xref: /linux/mm/kmemleak.c (revision 91325f31afc1026de28665cf1a7b6e157fa4d39d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/kmemleak.c
4  *
5  * Copyright (C) 2008 ARM Limited
6  * Written by Catalin Marinas <catalin.marinas@arm.com>
7  *
8  * For more information on the algorithm and kmemleak usage, please see
9  * Documentation/dev-tools/kmemleak.rst.
10  *
11  * Notes on locking
12  * ----------------
13  *
14  * The following locks and mutexes are used by kmemleak:
15  *
16  * - kmemleak_lock (raw_spinlock_t): protects the object_list as well as
17  *   del_state modifications and accesses to the object trees
18  *   (object_tree_root, object_phys_tree_root, object_percpu_tree_root). The
19  *   object_list is the main list holding the metadata (struct
20  *   kmemleak_object) for the allocated memory blocks. The object trees are
21  *   red black trees used to look-up metadata based on a pointer to the
22  *   corresponding memory block. The kmemleak_object structures are added to
23  *   the object_list and the object tree root in the create_object() function
24  *   called from the kmemleak_alloc{,_phys,_percpu}() callback and removed in
25  *   delete_object() called from the kmemleak_free{,_phys,_percpu}() callback
26  * - kmemleak_object.lock (raw_spinlock_t): protects a kmemleak_object.
27  *   Accesses to the metadata (e.g. count) are protected by this lock. Note
28  *   that some members of this structure may be protected by other means
29  *   (atomic or kmemleak_lock). This lock is also held when scanning the
30  *   corresponding memory block to avoid the kernel freeing it via the
31  *   kmemleak_free() callback. This is less heavyweight than holding a global
32  *   lock like kmemleak_lock during scanning.
33  * - scan_mutex (mutex): ensures that only one thread may scan the memory for
34  *   unreferenced objects at a time. The gray_list contains the objects which
35  *   are already referenced or marked as false positives and need to be
36  *   scanned. This list is only modified during a scanning episode when the
37  *   scan_mutex is held. At the end of a scan, the gray_list is always empty.
38  *   Note that the kmemleak_object.use_count is incremented when an object is
39  *   added to the gray_list and therefore cannot be freed. This mutex also
40  *   prevents multiple users of the "kmemleak" debugfs file together with
41  *   modifications to the memory scanning parameters including the scan_thread
42  *   pointer
43  *
44  * Locks and mutexes are acquired/nested in the following order:
45  *
46  *   scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING)
47  *
48  * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex
49  * regions.
50  *
51  * The kmemleak_object structures have a use_count incremented or decremented
52  * using the get_object()/put_object() functions. When the use_count becomes
53  * 0, this count can no longer be incremented and put_object() schedules the
54  * kmemleak_object freeing via an RCU callback. All calls to the get_object()
55  * function must be protected by rcu_read_lock() to avoid accessing a freed
56  * structure.
57  */
58 
59 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
60 
61 #include <linux/init.h>
62 #include <linux/kernel.h>
63 #include <linux/list.h>
64 #include <linux/sched/signal.h>
65 #include <linux/sched/task.h>
66 #include <linux/sched/task_stack.h>
67 #include <linux/jiffies.h>
68 #include <linux/delay.h>
69 #include <linux/export.h>
70 #include <linux/kthread.h>
71 #include <linux/rbtree.h>
72 #include <linux/fs.h>
73 #include <linux/debugfs.h>
74 #include <linux/seq_file.h>
75 #include <linux/cpumask.h>
76 #include <linux/spinlock.h>
77 #include <linux/module.h>
78 #include <linux/mutex.h>
79 #include <linux/rcupdate.h>
80 #include <linux/stacktrace.h>
81 #include <linux/stackdepot.h>
82 #include <linux/cache.h>
83 #include <linux/percpu.h>
84 #include <linux/memblock.h>
85 #include <linux/pfn.h>
86 #include <linux/mmzone.h>
87 #include <linux/slab.h>
88 #include <linux/thread_info.h>
89 #include <linux/err.h>
90 #include <linux/uaccess.h>
91 #include <linux/string.h>
92 #include <linux/nodemask.h>
93 #include <linux/mm.h>
94 #include <linux/workqueue.h>
95 #include <linux/crc32.h>
96 
97 #include <asm/sections.h>
98 #include <asm/processor.h>
99 #include <linux/atomic.h>
100 
101 #include <linux/kasan.h>
102 #include <linux/kfence.h>
103 #include <linux/kmemleak.h>
104 #include <linux/memory_hotplug.h>
105 
106 /*
107  * Kmemleak configuration and common defines.
108  */
109 #define MAX_TRACE		16	/* stack trace length */
110 #define MSECS_MIN_AGE		5000	/* minimum object age for reporting */
111 #define SECS_FIRST_SCAN		60	/* delay before the first scan */
112 #define SECS_SCAN_WAIT		600	/* subsequent auto scanning delay */
113 #define MAX_SCAN_SIZE		4096	/* maximum size of a scanned block */
114 
115 #define BYTES_PER_POINTER	sizeof(void *)
116 
117 /* scanning area inside a memory block */
118 struct kmemleak_scan_area {
119 	struct hlist_node node;
120 	unsigned long start;
121 	size_t size;
122 };
123 
124 #define KMEMLEAK_GREY	0
125 #define KMEMLEAK_BLACK	-1
126 
127 /*
128  * Structure holding the metadata for each allocated memory block.
129  * Modifications to such objects should be made while holding the
130  * object->lock. Insertions or deletions from object_list, gray_list or
131  * rb_node are already protected by the corresponding locks or mutex (see
132  * the notes on locking above). These objects are reference-counted
133  * (use_count) and freed using the RCU mechanism.
134  */
135 struct kmemleak_object {
136 	raw_spinlock_t lock;
137 	unsigned int flags;		/* object status flags */
138 	struct list_head object_list;
139 	struct list_head gray_list;
140 	struct rb_node rb_node;
141 	struct rcu_head rcu;		/* object_list lockless traversal */
142 	/* object usage count; object freed when use_count == 0 */
143 	atomic_t use_count;
144 	unsigned int del_state;		/* deletion state */
145 	unsigned long pointer;
146 	size_t size;
147 	/* pass surplus references to this pointer */
148 	unsigned long excess_ref;
149 	/* minimum number of a pointers found before it is considered leak */
150 	int min_count;
151 	/* the total number of pointers found pointing to this object */
152 	int count;
153 	/* checksum for detecting modified objects */
154 	u32 checksum;
155 	depot_stack_handle_t trace_handle;
156 	/* memory ranges to be scanned inside an object (empty for all) */
157 	struct hlist_head area_list;
158 	unsigned long jiffies;		/* creation timestamp */
159 	pid_t pid;			/* pid of the current task */
160 	char comm[TASK_COMM_LEN];	/* executable name */
161 };
162 
163 /* flag representing the memory block allocation status */
164 #define OBJECT_ALLOCATED	(1 << 0)
165 /* flag set after the first reporting of an unreference object */
166 #define OBJECT_REPORTED		(1 << 1)
167 /* flag set to not scan the object */
168 #define OBJECT_NO_SCAN		(1 << 2)
169 /* flag set to fully scan the object when scan_area allocation failed */
170 #define OBJECT_FULL_SCAN	(1 << 3)
171 /* flag set for object allocated with physical address */
172 #define OBJECT_PHYS		(1 << 4)
173 /* flag set for per-CPU pointers */
174 #define OBJECT_PERCPU		(1 << 5)
175 
176 /* set when __remove_object() called */
177 #define DELSTATE_REMOVED	(1 << 0)
178 /* set to temporarily prevent deletion from object_list */
179 #define DELSTATE_NO_DELETE	(1 << 1)
180 
181 #define HEX_PREFIX		"    "
182 /* number of bytes to print per line; must be 16 or 32 */
183 #define HEX_ROW_SIZE		16
184 /* number of bytes to print at a time (1, 2, 4, 8) */
185 #define HEX_GROUP_SIZE		1
186 /* include ASCII after the hex output */
187 #define HEX_ASCII		1
188 /* max number of lines to be printed */
189 #define HEX_MAX_LINES		2
190 
191 /* the list of all allocated objects */
192 static LIST_HEAD(object_list);
193 /* the list of gray-colored objects (see color_gray comment below) */
194 static LIST_HEAD(gray_list);
195 /* memory pool allocation */
196 static struct kmemleak_object mem_pool[CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE];
197 static int mem_pool_free_count = ARRAY_SIZE(mem_pool);
198 static LIST_HEAD(mem_pool_free_list);
199 /* search tree for object boundaries */
200 static struct rb_root object_tree_root = RB_ROOT;
201 /* search tree for object (with OBJECT_PHYS flag) boundaries */
202 static struct rb_root object_phys_tree_root = RB_ROOT;
203 /* search tree for object (with OBJECT_PERCPU flag) boundaries */
204 static struct rb_root object_percpu_tree_root = RB_ROOT;
205 /* protecting the access to object_list, object_tree_root (or object_phys_tree_root) */
206 static DEFINE_RAW_SPINLOCK(kmemleak_lock);
207 
208 /* allocation caches for kmemleak internal data */
209 static struct kmem_cache *object_cache;
210 static struct kmem_cache *scan_area_cache;
211 
212 /* set if tracing memory operations is enabled */
213 static int kmemleak_enabled __read_mostly = 1;
214 /* same as above but only for the kmemleak_free() callback */
215 static int kmemleak_free_enabled __read_mostly = 1;
216 /* set in the late_initcall if there were no errors */
217 static int kmemleak_late_initialized;
218 /* set if a fatal kmemleak error has occurred */
219 static int kmemleak_error;
220 
221 /* minimum and maximum address that may be valid pointers */
222 static unsigned long min_addr = ULONG_MAX;
223 static unsigned long max_addr;
224 
225 /* minimum and maximum address that may be valid per-CPU pointers */
226 static unsigned long min_percpu_addr = ULONG_MAX;
227 static unsigned long max_percpu_addr;
228 
229 static struct task_struct *scan_thread;
230 /* used to avoid reporting of recently allocated objects */
231 static unsigned long jiffies_min_age;
232 static unsigned long jiffies_last_scan;
233 /* delay between automatic memory scannings */
234 static unsigned long jiffies_scan_wait;
235 /* enables or disables the task stacks scanning */
236 static int kmemleak_stack_scan = 1;
237 /* protects the memory scanning, parameters and debug/kmemleak file access */
238 static DEFINE_MUTEX(scan_mutex);
239 /* setting kmemleak=on, will set this var, skipping the disable */
240 static int kmemleak_skip_disable;
241 /* If there are leaks that can be reported */
242 static bool kmemleak_found_leaks;
243 
244 static bool kmemleak_verbose;
245 module_param_named(verbose, kmemleak_verbose, bool, 0600);
246 
247 static void kmemleak_disable(void);
248 
249 /*
250  * Print a warning and dump the stack trace.
251  */
252 #define kmemleak_warn(x...)	do {		\
253 	pr_warn(x);				\
254 	dump_stack();				\
255 } while (0)
256 
257 /*
258  * Macro invoked when a serious kmemleak condition occurred and cannot be
259  * recovered from. Kmemleak will be disabled and further allocation/freeing
260  * tracing no longer available.
261  */
262 #define kmemleak_stop(x...)	do {	\
263 	kmemleak_warn(x);		\
264 	kmemleak_disable();		\
265 } while (0)
266 
267 #define warn_or_seq_printf(seq, fmt, ...)	do {	\
268 	if (seq)					\
269 		seq_printf(seq, fmt, ##__VA_ARGS__);	\
270 	else						\
271 		pr_warn(fmt, ##__VA_ARGS__);		\
272 } while (0)
273 
warn_or_seq_hex_dump(struct seq_file * seq,int prefix_type,int rowsize,int groupsize,const void * buf,size_t len,bool ascii)274 static void warn_or_seq_hex_dump(struct seq_file *seq, int prefix_type,
275 				 int rowsize, int groupsize, const void *buf,
276 				 size_t len, bool ascii)
277 {
278 	if (seq)
279 		seq_hex_dump(seq, HEX_PREFIX, prefix_type, rowsize, groupsize,
280 			     buf, len, ascii);
281 	else
282 		print_hex_dump(KERN_WARNING, pr_fmt(HEX_PREFIX), prefix_type,
283 			       rowsize, groupsize, buf, len, ascii);
284 }
285 
286 /*
287  * Printing of the objects hex dump to the seq file. The number of lines to be
288  * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
289  * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
290  * with the object->lock held.
291  */
hex_dump_object(struct seq_file * seq,struct kmemleak_object * object)292 static void hex_dump_object(struct seq_file *seq,
293 			    struct kmemleak_object *object)
294 {
295 	const u8 *ptr = (const u8 *)object->pointer;
296 	size_t len;
297 
298 	if (WARN_ON_ONCE(object->flags & OBJECT_PHYS))
299 		return;
300 
301 	if (object->flags & OBJECT_PERCPU)
302 		ptr = (const u8 *)this_cpu_ptr((void __percpu *)object->pointer);
303 
304 	/* limit the number of lines to HEX_MAX_LINES */
305 	len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE);
306 
307 	if (object->flags & OBJECT_PERCPU)
308 		warn_or_seq_printf(seq, "  hex dump (first %zu bytes on cpu %d):\n",
309 				   len, raw_smp_processor_id());
310 	else
311 		warn_or_seq_printf(seq, "  hex dump (first %zu bytes):\n", len);
312 	kasan_disable_current();
313 	warn_or_seq_hex_dump(seq, DUMP_PREFIX_NONE, HEX_ROW_SIZE,
314 			     HEX_GROUP_SIZE, kasan_reset_tag((void *)ptr), len, HEX_ASCII);
315 	kasan_enable_current();
316 }
317 
318 /*
319  * Object colors, encoded with count and min_count:
320  * - white - orphan object, not enough references to it (count < min_count)
321  * - gray  - not orphan, not marked as false positive (min_count == 0) or
322  *		sufficient references to it (count >= min_count)
323  * - black - ignore, it doesn't contain references (e.g. text section)
324  *		(min_count == -1). No function defined for this color.
325  */
color_white(const struct kmemleak_object * object)326 static bool color_white(const struct kmemleak_object *object)
327 {
328 	return object->count != KMEMLEAK_BLACK &&
329 		object->count < object->min_count;
330 }
331 
color_gray(const struct kmemleak_object * object)332 static bool color_gray(const struct kmemleak_object *object)
333 {
334 	return object->min_count != KMEMLEAK_BLACK &&
335 		object->count >= object->min_count;
336 }
337 
338 /*
339  * Objects are considered unreferenced only if their color is white, they have
340  * not be deleted and have a minimum age to avoid false positives caused by
341  * pointers temporarily stored in CPU registers.
342  */
unreferenced_object(struct kmemleak_object * object)343 static bool unreferenced_object(struct kmemleak_object *object)
344 {
345 	return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
346 		time_before_eq(object->jiffies + jiffies_min_age,
347 			       jiffies_last_scan);
348 }
349 
__object_type_str(struct kmemleak_object * object)350 static const char *__object_type_str(struct kmemleak_object *object)
351 {
352 	if (object->flags & OBJECT_PHYS)
353 		return " (phys)";
354 	if (object->flags & OBJECT_PERCPU)
355 		return " (percpu)";
356 	return "";
357 }
358 
359 /*
360  * Printing of the unreferenced objects information to the seq file. The
361  * print_unreferenced function must be called with the object->lock held.
362  */
print_unreferenced(struct seq_file * seq,struct kmemleak_object * object)363 static void print_unreferenced(struct seq_file *seq,
364 			       struct kmemleak_object *object)
365 {
366 	int i;
367 	unsigned long *entries;
368 	unsigned int nr_entries;
369 
370 	nr_entries = stack_depot_fetch(object->trace_handle, &entries);
371 	warn_or_seq_printf(seq, "unreferenced object%s 0x%08lx (size %zu):\n",
372 			   __object_type_str(object),
373 			   object->pointer, object->size);
374 	warn_or_seq_printf(seq, "  comm \"%s\", pid %d, jiffies %lu\n",
375 			   object->comm, object->pid, object->jiffies);
376 	hex_dump_object(seq, object);
377 	warn_or_seq_printf(seq, "  backtrace (crc %x):\n", object->checksum);
378 
379 	for (i = 0; i < nr_entries; i++) {
380 		void *ptr = (void *)entries[i];
381 		warn_or_seq_printf(seq, "    %pS\n", ptr);
382 	}
383 }
384 
385 /*
386  * Print the kmemleak_object information. This function is used mainly for
387  * debugging special cases when kmemleak operations. It must be called with
388  * the object->lock held.
389  */
dump_object_info(struct kmemleak_object * object)390 static void dump_object_info(struct kmemleak_object *object)
391 {
392 	pr_notice("Object%s 0x%08lx (size %zu):\n",
393 		  __object_type_str(object), object->pointer, object->size);
394 	pr_notice("  comm \"%s\", pid %d, jiffies %lu\n",
395 		  object->comm, object->pid, object->jiffies);
396 	pr_notice("  min_count = %d\n", object->min_count);
397 	pr_notice("  count = %d\n", object->count);
398 	pr_notice("  flags = 0x%x\n", object->flags);
399 	pr_notice("  checksum = %u\n", object->checksum);
400 	pr_notice("  backtrace:\n");
401 	if (object->trace_handle)
402 		stack_depot_print(object->trace_handle);
403 }
404 
object_tree(unsigned long objflags)405 static struct rb_root *object_tree(unsigned long objflags)
406 {
407 	if (objflags & OBJECT_PHYS)
408 		return &object_phys_tree_root;
409 	if (objflags & OBJECT_PERCPU)
410 		return &object_percpu_tree_root;
411 	return &object_tree_root;
412 }
413 
414 /*
415  * Look-up a memory block metadata (kmemleak_object) in the object search
416  * tree based on a pointer value. If alias is 0, only values pointing to the
417  * beginning of the memory block are allowed. The kmemleak_lock must be held
418  * when calling this function.
419  */
__lookup_object(unsigned long ptr,int alias,unsigned int objflags)420 static struct kmemleak_object *__lookup_object(unsigned long ptr, int alias,
421 					       unsigned int objflags)
422 {
423 	struct rb_node *rb = object_tree(objflags)->rb_node;
424 	unsigned long untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
425 
426 	while (rb) {
427 		struct kmemleak_object *object;
428 		unsigned long untagged_objp;
429 
430 		object = rb_entry(rb, struct kmemleak_object, rb_node);
431 		untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer);
432 
433 		if (untagged_ptr < untagged_objp)
434 			rb = object->rb_node.rb_left;
435 		else if (untagged_objp + object->size <= untagged_ptr)
436 			rb = object->rb_node.rb_right;
437 		else if (untagged_objp == untagged_ptr || alias)
438 			return object;
439 		else {
440 			kmemleak_warn("Found object by alias at 0x%08lx\n",
441 				      ptr);
442 			dump_object_info(object);
443 			break;
444 		}
445 	}
446 	return NULL;
447 }
448 
449 /* Look-up a kmemleak object which allocated with virtual address. */
lookup_object(unsigned long ptr,int alias)450 static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
451 {
452 	return __lookup_object(ptr, alias, 0);
453 }
454 
455 /*
456  * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
457  * that once an object's use_count reached 0, the RCU freeing was already
458  * registered and the object should no longer be used. This function must be
459  * called under the protection of rcu_read_lock().
460  */
get_object(struct kmemleak_object * object)461 static int get_object(struct kmemleak_object *object)
462 {
463 	return atomic_inc_not_zero(&object->use_count);
464 }
465 
466 /*
467  * Memory pool allocation and freeing. kmemleak_lock must not be held.
468  */
mem_pool_alloc(gfp_t gfp)469 static struct kmemleak_object *mem_pool_alloc(gfp_t gfp)
470 {
471 	unsigned long flags;
472 	struct kmemleak_object *object;
473 	bool warn = false;
474 
475 	/* try the slab allocator first */
476 	if (object_cache) {
477 		object = kmem_cache_alloc_noprof(object_cache,
478 						 gfp_nested_mask(gfp));
479 		if (object)
480 			return object;
481 	}
482 
483 	/* slab allocation failed, try the memory pool */
484 	raw_spin_lock_irqsave(&kmemleak_lock, flags);
485 	object = list_first_entry_or_null(&mem_pool_free_list,
486 					  typeof(*object), object_list);
487 	if (object)
488 		list_del(&object->object_list);
489 	else if (mem_pool_free_count)
490 		object = &mem_pool[--mem_pool_free_count];
491 	else
492 		warn = true;
493 	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
494 	if (warn)
495 		pr_warn_once("Memory pool empty, consider increasing CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE\n");
496 
497 	return object;
498 }
499 
500 /*
501  * Return the object to either the slab allocator or the memory pool.
502  */
mem_pool_free(struct kmemleak_object * object)503 static void mem_pool_free(struct kmemleak_object *object)
504 {
505 	unsigned long flags;
506 
507 	if (object < mem_pool || object >= mem_pool + ARRAY_SIZE(mem_pool)) {
508 		kmem_cache_free(object_cache, object);
509 		return;
510 	}
511 
512 	/* add the object to the memory pool free list */
513 	raw_spin_lock_irqsave(&kmemleak_lock, flags);
514 	list_add(&object->object_list, &mem_pool_free_list);
515 	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
516 }
517 
518 /*
519  * RCU callback to free a kmemleak_object.
520  */
free_object_rcu(struct rcu_head * rcu)521 static void free_object_rcu(struct rcu_head *rcu)
522 {
523 	struct hlist_node *tmp;
524 	struct kmemleak_scan_area *area;
525 	struct kmemleak_object *object =
526 		container_of(rcu, struct kmemleak_object, rcu);
527 
528 	/*
529 	 * Once use_count is 0 (guaranteed by put_object), there is no other
530 	 * code accessing this object, hence no need for locking.
531 	 */
532 	hlist_for_each_entry_safe(area, tmp, &object->area_list, node) {
533 		hlist_del(&area->node);
534 		kmem_cache_free(scan_area_cache, area);
535 	}
536 	mem_pool_free(object);
537 }
538 
539 /*
540  * Decrement the object use_count. Once the count is 0, free the object using
541  * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
542  * delete_object() path, the delayed RCU freeing ensures that there is no
543  * recursive call to the kernel allocator. Lock-less RCU object_list traversal
544  * is also possible.
545  */
put_object(struct kmemleak_object * object)546 static void put_object(struct kmemleak_object *object)
547 {
548 	if (!atomic_dec_and_test(&object->use_count))
549 		return;
550 
551 	/* should only get here after delete_object was called */
552 	WARN_ON(object->flags & OBJECT_ALLOCATED);
553 
554 	/*
555 	 * It may be too early for the RCU callbacks, however, there is no
556 	 * concurrent object_list traversal when !object_cache and all objects
557 	 * came from the memory pool. Free the object directly.
558 	 */
559 	if (object_cache)
560 		call_rcu(&object->rcu, free_object_rcu);
561 	else
562 		free_object_rcu(&object->rcu);
563 }
564 
565 /*
566  * Look up an object in the object search tree and increase its use_count.
567  */
__find_and_get_object(unsigned long ptr,int alias,unsigned int objflags)568 static struct kmemleak_object *__find_and_get_object(unsigned long ptr, int alias,
569 						     unsigned int objflags)
570 {
571 	unsigned long flags;
572 	struct kmemleak_object *object;
573 
574 	rcu_read_lock();
575 	raw_spin_lock_irqsave(&kmemleak_lock, flags);
576 	object = __lookup_object(ptr, alias, objflags);
577 	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
578 
579 	/* check whether the object is still available */
580 	if (object && !get_object(object))
581 		object = NULL;
582 	rcu_read_unlock();
583 
584 	return object;
585 }
586 
587 /* Look up and get an object which allocated with virtual address. */
find_and_get_object(unsigned long ptr,int alias)588 static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
589 {
590 	return __find_and_get_object(ptr, alias, 0);
591 }
592 
593 /*
594  * Remove an object from its object tree and object_list. Must be called with
595  * the kmemleak_lock held _if_ kmemleak is still enabled.
596  */
__remove_object(struct kmemleak_object * object)597 static void __remove_object(struct kmemleak_object *object)
598 {
599 	rb_erase(&object->rb_node, object_tree(object->flags));
600 	if (!(object->del_state & DELSTATE_NO_DELETE))
601 		list_del_rcu(&object->object_list);
602 	object->del_state |= DELSTATE_REMOVED;
603 }
604 
__find_and_remove_object(unsigned long ptr,int alias,unsigned int objflags)605 static struct kmemleak_object *__find_and_remove_object(unsigned long ptr,
606 							int alias,
607 							unsigned int objflags)
608 {
609 	struct kmemleak_object *object;
610 
611 	object = __lookup_object(ptr, alias, objflags);
612 	if (object)
613 		__remove_object(object);
614 
615 	return object;
616 }
617 
618 /*
619  * Look up an object in the object search tree and remove it from both object
620  * tree root and object_list. The returned object's use_count should be at
621  * least 1, as initially set by create_object().
622  */
find_and_remove_object(unsigned long ptr,int alias,unsigned int objflags)623 static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias,
624 						      unsigned int objflags)
625 {
626 	unsigned long flags;
627 	struct kmemleak_object *object;
628 
629 	raw_spin_lock_irqsave(&kmemleak_lock, flags);
630 	object = __find_and_remove_object(ptr, alias, objflags);
631 	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
632 
633 	return object;
634 }
635 
set_track_prepare(void)636 static noinline depot_stack_handle_t set_track_prepare(void)
637 {
638 	depot_stack_handle_t trace_handle;
639 	unsigned long entries[MAX_TRACE];
640 	unsigned int nr_entries;
641 
642 	/*
643 	 * Use object_cache to determine whether kmemleak_init() has
644 	 * been invoked. stack_depot_early_init() is called before
645 	 * kmemleak_init() in mm_core_init().
646 	 */
647 	if (!object_cache)
648 		return 0;
649 	nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
650 	trace_handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT);
651 
652 	return trace_handle;
653 }
654 
__alloc_object(gfp_t gfp)655 static struct kmemleak_object *__alloc_object(gfp_t gfp)
656 {
657 	struct kmemleak_object *object;
658 
659 	object = mem_pool_alloc(gfp);
660 	if (!object) {
661 		pr_warn("Cannot allocate a kmemleak_object structure\n");
662 		kmemleak_disable();
663 		return NULL;
664 	}
665 
666 	INIT_LIST_HEAD(&object->object_list);
667 	INIT_LIST_HEAD(&object->gray_list);
668 	INIT_HLIST_HEAD(&object->area_list);
669 	raw_spin_lock_init(&object->lock);
670 	atomic_set(&object->use_count, 1);
671 	object->excess_ref = 0;
672 	object->count = 0;			/* white color initially */
673 	object->checksum = 0;
674 	object->del_state = 0;
675 
676 	/* task information */
677 	if (in_hardirq()) {
678 		object->pid = 0;
679 		strscpy(object->comm, "hardirq");
680 	} else if (in_serving_softirq()) {
681 		object->pid = 0;
682 		strscpy(object->comm, "softirq");
683 	} else {
684 		object->pid = current->pid;
685 		/*
686 		 * There is a small chance of a race with set_task_comm(),
687 		 * however using get_task_comm() here may cause locking
688 		 * dependency issues with current->alloc_lock. In the worst
689 		 * case, the command line is not correct.
690 		 */
691 		strscpy(object->comm, current->comm);
692 	}
693 
694 	/* kernel backtrace */
695 	object->trace_handle = set_track_prepare();
696 
697 	return object;
698 }
699 
__link_object(struct kmemleak_object * object,unsigned long ptr,size_t size,int min_count,unsigned int objflags)700 static int __link_object(struct kmemleak_object *object, unsigned long ptr,
701 			 size_t size, int min_count, unsigned int objflags)
702 {
703 
704 	struct kmemleak_object *parent;
705 	struct rb_node **link, *rb_parent;
706 	unsigned long untagged_ptr;
707 	unsigned long untagged_objp;
708 
709 	object->flags = OBJECT_ALLOCATED | objflags;
710 	object->pointer = ptr;
711 	object->size = kfence_ksize((void *)ptr) ?: size;
712 	object->min_count = min_count;
713 	object->jiffies = jiffies;
714 
715 	untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
716 	/*
717 	 * Only update min_addr and max_addr with object storing virtual
718 	 * address. And update min_percpu_addr max_percpu_addr for per-CPU
719 	 * objects.
720 	 */
721 	if (objflags & OBJECT_PERCPU) {
722 		min_percpu_addr = min(min_percpu_addr, untagged_ptr);
723 		max_percpu_addr = max(max_percpu_addr, untagged_ptr + size);
724 	} else if (!(objflags & OBJECT_PHYS)) {
725 		min_addr = min(min_addr, untagged_ptr);
726 		max_addr = max(max_addr, untagged_ptr + size);
727 	}
728 	link = &object_tree(objflags)->rb_node;
729 	rb_parent = NULL;
730 	while (*link) {
731 		rb_parent = *link;
732 		parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
733 		untagged_objp = (unsigned long)kasan_reset_tag((void *)parent->pointer);
734 		if (untagged_ptr + size <= untagged_objp)
735 			link = &parent->rb_node.rb_left;
736 		else if (untagged_objp + parent->size <= untagged_ptr)
737 			link = &parent->rb_node.rb_right;
738 		else {
739 			kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n",
740 				      ptr);
741 			/*
742 			 * No need for parent->lock here since "parent" cannot
743 			 * be freed while the kmemleak_lock is held.
744 			 */
745 			dump_object_info(parent);
746 			return -EEXIST;
747 		}
748 	}
749 	rb_link_node(&object->rb_node, rb_parent, link);
750 	rb_insert_color(&object->rb_node, object_tree(objflags));
751 	list_add_tail_rcu(&object->object_list, &object_list);
752 
753 	return 0;
754 }
755 
756 /*
757  * Create the metadata (struct kmemleak_object) corresponding to an allocated
758  * memory block and add it to the object_list and object tree.
759  */
__create_object(unsigned long ptr,size_t size,int min_count,gfp_t gfp,unsigned int objflags)760 static void __create_object(unsigned long ptr, size_t size,
761 				int min_count, gfp_t gfp, unsigned int objflags)
762 {
763 	struct kmemleak_object *object;
764 	unsigned long flags;
765 	int ret;
766 
767 	object = __alloc_object(gfp);
768 	if (!object)
769 		return;
770 
771 	raw_spin_lock_irqsave(&kmemleak_lock, flags);
772 	ret = __link_object(object, ptr, size, min_count, objflags);
773 	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
774 	if (ret)
775 		mem_pool_free(object);
776 }
777 
778 /* Create kmemleak object which allocated with virtual address. */
create_object(unsigned long ptr,size_t size,int min_count,gfp_t gfp)779 static void create_object(unsigned long ptr, size_t size,
780 			  int min_count, gfp_t gfp)
781 {
782 	__create_object(ptr, size, min_count, gfp, 0);
783 }
784 
785 /* Create kmemleak object which allocated with physical address. */
create_object_phys(unsigned long ptr,size_t size,int min_count,gfp_t gfp)786 static void create_object_phys(unsigned long ptr, size_t size,
787 			       int min_count, gfp_t gfp)
788 {
789 	__create_object(ptr, size, min_count, gfp, OBJECT_PHYS);
790 }
791 
792 /* Create kmemleak object corresponding to a per-CPU allocation. */
create_object_percpu(unsigned long ptr,size_t size,int min_count,gfp_t gfp)793 static void create_object_percpu(unsigned long ptr, size_t size,
794 				 int min_count, gfp_t gfp)
795 {
796 	__create_object(ptr, size, min_count, gfp, OBJECT_PERCPU);
797 }
798 
799 /*
800  * Mark the object as not allocated and schedule RCU freeing via put_object().
801  */
__delete_object(struct kmemleak_object * object)802 static void __delete_object(struct kmemleak_object *object)
803 {
804 	unsigned long flags;
805 
806 	WARN_ON(!(object->flags & OBJECT_ALLOCATED));
807 	WARN_ON(atomic_read(&object->use_count) < 1);
808 
809 	/*
810 	 * Locking here also ensures that the corresponding memory block
811 	 * cannot be freed when it is being scanned.
812 	 */
813 	raw_spin_lock_irqsave(&object->lock, flags);
814 	object->flags &= ~OBJECT_ALLOCATED;
815 	raw_spin_unlock_irqrestore(&object->lock, flags);
816 	put_object(object);
817 }
818 
819 /*
820  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
821  * delete it.
822  */
delete_object_full(unsigned long ptr,unsigned int objflags)823 static void delete_object_full(unsigned long ptr, unsigned int objflags)
824 {
825 	struct kmemleak_object *object;
826 
827 	object = find_and_remove_object(ptr, 0, objflags);
828 	if (!object) {
829 #ifdef DEBUG
830 		kmemleak_warn("Freeing unknown object at 0x%08lx\n",
831 			      ptr);
832 #endif
833 		return;
834 	}
835 	__delete_object(object);
836 }
837 
838 /*
839  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
840  * delete it. If the memory block is partially freed, the function may create
841  * additional metadata for the remaining parts of the block.
842  */
delete_object_part(unsigned long ptr,size_t size,unsigned int objflags)843 static void delete_object_part(unsigned long ptr, size_t size,
844 			       unsigned int objflags)
845 {
846 	struct kmemleak_object *object, *object_l, *object_r;
847 	unsigned long start, end, flags;
848 
849 	object_l = __alloc_object(GFP_KERNEL);
850 	if (!object_l)
851 		return;
852 
853 	object_r = __alloc_object(GFP_KERNEL);
854 	if (!object_r)
855 		goto out;
856 
857 	raw_spin_lock_irqsave(&kmemleak_lock, flags);
858 	object = __find_and_remove_object(ptr, 1, objflags);
859 	if (!object) {
860 #ifdef DEBUG
861 		kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n",
862 			      ptr, size);
863 #endif
864 		goto unlock;
865 	}
866 
867 	/*
868 	 * Create one or two objects that may result from the memory block
869 	 * split. Note that partial freeing is only done by free_bootmem() and
870 	 * this happens before kmemleak_init() is called.
871 	 */
872 	start = object->pointer;
873 	end = object->pointer + object->size;
874 	if ((ptr > start) &&
875 	    !__link_object(object_l, start, ptr - start,
876 			   object->min_count, objflags))
877 		object_l = NULL;
878 	if ((ptr + size < end) &&
879 	    !__link_object(object_r, ptr + size, end - ptr - size,
880 			   object->min_count, objflags))
881 		object_r = NULL;
882 
883 unlock:
884 	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
885 	if (object)
886 		__delete_object(object);
887 
888 out:
889 	if (object_l)
890 		mem_pool_free(object_l);
891 	if (object_r)
892 		mem_pool_free(object_r);
893 }
894 
__paint_it(struct kmemleak_object * object,int color)895 static void __paint_it(struct kmemleak_object *object, int color)
896 {
897 	object->min_count = color;
898 	if (color == KMEMLEAK_BLACK)
899 		object->flags |= OBJECT_NO_SCAN;
900 }
901 
paint_it(struct kmemleak_object * object,int color)902 static void paint_it(struct kmemleak_object *object, int color)
903 {
904 	unsigned long flags;
905 
906 	raw_spin_lock_irqsave(&object->lock, flags);
907 	__paint_it(object, color);
908 	raw_spin_unlock_irqrestore(&object->lock, flags);
909 }
910 
paint_ptr(unsigned long ptr,int color,unsigned int objflags)911 static void paint_ptr(unsigned long ptr, int color, unsigned int objflags)
912 {
913 	struct kmemleak_object *object;
914 
915 	object = __find_and_get_object(ptr, 0, objflags);
916 	if (!object) {
917 		kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n",
918 			      ptr,
919 			      (color == KMEMLEAK_GREY) ? "Grey" :
920 			      (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
921 		return;
922 	}
923 	paint_it(object, color);
924 	put_object(object);
925 }
926 
927 /*
928  * Mark an object permanently as gray-colored so that it can no longer be
929  * reported as a leak. This is used in general to mark a false positive.
930  */
make_gray_object(unsigned long ptr)931 static void make_gray_object(unsigned long ptr)
932 {
933 	paint_ptr(ptr, KMEMLEAK_GREY, 0);
934 }
935 
936 /*
937  * Mark the object as black-colored so that it is ignored from scans and
938  * reporting.
939  */
make_black_object(unsigned long ptr,unsigned int objflags)940 static void make_black_object(unsigned long ptr, unsigned int objflags)
941 {
942 	paint_ptr(ptr, KMEMLEAK_BLACK, objflags);
943 }
944 
945 /*
946  * Reset the checksum of an object. The immediate effect is that it will not
947  * be reported as a leak during the next scan until its checksum is updated.
948  */
reset_checksum(unsigned long ptr)949 static void reset_checksum(unsigned long ptr)
950 {
951 	unsigned long flags;
952 	struct kmemleak_object *object;
953 
954 	object = find_and_get_object(ptr, 0);
955 	if (!object) {
956 		kmemleak_warn("Not resetting the checksum of an unknown object at 0x%08lx\n",
957 			      ptr);
958 		return;
959 	}
960 
961 	raw_spin_lock_irqsave(&object->lock, flags);
962 	object->checksum = 0;
963 	raw_spin_unlock_irqrestore(&object->lock, flags);
964 	put_object(object);
965 }
966 
967 /*
968  * Add a scanning area to the object. If at least one such area is added,
969  * kmemleak will only scan these ranges rather than the whole memory block.
970  */
add_scan_area(unsigned long ptr,size_t size,gfp_t gfp)971 static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
972 {
973 	unsigned long flags;
974 	struct kmemleak_object *object;
975 	struct kmemleak_scan_area *area = NULL;
976 	unsigned long untagged_ptr;
977 	unsigned long untagged_objp;
978 
979 	object = find_and_get_object(ptr, 1);
980 	if (!object) {
981 		kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
982 			      ptr);
983 		return;
984 	}
985 
986 	untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
987 	untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer);
988 
989 	if (scan_area_cache)
990 		area = kmem_cache_alloc_noprof(scan_area_cache,
991 					       gfp_nested_mask(gfp));
992 
993 	raw_spin_lock_irqsave(&object->lock, flags);
994 	if (!area) {
995 		pr_warn_once("Cannot allocate a scan area, scanning the full object\n");
996 		/* mark the object for full scan to avoid false positives */
997 		object->flags |= OBJECT_FULL_SCAN;
998 		goto out_unlock;
999 	}
1000 	if (size == SIZE_MAX) {
1001 		size = untagged_objp + object->size - untagged_ptr;
1002 	} else if (untagged_ptr + size > untagged_objp + object->size) {
1003 		kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
1004 		dump_object_info(object);
1005 		kmem_cache_free(scan_area_cache, area);
1006 		goto out_unlock;
1007 	}
1008 
1009 	INIT_HLIST_NODE(&area->node);
1010 	area->start = ptr;
1011 	area->size = size;
1012 
1013 	hlist_add_head(&area->node, &object->area_list);
1014 out_unlock:
1015 	raw_spin_unlock_irqrestore(&object->lock, flags);
1016 	put_object(object);
1017 }
1018 
1019 /*
1020  * Any surplus references (object already gray) to 'ptr' are passed to
1021  * 'excess_ref'. This is used in the vmalloc() case where a pointer to
1022  * vm_struct may be used as an alternative reference to the vmalloc'ed object
1023  * (see free_thread_stack()).
1024  */
object_set_excess_ref(unsigned long ptr,unsigned long excess_ref)1025 static void object_set_excess_ref(unsigned long ptr, unsigned long excess_ref)
1026 {
1027 	unsigned long flags;
1028 	struct kmemleak_object *object;
1029 
1030 	object = find_and_get_object(ptr, 0);
1031 	if (!object) {
1032 		kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n",
1033 			      ptr);
1034 		return;
1035 	}
1036 
1037 	raw_spin_lock_irqsave(&object->lock, flags);
1038 	object->excess_ref = excess_ref;
1039 	raw_spin_unlock_irqrestore(&object->lock, flags);
1040 	put_object(object);
1041 }
1042 
1043 /*
1044  * Set the OBJECT_NO_SCAN flag for the object corresponding to the given
1045  * pointer. Such object will not be scanned by kmemleak but references to it
1046  * are searched.
1047  */
object_no_scan(unsigned long ptr)1048 static void object_no_scan(unsigned long ptr)
1049 {
1050 	unsigned long flags;
1051 	struct kmemleak_object *object;
1052 
1053 	object = find_and_get_object(ptr, 0);
1054 	if (!object) {
1055 		kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
1056 		return;
1057 	}
1058 
1059 	raw_spin_lock_irqsave(&object->lock, flags);
1060 	object->flags |= OBJECT_NO_SCAN;
1061 	raw_spin_unlock_irqrestore(&object->lock, flags);
1062 	put_object(object);
1063 }
1064 
1065 /**
1066  * kmemleak_alloc - register a newly allocated object
1067  * @ptr:	pointer to beginning of the object
1068  * @size:	size of the object
1069  * @min_count:	minimum number of references to this object. If during memory
1070  *		scanning a number of references less than @min_count is found,
1071  *		the object is reported as a memory leak. If @min_count is 0,
1072  *		the object is never reported as a leak. If @min_count is -1,
1073  *		the object is ignored (not scanned and not reported as a leak)
1074  * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
1075  *
1076  * This function is called from the kernel allocators when a new object
1077  * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.).
1078  */
kmemleak_alloc(const void * ptr,size_t size,int min_count,gfp_t gfp)1079 void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
1080 			  gfp_t gfp)
1081 {
1082 	pr_debug("%s(0x%px, %zu, %d)\n", __func__, ptr, size, min_count);
1083 
1084 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1085 		create_object((unsigned long)ptr, size, min_count, gfp);
1086 }
1087 EXPORT_SYMBOL_GPL(kmemleak_alloc);
1088 
1089 /**
1090  * kmemleak_alloc_percpu - register a newly allocated __percpu object
1091  * @ptr:	__percpu pointer to beginning of the object
1092  * @size:	size of the object
1093  * @gfp:	flags used for kmemleak internal memory allocations
1094  *
1095  * This function is called from the kernel percpu allocator when a new object
1096  * (memory block) is allocated (alloc_percpu).
1097  */
kmemleak_alloc_percpu(const void __percpu * ptr,size_t size,gfp_t gfp)1098 void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size,
1099 				 gfp_t gfp)
1100 {
1101 	pr_debug("%s(0x%px, %zu)\n", __func__, ptr, size);
1102 
1103 	if (kmemleak_enabled && ptr && !IS_ERR_PCPU(ptr))
1104 		create_object_percpu((__force unsigned long)ptr, size, 1, gfp);
1105 }
1106 EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
1107 
1108 /**
1109  * kmemleak_vmalloc - register a newly vmalloc'ed object
1110  * @area:	pointer to vm_struct
1111  * @size:	size of the object
1112  * @gfp:	__vmalloc() flags used for kmemleak internal memory allocations
1113  *
1114  * This function is called from the vmalloc() kernel allocator when a new
1115  * object (memory block) is allocated.
1116  */
kmemleak_vmalloc(const struct vm_struct * area,size_t size,gfp_t gfp)1117 void __ref kmemleak_vmalloc(const struct vm_struct *area, size_t size, gfp_t gfp)
1118 {
1119 	pr_debug("%s(0x%px, %zu)\n", __func__, area, size);
1120 
1121 	/*
1122 	 * A min_count = 2 is needed because vm_struct contains a reference to
1123 	 * the virtual address of the vmalloc'ed block.
1124 	 */
1125 	if (kmemleak_enabled) {
1126 		create_object((unsigned long)area->addr, size, 2, gfp);
1127 		object_set_excess_ref((unsigned long)area,
1128 				      (unsigned long)area->addr);
1129 	}
1130 }
1131 EXPORT_SYMBOL_GPL(kmemleak_vmalloc);
1132 
1133 /**
1134  * kmemleak_free - unregister a previously registered object
1135  * @ptr:	pointer to beginning of the object
1136  *
1137  * This function is called from the kernel allocators when an object (memory
1138  * block) is freed (kmem_cache_free, kfree, vfree etc.).
1139  */
kmemleak_free(const void * ptr)1140 void __ref kmemleak_free(const void *ptr)
1141 {
1142 	pr_debug("%s(0x%px)\n", __func__, ptr);
1143 
1144 	if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
1145 		delete_object_full((unsigned long)ptr, 0);
1146 }
1147 EXPORT_SYMBOL_GPL(kmemleak_free);
1148 
1149 /**
1150  * kmemleak_free_part - partially unregister a previously registered object
1151  * @ptr:	pointer to the beginning or inside the object. This also
1152  *		represents the start of the range to be freed
1153  * @size:	size to be unregistered
1154  *
1155  * This function is called when only a part of a memory block is freed
1156  * (usually from the bootmem allocator).
1157  */
kmemleak_free_part(const void * ptr,size_t size)1158 void __ref kmemleak_free_part(const void *ptr, size_t size)
1159 {
1160 	pr_debug("%s(0x%px)\n", __func__, ptr);
1161 
1162 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1163 		delete_object_part((unsigned long)ptr, size, 0);
1164 }
1165 EXPORT_SYMBOL_GPL(kmemleak_free_part);
1166 
1167 /**
1168  * kmemleak_free_percpu - unregister a previously registered __percpu object
1169  * @ptr:	__percpu pointer to beginning of the object
1170  *
1171  * This function is called from the kernel percpu allocator when an object
1172  * (memory block) is freed (free_percpu).
1173  */
kmemleak_free_percpu(const void __percpu * ptr)1174 void __ref kmemleak_free_percpu(const void __percpu *ptr)
1175 {
1176 	pr_debug("%s(0x%px)\n", __func__, ptr);
1177 
1178 	if (kmemleak_free_enabled && ptr && !IS_ERR_PCPU(ptr))
1179 		delete_object_full((__force unsigned long)ptr, OBJECT_PERCPU);
1180 }
1181 EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
1182 
1183 /**
1184  * kmemleak_update_trace - update object allocation stack trace
1185  * @ptr:	pointer to beginning of the object
1186  *
1187  * Override the object allocation stack trace for cases where the actual
1188  * allocation place is not always useful.
1189  */
kmemleak_update_trace(const void * ptr)1190 void __ref kmemleak_update_trace(const void *ptr)
1191 {
1192 	struct kmemleak_object *object;
1193 	depot_stack_handle_t trace_handle;
1194 	unsigned long flags;
1195 
1196 	pr_debug("%s(0x%px)\n", __func__, ptr);
1197 
1198 	if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr))
1199 		return;
1200 
1201 	object = find_and_get_object((unsigned long)ptr, 1);
1202 	if (!object) {
1203 #ifdef DEBUG
1204 		kmemleak_warn("Updating stack trace for unknown object at %p\n",
1205 			      ptr);
1206 #endif
1207 		return;
1208 	}
1209 
1210 	trace_handle = set_track_prepare();
1211 	raw_spin_lock_irqsave(&object->lock, flags);
1212 	object->trace_handle = trace_handle;
1213 	raw_spin_unlock_irqrestore(&object->lock, flags);
1214 
1215 	put_object(object);
1216 }
1217 EXPORT_SYMBOL(kmemleak_update_trace);
1218 
1219 /**
1220  * kmemleak_not_leak - mark an allocated object as false positive
1221  * @ptr:	pointer to beginning of the object
1222  *
1223  * Calling this function on an object will cause the memory block to no longer
1224  * be reported as leak and always be scanned.
1225  */
kmemleak_not_leak(const void * ptr)1226 void __ref kmemleak_not_leak(const void *ptr)
1227 {
1228 	pr_debug("%s(0x%px)\n", __func__, ptr);
1229 
1230 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1231 		make_gray_object((unsigned long)ptr);
1232 }
1233 EXPORT_SYMBOL(kmemleak_not_leak);
1234 
1235 /**
1236  * kmemleak_transient_leak - mark an allocated object as transient false positive
1237  * @ptr:	pointer to beginning of the object
1238  *
1239  * Calling this function on an object will cause the memory block to not be
1240  * reported as a leak temporarily. This may happen, for example, if the object
1241  * is part of a singly linked list and the ->next reference to it is changed.
1242  */
kmemleak_transient_leak(const void * ptr)1243 void __ref kmemleak_transient_leak(const void *ptr)
1244 {
1245 	pr_debug("%s(0x%px)\n", __func__, ptr);
1246 
1247 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1248 		reset_checksum((unsigned long)ptr);
1249 }
1250 EXPORT_SYMBOL(kmemleak_transient_leak);
1251 
1252 /**
1253  * kmemleak_ignore_percpu - similar to kmemleak_ignore but taking a percpu
1254  *			    address argument
1255  * @ptr:	percpu address of the object
1256  */
kmemleak_ignore_percpu(const void __percpu * ptr)1257 void __ref kmemleak_ignore_percpu(const void __percpu *ptr)
1258 {
1259 	pr_debug("%s(0x%px)\n", __func__, ptr);
1260 
1261 	if (kmemleak_enabled && ptr && !IS_ERR_PCPU(ptr))
1262 		make_black_object((unsigned long)ptr, OBJECT_PERCPU);
1263 }
1264 EXPORT_SYMBOL_GPL(kmemleak_ignore_percpu);
1265 
1266 /**
1267  * kmemleak_ignore - ignore an allocated object
1268  * @ptr:	pointer to beginning of the object
1269  *
1270  * Calling this function on an object will cause the memory block to be
1271  * ignored (not scanned and not reported as a leak). This is usually done when
1272  * it is known that the corresponding block is not a leak and does not contain
1273  * any references to other allocated memory blocks.
1274  */
kmemleak_ignore(const void * ptr)1275 void __ref kmemleak_ignore(const void *ptr)
1276 {
1277 	pr_debug("%s(0x%px)\n", __func__, ptr);
1278 
1279 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1280 		make_black_object((unsigned long)ptr, 0);
1281 }
1282 EXPORT_SYMBOL(kmemleak_ignore);
1283 
1284 /**
1285  * kmemleak_scan_area - limit the range to be scanned in an allocated object
1286  * @ptr:	pointer to beginning or inside the object. This also
1287  *		represents the start of the scan area
1288  * @size:	size of the scan area
1289  * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
1290  *
1291  * This function is used when it is known that only certain parts of an object
1292  * contain references to other objects. Kmemleak will only scan these areas
1293  * reducing the number false negatives.
1294  */
kmemleak_scan_area(const void * ptr,size_t size,gfp_t gfp)1295 void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
1296 {
1297 	pr_debug("%s(0x%px)\n", __func__, ptr);
1298 
1299 	if (kmemleak_enabled && ptr && size && !IS_ERR(ptr))
1300 		add_scan_area((unsigned long)ptr, size, gfp);
1301 }
1302 EXPORT_SYMBOL(kmemleak_scan_area);
1303 
1304 /**
1305  * kmemleak_no_scan - do not scan an allocated object
1306  * @ptr:	pointer to beginning of the object
1307  *
1308  * This function notifies kmemleak not to scan the given memory block. Useful
1309  * in situations where it is known that the given object does not contain any
1310  * references to other objects. Kmemleak will not scan such objects reducing
1311  * the number of false negatives.
1312  */
kmemleak_no_scan(const void * ptr)1313 void __ref kmemleak_no_scan(const void *ptr)
1314 {
1315 	pr_debug("%s(0x%px)\n", __func__, ptr);
1316 
1317 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1318 		object_no_scan((unsigned long)ptr);
1319 }
1320 EXPORT_SYMBOL(kmemleak_no_scan);
1321 
1322 /**
1323  * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical
1324  *			 address argument
1325  * @phys:	physical address of the object
1326  * @size:	size of the object
1327  * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
1328  */
kmemleak_alloc_phys(phys_addr_t phys,size_t size,gfp_t gfp)1329 void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, gfp_t gfp)
1330 {
1331 	pr_debug("%s(0x%px, %zu)\n", __func__, &phys, size);
1332 
1333 	if (kmemleak_enabled)
1334 		/*
1335 		 * Create object with OBJECT_PHYS flag and
1336 		 * assume min_count 0.
1337 		 */
1338 		create_object_phys((unsigned long)phys, size, 0, gfp);
1339 }
1340 EXPORT_SYMBOL(kmemleak_alloc_phys);
1341 
1342 /**
1343  * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a
1344  *			     physical address argument
1345  * @phys:	physical address if the beginning or inside an object. This
1346  *		also represents the start of the range to be freed
1347  * @size:	size to be unregistered
1348  */
kmemleak_free_part_phys(phys_addr_t phys,size_t size)1349 void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size)
1350 {
1351 	pr_debug("%s(0x%px)\n", __func__, &phys);
1352 
1353 	if (kmemleak_enabled)
1354 		delete_object_part((unsigned long)phys, size, OBJECT_PHYS);
1355 }
1356 EXPORT_SYMBOL(kmemleak_free_part_phys);
1357 
1358 /**
1359  * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical
1360  *			  address argument
1361  * @phys:	physical address of the object
1362  */
kmemleak_ignore_phys(phys_addr_t phys)1363 void __ref kmemleak_ignore_phys(phys_addr_t phys)
1364 {
1365 	pr_debug("%s(0x%px)\n", __func__, &phys);
1366 
1367 	if (kmemleak_enabled)
1368 		make_black_object((unsigned long)phys, OBJECT_PHYS);
1369 }
1370 EXPORT_SYMBOL(kmemleak_ignore_phys);
1371 
1372 /*
1373  * Update an object's checksum and return true if it was modified.
1374  */
update_checksum(struct kmemleak_object * object)1375 static bool update_checksum(struct kmemleak_object *object)
1376 {
1377 	u32 old_csum = object->checksum;
1378 
1379 	if (WARN_ON_ONCE(object->flags & OBJECT_PHYS))
1380 		return false;
1381 
1382 	kasan_disable_current();
1383 	kcsan_disable_current();
1384 	if (object->flags & OBJECT_PERCPU) {
1385 		unsigned int cpu;
1386 
1387 		object->checksum = 0;
1388 		for_each_possible_cpu(cpu) {
1389 			void *ptr = per_cpu_ptr((void __percpu *)object->pointer, cpu);
1390 
1391 			object->checksum ^= crc32(0, kasan_reset_tag((void *)ptr), object->size);
1392 		}
1393 	} else {
1394 		object->checksum = crc32(0, kasan_reset_tag((void *)object->pointer), object->size);
1395 	}
1396 	kasan_enable_current();
1397 	kcsan_enable_current();
1398 
1399 	return object->checksum != old_csum;
1400 }
1401 
1402 /*
1403  * Update an object's references. object->lock must be held by the caller.
1404  */
update_refs(struct kmemleak_object * object)1405 static void update_refs(struct kmemleak_object *object)
1406 {
1407 	if (!color_white(object)) {
1408 		/* non-orphan, ignored or new */
1409 		return;
1410 	}
1411 
1412 	/*
1413 	 * Increase the object's reference count (number of pointers to the
1414 	 * memory block). If this count reaches the required minimum, the
1415 	 * object's color will become gray and it will be added to the
1416 	 * gray_list.
1417 	 */
1418 	object->count++;
1419 	if (color_gray(object)) {
1420 		/* put_object() called when removing from gray_list */
1421 		WARN_ON(!get_object(object));
1422 		list_add_tail(&object->gray_list, &gray_list);
1423 	}
1424 }
1425 
pointer_update_refs(struct kmemleak_object * scanned,unsigned long pointer,unsigned int objflags)1426 static void pointer_update_refs(struct kmemleak_object *scanned,
1427 			 unsigned long pointer, unsigned int objflags)
1428 {
1429 	struct kmemleak_object *object;
1430 	unsigned long untagged_ptr;
1431 	unsigned long excess_ref;
1432 
1433 	untagged_ptr = (unsigned long)kasan_reset_tag((void *)pointer);
1434 	if (objflags & OBJECT_PERCPU) {
1435 		if (untagged_ptr < min_percpu_addr || untagged_ptr >= max_percpu_addr)
1436 			return;
1437 	} else {
1438 		if (untagged_ptr < min_addr || untagged_ptr >= max_addr)
1439 			return;
1440 	}
1441 
1442 	/*
1443 	 * No need for get_object() here since we hold kmemleak_lock.
1444 	 * object->use_count cannot be dropped to 0 while the object
1445 	 * is still present in object_tree_root and object_list
1446 	 * (with updates protected by kmemleak_lock).
1447 	 */
1448 	object = __lookup_object(pointer, 1, objflags);
1449 	if (!object)
1450 		return;
1451 	if (object == scanned)
1452 		/* self referenced, ignore */
1453 		return;
1454 
1455 	/*
1456 	 * Avoid the lockdep recursive warning on object->lock being
1457 	 * previously acquired in scan_object(). These locks are
1458 	 * enclosed by scan_mutex.
1459 	 */
1460 	raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1461 	/* only pass surplus references (object already gray) */
1462 	if (color_gray(object)) {
1463 		excess_ref = object->excess_ref;
1464 		/* no need for update_refs() if object already gray */
1465 	} else {
1466 		excess_ref = 0;
1467 		update_refs(object);
1468 	}
1469 	raw_spin_unlock(&object->lock);
1470 
1471 	if (excess_ref) {
1472 		object = lookup_object(excess_ref, 0);
1473 		if (!object)
1474 			return;
1475 		if (object == scanned)
1476 			/* circular reference, ignore */
1477 			return;
1478 		raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1479 		update_refs(object);
1480 		raw_spin_unlock(&object->lock);
1481 	}
1482 }
1483 
1484 /*
1485  * Memory scanning is a long process and it needs to be interruptible. This
1486  * function checks whether such interrupt condition occurred.
1487  */
scan_should_stop(void)1488 static int scan_should_stop(void)
1489 {
1490 	if (!kmemleak_enabled)
1491 		return 1;
1492 
1493 	/*
1494 	 * This function may be called from either process or kthread context,
1495 	 * hence the need to check for both stop conditions.
1496 	 */
1497 	if (current->mm)
1498 		return signal_pending(current);
1499 	else
1500 		return kthread_should_stop();
1501 
1502 	return 0;
1503 }
1504 
1505 /*
1506  * Scan a memory block (exclusive range) for valid pointers and add those
1507  * found to the gray list.
1508  */
scan_block(void * _start,void * _end,struct kmemleak_object * scanned)1509 static void scan_block(void *_start, void *_end,
1510 		       struct kmemleak_object *scanned)
1511 {
1512 	unsigned long *ptr;
1513 	unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1514 	unsigned long *end = _end - (BYTES_PER_POINTER - 1);
1515 	unsigned long flags;
1516 
1517 	raw_spin_lock_irqsave(&kmemleak_lock, flags);
1518 	for (ptr = start; ptr < end; ptr++) {
1519 		unsigned long pointer;
1520 
1521 		if (scan_should_stop())
1522 			break;
1523 
1524 		kasan_disable_current();
1525 		pointer = *(unsigned long *)kasan_reset_tag((void *)ptr);
1526 		kasan_enable_current();
1527 
1528 		pointer_update_refs(scanned, pointer, 0);
1529 		pointer_update_refs(scanned, pointer, OBJECT_PERCPU);
1530 	}
1531 	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
1532 }
1533 
1534 /*
1535  * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency.
1536  */
1537 #ifdef CONFIG_SMP
scan_large_block(void * start,void * end)1538 static void scan_large_block(void *start, void *end)
1539 {
1540 	void *next;
1541 
1542 	while (start < end) {
1543 		next = min(start + MAX_SCAN_SIZE, end);
1544 		scan_block(start, next, NULL);
1545 		start = next;
1546 		cond_resched();
1547 	}
1548 }
1549 #endif
1550 
1551 /*
1552  * Scan a memory block corresponding to a kmemleak_object. A condition is
1553  * that object->use_count >= 1.
1554  */
scan_object(struct kmemleak_object * object)1555 static void scan_object(struct kmemleak_object *object)
1556 {
1557 	struct kmemleak_scan_area *area;
1558 	unsigned long flags;
1559 
1560 	/*
1561 	 * Once the object->lock is acquired, the corresponding memory block
1562 	 * cannot be freed (the same lock is acquired in delete_object).
1563 	 */
1564 	raw_spin_lock_irqsave(&object->lock, flags);
1565 	if (object->flags & OBJECT_NO_SCAN)
1566 		goto out;
1567 	if (!(object->flags & OBJECT_ALLOCATED))
1568 		/* already freed object */
1569 		goto out;
1570 
1571 	if (object->flags & OBJECT_PERCPU) {
1572 		unsigned int cpu;
1573 
1574 		for_each_possible_cpu(cpu) {
1575 			void *start = per_cpu_ptr((void __percpu *)object->pointer, cpu);
1576 			void *end = start + object->size;
1577 
1578 			scan_block(start, end, object);
1579 
1580 			raw_spin_unlock_irqrestore(&object->lock, flags);
1581 			cond_resched();
1582 			raw_spin_lock_irqsave(&object->lock, flags);
1583 			if (!(object->flags & OBJECT_ALLOCATED))
1584 				break;
1585 		}
1586 	} else if (hlist_empty(&object->area_list) ||
1587 	    object->flags & OBJECT_FULL_SCAN) {
1588 		void *start = object->flags & OBJECT_PHYS ?
1589 				__va((phys_addr_t)object->pointer) :
1590 				(void *)object->pointer;
1591 		void *end = start + object->size;
1592 		void *next;
1593 
1594 		do {
1595 			next = min(start + MAX_SCAN_SIZE, end);
1596 			scan_block(start, next, object);
1597 
1598 			start = next;
1599 			if (start >= end)
1600 				break;
1601 
1602 			raw_spin_unlock_irqrestore(&object->lock, flags);
1603 			cond_resched();
1604 			raw_spin_lock_irqsave(&object->lock, flags);
1605 		} while (object->flags & OBJECT_ALLOCATED);
1606 	} else {
1607 		hlist_for_each_entry(area, &object->area_list, node)
1608 			scan_block((void *)area->start,
1609 				   (void *)(area->start + area->size),
1610 				   object);
1611 	}
1612 out:
1613 	raw_spin_unlock_irqrestore(&object->lock, flags);
1614 }
1615 
1616 /*
1617  * Scan the objects already referenced (gray objects). More objects will be
1618  * referenced and, if there are no memory leaks, all the objects are scanned.
1619  */
scan_gray_list(void)1620 static void scan_gray_list(void)
1621 {
1622 	struct kmemleak_object *object, *tmp;
1623 
1624 	/*
1625 	 * The list traversal is safe for both tail additions and removals
1626 	 * from inside the loop. The kmemleak objects cannot be freed from
1627 	 * outside the loop because their use_count was incremented.
1628 	 */
1629 	object = list_entry(gray_list.next, typeof(*object), gray_list);
1630 	while (&object->gray_list != &gray_list) {
1631 		cond_resched();
1632 
1633 		/* may add new objects to the list */
1634 		if (!scan_should_stop())
1635 			scan_object(object);
1636 
1637 		tmp = list_entry(object->gray_list.next, typeof(*object),
1638 				 gray_list);
1639 
1640 		/* remove the object from the list and release it */
1641 		list_del(&object->gray_list);
1642 		put_object(object);
1643 
1644 		object = tmp;
1645 	}
1646 	WARN_ON(!list_empty(&gray_list));
1647 }
1648 
1649 /*
1650  * Conditionally call resched() in an object iteration loop while making sure
1651  * that the given object won't go away without RCU read lock by performing a
1652  * get_object() if necessaary.
1653  */
kmemleak_cond_resched(struct kmemleak_object * object)1654 static void kmemleak_cond_resched(struct kmemleak_object *object)
1655 {
1656 	if (!get_object(object))
1657 		return;	/* Try next object */
1658 
1659 	raw_spin_lock_irq(&kmemleak_lock);
1660 	if (object->del_state & DELSTATE_REMOVED)
1661 		goto unlock_put;	/* Object removed */
1662 	object->del_state |= DELSTATE_NO_DELETE;
1663 	raw_spin_unlock_irq(&kmemleak_lock);
1664 
1665 	rcu_read_unlock();
1666 	cond_resched();
1667 	rcu_read_lock();
1668 
1669 	raw_spin_lock_irq(&kmemleak_lock);
1670 	if (object->del_state & DELSTATE_REMOVED)
1671 		list_del_rcu(&object->object_list);
1672 	object->del_state &= ~DELSTATE_NO_DELETE;
1673 unlock_put:
1674 	raw_spin_unlock_irq(&kmemleak_lock);
1675 	put_object(object);
1676 }
1677 
1678 /*
1679  * Scan data sections and all the referenced memory blocks allocated via the
1680  * kernel's standard allocators. This function must be called with the
1681  * scan_mutex held.
1682  */
kmemleak_scan(void)1683 static void kmemleak_scan(void)
1684 {
1685 	struct kmemleak_object *object;
1686 	struct zone *zone;
1687 	int __maybe_unused i;
1688 	int new_leaks = 0;
1689 
1690 	jiffies_last_scan = jiffies;
1691 
1692 	/* prepare the kmemleak_object's */
1693 	rcu_read_lock();
1694 	list_for_each_entry_rcu(object, &object_list, object_list) {
1695 		raw_spin_lock_irq(&object->lock);
1696 #ifdef DEBUG
1697 		/*
1698 		 * With a few exceptions there should be a maximum of
1699 		 * 1 reference to any object at this point.
1700 		 */
1701 		if (atomic_read(&object->use_count) > 1) {
1702 			pr_debug("object->use_count = %d\n",
1703 				 atomic_read(&object->use_count));
1704 			dump_object_info(object);
1705 		}
1706 #endif
1707 
1708 		/* ignore objects outside lowmem (paint them black) */
1709 		if ((object->flags & OBJECT_PHYS) &&
1710 		   !(object->flags & OBJECT_NO_SCAN)) {
1711 			unsigned long phys = object->pointer;
1712 
1713 			if (PHYS_PFN(phys) < min_low_pfn ||
1714 			    PHYS_PFN(phys + object->size) > max_low_pfn)
1715 				__paint_it(object, KMEMLEAK_BLACK);
1716 		}
1717 
1718 		/* reset the reference count (whiten the object) */
1719 		object->count = 0;
1720 		if (color_gray(object) && get_object(object))
1721 			list_add_tail(&object->gray_list, &gray_list);
1722 
1723 		raw_spin_unlock_irq(&object->lock);
1724 
1725 		if (need_resched())
1726 			kmemleak_cond_resched(object);
1727 	}
1728 	rcu_read_unlock();
1729 
1730 #ifdef CONFIG_SMP
1731 	/* per-cpu sections scanning */
1732 	for_each_possible_cpu(i)
1733 		scan_large_block(__per_cpu_start + per_cpu_offset(i),
1734 				 __per_cpu_end + per_cpu_offset(i));
1735 #endif
1736 
1737 	/*
1738 	 * Struct page scanning for each node.
1739 	 */
1740 	get_online_mems();
1741 	for_each_populated_zone(zone) {
1742 		unsigned long start_pfn = zone->zone_start_pfn;
1743 		unsigned long end_pfn = zone_end_pfn(zone);
1744 		unsigned long pfn;
1745 
1746 		for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1747 			struct page *page = pfn_to_online_page(pfn);
1748 
1749 			if (!(pfn & 63))
1750 				cond_resched();
1751 
1752 			if (!page)
1753 				continue;
1754 
1755 			/* only scan pages belonging to this zone */
1756 			if (page_zone(page) != zone)
1757 				continue;
1758 			/* only scan if page is in use */
1759 			if (page_count(page) == 0)
1760 				continue;
1761 			scan_block(page, page + 1, NULL);
1762 		}
1763 	}
1764 	put_online_mems();
1765 
1766 	/*
1767 	 * Scanning the task stacks (may introduce false negatives).
1768 	 */
1769 	if (kmemleak_stack_scan) {
1770 		struct task_struct *p, *g;
1771 
1772 		rcu_read_lock();
1773 		for_each_process_thread(g, p) {
1774 			void *stack = try_get_task_stack(p);
1775 			if (stack) {
1776 				scan_block(stack, stack + THREAD_SIZE, NULL);
1777 				put_task_stack(p);
1778 			}
1779 		}
1780 		rcu_read_unlock();
1781 	}
1782 
1783 	/*
1784 	 * Scan the objects already referenced from the sections scanned
1785 	 * above.
1786 	 */
1787 	scan_gray_list();
1788 
1789 	/*
1790 	 * Check for new or unreferenced objects modified since the previous
1791 	 * scan and color them gray until the next scan.
1792 	 */
1793 	rcu_read_lock();
1794 	list_for_each_entry_rcu(object, &object_list, object_list) {
1795 		if (need_resched())
1796 			kmemleak_cond_resched(object);
1797 
1798 		/*
1799 		 * This is racy but we can save the overhead of lock/unlock
1800 		 * calls. The missed objects, if any, should be caught in
1801 		 * the next scan.
1802 		 */
1803 		if (!color_white(object))
1804 			continue;
1805 		raw_spin_lock_irq(&object->lock);
1806 		if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1807 		    && update_checksum(object) && get_object(object)) {
1808 			/* color it gray temporarily */
1809 			object->count = object->min_count;
1810 			list_add_tail(&object->gray_list, &gray_list);
1811 		}
1812 		raw_spin_unlock_irq(&object->lock);
1813 	}
1814 	rcu_read_unlock();
1815 
1816 	/*
1817 	 * Re-scan the gray list for modified unreferenced objects.
1818 	 */
1819 	scan_gray_list();
1820 
1821 	/*
1822 	 * If scanning was stopped do not report any new unreferenced objects.
1823 	 */
1824 	if (scan_should_stop())
1825 		return;
1826 
1827 	/*
1828 	 * Scanning result reporting.
1829 	 */
1830 	rcu_read_lock();
1831 	list_for_each_entry_rcu(object, &object_list, object_list) {
1832 		if (need_resched())
1833 			kmemleak_cond_resched(object);
1834 
1835 		/*
1836 		 * This is racy but we can save the overhead of lock/unlock
1837 		 * calls. The missed objects, if any, should be caught in
1838 		 * the next scan.
1839 		 */
1840 		if (!color_white(object))
1841 			continue;
1842 		raw_spin_lock_irq(&object->lock);
1843 		if (unreferenced_object(object) &&
1844 		    !(object->flags & OBJECT_REPORTED)) {
1845 			object->flags |= OBJECT_REPORTED;
1846 
1847 			if (kmemleak_verbose)
1848 				print_unreferenced(NULL, object);
1849 
1850 			new_leaks++;
1851 		}
1852 		raw_spin_unlock_irq(&object->lock);
1853 	}
1854 	rcu_read_unlock();
1855 
1856 	if (new_leaks) {
1857 		kmemleak_found_leaks = true;
1858 
1859 		pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n",
1860 			new_leaks);
1861 	}
1862 
1863 }
1864 
1865 /*
1866  * Thread function performing automatic memory scanning. Unreferenced objects
1867  * at the end of a memory scan are reported but only the first time.
1868  */
kmemleak_scan_thread(void * arg)1869 static int kmemleak_scan_thread(void *arg)
1870 {
1871 	static int first_run = IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN);
1872 
1873 	pr_info("Automatic memory scanning thread started\n");
1874 	set_user_nice(current, 10);
1875 
1876 	/*
1877 	 * Wait before the first scan to allow the system to fully initialize.
1878 	 */
1879 	if (first_run) {
1880 		signed long timeout = secs_to_jiffies(SECS_FIRST_SCAN);
1881 		first_run = 0;
1882 		while (timeout && !kthread_should_stop())
1883 			timeout = schedule_timeout_interruptible(timeout);
1884 	}
1885 
1886 	while (!kthread_should_stop()) {
1887 		signed long timeout = READ_ONCE(jiffies_scan_wait);
1888 
1889 		mutex_lock(&scan_mutex);
1890 		kmemleak_scan();
1891 		mutex_unlock(&scan_mutex);
1892 
1893 		/* wait before the next scan */
1894 		while (timeout && !kthread_should_stop())
1895 			timeout = schedule_timeout_interruptible(timeout);
1896 	}
1897 
1898 	pr_info("Automatic memory scanning thread ended\n");
1899 
1900 	return 0;
1901 }
1902 
1903 /*
1904  * Start the automatic memory scanning thread. This function must be called
1905  * with the scan_mutex held.
1906  */
start_scan_thread(void)1907 static void start_scan_thread(void)
1908 {
1909 	if (scan_thread)
1910 		return;
1911 	scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1912 	if (IS_ERR(scan_thread)) {
1913 		pr_warn("Failed to create the scan thread\n");
1914 		scan_thread = NULL;
1915 	}
1916 }
1917 
1918 /*
1919  * Stop the automatic memory scanning thread.
1920  */
stop_scan_thread(void)1921 static void stop_scan_thread(void)
1922 {
1923 	if (scan_thread) {
1924 		kthread_stop(scan_thread);
1925 		scan_thread = NULL;
1926 	}
1927 }
1928 
1929 /*
1930  * Iterate over the object_list and return the first valid object at or after
1931  * the required position with its use_count incremented. The function triggers
1932  * a memory scanning when the pos argument points to the first position.
1933  */
kmemleak_seq_start(struct seq_file * seq,loff_t * pos)1934 static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1935 {
1936 	struct kmemleak_object *object;
1937 	loff_t n = *pos;
1938 	int err;
1939 
1940 	err = mutex_lock_interruptible(&scan_mutex);
1941 	if (err < 0)
1942 		return ERR_PTR(err);
1943 
1944 	rcu_read_lock();
1945 	list_for_each_entry_rcu(object, &object_list, object_list) {
1946 		if (n-- > 0)
1947 			continue;
1948 		if (get_object(object))
1949 			goto out;
1950 	}
1951 	object = NULL;
1952 out:
1953 	return object;
1954 }
1955 
1956 /*
1957  * Return the next object in the object_list. The function decrements the
1958  * use_count of the previous object and increases that of the next one.
1959  */
kmemleak_seq_next(struct seq_file * seq,void * v,loff_t * pos)1960 static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1961 {
1962 	struct kmemleak_object *prev_obj = v;
1963 	struct kmemleak_object *next_obj = NULL;
1964 	struct kmemleak_object *obj = prev_obj;
1965 
1966 	++(*pos);
1967 
1968 	list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
1969 		if (get_object(obj)) {
1970 			next_obj = obj;
1971 			break;
1972 		}
1973 	}
1974 
1975 	put_object(prev_obj);
1976 	return next_obj;
1977 }
1978 
1979 /*
1980  * Decrement the use_count of the last object required, if any.
1981  */
kmemleak_seq_stop(struct seq_file * seq,void * v)1982 static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1983 {
1984 	if (!IS_ERR(v)) {
1985 		/*
1986 		 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1987 		 * waiting was interrupted, so only release it if !IS_ERR.
1988 		 */
1989 		rcu_read_unlock();
1990 		mutex_unlock(&scan_mutex);
1991 		if (v)
1992 			put_object(v);
1993 	}
1994 }
1995 
1996 /*
1997  * Print the information for an unreferenced object to the seq file.
1998  */
kmemleak_seq_show(struct seq_file * seq,void * v)1999 static int kmemleak_seq_show(struct seq_file *seq, void *v)
2000 {
2001 	struct kmemleak_object *object = v;
2002 	unsigned long flags;
2003 
2004 	raw_spin_lock_irqsave(&object->lock, flags);
2005 	if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
2006 		print_unreferenced(seq, object);
2007 	raw_spin_unlock_irqrestore(&object->lock, flags);
2008 	return 0;
2009 }
2010 
2011 static const struct seq_operations kmemleak_seq_ops = {
2012 	.start = kmemleak_seq_start,
2013 	.next  = kmemleak_seq_next,
2014 	.stop  = kmemleak_seq_stop,
2015 	.show  = kmemleak_seq_show,
2016 };
2017 
kmemleak_open(struct inode * inode,struct file * file)2018 static int kmemleak_open(struct inode *inode, struct file *file)
2019 {
2020 	return seq_open(file, &kmemleak_seq_ops);
2021 }
2022 
__dump_str_object_info(unsigned long addr,unsigned int objflags)2023 static bool __dump_str_object_info(unsigned long addr, unsigned int objflags)
2024 {
2025 	unsigned long flags;
2026 	struct kmemleak_object *object;
2027 
2028 	object = __find_and_get_object(addr, 1, objflags);
2029 	if (!object)
2030 		return false;
2031 
2032 	raw_spin_lock_irqsave(&object->lock, flags);
2033 	dump_object_info(object);
2034 	raw_spin_unlock_irqrestore(&object->lock, flags);
2035 
2036 	put_object(object);
2037 
2038 	return true;
2039 }
2040 
dump_str_object_info(const char * str)2041 static int dump_str_object_info(const char *str)
2042 {
2043 	unsigned long addr;
2044 	bool found = false;
2045 
2046 	if (kstrtoul(str, 0, &addr))
2047 		return -EINVAL;
2048 
2049 	found |= __dump_str_object_info(addr, 0);
2050 	found |= __dump_str_object_info(addr, OBJECT_PHYS);
2051 	found |= __dump_str_object_info(addr, OBJECT_PERCPU);
2052 
2053 	if (!found) {
2054 		pr_info("Unknown object at 0x%08lx\n", addr);
2055 		return -EINVAL;
2056 	}
2057 
2058 	return 0;
2059 }
2060 
2061 /*
2062  * We use grey instead of black to ensure we can do future scans on the same
2063  * objects. If we did not do future scans these black objects could
2064  * potentially contain references to newly allocated objects in the future and
2065  * we'd end up with false positives.
2066  */
kmemleak_clear(void)2067 static void kmemleak_clear(void)
2068 {
2069 	struct kmemleak_object *object;
2070 
2071 	rcu_read_lock();
2072 	list_for_each_entry_rcu(object, &object_list, object_list) {
2073 		raw_spin_lock_irq(&object->lock);
2074 		if ((object->flags & OBJECT_REPORTED) &&
2075 		    unreferenced_object(object))
2076 			__paint_it(object, KMEMLEAK_GREY);
2077 		raw_spin_unlock_irq(&object->lock);
2078 	}
2079 	rcu_read_unlock();
2080 
2081 	kmemleak_found_leaks = false;
2082 }
2083 
2084 static void __kmemleak_do_cleanup(void);
2085 
2086 /*
2087  * File write operation to configure kmemleak at run-time. The following
2088  * commands can be written to the /sys/kernel/debug/kmemleak file:
2089  *   off	- disable kmemleak (irreversible)
2090  *   stack=on	- enable the task stacks scanning
2091  *   stack=off	- disable the tasks stacks scanning
2092  *   scan=on	- start the automatic memory scanning thread
2093  *   scan=off	- stop the automatic memory scanning thread
2094  *   scan=...	- set the automatic memory scanning period in seconds (0 to
2095  *		  disable it)
2096  *   scan	- trigger a memory scan
2097  *   clear	- mark all current reported unreferenced kmemleak objects as
2098  *		  grey to ignore printing them, or free all kmemleak objects
2099  *		  if kmemleak has been disabled.
2100  *   dump=...	- dump information about the object found at the given address
2101  */
kmemleak_write(struct file * file,const char __user * user_buf,size_t size,loff_t * ppos)2102 static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
2103 			      size_t size, loff_t *ppos)
2104 {
2105 	char buf[64];
2106 	int buf_size;
2107 	int ret;
2108 
2109 	buf_size = min(size, (sizeof(buf) - 1));
2110 	if (strncpy_from_user(buf, user_buf, buf_size) < 0)
2111 		return -EFAULT;
2112 	buf[buf_size] = 0;
2113 
2114 	ret = mutex_lock_interruptible(&scan_mutex);
2115 	if (ret < 0)
2116 		return ret;
2117 
2118 	if (strncmp(buf, "clear", 5) == 0) {
2119 		if (kmemleak_enabled)
2120 			kmemleak_clear();
2121 		else
2122 			__kmemleak_do_cleanup();
2123 		goto out;
2124 	}
2125 
2126 	if (!kmemleak_enabled) {
2127 		ret = -EPERM;
2128 		goto out;
2129 	}
2130 
2131 	if (strncmp(buf, "off", 3) == 0)
2132 		kmemleak_disable();
2133 	else if (strncmp(buf, "stack=on", 8) == 0)
2134 		kmemleak_stack_scan = 1;
2135 	else if (strncmp(buf, "stack=off", 9) == 0)
2136 		kmemleak_stack_scan = 0;
2137 	else if (strncmp(buf, "scan=on", 7) == 0)
2138 		start_scan_thread();
2139 	else if (strncmp(buf, "scan=off", 8) == 0)
2140 		stop_scan_thread();
2141 	else if (strncmp(buf, "scan=", 5) == 0) {
2142 		unsigned secs;
2143 		unsigned long msecs;
2144 
2145 		ret = kstrtouint(buf + 5, 0, &secs);
2146 		if (ret < 0)
2147 			goto out;
2148 
2149 		msecs = secs * MSEC_PER_SEC;
2150 		if (msecs > UINT_MAX)
2151 			msecs = UINT_MAX;
2152 
2153 		stop_scan_thread();
2154 		if (msecs) {
2155 			WRITE_ONCE(jiffies_scan_wait, msecs_to_jiffies(msecs));
2156 			start_scan_thread();
2157 		}
2158 	} else if (strncmp(buf, "scan", 4) == 0)
2159 		kmemleak_scan();
2160 	else if (strncmp(buf, "dump=", 5) == 0)
2161 		ret = dump_str_object_info(buf + 5);
2162 	else
2163 		ret = -EINVAL;
2164 
2165 out:
2166 	mutex_unlock(&scan_mutex);
2167 	if (ret < 0)
2168 		return ret;
2169 
2170 	/* ignore the rest of the buffer, only one command at a time */
2171 	*ppos += size;
2172 	return size;
2173 }
2174 
2175 static const struct file_operations kmemleak_fops = {
2176 	.owner		= THIS_MODULE,
2177 	.open		= kmemleak_open,
2178 	.read		= seq_read,
2179 	.write		= kmemleak_write,
2180 	.llseek		= seq_lseek,
2181 	.release	= seq_release,
2182 };
2183 
__kmemleak_do_cleanup(void)2184 static void __kmemleak_do_cleanup(void)
2185 {
2186 	struct kmemleak_object *object, *tmp;
2187 	unsigned int cnt = 0;
2188 
2189 	/*
2190 	 * Kmemleak has already been disabled, no need for RCU list traversal
2191 	 * or kmemleak_lock held.
2192 	 */
2193 	list_for_each_entry_safe(object, tmp, &object_list, object_list) {
2194 		__remove_object(object);
2195 		__delete_object(object);
2196 
2197 		/* Call cond_resched() once per 64 iterations to avoid soft lockup */
2198 		if (!(++cnt & 0x3f))
2199 			cond_resched();
2200 	}
2201 }
2202 
2203 /*
2204  * Stop the memory scanning thread and free the kmemleak internal objects if
2205  * no previous scan thread (otherwise, kmemleak may still have some useful
2206  * information on memory leaks).
2207  */
kmemleak_do_cleanup(struct work_struct * work)2208 static void kmemleak_do_cleanup(struct work_struct *work)
2209 {
2210 	stop_scan_thread();
2211 
2212 	mutex_lock(&scan_mutex);
2213 	/*
2214 	 * Once it is made sure that kmemleak_scan has stopped, it is safe to no
2215 	 * longer track object freeing. Ordering of the scan thread stopping and
2216 	 * the memory accesses below is guaranteed by the kthread_stop()
2217 	 * function.
2218 	 */
2219 	kmemleak_free_enabled = 0;
2220 	mutex_unlock(&scan_mutex);
2221 
2222 	if (!kmemleak_found_leaks)
2223 		__kmemleak_do_cleanup();
2224 	else
2225 		pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n");
2226 }
2227 
2228 static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
2229 
2230 /*
2231  * Disable kmemleak. No memory allocation/freeing will be traced once this
2232  * function is called. Disabling kmemleak is an irreversible operation.
2233  */
kmemleak_disable(void)2234 static void kmemleak_disable(void)
2235 {
2236 	/* atomically check whether it was already invoked */
2237 	if (cmpxchg(&kmemleak_error, 0, 1))
2238 		return;
2239 
2240 	/* stop any memory operation tracing */
2241 	kmemleak_enabled = 0;
2242 
2243 	/* check whether it is too early for a kernel thread */
2244 	if (kmemleak_late_initialized)
2245 		schedule_work(&cleanup_work);
2246 	else
2247 		kmemleak_free_enabled = 0;
2248 
2249 	pr_info("Kernel memory leak detector disabled\n");
2250 }
2251 
2252 /*
2253  * Allow boot-time kmemleak disabling (enabled by default).
2254  */
kmemleak_boot_config(char * str)2255 static int __init kmemleak_boot_config(char *str)
2256 {
2257 	if (!str)
2258 		return -EINVAL;
2259 	if (strcmp(str, "off") == 0)
2260 		kmemleak_disable();
2261 	else if (strcmp(str, "on") == 0) {
2262 		kmemleak_skip_disable = 1;
2263 		stack_depot_request_early_init();
2264 	}
2265 	else
2266 		return -EINVAL;
2267 	return 0;
2268 }
2269 early_param("kmemleak", kmemleak_boot_config);
2270 
2271 /*
2272  * Kmemleak initialization.
2273  */
kmemleak_init(void)2274 void __init kmemleak_init(void)
2275 {
2276 #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
2277 	if (!kmemleak_skip_disable) {
2278 		kmemleak_disable();
2279 		return;
2280 	}
2281 #endif
2282 
2283 	if (kmemleak_error)
2284 		return;
2285 
2286 	jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
2287 	jiffies_scan_wait = secs_to_jiffies(SECS_SCAN_WAIT);
2288 
2289 	object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
2290 	scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
2291 
2292 	/* register the data/bss sections */
2293 	create_object((unsigned long)_sdata, _edata - _sdata,
2294 		      KMEMLEAK_GREY, GFP_ATOMIC);
2295 	create_object((unsigned long)__bss_start, __bss_stop - __bss_start,
2296 		      KMEMLEAK_GREY, GFP_ATOMIC);
2297 	/* only register .data..ro_after_init if not within .data */
2298 	if (&__start_ro_after_init < &_sdata || &__end_ro_after_init > &_edata)
2299 		create_object((unsigned long)__start_ro_after_init,
2300 			      __end_ro_after_init - __start_ro_after_init,
2301 			      KMEMLEAK_GREY, GFP_ATOMIC);
2302 }
2303 
2304 /*
2305  * Late initialization function.
2306  */
kmemleak_late_init(void)2307 static int __init kmemleak_late_init(void)
2308 {
2309 	kmemleak_late_initialized = 1;
2310 
2311 	debugfs_create_file("kmemleak", 0644, NULL, NULL, &kmemleak_fops);
2312 
2313 	if (kmemleak_error) {
2314 		/*
2315 		 * Some error occurred and kmemleak was disabled. There is a
2316 		 * small chance that kmemleak_disable() was called immediately
2317 		 * after setting kmemleak_late_initialized and we may end up with
2318 		 * two clean-up threads but serialized by scan_mutex.
2319 		 */
2320 		schedule_work(&cleanup_work);
2321 		return -ENOMEM;
2322 	}
2323 
2324 	if (IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN)) {
2325 		mutex_lock(&scan_mutex);
2326 		start_scan_thread();
2327 		mutex_unlock(&scan_mutex);
2328 	}
2329 
2330 	pr_info("Kernel memory leak detector initialized (mem pool available: %d)\n",
2331 		mem_pool_free_count);
2332 
2333 	return 0;
2334 }
2335 late_initcall(kmemleak_late_init);
2336