75     unsafe fn try_from_foreign(ptr: *mut c_void) -> Option<Self> {
76         if ptr.is_null() {
77             None
78         } else {
79             // SAFETY: Since `ptr` is not null here, then `ptr` satisfies the safety requirements
80             // of `from_foreign` given the safety requirements of this function.
81             unsafe { Some(Self::from_foreign(ptr)) }
82         }
83     }
84 
85     /// Borrows a foreign-owned object immutably.
86     ///
87     /// This method provides a way to access a foreign-owned value from Rust immutably. It provides
88     /// you with exactly the same abilities as an `&Self` when the value is Rust-owned.
89     ///
90     /// # Safety
91     ///
92     /// The provided pointer must have been returned by a previous call to [`into_foreign`], and if
93     /// the pointer is ever passed to [`from_foreign`], then that call must happen after the end of
94     /// the lifetime `'a`.
95     ///
96     /// [`into_foreign`]: Self::into_foreign
97     /// [`from_foreign`]: Self::from_foreign
borrow<'a>(ptr: *mut c_void) -> Self::Borrowed<'a>98     unsafe fn borrow<'a>(ptr: *mut c_void) -> Self::Borrowed<'a>;
99 
100     /// Borrows a foreign-owned object mutably.
101     ///
102     /// This method provides a way to access a foreign-owned value from Rust mutably. It provides
103     /// you with exactly the same abilities as an `&mut Self` when the value is Rust-owned, except
104     /// that the address of the object must not be changed.
105     ///
106     /// Note that for types like [`Arc`], an `&mut Arc<T>` only gives you immutable access to the
107     /// inner value, so this method also only provides immutable access in that case.
108     ///
109     /// In the case of `Box<T>`, this method gives you the ability to modify the inner `T`, but it
110     /// does not let you change the box itself. That is, you cannot change which allocation the box
111     /// points at.
112     ///
113     /// # Safety
114     ///
115     /// The provided pointer must have been returned by a previous call to [`into_foreign`], and if
116     /// the pointer is ever passed to [`from_foreign`], then that call must happen after the end of
117     /// the lifetime `'a`.
118     ///
119     /// The lifetime `'a` must not overlap with the lifetime of any other call to [`borrow`] or
120     /// `borrow_mut` on the same object.
121     ///
122     /// [`into_foreign`]: Self::into_foreign
123     /// [`from_foreign`]: Self::from_foreign
124     /// [`borrow`]: Self::borrow
125     /// [`Arc`]: crate::sync::Arc
borrow_mut<'a>(ptr: *mut c_void) -> Self::BorrowedMut<'a>126     unsafe fn borrow_mut<'a>(ptr: *mut c_void) -> Self::BorrowedMut<'a>;
127 }
128 
129 // SAFETY: The pointer returned by `into_foreign` comes from a well aligned
130 // pointer to `()`.
131 unsafe impl ForeignOwnable for () {
132     const FOREIGN_ALIGN: usize = core::mem::align_of::<()>();
133     type Borrowed<'a> = ();
134     type BorrowedMut<'a> = ();
135 
into_foreign(self) -> *mut c_void136     fn into_foreign(self) -> *mut c_void {
137         core::ptr::NonNull::dangling().as_ptr()
138     }
139 
from_foreign(_: *mut c_void) -> Self140     unsafe fn from_foreign(_: *mut c_void) -> Self {}
141 
borrow<'a>(_: *mut c_void) -> Self::Borrowed<'a>142     unsafe fn borrow<'a>(_: *mut c_void) -> Self::Borrowed<'a> {}
borrow_mut<'a>(_: *mut c_void) -> Self::BorrowedMut<'a>143     unsafe fn borrow_mut<'a>(_: *mut c_void) -> Self::BorrowedMut<'a> {}
144 }
145 
146 /// Runs a cleanup function/closure when dropped.
147 ///
148 /// The [`ScopeGuard::dismiss`] function prevents the cleanup function from running.
149 ///
150 /// # Examples
151 ///
152 /// In the example below, we have multiple exit paths and we want to log regardless of which one is
153 /// taken:
154 ///
155 /// ```
156 /// # use kernel::types::ScopeGuard;
157 /// fn example1(arg: bool) {
158 ///     let _log = ScopeGuard::new(|| pr_info!("example1 completed\n"));
159 ///
160 ///     if arg {
161 ///         return;
162 ///     }
163 ///
164 ///     pr_info!("Do something...\n");
165 /// }
166 ///
167 /// # example1(false);
168 /// # example1(true);
169 /// ```
170 ///
171 /// In the example below, we want to log the same message on all early exits but a different one on
172 /// the main exit path:
173 ///
174 /// ```
175 /// # use kernel::types::ScopeGuard;
176 /// fn example2(arg: bool) {
177 ///     let log = ScopeGuard::new(|| pr_info!("example2 returned early\n"));
178 ///
179 ///     if arg {
180 ///         return;
181 ///     }
182 ///
183 ///     // (Other early returns...)
184 ///
185 ///     log.dismiss();
186 ///     pr_info!("example2 no early return\n");
187 /// }
188 ///
189 /// # example2(false);
190 /// # example2(true);
191 /// ```
192 ///
193 /// In the example below, we need a mutable object (the vector) to be accessible within the log
194 /// function, so we wrap it in the [`ScopeGuard`]:
195 ///
196 /// ```
197 /// # use kernel::types::ScopeGuard;
198 /// fn example3(arg: bool) -> Result {
199 ///     let mut vec =
200 ///         ScopeGuard::new_with_data(KVec::new(), |v| pr_info!("vec had {} elements\n", v.len()));
201 ///
202 ///     vec.push(10u8, GFP_KERNEL)?;
203 ///     if arg {
204 ///         return Ok(());
205 ///     }
206 ///     vec.push(20u8, GFP_KERNEL)?;
207 ///     Ok(())
208 /// }
209 ///
210 /// # assert_eq!(example3(false), Ok(()));
211 /// # assert_eq!(example3(true), Ok(()));
212 /// ```
213 ///
214 /// # Invariants
215 ///
216 /// The value stored in the struct is nearly always `Some(_)`, except between
217 /// [`ScopeGuard::dismiss`] and [`ScopeGuard::drop`]: in this case, it will be `None` as the value
218 /// will have been returned to the caller. Since  [`ScopeGuard::dismiss`] consumes the guard,
219 /// callers won't be able to use it anymore.
220 pub struct ScopeGuard<T, F: FnOnce(T)>(Option<(T, F)>);
221 
222 impl<T, F: FnOnce(T)> ScopeGuard<T, F> {
223     /// Creates a new guarded object wrapping the given data and with the given cleanup function.
new_with_data(data: T, cleanup_func: F) -> Self224     pub fn new_with_data(data: T, cleanup_func: F) -> Self {
225         // INVARIANT: The struct is being initialised with `Some(_)`.
226         Self(Some((data, cleanup_func)))
227     }
228 
229     /// Prevents the cleanup function from running and returns the guarded data.
dismiss(mut self) -> T230     pub fn dismiss(mut self) -> T {
231         // INVARIANT: This is the exception case in the invariant; it is not visible to callers
232         // because this function consumes `self`.
233         self.0.take().unwrap().0
234     }
235 }
236 
237 impl ScopeGuard<(), fn(())> {
238     /// Creates a new guarded object with the given cleanup function.
new(cleanup: impl FnOnce()) -> ScopeGuard<(), impl FnOnce(())>239     pub fn new(cleanup: impl FnOnce()) -> ScopeGuard<(), impl FnOnce(())> {
240         ScopeGuard::new_with_data((), move |()| cleanup())
241     }
242 }
243 
244 impl<T, F: FnOnce(T)> Deref for ScopeGuard<T, F> {
245     type Target = T;
246 
deref(&self) -> &T247     fn deref(&self) -> &T {
248         // The type invariants guarantee that `unwrap` will succeed.
249         &self.0.as_ref().unwrap().0
250     }
251 }
252 
253 impl<T, F: FnOnce(T)> DerefMut for ScopeGuard<T, F> {
deref_mut(&mut self) -> &mut T254     fn deref_mut(&mut self) -> &mut T {
255         // The type invariants guarantee that `unwrap` will succeed.
256         &mut self.0.as_mut().unwrap().0
257     }
258 }
259 
260 impl<T, F: FnOnce(T)> Drop for ScopeGuard<T, F> {
drop(&mut self)261     fn drop(&mut self) {
262         // Run the cleanup function if one is still present.
263         if let Some((data, cleanup)) = self.0.take() {
264             cleanup(data)
265         }
266     }
267 }
268 
269 /// Stores an opaque value.
270 ///
271 /// [`Opaque<T>`] is meant to be used with FFI objects that are never interpreted by Rust code.
272 ///
273 /// It is used to wrap structs from the C side, like for example `Opaque<bindings::mutex>`.
274 /// It gets rid of all the usual assumptions that Rust has for a value:
275 ///
276 /// * The value is allowed to be uninitialized (for example have invalid bit patterns: `3` for a
277 ///   [`bool`]).
278 /// * The value is allowed to be mutated, when a `&Opaque<T>` exists on the Rust side.
279 /// * No uniqueness for mutable references: it is fine to have multiple `&mut Opaque<T>` point to
280 ///   the same value.
281 /// * The value is not allowed to be shared with other threads (i.e. it is `!Sync`).
282 ///
283 /// This has to be used for all values that the C side has access to, because it can't be ensured
284 /// that the C side is adhering to the usual constraints that Rust needs.
285 ///
286 /// Using [`Opaque<T>`] allows to continue to use references on the Rust side even for values shared
287 /// with C.
288 ///
289 /// # Examples
290 ///
291 /// ```
292 /// # #![expect(unreachable_pub, clippy::disallowed_names)]
293 /// use kernel::types::Opaque;
294 /// # // Emulate a C struct binding which is from C, maybe uninitialized or not, only the C side
295 /// # // knows.
296 /// # mod bindings {
297 /// #     pub struct Foo {
298 /// #         pub val: u8,
299 /// #     }
300 /// # }
301 ///
302 /// // `foo.val` is assumed to be handled on the C side, so we use `Opaque` to wrap it.
303 /// pub struct Foo {
304 ///     foo: Opaque<bindings::Foo>,
305 /// }
306 ///
307 /// impl Foo {
308 ///     pub fn get_val(&self) -> u8 {
309 ///         let ptr = Opaque::get(&self.foo);
310 ///
311 ///         // SAFETY: `Self` is valid from C side.
312 ///         unsafe { (*ptr).val }
313 ///     }
314 /// }
315 ///
316 /// // Create an instance of `Foo` with the `Opaque` wrapper.
317 /// let foo = Foo {
318 ///     foo: Opaque::new(bindings::Foo { val: 0xdb }),
319 /// };
320 ///
321 /// assert_eq!(foo.get_val(), 0xdb);
322 /// ```
323 #[repr(transparent)]
324 pub struct Opaque<T> {
325     value: UnsafeCell<MaybeUninit<T>>,
326     _pin: PhantomPinned,
327 }
328 
329 // SAFETY: `Opaque<T>` allows the inner value to be any bit pattern, including all zeros.
330 unsafe impl<T> Zeroable for Opaque<T> {}
331 
332 impl<T> Opaque<T> {
333     /// Creates a new opaque value.
new(value: T) -> Self334     pub const fn new(value: T) -> Self {
335         Self {
336             value: UnsafeCell::new(MaybeUninit::new(value)),
337             _pin: PhantomPinned,
338         }
339     }
340 
341     /// Creates an uninitialised value.
uninit() -> Self342     pub const fn uninit() -> Self {
343         Self {
344             value: UnsafeCell::new(MaybeUninit::uninit()),
345             _pin: PhantomPinned,
346         }
347     }
348 
349     /// Creates a new zeroed opaque value.
zeroed() -> Self350     pub const fn zeroed() -> Self {
351         Self {
352             value: UnsafeCell::new(MaybeUninit::zeroed()),
353             _pin: PhantomPinned,
354         }
355     }
356 
357     /// Creates a pin-initializer from the given initializer closure.
358     ///
359     /// The returned initializer calls the given closure with the pointer to the inner `T` of this
360     /// `Opaque`. Since this memory is uninitialized, the closure is not allowed to read from it.
361     ///
362     /// This function is safe, because the `T` inside of an `Opaque` is allowed to be
363     /// uninitialized. Additionally, access to the inner `T` requires `unsafe`, so the caller needs
364     /// to verify at that point that the inner value is valid.
ffi_init(init_func: impl FnOnce(*mut T)) -> impl PinInit<Self>365     pub fn ffi_init(init_func: impl FnOnce(*mut T)) -> impl PinInit<Self> {
366         // SAFETY: We contain a `MaybeUninit`, so it is OK for the `init_func` to not fully
367         // initialize the `T`.
368         unsafe {
369             pin_init::pin_init_from_closure::<_, ::core::convert::Infallible>(move |slot| {
370                 init_func(Self::cast_into(slot));
371                 Ok(())
372             })
373         }
374     }
375 
376     /// Creates a fallible pin-initializer from the given initializer closure.
377     ///
378     /// The returned initializer calls the given closure with the pointer to the inner `T` of this
379     /// `Opaque`. Since this memory is uninitialized, the closure is not allowed to read from it.
380     ///
381     /// This function is safe, because the `T` inside of an `Opaque` is allowed to be
382     /// uninitialized. Additionally, access to the inner `T` requires `unsafe`, so the caller needs
383     /// to verify at that point that the inner value is valid.
try_ffi_init<E>( init_func: impl FnOnce(*mut T) -> Result<(), E>, ) -> impl PinInit<Self, E>384     pub fn try_ffi_init<E>(
385         init_func: impl FnOnce(*mut T) -> Result<(), E>,
386     ) -> impl PinInit<Self, E> {
387         // SAFETY: We contain a `MaybeUninit`, so it is OK for the `init_func` to not fully
388         // initialize the `T`.
389         unsafe {
390             pin_init::pin_init_from_closure::<_, E>(move |slot| init_func(Self::cast_into(slot)))
391         }
392     }
393 
394     /// Returns a raw pointer to the opaque data.
get(&self) -> *mut T395     pub const fn get(&self) -> *mut T {
396         UnsafeCell::get(&self.value).cast::<T>()
397     }
398 
399     /// Gets the value behind `this`.
400     ///
401     /// This function is useful to get access to the value without creating intermediate
402     /// references.
cast_into(this: *const Self) -> *mut T403     pub const fn cast_into(this: *const Self) -> *mut T {
404         UnsafeCell::raw_get(this.cast::<UnsafeCell<MaybeUninit<T>>>()).cast::<T>()
405     }
406 
407     /// The opposite operation of [`Opaque::cast_into`].
cast_from(this: *const T) -> *const Self408     pub const fn cast_from(this: *const T) -> *const Self {
409         this.cast()
410     }
411 }
412 
413 impl<T> Wrapper<T> for Opaque<T> {
414     /// Create an opaque pin-initializer from the given pin-initializer.
pin_init<E>(slot: impl PinInit<T, E>) -> impl PinInit<Self, E>415     fn pin_init<E>(slot: impl PinInit<T, E>) -> impl PinInit<Self, E> {
416         Self::try_ffi_init(|ptr: *mut T| {
417             // SAFETY:
418             //   - `ptr` is a valid pointer to uninitialized memory,
419             //   - `slot` is not accessed on error,
420             //   - `slot` is pinned in memory.
421             unsafe { PinInit::<T, E>::__pinned_init(slot, ptr) }
422         })
423     }
424 }
425 
426 /// Zero-sized type to mark types not [`Send`].
427 ///
428 /// Add this type as a field to your struct if your type should not be sent to a different task.
429 /// Since [`Send`] is an auto trait, adding a single field that is `!Send` will ensure that the
430 /// whole type is `!Send`.
431 ///
432 /// If a type is `!Send` it is impossible to give control over an instance of the type to another
433 /// task. This is useful to include in types that store or reference task-local information. A file
434 /// descriptor is an example of such task-local information.
435 ///
436 /// This type also makes the type `!Sync`, which prevents immutable access to the value from
437 /// several threads in parallel.
438 pub type NotThreadSafe = PhantomData<*mut ()>;
439 
440 /// Used to construct instances of type [`NotThreadSafe`] similar to how `PhantomData` is
441 /// constructed.
442 ///
443 /// [`NotThreadSafe`]: type@NotThreadSafe
444 #[allow(non_upper_case_globals)]
445 pub const NotThreadSafe: NotThreadSafe = PhantomData;
446