xref: /linux/arch/arm64/mm/fault.c (revision beace86e61e465dba204a268ab3f3377153a4973)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Based on arch/arm/mm/fault.c
4  *
5  * Copyright (C) 1995  Linus Torvalds
6  * Copyright (C) 1995-2004 Russell King
7  * Copyright (C) 2012 ARM Ltd.
8  */
9 
10 #include <linux/acpi.h>
11 #include <linux/bitfield.h>
12 #include <linux/extable.h>
13 #include <linux/kfence.h>
14 #include <linux/signal.h>
15 #include <linux/mm.h>
16 #include <linux/hardirq.h>
17 #include <linux/init.h>
18 #include <linux/kasan.h>
19 #include <linux/kprobes.h>
20 #include <linux/uaccess.h>
21 #include <linux/page-flags.h>
22 #include <linux/sched/signal.h>
23 #include <linux/sched/debug.h>
24 #include <linux/highmem.h>
25 #include <linux/perf_event.h>
26 #include <linux/pkeys.h>
27 #include <linux/preempt.h>
28 #include <linux/hugetlb.h>
29 
30 #include <asm/acpi.h>
31 #include <asm/bug.h>
32 #include <asm/cmpxchg.h>
33 #include <asm/cpufeature.h>
34 #include <asm/efi.h>
35 #include <asm/exception.h>
36 #include <asm/daifflags.h>
37 #include <asm/debug-monitors.h>
38 #include <asm/esr.h>
39 #include <asm/kprobes.h>
40 #include <asm/mte.h>
41 #include <asm/processor.h>
42 #include <asm/sysreg.h>
43 #include <asm/system_misc.h>
44 #include <asm/tlbflush.h>
45 #include <asm/traps.h>
46 
47 struct fault_info {
48 	int	(*fn)(unsigned long far, unsigned long esr,
49 		      struct pt_regs *regs);
50 	int	sig;
51 	int	code;
52 	const char *name;
53 };
54 
55 static const struct fault_info fault_info[];
56 
esr_to_fault_info(unsigned long esr)57 static inline const struct fault_info *esr_to_fault_info(unsigned long esr)
58 {
59 	return fault_info + (esr & ESR_ELx_FSC);
60 }
61 
data_abort_decode(unsigned long esr)62 static void data_abort_decode(unsigned long esr)
63 {
64 	unsigned long iss2 = ESR_ELx_ISS2(esr);
65 
66 	pr_alert("Data abort info:\n");
67 
68 	if (esr & ESR_ELx_ISV) {
69 		pr_alert("  Access size = %u byte(s)\n",
70 			 1U << ((esr & ESR_ELx_SAS) >> ESR_ELx_SAS_SHIFT));
71 		pr_alert("  SSE = %lu, SRT = %lu\n",
72 			 (esr & ESR_ELx_SSE) >> ESR_ELx_SSE_SHIFT,
73 			 (esr & ESR_ELx_SRT_MASK) >> ESR_ELx_SRT_SHIFT);
74 		pr_alert("  SF = %lu, AR = %lu\n",
75 			 (esr & ESR_ELx_SF) >> ESR_ELx_SF_SHIFT,
76 			 (esr & ESR_ELx_AR) >> ESR_ELx_AR_SHIFT);
77 	} else {
78 		pr_alert("  ISV = 0, ISS = 0x%08lx, ISS2 = 0x%08lx\n",
79 			 esr & ESR_ELx_ISS_MASK, iss2);
80 	}
81 
82 	pr_alert("  CM = %lu, WnR = %lu, TnD = %lu, TagAccess = %lu\n",
83 		 (esr & ESR_ELx_CM) >> ESR_ELx_CM_SHIFT,
84 		 (esr & ESR_ELx_WNR) >> ESR_ELx_WNR_SHIFT,
85 		 (iss2 & ESR_ELx_TnD) >> ESR_ELx_TnD_SHIFT,
86 		 (iss2 & ESR_ELx_TagAccess) >> ESR_ELx_TagAccess_SHIFT);
87 
88 	pr_alert("  GCS = %ld, Overlay = %lu, DirtyBit = %lu, Xs = %llu\n",
89 		 (iss2 & ESR_ELx_GCS) >> ESR_ELx_GCS_SHIFT,
90 		 (iss2 & ESR_ELx_Overlay) >> ESR_ELx_Overlay_SHIFT,
91 		 (iss2 & ESR_ELx_DirtyBit) >> ESR_ELx_DirtyBit_SHIFT,
92 		 (iss2 & ESR_ELx_Xs_MASK) >> ESR_ELx_Xs_SHIFT);
93 }
94 
mem_abort_decode(unsigned long esr)95 static void mem_abort_decode(unsigned long esr)
96 {
97 	pr_alert("Mem abort info:\n");
98 
99 	pr_alert("  ESR = 0x%016lx\n", esr);
100 	pr_alert("  EC = 0x%02lx: %s, IL = %u bits\n",
101 		 ESR_ELx_EC(esr), esr_get_class_string(esr),
102 		 (esr & ESR_ELx_IL) ? 32 : 16);
103 	pr_alert("  SET = %lu, FnV = %lu\n",
104 		 (esr & ESR_ELx_SET_MASK) >> ESR_ELx_SET_SHIFT,
105 		 (esr & ESR_ELx_FnV) >> ESR_ELx_FnV_SHIFT);
106 	pr_alert("  EA = %lu, S1PTW = %lu\n",
107 		 (esr & ESR_ELx_EA) >> ESR_ELx_EA_SHIFT,
108 		 (esr & ESR_ELx_S1PTW) >> ESR_ELx_S1PTW_SHIFT);
109 	pr_alert("  FSC = 0x%02lx: %s\n", (esr & ESR_ELx_FSC),
110 		 esr_to_fault_info(esr)->name);
111 
112 	if (esr_is_data_abort(esr))
113 		data_abort_decode(esr);
114 }
115 
mm_to_pgd_phys(struct mm_struct * mm)116 static inline unsigned long mm_to_pgd_phys(struct mm_struct *mm)
117 {
118 	/* Either init_pg_dir or swapper_pg_dir */
119 	if (mm == &init_mm)
120 		return __pa_symbol(mm->pgd);
121 
122 	return (unsigned long)virt_to_phys(mm->pgd);
123 }
124 
125 /*
126  * Dump out the page tables associated with 'addr' in the currently active mm.
127  */
show_pte(unsigned long addr)128 static void show_pte(unsigned long addr)
129 {
130 	struct mm_struct *mm;
131 	pgd_t *pgdp;
132 	pgd_t pgd;
133 
134 	if (is_ttbr0_addr(addr)) {
135 		/* TTBR0 */
136 		mm = current->active_mm;
137 		if (mm == &init_mm) {
138 			pr_alert("[%016lx] user address but active_mm is swapper\n",
139 				 addr);
140 			return;
141 		}
142 	} else if (is_ttbr1_addr(addr)) {
143 		/* TTBR1 */
144 		mm = &init_mm;
145 	} else {
146 		pr_alert("[%016lx] address between user and kernel address ranges\n",
147 			 addr);
148 		return;
149 	}
150 
151 	pr_alert("%s pgtable: %luk pages, %llu-bit VAs, pgdp=%016lx\n",
152 		 mm == &init_mm ? "swapper" : "user", PAGE_SIZE / SZ_1K,
153 		 vabits_actual, mm_to_pgd_phys(mm));
154 	pgdp = pgd_offset(mm, addr);
155 	pgd = READ_ONCE(*pgdp);
156 	pr_alert("[%016lx] pgd=%016llx", addr, pgd_val(pgd));
157 
158 	do {
159 		p4d_t *p4dp, p4d;
160 		pud_t *pudp, pud;
161 		pmd_t *pmdp, pmd;
162 		pte_t *ptep, pte;
163 
164 		if (pgd_none(pgd) || pgd_bad(pgd))
165 			break;
166 
167 		p4dp = p4d_offset(pgdp, addr);
168 		p4d = READ_ONCE(*p4dp);
169 		pr_cont(", p4d=%016llx", p4d_val(p4d));
170 		if (p4d_none(p4d) || p4d_bad(p4d))
171 			break;
172 
173 		pudp = pud_offset(p4dp, addr);
174 		pud = READ_ONCE(*pudp);
175 		pr_cont(", pud=%016llx", pud_val(pud));
176 		if (pud_none(pud) || pud_bad(pud))
177 			break;
178 
179 		pmdp = pmd_offset(pudp, addr);
180 		pmd = READ_ONCE(*pmdp);
181 		pr_cont(", pmd=%016llx", pmd_val(pmd));
182 		if (pmd_none(pmd) || pmd_bad(pmd))
183 			break;
184 
185 		ptep = pte_offset_map(pmdp, addr);
186 		if (!ptep)
187 			break;
188 
189 		pte = __ptep_get(ptep);
190 		pr_cont(", pte=%016llx", pte_val(pte));
191 		pte_unmap(ptep);
192 	} while(0);
193 
194 	pr_cont("\n");
195 }
196 
197 /*
198  * This function sets the access flags (dirty, accessed), as well as write
199  * permission, and only to a more permissive setting.
200  *
201  * It needs to cope with hardware update of the accessed/dirty state by other
202  * agents in the system and can safely skip the __sync_icache_dcache() call as,
203  * like __set_ptes(), the PTE is never changed from no-exec to exec here.
204  *
205  * Returns whether or not the PTE actually changed.
206  */
__ptep_set_access_flags(struct vm_area_struct * vma,unsigned long address,pte_t * ptep,pte_t entry,int dirty)207 int __ptep_set_access_flags(struct vm_area_struct *vma,
208 			    unsigned long address, pte_t *ptep,
209 			    pte_t entry, int dirty)
210 {
211 	pteval_t old_pteval, pteval;
212 	pte_t pte = __ptep_get(ptep);
213 
214 	if (pte_same(pte, entry))
215 		return 0;
216 
217 	/* only preserve the access flags and write permission */
218 	pte_val(entry) &= PTE_RDONLY | PTE_AF | PTE_WRITE | PTE_DIRTY;
219 
220 	/*
221 	 * Setting the flags must be done atomically to avoid racing with the
222 	 * hardware update of the access/dirty state. The PTE_RDONLY bit must
223 	 * be set to the most permissive (lowest value) of *ptep and entry
224 	 * (calculated as: a & b == ~(~a | ~b)).
225 	 */
226 	pte_val(entry) ^= PTE_RDONLY;
227 	pteval = pte_val(pte);
228 	do {
229 		old_pteval = pteval;
230 		pteval ^= PTE_RDONLY;
231 		pteval |= pte_val(entry);
232 		pteval ^= PTE_RDONLY;
233 		pteval = cmpxchg_relaxed(&pte_val(*ptep), old_pteval, pteval);
234 	} while (pteval != old_pteval);
235 
236 	/* Invalidate a stale read-only entry */
237 	if (dirty)
238 		flush_tlb_page(vma, address);
239 	return 1;
240 }
241 
is_el1_instruction_abort(unsigned long esr)242 static bool is_el1_instruction_abort(unsigned long esr)
243 {
244 	return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_CUR;
245 }
246 
is_el1_data_abort(unsigned long esr)247 static bool is_el1_data_abort(unsigned long esr)
248 {
249 	return ESR_ELx_EC(esr) == ESR_ELx_EC_DABT_CUR;
250 }
251 
is_el1_permission_fault(unsigned long addr,unsigned long esr,struct pt_regs * regs)252 static inline bool is_el1_permission_fault(unsigned long addr, unsigned long esr,
253 					   struct pt_regs *regs)
254 {
255 	if (!is_el1_data_abort(esr) && !is_el1_instruction_abort(esr))
256 		return false;
257 
258 	if (esr_fsc_is_permission_fault(esr))
259 		return true;
260 
261 	if (is_ttbr0_addr(addr) && system_uses_ttbr0_pan())
262 		return esr_fsc_is_translation_fault(esr) &&
263 			(regs->pstate & PSR_PAN_BIT);
264 
265 	return false;
266 }
267 
is_spurious_el1_translation_fault(unsigned long addr,unsigned long esr,struct pt_regs * regs)268 static bool __kprobes is_spurious_el1_translation_fault(unsigned long addr,
269 							unsigned long esr,
270 							struct pt_regs *regs)
271 {
272 	unsigned long flags;
273 	u64 par, dfsc;
274 
275 	if (!is_el1_data_abort(esr) || !esr_fsc_is_translation_fault(esr))
276 		return false;
277 
278 	local_irq_save(flags);
279 	asm volatile("at s1e1r, %0" :: "r" (addr));
280 	isb();
281 	par = read_sysreg_par();
282 	local_irq_restore(flags);
283 
284 	/*
285 	 * If we now have a valid translation, treat the translation fault as
286 	 * spurious.
287 	 */
288 	if (!(par & SYS_PAR_EL1_F))
289 		return true;
290 
291 	/*
292 	 * If we got a different type of fault from the AT instruction,
293 	 * treat the translation fault as spurious.
294 	 */
295 	dfsc = FIELD_GET(SYS_PAR_EL1_FST, par);
296 	return !esr_fsc_is_translation_fault(dfsc);
297 }
298 
die_kernel_fault(const char * msg,unsigned long addr,unsigned long esr,struct pt_regs * regs)299 static void die_kernel_fault(const char *msg, unsigned long addr,
300 			     unsigned long esr, struct pt_regs *regs)
301 {
302 	bust_spinlocks(1);
303 
304 	pr_alert("Unable to handle kernel %s at virtual address %016lx\n", msg,
305 		 addr);
306 
307 	kasan_non_canonical_hook(addr);
308 
309 	mem_abort_decode(esr);
310 
311 	show_pte(addr);
312 	die("Oops", regs, esr);
313 	bust_spinlocks(0);
314 	make_task_dead(SIGKILL);
315 }
316 
317 #ifdef CONFIG_KASAN_HW_TAGS
report_tag_fault(unsigned long addr,unsigned long esr,struct pt_regs * regs)318 static void report_tag_fault(unsigned long addr, unsigned long esr,
319 			     struct pt_regs *regs)
320 {
321 	/*
322 	 * SAS bits aren't set for all faults reported in EL1, so we can't
323 	 * find out access size.
324 	 */
325 	bool is_write = !!(esr & ESR_ELx_WNR);
326 	kasan_report((void *)addr, 0, is_write, regs->pc);
327 }
328 #else
329 /* Tag faults aren't enabled without CONFIG_KASAN_HW_TAGS. */
report_tag_fault(unsigned long addr,unsigned long esr,struct pt_regs * regs)330 static inline void report_tag_fault(unsigned long addr, unsigned long esr,
331 				    struct pt_regs *regs) { }
332 #endif
333 
do_tag_recovery(unsigned long addr,unsigned long esr,struct pt_regs * regs)334 static void do_tag_recovery(unsigned long addr, unsigned long esr,
335 			   struct pt_regs *regs)
336 {
337 
338 	report_tag_fault(addr, esr, regs);
339 
340 	/*
341 	 * Disable MTE Tag Checking on the local CPU for the current EL.
342 	 * It will be done lazily on the other CPUs when they will hit a
343 	 * tag fault.
344 	 */
345 	sysreg_clear_set(sctlr_el1, SCTLR_EL1_TCF_MASK,
346 			 SYS_FIELD_PREP_ENUM(SCTLR_EL1, TCF, NONE));
347 	isb();
348 }
349 
is_el1_mte_sync_tag_check_fault(unsigned long esr)350 static bool is_el1_mte_sync_tag_check_fault(unsigned long esr)
351 {
352 	unsigned long fsc = esr & ESR_ELx_FSC;
353 
354 	if (!is_el1_data_abort(esr))
355 		return false;
356 
357 	if (fsc == ESR_ELx_FSC_MTE)
358 		return true;
359 
360 	return false;
361 }
362 
__do_kernel_fault(unsigned long addr,unsigned long esr,struct pt_regs * regs)363 static void __do_kernel_fault(unsigned long addr, unsigned long esr,
364 			      struct pt_regs *regs)
365 {
366 	const char *msg;
367 
368 	/*
369 	 * Are we prepared to handle this kernel fault?
370 	 * We are almost certainly not prepared to handle instruction faults.
371 	 */
372 	if (!is_el1_instruction_abort(esr) && fixup_exception(regs, esr))
373 		return;
374 
375 	if (WARN_RATELIMIT(is_spurious_el1_translation_fault(addr, esr, regs),
376 	    "Ignoring spurious kernel translation fault at virtual address %016lx\n", addr))
377 		return;
378 
379 	if (is_el1_mte_sync_tag_check_fault(esr)) {
380 		do_tag_recovery(addr, esr, regs);
381 
382 		return;
383 	}
384 
385 	if (is_el1_permission_fault(addr, esr, regs)) {
386 		if (esr & ESR_ELx_WNR)
387 			msg = "write to read-only memory";
388 		else if (is_el1_instruction_abort(esr))
389 			msg = "execute from non-executable memory";
390 		else
391 			msg = "read from unreadable memory";
392 	} else if (addr < PAGE_SIZE) {
393 		msg = "NULL pointer dereference";
394 	} else {
395 		if (esr_fsc_is_translation_fault(esr) &&
396 		    kfence_handle_page_fault(addr, esr & ESR_ELx_WNR, regs))
397 			return;
398 
399 		msg = "paging request";
400 	}
401 
402 	if (efi_runtime_fixup_exception(regs, msg))
403 		return;
404 
405 	die_kernel_fault(msg, addr, esr, regs);
406 }
407 
set_thread_esr(unsigned long address,unsigned long esr)408 static void set_thread_esr(unsigned long address, unsigned long esr)
409 {
410 	current->thread.fault_address = address;
411 
412 	/*
413 	 * If the faulting address is in the kernel, we must sanitize the ESR.
414 	 * From userspace's point of view, kernel-only mappings don't exist
415 	 * at all, so we report them as level 0 translation faults.
416 	 * (This is not quite the way that "no mapping there at all" behaves:
417 	 * an alignment fault not caused by the memory type would take
418 	 * precedence over translation fault for a real access to empty
419 	 * space. Unfortunately we can't easily distinguish "alignment fault
420 	 * not caused by memory type" from "alignment fault caused by memory
421 	 * type", so we ignore this wrinkle and just return the translation
422 	 * fault.)
423 	 */
424 	if (!is_ttbr0_addr(current->thread.fault_address)) {
425 		switch (ESR_ELx_EC(esr)) {
426 		case ESR_ELx_EC_DABT_LOW:
427 			/*
428 			 * These bits provide only information about the
429 			 * faulting instruction, which userspace knows already.
430 			 * We explicitly clear bits which are architecturally
431 			 * RES0 in case they are given meanings in future.
432 			 * We always report the ESR as if the fault was taken
433 			 * to EL1 and so ISV and the bits in ISS[23:14] are
434 			 * clear. (In fact it always will be a fault to EL1.)
435 			 */
436 			esr &= ESR_ELx_EC_MASK | ESR_ELx_IL |
437 				ESR_ELx_CM | ESR_ELx_WNR;
438 			esr |= ESR_ELx_FSC_FAULT;
439 			break;
440 		case ESR_ELx_EC_IABT_LOW:
441 			/*
442 			 * Claim a level 0 translation fault.
443 			 * All other bits are architecturally RES0 for faults
444 			 * reported with that DFSC value, so we clear them.
445 			 */
446 			esr &= ESR_ELx_EC_MASK | ESR_ELx_IL;
447 			esr |= ESR_ELx_FSC_FAULT;
448 			break;
449 		default:
450 			/*
451 			 * This should never happen (entry.S only brings us
452 			 * into this code for insn and data aborts from a lower
453 			 * exception level). Fail safe by not providing an ESR
454 			 * context record at all.
455 			 */
456 			WARN(1, "ESR 0x%lx is not DABT or IABT from EL0\n", esr);
457 			esr = 0;
458 			break;
459 		}
460 	}
461 
462 	current->thread.fault_code = esr;
463 }
464 
do_bad_area(unsigned long far,unsigned long esr,struct pt_regs * regs)465 static void do_bad_area(unsigned long far, unsigned long esr,
466 			struct pt_regs *regs)
467 {
468 	unsigned long addr = untagged_addr(far);
469 
470 	/*
471 	 * If we are in kernel mode at this point, we have no context to
472 	 * handle this fault with.
473 	 */
474 	if (user_mode(regs)) {
475 		const struct fault_info *inf = esr_to_fault_info(esr);
476 
477 		set_thread_esr(addr, esr);
478 		arm64_force_sig_fault(inf->sig, inf->code, far, inf->name);
479 	} else {
480 		__do_kernel_fault(addr, esr, regs);
481 	}
482 }
483 
fault_from_pkey(struct vm_area_struct * vma,unsigned int mm_flags)484 static bool fault_from_pkey(struct vm_area_struct *vma, unsigned int mm_flags)
485 {
486 	if (!system_supports_poe())
487 		return false;
488 
489 	/*
490 	 * We do not check whether an Overlay fault has occurred because we
491 	 * cannot make a decision based solely on its value:
492 	 *
493 	 * - If Overlay is set, a fault did occur due to POE, but it may be
494 	 *   spurious in those cases where we update POR_EL0 without ISB (e.g.
495 	 *   on context-switch). We would then need to manually check POR_EL0
496 	 *   against vma_pkey(vma), which is exactly what
497 	 *   arch_vma_access_permitted() does.
498 	 *
499 	 * - If Overlay is not set, we may still need to report a pkey fault.
500 	 *   This is the case if an access was made within a mapping but with no
501 	 *   page mapped, and POR_EL0 forbids the access (according to
502 	 *   vma_pkey()). Such access will result in a SIGSEGV regardless
503 	 *   because core code checks arch_vma_access_permitted(), but in order
504 	 *   to report the correct error code - SEGV_PKUERR - we must handle
505 	 *   that case here.
506 	 */
507 	return !arch_vma_access_permitted(vma,
508 			mm_flags & FAULT_FLAG_WRITE,
509 			mm_flags & FAULT_FLAG_INSTRUCTION,
510 			false);
511 }
512 
is_gcs_fault(unsigned long esr)513 static bool is_gcs_fault(unsigned long esr)
514 {
515 	if (!esr_is_data_abort(esr))
516 		return false;
517 
518 	return ESR_ELx_ISS2(esr) & ESR_ELx_GCS;
519 }
520 
is_el0_instruction_abort(unsigned long esr)521 static bool is_el0_instruction_abort(unsigned long esr)
522 {
523 	return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_LOW;
524 }
525 
526 /*
527  * Note: not valid for EL1 DC IVAC, but we never use that such that it
528  * should fault. EL0 cannot issue DC IVAC (undef).
529  */
is_write_abort(unsigned long esr)530 static bool is_write_abort(unsigned long esr)
531 {
532 	return (esr & ESR_ELx_WNR) && !(esr & ESR_ELx_CM);
533 }
534 
is_invalid_gcs_access(struct vm_area_struct * vma,u64 esr)535 static bool is_invalid_gcs_access(struct vm_area_struct *vma, u64 esr)
536 {
537 	if (!system_supports_gcs())
538 		return false;
539 
540 	if (unlikely(is_gcs_fault(esr))) {
541 		/* GCS accesses must be performed on a GCS page */
542 		if (!(vma->vm_flags & VM_SHADOW_STACK))
543 			return true;
544 	} else if (unlikely(vma->vm_flags & VM_SHADOW_STACK)) {
545 		/* Only GCS operations can write to a GCS page */
546 		return esr_is_data_abort(esr) && is_write_abort(esr);
547 	}
548 
549 	return false;
550 }
551 
do_page_fault(unsigned long far,unsigned long esr,struct pt_regs * regs)552 static int __kprobes do_page_fault(unsigned long far, unsigned long esr,
553 				   struct pt_regs *regs)
554 {
555 	const struct fault_info *inf;
556 	struct mm_struct *mm = current->mm;
557 	vm_fault_t fault;
558 	vm_flags_t vm_flags;
559 	unsigned int mm_flags = FAULT_FLAG_DEFAULT;
560 	unsigned long addr = untagged_addr(far);
561 	struct vm_area_struct *vma;
562 	int si_code;
563 	int pkey = -1;
564 
565 	if (kprobe_page_fault(regs, esr))
566 		return 0;
567 
568 	/*
569 	 * If we're in an interrupt or have no user context, we must not take
570 	 * the fault.
571 	 */
572 	if (faulthandler_disabled() || !mm)
573 		goto no_context;
574 
575 	if (user_mode(regs))
576 		mm_flags |= FAULT_FLAG_USER;
577 
578 	/*
579 	 * vm_flags tells us what bits we must have in vma->vm_flags
580 	 * for the fault to be benign, __do_page_fault() would check
581 	 * vma->vm_flags & vm_flags and returns an error if the
582 	 * intersection is empty
583 	 */
584 	if (is_el0_instruction_abort(esr)) {
585 		/* It was exec fault */
586 		vm_flags = VM_EXEC;
587 		mm_flags |= FAULT_FLAG_INSTRUCTION;
588 	} else if (is_gcs_fault(esr)) {
589 		/*
590 		 * The GCS permission on a page implies both read and
591 		 * write so always handle any GCS fault as a write fault,
592 		 * we need to trigger CoW even for GCS reads.
593 		 */
594 		vm_flags = VM_WRITE;
595 		mm_flags |= FAULT_FLAG_WRITE;
596 	} else if (is_write_abort(esr)) {
597 		/* It was write fault */
598 		vm_flags = VM_WRITE;
599 		mm_flags |= FAULT_FLAG_WRITE;
600 	} else {
601 		/* It was read fault */
602 		vm_flags = VM_READ;
603 		/* Write implies read */
604 		vm_flags |= VM_WRITE;
605 		/* If EPAN is absent then exec implies read */
606 		if (!alternative_has_cap_unlikely(ARM64_HAS_EPAN))
607 			vm_flags |= VM_EXEC;
608 	}
609 
610 	if (is_ttbr0_addr(addr) && is_el1_permission_fault(addr, esr, regs)) {
611 		if (is_el1_instruction_abort(esr))
612 			die_kernel_fault("execution of user memory",
613 					 addr, esr, regs);
614 
615 		if (!insn_may_access_user(regs->pc, esr))
616 			die_kernel_fault("access to user memory outside uaccess routines",
617 					 addr, esr, regs);
618 	}
619 
620 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
621 
622 	if (!(mm_flags & FAULT_FLAG_USER))
623 		goto lock_mmap;
624 
625 	vma = lock_vma_under_rcu(mm, addr);
626 	if (!vma)
627 		goto lock_mmap;
628 
629 	if (is_invalid_gcs_access(vma, esr)) {
630 		vma_end_read(vma);
631 		fault = 0;
632 		si_code = SEGV_ACCERR;
633 		goto bad_area;
634 	}
635 
636 	if (!(vma->vm_flags & vm_flags)) {
637 		vma_end_read(vma);
638 		fault = 0;
639 		si_code = SEGV_ACCERR;
640 		count_vm_vma_lock_event(VMA_LOCK_SUCCESS);
641 		goto bad_area;
642 	}
643 
644 	if (fault_from_pkey(vma, mm_flags)) {
645 		pkey = vma_pkey(vma);
646 		vma_end_read(vma);
647 		fault = 0;
648 		si_code = SEGV_PKUERR;
649 		count_vm_vma_lock_event(VMA_LOCK_SUCCESS);
650 		goto bad_area;
651 	}
652 
653 	fault = handle_mm_fault(vma, addr, mm_flags | FAULT_FLAG_VMA_LOCK, regs);
654 	if (!(fault & (VM_FAULT_RETRY | VM_FAULT_COMPLETED)))
655 		vma_end_read(vma);
656 
657 	if (!(fault & VM_FAULT_RETRY)) {
658 		count_vm_vma_lock_event(VMA_LOCK_SUCCESS);
659 		goto done;
660 	}
661 	count_vm_vma_lock_event(VMA_LOCK_RETRY);
662 	if (fault & VM_FAULT_MAJOR)
663 		mm_flags |= FAULT_FLAG_TRIED;
664 
665 	/* Quick path to respond to signals */
666 	if (fault_signal_pending(fault, regs)) {
667 		if (!user_mode(regs))
668 			goto no_context;
669 		return 0;
670 	}
671 lock_mmap:
672 
673 retry:
674 	vma = lock_mm_and_find_vma(mm, addr, regs);
675 	if (unlikely(!vma)) {
676 		fault = 0;
677 		si_code = SEGV_MAPERR;
678 		goto bad_area;
679 	}
680 
681 	if (!(vma->vm_flags & vm_flags)) {
682 		mmap_read_unlock(mm);
683 		fault = 0;
684 		si_code = SEGV_ACCERR;
685 		goto bad_area;
686 	}
687 
688 	if (fault_from_pkey(vma, mm_flags)) {
689 		pkey = vma_pkey(vma);
690 		mmap_read_unlock(mm);
691 		fault = 0;
692 		si_code = SEGV_PKUERR;
693 		goto bad_area;
694 	}
695 
696 	fault = handle_mm_fault(vma, addr, mm_flags, regs);
697 
698 	/* Quick path to respond to signals */
699 	if (fault_signal_pending(fault, regs)) {
700 		if (!user_mode(regs))
701 			goto no_context;
702 		return 0;
703 	}
704 
705 	/* The fault is fully completed (including releasing mmap lock) */
706 	if (fault & VM_FAULT_COMPLETED)
707 		return 0;
708 
709 	if (fault & VM_FAULT_RETRY) {
710 		mm_flags |= FAULT_FLAG_TRIED;
711 		goto retry;
712 	}
713 	mmap_read_unlock(mm);
714 
715 done:
716 	/* Handle the "normal" (no error) case first. */
717 	if (likely(!(fault & VM_FAULT_ERROR)))
718 		return 0;
719 
720 	si_code = SEGV_MAPERR;
721 bad_area:
722 	/*
723 	 * If we are in kernel mode at this point, we have no context to
724 	 * handle this fault with.
725 	 */
726 	if (!user_mode(regs))
727 		goto no_context;
728 
729 	if (fault & VM_FAULT_OOM) {
730 		/*
731 		 * We ran out of memory, call the OOM killer, and return to
732 		 * userspace (which will retry the fault, or kill us if we got
733 		 * oom-killed).
734 		 */
735 		pagefault_out_of_memory();
736 		return 0;
737 	}
738 
739 	inf = esr_to_fault_info(esr);
740 	set_thread_esr(addr, esr);
741 	if (fault & VM_FAULT_SIGBUS) {
742 		/*
743 		 * We had some memory, but were unable to successfully fix up
744 		 * this page fault.
745 		 */
746 		arm64_force_sig_fault(SIGBUS, BUS_ADRERR, far, inf->name);
747 	} else if (fault & (VM_FAULT_HWPOISON_LARGE | VM_FAULT_HWPOISON)) {
748 		unsigned int lsb;
749 
750 		lsb = PAGE_SHIFT;
751 		if (fault & VM_FAULT_HWPOISON_LARGE)
752 			lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
753 
754 		arm64_force_sig_mceerr(BUS_MCEERR_AR, far, lsb, inf->name);
755 	} else {
756 		/*
757 		 * The pkey value that we return to userspace can be different
758 		 * from the pkey that caused the fault.
759 		 *
760 		 * 1. T1   : mprotect_key(foo, PAGE_SIZE, pkey=4);
761 		 * 2. T1   : set POR_EL0 to deny access to pkey=4, touches, page
762 		 * 3. T1   : faults...
763 		 * 4.    T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
764 		 * 5. T1   : enters fault handler, takes mmap_lock, etc...
765 		 * 6. T1   : reaches here, sees vma_pkey(vma)=5, when we really
766 		 *	     faulted on a pte with its pkey=4.
767 		 */
768 		/* Something tried to access memory that out of memory map */
769 		if (si_code == SEGV_PKUERR)
770 			arm64_force_sig_fault_pkey(far, inf->name, pkey);
771 		else
772 			arm64_force_sig_fault(SIGSEGV, si_code, far, inf->name);
773 	}
774 
775 	return 0;
776 
777 no_context:
778 	__do_kernel_fault(addr, esr, regs);
779 	return 0;
780 }
781 
do_translation_fault(unsigned long far,unsigned long esr,struct pt_regs * regs)782 static int __kprobes do_translation_fault(unsigned long far,
783 					  unsigned long esr,
784 					  struct pt_regs *regs)
785 {
786 	unsigned long addr = untagged_addr(far);
787 
788 	if (is_ttbr0_addr(addr))
789 		return do_page_fault(far, esr, regs);
790 
791 	do_bad_area(far, esr, regs);
792 	return 0;
793 }
794 
do_alignment_fault(unsigned long far,unsigned long esr,struct pt_regs * regs)795 static int do_alignment_fault(unsigned long far, unsigned long esr,
796 			      struct pt_regs *regs)
797 {
798 	if (IS_ENABLED(CONFIG_COMPAT_ALIGNMENT_FIXUPS) &&
799 	    compat_user_mode(regs))
800 		return do_compat_alignment_fixup(far, regs);
801 	do_bad_area(far, esr, regs);
802 	return 0;
803 }
804 
do_bad(unsigned long far,unsigned long esr,struct pt_regs * regs)805 static int do_bad(unsigned long far, unsigned long esr, struct pt_regs *regs)
806 {
807 	return 1; /* "fault" */
808 }
809 
do_sea(unsigned long far,unsigned long esr,struct pt_regs * regs)810 static int do_sea(unsigned long far, unsigned long esr, struct pt_regs *regs)
811 {
812 	const struct fault_info *inf;
813 	unsigned long siaddr;
814 
815 	inf = esr_to_fault_info(esr);
816 
817 	if (user_mode(regs) && apei_claim_sea(regs) == 0) {
818 		/*
819 		 * APEI claimed this as a firmware-first notification.
820 		 * Some processing deferred to task_work before ret_to_user().
821 		 */
822 		return 0;
823 	}
824 
825 	if (esr & ESR_ELx_FnV) {
826 		siaddr = 0;
827 	} else {
828 		/*
829 		 * The architecture specifies that the tag bits of FAR_EL1 are
830 		 * UNKNOWN for synchronous external aborts. Mask them out now
831 		 * so that userspace doesn't see them.
832 		 */
833 		siaddr  = untagged_addr(far);
834 	}
835 	add_taint(TAINT_MACHINE_CHECK, LOCKDEP_STILL_OK);
836 	arm64_notify_die(inf->name, regs, inf->sig, inf->code, siaddr, esr);
837 
838 	return 0;
839 }
840 
do_tag_check_fault(unsigned long far,unsigned long esr,struct pt_regs * regs)841 static int do_tag_check_fault(unsigned long far, unsigned long esr,
842 			      struct pt_regs *regs)
843 {
844 	/*
845 	 * The architecture specifies that bits 63:60 of FAR_EL1 are UNKNOWN
846 	 * for tag check faults. Set them to corresponding bits in the untagged
847 	 * address if ARM64_MTE_FAR isn't supported.
848 	 * Otherwise, bits 63:60 of FAR_EL1 are not UNKNOWN.
849 	 */
850 	if (!cpus_have_cap(ARM64_MTE_FAR))
851 		far = (__untagged_addr(far) & ~MTE_TAG_MASK) | (far & MTE_TAG_MASK);
852 
853 	do_bad_area(far, esr, regs);
854 	return 0;
855 }
856 
857 static const struct fault_info fault_info[] = {
858 	{ do_bad,		SIGKILL, SI_KERNEL,	"ttbr address size fault"	},
859 	{ do_bad,		SIGKILL, SI_KERNEL,	"level 1 address size fault"	},
860 	{ do_bad,		SIGKILL, SI_KERNEL,	"level 2 address size fault"	},
861 	{ do_bad,		SIGKILL, SI_KERNEL,	"level 3 address size fault"	},
862 	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 0 translation fault"	},
863 	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 1 translation fault"	},
864 	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 2 translation fault"	},
865 	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 3 translation fault"	},
866 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 0 access flag fault"	},
867 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 1 access flag fault"	},
868 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 2 access flag fault"	},
869 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 3 access flag fault"	},
870 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 0 permission fault"	},
871 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 1 permission fault"	},
872 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 2 permission fault"	},
873 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 3 permission fault"	},
874 	{ do_sea,		SIGBUS,  BUS_OBJERR,	"synchronous external abort"	},
875 	{ do_tag_check_fault,	SIGSEGV, SEGV_MTESERR,	"synchronous tag check fault"	},
876 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 18"			},
877 	{ do_sea,		SIGKILL, SI_KERNEL,	"level -1 (translation table walk)"	},
878 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 0 (translation table walk)"	},
879 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 1 (translation table walk)"	},
880 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 2 (translation table walk)"	},
881 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 3 (translation table walk)"	},
882 	{ do_sea,		SIGBUS,  BUS_OBJERR,	"synchronous parity or ECC error" },	// Reserved when RAS is implemented
883 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 25"			},
884 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 26"			},
885 	{ do_sea,		SIGKILL, SI_KERNEL,	"level -1 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
886 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 0 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
887 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 1 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
888 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 2 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
889 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 3 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
890 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 32"			},
891 	{ do_alignment_fault,	SIGBUS,  BUS_ADRALN,	"alignment fault"		},
892 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 34"			},
893 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 35"			},
894 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 36"			},
895 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 37"			},
896 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 38"			},
897 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 39"			},
898 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 40"			},
899 	{ do_bad,		SIGKILL, SI_KERNEL,	"level -1 address size fault"	},
900 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 42"			},
901 	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level -1 translation fault"	},
902 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 44"			},
903 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 45"			},
904 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 46"			},
905 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 47"			},
906 	{ do_bad,		SIGKILL, SI_KERNEL,	"TLB conflict abort"		},
907 	{ do_bad,		SIGKILL, SI_KERNEL,	"Unsupported atomic hardware update fault"	},
908 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 50"			},
909 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 51"			},
910 	{ do_bad,		SIGKILL, SI_KERNEL,	"implementation fault (lockdown abort)" },
911 	{ do_bad,		SIGBUS,  BUS_OBJERR,	"implementation fault (unsupported exclusive)" },
912 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 54"			},
913 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 55"			},
914 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 56"			},
915 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 57"			},
916 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 58" 			},
917 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 59"			},
918 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 60"			},
919 	{ do_bad,		SIGKILL, SI_KERNEL,	"section domain fault"		},
920 	{ do_bad,		SIGKILL, SI_KERNEL,	"page domain fault"		},
921 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 63"			},
922 };
923 
do_mem_abort(unsigned long far,unsigned long esr,struct pt_regs * regs)924 void do_mem_abort(unsigned long far, unsigned long esr, struct pt_regs *regs)
925 {
926 	const struct fault_info *inf = esr_to_fault_info(esr);
927 	unsigned long addr = untagged_addr(far);
928 
929 	if (!inf->fn(far, esr, regs))
930 		return;
931 
932 	if (!user_mode(regs))
933 		die_kernel_fault(inf->name, addr, esr, regs);
934 
935 	/*
936 	 * At this point we have an unrecognized fault type whose tag bits may
937 	 * have been defined as UNKNOWN. Therefore we only expose the untagged
938 	 * address to the signal handler.
939 	 */
940 	arm64_notify_die(inf->name, regs, inf->sig, inf->code, addr, esr);
941 }
942 NOKPROBE_SYMBOL(do_mem_abort);
943 
do_sp_pc_abort(unsigned long addr,unsigned long esr,struct pt_regs * regs)944 void do_sp_pc_abort(unsigned long addr, unsigned long esr, struct pt_regs *regs)
945 {
946 	arm64_notify_die("SP/PC alignment exception", regs, SIGBUS, BUS_ADRALN,
947 			 addr, esr);
948 }
949 NOKPROBE_SYMBOL(do_sp_pc_abort);
950 
951 /*
952  * Used during anonymous page fault handling.
953  */
vma_alloc_zeroed_movable_folio(struct vm_area_struct * vma,unsigned long vaddr)954 struct folio *vma_alloc_zeroed_movable_folio(struct vm_area_struct *vma,
955 						unsigned long vaddr)
956 {
957 	gfp_t flags = GFP_HIGHUSER_MOVABLE | __GFP_ZERO;
958 
959 	/*
960 	 * If the page is mapped with PROT_MTE, initialise the tags at the
961 	 * point of allocation and page zeroing as this is usually faster than
962 	 * separate DC ZVA and STGM.
963 	 */
964 	if (vma->vm_flags & VM_MTE)
965 		flags |= __GFP_ZEROTAGS;
966 
967 	return vma_alloc_folio(flags, 0, vma, vaddr);
968 }
969 
tag_clear_highpage(struct page * page)970 void tag_clear_highpage(struct page *page)
971 {
972 	/* Newly allocated page, shouldn't have been tagged yet */
973 	WARN_ON_ONCE(!try_page_mte_tagging(page));
974 	mte_zero_clear_page_tags(page_address(page));
975 	set_page_mte_tagged(page);
976 }
977