1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright 2005, Paul Mackerras, IBM Corporation.
4 * Copyright 2009, Benjamin Herrenschmidt, IBM Corporation.
5 * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation.
6 */
7
8 #include <linux/sched.h>
9 #include <linux/mm_types.h>
10 #include <linux/mm.h>
11 #include <linux/stop_machine.h>
12
13 #include <asm/sections.h>
14 #include <asm/mmu.h>
15 #include <asm/tlb.h>
16 #include <asm/firmware.h>
17
18 #include <mm/mmu_decl.h>
19
20 #include <trace/events/thp.h>
21
22 #if H_PGTABLE_RANGE > (USER_VSID_RANGE * (TASK_SIZE_USER64 / TASK_CONTEXT_SIZE))
23 #warning Limited user VSID range means pagetable space is wasted
24 #endif
25
26 #ifdef CONFIG_SPARSEMEM_VMEMMAP
27 /*
28 * vmemmap is the starting address of the virtual address space where
29 * struct pages are allocated for all possible PFNs present on the system
30 * including holes and bad memory (hence sparse). These virtual struct
31 * pages are stored in sequence in this virtual address space irrespective
32 * of the fact whether the corresponding PFN is valid or not. This achieves
33 * constant relationship between address of struct page and its PFN.
34 *
35 * During boot or memory hotplug operation when a new memory section is
36 * added, physical memory allocation (including hash table bolting) will
37 * be performed for the set of struct pages which are part of the memory
38 * section. This saves memory by not allocating struct pages for PFNs
39 * which are not valid.
40 *
41 * ----------------------------------------------
42 * | PHYSICAL ALLOCATION OF VIRTUAL STRUCT PAGES|
43 * ----------------------------------------------
44 *
45 * f000000000000000 c000000000000000
46 * vmemmap +--------------+ +--------------+
47 * + | page struct | +--------------> | page struct |
48 * | +--------------+ +--------------+
49 * | | page struct | +--------------> | page struct |
50 * | +--------------+ | +--------------+
51 * | | page struct | + +------> | page struct |
52 * | +--------------+ | +--------------+
53 * | | page struct | | +--> | page struct |
54 * | +--------------+ | | +--------------+
55 * | | page struct | | |
56 * | +--------------+ | |
57 * | | page struct | | |
58 * | +--------------+ | |
59 * | | page struct | | |
60 * | +--------------+ | |
61 * | | page struct | | |
62 * | +--------------+ | |
63 * | | page struct | +-------+ |
64 * | +--------------+ |
65 * | | page struct | +-----------+
66 * | +--------------+
67 * | | page struct | No mapping
68 * | +--------------+
69 * | | page struct | No mapping
70 * v +--------------+
71 *
72 * -----------------------------------------
73 * | RELATION BETWEEN STRUCT PAGES AND PFNS|
74 * -----------------------------------------
75 *
76 * vmemmap +--------------+ +---------------+
77 * + | page struct | +-------------> | PFN |
78 * | +--------------+ +---------------+
79 * | | page struct | +-------------> | PFN |
80 * | +--------------+ +---------------+
81 * | | page struct | +-------------> | PFN |
82 * | +--------------+ +---------------+
83 * | | page struct | +-------------> | PFN |
84 * | +--------------+ +---------------+
85 * | | |
86 * | +--------------+
87 * | | |
88 * | +--------------+
89 * | | |
90 * | +--------------+ +---------------+
91 * | | page struct | +-------------> | PFN |
92 * | +--------------+ +---------------+
93 * | | |
94 * | +--------------+
95 * | | |
96 * | +--------------+ +---------------+
97 * | | page struct | +-------------> | PFN |
98 * | +--------------+ +---------------+
99 * | | page struct | +-------------> | PFN |
100 * v +--------------+ +---------------+
101 */
102 /*
103 * On hash-based CPUs, the vmemmap is bolted in the hash table.
104 *
105 */
hash__vmemmap_create_mapping(unsigned long start,unsigned long page_size,unsigned long phys)106 int __meminit hash__vmemmap_create_mapping(unsigned long start,
107 unsigned long page_size,
108 unsigned long phys)
109 {
110 int rc;
111
112 if ((start + page_size) >= H_VMEMMAP_END) {
113 pr_warn("Outside the supported range\n");
114 return -1;
115 }
116
117 rc = htab_bolt_mapping(start, start + page_size, phys,
118 pgprot_val(PAGE_KERNEL),
119 mmu_vmemmap_psize, mmu_kernel_ssize);
120 if (rc < 0) {
121 int rc2 = htab_remove_mapping(start, start + page_size,
122 mmu_vmemmap_psize,
123 mmu_kernel_ssize);
124 BUG_ON(rc2 && (rc2 != -ENOENT));
125 }
126 return rc;
127 }
128
129 #ifdef CONFIG_MEMORY_HOTPLUG
hash__vmemmap_remove_mapping(unsigned long start,unsigned long page_size)130 void hash__vmemmap_remove_mapping(unsigned long start,
131 unsigned long page_size)
132 {
133 int rc = htab_remove_mapping(start, start + page_size,
134 mmu_vmemmap_psize,
135 mmu_kernel_ssize);
136 BUG_ON((rc < 0) && (rc != -ENOENT));
137 WARN_ON(rc == -ENOENT);
138 }
139 #endif
140 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
141
142 /*
143 * map_kernel_page currently only called by __ioremap
144 * map_kernel_page adds an entry to the ioremap page table
145 * and adds an entry to the HPT, possibly bolting it
146 */
hash__map_kernel_page(unsigned long ea,unsigned long pa,pgprot_t prot)147 int hash__map_kernel_page(unsigned long ea, unsigned long pa, pgprot_t prot)
148 {
149 pgd_t *pgdp;
150 p4d_t *p4dp;
151 pud_t *pudp;
152 pmd_t *pmdp;
153 pte_t *ptep;
154
155 BUILD_BUG_ON(TASK_SIZE_USER64 > H_PGTABLE_RANGE);
156 if (slab_is_available()) {
157 pgdp = pgd_offset_k(ea);
158 p4dp = p4d_offset(pgdp, ea);
159 pudp = pud_alloc(&init_mm, p4dp, ea);
160 if (!pudp)
161 return -ENOMEM;
162 pmdp = pmd_alloc(&init_mm, pudp, ea);
163 if (!pmdp)
164 return -ENOMEM;
165 ptep = pte_alloc_kernel(pmdp, ea);
166 if (!ptep)
167 return -ENOMEM;
168 set_pte_at(&init_mm, ea, ptep, pfn_pte(pa >> PAGE_SHIFT, prot));
169 } else {
170 /*
171 * If the mm subsystem is not fully up, we cannot create a
172 * linux page table entry for this mapping. Simply bolt an
173 * entry in the hardware page table.
174 *
175 */
176 if (htab_bolt_mapping(ea, ea + PAGE_SIZE, pa, pgprot_val(prot),
177 mmu_io_psize, mmu_kernel_ssize)) {
178 printk(KERN_ERR "Failed to do bolted mapping IO "
179 "memory at %016lx !\n", pa);
180 return -ENOMEM;
181 }
182 }
183
184 smp_wmb();
185 return 0;
186 }
187
188 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
189
hash__pmd_hugepage_update(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp,unsigned long clr,unsigned long set)190 unsigned long hash__pmd_hugepage_update(struct mm_struct *mm, unsigned long addr,
191 pmd_t *pmdp, unsigned long clr,
192 unsigned long set)
193 {
194 __be64 old_be, tmp;
195 unsigned long old;
196
197 #ifdef CONFIG_DEBUG_VM
198 WARN_ON(!hash__pmd_trans_huge(*pmdp));
199 assert_spin_locked(pmd_lockptr(mm, pmdp));
200 #endif
201
202 __asm__ __volatile__(
203 "1: ldarx %0,0,%3\n\
204 and. %1,%0,%6\n\
205 bne- 1b \n\
206 andc %1,%0,%4 \n\
207 or %1,%1,%7\n\
208 stdcx. %1,0,%3 \n\
209 bne- 1b"
210 : "=&r" (old_be), "=&r" (tmp), "=m" (*pmdp)
211 : "r" (pmdp), "r" (cpu_to_be64(clr)), "m" (*pmdp),
212 "r" (cpu_to_be64(H_PAGE_BUSY)), "r" (cpu_to_be64(set))
213 : "cc" );
214
215 old = be64_to_cpu(old_be);
216
217 trace_hugepage_update_pmd(addr, old, clr, set);
218 if (old & H_PAGE_HASHPTE)
219 hpte_do_hugepage_flush(mm, addr, pmdp, old);
220 return old;
221 }
222
hash__pmdp_collapse_flush(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)223 pmd_t hash__pmdp_collapse_flush(struct vm_area_struct *vma, unsigned long address,
224 pmd_t *pmdp)
225 {
226 pmd_t pmd;
227
228 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
229 VM_BUG_ON(pmd_trans_huge(*pmdp));
230
231 pmd = *pmdp;
232 pmd_clear(pmdp);
233 /*
234 * Wait for all pending hash_page to finish. This is needed
235 * in case of subpage collapse. When we collapse normal pages
236 * to hugepage, we first clear the pmd, then invalidate all
237 * the PTE entries. The assumption here is that any low level
238 * page fault will see a none pmd and take the slow path that
239 * will wait on mmap_lock. But we could very well be in a
240 * hash_page with local ptep pointer value. Such a hash page
241 * can result in adding new HPTE entries for normal subpages.
242 * That means we could be modifying the page content as we
243 * copy them to a huge page. So wait for parallel hash_page
244 * to finish before invalidating HPTE entries. We can do this
245 * by sending an IPI to all the cpus and executing a dummy
246 * function there.
247 */
248 serialize_against_pte_lookup(vma->vm_mm);
249 /*
250 * Now invalidate the hpte entries in the range
251 * covered by pmd. This make sure we take a
252 * fault and will find the pmd as none, which will
253 * result in a major fault which takes mmap_lock and
254 * hence wait for collapse to complete. Without this
255 * the __collapse_huge_page_copy can result in copying
256 * the old content.
257 */
258 flush_hash_table_pmd_range(vma->vm_mm, &pmd, address);
259 return pmd;
260 }
261
262 /*
263 * We want to put the pgtable in pmd and use pgtable for tracking
264 * the base page size hptes
265 */
hash__pgtable_trans_huge_deposit(struct mm_struct * mm,pmd_t * pmdp,pgtable_t pgtable)266 void hash__pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
267 pgtable_t pgtable)
268 {
269 pgtable_t *pgtable_slot;
270
271 assert_spin_locked(pmd_lockptr(mm, pmdp));
272 /*
273 * we store the pgtable in the second half of PMD
274 */
275 pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD;
276 *pgtable_slot = pgtable;
277 /*
278 * expose the deposited pgtable to other cpus.
279 * before we set the hugepage PTE at pmd level
280 * hash fault code looks at the deposted pgtable
281 * to store hash index values.
282 */
283 smp_wmb();
284 }
285
hash__pgtable_trans_huge_withdraw(struct mm_struct * mm,pmd_t * pmdp)286 pgtable_t hash__pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp)
287 {
288 pgtable_t pgtable;
289 pgtable_t *pgtable_slot;
290
291 assert_spin_locked(pmd_lockptr(mm, pmdp));
292
293 pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD;
294 pgtable = *pgtable_slot;
295 /*
296 * Once we withdraw, mark the entry NULL.
297 */
298 *pgtable_slot = NULL;
299 /*
300 * We store HPTE information in the deposited PTE fragment.
301 * zero out the content on withdraw.
302 */
303 memset(pgtable, 0, PTE_FRAG_SIZE);
304 return pgtable;
305 }
306
307 /*
308 * A linux hugepage PMD was changed and the corresponding hash table entries
309 * neesd to be flushed.
310 */
hpte_do_hugepage_flush(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp,unsigned long old_pmd)311 void hpte_do_hugepage_flush(struct mm_struct *mm, unsigned long addr,
312 pmd_t *pmdp, unsigned long old_pmd)
313 {
314 int ssize;
315 unsigned int psize;
316 unsigned long vsid;
317 unsigned long flags = 0;
318
319 /* get the base page size,vsid and segment size */
320 #ifdef CONFIG_DEBUG_VM
321 psize = get_slice_psize(mm, addr);
322 BUG_ON(psize == MMU_PAGE_16M);
323 #endif
324 if (old_pmd & H_PAGE_COMBO)
325 psize = MMU_PAGE_4K;
326 else
327 psize = MMU_PAGE_64K;
328
329 if (!is_kernel_addr(addr)) {
330 ssize = user_segment_size(addr);
331 vsid = get_user_vsid(&mm->context, addr, ssize);
332 WARN_ON(vsid == 0);
333 } else {
334 vsid = get_kernel_vsid(addr, mmu_kernel_ssize);
335 ssize = mmu_kernel_ssize;
336 }
337
338 if (mm_is_thread_local(mm))
339 flags |= HPTE_LOCAL_UPDATE;
340
341 return flush_hash_hugepage(vsid, addr, pmdp, psize, ssize, flags);
342 }
343
hash__pmdp_huge_get_and_clear(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp)344 pmd_t hash__pmdp_huge_get_and_clear(struct mm_struct *mm,
345 unsigned long addr, pmd_t *pmdp)
346 {
347 pmd_t old_pmd;
348 pgtable_t pgtable;
349 unsigned long old;
350 pgtable_t *pgtable_slot;
351
352 old = pmd_hugepage_update(mm, addr, pmdp, ~0UL, 0);
353 old_pmd = __pmd(old);
354 /*
355 * We have pmd == none and we are holding page_table_lock.
356 * So we can safely go and clear the pgtable hash
357 * index info.
358 */
359 pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD;
360 pgtable = *pgtable_slot;
361 /*
362 * Let's zero out old valid and hash index details
363 * hash fault look at them.
364 */
365 memset(pgtable, 0, PTE_FRAG_SIZE);
366 return old_pmd;
367 }
368
hash__has_transparent_hugepage(void)369 int hash__has_transparent_hugepage(void)
370 {
371
372 if (!mmu_has_feature(MMU_FTR_16M_PAGE))
373 return 0;
374 /*
375 * We support THP only if PMD_SIZE is 16MB.
376 */
377 if (mmu_psize_defs[MMU_PAGE_16M].shift != PMD_SHIFT)
378 return 0;
379 /*
380 * We need to make sure that we support 16MB hugepage in a segment
381 * with base page size 64K or 4K. We only enable THP with a PAGE_SIZE
382 * of 64K.
383 */
384 /*
385 * If we have 64K HPTE, we will be using that by default
386 */
387 if (mmu_psize_defs[MMU_PAGE_64K].shift &&
388 (mmu_psize_defs[MMU_PAGE_64K].penc[MMU_PAGE_16M] == -1))
389 return 0;
390 /*
391 * Ok we only have 4K HPTE
392 */
393 if (mmu_psize_defs[MMU_PAGE_4K].penc[MMU_PAGE_16M] == -1)
394 return 0;
395
396 return 1;
397 }
398 EXPORT_SYMBOL_GPL(hash__has_transparent_hugepage);
399
400 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
401
402 #ifdef CONFIG_STRICT_KERNEL_RWX
403
404 struct change_memory_parms {
405 unsigned long start, end, newpp;
406 unsigned int step, nr_cpus;
407 atomic_t master_cpu;
408 atomic_t cpu_counter;
409 };
410
411 // We'd rather this was on the stack but it has to be in the RMO
412 static struct change_memory_parms chmem_parms;
413
414 // And therefore we need a lock to protect it from concurrent use
415 static DEFINE_MUTEX(chmem_lock);
416
change_memory_range(unsigned long start,unsigned long end,unsigned int step,unsigned long newpp)417 static void change_memory_range(unsigned long start, unsigned long end,
418 unsigned int step, unsigned long newpp)
419 {
420 unsigned long idx;
421
422 pr_debug("Changing page protection on range 0x%lx-0x%lx, to 0x%lx, step 0x%x\n",
423 start, end, newpp, step);
424
425 for (idx = start; idx < end; idx += step)
426 /* Not sure if we can do much with the return value */
427 mmu_hash_ops.hpte_updateboltedpp(newpp, idx, mmu_linear_psize,
428 mmu_kernel_ssize);
429 }
430
chmem_secondary_loop(struct change_memory_parms * parms)431 static int notrace chmem_secondary_loop(struct change_memory_parms *parms)
432 {
433 unsigned long msr, tmp, flags;
434 int *p;
435
436 p = &parms->cpu_counter.counter;
437
438 local_irq_save(flags);
439 hard_irq_disable();
440
441 asm volatile (
442 // Switch to real mode and leave interrupts off
443 "mfmsr %[msr] ;"
444 "li %[tmp], %[MSR_IR_DR] ;"
445 "andc %[tmp], %[msr], %[tmp] ;"
446 "mtmsrd %[tmp] ;"
447
448 // Tell the master we are in real mode
449 "1: "
450 "lwarx %[tmp], 0, %[p] ;"
451 "addic %[tmp], %[tmp], -1 ;"
452 "stwcx. %[tmp], 0, %[p] ;"
453 "bne- 1b ;"
454
455 // Spin until the counter goes to zero
456 "2: ;"
457 "lwz %[tmp], 0(%[p]) ;"
458 "cmpwi %[tmp], 0 ;"
459 "bne- 2b ;"
460
461 // Switch back to virtual mode
462 "mtmsrd %[msr] ;"
463
464 : // outputs
465 [msr] "=&r" (msr), [tmp] "=&b" (tmp), "+m" (*p)
466 : // inputs
467 [p] "b" (p), [MSR_IR_DR] "i" (MSR_IR | MSR_DR)
468 : // clobbers
469 "cc", "xer"
470 );
471
472 local_irq_restore(flags);
473
474 return 0;
475 }
476
change_memory_range_fn(void * data)477 static int change_memory_range_fn(void *data)
478 {
479 struct change_memory_parms *parms = data;
480
481 // First CPU goes through, all others wait.
482 if (atomic_xchg(&parms->master_cpu, 1) == 1)
483 return chmem_secondary_loop(parms);
484
485 // Wait for all but one CPU (this one) to call-in
486 while (atomic_read(&parms->cpu_counter) > 1)
487 barrier();
488
489 change_memory_range(parms->start, parms->end, parms->step, parms->newpp);
490
491 mb();
492
493 // Signal the other CPUs that we're done
494 atomic_dec(&parms->cpu_counter);
495
496 return 0;
497 }
498
hash__change_memory_range(unsigned long start,unsigned long end,unsigned long newpp)499 static bool hash__change_memory_range(unsigned long start, unsigned long end,
500 unsigned long newpp)
501 {
502 unsigned int step, shift;
503
504 shift = mmu_psize_defs[mmu_linear_psize].shift;
505 step = 1 << shift;
506
507 start = ALIGN_DOWN(start, step);
508 end = ALIGN(end, step); // aligns up
509
510 if (start >= end)
511 return false;
512
513 if (firmware_has_feature(FW_FEATURE_LPAR)) {
514 mutex_lock(&chmem_lock);
515
516 chmem_parms.start = start;
517 chmem_parms.end = end;
518 chmem_parms.step = step;
519 chmem_parms.newpp = newpp;
520 atomic_set(&chmem_parms.master_cpu, 0);
521
522 cpus_read_lock();
523
524 atomic_set(&chmem_parms.cpu_counter, num_online_cpus());
525
526 // Ensure state is consistent before we call the other CPUs
527 mb();
528
529 stop_machine_cpuslocked(change_memory_range_fn, &chmem_parms,
530 cpu_online_mask);
531
532 cpus_read_unlock();
533 mutex_unlock(&chmem_lock);
534 } else
535 change_memory_range(start, end, step, newpp);
536
537 return true;
538 }
539
hash__mark_rodata_ro(void)540 void hash__mark_rodata_ro(void)
541 {
542 unsigned long start, end, pp;
543
544 start = (unsigned long)_stext;
545 end = (unsigned long)__end_rodata;
546
547 pp = htab_convert_pte_flags(pgprot_val(PAGE_KERNEL_ROX), HPTE_USE_KERNEL_KEY);
548
549 WARN_ON(!hash__change_memory_range(start, end, pp));
550 }
551
hash__mark_initmem_nx(void)552 void hash__mark_initmem_nx(void)
553 {
554 unsigned long start, end, pp;
555
556 start = (unsigned long)__init_begin;
557 end = (unsigned long)__init_end;
558
559 pp = htab_convert_pte_flags(pgprot_val(PAGE_KERNEL), HPTE_USE_KERNEL_KEY);
560
561 WARN_ON(!hash__change_memory_range(start, end, pp));
562 }
563 #endif
564