1 /*
2 * Physical memory management API
3 *
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
5 *
6 * Authors:
7 * Avi Kivity <avi@redhat.com>
8 *
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
11 *
12 */
13
14 #ifndef SYSTEM_MEMORY_H
15 #define SYSTEM_MEMORY_H
16
17 #include "exec/cpu-common.h"
18 #include "exec/hwaddr.h"
19 #include "exec/memattrs.h"
20 #include "exec/memop.h"
21 #include "exec/ramlist.h"
22 #include "exec/tswap.h"
23 #include "qemu/bswap.h"
24 #include "qemu/queue.h"
25 #include "qemu/int128.h"
26 #include "qemu/range.h"
27 #include "qemu/notify.h"
28 #include "qom/object.h"
29 #include "qemu/rcu.h"
30
31 #define RAM_ADDR_INVALID (~(ram_addr_t)0)
32
33 #define MAX_PHYS_ADDR_SPACE_BITS 62
34 #define MAX_PHYS_ADDR (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1)
35
36 #define TYPE_MEMORY_REGION "memory-region"
37 DECLARE_INSTANCE_CHECKER(MemoryRegion, MEMORY_REGION,
38 TYPE_MEMORY_REGION)
39
40 #define TYPE_IOMMU_MEMORY_REGION "iommu-memory-region"
41 typedef struct IOMMUMemoryRegionClass IOMMUMemoryRegionClass;
42 DECLARE_OBJ_CHECKERS(IOMMUMemoryRegion, IOMMUMemoryRegionClass,
43 IOMMU_MEMORY_REGION, TYPE_IOMMU_MEMORY_REGION)
44
45 #define TYPE_RAM_DISCARD_MANAGER "ram-discard-manager"
46 typedef struct RamDiscardManagerClass RamDiscardManagerClass;
47 typedef struct RamDiscardManager RamDiscardManager;
48 DECLARE_OBJ_CHECKERS(RamDiscardManager, RamDiscardManagerClass,
49 RAM_DISCARD_MANAGER, TYPE_RAM_DISCARD_MANAGER);
50
51 #ifdef CONFIG_FUZZ
52 void fuzz_dma_read_cb(size_t addr,
53 size_t len,
54 MemoryRegion *mr);
55 #else
fuzz_dma_read_cb(size_t addr,size_t len,MemoryRegion * mr)56 static inline void fuzz_dma_read_cb(size_t addr,
57 size_t len,
58 MemoryRegion *mr)
59 {
60 /* Do Nothing */
61 }
62 #endif
63
64 /* Possible bits for global_dirty_log_{start|stop} */
65
66 /* Dirty tracking enabled because migration is running */
67 #define GLOBAL_DIRTY_MIGRATION (1U << 0)
68
69 /* Dirty tracking enabled because measuring dirty rate */
70 #define GLOBAL_DIRTY_DIRTY_RATE (1U << 1)
71
72 /* Dirty tracking enabled because dirty limit */
73 #define GLOBAL_DIRTY_LIMIT (1U << 2)
74
75 #define GLOBAL_DIRTY_MASK (0x7)
76
77 extern unsigned int global_dirty_tracking;
78
79 typedef struct MemoryRegionOps MemoryRegionOps;
80
81 struct ReservedRegion {
82 Range range;
83 unsigned type;
84 };
85
86 /**
87 * struct MemoryRegionSection: describes a fragment of a #MemoryRegion
88 *
89 * @mr: the region, or %NULL if empty
90 * @fv: the flat view of the address space the region is mapped in
91 * @offset_within_region: the beginning of the section, relative to @mr's start
92 * @size: the size of the section; will not exceed @mr's boundaries
93 * @offset_within_address_space: the address of the first byte of the section
94 * relative to the region's address space
95 * @readonly: writes to this section are ignored
96 * @nonvolatile: this section is non-volatile
97 * @unmergeable: this section should not get merged with adjacent sections
98 */
99 struct MemoryRegionSection {
100 Int128 size;
101 MemoryRegion *mr;
102 FlatView *fv;
103 hwaddr offset_within_region;
104 hwaddr offset_within_address_space;
105 bool readonly;
106 bool nonvolatile;
107 bool unmergeable;
108 };
109
110 typedef struct IOMMUTLBEntry IOMMUTLBEntry;
111
112 /* See address_space_translate: bit 0 is read, bit 1 is write. */
113 typedef enum {
114 IOMMU_NONE = 0,
115 IOMMU_RO = 1,
116 IOMMU_WO = 2,
117 IOMMU_RW = 3,
118 } IOMMUAccessFlags;
119
120 #define IOMMU_ACCESS_FLAG(r, w) (((r) ? IOMMU_RO : 0) | ((w) ? IOMMU_WO : 0))
121
122 struct IOMMUTLBEntry {
123 AddressSpace *target_as;
124 hwaddr iova;
125 hwaddr translated_addr;
126 hwaddr addr_mask; /* 0xfff = 4k translation */
127 IOMMUAccessFlags perm;
128 };
129
130 /*
131 * Bitmap for different IOMMUNotifier capabilities. Each notifier can
132 * register with one or multiple IOMMU Notifier capability bit(s).
133 *
134 * Normally there're two use cases for the notifiers:
135 *
136 * (1) When the device needs accurate synchronizations of the vIOMMU page
137 * tables, it needs to register with both MAP|UNMAP notifies (which
138 * is defined as IOMMU_NOTIFIER_IOTLB_EVENTS below).
139 *
140 * Regarding to accurate synchronization, it's when the notified
141 * device maintains a shadow page table and must be notified on each
142 * guest MAP (page table entry creation) and UNMAP (invalidation)
143 * events (e.g. VFIO). Both notifications must be accurate so that
144 * the shadow page table is fully in sync with the guest view.
145 *
146 * (2) When the device doesn't need accurate synchronizations of the
147 * vIOMMU page tables, it needs to register only with UNMAP or
148 * DEVIOTLB_UNMAP notifies.
149 *
150 * It's when the device maintains a cache of IOMMU translations
151 * (IOTLB) and is able to fill that cache by requesting translations
152 * from the vIOMMU through a protocol similar to ATS (Address
153 * Translation Service).
154 *
155 * Note that in this mode the vIOMMU will not maintain a shadowed
156 * page table for the address space, and the UNMAP messages can cover
157 * more than the pages that used to get mapped. The IOMMU notifiee
158 * should be able to take care of over-sized invalidations.
159 */
160 typedef enum {
161 IOMMU_NOTIFIER_NONE = 0,
162 /* Notify cache invalidations */
163 IOMMU_NOTIFIER_UNMAP = 0x1,
164 /* Notify entry changes (newly created entries) */
165 IOMMU_NOTIFIER_MAP = 0x2,
166 /* Notify changes on device IOTLB entries */
167 IOMMU_NOTIFIER_DEVIOTLB_UNMAP = 0x04,
168 } IOMMUNotifierFlag;
169
170 #define IOMMU_NOTIFIER_IOTLB_EVENTS (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP)
171 #define IOMMU_NOTIFIER_DEVIOTLB_EVENTS IOMMU_NOTIFIER_DEVIOTLB_UNMAP
172 #define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_IOTLB_EVENTS | \
173 IOMMU_NOTIFIER_DEVIOTLB_EVENTS)
174
175 struct IOMMUNotifier;
176 typedef void (*IOMMUNotify)(struct IOMMUNotifier *notifier,
177 IOMMUTLBEntry *data);
178
179 struct IOMMUNotifier {
180 IOMMUNotify notify;
181 IOMMUNotifierFlag notifier_flags;
182 /* Notify for address space range start <= addr <= end */
183 hwaddr start;
184 hwaddr end;
185 int iommu_idx;
186 void *opaque;
187 QLIST_ENTRY(IOMMUNotifier) node;
188 };
189 typedef struct IOMMUNotifier IOMMUNotifier;
190
191 typedef struct IOMMUTLBEvent {
192 IOMMUNotifierFlag type;
193 IOMMUTLBEntry entry;
194 } IOMMUTLBEvent;
195
196 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
197 #define RAM_PREALLOC (1 << 0)
198
199 /* RAM is mmap-ed with MAP_SHARED */
200 #define RAM_SHARED (1 << 1)
201
202 /* Only a portion of RAM (used_length) is actually used, and migrated.
203 * Resizing RAM while migrating can result in the migration being canceled.
204 */
205 #define RAM_RESIZEABLE (1 << 2)
206
207 /* UFFDIO_ZEROPAGE is available on this RAMBlock to atomically
208 * zero the page and wake waiting processes.
209 * (Set during postcopy)
210 */
211 #define RAM_UF_ZEROPAGE (1 << 3)
212
213 /* RAM can be migrated */
214 #define RAM_MIGRATABLE (1 << 4)
215
216 /* RAM is a persistent kind memory */
217 #define RAM_PMEM (1 << 5)
218
219
220 /*
221 * UFFDIO_WRITEPROTECT is used on this RAMBlock to
222 * support 'write-tracking' migration type.
223 * Implies ram_state->ram_wt_enabled.
224 */
225 #define RAM_UF_WRITEPROTECT (1 << 6)
226
227 /*
228 * RAM is mmap-ed with MAP_NORESERVE. When set, reserving swap space (or huge
229 * pages if applicable) is skipped: will bail out if not supported. When not
230 * set, the OS will do the reservation, if supported for the memory type.
231 */
232 #define RAM_NORESERVE (1 << 7)
233
234 /* RAM that isn't accessible through normal means. */
235 #define RAM_PROTECTED (1 << 8)
236
237 /* RAM is an mmap-ed named file */
238 #define RAM_NAMED_FILE (1 << 9)
239
240 /* RAM is mmap-ed read-only */
241 #define RAM_READONLY (1 << 10)
242
243 /* RAM FD is opened read-only */
244 #define RAM_READONLY_FD (1 << 11)
245
246 /* RAM can be private that has kvm guest memfd backend */
247 #define RAM_GUEST_MEMFD (1 << 12)
248
249 /*
250 * In RAMBlock creation functions, if MAP_SHARED is 0 in the flags parameter,
251 * the implementation may still create a shared mapping if other conditions
252 * require it. Callers who specifically want a private mapping, eg objects
253 * specified by the user, must pass RAM_PRIVATE.
254 * After RAMBlock creation, MAP_SHARED in the block's flags indicates whether
255 * the block is shared or private, and MAP_PRIVATE is omitted.
256 */
257 #define RAM_PRIVATE (1 << 13)
258
iommu_notifier_init(IOMMUNotifier * n,IOMMUNotify fn,IOMMUNotifierFlag flags,hwaddr start,hwaddr end,int iommu_idx)259 static inline void iommu_notifier_init(IOMMUNotifier *n, IOMMUNotify fn,
260 IOMMUNotifierFlag flags,
261 hwaddr start, hwaddr end,
262 int iommu_idx)
263 {
264 n->notify = fn;
265 n->notifier_flags = flags;
266 n->start = start;
267 n->end = end;
268 n->iommu_idx = iommu_idx;
269 }
270
271 /*
272 * Memory region callbacks
273 */
274 struct MemoryRegionOps {
275 /* Read from the memory region. @addr is relative to @mr; @size is
276 * in bytes. */
277 uint64_t (*read)(void *opaque,
278 hwaddr addr,
279 unsigned size);
280 /* Write to the memory region. @addr is relative to @mr; @size is
281 * in bytes. */
282 void (*write)(void *opaque,
283 hwaddr addr,
284 uint64_t data,
285 unsigned size);
286
287 MemTxResult (*read_with_attrs)(void *opaque,
288 hwaddr addr,
289 uint64_t *data,
290 unsigned size,
291 MemTxAttrs attrs);
292 MemTxResult (*write_with_attrs)(void *opaque,
293 hwaddr addr,
294 uint64_t data,
295 unsigned size,
296 MemTxAttrs attrs);
297
298 enum device_endian endianness;
299 /* Guest-visible constraints: */
300 struct {
301 /* If nonzero, specify bounds on access sizes beyond which a machine
302 * check is thrown.
303 */
304 unsigned min_access_size;
305 unsigned max_access_size;
306 /* If true, unaligned accesses are supported. Otherwise unaligned
307 * accesses throw machine checks.
308 */
309 bool unaligned;
310 /*
311 * If present, and returns #false, the transaction is not accepted
312 * by the device (and results in machine dependent behaviour such
313 * as a machine check exception).
314 */
315 bool (*accepts)(void *opaque, hwaddr addr,
316 unsigned size, bool is_write,
317 MemTxAttrs attrs);
318 } valid;
319 /* Internal implementation constraints: */
320 struct {
321 /* If nonzero, specifies the minimum size implemented. Smaller sizes
322 * will be rounded upwards and a partial result will be returned.
323 */
324 unsigned min_access_size;
325 /* If nonzero, specifies the maximum size implemented. Larger sizes
326 * will be done as a series of accesses with smaller sizes.
327 */
328 unsigned max_access_size;
329 /* If true, unaligned accesses are supported. Otherwise all accesses
330 * are converted to (possibly multiple) naturally aligned accesses.
331 */
332 bool unaligned;
333 } impl;
334 };
335
336 typedef struct MemoryRegionClass {
337 /* private */
338 ObjectClass parent_class;
339 } MemoryRegionClass;
340
341
342 enum IOMMUMemoryRegionAttr {
343 IOMMU_ATTR_SPAPR_TCE_FD
344 };
345
346 /*
347 * IOMMUMemoryRegionClass:
348 *
349 * All IOMMU implementations need to subclass TYPE_IOMMU_MEMORY_REGION
350 * and provide an implementation of at least the @translate method here
351 * to handle requests to the memory region. Other methods are optional.
352 *
353 * The IOMMU implementation must use the IOMMU notifier infrastructure
354 * to report whenever mappings are changed, by calling
355 * memory_region_notify_iommu() (or, if necessary, by calling
356 * memory_region_notify_iommu_one() for each registered notifier).
357 *
358 * Conceptually an IOMMU provides a mapping from input address
359 * to an output TLB entry. If the IOMMU is aware of memory transaction
360 * attributes and the output TLB entry depends on the transaction
361 * attributes, we represent this using IOMMU indexes. Each index
362 * selects a particular translation table that the IOMMU has:
363 *
364 * @attrs_to_index returns the IOMMU index for a set of transaction attributes
365 *
366 * @translate takes an input address and an IOMMU index
367 *
368 * and the mapping returned can only depend on the input address and the
369 * IOMMU index.
370 *
371 * Most IOMMUs don't care about the transaction attributes and support
372 * only a single IOMMU index. A more complex IOMMU might have one index
373 * for secure transactions and one for non-secure transactions.
374 */
375 struct IOMMUMemoryRegionClass {
376 /* private: */
377 MemoryRegionClass parent_class;
378
379 /* public: */
380 /**
381 * @translate:
382 *
383 * Return a TLB entry that contains a given address.
384 *
385 * The IOMMUAccessFlags indicated via @flag are optional and may
386 * be specified as IOMMU_NONE to indicate that the caller needs
387 * the full translation information for both reads and writes. If
388 * the access flags are specified then the IOMMU implementation
389 * may use this as an optimization, to stop doing a page table
390 * walk as soon as it knows that the requested permissions are not
391 * allowed. If IOMMU_NONE is passed then the IOMMU must do the
392 * full page table walk and report the permissions in the returned
393 * IOMMUTLBEntry. (Note that this implies that an IOMMU may not
394 * return different mappings for reads and writes.)
395 *
396 * The returned information remains valid while the caller is
397 * holding the big QEMU lock or is inside an RCU critical section;
398 * if the caller wishes to cache the mapping beyond that it must
399 * register an IOMMU notifier so it can invalidate its cached
400 * information when the IOMMU mapping changes.
401 *
402 * @iommu: the IOMMUMemoryRegion
403 *
404 * @hwaddr: address to be translated within the memory region
405 *
406 * @flag: requested access permission
407 *
408 * @iommu_idx: IOMMU index for the translation
409 */
410 IOMMUTLBEntry (*translate)(IOMMUMemoryRegion *iommu, hwaddr addr,
411 IOMMUAccessFlags flag, int iommu_idx);
412 /**
413 * @get_min_page_size:
414 *
415 * Returns minimum supported page size in bytes.
416 *
417 * If this method is not provided then the minimum is assumed to
418 * be TARGET_PAGE_SIZE.
419 *
420 * @iommu: the IOMMUMemoryRegion
421 */
422 uint64_t (*get_min_page_size)(IOMMUMemoryRegion *iommu);
423 /**
424 * @notify_flag_changed:
425 *
426 * Called when IOMMU Notifier flag changes (ie when the set of
427 * events which IOMMU users are requesting notification for changes).
428 * Optional method -- need not be provided if the IOMMU does not
429 * need to know exactly which events must be notified.
430 *
431 * @iommu: the IOMMUMemoryRegion
432 *
433 * @old_flags: events which previously needed to be notified
434 *
435 * @new_flags: events which now need to be notified
436 *
437 * Returns 0 on success, or a negative errno; in particular
438 * returns -EINVAL if the new flag bitmap is not supported by the
439 * IOMMU memory region. In case of failure, the error object
440 * must be created
441 */
442 int (*notify_flag_changed)(IOMMUMemoryRegion *iommu,
443 IOMMUNotifierFlag old_flags,
444 IOMMUNotifierFlag new_flags,
445 Error **errp);
446 /**
447 * @replay:
448 *
449 * Called to handle memory_region_iommu_replay().
450 *
451 * The default implementation of memory_region_iommu_replay() is to
452 * call the IOMMU translate method for every page in the address space
453 * with flag == IOMMU_NONE and then call the notifier if translate
454 * returns a valid mapping. If this method is implemented then it
455 * overrides the default behaviour, and must provide the full semantics
456 * of memory_region_iommu_replay(), by calling @notifier for every
457 * translation present in the IOMMU.
458 *
459 * Optional method -- an IOMMU only needs to provide this method
460 * if the default is inefficient or produces undesirable side effects.
461 *
462 * Note: this is not related to record-and-replay functionality.
463 */
464 void (*replay)(IOMMUMemoryRegion *iommu, IOMMUNotifier *notifier);
465
466 /**
467 * @get_attr:
468 *
469 * Get IOMMU misc attributes. This is an optional method that
470 * can be used to allow users of the IOMMU to get implementation-specific
471 * information. The IOMMU implements this method to handle calls
472 * by IOMMU users to memory_region_iommu_get_attr() by filling in
473 * the arbitrary data pointer for any IOMMUMemoryRegionAttr values that
474 * the IOMMU supports. If the method is unimplemented then
475 * memory_region_iommu_get_attr() will always return -EINVAL.
476 *
477 * @iommu: the IOMMUMemoryRegion
478 *
479 * @attr: attribute being queried
480 *
481 * @data: memory to fill in with the attribute data
482 *
483 * Returns 0 on success, or a negative errno; in particular
484 * returns -EINVAL for unrecognized or unimplemented attribute types.
485 */
486 int (*get_attr)(IOMMUMemoryRegion *iommu, enum IOMMUMemoryRegionAttr attr,
487 void *data);
488
489 /**
490 * @attrs_to_index:
491 *
492 * Return the IOMMU index to use for a given set of transaction attributes.
493 *
494 * Optional method: if an IOMMU only supports a single IOMMU index then
495 * the default implementation of memory_region_iommu_attrs_to_index()
496 * will return 0.
497 *
498 * The indexes supported by an IOMMU must be contiguous, starting at 0.
499 *
500 * @iommu: the IOMMUMemoryRegion
501 * @attrs: memory transaction attributes
502 */
503 int (*attrs_to_index)(IOMMUMemoryRegion *iommu, MemTxAttrs attrs);
504
505 /**
506 * @num_indexes:
507 *
508 * Return the number of IOMMU indexes this IOMMU supports.
509 *
510 * Optional method: if this method is not provided, then
511 * memory_region_iommu_num_indexes() will return 1, indicating that
512 * only a single IOMMU index is supported.
513 *
514 * @iommu: the IOMMUMemoryRegion
515 */
516 int (*num_indexes)(IOMMUMemoryRegion *iommu);
517 };
518
519 typedef struct RamDiscardListener RamDiscardListener;
520 typedef int (*NotifyRamPopulate)(RamDiscardListener *rdl,
521 MemoryRegionSection *section);
522 typedef void (*NotifyRamDiscard)(RamDiscardListener *rdl,
523 MemoryRegionSection *section);
524
525 struct RamDiscardListener {
526 /*
527 * @notify_populate:
528 *
529 * Notification that previously discarded memory is about to get populated.
530 * Listeners are able to object. If any listener objects, already
531 * successfully notified listeners are notified about a discard again.
532 *
533 * @rdl: the #RamDiscardListener getting notified
534 * @section: the #MemoryRegionSection to get populated. The section
535 * is aligned within the memory region to the minimum granularity
536 * unless it would exceed the registered section.
537 *
538 * Returns 0 on success. If the notification is rejected by the listener,
539 * an error is returned.
540 */
541 NotifyRamPopulate notify_populate;
542
543 /*
544 * @notify_discard:
545 *
546 * Notification that previously populated memory was discarded successfully
547 * and listeners should drop all references to such memory and prevent
548 * new population (e.g., unmap).
549 *
550 * @rdl: the #RamDiscardListener getting notified
551 * @section: the #MemoryRegionSection to get populated. The section
552 * is aligned within the memory region to the minimum granularity
553 * unless it would exceed the registered section.
554 */
555 NotifyRamDiscard notify_discard;
556
557 /*
558 * @double_discard_supported:
559 *
560 * The listener suppors getting @notify_discard notifications that span
561 * already discarded parts.
562 */
563 bool double_discard_supported;
564
565 MemoryRegionSection *section;
566 QLIST_ENTRY(RamDiscardListener) next;
567 };
568
ram_discard_listener_init(RamDiscardListener * rdl,NotifyRamPopulate populate_fn,NotifyRamDiscard discard_fn,bool double_discard_supported)569 static inline void ram_discard_listener_init(RamDiscardListener *rdl,
570 NotifyRamPopulate populate_fn,
571 NotifyRamDiscard discard_fn,
572 bool double_discard_supported)
573 {
574 rdl->notify_populate = populate_fn;
575 rdl->notify_discard = discard_fn;
576 rdl->double_discard_supported = double_discard_supported;
577 }
578
579 /**
580 * typedef ReplayRamDiscardState:
581 *
582 * The callback handler for #RamDiscardManagerClass.replay_populated/
583 * #RamDiscardManagerClass.replay_discarded to invoke on populated/discarded
584 * parts.
585 *
586 * @section: the #MemoryRegionSection of populated/discarded part
587 * @opaque: pointer to forward to the callback
588 *
589 * Returns 0 on success, or a negative error if failed.
590 */
591 typedef int (*ReplayRamDiscardState)(MemoryRegionSection *section,
592 void *opaque);
593
594 /*
595 * RamDiscardManagerClass:
596 *
597 * A #RamDiscardManager coordinates which parts of specific RAM #MemoryRegion
598 * regions are currently populated to be used/accessed by the VM, notifying
599 * after parts were discarded (freeing up memory) and before parts will be
600 * populated (consuming memory), to be used/accessed by the VM.
601 *
602 * A #RamDiscardManager can only be set for a RAM #MemoryRegion while the
603 * #MemoryRegion isn't mapped into an address space yet (either directly
604 * or via an alias); it cannot change while the #MemoryRegion is
605 * mapped into an address space.
606 *
607 * The #RamDiscardManager is intended to be used by technologies that are
608 * incompatible with discarding of RAM (e.g., VFIO, which may pin all
609 * memory inside a #MemoryRegion), and require proper coordination to only
610 * map the currently populated parts, to hinder parts that are expected to
611 * remain discarded from silently getting populated and consuming memory.
612 * Technologies that support discarding of RAM don't have to bother and can
613 * simply map the whole #MemoryRegion.
614 *
615 * An example #RamDiscardManager is virtio-mem, which logically (un)plugs
616 * memory within an assigned RAM #MemoryRegion, coordinated with the VM.
617 * Logically unplugging memory consists of discarding RAM. The VM agreed to not
618 * access unplugged (discarded) memory - especially via DMA. virtio-mem will
619 * properly coordinate with listeners before memory is plugged (populated),
620 * and after memory is unplugged (discarded).
621 *
622 * Listeners are called in multiples of the minimum granularity (unless it
623 * would exceed the registered range) and changes are aligned to the minimum
624 * granularity within the #MemoryRegion. Listeners have to prepare for memory
625 * becoming discarded in a different granularity than it was populated and the
626 * other way around.
627 */
628 struct RamDiscardManagerClass {
629 /* private */
630 InterfaceClass parent_class;
631
632 /* public */
633
634 /**
635 * @get_min_granularity:
636 *
637 * Get the minimum granularity in which listeners will get notified
638 * about changes within the #MemoryRegion via the #RamDiscardManager.
639 *
640 * @rdm: the #RamDiscardManager
641 * @mr: the #MemoryRegion
642 *
643 * Returns the minimum granularity.
644 */
645 uint64_t (*get_min_granularity)(const RamDiscardManager *rdm,
646 const MemoryRegion *mr);
647
648 /**
649 * @is_populated:
650 *
651 * Check whether the given #MemoryRegionSection is completely populated
652 * (i.e., no parts are currently discarded) via the #RamDiscardManager.
653 * There are no alignment requirements.
654 *
655 * @rdm: the #RamDiscardManager
656 * @section: the #MemoryRegionSection
657 *
658 * Returns whether the given range is completely populated.
659 */
660 bool (*is_populated)(const RamDiscardManager *rdm,
661 const MemoryRegionSection *section);
662
663 /**
664 * @replay_populated:
665 *
666 * Call the #ReplayRamDiscardState callback for all populated parts within
667 * the #MemoryRegionSection via the #RamDiscardManager.
668 *
669 * In case any call fails, no further calls are made.
670 *
671 * @rdm: the #RamDiscardManager
672 * @section: the #MemoryRegionSection
673 * @replay_fn: the #ReplayRamDiscardState callback
674 * @opaque: pointer to forward to the callback
675 *
676 * Returns 0 on success, or a negative error if any notification failed.
677 */
678 int (*replay_populated)(const RamDiscardManager *rdm,
679 MemoryRegionSection *section,
680 ReplayRamDiscardState replay_fn, void *opaque);
681
682 /**
683 * @replay_discarded:
684 *
685 * Call the #ReplayRamDiscardState callback for all discarded parts within
686 * the #MemoryRegionSection via the #RamDiscardManager.
687 *
688 * @rdm: the #RamDiscardManager
689 * @section: the #MemoryRegionSection
690 * @replay_fn: the #ReplayRamDiscardState callback
691 * @opaque: pointer to forward to the callback
692 *
693 * Returns 0 on success, or a negative error if any notification failed.
694 */
695 int (*replay_discarded)(const RamDiscardManager *rdm,
696 MemoryRegionSection *section,
697 ReplayRamDiscardState replay_fn, void *opaque);
698
699 /**
700 * @register_listener:
701 *
702 * Register a #RamDiscardListener for the given #MemoryRegionSection and
703 * immediately notify the #RamDiscardListener about all populated parts
704 * within the #MemoryRegionSection via the #RamDiscardManager.
705 *
706 * In case any notification fails, no further notifications are triggered
707 * and an error is logged.
708 *
709 * @rdm: the #RamDiscardManager
710 * @rdl: the #RamDiscardListener
711 * @section: the #MemoryRegionSection
712 */
713 void (*register_listener)(RamDiscardManager *rdm,
714 RamDiscardListener *rdl,
715 MemoryRegionSection *section);
716
717 /**
718 * @unregister_listener:
719 *
720 * Unregister a previously registered #RamDiscardListener via the
721 * #RamDiscardManager after notifying the #RamDiscardListener about all
722 * populated parts becoming unpopulated within the registered
723 * #MemoryRegionSection.
724 *
725 * @rdm: the #RamDiscardManager
726 * @rdl: the #RamDiscardListener
727 */
728 void (*unregister_listener)(RamDiscardManager *rdm,
729 RamDiscardListener *rdl);
730 };
731
732 uint64_t ram_discard_manager_get_min_granularity(const RamDiscardManager *rdm,
733 const MemoryRegion *mr);
734
735 bool ram_discard_manager_is_populated(const RamDiscardManager *rdm,
736 const MemoryRegionSection *section);
737
738 /**
739 * ram_discard_manager_replay_populated:
740 *
741 * A wrapper to call the #RamDiscardManagerClass.replay_populated callback
742 * of the #RamDiscardManager.
743 *
744 * @rdm: the #RamDiscardManager
745 * @section: the #MemoryRegionSection
746 * @replay_fn: the #ReplayRamDiscardState callback
747 * @opaque: pointer to forward to the callback
748 *
749 * Returns 0 on success, or a negative error if any notification failed.
750 */
751 int ram_discard_manager_replay_populated(const RamDiscardManager *rdm,
752 MemoryRegionSection *section,
753 ReplayRamDiscardState replay_fn,
754 void *opaque);
755
756 /**
757 * ram_discard_manager_replay_discarded:
758 *
759 * A wrapper to call the #RamDiscardManagerClass.replay_discarded callback
760 * of the #RamDiscardManager.
761 *
762 * @rdm: the #RamDiscardManager
763 * @section: the #MemoryRegionSection
764 * @replay_fn: the #ReplayRamDiscardState callback
765 * @opaque: pointer to forward to the callback
766 *
767 * Returns 0 on success, or a negative error if any notification failed.
768 */
769 int ram_discard_manager_replay_discarded(const RamDiscardManager *rdm,
770 MemoryRegionSection *section,
771 ReplayRamDiscardState replay_fn,
772 void *opaque);
773
774 void ram_discard_manager_register_listener(RamDiscardManager *rdm,
775 RamDiscardListener *rdl,
776 MemoryRegionSection *section);
777
778 void ram_discard_manager_unregister_listener(RamDiscardManager *rdm,
779 RamDiscardListener *rdl);
780
781 /**
782 * memory_translate_iotlb: Extract addresses from a TLB entry.
783 * Called with rcu_read_lock held.
784 *
785 * @iotlb: pointer to an #IOMMUTLBEntry
786 * @xlat_p: return the offset of the entry from the start of the returned
787 * MemoryRegion.
788 * @errp: pointer to Error*, to store an error if it happens.
789 *
790 * Return: On success, return the MemoryRegion containing the @iotlb translated
791 * addr. The MemoryRegion must not be accessed after rcu_read_unlock.
792 * On failure, return NULL, setting @errp with error.
793 */
794 MemoryRegion *memory_translate_iotlb(IOMMUTLBEntry *iotlb, hwaddr *xlat_p,
795 Error **errp);
796
797 typedef struct CoalescedMemoryRange CoalescedMemoryRange;
798 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;
799
800 /** MemoryRegion:
801 *
802 * A struct representing a memory region.
803 */
804 struct MemoryRegion {
805 Object parent_obj;
806
807 /* private: */
808
809 /* The following fields should fit in a cache line */
810 bool romd_mode;
811 bool ram;
812 bool subpage;
813 bool readonly; /* For RAM regions */
814 bool nonvolatile;
815 bool rom_device;
816 bool flush_coalesced_mmio;
817 bool unmergeable;
818 uint8_t dirty_log_mask;
819 bool is_iommu;
820 RAMBlock *ram_block;
821 Object *owner;
822 /* owner as TYPE_DEVICE. Used for re-entrancy checks in MR access hotpath */
823 DeviceState *dev;
824
825 const MemoryRegionOps *ops;
826 void *opaque;
827 MemoryRegion *container;
828 int mapped_via_alias; /* Mapped via an alias, container might be NULL */
829 Int128 size;
830 hwaddr addr;
831 void (*destructor)(MemoryRegion *mr);
832 uint64_t align;
833 bool terminates;
834 bool ram_device;
835 bool enabled;
836 uint8_t vga_logging_count;
837 MemoryRegion *alias;
838 hwaddr alias_offset;
839 int32_t priority;
840 QTAILQ_HEAD(, MemoryRegion) subregions;
841 QTAILQ_ENTRY(MemoryRegion) subregions_link;
842 QTAILQ_HEAD(, CoalescedMemoryRange) coalesced;
843 const char *name;
844 unsigned ioeventfd_nb;
845 MemoryRegionIoeventfd *ioeventfds;
846 RamDiscardManager *rdm; /* Only for RAM */
847
848 /* For devices designed to perform re-entrant IO into their own IO MRs */
849 bool disable_reentrancy_guard;
850 };
851
852 struct IOMMUMemoryRegion {
853 MemoryRegion parent_obj;
854
855 QLIST_HEAD(, IOMMUNotifier) iommu_notify;
856 IOMMUNotifierFlag iommu_notify_flags;
857 };
858
859 #define IOMMU_NOTIFIER_FOREACH(n, mr) \
860 QLIST_FOREACH((n), &(mr)->iommu_notify, node)
861
862 #define MEMORY_LISTENER_PRIORITY_MIN 0
863 #define MEMORY_LISTENER_PRIORITY_ACCEL 10
864 #define MEMORY_LISTENER_PRIORITY_DEV_BACKEND 10
865
866 /**
867 * struct MemoryListener: callbacks structure for updates to the physical memory map
868 *
869 * Allows a component to adjust to changes in the guest-visible memory map.
870 * Use with memory_listener_register() and memory_listener_unregister().
871 */
872 struct MemoryListener {
873 /**
874 * @begin:
875 *
876 * Called at the beginning of an address space update transaction.
877 * Followed by calls to #MemoryListener.region_add(),
878 * #MemoryListener.region_del(), #MemoryListener.region_nop(),
879 * #MemoryListener.log_start() and #MemoryListener.log_stop() in
880 * increasing address order.
881 *
882 * @listener: The #MemoryListener.
883 */
884 void (*begin)(MemoryListener *listener);
885
886 /**
887 * @commit:
888 *
889 * Called at the end of an address space update transaction,
890 * after the last call to #MemoryListener.region_add(),
891 * #MemoryListener.region_del() or #MemoryListener.region_nop(),
892 * #MemoryListener.log_start() and #MemoryListener.log_stop().
893 *
894 * @listener: The #MemoryListener.
895 */
896 void (*commit)(MemoryListener *listener);
897
898 /**
899 * @region_add:
900 *
901 * Called during an address space update transaction,
902 * for a section of the address space that is new in this address space
903 * space since the last transaction.
904 *
905 * @listener: The #MemoryListener.
906 * @section: The new #MemoryRegionSection.
907 */
908 void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
909
910 /**
911 * @region_del:
912 *
913 * Called during an address space update transaction,
914 * for a section of the address space that has disappeared in the address
915 * space since the last transaction.
916 *
917 * @listener: The #MemoryListener.
918 * @section: The old #MemoryRegionSection.
919 */
920 void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
921
922 /**
923 * @region_nop:
924 *
925 * Called during an address space update transaction,
926 * for a section of the address space that is in the same place in the address
927 * space as in the last transaction.
928 *
929 * @listener: The #MemoryListener.
930 * @section: The #MemoryRegionSection.
931 */
932 void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section);
933
934 /**
935 * @log_start:
936 *
937 * Called during an address space update transaction, after
938 * one of #MemoryListener.region_add(), #MemoryListener.region_del() or
939 * #MemoryListener.region_nop(), if dirty memory logging clients have
940 * become active since the last transaction.
941 *
942 * @listener: The #MemoryListener.
943 * @section: The #MemoryRegionSection.
944 * @old: A bitmap of dirty memory logging clients that were active in
945 * the previous transaction.
946 * @new: A bitmap of dirty memory logging clients that are active in
947 * the current transaction.
948 */
949 void (*log_start)(MemoryListener *listener, MemoryRegionSection *section,
950 int old_val, int new_val);
951
952 /**
953 * @log_stop:
954 *
955 * Called during an address space update transaction, after
956 * one of #MemoryListener.region_add(), #MemoryListener.region_del() or
957 * #MemoryListener.region_nop() and possibly after
958 * #MemoryListener.log_start(), if dirty memory logging clients have
959 * become inactive since the last transaction.
960 *
961 * @listener: The #MemoryListener.
962 * @section: The #MemoryRegionSection.
963 * @old: A bitmap of dirty memory logging clients that were active in
964 * the previous transaction.
965 * @new: A bitmap of dirty memory logging clients that are active in
966 * the current transaction.
967 */
968 void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section,
969 int old_val, int new_val);
970
971 /**
972 * @log_sync:
973 *
974 * Called by memory_region_snapshot_and_clear_dirty() and
975 * memory_global_dirty_log_sync(), before accessing QEMU's "official"
976 * copy of the dirty memory bitmap for a #MemoryRegionSection.
977 *
978 * @listener: The #MemoryListener.
979 * @section: The #MemoryRegionSection.
980 */
981 void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
982
983 /**
984 * @log_sync_global:
985 *
986 * This is the global version of @log_sync when the listener does
987 * not have a way to synchronize the log with finer granularity.
988 * When the listener registers with @log_sync_global defined, then
989 * its @log_sync must be NULL. Vice versa.
990 *
991 * @listener: The #MemoryListener.
992 * @last_stage: The last stage to synchronize the log during migration.
993 * The caller should guarantee that the synchronization with true for
994 * @last_stage is triggered for once after all VCPUs have been stopped.
995 */
996 void (*log_sync_global)(MemoryListener *listener, bool last_stage);
997
998 /**
999 * @log_clear:
1000 *
1001 * Called before reading the dirty memory bitmap for a
1002 * #MemoryRegionSection.
1003 *
1004 * @listener: The #MemoryListener.
1005 * @section: The #MemoryRegionSection.
1006 */
1007 void (*log_clear)(MemoryListener *listener, MemoryRegionSection *section);
1008
1009 /**
1010 * @log_global_start:
1011 *
1012 * Called by memory_global_dirty_log_start(), which
1013 * enables the %DIRTY_LOG_MIGRATION client on all memory regions in
1014 * the address space. #MemoryListener.log_global_start() is also
1015 * called when a #MemoryListener is added, if global dirty logging is
1016 * active at that time.
1017 *
1018 * @listener: The #MemoryListener.
1019 * @errp: pointer to Error*, to store an error if it happens.
1020 *
1021 * Return: true on success, else false setting @errp with error.
1022 */
1023 bool (*log_global_start)(MemoryListener *listener, Error **errp);
1024
1025 /**
1026 * @log_global_stop:
1027 *
1028 * Called by memory_global_dirty_log_stop(), which
1029 * disables the %DIRTY_LOG_MIGRATION client on all memory regions in
1030 * the address space.
1031 *
1032 * @listener: The #MemoryListener.
1033 */
1034 void (*log_global_stop)(MemoryListener *listener);
1035
1036 /**
1037 * @log_global_after_sync:
1038 *
1039 * Called after reading the dirty memory bitmap
1040 * for any #MemoryRegionSection.
1041 *
1042 * @listener: The #MemoryListener.
1043 */
1044 void (*log_global_after_sync)(MemoryListener *listener);
1045
1046 /**
1047 * @eventfd_add:
1048 *
1049 * Called during an address space update transaction,
1050 * for a section of the address space that has had a new ioeventfd
1051 * registration since the last transaction.
1052 *
1053 * @listener: The #MemoryListener.
1054 * @section: The new #MemoryRegionSection.
1055 * @match_data: The @match_data parameter for the new ioeventfd.
1056 * @data: The @data parameter for the new ioeventfd.
1057 * @e: The #EventNotifier parameter for the new ioeventfd.
1058 */
1059 void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section,
1060 bool match_data, uint64_t data, EventNotifier *e);
1061
1062 /**
1063 * @eventfd_del:
1064 *
1065 * Called during an address space update transaction,
1066 * for a section of the address space that has dropped an ioeventfd
1067 * registration since the last transaction.
1068 *
1069 * @listener: The #MemoryListener.
1070 * @section: The new #MemoryRegionSection.
1071 * @match_data: The @match_data parameter for the dropped ioeventfd.
1072 * @data: The @data parameter for the dropped ioeventfd.
1073 * @e: The #EventNotifier parameter for the dropped ioeventfd.
1074 */
1075 void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section,
1076 bool match_data, uint64_t data, EventNotifier *e);
1077
1078 /**
1079 * @coalesced_io_add:
1080 *
1081 * Called during an address space update transaction,
1082 * for a section of the address space that has had a new coalesced
1083 * MMIO range registration since the last transaction.
1084 *
1085 * @listener: The #MemoryListener.
1086 * @section: The new #MemoryRegionSection.
1087 * @addr: The starting address for the coalesced MMIO range.
1088 * @len: The length of the coalesced MMIO range.
1089 */
1090 void (*coalesced_io_add)(MemoryListener *listener, MemoryRegionSection *section,
1091 hwaddr addr, hwaddr len);
1092
1093 /**
1094 * @coalesced_io_del:
1095 *
1096 * Called during an address space update transaction,
1097 * for a section of the address space that has dropped a coalesced
1098 * MMIO range since the last transaction.
1099 *
1100 * @listener: The #MemoryListener.
1101 * @section: The new #MemoryRegionSection.
1102 * @addr: The starting address for the coalesced MMIO range.
1103 * @len: The length of the coalesced MMIO range.
1104 */
1105 void (*coalesced_io_del)(MemoryListener *listener, MemoryRegionSection *section,
1106 hwaddr addr, hwaddr len);
1107 /**
1108 * @priority:
1109 *
1110 * Govern the order in which memory listeners are invoked. Lower priorities
1111 * are invoked earlier for "add" or "start" callbacks, and later for "delete"
1112 * or "stop" callbacks.
1113 */
1114 unsigned priority;
1115
1116 /**
1117 * @name:
1118 *
1119 * Name of the listener. It can be used in contexts where we'd like to
1120 * identify one memory listener with the rest.
1121 */
1122 const char *name;
1123
1124 /* private: */
1125 AddressSpace *address_space;
1126 QTAILQ_ENTRY(MemoryListener) link;
1127 QTAILQ_ENTRY(MemoryListener) link_as;
1128 };
1129
1130 typedef struct AddressSpaceMapClient {
1131 QEMUBH *bh;
1132 QLIST_ENTRY(AddressSpaceMapClient) link;
1133 } AddressSpaceMapClient;
1134
1135 #define DEFAULT_MAX_BOUNCE_BUFFER_SIZE (4096)
1136
1137 /**
1138 * struct AddressSpace: describes a mapping of addresses to #MemoryRegion objects
1139 */
1140 struct AddressSpace {
1141 /* private: */
1142 struct rcu_head rcu;
1143 char *name;
1144 MemoryRegion *root;
1145
1146 /* Accessed via RCU. */
1147 struct FlatView *current_map;
1148
1149 int ioeventfd_nb;
1150 int ioeventfd_notifiers;
1151 struct MemoryRegionIoeventfd *ioeventfds;
1152 QTAILQ_HEAD(, MemoryListener) listeners;
1153 QTAILQ_ENTRY(AddressSpace) address_spaces_link;
1154
1155 /*
1156 * Maximum DMA bounce buffer size used for indirect memory map requests.
1157 * This limits the total size of bounce buffer allocations made for
1158 * DMA requests to indirect memory regions within this AddressSpace. DMA
1159 * requests that exceed the limit (e.g. due to overly large requested size
1160 * or concurrent DMA requests having claimed too much buffer space) will be
1161 * rejected and left to the caller to handle.
1162 */
1163 size_t max_bounce_buffer_size;
1164 /* Total size of bounce buffers currently allocated, atomically accessed */
1165 size_t bounce_buffer_size;
1166 /* List of callbacks to invoke when buffers free up */
1167 QemuMutex map_client_list_lock;
1168 QLIST_HEAD(, AddressSpaceMapClient) map_client_list;
1169 };
1170
1171 typedef struct AddressSpaceDispatch AddressSpaceDispatch;
1172 typedef struct FlatRange FlatRange;
1173
1174 /* Flattened global view of current active memory hierarchy. Kept in sorted
1175 * order.
1176 */
1177 struct FlatView {
1178 struct rcu_head rcu;
1179 unsigned ref;
1180 FlatRange *ranges;
1181 unsigned nr;
1182 unsigned nr_allocated;
1183 struct AddressSpaceDispatch *dispatch;
1184 MemoryRegion *root;
1185 };
1186
address_space_to_flatview(AddressSpace * as)1187 static inline FlatView *address_space_to_flatview(AddressSpace *as)
1188 {
1189 return qatomic_rcu_read(&as->current_map);
1190 }
1191
1192 /**
1193 * typedef flatview_cb: callback for flatview_for_each_range()
1194 *
1195 * @start: start address of the range within the FlatView
1196 * @len: length of the range in bytes
1197 * @mr: MemoryRegion covering this range
1198 * @offset_in_region: offset of the first byte of the range within @mr
1199 * @opaque: data pointer passed to flatview_for_each_range()
1200 *
1201 * Returns: true to stop the iteration, false to keep going.
1202 */
1203 typedef bool (*flatview_cb)(Int128 start,
1204 Int128 len,
1205 const MemoryRegion *mr,
1206 hwaddr offset_in_region,
1207 void *opaque);
1208
1209 /**
1210 * flatview_for_each_range: Iterate through a FlatView
1211 * @fv: the FlatView to iterate through
1212 * @cb: function to call for each range
1213 * @opaque: opaque data pointer to pass to @cb
1214 *
1215 * A FlatView is made up of a list of non-overlapping ranges, each of
1216 * which is a slice of a MemoryRegion. This function iterates through
1217 * each range in @fv, calling @cb. The callback function can terminate
1218 * iteration early by returning 'true'.
1219 */
1220 void flatview_for_each_range(FlatView *fv, flatview_cb cb, void *opaque);
1221
MemoryRegionSection_eq(MemoryRegionSection * a,MemoryRegionSection * b)1222 static inline bool MemoryRegionSection_eq(MemoryRegionSection *a,
1223 MemoryRegionSection *b)
1224 {
1225 return a->mr == b->mr &&
1226 a->fv == b->fv &&
1227 a->offset_within_region == b->offset_within_region &&
1228 a->offset_within_address_space == b->offset_within_address_space &&
1229 int128_eq(a->size, b->size) &&
1230 a->readonly == b->readonly &&
1231 a->nonvolatile == b->nonvolatile;
1232 }
1233
1234 /**
1235 * memory_region_section_new_copy: Copy a memory region section
1236 *
1237 * Allocate memory for a new copy, copy the memory region section, and
1238 * properly take a reference on all relevant members.
1239 *
1240 * @s: the #MemoryRegionSection to copy
1241 */
1242 MemoryRegionSection *memory_region_section_new_copy(MemoryRegionSection *s);
1243
1244 /**
1245 * memory_region_section_free_copy: Free a copied memory region section
1246 *
1247 * Free a copy of a memory section created via memory_region_section_new_copy().
1248 * properly dropping references on all relevant members.
1249 *
1250 * @s: the #MemoryRegionSection to copy
1251 */
1252 void memory_region_section_free_copy(MemoryRegionSection *s);
1253
1254 /**
1255 * memory_region_section_intersect_range: Adjust the memory section to cover
1256 * the intersection with the given range.
1257 *
1258 * @s: the #MemoryRegionSection to be adjusted
1259 * @offset: the offset of the given range in the memory region
1260 * @size: the size of the given range
1261 *
1262 * Returns false if the intersection is empty, otherwise returns true.
1263 */
memory_region_section_intersect_range(MemoryRegionSection * s,uint64_t offset,uint64_t size)1264 static inline bool memory_region_section_intersect_range(MemoryRegionSection *s,
1265 uint64_t offset,
1266 uint64_t size)
1267 {
1268 uint64_t start = MAX(s->offset_within_region, offset);
1269 Int128 end = int128_min(int128_add(int128_make64(s->offset_within_region),
1270 s->size),
1271 int128_add(int128_make64(offset),
1272 int128_make64(size)));
1273
1274 if (int128_le(end, int128_make64(start))) {
1275 return false;
1276 }
1277
1278 s->offset_within_address_space += start - s->offset_within_region;
1279 s->offset_within_region = start;
1280 s->size = int128_sub(end, int128_make64(start));
1281 return true;
1282 }
1283
1284 /**
1285 * memory_region_init: Initialize a memory region
1286 *
1287 * The region typically acts as a container for other memory regions. Use
1288 * memory_region_add_subregion() to add subregions.
1289 *
1290 * @mr: the #MemoryRegion to be initialized
1291 * @owner: the object that tracks the region's reference count
1292 * @name: used for debugging; not visible to the user or ABI
1293 * @size: size of the region; any subregions beyond this size will be clipped
1294 */
1295 void memory_region_init(MemoryRegion *mr,
1296 Object *owner,
1297 const char *name,
1298 uint64_t size);
1299
1300 /**
1301 * memory_region_ref: Add 1 to a memory region's reference count
1302 *
1303 * Whenever memory regions are accessed outside the BQL, they need to be
1304 * preserved against hot-unplug. MemoryRegions actually do not have their
1305 * own reference count; they piggyback on a QOM object, their "owner".
1306 * This function adds a reference to the owner.
1307 *
1308 * All MemoryRegions must have an owner if they can disappear, even if the
1309 * device they belong to operates exclusively under the BQL. This is because
1310 * the region could be returned at any time by memory_region_find, and this
1311 * is usually under guest control.
1312 *
1313 * @mr: the #MemoryRegion
1314 */
1315 void memory_region_ref(MemoryRegion *mr);
1316
1317 /**
1318 * memory_region_unref: Remove 1 to a memory region's reference count
1319 *
1320 * Whenever memory regions are accessed outside the BQL, they need to be
1321 * preserved against hot-unplug. MemoryRegions actually do not have their
1322 * own reference count; they piggyback on a QOM object, their "owner".
1323 * This function removes a reference to the owner and possibly destroys it.
1324 *
1325 * @mr: the #MemoryRegion
1326 */
1327 void memory_region_unref(MemoryRegion *mr);
1328
1329 /**
1330 * memory_region_init_io: Initialize an I/O memory region.
1331 *
1332 * Accesses into the region will cause the callbacks in @ops to be called.
1333 * if @size is nonzero, subregions will be clipped to @size.
1334 *
1335 * @mr: the #MemoryRegion to be initialized.
1336 * @owner: the object that tracks the region's reference count
1337 * @ops: a structure containing read and write callbacks to be used when
1338 * I/O is performed on the region.
1339 * @opaque: passed to the read and write callbacks of the @ops structure.
1340 * @name: used for debugging; not visible to the user or ABI
1341 * @size: size of the region.
1342 */
1343 void memory_region_init_io(MemoryRegion *mr,
1344 Object *owner,
1345 const MemoryRegionOps *ops,
1346 void *opaque,
1347 const char *name,
1348 uint64_t size);
1349
1350 /**
1351 * memory_region_init_ram_nomigrate: Initialize RAM memory region. Accesses
1352 * into the region will modify memory
1353 * directly.
1354 *
1355 * @mr: the #MemoryRegion to be initialized.
1356 * @owner: the object that tracks the region's reference count
1357 * @name: Region name, becomes part of RAMBlock name used in migration stream
1358 * must be unique within any device
1359 * @size: size of the region.
1360 * @errp: pointer to Error*, to store an error if it happens.
1361 *
1362 * Note that this function does not do anything to cause the data in the
1363 * RAM memory region to be migrated; that is the responsibility of the caller.
1364 *
1365 * Return: true on success, else false setting @errp with error.
1366 */
1367 bool memory_region_init_ram_nomigrate(MemoryRegion *mr,
1368 Object *owner,
1369 const char *name,
1370 uint64_t size,
1371 Error **errp);
1372
1373 /**
1374 * memory_region_init_ram_flags_nomigrate: Initialize RAM memory region.
1375 * Accesses into the region will
1376 * modify memory directly.
1377 *
1378 * @mr: the #MemoryRegion to be initialized.
1379 * @owner: the object that tracks the region's reference count
1380 * @name: Region name, becomes part of RAMBlock name used in migration stream
1381 * must be unique within any device
1382 * @size: size of the region.
1383 * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_NORESERVE,
1384 * RAM_GUEST_MEMFD.
1385 * @errp: pointer to Error*, to store an error if it happens.
1386 *
1387 * Note that this function does not do anything to cause the data in the
1388 * RAM memory region to be migrated; that is the responsibility of the caller.
1389 *
1390 * Return: true on success, else false setting @errp with error.
1391 */
1392 bool memory_region_init_ram_flags_nomigrate(MemoryRegion *mr,
1393 Object *owner,
1394 const char *name,
1395 uint64_t size,
1396 uint32_t ram_flags,
1397 Error **errp);
1398
1399 /**
1400 * memory_region_init_resizeable_ram: Initialize memory region with resizable
1401 * RAM. Accesses into the region will
1402 * modify memory directly. Only an initial
1403 * portion of this RAM is actually used.
1404 * Changing the size while migrating
1405 * can result in the migration being
1406 * canceled.
1407 *
1408 * @mr: the #MemoryRegion to be initialized.
1409 * @owner: the object that tracks the region's reference count
1410 * @name: Region name, becomes part of RAMBlock name used in migration stream
1411 * must be unique within any device
1412 * @size: used size of the region.
1413 * @max_size: max size of the region.
1414 * @resized: callback to notify owner about used size change.
1415 * @errp: pointer to Error*, to store an error if it happens.
1416 *
1417 * Note that this function does not do anything to cause the data in the
1418 * RAM memory region to be migrated; that is the responsibility of the caller.
1419 *
1420 * Return: true on success, else false setting @errp with error.
1421 */
1422 bool memory_region_init_resizeable_ram(MemoryRegion *mr,
1423 Object *owner,
1424 const char *name,
1425 uint64_t size,
1426 uint64_t max_size,
1427 void (*resized)(const char*,
1428 uint64_t length,
1429 void *host),
1430 Error **errp);
1431 #ifdef CONFIG_POSIX
1432
1433 /**
1434 * memory_region_init_ram_from_file: Initialize RAM memory region with a
1435 * mmap-ed backend.
1436 *
1437 * @mr: the #MemoryRegion to be initialized.
1438 * @owner: the object that tracks the region's reference count
1439 * @name: Region name, becomes part of RAMBlock name used in migration stream
1440 * must be unique within any device
1441 * @size: size of the region.
1442 * @align: alignment of the region base address; if 0, the default alignment
1443 * (getpagesize()) will be used.
1444 * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_PMEM,
1445 * RAM_NORESERVE, RAM_PROTECTED, RAM_NAMED_FILE, RAM_READONLY,
1446 * RAM_READONLY_FD, RAM_GUEST_MEMFD
1447 * @path: the path in which to allocate the RAM.
1448 * @offset: offset within the file referenced by path
1449 * @errp: pointer to Error*, to store an error if it happens.
1450 *
1451 * Note that this function does not do anything to cause the data in the
1452 * RAM memory region to be migrated; that is the responsibility of the caller.
1453 *
1454 * Return: true on success, else false setting @errp with error.
1455 */
1456 bool memory_region_init_ram_from_file(MemoryRegion *mr,
1457 Object *owner,
1458 const char *name,
1459 uint64_t size,
1460 uint64_t align,
1461 uint32_t ram_flags,
1462 const char *path,
1463 ram_addr_t offset,
1464 Error **errp);
1465
1466 /**
1467 * memory_region_init_ram_from_fd: Initialize RAM memory region with a
1468 * mmap-ed backend.
1469 *
1470 * @mr: the #MemoryRegion to be initialized.
1471 * @owner: the object that tracks the region's reference count
1472 * @name: the name of the region.
1473 * @size: size of the region.
1474 * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_PMEM,
1475 * RAM_NORESERVE, RAM_PROTECTED, RAM_NAMED_FILE, RAM_READONLY,
1476 * RAM_READONLY_FD, RAM_GUEST_MEMFD
1477 * @fd: the fd to mmap.
1478 * @offset: offset within the file referenced by fd
1479 * @errp: pointer to Error*, to store an error if it happens.
1480 *
1481 * Note that this function does not do anything to cause the data in the
1482 * RAM memory region to be migrated; that is the responsibility of the caller.
1483 *
1484 * Return: true on success, else false setting @errp with error.
1485 */
1486 bool memory_region_init_ram_from_fd(MemoryRegion *mr,
1487 Object *owner,
1488 const char *name,
1489 uint64_t size,
1490 uint32_t ram_flags,
1491 int fd,
1492 ram_addr_t offset,
1493 Error **errp);
1494 #endif
1495
1496 /**
1497 * memory_region_init_ram_ptr: Initialize RAM memory region from a
1498 * user-provided pointer. Accesses into the
1499 * region will modify memory directly.
1500 *
1501 * @mr: the #MemoryRegion to be initialized.
1502 * @owner: the object that tracks the region's reference count
1503 * @name: Region name, becomes part of RAMBlock name used in migration stream
1504 * must be unique within any device
1505 * @size: size of the region.
1506 * @ptr: memory to be mapped; must contain at least @size bytes.
1507 *
1508 * Note that this function does not do anything to cause the data in the
1509 * RAM memory region to be migrated; that is the responsibility of the caller.
1510 */
1511 void memory_region_init_ram_ptr(MemoryRegion *mr,
1512 Object *owner,
1513 const char *name,
1514 uint64_t size,
1515 void *ptr);
1516
1517 /**
1518 * memory_region_init_ram_device_ptr: Initialize RAM device memory region from
1519 * a user-provided pointer.
1520 *
1521 * A RAM device represents a mapping to a physical device, such as to a PCI
1522 * MMIO BAR of an vfio-pci assigned device. The memory region may be mapped
1523 * into the VM address space and access to the region will modify memory
1524 * directly. However, the memory region should not be included in a memory
1525 * dump (device may not be enabled/mapped at the time of the dump), and
1526 * operations incompatible with manipulating MMIO should be avoided. Replaces
1527 * skip_dump flag.
1528 *
1529 * @mr: the #MemoryRegion to be initialized.
1530 * @owner: the object that tracks the region's reference count
1531 * @name: the name of the region.
1532 * @size: size of the region.
1533 * @ptr: memory to be mapped; must contain at least @size bytes.
1534 *
1535 * Note that this function does not do anything to cause the data in the
1536 * RAM memory region to be migrated; that is the responsibility of the caller.
1537 * (For RAM device memory regions, migrating the contents rarely makes sense.)
1538 */
1539 void memory_region_init_ram_device_ptr(MemoryRegion *mr,
1540 Object *owner,
1541 const char *name,
1542 uint64_t size,
1543 void *ptr);
1544
1545 /**
1546 * memory_region_init_alias: Initialize a memory region that aliases all or a
1547 * part of another memory region.
1548 *
1549 * @mr: the #MemoryRegion to be initialized.
1550 * @owner: the object that tracks the region's reference count
1551 * @name: used for debugging; not visible to the user or ABI
1552 * @orig: the region to be referenced; @mr will be equivalent to
1553 * @orig between @offset and @offset + @size - 1.
1554 * @offset: start of the section in @orig to be referenced.
1555 * @size: size of the region.
1556 */
1557 void memory_region_init_alias(MemoryRegion *mr,
1558 Object *owner,
1559 const char *name,
1560 MemoryRegion *orig,
1561 hwaddr offset,
1562 uint64_t size);
1563
1564 /**
1565 * memory_region_init_rom_nomigrate: Initialize a ROM memory region.
1566 *
1567 * This has the same effect as calling memory_region_init_ram_nomigrate()
1568 * and then marking the resulting region read-only with
1569 * memory_region_set_readonly().
1570 *
1571 * Note that this function does not do anything to cause the data in the
1572 * RAM side of the memory region to be migrated; that is the responsibility
1573 * of the caller.
1574 *
1575 * @mr: the #MemoryRegion to be initialized.
1576 * @owner: the object that tracks the region's reference count
1577 * @name: Region name, becomes part of RAMBlock name used in migration stream
1578 * must be unique within any device
1579 * @size: size of the region.
1580 * @errp: pointer to Error*, to store an error if it happens.
1581 *
1582 * Return: true on success, else false setting @errp with error.
1583 */
1584 bool memory_region_init_rom_nomigrate(MemoryRegion *mr,
1585 Object *owner,
1586 const char *name,
1587 uint64_t size,
1588 Error **errp);
1589
1590 /**
1591 * memory_region_init_rom_device_nomigrate: Initialize a ROM memory region.
1592 * Writes are handled via callbacks.
1593 *
1594 * Note that this function does not do anything to cause the data in the
1595 * RAM side of the memory region to be migrated; that is the responsibility
1596 * of the caller.
1597 *
1598 * @mr: the #MemoryRegion to be initialized.
1599 * @owner: the object that tracks the region's reference count
1600 * @ops: callbacks for write access handling (must not be NULL).
1601 * @opaque: passed to the read and write callbacks of the @ops structure.
1602 * @name: Region name, becomes part of RAMBlock name used in migration stream
1603 * must be unique within any device
1604 * @size: size of the region.
1605 * @errp: pointer to Error*, to store an error if it happens.
1606 *
1607 * Return: true on success, else false setting @errp with error.
1608 */
1609 bool memory_region_init_rom_device_nomigrate(MemoryRegion *mr,
1610 Object *owner,
1611 const MemoryRegionOps *ops,
1612 void *opaque,
1613 const char *name,
1614 uint64_t size,
1615 Error **errp);
1616
1617 /**
1618 * memory_region_init_iommu: Initialize a memory region of a custom type
1619 * that translates addresses
1620 *
1621 * An IOMMU region translates addresses and forwards accesses to a target
1622 * memory region.
1623 *
1624 * The IOMMU implementation must define a subclass of TYPE_IOMMU_MEMORY_REGION.
1625 * @_iommu_mr should be a pointer to enough memory for an instance of
1626 * that subclass, @instance_size is the size of that subclass, and
1627 * @mrtypename is its name. This function will initialize @_iommu_mr as an
1628 * instance of the subclass, and its methods will then be called to handle
1629 * accesses to the memory region. See the documentation of
1630 * #IOMMUMemoryRegionClass for further details.
1631 *
1632 * @_iommu_mr: the #IOMMUMemoryRegion to be initialized
1633 * @instance_size: the IOMMUMemoryRegion subclass instance size
1634 * @mrtypename: the type name of the #IOMMUMemoryRegion
1635 * @owner: the object that tracks the region's reference count
1636 * @name: used for debugging; not visible to the user or ABI
1637 * @size: size of the region.
1638 */
1639 void memory_region_init_iommu(void *_iommu_mr,
1640 size_t instance_size,
1641 const char *mrtypename,
1642 Object *owner,
1643 const char *name,
1644 uint64_t size);
1645
1646 /**
1647 * memory_region_init_ram - Initialize RAM memory region. Accesses into the
1648 * region will modify memory directly.
1649 *
1650 * @mr: the #MemoryRegion to be initialized
1651 * @owner: the object that tracks the region's reference count (must be
1652 * TYPE_DEVICE or a subclass of TYPE_DEVICE, or NULL)
1653 * @name: name of the memory region
1654 * @size: size of the region in bytes
1655 * @errp: pointer to Error*, to store an error if it happens.
1656 *
1657 * This function allocates RAM for a board model or device, and
1658 * arranges for it to be migrated (by calling vmstate_register_ram()
1659 * if @owner is a DeviceState, or vmstate_register_ram_global() if
1660 * @owner is NULL).
1661 *
1662 * TODO: Currently we restrict @owner to being either NULL (for
1663 * global RAM regions with no owner) or devices, so that we can
1664 * give the RAM block a unique name for migration purposes.
1665 * We should lift this restriction and allow arbitrary Objects.
1666 * If you pass a non-NULL non-device @owner then we will assert.
1667 *
1668 * Return: true on success, else false setting @errp with error.
1669 */
1670 bool memory_region_init_ram(MemoryRegion *mr,
1671 Object *owner,
1672 const char *name,
1673 uint64_t size,
1674 Error **errp);
1675
1676 bool memory_region_init_ram_guest_memfd(MemoryRegion *mr,
1677 Object *owner,
1678 const char *name,
1679 uint64_t size,
1680 Error **errp);
1681
1682 /**
1683 * memory_region_init_rom: Initialize a ROM memory region.
1684 *
1685 * This has the same effect as calling memory_region_init_ram()
1686 * and then marking the resulting region read-only with
1687 * memory_region_set_readonly(). This includes arranging for the
1688 * contents to be migrated.
1689 *
1690 * TODO: Currently we restrict @owner to being either NULL (for
1691 * global RAM regions with no owner) or devices, so that we can
1692 * give the RAM block a unique name for migration purposes.
1693 * We should lift this restriction and allow arbitrary Objects.
1694 * If you pass a non-NULL non-device @owner then we will assert.
1695 *
1696 * @mr: the #MemoryRegion to be initialized.
1697 * @owner: the object that tracks the region's reference count
1698 * @name: Region name, becomes part of RAMBlock name used in migration stream
1699 * must be unique within any device
1700 * @size: size of the region.
1701 * @errp: pointer to Error*, to store an error if it happens.
1702 *
1703 * Return: true on success, else false setting @errp with error.
1704 */
1705 bool memory_region_init_rom(MemoryRegion *mr,
1706 Object *owner,
1707 const char *name,
1708 uint64_t size,
1709 Error **errp);
1710
1711 /**
1712 * memory_region_init_rom_device: Initialize a ROM memory region.
1713 * Writes are handled via callbacks.
1714 *
1715 * This function initializes a memory region backed by RAM for reads
1716 * and callbacks for writes, and arranges for the RAM backing to
1717 * be migrated (by calling vmstate_register_ram()
1718 * if @owner is a DeviceState, or vmstate_register_ram_global() if
1719 * @owner is NULL).
1720 *
1721 * TODO: Currently we restrict @owner to being either NULL (for
1722 * global RAM regions with no owner) or devices, so that we can
1723 * give the RAM block a unique name for migration purposes.
1724 * We should lift this restriction and allow arbitrary Objects.
1725 * If you pass a non-NULL non-device @owner then we will assert.
1726 *
1727 * @mr: the #MemoryRegion to be initialized.
1728 * @owner: the object that tracks the region's reference count
1729 * @ops: callbacks for write access handling (must not be NULL).
1730 * @opaque: passed to the read and write callbacks of the @ops structure.
1731 * @name: Region name, becomes part of RAMBlock name used in migration stream
1732 * must be unique within any device
1733 * @size: size of the region.
1734 * @errp: pointer to Error*, to store an error if it happens.
1735 *
1736 * Return: true on success, else false setting @errp with error.
1737 */
1738 bool memory_region_init_rom_device(MemoryRegion *mr,
1739 Object *owner,
1740 const MemoryRegionOps *ops,
1741 void *opaque,
1742 const char *name,
1743 uint64_t size,
1744 Error **errp);
1745
1746
1747 /**
1748 * memory_region_owner: get a memory region's owner.
1749 *
1750 * @mr: the memory region being queried.
1751 */
1752 Object *memory_region_owner(MemoryRegion *mr);
1753
1754 /**
1755 * memory_region_size: get a memory region's size.
1756 *
1757 * @mr: the memory region being queried.
1758 */
1759 uint64_t memory_region_size(MemoryRegion *mr);
1760
1761 /**
1762 * memory_region_is_ram: check whether a memory region is random access
1763 *
1764 * Returns %true if a memory region is random access.
1765 *
1766 * @mr: the memory region being queried
1767 */
memory_region_is_ram(MemoryRegion * mr)1768 static inline bool memory_region_is_ram(MemoryRegion *mr)
1769 {
1770 return mr->ram;
1771 }
1772
1773 /**
1774 * memory_region_is_ram_device: check whether a memory region is a ram device
1775 *
1776 * Returns %true if a memory region is a device backed ram region
1777 *
1778 * @mr: the memory region being queried
1779 */
1780 bool memory_region_is_ram_device(MemoryRegion *mr);
1781
1782 /**
1783 * memory_region_is_romd: check whether a memory region is in ROMD mode
1784 *
1785 * Returns %true if a memory region is a ROM device and currently set to allow
1786 * direct reads.
1787 *
1788 * @mr: the memory region being queried
1789 */
memory_region_is_romd(MemoryRegion * mr)1790 static inline bool memory_region_is_romd(MemoryRegion *mr)
1791 {
1792 return mr->rom_device && mr->romd_mode;
1793 }
1794
1795 /**
1796 * memory_region_is_protected: check whether a memory region is protected
1797 *
1798 * Returns %true if a memory region is protected RAM and cannot be accessed
1799 * via standard mechanisms, e.g. DMA.
1800 *
1801 * @mr: the memory region being queried
1802 */
1803 bool memory_region_is_protected(MemoryRegion *mr);
1804
1805 /**
1806 * memory_region_has_guest_memfd: check whether a memory region has guest_memfd
1807 * associated
1808 *
1809 * Returns %true if a memory region's ram_block has valid guest_memfd assigned.
1810 *
1811 * @mr: the memory region being queried
1812 */
1813 bool memory_region_has_guest_memfd(MemoryRegion *mr);
1814
1815 /**
1816 * memory_region_get_iommu: check whether a memory region is an iommu
1817 *
1818 * Returns pointer to IOMMUMemoryRegion if a memory region is an iommu,
1819 * otherwise NULL.
1820 *
1821 * @mr: the memory region being queried
1822 */
memory_region_get_iommu(MemoryRegion * mr)1823 static inline IOMMUMemoryRegion *memory_region_get_iommu(MemoryRegion *mr)
1824 {
1825 if (mr->alias) {
1826 return memory_region_get_iommu(mr->alias);
1827 }
1828 if (mr->is_iommu) {
1829 return (IOMMUMemoryRegion *) mr;
1830 }
1831 return NULL;
1832 }
1833
1834 /**
1835 * memory_region_get_iommu_class_nocheck: returns iommu memory region class
1836 * if an iommu or NULL if not
1837 *
1838 * Returns pointer to IOMMUMemoryRegionClass if a memory region is an iommu,
1839 * otherwise NULL. This is fast path avoiding QOM checking, use with caution.
1840 *
1841 * @iommu_mr: the memory region being queried
1842 */
memory_region_get_iommu_class_nocheck(IOMMUMemoryRegion * iommu_mr)1843 static inline IOMMUMemoryRegionClass *memory_region_get_iommu_class_nocheck(
1844 IOMMUMemoryRegion *iommu_mr)
1845 {
1846 return (IOMMUMemoryRegionClass *) (((Object *)iommu_mr)->class);
1847 }
1848
1849 #define memory_region_is_iommu(mr) (memory_region_get_iommu(mr) != NULL)
1850
1851 /**
1852 * memory_region_iommu_get_min_page_size: get minimum supported page size
1853 * for an iommu
1854 *
1855 * Returns minimum supported page size for an iommu.
1856 *
1857 * @iommu_mr: the memory region being queried
1858 */
1859 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr);
1860
1861 /**
1862 * memory_region_notify_iommu: notify a change in an IOMMU translation entry.
1863 *
1864 * Note: for any IOMMU implementation, an in-place mapping change
1865 * should be notified with an UNMAP followed by a MAP.
1866 *
1867 * @iommu_mr: the memory region that was changed
1868 * @iommu_idx: the IOMMU index for the translation table which has changed
1869 * @event: TLB event with the new entry in the IOMMU translation table.
1870 * The entry replaces all old entries for the same virtual I/O address
1871 * range.
1872 */
1873 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr,
1874 int iommu_idx,
1875 const IOMMUTLBEvent event);
1876
1877 /**
1878 * memory_region_notify_iommu_one: notify a change in an IOMMU translation
1879 * entry to a single notifier
1880 *
1881 * This works just like memory_region_notify_iommu(), but it only
1882 * notifies a specific notifier, not all of them.
1883 *
1884 * @notifier: the notifier to be notified
1885 * @event: TLB event with the new entry in the IOMMU translation table.
1886 * The entry replaces all old entries for the same virtual I/O address
1887 * range.
1888 */
1889 void memory_region_notify_iommu_one(IOMMUNotifier *notifier,
1890 const IOMMUTLBEvent *event);
1891
1892 /**
1893 * memory_region_unmap_iommu_notifier_range: notify a unmap for an IOMMU
1894 * translation that covers the
1895 * range of a notifier
1896 *
1897 * @notifier: the notifier to be notified
1898 */
1899 void memory_region_unmap_iommu_notifier_range(IOMMUNotifier *notifier);
1900
1901
1902 /**
1903 * memory_region_register_iommu_notifier: register a notifier for changes to
1904 * IOMMU translation entries.
1905 *
1906 * Returns 0 on success, or a negative errno otherwise. In particular,
1907 * -EINVAL indicates that at least one of the attributes of the notifier
1908 * is not supported (flag/range) by the IOMMU memory region. In case of error
1909 * the error object must be created.
1910 *
1911 * @mr: the memory region to observe
1912 * @n: the IOMMUNotifier to be added; the notify callback receives a
1913 * pointer to an #IOMMUTLBEntry as the opaque value; the pointer
1914 * ceases to be valid on exit from the notifier.
1915 * @errp: pointer to Error*, to store an error if it happens.
1916 */
1917 int memory_region_register_iommu_notifier(MemoryRegion *mr,
1918 IOMMUNotifier *n, Error **errp);
1919
1920 /**
1921 * memory_region_iommu_replay: replay existing IOMMU translations to
1922 * a notifier with the minimum page granularity returned by
1923 * mr->iommu_ops->get_page_size().
1924 *
1925 * Note: this is not related to record-and-replay functionality.
1926 *
1927 * @iommu_mr: the memory region to observe
1928 * @n: the notifier to which to replay iommu mappings
1929 */
1930 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n);
1931
1932 /**
1933 * memory_region_unregister_iommu_notifier: unregister a notifier for
1934 * changes to IOMMU translation entries.
1935 *
1936 * @mr: the memory region which was observed and for which notify_stopped()
1937 * needs to be called
1938 * @n: the notifier to be removed.
1939 */
1940 void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
1941 IOMMUNotifier *n);
1942
1943 /**
1944 * memory_region_iommu_get_attr: return an IOMMU attr if get_attr() is
1945 * defined on the IOMMU.
1946 *
1947 * Returns 0 on success, or a negative errno otherwise. In particular,
1948 * -EINVAL indicates that the IOMMU does not support the requested
1949 * attribute.
1950 *
1951 * @iommu_mr: the memory region
1952 * @attr: the requested attribute
1953 * @data: a pointer to the requested attribute data
1954 */
1955 int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr,
1956 enum IOMMUMemoryRegionAttr attr,
1957 void *data);
1958
1959 /**
1960 * memory_region_iommu_attrs_to_index: return the IOMMU index to
1961 * use for translations with the given memory transaction attributes.
1962 *
1963 * @iommu_mr: the memory region
1964 * @attrs: the memory transaction attributes
1965 */
1966 int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr,
1967 MemTxAttrs attrs);
1968
1969 /**
1970 * memory_region_iommu_num_indexes: return the total number of IOMMU
1971 * indexes that this IOMMU supports.
1972 *
1973 * @iommu_mr: the memory region
1974 */
1975 int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr);
1976
1977 /**
1978 * memory_region_name: get a memory region's name
1979 *
1980 * Returns the string that was used to initialize the memory region.
1981 *
1982 * @mr: the memory region being queried
1983 */
1984 const char *memory_region_name(const MemoryRegion *mr);
1985
1986 /**
1987 * memory_region_is_logging: return whether a memory region is logging writes
1988 *
1989 * Returns %true if the memory region is logging writes for the given client
1990 *
1991 * @mr: the memory region being queried
1992 * @client: the client being queried
1993 */
1994 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client);
1995
1996 /**
1997 * memory_region_get_dirty_log_mask: return the clients for which a
1998 * memory region is logging writes.
1999 *
2000 * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants
2001 * are the bit indices.
2002 *
2003 * @mr: the memory region being queried
2004 */
2005 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr);
2006
2007 /**
2008 * memory_region_is_rom: check whether a memory region is ROM
2009 *
2010 * Returns %true if a memory region is read-only memory.
2011 *
2012 * @mr: the memory region being queried
2013 */
memory_region_is_rom(MemoryRegion * mr)2014 static inline bool memory_region_is_rom(MemoryRegion *mr)
2015 {
2016 return mr->ram && mr->readonly;
2017 }
2018
2019 /**
2020 * memory_region_is_nonvolatile: check whether a memory region is non-volatile
2021 *
2022 * Returns %true is a memory region is non-volatile memory.
2023 *
2024 * @mr: the memory region being queried
2025 */
memory_region_is_nonvolatile(MemoryRegion * mr)2026 static inline bool memory_region_is_nonvolatile(MemoryRegion *mr)
2027 {
2028 return mr->nonvolatile;
2029 }
2030
2031 /**
2032 * memory_region_get_fd: Get a file descriptor backing a RAM memory region.
2033 *
2034 * Returns a file descriptor backing a file-based RAM memory region,
2035 * or -1 if the region is not a file-based RAM memory region.
2036 *
2037 * @mr: the RAM or alias memory region being queried.
2038 */
2039 int memory_region_get_fd(MemoryRegion *mr);
2040
2041 /**
2042 * memory_region_from_host: Convert a pointer into a RAM memory region
2043 * and an offset within it.
2044 *
2045 * Given a host pointer inside a RAM memory region (created with
2046 * memory_region_init_ram() or memory_region_init_ram_ptr()), return
2047 * the MemoryRegion and the offset within it.
2048 *
2049 * Use with care; by the time this function returns, the returned pointer is
2050 * not protected by RCU anymore. If the caller is not within an RCU critical
2051 * section and does not hold the BQL, it must have other means of
2052 * protecting the pointer, such as a reference to the region that includes
2053 * the incoming ram_addr_t.
2054 *
2055 * @ptr: the host pointer to be converted
2056 * @offset: the offset within memory region
2057 */
2058 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset);
2059
2060 /**
2061 * memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
2062 *
2063 * Returns a host pointer to a RAM memory region (created with
2064 * memory_region_init_ram() or memory_region_init_ram_ptr()).
2065 *
2066 * Use with care; by the time this function returns, the returned pointer is
2067 * not protected by RCU anymore. If the caller is not within an RCU critical
2068 * section and does not hold the BQL, it must have other means of
2069 * protecting the pointer, such as a reference to the region that includes
2070 * the incoming ram_addr_t.
2071 *
2072 * @mr: the memory region being queried.
2073 */
2074 void *memory_region_get_ram_ptr(MemoryRegion *mr);
2075
2076 /* memory_region_ram_resize: Resize a RAM region.
2077 *
2078 * Resizing RAM while migrating can result in the migration being canceled.
2079 * Care has to be taken if the guest might have already detected the memory.
2080 *
2081 * @mr: a memory region created with @memory_region_init_resizeable_ram.
2082 * @newsize: the new size the region
2083 * @errp: pointer to Error*, to store an error if it happens.
2084 */
2085 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize,
2086 Error **errp);
2087
2088 /**
2089 * memory_region_msync: Synchronize selected address range of
2090 * a memory mapped region
2091 *
2092 * @mr: the memory region to be msync
2093 * @addr: the initial address of the range to be sync
2094 * @size: the size of the range to be sync
2095 */
2096 void memory_region_msync(MemoryRegion *mr, hwaddr addr, hwaddr size);
2097
2098 /**
2099 * memory_region_writeback: Trigger cache writeback for
2100 * selected address range
2101 *
2102 * @mr: the memory region to be updated
2103 * @addr: the initial address of the range to be written back
2104 * @size: the size of the range to be written back
2105 */
2106 void memory_region_writeback(MemoryRegion *mr, hwaddr addr, hwaddr size);
2107
2108 /**
2109 * memory_region_set_log: Turn dirty logging on or off for a region.
2110 *
2111 * Turns dirty logging on or off for a specified client (display, migration).
2112 * Only meaningful for RAM regions.
2113 *
2114 * @mr: the memory region being updated.
2115 * @log: whether dirty logging is to be enabled or disabled.
2116 * @client: the user of the logging information; %DIRTY_MEMORY_VGA only.
2117 */
2118 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client);
2119
2120 /**
2121 * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region.
2122 *
2123 * Marks a range of bytes as dirty, after it has been dirtied outside
2124 * guest code.
2125 *
2126 * @mr: the memory region being dirtied.
2127 * @addr: the address (relative to the start of the region) being dirtied.
2128 * @size: size of the range being dirtied.
2129 */
2130 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
2131 hwaddr size);
2132
2133 /**
2134 * memory_region_clear_dirty_bitmap - clear dirty bitmap for memory range
2135 *
2136 * This function is called when the caller wants to clear the remote
2137 * dirty bitmap of a memory range within the memory region. This can
2138 * be used by e.g. KVM to manually clear dirty log when
2139 * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT is declared support by the host
2140 * kernel.
2141 *
2142 * @mr: the memory region to clear the dirty log upon
2143 * @start: start address offset within the memory region
2144 * @len: length of the memory region to clear dirty bitmap
2145 */
2146 void memory_region_clear_dirty_bitmap(MemoryRegion *mr, hwaddr start,
2147 hwaddr len);
2148
2149 /**
2150 * memory_region_snapshot_and_clear_dirty: Get a snapshot of the dirty
2151 * bitmap and clear it.
2152 *
2153 * Creates a snapshot of the dirty bitmap, clears the dirty bitmap and
2154 * returns the snapshot. The snapshot can then be used to query dirty
2155 * status, using memory_region_snapshot_get_dirty. Snapshotting allows
2156 * querying the same page multiple times, which is especially useful for
2157 * display updates where the scanlines often are not page aligned.
2158 *
2159 * The dirty bitmap region which gets copied into the snapshot (and
2160 * cleared afterwards) can be larger than requested. The boundaries
2161 * are rounded up/down so complete bitmap longs (covering 64 pages on
2162 * 64bit hosts) can be copied over into the bitmap snapshot. Which
2163 * isn't a problem for display updates as the extra pages are outside
2164 * the visible area, and in case the visible area changes a full
2165 * display redraw is due anyway. Should other use cases for this
2166 * function emerge we might have to revisit this implementation
2167 * detail.
2168 *
2169 * Use g_free to release DirtyBitmapSnapshot.
2170 *
2171 * @mr: the memory region being queried.
2172 * @addr: the address (relative to the start of the region) being queried.
2173 * @size: the size of the range being queried.
2174 * @client: the user of the logging information; typically %DIRTY_MEMORY_VGA.
2175 */
2176 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr,
2177 hwaddr addr,
2178 hwaddr size,
2179 unsigned client);
2180
2181 /**
2182 * memory_region_snapshot_get_dirty: Check whether a range of bytes is dirty
2183 * in the specified dirty bitmap snapshot.
2184 *
2185 * @mr: the memory region being queried.
2186 * @snap: the dirty bitmap snapshot
2187 * @addr: the address (relative to the start of the region) being queried.
2188 * @size: the size of the range being queried.
2189 */
2190 bool memory_region_snapshot_get_dirty(MemoryRegion *mr,
2191 DirtyBitmapSnapshot *snap,
2192 hwaddr addr, hwaddr size);
2193
2194 /**
2195 * memory_region_reset_dirty: Mark a range of pages as clean, for a specified
2196 * client.
2197 *
2198 * Marks a range of pages as no longer dirty.
2199 *
2200 * @mr: the region being updated.
2201 * @addr: the start of the subrange being cleaned.
2202 * @size: the size of the subrange being cleaned.
2203 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
2204 * %DIRTY_MEMORY_VGA.
2205 */
2206 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
2207 hwaddr size, unsigned client);
2208
2209 /**
2210 * memory_region_flush_rom_device: Mark a range of pages dirty and invalidate
2211 * TBs (for self-modifying code).
2212 *
2213 * The MemoryRegionOps->write() callback of a ROM device must use this function
2214 * to mark byte ranges that have been modified internally, such as by directly
2215 * accessing the memory returned by memory_region_get_ram_ptr().
2216 *
2217 * This function marks the range dirty and invalidates TBs so that TCG can
2218 * detect self-modifying code.
2219 *
2220 * @mr: the region being flushed.
2221 * @addr: the start, relative to the start of the region, of the range being
2222 * flushed.
2223 * @size: the size, in bytes, of the range being flushed.
2224 */
2225 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size);
2226
2227 /**
2228 * memory_region_set_readonly: Turn a memory region read-only (or read-write)
2229 *
2230 * Allows a memory region to be marked as read-only (turning it into a ROM).
2231 * only useful on RAM regions.
2232 *
2233 * @mr: the region being updated.
2234 * @readonly: whether the region is to be ROM or RAM.
2235 */
2236 void memory_region_set_readonly(MemoryRegion *mr, bool readonly);
2237
2238 /**
2239 * memory_region_set_nonvolatile: Turn a memory region non-volatile
2240 *
2241 * Allows a memory region to be marked as non-volatile.
2242 * only useful on RAM regions.
2243 *
2244 * @mr: the region being updated.
2245 * @nonvolatile: whether the region is to be non-volatile.
2246 */
2247 void memory_region_set_nonvolatile(MemoryRegion *mr, bool nonvolatile);
2248
2249 /**
2250 * memory_region_rom_device_set_romd: enable/disable ROMD mode
2251 *
2252 * Allows a ROM device (initialized with memory_region_init_rom_device() to
2253 * set to ROMD mode (default) or MMIO mode. When it is in ROMD mode, the
2254 * device is mapped to guest memory and satisfies read access directly.
2255 * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function.
2256 * Writes are always handled by the #MemoryRegion.write function.
2257 *
2258 * @mr: the memory region to be updated
2259 * @romd_mode: %true to put the region into ROMD mode
2260 */
2261 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode);
2262
2263 /**
2264 * memory_region_set_coalescing: Enable memory coalescing for the region.
2265 *
2266 * Enabled writes to a region to be queued for later processing. MMIO ->write
2267 * callbacks may be delayed until a non-coalesced MMIO is issued.
2268 * Only useful for IO regions. Roughly similar to write-combining hardware.
2269 *
2270 * @mr: the memory region to be write coalesced
2271 */
2272 void memory_region_set_coalescing(MemoryRegion *mr);
2273
2274 /**
2275 * memory_region_add_coalescing: Enable memory coalescing for a sub-range of
2276 * a region.
2277 *
2278 * Like memory_region_set_coalescing(), but works on a sub-range of a region.
2279 * Multiple calls can be issued coalesced disjoint ranges.
2280 *
2281 * @mr: the memory region to be updated.
2282 * @offset: the start of the range within the region to be coalesced.
2283 * @size: the size of the subrange to be coalesced.
2284 */
2285 void memory_region_add_coalescing(MemoryRegion *mr,
2286 hwaddr offset,
2287 uint64_t size);
2288
2289 /**
2290 * memory_region_clear_coalescing: Disable MMIO coalescing for the region.
2291 *
2292 * Disables any coalescing caused by memory_region_set_coalescing() or
2293 * memory_region_add_coalescing(). Roughly equivalent to uncacheble memory
2294 * hardware.
2295 *
2296 * @mr: the memory region to be updated.
2297 */
2298 void memory_region_clear_coalescing(MemoryRegion *mr);
2299
2300 /**
2301 * memory_region_set_flush_coalesced: Enforce memory coalescing flush before
2302 * accesses.
2303 *
2304 * Ensure that pending coalesced MMIO request are flushed before the memory
2305 * region is accessed. This property is automatically enabled for all regions
2306 * passed to memory_region_set_coalescing() and memory_region_add_coalescing().
2307 *
2308 * @mr: the memory region to be updated.
2309 */
2310 void memory_region_set_flush_coalesced(MemoryRegion *mr);
2311
2312 /**
2313 * memory_region_clear_flush_coalesced: Disable memory coalescing flush before
2314 * accesses.
2315 *
2316 * Clear the automatic coalesced MMIO flushing enabled via
2317 * memory_region_set_flush_coalesced. Note that this service has no effect on
2318 * memory regions that have MMIO coalescing enabled for themselves. For them,
2319 * automatic flushing will stop once coalescing is disabled.
2320 *
2321 * @mr: the memory region to be updated.
2322 */
2323 void memory_region_clear_flush_coalesced(MemoryRegion *mr);
2324
2325 /**
2326 * memory_region_add_eventfd: Request an eventfd to be triggered when a word
2327 * is written to a location.
2328 *
2329 * Marks a word in an IO region (initialized with memory_region_init_io())
2330 * as a trigger for an eventfd event. The I/O callback will not be called.
2331 * The caller must be prepared to handle failure (that is, take the required
2332 * action if the callback _is_ called).
2333 *
2334 * @mr: the memory region being updated.
2335 * @addr: the address within @mr that is to be monitored
2336 * @size: the size of the access to trigger the eventfd
2337 * @match_data: whether to match against @data, instead of just @addr
2338 * @data: the data to match against the guest write
2339 * @e: event notifier to be triggered when @addr, @size, and @data all match.
2340 **/
2341 void memory_region_add_eventfd(MemoryRegion *mr,
2342 hwaddr addr,
2343 unsigned size,
2344 bool match_data,
2345 uint64_t data,
2346 EventNotifier *e);
2347
2348 /**
2349 * memory_region_del_eventfd: Cancel an eventfd.
2350 *
2351 * Cancels an eventfd trigger requested by a previous
2352 * memory_region_add_eventfd() call.
2353 *
2354 * @mr: the memory region being updated.
2355 * @addr: the address within @mr that is to be monitored
2356 * @size: the size of the access to trigger the eventfd
2357 * @match_data: whether to match against @data, instead of just @addr
2358 * @data: the data to match against the guest write
2359 * @e: event notifier to be triggered when @addr, @size, and @data all match.
2360 */
2361 void memory_region_del_eventfd(MemoryRegion *mr,
2362 hwaddr addr,
2363 unsigned size,
2364 bool match_data,
2365 uint64_t data,
2366 EventNotifier *e);
2367
2368 /**
2369 * memory_region_add_subregion: Add a subregion to a container.
2370 *
2371 * Adds a subregion at @offset. The subregion may not overlap with other
2372 * subregions (except for those explicitly marked as overlapping). A region
2373 * may only be added once as a subregion (unless removed with
2374 * memory_region_del_subregion()); use memory_region_init_alias() if you
2375 * want a region to be a subregion in multiple locations.
2376 *
2377 * @mr: the region to contain the new subregion; must be a container
2378 * initialized with memory_region_init().
2379 * @offset: the offset relative to @mr where @subregion is added.
2380 * @subregion: the subregion to be added.
2381 */
2382 void memory_region_add_subregion(MemoryRegion *mr,
2383 hwaddr offset,
2384 MemoryRegion *subregion);
2385 /**
2386 * memory_region_add_subregion_overlap: Add a subregion to a container
2387 * with overlap.
2388 *
2389 * Adds a subregion at @offset. The subregion may overlap with other
2390 * subregions. Conflicts are resolved by having a higher @priority hide a
2391 * lower @priority. Subregions without priority are taken as @priority 0.
2392 * A region may only be added once as a subregion (unless removed with
2393 * memory_region_del_subregion()); use memory_region_init_alias() if you
2394 * want a region to be a subregion in multiple locations.
2395 *
2396 * @mr: the region to contain the new subregion; must be a container
2397 * initialized with memory_region_init().
2398 * @offset: the offset relative to @mr where @subregion is added.
2399 * @subregion: the subregion to be added.
2400 * @priority: used for resolving overlaps; highest priority wins.
2401 */
2402 void memory_region_add_subregion_overlap(MemoryRegion *mr,
2403 hwaddr offset,
2404 MemoryRegion *subregion,
2405 int priority);
2406
2407 /**
2408 * memory_region_get_ram_addr: Get the ram address associated with a memory
2409 * region
2410 *
2411 * @mr: the region to be queried
2412 */
2413 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr);
2414
2415 uint64_t memory_region_get_alignment(const MemoryRegion *mr);
2416 /**
2417 * memory_region_del_subregion: Remove a subregion.
2418 *
2419 * Removes a subregion from its container.
2420 *
2421 * @mr: the container to be updated.
2422 * @subregion: the region being removed; must be a current subregion of @mr.
2423 */
2424 void memory_region_del_subregion(MemoryRegion *mr,
2425 MemoryRegion *subregion);
2426
2427 /*
2428 * memory_region_set_enabled: dynamically enable or disable a region
2429 *
2430 * Enables or disables a memory region. A disabled memory region
2431 * ignores all accesses to itself and its subregions. It does not
2432 * obscure sibling subregions with lower priority - it simply behaves as
2433 * if it was removed from the hierarchy.
2434 *
2435 * Regions default to being enabled.
2436 *
2437 * @mr: the region to be updated
2438 * @enabled: whether to enable or disable the region
2439 */
2440 void memory_region_set_enabled(MemoryRegion *mr, bool enabled);
2441
2442 /*
2443 * memory_region_set_address: dynamically update the address of a region
2444 *
2445 * Dynamically updates the address of a region, relative to its container.
2446 * May be used on regions are currently part of a memory hierarchy.
2447 *
2448 * @mr: the region to be updated
2449 * @addr: new address, relative to container region
2450 */
2451 void memory_region_set_address(MemoryRegion *mr, hwaddr addr);
2452
2453 /*
2454 * memory_region_set_size: dynamically update the size of a region.
2455 *
2456 * Dynamically updates the size of a region.
2457 *
2458 * @mr: the region to be updated
2459 * @size: used size of the region.
2460 */
2461 void memory_region_set_size(MemoryRegion *mr, uint64_t size);
2462
2463 /*
2464 * memory_region_set_alias_offset: dynamically update a memory alias's offset
2465 *
2466 * Dynamically updates the offset into the target region that an alias points
2467 * to, as if the fourth argument to memory_region_init_alias() has changed.
2468 *
2469 * @mr: the #MemoryRegion to be updated; should be an alias.
2470 * @offset: the new offset into the target memory region
2471 */
2472 void memory_region_set_alias_offset(MemoryRegion *mr,
2473 hwaddr offset);
2474
2475 /*
2476 * memory_region_set_unmergeable: Set a memory region unmergeable
2477 *
2478 * Mark a memory region unmergeable, resulting in the memory region (or
2479 * everything contained in a memory region container) not getting merged when
2480 * simplifying the address space and notifying memory listeners. Consequently,
2481 * memory listeners will never get notified about ranges that are larger than
2482 * the original memory regions.
2483 *
2484 * This is primarily useful when multiple aliases to a RAM memory region are
2485 * mapped into a memory region container, and updates (e.g., enable/disable or
2486 * map/unmap) of individual memory region aliases are not supposed to affect
2487 * other memory regions in the same container.
2488 *
2489 * @mr: the #MemoryRegion to be updated
2490 * @unmergeable: whether to mark the #MemoryRegion unmergeable
2491 */
2492 void memory_region_set_unmergeable(MemoryRegion *mr, bool unmergeable);
2493
2494 /**
2495 * memory_region_present: checks if an address relative to a @container
2496 * translates into #MemoryRegion within @container
2497 *
2498 * Answer whether a #MemoryRegion within @container covers the address
2499 * @addr.
2500 *
2501 * @container: a #MemoryRegion within which @addr is a relative address
2502 * @addr: the area within @container to be searched
2503 */
2504 bool memory_region_present(MemoryRegion *container, hwaddr addr);
2505
2506 /**
2507 * memory_region_is_mapped: returns true if #MemoryRegion is mapped
2508 * into another memory region, which does not necessarily imply that it is
2509 * mapped into an address space.
2510 *
2511 * @mr: a #MemoryRegion which should be checked if it's mapped
2512 */
2513 bool memory_region_is_mapped(MemoryRegion *mr);
2514
2515 /**
2516 * memory_region_get_ram_discard_manager: get the #RamDiscardManager for a
2517 * #MemoryRegion
2518 *
2519 * The #RamDiscardManager cannot change while a memory region is mapped.
2520 *
2521 * @mr: the #MemoryRegion
2522 */
2523 RamDiscardManager *memory_region_get_ram_discard_manager(MemoryRegion *mr);
2524
2525 /**
2526 * memory_region_has_ram_discard_manager: check whether a #MemoryRegion has a
2527 * #RamDiscardManager assigned
2528 *
2529 * @mr: the #MemoryRegion
2530 */
memory_region_has_ram_discard_manager(MemoryRegion * mr)2531 static inline bool memory_region_has_ram_discard_manager(MemoryRegion *mr)
2532 {
2533 return !!memory_region_get_ram_discard_manager(mr);
2534 }
2535
2536 /**
2537 * memory_region_set_ram_discard_manager: set the #RamDiscardManager for a
2538 * #MemoryRegion
2539 *
2540 * This function must not be called for a mapped #MemoryRegion, a #MemoryRegion
2541 * that does not cover RAM, or a #MemoryRegion that already has a
2542 * #RamDiscardManager assigned. Return 0 if the rdm is set successfully.
2543 *
2544 * @mr: the #MemoryRegion
2545 * @rdm: #RamDiscardManager to set
2546 */
2547 int memory_region_set_ram_discard_manager(MemoryRegion *mr,
2548 RamDiscardManager *rdm);
2549
2550 /**
2551 * memory_region_find: translate an address/size relative to a
2552 * MemoryRegion into a #MemoryRegionSection.
2553 *
2554 * Locates the first #MemoryRegion within @mr that overlaps the range
2555 * given by @addr and @size.
2556 *
2557 * Returns a #MemoryRegionSection that describes a contiguous overlap.
2558 * It will have the following characteristics:
2559 * - @size = 0 iff no overlap was found
2560 * - @mr is non-%NULL iff an overlap was found
2561 *
2562 * Remember that in the return value the @offset_within_region is
2563 * relative to the returned region (in the .@mr field), not to the
2564 * @mr argument.
2565 *
2566 * Similarly, the .@offset_within_address_space is relative to the
2567 * address space that contains both regions, the passed and the
2568 * returned one. However, in the special case where the @mr argument
2569 * has no container (and thus is the root of the address space), the
2570 * following will hold:
2571 * - @offset_within_address_space >= @addr
2572 * - @offset_within_address_space + .@size <= @addr + @size
2573 *
2574 * @mr: a MemoryRegion within which @addr is a relative address
2575 * @addr: start of the area within @as to be searched
2576 * @size: size of the area to be searched
2577 */
2578 MemoryRegionSection memory_region_find(MemoryRegion *mr,
2579 hwaddr addr, uint64_t size);
2580
2581 /**
2582 * memory_global_dirty_log_sync: synchronize the dirty log for all memory
2583 *
2584 * Synchronizes the dirty page log for all address spaces.
2585 *
2586 * @last_stage: whether this is the last stage of live migration
2587 */
2588 void memory_global_dirty_log_sync(bool last_stage);
2589
2590 /**
2591 * memory_global_after_dirty_log_sync: synchronize the dirty log for all memory
2592 *
2593 * Synchronizes the vCPUs with a thread that is reading the dirty bitmap.
2594 * This function must be called after the dirty log bitmap is cleared, and
2595 * before dirty guest memory pages are read. If you are using
2596 * #DirtyBitmapSnapshot, memory_region_snapshot_and_clear_dirty() takes
2597 * care of doing this.
2598 */
2599 void memory_global_after_dirty_log_sync(void);
2600
2601 /**
2602 * memory_region_transaction_begin: Start a transaction.
2603 *
2604 * During a transaction, changes will be accumulated and made visible
2605 * only when the transaction ends (is committed).
2606 */
2607 void memory_region_transaction_begin(void);
2608
2609 /**
2610 * memory_region_transaction_commit: Commit a transaction and make changes
2611 * visible to the guest.
2612 */
2613 void memory_region_transaction_commit(void);
2614
2615 /**
2616 * memory_listener_register: register callbacks to be called when memory
2617 * sections are mapped or unmapped into an address
2618 * space
2619 *
2620 * @listener: an object containing the callbacks to be called
2621 * @filter: if non-%NULL, only regions in this address space will be observed
2622 */
2623 void memory_listener_register(MemoryListener *listener, AddressSpace *filter);
2624
2625 /**
2626 * memory_listener_unregister: undo the effect of memory_listener_register()
2627 *
2628 * @listener: an object containing the callbacks to be removed
2629 */
2630 void memory_listener_unregister(MemoryListener *listener);
2631
2632 /**
2633 * memory_global_dirty_log_start: begin dirty logging for all regions
2634 *
2635 * @flags: purpose of starting dirty log, migration or dirty rate
2636 * @errp: pointer to Error*, to store an error if it happens.
2637 *
2638 * Return: true on success, else false setting @errp with error.
2639 */
2640 bool memory_global_dirty_log_start(unsigned int flags, Error **errp);
2641
2642 /**
2643 * memory_global_dirty_log_stop: end dirty logging for all regions
2644 *
2645 * @flags: purpose of stopping dirty log, migration or dirty rate
2646 */
2647 void memory_global_dirty_log_stop(unsigned int flags);
2648
2649 void mtree_info(bool flatview, bool dispatch_tree, bool owner, bool disabled);
2650
2651 bool memory_region_access_valid(MemoryRegion *mr, hwaddr addr,
2652 unsigned size, bool is_write,
2653 MemTxAttrs attrs);
2654
2655 /**
2656 * memory_region_dispatch_read: perform a read directly to the specified
2657 * MemoryRegion.
2658 *
2659 * @mr: #MemoryRegion to access
2660 * @addr: address within that region
2661 * @pval: pointer to uint64_t which the data is written to
2662 * @op: size, sign, and endianness of the memory operation
2663 * @attrs: memory transaction attributes to use for the access
2664 */
2665 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
2666 hwaddr addr,
2667 uint64_t *pval,
2668 MemOp op,
2669 MemTxAttrs attrs);
2670 /**
2671 * memory_region_dispatch_write: perform a write directly to the specified
2672 * MemoryRegion.
2673 *
2674 * @mr: #MemoryRegion to access
2675 * @addr: address within that region
2676 * @data: data to write
2677 * @op: size, sign, and endianness of the memory operation
2678 * @attrs: memory transaction attributes to use for the access
2679 */
2680 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
2681 hwaddr addr,
2682 uint64_t data,
2683 MemOp op,
2684 MemTxAttrs attrs);
2685
2686 /**
2687 * address_space_init: initializes an address space
2688 *
2689 * @as: an uninitialized #AddressSpace
2690 * @root: a #MemoryRegion that routes addresses for the address space
2691 * @name: an address space name. The name is only used for debugging
2692 * output.
2693 */
2694 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name);
2695
2696 /**
2697 * address_space_destroy: destroy an address space
2698 *
2699 * Releases all resources associated with an address space. After an address space
2700 * is destroyed, its root memory region (given by address_space_init()) may be destroyed
2701 * as well.
2702 *
2703 * @as: address space to be destroyed
2704 */
2705 void address_space_destroy(AddressSpace *as);
2706
2707 /**
2708 * address_space_remove_listeners: unregister all listeners of an address space
2709 *
2710 * Removes all callbacks previously registered with memory_listener_register()
2711 * for @as.
2712 *
2713 * @as: an initialized #AddressSpace
2714 */
2715 void address_space_remove_listeners(AddressSpace *as);
2716
2717 /**
2718 * address_space_rw: read from or write to an address space.
2719 *
2720 * Return a MemTxResult indicating whether the operation succeeded
2721 * or failed (eg unassigned memory, device rejected the transaction,
2722 * IOMMU fault).
2723 *
2724 * @as: #AddressSpace to be accessed
2725 * @addr: address within that address space
2726 * @attrs: memory transaction attributes
2727 * @buf: buffer with the data transferred
2728 * @len: the number of bytes to read or write
2729 * @is_write: indicates the transfer direction
2730 */
2731 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
2732 MemTxAttrs attrs, void *buf,
2733 hwaddr len, bool is_write);
2734
2735 /**
2736 * address_space_write: write to address space.
2737 *
2738 * Return a MemTxResult indicating whether the operation succeeded
2739 * or failed (eg unassigned memory, device rejected the transaction,
2740 * IOMMU fault).
2741 *
2742 * @as: #AddressSpace to be accessed
2743 * @addr: address within that address space
2744 * @attrs: memory transaction attributes
2745 * @buf: buffer with the data transferred
2746 * @len: the number of bytes to write
2747 */
2748 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
2749 MemTxAttrs attrs,
2750 const void *buf, hwaddr len);
2751
2752 /**
2753 * address_space_write_rom: write to address space, including ROM.
2754 *
2755 * This function writes to the specified address space, but will
2756 * write data to both ROM and RAM. This is used for non-guest
2757 * writes like writes from the gdb debug stub or initial loading
2758 * of ROM contents.
2759 *
2760 * Note that portions of the write which attempt to write data to
2761 * a device will be silently ignored -- only real RAM and ROM will
2762 * be written to.
2763 *
2764 * Return a MemTxResult indicating whether the operation succeeded
2765 * or failed (eg unassigned memory, device rejected the transaction,
2766 * IOMMU fault).
2767 *
2768 * @as: #AddressSpace to be accessed
2769 * @addr: address within that address space
2770 * @attrs: memory transaction attributes
2771 * @buf: buffer with the data transferred
2772 * @len: the number of bytes to write
2773 */
2774 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
2775 MemTxAttrs attrs,
2776 const void *buf, hwaddr len);
2777
2778 /* address_space_ld*: load from an address space
2779 * address_space_st*: store to an address space
2780 *
2781 * These functions perform a load or store of the byte, word,
2782 * longword or quad to the specified address within the AddressSpace.
2783 * The _le suffixed functions treat the data as little endian;
2784 * _be indicates big endian; no suffix indicates "same endianness
2785 * as guest CPU".
2786 *
2787 * The "guest CPU endianness" accessors are deprecated for use outside
2788 * target-* code; devices should be CPU-agnostic and use either the LE
2789 * or the BE accessors.
2790 *
2791 * @as #AddressSpace to be accessed
2792 * @addr: address within that address space
2793 * @val: data value, for stores
2794 * @attrs: memory transaction attributes
2795 * @result: location to write the success/failure of the transaction;
2796 * if NULL, this information is discarded
2797 */
2798
2799 #define SUFFIX
2800 #define ARG1 as
2801 #define ARG1_DECL AddressSpace *as
2802 #include "exec/memory_ldst.h.inc"
2803
stl_phys_notdirty(AddressSpace * as,hwaddr addr,uint32_t val)2804 static inline void stl_phys_notdirty(AddressSpace *as, hwaddr addr, uint32_t val)
2805 {
2806 address_space_stl_notdirty(as, addr, val,
2807 MEMTXATTRS_UNSPECIFIED, NULL);
2808 }
2809
2810 #define SUFFIX
2811 #define ARG1 as
2812 #define ARG1_DECL AddressSpace *as
2813 #include "exec/memory_ldst_phys.h.inc"
2814
2815 struct MemoryRegionCache {
2816 uint8_t *ptr;
2817 hwaddr xlat;
2818 hwaddr len;
2819 FlatView *fv;
2820 MemoryRegionSection mrs;
2821 bool is_write;
2822 };
2823
2824 /* address_space_ld*_cached: load from a cached #MemoryRegion
2825 * address_space_st*_cached: store into a cached #MemoryRegion
2826 *
2827 * These functions perform a load or store of the byte, word,
2828 * longword or quad to the specified address. The address is
2829 * a physical address in the AddressSpace, but it must lie within
2830 * a #MemoryRegion that was mapped with address_space_cache_init.
2831 *
2832 * The _le suffixed functions treat the data as little endian;
2833 * _be indicates big endian; no suffix indicates "same endianness
2834 * as guest CPU".
2835 *
2836 * The "guest CPU endianness" accessors are deprecated for use outside
2837 * target-* code; devices should be CPU-agnostic and use either the LE
2838 * or the BE accessors.
2839 *
2840 * @cache: previously initialized #MemoryRegionCache to be accessed
2841 * @addr: address within the address space
2842 * @val: data value, for stores
2843 * @attrs: memory transaction attributes
2844 * @result: location to write the success/failure of the transaction;
2845 * if NULL, this information is discarded
2846 */
2847
2848 #define SUFFIX _cached_slow
2849 #define ARG1 cache
2850 #define ARG1_DECL MemoryRegionCache *cache
2851 #include "exec/memory_ldst.h.inc"
2852
2853 /* Inline fast path for direct RAM access. */
address_space_ldub_cached(MemoryRegionCache * cache,hwaddr addr,MemTxAttrs attrs,MemTxResult * result)2854 static inline uint8_t address_space_ldub_cached(MemoryRegionCache *cache,
2855 hwaddr addr, MemTxAttrs attrs, MemTxResult *result)
2856 {
2857 assert(addr < cache->len);
2858 if (likely(cache->ptr)) {
2859 return ldub_p(cache->ptr + addr);
2860 } else {
2861 return address_space_ldub_cached_slow(cache, addr, attrs, result);
2862 }
2863 }
2864
address_space_stb_cached(MemoryRegionCache * cache,hwaddr addr,uint8_t val,MemTxAttrs attrs,MemTxResult * result)2865 static inline void address_space_stb_cached(MemoryRegionCache *cache,
2866 hwaddr addr, uint8_t val, MemTxAttrs attrs, MemTxResult *result)
2867 {
2868 assert(addr < cache->len);
2869 if (likely(cache->ptr)) {
2870 stb_p(cache->ptr + addr, val);
2871 } else {
2872 address_space_stb_cached_slow(cache, addr, val, attrs, result);
2873 }
2874 }
2875
2876 #define ENDIANNESS
2877 #include "exec/memory_ldst_cached.h.inc"
2878
2879 #define ENDIANNESS _le
2880 #include "exec/memory_ldst_cached.h.inc"
2881
2882 #define ENDIANNESS _be
2883 #include "exec/memory_ldst_cached.h.inc"
2884
2885 #define SUFFIX _cached
2886 #define ARG1 cache
2887 #define ARG1_DECL MemoryRegionCache *cache
2888 #include "exec/memory_ldst_phys.h.inc"
2889
2890 /* address_space_cache_init: prepare for repeated access to a physical
2891 * memory region
2892 *
2893 * @cache: #MemoryRegionCache to be filled
2894 * @as: #AddressSpace to be accessed
2895 * @addr: address within that address space
2896 * @len: length of buffer
2897 * @is_write: indicates the transfer direction
2898 *
2899 * Will only work with RAM, and may map a subset of the requested range by
2900 * returning a value that is less than @len. On failure, return a negative
2901 * errno value.
2902 *
2903 * Because it only works with RAM, this function can be used for
2904 * read-modify-write operations. In this case, is_write should be %true.
2905 *
2906 * Note that addresses passed to the address_space_*_cached functions
2907 * are relative to @addr.
2908 */
2909 int64_t address_space_cache_init(MemoryRegionCache *cache,
2910 AddressSpace *as,
2911 hwaddr addr,
2912 hwaddr len,
2913 bool is_write);
2914
2915 /**
2916 * address_space_cache_init_empty: Initialize empty #MemoryRegionCache
2917 *
2918 * @cache: The #MemoryRegionCache to operate on.
2919 *
2920 * Initializes #MemoryRegionCache structure without memory region attached.
2921 * Cache initialized this way can only be safely destroyed, but not used.
2922 */
address_space_cache_init_empty(MemoryRegionCache * cache)2923 static inline void address_space_cache_init_empty(MemoryRegionCache *cache)
2924 {
2925 cache->mrs.mr = NULL;
2926 /* There is no real need to initialize fv, but it makes Coverity happy. */
2927 cache->fv = NULL;
2928 }
2929
2930 /**
2931 * address_space_cache_invalidate: complete a write to a #MemoryRegionCache
2932 *
2933 * @cache: The #MemoryRegionCache to operate on.
2934 * @addr: The first physical address that was written, relative to the
2935 * address that was passed to @address_space_cache_init.
2936 * @access_len: The number of bytes that were written starting at @addr.
2937 */
2938 void address_space_cache_invalidate(MemoryRegionCache *cache,
2939 hwaddr addr,
2940 hwaddr access_len);
2941
2942 /**
2943 * address_space_cache_destroy: free a #MemoryRegionCache
2944 *
2945 * @cache: The #MemoryRegionCache whose memory should be released.
2946 */
2947 void address_space_cache_destroy(MemoryRegionCache *cache);
2948
2949 /* address_space_get_iotlb_entry: translate an address into an IOTLB
2950 * entry. Should be called from an RCU critical section.
2951 */
2952 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
2953 bool is_write, MemTxAttrs attrs);
2954
2955 /* address_space_translate: translate an address range into an address space
2956 * into a MemoryRegion and an address range into that section. Should be
2957 * called from an RCU critical section, to avoid that the last reference
2958 * to the returned region disappears after address_space_translate returns.
2959 *
2960 * @fv: #FlatView to be accessed
2961 * @addr: address within that address space
2962 * @xlat: pointer to address within the returned memory region section's
2963 * #MemoryRegion.
2964 * @len: pointer to length
2965 * @is_write: indicates the transfer direction
2966 * @attrs: memory attributes
2967 */
2968 MemoryRegion *flatview_translate(FlatView *fv,
2969 hwaddr addr, hwaddr *xlat,
2970 hwaddr *len, bool is_write,
2971 MemTxAttrs attrs);
2972
address_space_translate(AddressSpace * as,hwaddr addr,hwaddr * xlat,hwaddr * len,bool is_write,MemTxAttrs attrs)2973 static inline MemoryRegion *address_space_translate(AddressSpace *as,
2974 hwaddr addr, hwaddr *xlat,
2975 hwaddr *len, bool is_write,
2976 MemTxAttrs attrs)
2977 {
2978 return flatview_translate(address_space_to_flatview(as),
2979 addr, xlat, len, is_write, attrs);
2980 }
2981
2982 /* address_space_access_valid: check for validity of accessing an address
2983 * space range
2984 *
2985 * Check whether memory is assigned to the given address space range, and
2986 * access is permitted by any IOMMU regions that are active for the address
2987 * space.
2988 *
2989 * For now, addr and len should be aligned to a page size. This limitation
2990 * will be lifted in the future.
2991 *
2992 * @as: #AddressSpace to be accessed
2993 * @addr: address within that address space
2994 * @len: length of the area to be checked
2995 * @is_write: indicates the transfer direction
2996 * @attrs: memory attributes
2997 */
2998 bool address_space_access_valid(AddressSpace *as, hwaddr addr, hwaddr len,
2999 bool is_write, MemTxAttrs attrs);
3000
3001 /* address_space_map: map a physical memory region into a host virtual address
3002 *
3003 * May map a subset of the requested range, given by and returned in @plen.
3004 * May return %NULL and set *@plen to zero(0), if resources needed to perform
3005 * the mapping are exhausted.
3006 * Use only for reads OR writes - not for read-modify-write operations.
3007 * Use address_space_register_map_client() to know when retrying the map
3008 * operation is likely to succeed.
3009 *
3010 * @as: #AddressSpace to be accessed
3011 * @addr: address within that address space
3012 * @plen: pointer to length of buffer; updated on return
3013 * @is_write: indicates the transfer direction
3014 * @attrs: memory attributes
3015 */
3016 void *address_space_map(AddressSpace *as, hwaddr addr,
3017 hwaddr *plen, bool is_write, MemTxAttrs attrs);
3018
3019 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map()
3020 *
3021 * Will also mark the memory as dirty if @is_write == %true. @access_len gives
3022 * the amount of memory that was actually read or written by the caller.
3023 *
3024 * @as: #AddressSpace used
3025 * @buffer: host pointer as returned by address_space_map()
3026 * @len: buffer length as returned by address_space_map()
3027 * @access_len: amount of data actually transferred
3028 * @is_write: indicates the transfer direction
3029 */
3030 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3031 bool is_write, hwaddr access_len);
3032
3033 /*
3034 * address_space_register_map_client: Register a callback to invoke when
3035 * resources for address_space_map() are available again.
3036 *
3037 * address_space_map may fail when there are not enough resources available,
3038 * such as when bounce buffer memory would exceed the limit. The callback can
3039 * be used to retry the address_space_map operation. Note that the callback
3040 * gets automatically removed after firing.
3041 *
3042 * @as: #AddressSpace to be accessed
3043 * @bh: callback to invoke when address_space_map() retry is appropriate
3044 */
3045 void address_space_register_map_client(AddressSpace *as, QEMUBH *bh);
3046
3047 /*
3048 * address_space_unregister_map_client: Unregister a callback that has
3049 * previously been registered and not fired yet.
3050 *
3051 * @as: #AddressSpace to be accessed
3052 * @bh: callback to unregister
3053 */
3054 void address_space_unregister_map_client(AddressSpace *as, QEMUBH *bh);
3055
3056 /* Internal functions, part of the implementation of address_space_read. */
3057 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
3058 MemTxAttrs attrs, void *buf, hwaddr len);
3059 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
3060 MemTxAttrs attrs, void *buf,
3061 hwaddr len, hwaddr addr1, hwaddr l,
3062 MemoryRegion *mr);
3063 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr);
3064
3065 /* Internal functions, part of the implementation of address_space_read_cached
3066 * and address_space_write_cached. */
3067 MemTxResult address_space_read_cached_slow(MemoryRegionCache *cache,
3068 hwaddr addr, void *buf, hwaddr len);
3069 MemTxResult address_space_write_cached_slow(MemoryRegionCache *cache,
3070 hwaddr addr, const void *buf,
3071 hwaddr len);
3072
3073 int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr);
3074 bool prepare_mmio_access(MemoryRegion *mr);
3075
memory_region_supports_direct_access(MemoryRegion * mr)3076 static inline bool memory_region_supports_direct_access(MemoryRegion *mr)
3077 {
3078 /* ROM DEVICE regions only allow direct access if in ROMD mode. */
3079 if (memory_region_is_romd(mr)) {
3080 return true;
3081 }
3082 if (!memory_region_is_ram(mr)) {
3083 return false;
3084 }
3085 /*
3086 * RAM DEVICE regions can be accessed directly using memcpy, but it might
3087 * be MMIO and access using mempy can be wrong (e.g., using instructions not
3088 * intended for MMIO access). So we treat this as IO.
3089 */
3090 return !memory_region_is_ram_device(mr);
3091 }
3092
memory_access_is_direct(MemoryRegion * mr,bool is_write,MemTxAttrs attrs)3093 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write,
3094 MemTxAttrs attrs)
3095 {
3096 if (!memory_region_supports_direct_access(mr)) {
3097 return false;
3098 }
3099 /* Debug access can write to ROM. */
3100 if (is_write && !attrs.debug) {
3101 return !mr->readonly && !mr->rom_device;
3102 }
3103 return true;
3104 }
3105
3106 /**
3107 * address_space_read: read from an address space.
3108 *
3109 * Return a MemTxResult indicating whether the operation succeeded
3110 * or failed (eg unassigned memory, device rejected the transaction,
3111 * IOMMU fault). Called within RCU critical section.
3112 *
3113 * @as: #AddressSpace to be accessed
3114 * @addr: address within that address space
3115 * @attrs: memory transaction attributes
3116 * @buf: buffer with the data transferred
3117 * @len: length of the data transferred
3118 */
3119 static inline __attribute__((__always_inline__))
address_space_read(AddressSpace * as,hwaddr addr,MemTxAttrs attrs,void * buf,hwaddr len)3120 MemTxResult address_space_read(AddressSpace *as, hwaddr addr,
3121 MemTxAttrs attrs, void *buf,
3122 hwaddr len)
3123 {
3124 MemTxResult result = MEMTX_OK;
3125 hwaddr l, addr1;
3126 void *ptr;
3127 MemoryRegion *mr;
3128 FlatView *fv;
3129
3130 if (__builtin_constant_p(len)) {
3131 if (len) {
3132 RCU_READ_LOCK_GUARD();
3133 fv = address_space_to_flatview(as);
3134 l = len;
3135 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
3136 if (len == l && memory_access_is_direct(mr, false, attrs)) {
3137 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
3138 memcpy(buf, ptr, len);
3139 } else {
3140 result = flatview_read_continue(fv, addr, attrs, buf, len,
3141 addr1, l, mr);
3142 }
3143 }
3144 } else {
3145 result = address_space_read_full(as, addr, attrs, buf, len);
3146 }
3147 return result;
3148 }
3149
3150 /**
3151 * address_space_read_cached: read from a cached RAM region
3152 *
3153 * @cache: Cached region to be addressed
3154 * @addr: address relative to the base of the RAM region
3155 * @buf: buffer with the data transferred
3156 * @len: length of the data transferred
3157 */
3158 static inline MemTxResult
address_space_read_cached(MemoryRegionCache * cache,hwaddr addr,void * buf,hwaddr len)3159 address_space_read_cached(MemoryRegionCache *cache, hwaddr addr,
3160 void *buf, hwaddr len)
3161 {
3162 assert(addr < cache->len && len <= cache->len - addr);
3163 fuzz_dma_read_cb(cache->xlat + addr, len, cache->mrs.mr);
3164 if (likely(cache->ptr)) {
3165 memcpy(buf, cache->ptr + addr, len);
3166 return MEMTX_OK;
3167 } else {
3168 return address_space_read_cached_slow(cache, addr, buf, len);
3169 }
3170 }
3171
3172 /**
3173 * address_space_write_cached: write to a cached RAM region
3174 *
3175 * @cache: Cached region to be addressed
3176 * @addr: address relative to the base of the RAM region
3177 * @buf: buffer with the data transferred
3178 * @len: length of the data transferred
3179 */
3180 static inline MemTxResult
address_space_write_cached(MemoryRegionCache * cache,hwaddr addr,const void * buf,hwaddr len)3181 address_space_write_cached(MemoryRegionCache *cache, hwaddr addr,
3182 const void *buf, hwaddr len)
3183 {
3184 assert(addr < cache->len && len <= cache->len - addr);
3185 if (likely(cache->ptr)) {
3186 memcpy(cache->ptr + addr, buf, len);
3187 return MEMTX_OK;
3188 } else {
3189 return address_space_write_cached_slow(cache, addr, buf, len);
3190 }
3191 }
3192
3193 /**
3194 * address_space_set: Fill address space with a constant byte.
3195 *
3196 * Return a MemTxResult indicating whether the operation succeeded
3197 * or failed (eg unassigned memory, device rejected the transaction,
3198 * IOMMU fault).
3199 *
3200 * @as: #AddressSpace to be accessed
3201 * @addr: address within that address space
3202 * @c: constant byte to fill the memory
3203 * @len: the number of bytes to fill with the constant byte
3204 * @attrs: memory transaction attributes
3205 */
3206 MemTxResult address_space_set(AddressSpace *as, hwaddr addr,
3207 uint8_t c, hwaddr len, MemTxAttrs attrs);
3208
3209 /*
3210 * Inhibit technologies that require discarding of pages in RAM blocks, e.g.,
3211 * to manage the actual amount of memory consumed by the VM (then, the memory
3212 * provided by RAM blocks might be bigger than the desired memory consumption).
3213 * This *must* be set if:
3214 * - Discarding parts of a RAM blocks does not result in the change being
3215 * reflected in the VM and the pages getting freed.
3216 * - All memory in RAM blocks is pinned or duplicated, invaldiating any previous
3217 * discards blindly.
3218 * - Discarding parts of a RAM blocks will result in integrity issues (e.g.,
3219 * encrypted VMs).
3220 * Technologies that only temporarily pin the current working set of a
3221 * driver are fine, because we don't expect such pages to be discarded
3222 * (esp. based on guest action like balloon inflation).
3223 *
3224 * This is *not* to be used to protect from concurrent discards (esp.,
3225 * postcopy).
3226 *
3227 * Returns 0 if successful. Returns -EBUSY if a technology that relies on
3228 * discards to work reliably is active.
3229 */
3230 int ram_block_discard_disable(bool state);
3231
3232 /*
3233 * See ram_block_discard_disable(): only disable uncoordinated discards,
3234 * keeping coordinated discards (via the RamDiscardManager) enabled.
3235 */
3236 int ram_block_uncoordinated_discard_disable(bool state);
3237
3238 /*
3239 * Inhibit technologies that disable discarding of pages in RAM blocks.
3240 *
3241 * Returns 0 if successful. Returns -EBUSY if discards are already set to
3242 * broken.
3243 */
3244 int ram_block_discard_require(bool state);
3245
3246 /*
3247 * See ram_block_discard_require(): only inhibit technologies that disable
3248 * uncoordinated discarding of pages in RAM blocks, allowing co-existence with
3249 * technologies that only inhibit uncoordinated discards (via the
3250 * RamDiscardManager).
3251 */
3252 int ram_block_coordinated_discard_require(bool state);
3253
3254 /*
3255 * Test if any discarding of memory in ram blocks is disabled.
3256 */
3257 bool ram_block_discard_is_disabled(void);
3258
3259 /*
3260 * Test if any discarding of memory in ram blocks is required to work reliably.
3261 */
3262 bool ram_block_discard_is_required(void);
3263
3264 void ram_block_add_cpr_blocker(RAMBlock *rb, Error **errp);
3265 void ram_block_del_cpr_blocker(RAMBlock *rb);
3266
3267 #endif
3268