xref: /linux/arch/powerpc/mm/book3s64/hash_pgtable.c (revision beace86e61e465dba204a268ab3f3377153a4973)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright 2005, Paul Mackerras, IBM Corporation.
4  * Copyright 2009, Benjamin Herrenschmidt, IBM Corporation.
5  * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation.
6  */
7 
8 #include <linux/sched.h>
9 #include <linux/mm_types.h>
10 #include <linux/mm.h>
11 #include <linux/stop_machine.h>
12 
13 #include <asm/sections.h>
14 #include <asm/mmu.h>
15 #include <asm/tlb.h>
16 #include <asm/firmware.h>
17 
18 #include <mm/mmu_decl.h>
19 
20 #include <trace/events/thp.h>
21 
22 #if H_PGTABLE_RANGE > (USER_VSID_RANGE * (TASK_SIZE_USER64 / TASK_CONTEXT_SIZE))
23 #warning Limited user VSID range means pagetable space is wasted
24 #endif
25 
26 #ifdef CONFIG_SPARSEMEM_VMEMMAP
27 /*
28  * vmemmap is the starting address of the virtual address space where
29  * struct pages are allocated for all possible PFNs present on the system
30  * including holes and bad memory (hence sparse). These virtual struct
31  * pages are stored in sequence in this virtual address space irrespective
32  * of the fact whether the corresponding PFN is valid or not. This achieves
33  * constant relationship between address of struct page and its PFN.
34  *
35  * During boot or memory hotplug operation when a new memory section is
36  * added, physical memory allocation (including hash table bolting) will
37  * be performed for the set of struct pages which are part of the memory
38  * section. This saves memory by not allocating struct pages for PFNs
39  * which are not valid.
40  *
41  *		----------------------------------------------
42  *		| PHYSICAL ALLOCATION OF VIRTUAL STRUCT PAGES|
43  *		----------------------------------------------
44  *
45  *	   f000000000000000                  c000000000000000
46  * vmemmap +--------------+                  +--------------+
47  *  +      |  page struct | +--------------> |  page struct |
48  *  |      +--------------+                  +--------------+
49  *  |      |  page struct | +--------------> |  page struct |
50  *  |      +--------------+ |                +--------------+
51  *  |      |  page struct | +       +------> |  page struct |
52  *  |      +--------------+         |        +--------------+
53  *  |      |  page struct |         |   +--> |  page struct |
54  *  |      +--------------+         |   |    +--------------+
55  *  |      |  page struct |         |   |
56  *  |      +--------------+         |   |
57  *  |      |  page struct |         |   |
58  *  |      +--------------+         |   |
59  *  |      |  page struct |         |   |
60  *  |      +--------------+         |   |
61  *  |      |  page struct |         |   |
62  *  |      +--------------+         |   |
63  *  |      |  page struct | +-------+   |
64  *  |      +--------------+             |
65  *  |      |  page struct | +-----------+
66  *  |      +--------------+
67  *  |      |  page struct | No mapping
68  *  |      +--------------+
69  *  |      |  page struct | No mapping
70  *  v      +--------------+
71  *
72  *		-----------------------------------------
73  *		| RELATION BETWEEN STRUCT PAGES AND PFNS|
74  *		-----------------------------------------
75  *
76  * vmemmap +--------------+                 +---------------+
77  *  +      |  page struct | +-------------> |      PFN      |
78  *  |      +--------------+                 +---------------+
79  *  |      |  page struct | +-------------> |      PFN      |
80  *  |      +--------------+                 +---------------+
81  *  |      |  page struct | +-------------> |      PFN      |
82  *  |      +--------------+                 +---------------+
83  *  |      |  page struct | +-------------> |      PFN      |
84  *  |      +--------------+                 +---------------+
85  *  |      |              |
86  *  |      +--------------+
87  *  |      |              |
88  *  |      +--------------+
89  *  |      |              |
90  *  |      +--------------+                 +---------------+
91  *  |      |  page struct | +-------------> |      PFN      |
92  *  |      +--------------+                 +---------------+
93  *  |      |              |
94  *  |      +--------------+
95  *  |      |              |
96  *  |      +--------------+                 +---------------+
97  *  |      |  page struct | +-------------> |      PFN      |
98  *  |      +--------------+                 +---------------+
99  *  |      |  page struct | +-------------> |      PFN      |
100  *  v      +--------------+                 +---------------+
101  */
102 /*
103  * On hash-based CPUs, the vmemmap is bolted in the hash table.
104  *
105  */
hash__vmemmap_create_mapping(unsigned long start,unsigned long page_size,unsigned long phys)106 int __meminit hash__vmemmap_create_mapping(unsigned long start,
107 				       unsigned long page_size,
108 				       unsigned long phys)
109 {
110 	int rc;
111 
112 	if ((start + page_size) >= H_VMEMMAP_END) {
113 		pr_warn("Outside the supported range\n");
114 		return -1;
115 	}
116 
117 	rc = htab_bolt_mapping(start, start + page_size, phys,
118 			       pgprot_val(PAGE_KERNEL),
119 			       mmu_vmemmap_psize, mmu_kernel_ssize);
120 	if (rc < 0) {
121 		int rc2 = htab_remove_mapping(start, start + page_size,
122 					      mmu_vmemmap_psize,
123 					      mmu_kernel_ssize);
124 		BUG_ON(rc2 && (rc2 != -ENOENT));
125 	}
126 	return rc;
127 }
128 
129 #ifdef CONFIG_MEMORY_HOTPLUG
hash__vmemmap_remove_mapping(unsigned long start,unsigned long page_size)130 void hash__vmemmap_remove_mapping(unsigned long start,
131 			      unsigned long page_size)
132 {
133 	int rc = htab_remove_mapping(start, start + page_size,
134 				     mmu_vmemmap_psize,
135 				     mmu_kernel_ssize);
136 	BUG_ON((rc < 0) && (rc != -ENOENT));
137 	WARN_ON(rc == -ENOENT);
138 }
139 #endif
140 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
141 
142 /*
143  * map_kernel_page currently only called by __ioremap
144  * map_kernel_page adds an entry to the ioremap page table
145  * and adds an entry to the HPT, possibly bolting it
146  */
hash__map_kernel_page(unsigned long ea,unsigned long pa,pgprot_t prot)147 int hash__map_kernel_page(unsigned long ea, unsigned long pa, pgprot_t prot)
148 {
149 	pgd_t *pgdp;
150 	p4d_t *p4dp;
151 	pud_t *pudp;
152 	pmd_t *pmdp;
153 	pte_t *ptep;
154 
155 	BUILD_BUG_ON(TASK_SIZE_USER64 > H_PGTABLE_RANGE);
156 	if (slab_is_available()) {
157 		pgdp = pgd_offset_k(ea);
158 		p4dp = p4d_offset(pgdp, ea);
159 		pudp = pud_alloc(&init_mm, p4dp, ea);
160 		if (!pudp)
161 			return -ENOMEM;
162 		pmdp = pmd_alloc(&init_mm, pudp, ea);
163 		if (!pmdp)
164 			return -ENOMEM;
165 		ptep = pte_alloc_kernel(pmdp, ea);
166 		if (!ptep)
167 			return -ENOMEM;
168 		set_pte_at(&init_mm, ea, ptep, pfn_pte(pa >> PAGE_SHIFT, prot));
169 	} else {
170 		/*
171 		 * If the mm subsystem is not fully up, we cannot create a
172 		 * linux page table entry for this mapping.  Simply bolt an
173 		 * entry in the hardware page table.
174 		 *
175 		 */
176 		if (htab_bolt_mapping(ea, ea + PAGE_SIZE, pa, pgprot_val(prot),
177 				      mmu_io_psize, mmu_kernel_ssize)) {
178 			printk(KERN_ERR "Failed to do bolted mapping IO "
179 			       "memory at %016lx !\n", pa);
180 			return -ENOMEM;
181 		}
182 	}
183 
184 	smp_wmb();
185 	return 0;
186 }
187 
188 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
189 
hash__pmd_hugepage_update(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp,unsigned long clr,unsigned long set)190 unsigned long hash__pmd_hugepage_update(struct mm_struct *mm, unsigned long addr,
191 				    pmd_t *pmdp, unsigned long clr,
192 				    unsigned long set)
193 {
194 	__be64 old_be, tmp;
195 	unsigned long old;
196 
197 #ifdef CONFIG_DEBUG_VM
198 	WARN_ON(!hash__pmd_trans_huge(*pmdp));
199 	assert_spin_locked(pmd_lockptr(mm, pmdp));
200 #endif
201 
202 	__asm__ __volatile__(
203 	"1:	ldarx	%0,0,%3\n\
204 		and.	%1,%0,%6\n\
205 		bne-	1b \n\
206 		andc	%1,%0,%4 \n\
207 		or	%1,%1,%7\n\
208 		stdcx.	%1,0,%3 \n\
209 		bne-	1b"
210 	: "=&r" (old_be), "=&r" (tmp), "=m" (*pmdp)
211 	: "r" (pmdp), "r" (cpu_to_be64(clr)), "m" (*pmdp),
212 	  "r" (cpu_to_be64(H_PAGE_BUSY)), "r" (cpu_to_be64(set))
213 	: "cc" );
214 
215 	old = be64_to_cpu(old_be);
216 
217 	trace_hugepage_update_pmd(addr, old, clr, set);
218 	if (old & H_PAGE_HASHPTE)
219 		hpte_do_hugepage_flush(mm, addr, pmdp, old);
220 	return old;
221 }
222 
hash__pmdp_collapse_flush(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)223 pmd_t hash__pmdp_collapse_flush(struct vm_area_struct *vma, unsigned long address,
224 			    pmd_t *pmdp)
225 {
226 	pmd_t pmd;
227 
228 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
229 	VM_BUG_ON(pmd_trans_huge(*pmdp));
230 
231 	pmd = *pmdp;
232 	pmd_clear(pmdp);
233 	/*
234 	 * Wait for all pending hash_page to finish. This is needed
235 	 * in case of subpage collapse. When we collapse normal pages
236 	 * to hugepage, we first clear the pmd, then invalidate all
237 	 * the PTE entries. The assumption here is that any low level
238 	 * page fault will see a none pmd and take the slow path that
239 	 * will wait on mmap_lock. But we could very well be in a
240 	 * hash_page with local ptep pointer value. Such a hash page
241 	 * can result in adding new HPTE entries for normal subpages.
242 	 * That means we could be modifying the page content as we
243 	 * copy them to a huge page. So wait for parallel hash_page
244 	 * to finish before invalidating HPTE entries. We can do this
245 	 * by sending an IPI to all the cpus and executing a dummy
246 	 * function there.
247 	 */
248 	serialize_against_pte_lookup(vma->vm_mm);
249 	/*
250 	 * Now invalidate the hpte entries in the range
251 	 * covered by pmd. This make sure we take a
252 	 * fault and will find the pmd as none, which will
253 	 * result in a major fault which takes mmap_lock and
254 	 * hence wait for collapse to complete. Without this
255 	 * the __collapse_huge_page_copy can result in copying
256 	 * the old content.
257 	 */
258 	flush_hash_table_pmd_range(vma->vm_mm, &pmd, address);
259 	return pmd;
260 }
261 
262 /*
263  * We want to put the pgtable in pmd and use pgtable for tracking
264  * the base page size hptes
265  */
hash__pgtable_trans_huge_deposit(struct mm_struct * mm,pmd_t * pmdp,pgtable_t pgtable)266 void hash__pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
267 				  pgtable_t pgtable)
268 {
269 	pgtable_t *pgtable_slot;
270 
271 	assert_spin_locked(pmd_lockptr(mm, pmdp));
272 	/*
273 	 * we store the pgtable in the second half of PMD
274 	 */
275 	pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD;
276 	*pgtable_slot = pgtable;
277 	/*
278 	 * expose the deposited pgtable to other cpus.
279 	 * before we set the hugepage PTE at pmd level
280 	 * hash fault code looks at the deposted pgtable
281 	 * to store hash index values.
282 	 */
283 	smp_wmb();
284 }
285 
hash__pgtable_trans_huge_withdraw(struct mm_struct * mm,pmd_t * pmdp)286 pgtable_t hash__pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp)
287 {
288 	pgtable_t pgtable;
289 	pgtable_t *pgtable_slot;
290 
291 	assert_spin_locked(pmd_lockptr(mm, pmdp));
292 
293 	pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD;
294 	pgtable = *pgtable_slot;
295 	/*
296 	 * Once we withdraw, mark the entry NULL.
297 	 */
298 	*pgtable_slot = NULL;
299 	/*
300 	 * We store HPTE information in the deposited PTE fragment.
301 	 * zero out the content on withdraw.
302 	 */
303 	memset(pgtable, 0, PTE_FRAG_SIZE);
304 	return pgtable;
305 }
306 
307 /*
308  * A linux hugepage PMD was changed and the corresponding hash table entries
309  * neesd to be flushed.
310  */
hpte_do_hugepage_flush(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp,unsigned long old_pmd)311 void hpte_do_hugepage_flush(struct mm_struct *mm, unsigned long addr,
312 			    pmd_t *pmdp, unsigned long old_pmd)
313 {
314 	int ssize;
315 	unsigned int psize;
316 	unsigned long vsid;
317 	unsigned long flags = 0;
318 
319 	/* get the base page size,vsid and segment size */
320 #ifdef CONFIG_DEBUG_VM
321 	psize = get_slice_psize(mm, addr);
322 	BUG_ON(psize == MMU_PAGE_16M);
323 #endif
324 	if (old_pmd & H_PAGE_COMBO)
325 		psize = MMU_PAGE_4K;
326 	else
327 		psize = MMU_PAGE_64K;
328 
329 	if (!is_kernel_addr(addr)) {
330 		ssize = user_segment_size(addr);
331 		vsid = get_user_vsid(&mm->context, addr, ssize);
332 		WARN_ON(vsid == 0);
333 	} else {
334 		vsid = get_kernel_vsid(addr, mmu_kernel_ssize);
335 		ssize = mmu_kernel_ssize;
336 	}
337 
338 	if (mm_is_thread_local(mm))
339 		flags |= HPTE_LOCAL_UPDATE;
340 
341 	return flush_hash_hugepage(vsid, addr, pmdp, psize, ssize, flags);
342 }
343 
hash__pmdp_huge_get_and_clear(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp)344 pmd_t hash__pmdp_huge_get_and_clear(struct mm_struct *mm,
345 				unsigned long addr, pmd_t *pmdp)
346 {
347 	pmd_t old_pmd;
348 	pgtable_t pgtable;
349 	unsigned long old;
350 	pgtable_t *pgtable_slot;
351 
352 	old = pmd_hugepage_update(mm, addr, pmdp, ~0UL, 0);
353 	old_pmd = __pmd(old);
354 	/*
355 	 * We have pmd == none and we are holding page_table_lock.
356 	 * So we can safely go and clear the pgtable hash
357 	 * index info.
358 	 */
359 	pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD;
360 	pgtable = *pgtable_slot;
361 	/*
362 	 * Let's zero out old valid and hash index details
363 	 * hash fault look at them.
364 	 */
365 	memset(pgtable, 0, PTE_FRAG_SIZE);
366 	return old_pmd;
367 }
368 
hash__has_transparent_hugepage(void)369 int hash__has_transparent_hugepage(void)
370 {
371 
372 	if (!mmu_has_feature(MMU_FTR_16M_PAGE))
373 		return 0;
374 	/*
375 	 * We support THP only if PMD_SIZE is 16MB.
376 	 */
377 	if (mmu_psize_defs[MMU_PAGE_16M].shift != PMD_SHIFT)
378 		return 0;
379 	/*
380 	 * We need to make sure that we support 16MB hugepage in a segment
381 	 * with base page size 64K or 4K. We only enable THP with a PAGE_SIZE
382 	 * of 64K.
383 	 */
384 	/*
385 	 * If we have 64K HPTE, we will be using that by default
386 	 */
387 	if (mmu_psize_defs[MMU_PAGE_64K].shift &&
388 	    (mmu_psize_defs[MMU_PAGE_64K].penc[MMU_PAGE_16M] == -1))
389 		return 0;
390 	/*
391 	 * Ok we only have 4K HPTE
392 	 */
393 	if (mmu_psize_defs[MMU_PAGE_4K].penc[MMU_PAGE_16M] == -1)
394 		return 0;
395 
396 	return 1;
397 }
398 EXPORT_SYMBOL_GPL(hash__has_transparent_hugepage);
399 
400 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
401 
402 #ifdef CONFIG_STRICT_KERNEL_RWX
403 
404 struct change_memory_parms {
405 	unsigned long start, end, newpp;
406 	unsigned int step, nr_cpus;
407 	atomic_t master_cpu;
408 	atomic_t cpu_counter;
409 };
410 
411 // We'd rather this was on the stack but it has to be in the RMO
412 static struct change_memory_parms chmem_parms;
413 
414 // And therefore we need a lock to protect it from concurrent use
415 static DEFINE_MUTEX(chmem_lock);
416 
change_memory_range(unsigned long start,unsigned long end,unsigned int step,unsigned long newpp)417 static void change_memory_range(unsigned long start, unsigned long end,
418 				unsigned int step, unsigned long newpp)
419 {
420 	unsigned long idx;
421 
422 	pr_debug("Changing page protection on range 0x%lx-0x%lx, to 0x%lx, step 0x%x\n",
423 		 start, end, newpp, step);
424 
425 	for (idx = start; idx < end; idx += step)
426 		/* Not sure if we can do much with the return value */
427 		mmu_hash_ops.hpte_updateboltedpp(newpp, idx, mmu_linear_psize,
428 							mmu_kernel_ssize);
429 }
430 
chmem_secondary_loop(struct change_memory_parms * parms)431 static int notrace chmem_secondary_loop(struct change_memory_parms *parms)
432 {
433 	unsigned long msr, tmp, flags;
434 	int *p;
435 
436 	p = &parms->cpu_counter.counter;
437 
438 	local_irq_save(flags);
439 	hard_irq_disable();
440 
441 	asm volatile (
442 	// Switch to real mode and leave interrupts off
443 	"mfmsr	%[msr]			;"
444 	"li	%[tmp], %[MSR_IR_DR]	;"
445 	"andc	%[tmp], %[msr], %[tmp]	;"
446 	"mtmsrd %[tmp]			;"
447 
448 	// Tell the master we are in real mode
449 	"1:				"
450 	"lwarx	%[tmp], 0, %[p]		;"
451 	"addic	%[tmp], %[tmp], -1	;"
452 	"stwcx.	%[tmp], 0, %[p]		;"
453 	"bne-	1b			;"
454 
455 	// Spin until the counter goes to zero
456 	"2:				;"
457 	"lwz	%[tmp], 0(%[p])		;"
458 	"cmpwi	%[tmp], 0		;"
459 	"bne-	2b			;"
460 
461 	// Switch back to virtual mode
462 	"mtmsrd %[msr]			;"
463 
464 	: // outputs
465 	  [msr] "=&r" (msr), [tmp] "=&b" (tmp), "+m" (*p)
466 	: // inputs
467 	  [p] "b" (p), [MSR_IR_DR] "i" (MSR_IR | MSR_DR)
468 	: // clobbers
469 	  "cc", "xer"
470 	);
471 
472 	local_irq_restore(flags);
473 
474 	return 0;
475 }
476 
change_memory_range_fn(void * data)477 static int change_memory_range_fn(void *data)
478 {
479 	struct change_memory_parms *parms = data;
480 
481 	// First CPU goes through, all others wait.
482 	if (atomic_xchg(&parms->master_cpu, 1) == 1)
483 		return chmem_secondary_loop(parms);
484 
485 	// Wait for all but one CPU (this one) to call-in
486 	while (atomic_read(&parms->cpu_counter) > 1)
487 		barrier();
488 
489 	change_memory_range(parms->start, parms->end, parms->step, parms->newpp);
490 
491 	mb();
492 
493 	// Signal the other CPUs that we're done
494 	atomic_dec(&parms->cpu_counter);
495 
496 	return 0;
497 }
498 
hash__change_memory_range(unsigned long start,unsigned long end,unsigned long newpp)499 static bool hash__change_memory_range(unsigned long start, unsigned long end,
500 				      unsigned long newpp)
501 {
502 	unsigned int step, shift;
503 
504 	shift = mmu_psize_defs[mmu_linear_psize].shift;
505 	step = 1 << shift;
506 
507 	start = ALIGN_DOWN(start, step);
508 	end = ALIGN(end, step); // aligns up
509 
510 	if (start >= end)
511 		return false;
512 
513 	if (firmware_has_feature(FW_FEATURE_LPAR)) {
514 		mutex_lock(&chmem_lock);
515 
516 		chmem_parms.start = start;
517 		chmem_parms.end = end;
518 		chmem_parms.step = step;
519 		chmem_parms.newpp = newpp;
520 		atomic_set(&chmem_parms.master_cpu, 0);
521 
522 		cpus_read_lock();
523 
524 		atomic_set(&chmem_parms.cpu_counter, num_online_cpus());
525 
526 		// Ensure state is consistent before we call the other CPUs
527 		mb();
528 
529 		stop_machine_cpuslocked(change_memory_range_fn, &chmem_parms,
530 					cpu_online_mask);
531 
532 		cpus_read_unlock();
533 		mutex_unlock(&chmem_lock);
534 	} else
535 		change_memory_range(start, end, step, newpp);
536 
537 	return true;
538 }
539 
hash__mark_rodata_ro(void)540 void hash__mark_rodata_ro(void)
541 {
542 	unsigned long start, end, pp;
543 
544 	start = (unsigned long)_stext;
545 	end = (unsigned long)__end_rodata;
546 
547 	pp = htab_convert_pte_flags(pgprot_val(PAGE_KERNEL_ROX), HPTE_USE_KERNEL_KEY);
548 
549 	WARN_ON(!hash__change_memory_range(start, end, pp));
550 }
551 
hash__mark_initmem_nx(void)552 void hash__mark_initmem_nx(void)
553 {
554 	unsigned long start, end, pp;
555 
556 	start = (unsigned long)__init_begin;
557 	end = (unsigned long)__init_end;
558 
559 	pp = htab_convert_pte_flags(pgprot_val(PAGE_KERNEL), HPTE_USE_KERNEL_KEY);
560 
561 	WARN_ON(!hash__change_memory_range(start, end, pp));
562 }
563 #endif
564