1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * mm/kmemleak.c
4 *
5 * Copyright (C) 2008 ARM Limited
6 * Written by Catalin Marinas <catalin.marinas@arm.com>
7 *
8 * For more information on the algorithm and kmemleak usage, please see
9 * Documentation/dev-tools/kmemleak.rst.
10 *
11 * Notes on locking
12 * ----------------
13 *
14 * The following locks and mutexes are used by kmemleak:
15 *
16 * - kmemleak_lock (raw_spinlock_t): protects the object_list as well as
17 * del_state modifications and accesses to the object trees
18 * (object_tree_root, object_phys_tree_root, object_percpu_tree_root). The
19 * object_list is the main list holding the metadata (struct
20 * kmemleak_object) for the allocated memory blocks. The object trees are
21 * red black trees used to look-up metadata based on a pointer to the
22 * corresponding memory block. The kmemleak_object structures are added to
23 * the object_list and the object tree root in the create_object() function
24 * called from the kmemleak_alloc{,_phys,_percpu}() callback and removed in
25 * delete_object() called from the kmemleak_free{,_phys,_percpu}() callback
26 * - kmemleak_object.lock (raw_spinlock_t): protects a kmemleak_object.
27 * Accesses to the metadata (e.g. count) are protected by this lock. Note
28 * that some members of this structure may be protected by other means
29 * (atomic or kmemleak_lock). This lock is also held when scanning the
30 * corresponding memory block to avoid the kernel freeing it via the
31 * kmemleak_free() callback. This is less heavyweight than holding a global
32 * lock like kmemleak_lock during scanning.
33 * - scan_mutex (mutex): ensures that only one thread may scan the memory for
34 * unreferenced objects at a time. The gray_list contains the objects which
35 * are already referenced or marked as false positives and need to be
36 * scanned. This list is only modified during a scanning episode when the
37 * scan_mutex is held. At the end of a scan, the gray_list is always empty.
38 * Note that the kmemleak_object.use_count is incremented when an object is
39 * added to the gray_list and therefore cannot be freed. This mutex also
40 * prevents multiple users of the "kmemleak" debugfs file together with
41 * modifications to the memory scanning parameters including the scan_thread
42 * pointer
43 *
44 * Locks and mutexes are acquired/nested in the following order:
45 *
46 * scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING)
47 *
48 * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex
49 * regions.
50 *
51 * The kmemleak_object structures have a use_count incremented or decremented
52 * using the get_object()/put_object() functions. When the use_count becomes
53 * 0, this count can no longer be incremented and put_object() schedules the
54 * kmemleak_object freeing via an RCU callback. All calls to the get_object()
55 * function must be protected by rcu_read_lock() to avoid accessing a freed
56 * structure.
57 */
58
59 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
60
61 #include <linux/init.h>
62 #include <linux/kernel.h>
63 #include <linux/list.h>
64 #include <linux/sched/signal.h>
65 #include <linux/sched/task.h>
66 #include <linux/sched/task_stack.h>
67 #include <linux/jiffies.h>
68 #include <linux/delay.h>
69 #include <linux/export.h>
70 #include <linux/kthread.h>
71 #include <linux/rbtree.h>
72 #include <linux/fs.h>
73 #include <linux/debugfs.h>
74 #include <linux/seq_file.h>
75 #include <linux/cpumask.h>
76 #include <linux/spinlock.h>
77 #include <linux/module.h>
78 #include <linux/mutex.h>
79 #include <linux/rcupdate.h>
80 #include <linux/stacktrace.h>
81 #include <linux/stackdepot.h>
82 #include <linux/cache.h>
83 #include <linux/percpu.h>
84 #include <linux/memblock.h>
85 #include <linux/pfn.h>
86 #include <linux/mmzone.h>
87 #include <linux/slab.h>
88 #include <linux/thread_info.h>
89 #include <linux/err.h>
90 #include <linux/uaccess.h>
91 #include <linux/string.h>
92 #include <linux/nodemask.h>
93 #include <linux/mm.h>
94 #include <linux/workqueue.h>
95 #include <linux/crc32.h>
96
97 #include <asm/sections.h>
98 #include <asm/processor.h>
99 #include <linux/atomic.h>
100
101 #include <linux/kasan.h>
102 #include <linux/kfence.h>
103 #include <linux/kmemleak.h>
104 #include <linux/memory_hotplug.h>
105
106 /*
107 * Kmemleak configuration and common defines.
108 */
109 #define MAX_TRACE 16 /* stack trace length */
110 #define MSECS_MIN_AGE 5000 /* minimum object age for reporting */
111 #define SECS_FIRST_SCAN 60 /* delay before the first scan */
112 #define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */
113 #define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */
114
115 #define BYTES_PER_POINTER sizeof(void *)
116
117 /* scanning area inside a memory block */
118 struct kmemleak_scan_area {
119 struct hlist_node node;
120 unsigned long start;
121 size_t size;
122 };
123
124 #define KMEMLEAK_GREY 0
125 #define KMEMLEAK_BLACK -1
126
127 /*
128 * Structure holding the metadata for each allocated memory block.
129 * Modifications to such objects should be made while holding the
130 * object->lock. Insertions or deletions from object_list, gray_list or
131 * rb_node are already protected by the corresponding locks or mutex (see
132 * the notes on locking above). These objects are reference-counted
133 * (use_count) and freed using the RCU mechanism.
134 */
135 struct kmemleak_object {
136 raw_spinlock_t lock;
137 unsigned int flags; /* object status flags */
138 struct list_head object_list;
139 struct list_head gray_list;
140 struct rb_node rb_node;
141 struct rcu_head rcu; /* object_list lockless traversal */
142 /* object usage count; object freed when use_count == 0 */
143 atomic_t use_count;
144 unsigned int del_state; /* deletion state */
145 unsigned long pointer;
146 size_t size;
147 /* pass surplus references to this pointer */
148 unsigned long excess_ref;
149 /* minimum number of a pointers found before it is considered leak */
150 int min_count;
151 /* the total number of pointers found pointing to this object */
152 int count;
153 /* checksum for detecting modified objects */
154 u32 checksum;
155 depot_stack_handle_t trace_handle;
156 /* memory ranges to be scanned inside an object (empty for all) */
157 struct hlist_head area_list;
158 unsigned long jiffies; /* creation timestamp */
159 pid_t pid; /* pid of the current task */
160 char comm[TASK_COMM_LEN]; /* executable name */
161 };
162
163 /* flag representing the memory block allocation status */
164 #define OBJECT_ALLOCATED (1 << 0)
165 /* flag set after the first reporting of an unreference object */
166 #define OBJECT_REPORTED (1 << 1)
167 /* flag set to not scan the object */
168 #define OBJECT_NO_SCAN (1 << 2)
169 /* flag set to fully scan the object when scan_area allocation failed */
170 #define OBJECT_FULL_SCAN (1 << 3)
171 /* flag set for object allocated with physical address */
172 #define OBJECT_PHYS (1 << 4)
173 /* flag set for per-CPU pointers */
174 #define OBJECT_PERCPU (1 << 5)
175
176 /* set when __remove_object() called */
177 #define DELSTATE_REMOVED (1 << 0)
178 /* set to temporarily prevent deletion from object_list */
179 #define DELSTATE_NO_DELETE (1 << 1)
180
181 #define HEX_PREFIX " "
182 /* number of bytes to print per line; must be 16 or 32 */
183 #define HEX_ROW_SIZE 16
184 /* number of bytes to print at a time (1, 2, 4, 8) */
185 #define HEX_GROUP_SIZE 1
186 /* include ASCII after the hex output */
187 #define HEX_ASCII 1
188 /* max number of lines to be printed */
189 #define HEX_MAX_LINES 2
190
191 /* the list of all allocated objects */
192 static LIST_HEAD(object_list);
193 /* the list of gray-colored objects (see color_gray comment below) */
194 static LIST_HEAD(gray_list);
195 /* memory pool allocation */
196 static struct kmemleak_object mem_pool[CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE];
197 static int mem_pool_free_count = ARRAY_SIZE(mem_pool);
198 static LIST_HEAD(mem_pool_free_list);
199 /* search tree for object boundaries */
200 static struct rb_root object_tree_root = RB_ROOT;
201 /* search tree for object (with OBJECT_PHYS flag) boundaries */
202 static struct rb_root object_phys_tree_root = RB_ROOT;
203 /* search tree for object (with OBJECT_PERCPU flag) boundaries */
204 static struct rb_root object_percpu_tree_root = RB_ROOT;
205 /* protecting the access to object_list, object_tree_root (or object_phys_tree_root) */
206 static DEFINE_RAW_SPINLOCK(kmemleak_lock);
207
208 /* allocation caches for kmemleak internal data */
209 static struct kmem_cache *object_cache;
210 static struct kmem_cache *scan_area_cache;
211
212 /* set if tracing memory operations is enabled */
213 static int kmemleak_enabled __read_mostly = 1;
214 /* same as above but only for the kmemleak_free() callback */
215 static int kmemleak_free_enabled __read_mostly = 1;
216 /* set in the late_initcall if there were no errors */
217 static int kmemleak_late_initialized;
218 /* set if a fatal kmemleak error has occurred */
219 static int kmemleak_error;
220
221 /* minimum and maximum address that may be valid pointers */
222 static unsigned long min_addr = ULONG_MAX;
223 static unsigned long max_addr;
224
225 /* minimum and maximum address that may be valid per-CPU pointers */
226 static unsigned long min_percpu_addr = ULONG_MAX;
227 static unsigned long max_percpu_addr;
228
229 static struct task_struct *scan_thread;
230 /* used to avoid reporting of recently allocated objects */
231 static unsigned long jiffies_min_age;
232 static unsigned long jiffies_last_scan;
233 /* delay between automatic memory scannings */
234 static unsigned long jiffies_scan_wait;
235 /* enables or disables the task stacks scanning */
236 static int kmemleak_stack_scan = 1;
237 /* protects the memory scanning, parameters and debug/kmemleak file access */
238 static DEFINE_MUTEX(scan_mutex);
239 /* setting kmemleak=on, will set this var, skipping the disable */
240 static int kmemleak_skip_disable;
241 /* If there are leaks that can be reported */
242 static bool kmemleak_found_leaks;
243
244 static bool kmemleak_verbose;
245 module_param_named(verbose, kmemleak_verbose, bool, 0600);
246
247 static void kmemleak_disable(void);
248
249 /*
250 * Print a warning and dump the stack trace.
251 */
252 #define kmemleak_warn(x...) do { \
253 pr_warn(x); \
254 dump_stack(); \
255 } while (0)
256
257 /*
258 * Macro invoked when a serious kmemleak condition occurred and cannot be
259 * recovered from. Kmemleak will be disabled and further allocation/freeing
260 * tracing no longer available.
261 */
262 #define kmemleak_stop(x...) do { \
263 kmemleak_warn(x); \
264 kmemleak_disable(); \
265 } while (0)
266
267 #define warn_or_seq_printf(seq, fmt, ...) do { \
268 if (seq) \
269 seq_printf(seq, fmt, ##__VA_ARGS__); \
270 else \
271 pr_warn(fmt, ##__VA_ARGS__); \
272 } while (0)
273
warn_or_seq_hex_dump(struct seq_file * seq,int prefix_type,int rowsize,int groupsize,const void * buf,size_t len,bool ascii)274 static void warn_or_seq_hex_dump(struct seq_file *seq, int prefix_type,
275 int rowsize, int groupsize, const void *buf,
276 size_t len, bool ascii)
277 {
278 if (seq)
279 seq_hex_dump(seq, HEX_PREFIX, prefix_type, rowsize, groupsize,
280 buf, len, ascii);
281 else
282 print_hex_dump(KERN_WARNING, pr_fmt(HEX_PREFIX), prefix_type,
283 rowsize, groupsize, buf, len, ascii);
284 }
285
286 /*
287 * Printing of the objects hex dump to the seq file. The number of lines to be
288 * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
289 * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
290 * with the object->lock held.
291 */
hex_dump_object(struct seq_file * seq,struct kmemleak_object * object)292 static void hex_dump_object(struct seq_file *seq,
293 struct kmemleak_object *object)
294 {
295 const u8 *ptr = (const u8 *)object->pointer;
296 size_t len;
297
298 if (WARN_ON_ONCE(object->flags & OBJECT_PHYS))
299 return;
300
301 if (object->flags & OBJECT_PERCPU)
302 ptr = (const u8 *)this_cpu_ptr((void __percpu *)object->pointer);
303
304 /* limit the number of lines to HEX_MAX_LINES */
305 len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE);
306
307 if (object->flags & OBJECT_PERCPU)
308 warn_or_seq_printf(seq, " hex dump (first %zu bytes on cpu %d):\n",
309 len, raw_smp_processor_id());
310 else
311 warn_or_seq_printf(seq, " hex dump (first %zu bytes):\n", len);
312 kasan_disable_current();
313 warn_or_seq_hex_dump(seq, DUMP_PREFIX_NONE, HEX_ROW_SIZE,
314 HEX_GROUP_SIZE, kasan_reset_tag((void *)ptr), len, HEX_ASCII);
315 kasan_enable_current();
316 }
317
318 /*
319 * Object colors, encoded with count and min_count:
320 * - white - orphan object, not enough references to it (count < min_count)
321 * - gray - not orphan, not marked as false positive (min_count == 0) or
322 * sufficient references to it (count >= min_count)
323 * - black - ignore, it doesn't contain references (e.g. text section)
324 * (min_count == -1). No function defined for this color.
325 */
color_white(const struct kmemleak_object * object)326 static bool color_white(const struct kmemleak_object *object)
327 {
328 return object->count != KMEMLEAK_BLACK &&
329 object->count < object->min_count;
330 }
331
color_gray(const struct kmemleak_object * object)332 static bool color_gray(const struct kmemleak_object *object)
333 {
334 return object->min_count != KMEMLEAK_BLACK &&
335 object->count >= object->min_count;
336 }
337
338 /*
339 * Objects are considered unreferenced only if their color is white, they have
340 * not be deleted and have a minimum age to avoid false positives caused by
341 * pointers temporarily stored in CPU registers.
342 */
unreferenced_object(struct kmemleak_object * object)343 static bool unreferenced_object(struct kmemleak_object *object)
344 {
345 return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
346 time_before_eq(object->jiffies + jiffies_min_age,
347 jiffies_last_scan);
348 }
349
__object_type_str(struct kmemleak_object * object)350 static const char *__object_type_str(struct kmemleak_object *object)
351 {
352 if (object->flags & OBJECT_PHYS)
353 return " (phys)";
354 if (object->flags & OBJECT_PERCPU)
355 return " (percpu)";
356 return "";
357 }
358
359 /*
360 * Printing of the unreferenced objects information to the seq file. The
361 * print_unreferenced function must be called with the object->lock held.
362 */
print_unreferenced(struct seq_file * seq,struct kmemleak_object * object)363 static void print_unreferenced(struct seq_file *seq,
364 struct kmemleak_object *object)
365 {
366 int i;
367 unsigned long *entries;
368 unsigned int nr_entries;
369
370 nr_entries = stack_depot_fetch(object->trace_handle, &entries);
371 warn_or_seq_printf(seq, "unreferenced object%s 0x%08lx (size %zu):\n",
372 __object_type_str(object),
373 object->pointer, object->size);
374 warn_or_seq_printf(seq, " comm \"%s\", pid %d, jiffies %lu\n",
375 object->comm, object->pid, object->jiffies);
376 hex_dump_object(seq, object);
377 warn_or_seq_printf(seq, " backtrace (crc %x):\n", object->checksum);
378
379 for (i = 0; i < nr_entries; i++) {
380 void *ptr = (void *)entries[i];
381 warn_or_seq_printf(seq, " %pS\n", ptr);
382 }
383 }
384
385 /*
386 * Print the kmemleak_object information. This function is used mainly for
387 * debugging special cases when kmemleak operations. It must be called with
388 * the object->lock held.
389 */
dump_object_info(struct kmemleak_object * object)390 static void dump_object_info(struct kmemleak_object *object)
391 {
392 pr_notice("Object%s 0x%08lx (size %zu):\n",
393 __object_type_str(object), object->pointer, object->size);
394 pr_notice(" comm \"%s\", pid %d, jiffies %lu\n",
395 object->comm, object->pid, object->jiffies);
396 pr_notice(" min_count = %d\n", object->min_count);
397 pr_notice(" count = %d\n", object->count);
398 pr_notice(" flags = 0x%x\n", object->flags);
399 pr_notice(" checksum = %u\n", object->checksum);
400 pr_notice(" backtrace:\n");
401 if (object->trace_handle)
402 stack_depot_print(object->trace_handle);
403 }
404
object_tree(unsigned long objflags)405 static struct rb_root *object_tree(unsigned long objflags)
406 {
407 if (objflags & OBJECT_PHYS)
408 return &object_phys_tree_root;
409 if (objflags & OBJECT_PERCPU)
410 return &object_percpu_tree_root;
411 return &object_tree_root;
412 }
413
414 /*
415 * Look-up a memory block metadata (kmemleak_object) in the object search
416 * tree based on a pointer value. If alias is 0, only values pointing to the
417 * beginning of the memory block are allowed. The kmemleak_lock must be held
418 * when calling this function.
419 */
__lookup_object(unsigned long ptr,int alias,unsigned int objflags)420 static struct kmemleak_object *__lookup_object(unsigned long ptr, int alias,
421 unsigned int objflags)
422 {
423 struct rb_node *rb = object_tree(objflags)->rb_node;
424 unsigned long untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
425
426 while (rb) {
427 struct kmemleak_object *object;
428 unsigned long untagged_objp;
429
430 object = rb_entry(rb, struct kmemleak_object, rb_node);
431 untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer);
432
433 if (untagged_ptr < untagged_objp)
434 rb = object->rb_node.rb_left;
435 else if (untagged_objp + object->size <= untagged_ptr)
436 rb = object->rb_node.rb_right;
437 else if (untagged_objp == untagged_ptr || alias)
438 return object;
439 else {
440 kmemleak_warn("Found object by alias at 0x%08lx\n",
441 ptr);
442 dump_object_info(object);
443 break;
444 }
445 }
446 return NULL;
447 }
448
449 /* Look-up a kmemleak object which allocated with virtual address. */
lookup_object(unsigned long ptr,int alias)450 static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
451 {
452 return __lookup_object(ptr, alias, 0);
453 }
454
455 /*
456 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
457 * that once an object's use_count reached 0, the RCU freeing was already
458 * registered and the object should no longer be used. This function must be
459 * called under the protection of rcu_read_lock().
460 */
get_object(struct kmemleak_object * object)461 static int get_object(struct kmemleak_object *object)
462 {
463 return atomic_inc_not_zero(&object->use_count);
464 }
465
466 /*
467 * Memory pool allocation and freeing. kmemleak_lock must not be held.
468 */
mem_pool_alloc(gfp_t gfp)469 static struct kmemleak_object *mem_pool_alloc(gfp_t gfp)
470 {
471 unsigned long flags;
472 struct kmemleak_object *object;
473 bool warn = false;
474
475 /* try the slab allocator first */
476 if (object_cache) {
477 object = kmem_cache_alloc_noprof(object_cache,
478 gfp_nested_mask(gfp));
479 if (object)
480 return object;
481 }
482
483 /* slab allocation failed, try the memory pool */
484 raw_spin_lock_irqsave(&kmemleak_lock, flags);
485 object = list_first_entry_or_null(&mem_pool_free_list,
486 typeof(*object), object_list);
487 if (object)
488 list_del(&object->object_list);
489 else if (mem_pool_free_count)
490 object = &mem_pool[--mem_pool_free_count];
491 else
492 warn = true;
493 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
494 if (warn)
495 pr_warn_once("Memory pool empty, consider increasing CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE\n");
496
497 return object;
498 }
499
500 /*
501 * Return the object to either the slab allocator or the memory pool.
502 */
mem_pool_free(struct kmemleak_object * object)503 static void mem_pool_free(struct kmemleak_object *object)
504 {
505 unsigned long flags;
506
507 if (object < mem_pool || object >= mem_pool + ARRAY_SIZE(mem_pool)) {
508 kmem_cache_free(object_cache, object);
509 return;
510 }
511
512 /* add the object to the memory pool free list */
513 raw_spin_lock_irqsave(&kmemleak_lock, flags);
514 list_add(&object->object_list, &mem_pool_free_list);
515 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
516 }
517
518 /*
519 * RCU callback to free a kmemleak_object.
520 */
free_object_rcu(struct rcu_head * rcu)521 static void free_object_rcu(struct rcu_head *rcu)
522 {
523 struct hlist_node *tmp;
524 struct kmemleak_scan_area *area;
525 struct kmemleak_object *object =
526 container_of(rcu, struct kmemleak_object, rcu);
527
528 /*
529 * Once use_count is 0 (guaranteed by put_object), there is no other
530 * code accessing this object, hence no need for locking.
531 */
532 hlist_for_each_entry_safe(area, tmp, &object->area_list, node) {
533 hlist_del(&area->node);
534 kmem_cache_free(scan_area_cache, area);
535 }
536 mem_pool_free(object);
537 }
538
539 /*
540 * Decrement the object use_count. Once the count is 0, free the object using
541 * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
542 * delete_object() path, the delayed RCU freeing ensures that there is no
543 * recursive call to the kernel allocator. Lock-less RCU object_list traversal
544 * is also possible.
545 */
put_object(struct kmemleak_object * object)546 static void put_object(struct kmemleak_object *object)
547 {
548 if (!atomic_dec_and_test(&object->use_count))
549 return;
550
551 /* should only get here after delete_object was called */
552 WARN_ON(object->flags & OBJECT_ALLOCATED);
553
554 /*
555 * It may be too early for the RCU callbacks, however, there is no
556 * concurrent object_list traversal when !object_cache and all objects
557 * came from the memory pool. Free the object directly.
558 */
559 if (object_cache)
560 call_rcu(&object->rcu, free_object_rcu);
561 else
562 free_object_rcu(&object->rcu);
563 }
564
565 /*
566 * Look up an object in the object search tree and increase its use_count.
567 */
__find_and_get_object(unsigned long ptr,int alias,unsigned int objflags)568 static struct kmemleak_object *__find_and_get_object(unsigned long ptr, int alias,
569 unsigned int objflags)
570 {
571 unsigned long flags;
572 struct kmemleak_object *object;
573
574 rcu_read_lock();
575 raw_spin_lock_irqsave(&kmemleak_lock, flags);
576 object = __lookup_object(ptr, alias, objflags);
577 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
578
579 /* check whether the object is still available */
580 if (object && !get_object(object))
581 object = NULL;
582 rcu_read_unlock();
583
584 return object;
585 }
586
587 /* Look up and get an object which allocated with virtual address. */
find_and_get_object(unsigned long ptr,int alias)588 static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
589 {
590 return __find_and_get_object(ptr, alias, 0);
591 }
592
593 /*
594 * Remove an object from its object tree and object_list. Must be called with
595 * the kmemleak_lock held _if_ kmemleak is still enabled.
596 */
__remove_object(struct kmemleak_object * object)597 static void __remove_object(struct kmemleak_object *object)
598 {
599 rb_erase(&object->rb_node, object_tree(object->flags));
600 if (!(object->del_state & DELSTATE_NO_DELETE))
601 list_del_rcu(&object->object_list);
602 object->del_state |= DELSTATE_REMOVED;
603 }
604
__find_and_remove_object(unsigned long ptr,int alias,unsigned int objflags)605 static struct kmemleak_object *__find_and_remove_object(unsigned long ptr,
606 int alias,
607 unsigned int objflags)
608 {
609 struct kmemleak_object *object;
610
611 object = __lookup_object(ptr, alias, objflags);
612 if (object)
613 __remove_object(object);
614
615 return object;
616 }
617
618 /*
619 * Look up an object in the object search tree and remove it from both object
620 * tree root and object_list. The returned object's use_count should be at
621 * least 1, as initially set by create_object().
622 */
find_and_remove_object(unsigned long ptr,int alias,unsigned int objflags)623 static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias,
624 unsigned int objflags)
625 {
626 unsigned long flags;
627 struct kmemleak_object *object;
628
629 raw_spin_lock_irqsave(&kmemleak_lock, flags);
630 object = __find_and_remove_object(ptr, alias, objflags);
631 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
632
633 return object;
634 }
635
set_track_prepare(void)636 static noinline depot_stack_handle_t set_track_prepare(void)
637 {
638 depot_stack_handle_t trace_handle;
639 unsigned long entries[MAX_TRACE];
640 unsigned int nr_entries;
641
642 /*
643 * Use object_cache to determine whether kmemleak_init() has
644 * been invoked. stack_depot_early_init() is called before
645 * kmemleak_init() in mm_core_init().
646 */
647 if (!object_cache)
648 return 0;
649 nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
650 trace_handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT);
651
652 return trace_handle;
653 }
654
__alloc_object(gfp_t gfp)655 static struct kmemleak_object *__alloc_object(gfp_t gfp)
656 {
657 struct kmemleak_object *object;
658
659 object = mem_pool_alloc(gfp);
660 if (!object) {
661 pr_warn("Cannot allocate a kmemleak_object structure\n");
662 kmemleak_disable();
663 return NULL;
664 }
665
666 INIT_LIST_HEAD(&object->object_list);
667 INIT_LIST_HEAD(&object->gray_list);
668 INIT_HLIST_HEAD(&object->area_list);
669 raw_spin_lock_init(&object->lock);
670 atomic_set(&object->use_count, 1);
671 object->excess_ref = 0;
672 object->count = 0; /* white color initially */
673 object->checksum = 0;
674 object->del_state = 0;
675
676 /* task information */
677 if (in_hardirq()) {
678 object->pid = 0;
679 strscpy(object->comm, "hardirq");
680 } else if (in_serving_softirq()) {
681 object->pid = 0;
682 strscpy(object->comm, "softirq");
683 } else {
684 object->pid = current->pid;
685 /*
686 * There is a small chance of a race with set_task_comm(),
687 * however using get_task_comm() here may cause locking
688 * dependency issues with current->alloc_lock. In the worst
689 * case, the command line is not correct.
690 */
691 strscpy(object->comm, current->comm);
692 }
693
694 /* kernel backtrace */
695 object->trace_handle = set_track_prepare();
696
697 return object;
698 }
699
__link_object(struct kmemleak_object * object,unsigned long ptr,size_t size,int min_count,unsigned int objflags)700 static int __link_object(struct kmemleak_object *object, unsigned long ptr,
701 size_t size, int min_count, unsigned int objflags)
702 {
703
704 struct kmemleak_object *parent;
705 struct rb_node **link, *rb_parent;
706 unsigned long untagged_ptr;
707 unsigned long untagged_objp;
708
709 object->flags = OBJECT_ALLOCATED | objflags;
710 object->pointer = ptr;
711 object->size = kfence_ksize((void *)ptr) ?: size;
712 object->min_count = min_count;
713 object->jiffies = jiffies;
714
715 untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
716 /*
717 * Only update min_addr and max_addr with object storing virtual
718 * address. And update min_percpu_addr max_percpu_addr for per-CPU
719 * objects.
720 */
721 if (objflags & OBJECT_PERCPU) {
722 min_percpu_addr = min(min_percpu_addr, untagged_ptr);
723 max_percpu_addr = max(max_percpu_addr, untagged_ptr + size);
724 } else if (!(objflags & OBJECT_PHYS)) {
725 min_addr = min(min_addr, untagged_ptr);
726 max_addr = max(max_addr, untagged_ptr + size);
727 }
728 link = &object_tree(objflags)->rb_node;
729 rb_parent = NULL;
730 while (*link) {
731 rb_parent = *link;
732 parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
733 untagged_objp = (unsigned long)kasan_reset_tag((void *)parent->pointer);
734 if (untagged_ptr + size <= untagged_objp)
735 link = &parent->rb_node.rb_left;
736 else if (untagged_objp + parent->size <= untagged_ptr)
737 link = &parent->rb_node.rb_right;
738 else {
739 kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n",
740 ptr);
741 /*
742 * No need for parent->lock here since "parent" cannot
743 * be freed while the kmemleak_lock is held.
744 */
745 dump_object_info(parent);
746 return -EEXIST;
747 }
748 }
749 rb_link_node(&object->rb_node, rb_parent, link);
750 rb_insert_color(&object->rb_node, object_tree(objflags));
751 list_add_tail_rcu(&object->object_list, &object_list);
752
753 return 0;
754 }
755
756 /*
757 * Create the metadata (struct kmemleak_object) corresponding to an allocated
758 * memory block and add it to the object_list and object tree.
759 */
__create_object(unsigned long ptr,size_t size,int min_count,gfp_t gfp,unsigned int objflags)760 static void __create_object(unsigned long ptr, size_t size,
761 int min_count, gfp_t gfp, unsigned int objflags)
762 {
763 struct kmemleak_object *object;
764 unsigned long flags;
765 int ret;
766
767 object = __alloc_object(gfp);
768 if (!object)
769 return;
770
771 raw_spin_lock_irqsave(&kmemleak_lock, flags);
772 ret = __link_object(object, ptr, size, min_count, objflags);
773 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
774 if (ret)
775 mem_pool_free(object);
776 }
777
778 /* Create kmemleak object which allocated with virtual address. */
create_object(unsigned long ptr,size_t size,int min_count,gfp_t gfp)779 static void create_object(unsigned long ptr, size_t size,
780 int min_count, gfp_t gfp)
781 {
782 __create_object(ptr, size, min_count, gfp, 0);
783 }
784
785 /* Create kmemleak object which allocated with physical address. */
create_object_phys(unsigned long ptr,size_t size,int min_count,gfp_t gfp)786 static void create_object_phys(unsigned long ptr, size_t size,
787 int min_count, gfp_t gfp)
788 {
789 __create_object(ptr, size, min_count, gfp, OBJECT_PHYS);
790 }
791
792 /* Create kmemleak object corresponding to a per-CPU allocation. */
create_object_percpu(unsigned long ptr,size_t size,int min_count,gfp_t gfp)793 static void create_object_percpu(unsigned long ptr, size_t size,
794 int min_count, gfp_t gfp)
795 {
796 __create_object(ptr, size, min_count, gfp, OBJECT_PERCPU);
797 }
798
799 /*
800 * Mark the object as not allocated and schedule RCU freeing via put_object().
801 */
__delete_object(struct kmemleak_object * object)802 static void __delete_object(struct kmemleak_object *object)
803 {
804 unsigned long flags;
805
806 WARN_ON(!(object->flags & OBJECT_ALLOCATED));
807 WARN_ON(atomic_read(&object->use_count) < 1);
808
809 /*
810 * Locking here also ensures that the corresponding memory block
811 * cannot be freed when it is being scanned.
812 */
813 raw_spin_lock_irqsave(&object->lock, flags);
814 object->flags &= ~OBJECT_ALLOCATED;
815 raw_spin_unlock_irqrestore(&object->lock, flags);
816 put_object(object);
817 }
818
819 /*
820 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
821 * delete it.
822 */
delete_object_full(unsigned long ptr,unsigned int objflags)823 static void delete_object_full(unsigned long ptr, unsigned int objflags)
824 {
825 struct kmemleak_object *object;
826
827 object = find_and_remove_object(ptr, 0, objflags);
828 if (!object) {
829 #ifdef DEBUG
830 kmemleak_warn("Freeing unknown object at 0x%08lx\n",
831 ptr);
832 #endif
833 return;
834 }
835 __delete_object(object);
836 }
837
838 /*
839 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
840 * delete it. If the memory block is partially freed, the function may create
841 * additional metadata for the remaining parts of the block.
842 */
delete_object_part(unsigned long ptr,size_t size,unsigned int objflags)843 static void delete_object_part(unsigned long ptr, size_t size,
844 unsigned int objflags)
845 {
846 struct kmemleak_object *object, *object_l, *object_r;
847 unsigned long start, end, flags;
848
849 object_l = __alloc_object(GFP_KERNEL);
850 if (!object_l)
851 return;
852
853 object_r = __alloc_object(GFP_KERNEL);
854 if (!object_r)
855 goto out;
856
857 raw_spin_lock_irqsave(&kmemleak_lock, flags);
858 object = __find_and_remove_object(ptr, 1, objflags);
859 if (!object) {
860 #ifdef DEBUG
861 kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n",
862 ptr, size);
863 #endif
864 goto unlock;
865 }
866
867 /*
868 * Create one or two objects that may result from the memory block
869 * split. Note that partial freeing is only done by free_bootmem() and
870 * this happens before kmemleak_init() is called.
871 */
872 start = object->pointer;
873 end = object->pointer + object->size;
874 if ((ptr > start) &&
875 !__link_object(object_l, start, ptr - start,
876 object->min_count, objflags))
877 object_l = NULL;
878 if ((ptr + size < end) &&
879 !__link_object(object_r, ptr + size, end - ptr - size,
880 object->min_count, objflags))
881 object_r = NULL;
882
883 unlock:
884 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
885 if (object)
886 __delete_object(object);
887
888 out:
889 if (object_l)
890 mem_pool_free(object_l);
891 if (object_r)
892 mem_pool_free(object_r);
893 }
894
__paint_it(struct kmemleak_object * object,int color)895 static void __paint_it(struct kmemleak_object *object, int color)
896 {
897 object->min_count = color;
898 if (color == KMEMLEAK_BLACK)
899 object->flags |= OBJECT_NO_SCAN;
900 }
901
paint_it(struct kmemleak_object * object,int color)902 static void paint_it(struct kmemleak_object *object, int color)
903 {
904 unsigned long flags;
905
906 raw_spin_lock_irqsave(&object->lock, flags);
907 __paint_it(object, color);
908 raw_spin_unlock_irqrestore(&object->lock, flags);
909 }
910
paint_ptr(unsigned long ptr,int color,unsigned int objflags)911 static void paint_ptr(unsigned long ptr, int color, unsigned int objflags)
912 {
913 struct kmemleak_object *object;
914
915 object = __find_and_get_object(ptr, 0, objflags);
916 if (!object) {
917 kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n",
918 ptr,
919 (color == KMEMLEAK_GREY) ? "Grey" :
920 (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
921 return;
922 }
923 paint_it(object, color);
924 put_object(object);
925 }
926
927 /*
928 * Mark an object permanently as gray-colored so that it can no longer be
929 * reported as a leak. This is used in general to mark a false positive.
930 */
make_gray_object(unsigned long ptr)931 static void make_gray_object(unsigned long ptr)
932 {
933 paint_ptr(ptr, KMEMLEAK_GREY, 0);
934 }
935
936 /*
937 * Mark the object as black-colored so that it is ignored from scans and
938 * reporting.
939 */
make_black_object(unsigned long ptr,unsigned int objflags)940 static void make_black_object(unsigned long ptr, unsigned int objflags)
941 {
942 paint_ptr(ptr, KMEMLEAK_BLACK, objflags);
943 }
944
945 /*
946 * Reset the checksum of an object. The immediate effect is that it will not
947 * be reported as a leak during the next scan until its checksum is updated.
948 */
reset_checksum(unsigned long ptr)949 static void reset_checksum(unsigned long ptr)
950 {
951 unsigned long flags;
952 struct kmemleak_object *object;
953
954 object = find_and_get_object(ptr, 0);
955 if (!object) {
956 kmemleak_warn("Not resetting the checksum of an unknown object at 0x%08lx\n",
957 ptr);
958 return;
959 }
960
961 raw_spin_lock_irqsave(&object->lock, flags);
962 object->checksum = 0;
963 raw_spin_unlock_irqrestore(&object->lock, flags);
964 put_object(object);
965 }
966
967 /*
968 * Add a scanning area to the object. If at least one such area is added,
969 * kmemleak will only scan these ranges rather than the whole memory block.
970 */
add_scan_area(unsigned long ptr,size_t size,gfp_t gfp)971 static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
972 {
973 unsigned long flags;
974 struct kmemleak_object *object;
975 struct kmemleak_scan_area *area = NULL;
976 unsigned long untagged_ptr;
977 unsigned long untagged_objp;
978
979 object = find_and_get_object(ptr, 1);
980 if (!object) {
981 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
982 ptr);
983 return;
984 }
985
986 untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
987 untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer);
988
989 if (scan_area_cache)
990 area = kmem_cache_alloc_noprof(scan_area_cache,
991 gfp_nested_mask(gfp));
992
993 raw_spin_lock_irqsave(&object->lock, flags);
994 if (!area) {
995 pr_warn_once("Cannot allocate a scan area, scanning the full object\n");
996 /* mark the object for full scan to avoid false positives */
997 object->flags |= OBJECT_FULL_SCAN;
998 goto out_unlock;
999 }
1000 if (size == SIZE_MAX) {
1001 size = untagged_objp + object->size - untagged_ptr;
1002 } else if (untagged_ptr + size > untagged_objp + object->size) {
1003 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
1004 dump_object_info(object);
1005 kmem_cache_free(scan_area_cache, area);
1006 goto out_unlock;
1007 }
1008
1009 INIT_HLIST_NODE(&area->node);
1010 area->start = ptr;
1011 area->size = size;
1012
1013 hlist_add_head(&area->node, &object->area_list);
1014 out_unlock:
1015 raw_spin_unlock_irqrestore(&object->lock, flags);
1016 put_object(object);
1017 }
1018
1019 /*
1020 * Any surplus references (object already gray) to 'ptr' are passed to
1021 * 'excess_ref'. This is used in the vmalloc() case where a pointer to
1022 * vm_struct may be used as an alternative reference to the vmalloc'ed object
1023 * (see free_thread_stack()).
1024 */
object_set_excess_ref(unsigned long ptr,unsigned long excess_ref)1025 static void object_set_excess_ref(unsigned long ptr, unsigned long excess_ref)
1026 {
1027 unsigned long flags;
1028 struct kmemleak_object *object;
1029
1030 object = find_and_get_object(ptr, 0);
1031 if (!object) {
1032 kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n",
1033 ptr);
1034 return;
1035 }
1036
1037 raw_spin_lock_irqsave(&object->lock, flags);
1038 object->excess_ref = excess_ref;
1039 raw_spin_unlock_irqrestore(&object->lock, flags);
1040 put_object(object);
1041 }
1042
1043 /*
1044 * Set the OBJECT_NO_SCAN flag for the object corresponding to the given
1045 * pointer. Such object will not be scanned by kmemleak but references to it
1046 * are searched.
1047 */
object_no_scan(unsigned long ptr)1048 static void object_no_scan(unsigned long ptr)
1049 {
1050 unsigned long flags;
1051 struct kmemleak_object *object;
1052
1053 object = find_and_get_object(ptr, 0);
1054 if (!object) {
1055 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
1056 return;
1057 }
1058
1059 raw_spin_lock_irqsave(&object->lock, flags);
1060 object->flags |= OBJECT_NO_SCAN;
1061 raw_spin_unlock_irqrestore(&object->lock, flags);
1062 put_object(object);
1063 }
1064
1065 /**
1066 * kmemleak_alloc - register a newly allocated object
1067 * @ptr: pointer to beginning of the object
1068 * @size: size of the object
1069 * @min_count: minimum number of references to this object. If during memory
1070 * scanning a number of references less than @min_count is found,
1071 * the object is reported as a memory leak. If @min_count is 0,
1072 * the object is never reported as a leak. If @min_count is -1,
1073 * the object is ignored (not scanned and not reported as a leak)
1074 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
1075 *
1076 * This function is called from the kernel allocators when a new object
1077 * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.).
1078 */
kmemleak_alloc(const void * ptr,size_t size,int min_count,gfp_t gfp)1079 void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
1080 gfp_t gfp)
1081 {
1082 pr_debug("%s(0x%px, %zu, %d)\n", __func__, ptr, size, min_count);
1083
1084 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1085 create_object((unsigned long)ptr, size, min_count, gfp);
1086 }
1087 EXPORT_SYMBOL_GPL(kmemleak_alloc);
1088
1089 /**
1090 * kmemleak_alloc_percpu - register a newly allocated __percpu object
1091 * @ptr: __percpu pointer to beginning of the object
1092 * @size: size of the object
1093 * @gfp: flags used for kmemleak internal memory allocations
1094 *
1095 * This function is called from the kernel percpu allocator when a new object
1096 * (memory block) is allocated (alloc_percpu).
1097 */
kmemleak_alloc_percpu(const void __percpu * ptr,size_t size,gfp_t gfp)1098 void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size,
1099 gfp_t gfp)
1100 {
1101 pr_debug("%s(0x%px, %zu)\n", __func__, ptr, size);
1102
1103 if (kmemleak_enabled && ptr && !IS_ERR_PCPU(ptr))
1104 create_object_percpu((__force unsigned long)ptr, size, 1, gfp);
1105 }
1106 EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
1107
1108 /**
1109 * kmemleak_vmalloc - register a newly vmalloc'ed object
1110 * @area: pointer to vm_struct
1111 * @size: size of the object
1112 * @gfp: __vmalloc() flags used for kmemleak internal memory allocations
1113 *
1114 * This function is called from the vmalloc() kernel allocator when a new
1115 * object (memory block) is allocated.
1116 */
kmemleak_vmalloc(const struct vm_struct * area,size_t size,gfp_t gfp)1117 void __ref kmemleak_vmalloc(const struct vm_struct *area, size_t size, gfp_t gfp)
1118 {
1119 pr_debug("%s(0x%px, %zu)\n", __func__, area, size);
1120
1121 /*
1122 * A min_count = 2 is needed because vm_struct contains a reference to
1123 * the virtual address of the vmalloc'ed block.
1124 */
1125 if (kmemleak_enabled) {
1126 create_object((unsigned long)area->addr, size, 2, gfp);
1127 object_set_excess_ref((unsigned long)area,
1128 (unsigned long)area->addr);
1129 }
1130 }
1131 EXPORT_SYMBOL_GPL(kmemleak_vmalloc);
1132
1133 /**
1134 * kmemleak_free - unregister a previously registered object
1135 * @ptr: pointer to beginning of the object
1136 *
1137 * This function is called from the kernel allocators when an object (memory
1138 * block) is freed (kmem_cache_free, kfree, vfree etc.).
1139 */
kmemleak_free(const void * ptr)1140 void __ref kmemleak_free(const void *ptr)
1141 {
1142 pr_debug("%s(0x%px)\n", __func__, ptr);
1143
1144 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
1145 delete_object_full((unsigned long)ptr, 0);
1146 }
1147 EXPORT_SYMBOL_GPL(kmemleak_free);
1148
1149 /**
1150 * kmemleak_free_part - partially unregister a previously registered object
1151 * @ptr: pointer to the beginning or inside the object. This also
1152 * represents the start of the range to be freed
1153 * @size: size to be unregistered
1154 *
1155 * This function is called when only a part of a memory block is freed
1156 * (usually from the bootmem allocator).
1157 */
kmemleak_free_part(const void * ptr,size_t size)1158 void __ref kmemleak_free_part(const void *ptr, size_t size)
1159 {
1160 pr_debug("%s(0x%px)\n", __func__, ptr);
1161
1162 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1163 delete_object_part((unsigned long)ptr, size, 0);
1164 }
1165 EXPORT_SYMBOL_GPL(kmemleak_free_part);
1166
1167 /**
1168 * kmemleak_free_percpu - unregister a previously registered __percpu object
1169 * @ptr: __percpu pointer to beginning of the object
1170 *
1171 * This function is called from the kernel percpu allocator when an object
1172 * (memory block) is freed (free_percpu).
1173 */
kmemleak_free_percpu(const void __percpu * ptr)1174 void __ref kmemleak_free_percpu(const void __percpu *ptr)
1175 {
1176 pr_debug("%s(0x%px)\n", __func__, ptr);
1177
1178 if (kmemleak_free_enabled && ptr && !IS_ERR_PCPU(ptr))
1179 delete_object_full((__force unsigned long)ptr, OBJECT_PERCPU);
1180 }
1181 EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
1182
1183 /**
1184 * kmemleak_update_trace - update object allocation stack trace
1185 * @ptr: pointer to beginning of the object
1186 *
1187 * Override the object allocation stack trace for cases where the actual
1188 * allocation place is not always useful.
1189 */
kmemleak_update_trace(const void * ptr)1190 void __ref kmemleak_update_trace(const void *ptr)
1191 {
1192 struct kmemleak_object *object;
1193 depot_stack_handle_t trace_handle;
1194 unsigned long flags;
1195
1196 pr_debug("%s(0x%px)\n", __func__, ptr);
1197
1198 if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr))
1199 return;
1200
1201 object = find_and_get_object((unsigned long)ptr, 1);
1202 if (!object) {
1203 #ifdef DEBUG
1204 kmemleak_warn("Updating stack trace for unknown object at %p\n",
1205 ptr);
1206 #endif
1207 return;
1208 }
1209
1210 trace_handle = set_track_prepare();
1211 raw_spin_lock_irqsave(&object->lock, flags);
1212 object->trace_handle = trace_handle;
1213 raw_spin_unlock_irqrestore(&object->lock, flags);
1214
1215 put_object(object);
1216 }
1217 EXPORT_SYMBOL(kmemleak_update_trace);
1218
1219 /**
1220 * kmemleak_not_leak - mark an allocated object as false positive
1221 * @ptr: pointer to beginning of the object
1222 *
1223 * Calling this function on an object will cause the memory block to no longer
1224 * be reported as leak and always be scanned.
1225 */
kmemleak_not_leak(const void * ptr)1226 void __ref kmemleak_not_leak(const void *ptr)
1227 {
1228 pr_debug("%s(0x%px)\n", __func__, ptr);
1229
1230 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1231 make_gray_object((unsigned long)ptr);
1232 }
1233 EXPORT_SYMBOL(kmemleak_not_leak);
1234
1235 /**
1236 * kmemleak_transient_leak - mark an allocated object as transient false positive
1237 * @ptr: pointer to beginning of the object
1238 *
1239 * Calling this function on an object will cause the memory block to not be
1240 * reported as a leak temporarily. This may happen, for example, if the object
1241 * is part of a singly linked list and the ->next reference to it is changed.
1242 */
kmemleak_transient_leak(const void * ptr)1243 void __ref kmemleak_transient_leak(const void *ptr)
1244 {
1245 pr_debug("%s(0x%px)\n", __func__, ptr);
1246
1247 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1248 reset_checksum((unsigned long)ptr);
1249 }
1250 EXPORT_SYMBOL(kmemleak_transient_leak);
1251
1252 /**
1253 * kmemleak_ignore_percpu - similar to kmemleak_ignore but taking a percpu
1254 * address argument
1255 * @ptr: percpu address of the object
1256 */
kmemleak_ignore_percpu(const void __percpu * ptr)1257 void __ref kmemleak_ignore_percpu(const void __percpu *ptr)
1258 {
1259 pr_debug("%s(0x%px)\n", __func__, ptr);
1260
1261 if (kmemleak_enabled && ptr && !IS_ERR_PCPU(ptr))
1262 make_black_object((unsigned long)ptr, OBJECT_PERCPU);
1263 }
1264 EXPORT_SYMBOL_GPL(kmemleak_ignore_percpu);
1265
1266 /**
1267 * kmemleak_ignore - ignore an allocated object
1268 * @ptr: pointer to beginning of the object
1269 *
1270 * Calling this function on an object will cause the memory block to be
1271 * ignored (not scanned and not reported as a leak). This is usually done when
1272 * it is known that the corresponding block is not a leak and does not contain
1273 * any references to other allocated memory blocks.
1274 */
kmemleak_ignore(const void * ptr)1275 void __ref kmemleak_ignore(const void *ptr)
1276 {
1277 pr_debug("%s(0x%px)\n", __func__, ptr);
1278
1279 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1280 make_black_object((unsigned long)ptr, 0);
1281 }
1282 EXPORT_SYMBOL(kmemleak_ignore);
1283
1284 /**
1285 * kmemleak_scan_area - limit the range to be scanned in an allocated object
1286 * @ptr: pointer to beginning or inside the object. This also
1287 * represents the start of the scan area
1288 * @size: size of the scan area
1289 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
1290 *
1291 * This function is used when it is known that only certain parts of an object
1292 * contain references to other objects. Kmemleak will only scan these areas
1293 * reducing the number false negatives.
1294 */
kmemleak_scan_area(const void * ptr,size_t size,gfp_t gfp)1295 void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
1296 {
1297 pr_debug("%s(0x%px)\n", __func__, ptr);
1298
1299 if (kmemleak_enabled && ptr && size && !IS_ERR(ptr))
1300 add_scan_area((unsigned long)ptr, size, gfp);
1301 }
1302 EXPORT_SYMBOL(kmemleak_scan_area);
1303
1304 /**
1305 * kmemleak_no_scan - do not scan an allocated object
1306 * @ptr: pointer to beginning of the object
1307 *
1308 * This function notifies kmemleak not to scan the given memory block. Useful
1309 * in situations where it is known that the given object does not contain any
1310 * references to other objects. Kmemleak will not scan such objects reducing
1311 * the number of false negatives.
1312 */
kmemleak_no_scan(const void * ptr)1313 void __ref kmemleak_no_scan(const void *ptr)
1314 {
1315 pr_debug("%s(0x%px)\n", __func__, ptr);
1316
1317 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1318 object_no_scan((unsigned long)ptr);
1319 }
1320 EXPORT_SYMBOL(kmemleak_no_scan);
1321
1322 /**
1323 * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical
1324 * address argument
1325 * @phys: physical address of the object
1326 * @size: size of the object
1327 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
1328 */
kmemleak_alloc_phys(phys_addr_t phys,size_t size,gfp_t gfp)1329 void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, gfp_t gfp)
1330 {
1331 pr_debug("%s(0x%px, %zu)\n", __func__, &phys, size);
1332
1333 if (kmemleak_enabled)
1334 /*
1335 * Create object with OBJECT_PHYS flag and
1336 * assume min_count 0.
1337 */
1338 create_object_phys((unsigned long)phys, size, 0, gfp);
1339 }
1340 EXPORT_SYMBOL(kmemleak_alloc_phys);
1341
1342 /**
1343 * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a
1344 * physical address argument
1345 * @phys: physical address if the beginning or inside an object. This
1346 * also represents the start of the range to be freed
1347 * @size: size to be unregistered
1348 */
kmemleak_free_part_phys(phys_addr_t phys,size_t size)1349 void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size)
1350 {
1351 pr_debug("%s(0x%px)\n", __func__, &phys);
1352
1353 if (kmemleak_enabled)
1354 delete_object_part((unsigned long)phys, size, OBJECT_PHYS);
1355 }
1356 EXPORT_SYMBOL(kmemleak_free_part_phys);
1357
1358 /**
1359 * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical
1360 * address argument
1361 * @phys: physical address of the object
1362 */
kmemleak_ignore_phys(phys_addr_t phys)1363 void __ref kmemleak_ignore_phys(phys_addr_t phys)
1364 {
1365 pr_debug("%s(0x%px)\n", __func__, &phys);
1366
1367 if (kmemleak_enabled)
1368 make_black_object((unsigned long)phys, OBJECT_PHYS);
1369 }
1370 EXPORT_SYMBOL(kmemleak_ignore_phys);
1371
1372 /*
1373 * Update an object's checksum and return true if it was modified.
1374 */
update_checksum(struct kmemleak_object * object)1375 static bool update_checksum(struct kmemleak_object *object)
1376 {
1377 u32 old_csum = object->checksum;
1378
1379 if (WARN_ON_ONCE(object->flags & OBJECT_PHYS))
1380 return false;
1381
1382 kasan_disable_current();
1383 kcsan_disable_current();
1384 if (object->flags & OBJECT_PERCPU) {
1385 unsigned int cpu;
1386
1387 object->checksum = 0;
1388 for_each_possible_cpu(cpu) {
1389 void *ptr = per_cpu_ptr((void __percpu *)object->pointer, cpu);
1390
1391 object->checksum ^= crc32(0, kasan_reset_tag((void *)ptr), object->size);
1392 }
1393 } else {
1394 object->checksum = crc32(0, kasan_reset_tag((void *)object->pointer), object->size);
1395 }
1396 kasan_enable_current();
1397 kcsan_enable_current();
1398
1399 return object->checksum != old_csum;
1400 }
1401
1402 /*
1403 * Update an object's references. object->lock must be held by the caller.
1404 */
update_refs(struct kmemleak_object * object)1405 static void update_refs(struct kmemleak_object *object)
1406 {
1407 if (!color_white(object)) {
1408 /* non-orphan, ignored or new */
1409 return;
1410 }
1411
1412 /*
1413 * Increase the object's reference count (number of pointers to the
1414 * memory block). If this count reaches the required minimum, the
1415 * object's color will become gray and it will be added to the
1416 * gray_list.
1417 */
1418 object->count++;
1419 if (color_gray(object)) {
1420 /* put_object() called when removing from gray_list */
1421 WARN_ON(!get_object(object));
1422 list_add_tail(&object->gray_list, &gray_list);
1423 }
1424 }
1425
pointer_update_refs(struct kmemleak_object * scanned,unsigned long pointer,unsigned int objflags)1426 static void pointer_update_refs(struct kmemleak_object *scanned,
1427 unsigned long pointer, unsigned int objflags)
1428 {
1429 struct kmemleak_object *object;
1430 unsigned long untagged_ptr;
1431 unsigned long excess_ref;
1432
1433 untagged_ptr = (unsigned long)kasan_reset_tag((void *)pointer);
1434 if (objflags & OBJECT_PERCPU) {
1435 if (untagged_ptr < min_percpu_addr || untagged_ptr >= max_percpu_addr)
1436 return;
1437 } else {
1438 if (untagged_ptr < min_addr || untagged_ptr >= max_addr)
1439 return;
1440 }
1441
1442 /*
1443 * No need for get_object() here since we hold kmemleak_lock.
1444 * object->use_count cannot be dropped to 0 while the object
1445 * is still present in object_tree_root and object_list
1446 * (with updates protected by kmemleak_lock).
1447 */
1448 object = __lookup_object(pointer, 1, objflags);
1449 if (!object)
1450 return;
1451 if (object == scanned)
1452 /* self referenced, ignore */
1453 return;
1454
1455 /*
1456 * Avoid the lockdep recursive warning on object->lock being
1457 * previously acquired in scan_object(). These locks are
1458 * enclosed by scan_mutex.
1459 */
1460 raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1461 /* only pass surplus references (object already gray) */
1462 if (color_gray(object)) {
1463 excess_ref = object->excess_ref;
1464 /* no need for update_refs() if object already gray */
1465 } else {
1466 excess_ref = 0;
1467 update_refs(object);
1468 }
1469 raw_spin_unlock(&object->lock);
1470
1471 if (excess_ref) {
1472 object = lookup_object(excess_ref, 0);
1473 if (!object)
1474 return;
1475 if (object == scanned)
1476 /* circular reference, ignore */
1477 return;
1478 raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1479 update_refs(object);
1480 raw_spin_unlock(&object->lock);
1481 }
1482 }
1483
1484 /*
1485 * Memory scanning is a long process and it needs to be interruptible. This
1486 * function checks whether such interrupt condition occurred.
1487 */
scan_should_stop(void)1488 static int scan_should_stop(void)
1489 {
1490 if (!kmemleak_enabled)
1491 return 1;
1492
1493 /*
1494 * This function may be called from either process or kthread context,
1495 * hence the need to check for both stop conditions.
1496 */
1497 if (current->mm)
1498 return signal_pending(current);
1499 else
1500 return kthread_should_stop();
1501
1502 return 0;
1503 }
1504
1505 /*
1506 * Scan a memory block (exclusive range) for valid pointers and add those
1507 * found to the gray list.
1508 */
scan_block(void * _start,void * _end,struct kmemleak_object * scanned)1509 static void scan_block(void *_start, void *_end,
1510 struct kmemleak_object *scanned)
1511 {
1512 unsigned long *ptr;
1513 unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1514 unsigned long *end = _end - (BYTES_PER_POINTER - 1);
1515 unsigned long flags;
1516
1517 raw_spin_lock_irqsave(&kmemleak_lock, flags);
1518 for (ptr = start; ptr < end; ptr++) {
1519 unsigned long pointer;
1520
1521 if (scan_should_stop())
1522 break;
1523
1524 kasan_disable_current();
1525 pointer = *(unsigned long *)kasan_reset_tag((void *)ptr);
1526 kasan_enable_current();
1527
1528 pointer_update_refs(scanned, pointer, 0);
1529 pointer_update_refs(scanned, pointer, OBJECT_PERCPU);
1530 }
1531 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
1532 }
1533
1534 /*
1535 * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency.
1536 */
1537 #ifdef CONFIG_SMP
scan_large_block(void * start,void * end)1538 static void scan_large_block(void *start, void *end)
1539 {
1540 void *next;
1541
1542 while (start < end) {
1543 next = min(start + MAX_SCAN_SIZE, end);
1544 scan_block(start, next, NULL);
1545 start = next;
1546 cond_resched();
1547 }
1548 }
1549 #endif
1550
1551 /*
1552 * Scan a memory block corresponding to a kmemleak_object. A condition is
1553 * that object->use_count >= 1.
1554 */
scan_object(struct kmemleak_object * object)1555 static void scan_object(struct kmemleak_object *object)
1556 {
1557 struct kmemleak_scan_area *area;
1558 unsigned long flags;
1559
1560 /*
1561 * Once the object->lock is acquired, the corresponding memory block
1562 * cannot be freed (the same lock is acquired in delete_object).
1563 */
1564 raw_spin_lock_irqsave(&object->lock, flags);
1565 if (object->flags & OBJECT_NO_SCAN)
1566 goto out;
1567 if (!(object->flags & OBJECT_ALLOCATED))
1568 /* already freed object */
1569 goto out;
1570
1571 if (object->flags & OBJECT_PERCPU) {
1572 unsigned int cpu;
1573
1574 for_each_possible_cpu(cpu) {
1575 void *start = per_cpu_ptr((void __percpu *)object->pointer, cpu);
1576 void *end = start + object->size;
1577
1578 scan_block(start, end, object);
1579
1580 raw_spin_unlock_irqrestore(&object->lock, flags);
1581 cond_resched();
1582 raw_spin_lock_irqsave(&object->lock, flags);
1583 if (!(object->flags & OBJECT_ALLOCATED))
1584 break;
1585 }
1586 } else if (hlist_empty(&object->area_list) ||
1587 object->flags & OBJECT_FULL_SCAN) {
1588 void *start = object->flags & OBJECT_PHYS ?
1589 __va((phys_addr_t)object->pointer) :
1590 (void *)object->pointer;
1591 void *end = start + object->size;
1592 void *next;
1593
1594 do {
1595 next = min(start + MAX_SCAN_SIZE, end);
1596 scan_block(start, next, object);
1597
1598 start = next;
1599 if (start >= end)
1600 break;
1601
1602 raw_spin_unlock_irqrestore(&object->lock, flags);
1603 cond_resched();
1604 raw_spin_lock_irqsave(&object->lock, flags);
1605 } while (object->flags & OBJECT_ALLOCATED);
1606 } else {
1607 hlist_for_each_entry(area, &object->area_list, node)
1608 scan_block((void *)area->start,
1609 (void *)(area->start + area->size),
1610 object);
1611 }
1612 out:
1613 raw_spin_unlock_irqrestore(&object->lock, flags);
1614 }
1615
1616 /*
1617 * Scan the objects already referenced (gray objects). More objects will be
1618 * referenced and, if there are no memory leaks, all the objects are scanned.
1619 */
scan_gray_list(void)1620 static void scan_gray_list(void)
1621 {
1622 struct kmemleak_object *object, *tmp;
1623
1624 /*
1625 * The list traversal is safe for both tail additions and removals
1626 * from inside the loop. The kmemleak objects cannot be freed from
1627 * outside the loop because their use_count was incremented.
1628 */
1629 object = list_entry(gray_list.next, typeof(*object), gray_list);
1630 while (&object->gray_list != &gray_list) {
1631 cond_resched();
1632
1633 /* may add new objects to the list */
1634 if (!scan_should_stop())
1635 scan_object(object);
1636
1637 tmp = list_entry(object->gray_list.next, typeof(*object),
1638 gray_list);
1639
1640 /* remove the object from the list and release it */
1641 list_del(&object->gray_list);
1642 put_object(object);
1643
1644 object = tmp;
1645 }
1646 WARN_ON(!list_empty(&gray_list));
1647 }
1648
1649 /*
1650 * Conditionally call resched() in an object iteration loop while making sure
1651 * that the given object won't go away without RCU read lock by performing a
1652 * get_object() if necessaary.
1653 */
kmemleak_cond_resched(struct kmemleak_object * object)1654 static void kmemleak_cond_resched(struct kmemleak_object *object)
1655 {
1656 if (!get_object(object))
1657 return; /* Try next object */
1658
1659 raw_spin_lock_irq(&kmemleak_lock);
1660 if (object->del_state & DELSTATE_REMOVED)
1661 goto unlock_put; /* Object removed */
1662 object->del_state |= DELSTATE_NO_DELETE;
1663 raw_spin_unlock_irq(&kmemleak_lock);
1664
1665 rcu_read_unlock();
1666 cond_resched();
1667 rcu_read_lock();
1668
1669 raw_spin_lock_irq(&kmemleak_lock);
1670 if (object->del_state & DELSTATE_REMOVED)
1671 list_del_rcu(&object->object_list);
1672 object->del_state &= ~DELSTATE_NO_DELETE;
1673 unlock_put:
1674 raw_spin_unlock_irq(&kmemleak_lock);
1675 put_object(object);
1676 }
1677
1678 /*
1679 * Scan data sections and all the referenced memory blocks allocated via the
1680 * kernel's standard allocators. This function must be called with the
1681 * scan_mutex held.
1682 */
kmemleak_scan(void)1683 static void kmemleak_scan(void)
1684 {
1685 struct kmemleak_object *object;
1686 struct zone *zone;
1687 int __maybe_unused i;
1688 int new_leaks = 0;
1689
1690 jiffies_last_scan = jiffies;
1691
1692 /* prepare the kmemleak_object's */
1693 rcu_read_lock();
1694 list_for_each_entry_rcu(object, &object_list, object_list) {
1695 raw_spin_lock_irq(&object->lock);
1696 #ifdef DEBUG
1697 /*
1698 * With a few exceptions there should be a maximum of
1699 * 1 reference to any object at this point.
1700 */
1701 if (atomic_read(&object->use_count) > 1) {
1702 pr_debug("object->use_count = %d\n",
1703 atomic_read(&object->use_count));
1704 dump_object_info(object);
1705 }
1706 #endif
1707
1708 /* ignore objects outside lowmem (paint them black) */
1709 if ((object->flags & OBJECT_PHYS) &&
1710 !(object->flags & OBJECT_NO_SCAN)) {
1711 unsigned long phys = object->pointer;
1712
1713 if (PHYS_PFN(phys) < min_low_pfn ||
1714 PHYS_PFN(phys + object->size) > max_low_pfn)
1715 __paint_it(object, KMEMLEAK_BLACK);
1716 }
1717
1718 /* reset the reference count (whiten the object) */
1719 object->count = 0;
1720 if (color_gray(object) && get_object(object))
1721 list_add_tail(&object->gray_list, &gray_list);
1722
1723 raw_spin_unlock_irq(&object->lock);
1724
1725 if (need_resched())
1726 kmemleak_cond_resched(object);
1727 }
1728 rcu_read_unlock();
1729
1730 #ifdef CONFIG_SMP
1731 /* per-cpu sections scanning */
1732 for_each_possible_cpu(i)
1733 scan_large_block(__per_cpu_start + per_cpu_offset(i),
1734 __per_cpu_end + per_cpu_offset(i));
1735 #endif
1736
1737 /*
1738 * Struct page scanning for each node.
1739 */
1740 get_online_mems();
1741 for_each_populated_zone(zone) {
1742 unsigned long start_pfn = zone->zone_start_pfn;
1743 unsigned long end_pfn = zone_end_pfn(zone);
1744 unsigned long pfn;
1745
1746 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1747 struct page *page = pfn_to_online_page(pfn);
1748
1749 if (!(pfn & 63))
1750 cond_resched();
1751
1752 if (!page)
1753 continue;
1754
1755 /* only scan pages belonging to this zone */
1756 if (page_zone(page) != zone)
1757 continue;
1758 /* only scan if page is in use */
1759 if (page_count(page) == 0)
1760 continue;
1761 scan_block(page, page + 1, NULL);
1762 }
1763 }
1764 put_online_mems();
1765
1766 /*
1767 * Scanning the task stacks (may introduce false negatives).
1768 */
1769 if (kmemleak_stack_scan) {
1770 struct task_struct *p, *g;
1771
1772 rcu_read_lock();
1773 for_each_process_thread(g, p) {
1774 void *stack = try_get_task_stack(p);
1775 if (stack) {
1776 scan_block(stack, stack + THREAD_SIZE, NULL);
1777 put_task_stack(p);
1778 }
1779 }
1780 rcu_read_unlock();
1781 }
1782
1783 /*
1784 * Scan the objects already referenced from the sections scanned
1785 * above.
1786 */
1787 scan_gray_list();
1788
1789 /*
1790 * Check for new or unreferenced objects modified since the previous
1791 * scan and color them gray until the next scan.
1792 */
1793 rcu_read_lock();
1794 list_for_each_entry_rcu(object, &object_list, object_list) {
1795 if (need_resched())
1796 kmemleak_cond_resched(object);
1797
1798 /*
1799 * This is racy but we can save the overhead of lock/unlock
1800 * calls. The missed objects, if any, should be caught in
1801 * the next scan.
1802 */
1803 if (!color_white(object))
1804 continue;
1805 raw_spin_lock_irq(&object->lock);
1806 if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1807 && update_checksum(object) && get_object(object)) {
1808 /* color it gray temporarily */
1809 object->count = object->min_count;
1810 list_add_tail(&object->gray_list, &gray_list);
1811 }
1812 raw_spin_unlock_irq(&object->lock);
1813 }
1814 rcu_read_unlock();
1815
1816 /*
1817 * Re-scan the gray list for modified unreferenced objects.
1818 */
1819 scan_gray_list();
1820
1821 /*
1822 * If scanning was stopped do not report any new unreferenced objects.
1823 */
1824 if (scan_should_stop())
1825 return;
1826
1827 /*
1828 * Scanning result reporting.
1829 */
1830 rcu_read_lock();
1831 list_for_each_entry_rcu(object, &object_list, object_list) {
1832 if (need_resched())
1833 kmemleak_cond_resched(object);
1834
1835 /*
1836 * This is racy but we can save the overhead of lock/unlock
1837 * calls. The missed objects, if any, should be caught in
1838 * the next scan.
1839 */
1840 if (!color_white(object))
1841 continue;
1842 raw_spin_lock_irq(&object->lock);
1843 if (unreferenced_object(object) &&
1844 !(object->flags & OBJECT_REPORTED)) {
1845 object->flags |= OBJECT_REPORTED;
1846
1847 if (kmemleak_verbose)
1848 print_unreferenced(NULL, object);
1849
1850 new_leaks++;
1851 }
1852 raw_spin_unlock_irq(&object->lock);
1853 }
1854 rcu_read_unlock();
1855
1856 if (new_leaks) {
1857 kmemleak_found_leaks = true;
1858
1859 pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n",
1860 new_leaks);
1861 }
1862
1863 }
1864
1865 /*
1866 * Thread function performing automatic memory scanning. Unreferenced objects
1867 * at the end of a memory scan are reported but only the first time.
1868 */
kmemleak_scan_thread(void * arg)1869 static int kmemleak_scan_thread(void *arg)
1870 {
1871 static int first_run = IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN);
1872
1873 pr_info("Automatic memory scanning thread started\n");
1874 set_user_nice(current, 10);
1875
1876 /*
1877 * Wait before the first scan to allow the system to fully initialize.
1878 */
1879 if (first_run) {
1880 signed long timeout = secs_to_jiffies(SECS_FIRST_SCAN);
1881 first_run = 0;
1882 while (timeout && !kthread_should_stop())
1883 timeout = schedule_timeout_interruptible(timeout);
1884 }
1885
1886 while (!kthread_should_stop()) {
1887 signed long timeout = READ_ONCE(jiffies_scan_wait);
1888
1889 mutex_lock(&scan_mutex);
1890 kmemleak_scan();
1891 mutex_unlock(&scan_mutex);
1892
1893 /* wait before the next scan */
1894 while (timeout && !kthread_should_stop())
1895 timeout = schedule_timeout_interruptible(timeout);
1896 }
1897
1898 pr_info("Automatic memory scanning thread ended\n");
1899
1900 return 0;
1901 }
1902
1903 /*
1904 * Start the automatic memory scanning thread. This function must be called
1905 * with the scan_mutex held.
1906 */
start_scan_thread(void)1907 static void start_scan_thread(void)
1908 {
1909 if (scan_thread)
1910 return;
1911 scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1912 if (IS_ERR(scan_thread)) {
1913 pr_warn("Failed to create the scan thread\n");
1914 scan_thread = NULL;
1915 }
1916 }
1917
1918 /*
1919 * Stop the automatic memory scanning thread.
1920 */
stop_scan_thread(void)1921 static void stop_scan_thread(void)
1922 {
1923 if (scan_thread) {
1924 kthread_stop(scan_thread);
1925 scan_thread = NULL;
1926 }
1927 }
1928
1929 /*
1930 * Iterate over the object_list and return the first valid object at or after
1931 * the required position with its use_count incremented. The function triggers
1932 * a memory scanning when the pos argument points to the first position.
1933 */
kmemleak_seq_start(struct seq_file * seq,loff_t * pos)1934 static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1935 {
1936 struct kmemleak_object *object;
1937 loff_t n = *pos;
1938 int err;
1939
1940 err = mutex_lock_interruptible(&scan_mutex);
1941 if (err < 0)
1942 return ERR_PTR(err);
1943
1944 rcu_read_lock();
1945 list_for_each_entry_rcu(object, &object_list, object_list) {
1946 if (n-- > 0)
1947 continue;
1948 if (get_object(object))
1949 goto out;
1950 }
1951 object = NULL;
1952 out:
1953 return object;
1954 }
1955
1956 /*
1957 * Return the next object in the object_list. The function decrements the
1958 * use_count of the previous object and increases that of the next one.
1959 */
kmemleak_seq_next(struct seq_file * seq,void * v,loff_t * pos)1960 static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1961 {
1962 struct kmemleak_object *prev_obj = v;
1963 struct kmemleak_object *next_obj = NULL;
1964 struct kmemleak_object *obj = prev_obj;
1965
1966 ++(*pos);
1967
1968 list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
1969 if (get_object(obj)) {
1970 next_obj = obj;
1971 break;
1972 }
1973 }
1974
1975 put_object(prev_obj);
1976 return next_obj;
1977 }
1978
1979 /*
1980 * Decrement the use_count of the last object required, if any.
1981 */
kmemleak_seq_stop(struct seq_file * seq,void * v)1982 static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1983 {
1984 if (!IS_ERR(v)) {
1985 /*
1986 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1987 * waiting was interrupted, so only release it if !IS_ERR.
1988 */
1989 rcu_read_unlock();
1990 mutex_unlock(&scan_mutex);
1991 if (v)
1992 put_object(v);
1993 }
1994 }
1995
1996 /*
1997 * Print the information for an unreferenced object to the seq file.
1998 */
kmemleak_seq_show(struct seq_file * seq,void * v)1999 static int kmemleak_seq_show(struct seq_file *seq, void *v)
2000 {
2001 struct kmemleak_object *object = v;
2002 unsigned long flags;
2003
2004 raw_spin_lock_irqsave(&object->lock, flags);
2005 if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
2006 print_unreferenced(seq, object);
2007 raw_spin_unlock_irqrestore(&object->lock, flags);
2008 return 0;
2009 }
2010
2011 static const struct seq_operations kmemleak_seq_ops = {
2012 .start = kmemleak_seq_start,
2013 .next = kmemleak_seq_next,
2014 .stop = kmemleak_seq_stop,
2015 .show = kmemleak_seq_show,
2016 };
2017
kmemleak_open(struct inode * inode,struct file * file)2018 static int kmemleak_open(struct inode *inode, struct file *file)
2019 {
2020 return seq_open(file, &kmemleak_seq_ops);
2021 }
2022
__dump_str_object_info(unsigned long addr,unsigned int objflags)2023 static bool __dump_str_object_info(unsigned long addr, unsigned int objflags)
2024 {
2025 unsigned long flags;
2026 struct kmemleak_object *object;
2027
2028 object = __find_and_get_object(addr, 1, objflags);
2029 if (!object)
2030 return false;
2031
2032 raw_spin_lock_irqsave(&object->lock, flags);
2033 dump_object_info(object);
2034 raw_spin_unlock_irqrestore(&object->lock, flags);
2035
2036 put_object(object);
2037
2038 return true;
2039 }
2040
dump_str_object_info(const char * str)2041 static int dump_str_object_info(const char *str)
2042 {
2043 unsigned long addr;
2044 bool found = false;
2045
2046 if (kstrtoul(str, 0, &addr))
2047 return -EINVAL;
2048
2049 found |= __dump_str_object_info(addr, 0);
2050 found |= __dump_str_object_info(addr, OBJECT_PHYS);
2051 found |= __dump_str_object_info(addr, OBJECT_PERCPU);
2052
2053 if (!found) {
2054 pr_info("Unknown object at 0x%08lx\n", addr);
2055 return -EINVAL;
2056 }
2057
2058 return 0;
2059 }
2060
2061 /*
2062 * We use grey instead of black to ensure we can do future scans on the same
2063 * objects. If we did not do future scans these black objects could
2064 * potentially contain references to newly allocated objects in the future and
2065 * we'd end up with false positives.
2066 */
kmemleak_clear(void)2067 static void kmemleak_clear(void)
2068 {
2069 struct kmemleak_object *object;
2070
2071 rcu_read_lock();
2072 list_for_each_entry_rcu(object, &object_list, object_list) {
2073 raw_spin_lock_irq(&object->lock);
2074 if ((object->flags & OBJECT_REPORTED) &&
2075 unreferenced_object(object))
2076 __paint_it(object, KMEMLEAK_GREY);
2077 raw_spin_unlock_irq(&object->lock);
2078 }
2079 rcu_read_unlock();
2080
2081 kmemleak_found_leaks = false;
2082 }
2083
2084 static void __kmemleak_do_cleanup(void);
2085
2086 /*
2087 * File write operation to configure kmemleak at run-time. The following
2088 * commands can be written to the /sys/kernel/debug/kmemleak file:
2089 * off - disable kmemleak (irreversible)
2090 * stack=on - enable the task stacks scanning
2091 * stack=off - disable the tasks stacks scanning
2092 * scan=on - start the automatic memory scanning thread
2093 * scan=off - stop the automatic memory scanning thread
2094 * scan=... - set the automatic memory scanning period in seconds (0 to
2095 * disable it)
2096 * scan - trigger a memory scan
2097 * clear - mark all current reported unreferenced kmemleak objects as
2098 * grey to ignore printing them, or free all kmemleak objects
2099 * if kmemleak has been disabled.
2100 * dump=... - dump information about the object found at the given address
2101 */
kmemleak_write(struct file * file,const char __user * user_buf,size_t size,loff_t * ppos)2102 static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
2103 size_t size, loff_t *ppos)
2104 {
2105 char buf[64];
2106 int buf_size;
2107 int ret;
2108
2109 buf_size = min(size, (sizeof(buf) - 1));
2110 if (strncpy_from_user(buf, user_buf, buf_size) < 0)
2111 return -EFAULT;
2112 buf[buf_size] = 0;
2113
2114 ret = mutex_lock_interruptible(&scan_mutex);
2115 if (ret < 0)
2116 return ret;
2117
2118 if (strncmp(buf, "clear", 5) == 0) {
2119 if (kmemleak_enabled)
2120 kmemleak_clear();
2121 else
2122 __kmemleak_do_cleanup();
2123 goto out;
2124 }
2125
2126 if (!kmemleak_enabled) {
2127 ret = -EPERM;
2128 goto out;
2129 }
2130
2131 if (strncmp(buf, "off", 3) == 0)
2132 kmemleak_disable();
2133 else if (strncmp(buf, "stack=on", 8) == 0)
2134 kmemleak_stack_scan = 1;
2135 else if (strncmp(buf, "stack=off", 9) == 0)
2136 kmemleak_stack_scan = 0;
2137 else if (strncmp(buf, "scan=on", 7) == 0)
2138 start_scan_thread();
2139 else if (strncmp(buf, "scan=off", 8) == 0)
2140 stop_scan_thread();
2141 else if (strncmp(buf, "scan=", 5) == 0) {
2142 unsigned secs;
2143 unsigned long msecs;
2144
2145 ret = kstrtouint(buf + 5, 0, &secs);
2146 if (ret < 0)
2147 goto out;
2148
2149 msecs = secs * MSEC_PER_SEC;
2150 if (msecs > UINT_MAX)
2151 msecs = UINT_MAX;
2152
2153 stop_scan_thread();
2154 if (msecs) {
2155 WRITE_ONCE(jiffies_scan_wait, msecs_to_jiffies(msecs));
2156 start_scan_thread();
2157 }
2158 } else if (strncmp(buf, "scan", 4) == 0)
2159 kmemleak_scan();
2160 else if (strncmp(buf, "dump=", 5) == 0)
2161 ret = dump_str_object_info(buf + 5);
2162 else
2163 ret = -EINVAL;
2164
2165 out:
2166 mutex_unlock(&scan_mutex);
2167 if (ret < 0)
2168 return ret;
2169
2170 /* ignore the rest of the buffer, only one command at a time */
2171 *ppos += size;
2172 return size;
2173 }
2174
2175 static const struct file_operations kmemleak_fops = {
2176 .owner = THIS_MODULE,
2177 .open = kmemleak_open,
2178 .read = seq_read,
2179 .write = kmemleak_write,
2180 .llseek = seq_lseek,
2181 .release = seq_release,
2182 };
2183
__kmemleak_do_cleanup(void)2184 static void __kmemleak_do_cleanup(void)
2185 {
2186 struct kmemleak_object *object, *tmp;
2187 unsigned int cnt = 0;
2188
2189 /*
2190 * Kmemleak has already been disabled, no need for RCU list traversal
2191 * or kmemleak_lock held.
2192 */
2193 list_for_each_entry_safe(object, tmp, &object_list, object_list) {
2194 __remove_object(object);
2195 __delete_object(object);
2196
2197 /* Call cond_resched() once per 64 iterations to avoid soft lockup */
2198 if (!(++cnt & 0x3f))
2199 cond_resched();
2200 }
2201 }
2202
2203 /*
2204 * Stop the memory scanning thread and free the kmemleak internal objects if
2205 * no previous scan thread (otherwise, kmemleak may still have some useful
2206 * information on memory leaks).
2207 */
kmemleak_do_cleanup(struct work_struct * work)2208 static void kmemleak_do_cleanup(struct work_struct *work)
2209 {
2210 stop_scan_thread();
2211
2212 mutex_lock(&scan_mutex);
2213 /*
2214 * Once it is made sure that kmemleak_scan has stopped, it is safe to no
2215 * longer track object freeing. Ordering of the scan thread stopping and
2216 * the memory accesses below is guaranteed by the kthread_stop()
2217 * function.
2218 */
2219 kmemleak_free_enabled = 0;
2220 mutex_unlock(&scan_mutex);
2221
2222 if (!kmemleak_found_leaks)
2223 __kmemleak_do_cleanup();
2224 else
2225 pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n");
2226 }
2227
2228 static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
2229
2230 /*
2231 * Disable kmemleak. No memory allocation/freeing will be traced once this
2232 * function is called. Disabling kmemleak is an irreversible operation.
2233 */
kmemleak_disable(void)2234 static void kmemleak_disable(void)
2235 {
2236 /* atomically check whether it was already invoked */
2237 if (cmpxchg(&kmemleak_error, 0, 1))
2238 return;
2239
2240 /* stop any memory operation tracing */
2241 kmemleak_enabled = 0;
2242
2243 /* check whether it is too early for a kernel thread */
2244 if (kmemleak_late_initialized)
2245 schedule_work(&cleanup_work);
2246 else
2247 kmemleak_free_enabled = 0;
2248
2249 pr_info("Kernel memory leak detector disabled\n");
2250 }
2251
2252 /*
2253 * Allow boot-time kmemleak disabling (enabled by default).
2254 */
kmemleak_boot_config(char * str)2255 static int __init kmemleak_boot_config(char *str)
2256 {
2257 if (!str)
2258 return -EINVAL;
2259 if (strcmp(str, "off") == 0)
2260 kmemleak_disable();
2261 else if (strcmp(str, "on") == 0) {
2262 kmemleak_skip_disable = 1;
2263 stack_depot_request_early_init();
2264 }
2265 else
2266 return -EINVAL;
2267 return 0;
2268 }
2269 early_param("kmemleak", kmemleak_boot_config);
2270
2271 /*
2272 * Kmemleak initialization.
2273 */
kmemleak_init(void)2274 void __init kmemleak_init(void)
2275 {
2276 #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
2277 if (!kmemleak_skip_disable) {
2278 kmemleak_disable();
2279 return;
2280 }
2281 #endif
2282
2283 if (kmemleak_error)
2284 return;
2285
2286 jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
2287 jiffies_scan_wait = secs_to_jiffies(SECS_SCAN_WAIT);
2288
2289 object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
2290 scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
2291
2292 /* register the data/bss sections */
2293 create_object((unsigned long)_sdata, _edata - _sdata,
2294 KMEMLEAK_GREY, GFP_ATOMIC);
2295 create_object((unsigned long)__bss_start, __bss_stop - __bss_start,
2296 KMEMLEAK_GREY, GFP_ATOMIC);
2297 /* only register .data..ro_after_init if not within .data */
2298 if (&__start_ro_after_init < &_sdata || &__end_ro_after_init > &_edata)
2299 create_object((unsigned long)__start_ro_after_init,
2300 __end_ro_after_init - __start_ro_after_init,
2301 KMEMLEAK_GREY, GFP_ATOMIC);
2302 }
2303
2304 /*
2305 * Late initialization function.
2306 */
kmemleak_late_init(void)2307 static int __init kmemleak_late_init(void)
2308 {
2309 kmemleak_late_initialized = 1;
2310
2311 debugfs_create_file("kmemleak", 0644, NULL, NULL, &kmemleak_fops);
2312
2313 if (kmemleak_error) {
2314 /*
2315 * Some error occurred and kmemleak was disabled. There is a
2316 * small chance that kmemleak_disable() was called immediately
2317 * after setting kmemleak_late_initialized and we may end up with
2318 * two clean-up threads but serialized by scan_mutex.
2319 */
2320 schedule_work(&cleanup_work);
2321 return -ENOMEM;
2322 }
2323
2324 if (IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN)) {
2325 mutex_lock(&scan_mutex);
2326 start_scan_thread();
2327 mutex_unlock(&scan_mutex);
2328 }
2329
2330 pr_info("Kernel memory leak detector initialized (mem pool available: %d)\n",
2331 mem_pool_free_count);
2332
2333 return 0;
2334 }
2335 late_initcall(kmemleak_late_init);
2336