1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Driver for OHCI 1394 controllers
4 *
5 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
6 */
7
8 #include <linux/bitops.h>
9 #include <linux/bug.h>
10 #include <linux/compiler.h>
11 #include <linux/delay.h>
12 #include <linux/device.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/firewire.h>
15 #include <linux/firewire-constants.h>
16 #include <linux/init.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/kernel.h>
20 #include <linux/list.h>
21 #include <linux/mm.h>
22 #include <linux/module.h>
23 #include <linux/moduleparam.h>
24 #include <linux/mutex.h>
25 #include <linux/pci.h>
26 #include <linux/pci_ids.h>
27 #include <linux/slab.h>
28 #include <linux/spinlock.h>
29 #include <linux/string.h>
30 #include <linux/time.h>
31 #include <linux/vmalloc.h>
32 #include <linux/workqueue.h>
33
34 #include <asm/byteorder.h>
35 #include <asm/page.h>
36
37 #ifdef CONFIG_PPC_PMAC
38 #include <asm/pmac_feature.h>
39 #endif
40
41 #include "core.h"
42 #include "ohci.h"
43 #include "packet-header-definitions.h"
44 #include "phy-packet-definitions.h"
45
46 #include <trace/events/firewire.h>
47
48 static u32 cond_le32_to_cpu(__le32 value, bool has_be_header_quirk);
49
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/firewire_ohci.h>
52
53 #define ohci_notice(ohci, f, args...) dev_notice(ohci->card.device, f, ##args)
54 #define ohci_err(ohci, f, args...) dev_err(ohci->card.device, f, ##args)
55
56 #define DESCRIPTOR_OUTPUT_MORE 0
57 #define DESCRIPTOR_OUTPUT_LAST (1 << 12)
58 #define DESCRIPTOR_INPUT_MORE (2 << 12)
59 #define DESCRIPTOR_INPUT_LAST (3 << 12)
60 #define DESCRIPTOR_STATUS (1 << 11)
61 #define DESCRIPTOR_KEY_IMMEDIATE (2 << 8)
62 #define DESCRIPTOR_PING (1 << 7)
63 #define DESCRIPTOR_YY (1 << 6)
64 #define DESCRIPTOR_NO_IRQ (0 << 4)
65 #define DESCRIPTOR_IRQ_ERROR (1 << 4)
66 #define DESCRIPTOR_IRQ_ALWAYS (3 << 4)
67 #define DESCRIPTOR_BRANCH_ALWAYS (3 << 2)
68 #define DESCRIPTOR_WAIT (3 << 0)
69
70 #define DESCRIPTOR_CMD (0xf << 12)
71
72 struct descriptor {
73 __le16 req_count;
74 __le16 control;
75 __le32 data_address;
76 __le32 branch_address;
77 __le16 res_count;
78 __le16 transfer_status;
79 } __aligned(16);
80
81 #define CONTROL_SET(regs) (regs)
82 #define CONTROL_CLEAR(regs) ((regs) + 4)
83 #define COMMAND_PTR(regs) ((regs) + 12)
84 #define CONTEXT_MATCH(regs) ((regs) + 16)
85
86 #define AR_BUFFER_SIZE (32*1024)
87 #define AR_BUFFERS_MIN DIV_ROUND_UP(AR_BUFFER_SIZE, PAGE_SIZE)
88 /* we need at least two pages for proper list management */
89 #define AR_BUFFERS (AR_BUFFERS_MIN >= 2 ? AR_BUFFERS_MIN : 2)
90
91 #define MAX_ASYNC_PAYLOAD 4096
92 #define MAX_AR_PACKET_SIZE (16 + MAX_ASYNC_PAYLOAD + 4)
93 #define AR_WRAPAROUND_PAGES DIV_ROUND_UP(MAX_AR_PACKET_SIZE, PAGE_SIZE)
94
95 struct ar_context {
96 struct fw_ohci *ohci;
97 struct page *pages[AR_BUFFERS];
98 void *buffer;
99 struct descriptor *descriptors;
100 dma_addr_t descriptors_bus;
101 void *pointer;
102 unsigned int last_buffer_index;
103 u32 regs;
104 struct work_struct work;
105 };
106
107 struct context;
108
109 typedef int (*descriptor_callback_t)(struct context *ctx,
110 struct descriptor *d,
111 struct descriptor *last);
112
113 /*
114 * A buffer that contains a block of DMA-able coherent memory used for
115 * storing a portion of a DMA descriptor program.
116 */
117 struct descriptor_buffer {
118 struct list_head list;
119 dma_addr_t buffer_bus;
120 size_t buffer_size;
121 size_t used;
122 struct descriptor buffer[];
123 };
124
125 struct context {
126 struct fw_ohci *ohci;
127 u32 regs;
128 int total_allocation;
129 u32 current_bus;
130 bool running;
131
132 /*
133 * List of page-sized buffers for storing DMA descriptors.
134 * Head of list contains buffers in use and tail of list contains
135 * free buffers.
136 */
137 struct list_head buffer_list;
138
139 /*
140 * Pointer to a buffer inside buffer_list that contains the tail
141 * end of the current DMA program.
142 */
143 struct descriptor_buffer *buffer_tail;
144
145 /*
146 * The descriptor containing the branch address of the first
147 * descriptor that has not yet been filled by the device.
148 */
149 struct descriptor *last;
150
151 /*
152 * The last descriptor block in the DMA program. It contains the branch
153 * address that must be updated upon appending a new descriptor.
154 */
155 struct descriptor *prev;
156 int prev_z;
157
158 descriptor_callback_t callback;
159 };
160
161 struct at_context {
162 struct context context;
163 struct work_struct work;
164 bool flushing;
165 };
166
167 struct iso_context {
168 struct fw_iso_context base;
169 struct context context;
170 void *header;
171 size_t header_length;
172 unsigned long flushing_completions;
173 u32 mc_buffer_bus;
174 u16 mc_completed;
175 u16 last_timestamp;
176 u8 sync;
177 u8 tags;
178 };
179
180 #define CONFIG_ROM_SIZE (CSR_CONFIG_ROM_END - CSR_CONFIG_ROM)
181
182 struct fw_ohci {
183 struct fw_card card;
184
185 __iomem char *registers;
186 int node_id;
187 int generation;
188 int request_generation; /* for timestamping incoming requests */
189 unsigned quirks;
190 unsigned int pri_req_max;
191 u32 bus_time;
192 bool bus_time_running;
193 bool is_root;
194 bool csr_state_setclear_abdicate;
195 int n_ir;
196 int n_it;
197 /*
198 * Spinlock for accessing fw_ohci data. Never call out of
199 * this driver with this lock held.
200 */
201 spinlock_t lock;
202
203 struct mutex phy_reg_mutex;
204
205 void *misc_buffer;
206 dma_addr_t misc_buffer_bus;
207
208 struct ar_context ar_request_ctx;
209 struct ar_context ar_response_ctx;
210 struct at_context at_request_ctx;
211 struct at_context at_response_ctx;
212
213 u32 it_context_support;
214 u32 it_context_mask; /* unoccupied IT contexts */
215 struct iso_context *it_context_list;
216 u64 ir_context_channels; /* unoccupied channels */
217 u32 ir_context_support;
218 u32 ir_context_mask; /* unoccupied IR contexts */
219 struct iso_context *ir_context_list;
220 u64 mc_channels; /* channels in use by the multichannel IR context */
221 bool mc_allocated;
222
223 __be32 *config_rom;
224 dma_addr_t config_rom_bus;
225 __be32 *next_config_rom;
226 dma_addr_t next_config_rom_bus;
227 __be32 next_header;
228
229 __le32 *self_id;
230 dma_addr_t self_id_bus;
231 struct work_struct bus_reset_work;
232
233 u32 self_id_buffer[512];
234 };
235
236 static struct workqueue_struct *selfid_workqueue;
237
fw_ohci(struct fw_card * card)238 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
239 {
240 return container_of(card, struct fw_ohci, card);
241 }
242
243 #define IT_CONTEXT_CYCLE_MATCH_ENABLE 0x80000000
244 #define IR_CONTEXT_BUFFER_FILL 0x80000000
245 #define IR_CONTEXT_ISOCH_HEADER 0x40000000
246 #define IR_CONTEXT_CYCLE_MATCH_ENABLE 0x20000000
247 #define IR_CONTEXT_MULTI_CHANNEL_MODE 0x10000000
248 #define IR_CONTEXT_DUAL_BUFFER_MODE 0x08000000
249
250 #define CONTEXT_RUN 0x8000
251 #define CONTEXT_WAKE 0x1000
252 #define CONTEXT_DEAD 0x0800
253 #define CONTEXT_ACTIVE 0x0400
254
255 #define OHCI1394_MAX_AT_REQ_RETRIES 0xf
256 #define OHCI1394_MAX_AT_RESP_RETRIES 0x2
257 #define OHCI1394_MAX_PHYS_RESP_RETRIES 0x8
258
259 #define OHCI1394_REGISTER_SIZE 0x800
260 #define OHCI1394_PCI_HCI_Control 0x40
261 #define SELF_ID_BUF_SIZE 0x800
262 #define OHCI_VERSION_1_1 0x010010
263
264 static char ohci_driver_name[] = KBUILD_MODNAME;
265
266 #define PCI_VENDOR_ID_PINNACLE_SYSTEMS 0x11bd
267 #define PCI_DEVICE_ID_AGERE_FW643 0x5901
268 #define PCI_DEVICE_ID_CREATIVE_SB1394 0x4001
269 #define PCI_DEVICE_ID_JMICRON_JMB38X_FW 0x2380
270 #define PCI_DEVICE_ID_TI_TSB12LV22 0x8009
271 #define PCI_DEVICE_ID_TI_TSB12LV26 0x8020
272 #define PCI_DEVICE_ID_TI_TSB82AA2 0x8025
273 #define PCI_DEVICE_ID_VIA_VT630X 0x3044
274 #define PCI_REV_ID_VIA_VT6306 0x46
275 #define PCI_DEVICE_ID_VIA_VT6315 0x3403
276
277 #define QUIRK_CYCLE_TIMER 0x1
278 #define QUIRK_RESET_PACKET 0x2
279 #define QUIRK_BE_HEADERS 0x4
280 #define QUIRK_NO_1394A 0x8
281 #define QUIRK_NO_MSI 0x10
282 #define QUIRK_TI_SLLZ059 0x20
283 #define QUIRK_IR_WAKE 0x40
284
285 // On PCI Express Root Complex in any type of AMD Ryzen machine, VIA VT6306/6307/6308 with Asmedia
286 // ASM1083/1085 brings an inconvenience that the read accesses to 'Isochronous Cycle Timer' register
287 // (at offset 0xf0 in PCI I/O space) often causes unexpected system reboot. The mechanism is not
288 // clear, since the read access to the other registers is enough safe; e.g. 'Node ID' register,
289 // while it is probable due to detection of any type of PCIe error.
290 #define QUIRK_REBOOT_BY_CYCLE_TIMER_READ 0x80000000
291
292 #if IS_ENABLED(CONFIG_X86)
293
has_reboot_by_cycle_timer_read_quirk(const struct fw_ohci * ohci)294 static bool has_reboot_by_cycle_timer_read_quirk(const struct fw_ohci *ohci)
295 {
296 return !!(ohci->quirks & QUIRK_REBOOT_BY_CYCLE_TIMER_READ);
297 }
298
299 #define PCI_DEVICE_ID_ASMEDIA_ASM108X 0x1080
300
detect_vt630x_with_asm1083_on_amd_ryzen_machine(const struct pci_dev * pdev)301 static bool detect_vt630x_with_asm1083_on_amd_ryzen_machine(const struct pci_dev *pdev)
302 {
303 const struct pci_dev *pcie_to_pci_bridge;
304
305 // Detect any type of AMD Ryzen machine.
306 if (!static_cpu_has(X86_FEATURE_ZEN))
307 return false;
308
309 // Detect VIA VT6306/6307/6308.
310 if (pdev->vendor != PCI_VENDOR_ID_VIA)
311 return false;
312 if (pdev->device != PCI_DEVICE_ID_VIA_VT630X)
313 return false;
314
315 // Detect Asmedia ASM1083/1085.
316 pcie_to_pci_bridge = pdev->bus->self;
317 if (pcie_to_pci_bridge->vendor != PCI_VENDOR_ID_ASMEDIA)
318 return false;
319 if (pcie_to_pci_bridge->device != PCI_DEVICE_ID_ASMEDIA_ASM108X)
320 return false;
321
322 return true;
323 }
324
325 #else
326 #define has_reboot_by_cycle_timer_read_quirk(ohci) false
327 #define detect_vt630x_with_asm1083_on_amd_ryzen_machine(pdev) false
328 #endif
329
330 /* In case of multiple matches in ohci_quirks[], only the first one is used. */
331 static const struct {
332 unsigned short vendor, device, revision, flags;
333 } ohci_quirks[] = {
334 {PCI_VENDOR_ID_AL, PCI_ANY_ID, PCI_ANY_ID,
335 QUIRK_CYCLE_TIMER},
336
337 {PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_FW, PCI_ANY_ID,
338 QUIRK_BE_HEADERS},
339
340 {PCI_VENDOR_ID_ATT, PCI_DEVICE_ID_AGERE_FW643, 6,
341 QUIRK_NO_MSI},
342
343 {PCI_VENDOR_ID_CREATIVE, PCI_DEVICE_ID_CREATIVE_SB1394, PCI_ANY_ID,
344 QUIRK_RESET_PACKET},
345
346 {PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, PCI_ANY_ID,
347 QUIRK_NO_MSI},
348
349 {PCI_VENDOR_ID_NEC, PCI_ANY_ID, PCI_ANY_ID,
350 QUIRK_CYCLE_TIMER},
351
352 {PCI_VENDOR_ID_O2, PCI_ANY_ID, PCI_ANY_ID,
353 QUIRK_NO_MSI},
354
355 {PCI_VENDOR_ID_RICOH, PCI_ANY_ID, PCI_ANY_ID,
356 QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
357
358 {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV22, PCI_ANY_ID,
359 QUIRK_CYCLE_TIMER | QUIRK_RESET_PACKET | QUIRK_NO_1394A},
360
361 {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV26, PCI_ANY_ID,
362 QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
363
364 {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB82AA2, PCI_ANY_ID,
365 QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
366
367 {PCI_VENDOR_ID_TI, PCI_ANY_ID, PCI_ANY_ID,
368 QUIRK_RESET_PACKET},
369
370 {PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT630X, PCI_REV_ID_VIA_VT6306,
371 QUIRK_CYCLE_TIMER | QUIRK_IR_WAKE},
372
373 {PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT6315, 0,
374 QUIRK_CYCLE_TIMER /* FIXME: necessary? */ | QUIRK_NO_MSI},
375
376 {PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT6315, PCI_ANY_ID,
377 QUIRK_NO_MSI},
378
379 {PCI_VENDOR_ID_VIA, PCI_ANY_ID, PCI_ANY_ID,
380 QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
381 };
382
383 /* This overrides anything that was found in ohci_quirks[]. */
384 static int param_quirks;
385 module_param_named(quirks, param_quirks, int, 0644);
386 MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
387 ", nonatomic cycle timer = " __stringify(QUIRK_CYCLE_TIMER)
388 ", reset packet generation = " __stringify(QUIRK_RESET_PACKET)
389 ", AR/selfID endianness = " __stringify(QUIRK_BE_HEADERS)
390 ", no 1394a enhancements = " __stringify(QUIRK_NO_1394A)
391 ", disable MSI = " __stringify(QUIRK_NO_MSI)
392 ", TI SLLZ059 erratum = " __stringify(QUIRK_TI_SLLZ059)
393 ", IR wake unreliable = " __stringify(QUIRK_IR_WAKE)
394 ")");
395
396 #define OHCI_PARAM_DEBUG_AT_AR 1
397 #define OHCI_PARAM_DEBUG_SELFIDS 2
398 #define OHCI_PARAM_DEBUG_IRQS 4
399
400 static int param_debug;
401 module_param_named(debug, param_debug, int, 0644);
402 MODULE_PARM_DESC(debug, "Verbose logging, deprecated in v6.11 kernel or later. (default = 0"
403 ", AT/AR events = " __stringify(OHCI_PARAM_DEBUG_AT_AR)
404 ", self-IDs = " __stringify(OHCI_PARAM_DEBUG_SELFIDS)
405 ", IRQs = " __stringify(OHCI_PARAM_DEBUG_IRQS)
406 ", or a combination, or all = -1)");
407
408 static bool param_remote_dma;
409 module_param_named(remote_dma, param_remote_dma, bool, 0444);
410 MODULE_PARM_DESC(remote_dma, "Enable unfiltered remote DMA (default = N)");
411
log_irqs(struct fw_ohci * ohci,u32 evt)412 static void log_irqs(struct fw_ohci *ohci, u32 evt)
413 {
414 if (likely(!(param_debug & OHCI_PARAM_DEBUG_IRQS)))
415 return;
416
417 ohci_notice(ohci, "IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
418 evt & OHCI1394_selfIDComplete ? " selfID" : "",
419 evt & OHCI1394_RQPkt ? " AR_req" : "",
420 evt & OHCI1394_RSPkt ? " AR_resp" : "",
421 evt & OHCI1394_reqTxComplete ? " AT_req" : "",
422 evt & OHCI1394_respTxComplete ? " AT_resp" : "",
423 evt & OHCI1394_isochRx ? " IR" : "",
424 evt & OHCI1394_isochTx ? " IT" : "",
425 evt & OHCI1394_postedWriteErr ? " postedWriteErr" : "",
426 evt & OHCI1394_cycleTooLong ? " cycleTooLong" : "",
427 evt & OHCI1394_cycle64Seconds ? " cycle64Seconds" : "",
428 evt & OHCI1394_cycleInconsistent ? " cycleInconsistent" : "",
429 evt & OHCI1394_regAccessFail ? " regAccessFail" : "",
430 evt & OHCI1394_unrecoverableError ? " unrecoverableError" : "",
431 evt & OHCI1394_busReset ? " busReset" : "",
432 evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
433 OHCI1394_RSPkt | OHCI1394_reqTxComplete |
434 OHCI1394_respTxComplete | OHCI1394_isochRx |
435 OHCI1394_isochTx | OHCI1394_postedWriteErr |
436 OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
437 OHCI1394_cycleInconsistent |
438 OHCI1394_regAccessFail | OHCI1394_busReset)
439 ? " ?" : "");
440 }
441
log_selfids(struct fw_ohci * ohci,int generation,int self_id_count)442 static void log_selfids(struct fw_ohci *ohci, int generation, int self_id_count)
443 {
444 static const char *const speed[] = {
445 [0] = "S100", [1] = "S200", [2] = "S400", [3] = "beta",
446 };
447 static const char *const power[] = {
448 [0] = "+0W", [1] = "+15W", [2] = "+30W", [3] = "+45W",
449 [4] = "-3W", [5] = " ?W", [6] = "-3..-6W", [7] = "-3..-10W",
450 };
451 static const char port[] = {
452 [PHY_PACKET_SELF_ID_PORT_STATUS_NONE] = '.',
453 [PHY_PACKET_SELF_ID_PORT_STATUS_NCONN] = '-',
454 [PHY_PACKET_SELF_ID_PORT_STATUS_PARENT] = 'p',
455 [PHY_PACKET_SELF_ID_PORT_STATUS_CHILD] = 'c',
456 };
457 struct self_id_sequence_enumerator enumerator = {
458 .cursor = ohci->self_id_buffer,
459 .quadlet_count = self_id_count,
460 };
461
462 if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
463 return;
464
465 ohci_notice(ohci, "%d selfIDs, generation %d, local node ID %04x\n",
466 self_id_count, generation, ohci->node_id);
467
468 while (enumerator.quadlet_count > 0) {
469 unsigned int quadlet_count;
470 unsigned int port_index;
471 const u32 *s;
472 int i;
473
474 s = self_id_sequence_enumerator_next(&enumerator, &quadlet_count);
475 if (IS_ERR(s))
476 break;
477
478 ohci_notice(ohci,
479 "selfID 0: %08x, phy %d [%c%c%c] %s gc=%d %s %s%s%s\n",
480 *s,
481 phy_packet_self_id_get_phy_id(*s),
482 port[self_id_sequence_get_port_status(s, quadlet_count, 0)],
483 port[self_id_sequence_get_port_status(s, quadlet_count, 1)],
484 port[self_id_sequence_get_port_status(s, quadlet_count, 2)],
485 speed[*s >> 14 & 3], *s >> 16 & 63,
486 power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
487 *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
488
489 port_index = 3;
490 for (i = 1; i < quadlet_count; ++i) {
491 ohci_notice(ohci,
492 "selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
493 s[i],
494 phy_packet_self_id_get_phy_id(s[i]),
495 port[self_id_sequence_get_port_status(s, quadlet_count, port_index)],
496 port[self_id_sequence_get_port_status(s, quadlet_count, port_index + 1)],
497 port[self_id_sequence_get_port_status(s, quadlet_count, port_index + 2)],
498 port[self_id_sequence_get_port_status(s, quadlet_count, port_index + 3)],
499 port[self_id_sequence_get_port_status(s, quadlet_count, port_index + 4)],
500 port[self_id_sequence_get_port_status(s, quadlet_count, port_index + 5)],
501 port[self_id_sequence_get_port_status(s, quadlet_count, port_index + 6)],
502 port[self_id_sequence_get_port_status(s, quadlet_count, port_index + 7)]
503 );
504
505 port_index += 8;
506 }
507 }
508 }
509
510 static const char *evts[] = {
511 [0x00] = "evt_no_status", [0x01] = "-reserved-",
512 [0x02] = "evt_long_packet", [0x03] = "evt_missing_ack",
513 [0x04] = "evt_underrun", [0x05] = "evt_overrun",
514 [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
515 [0x08] = "evt_data_write", [0x09] = "evt_bus_reset",
516 [0x0a] = "evt_timeout", [0x0b] = "evt_tcode_err",
517 [0x0c] = "-reserved-", [0x0d] = "-reserved-",
518 [0x0e] = "evt_unknown", [0x0f] = "evt_flushed",
519 [0x10] = "-reserved-", [0x11] = "ack_complete",
520 [0x12] = "ack_pending ", [0x13] = "-reserved-",
521 [0x14] = "ack_busy_X", [0x15] = "ack_busy_A",
522 [0x16] = "ack_busy_B", [0x17] = "-reserved-",
523 [0x18] = "-reserved-", [0x19] = "-reserved-",
524 [0x1a] = "-reserved-", [0x1b] = "ack_tardy",
525 [0x1c] = "-reserved-", [0x1d] = "ack_data_error",
526 [0x1e] = "ack_type_error", [0x1f] = "-reserved-",
527 [0x20] = "pending/cancelled",
528 };
529
log_ar_at_event(struct fw_ohci * ohci,char dir,int speed,u32 * header,int evt)530 static void log_ar_at_event(struct fw_ohci *ohci,
531 char dir, int speed, u32 *header, int evt)
532 {
533 static const char *const tcodes[] = {
534 [TCODE_WRITE_QUADLET_REQUEST] = "QW req",
535 [TCODE_WRITE_BLOCK_REQUEST] = "BW req",
536 [TCODE_WRITE_RESPONSE] = "W resp",
537 [0x3] = "-reserved-",
538 [TCODE_READ_QUADLET_REQUEST] = "QR req",
539 [TCODE_READ_BLOCK_REQUEST] = "BR req",
540 [TCODE_READ_QUADLET_RESPONSE] = "QR resp",
541 [TCODE_READ_BLOCK_RESPONSE] = "BR resp",
542 [TCODE_CYCLE_START] = "cycle start",
543 [TCODE_LOCK_REQUEST] = "Lk req",
544 [TCODE_STREAM_DATA] = "async stream packet",
545 [TCODE_LOCK_RESPONSE] = "Lk resp",
546 [0xc] = "-reserved-",
547 [0xd] = "-reserved-",
548 [TCODE_LINK_INTERNAL] = "link internal",
549 [0xf] = "-reserved-",
550 };
551 int tcode = async_header_get_tcode(header);
552 char specific[12];
553
554 if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
555 return;
556
557 if (unlikely(evt >= ARRAY_SIZE(evts)))
558 evt = 0x1f;
559
560 if (evt == OHCI1394_evt_bus_reset) {
561 ohci_notice(ohci, "A%c evt_bus_reset, generation %d\n",
562 dir, (header[2] >> 16) & 0xff);
563 return;
564 }
565
566 switch (tcode) {
567 case TCODE_WRITE_QUADLET_REQUEST:
568 case TCODE_READ_QUADLET_RESPONSE:
569 case TCODE_CYCLE_START:
570 snprintf(specific, sizeof(specific), " = %08x",
571 be32_to_cpu((__force __be32)header[3]));
572 break;
573 case TCODE_WRITE_BLOCK_REQUEST:
574 case TCODE_READ_BLOCK_REQUEST:
575 case TCODE_READ_BLOCK_RESPONSE:
576 case TCODE_LOCK_REQUEST:
577 case TCODE_LOCK_RESPONSE:
578 snprintf(specific, sizeof(specific), " %x,%x",
579 async_header_get_data_length(header),
580 async_header_get_extended_tcode(header));
581 break;
582 default:
583 specific[0] = '\0';
584 }
585
586 switch (tcode) {
587 case TCODE_STREAM_DATA:
588 ohci_notice(ohci, "A%c %s, %s\n",
589 dir, evts[evt], tcodes[tcode]);
590 break;
591 case TCODE_LINK_INTERNAL:
592 ohci_notice(ohci, "A%c %s, PHY %08x %08x\n",
593 dir, evts[evt], header[1], header[2]);
594 break;
595 case TCODE_WRITE_QUADLET_REQUEST:
596 case TCODE_WRITE_BLOCK_REQUEST:
597 case TCODE_READ_QUADLET_REQUEST:
598 case TCODE_READ_BLOCK_REQUEST:
599 case TCODE_LOCK_REQUEST:
600 ohci_notice(ohci,
601 "A%c spd %x tl %02x, %04x -> %04x, %s, %s, %012llx%s\n",
602 dir, speed, async_header_get_tlabel(header),
603 async_header_get_source(header), async_header_get_destination(header),
604 evts[evt], tcodes[tcode], async_header_get_offset(header), specific);
605 break;
606 default:
607 ohci_notice(ohci,
608 "A%c spd %x tl %02x, %04x -> %04x, %s, %s%s\n",
609 dir, speed, async_header_get_tlabel(header),
610 async_header_get_source(header), async_header_get_destination(header),
611 evts[evt], tcodes[tcode], specific);
612 }
613 }
614
reg_write(const struct fw_ohci * ohci,int offset,u32 data)615 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
616 {
617 writel(data, ohci->registers + offset);
618 }
619
reg_read(const struct fw_ohci * ohci,int offset)620 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
621 {
622 return readl(ohci->registers + offset);
623 }
624
flush_writes(const struct fw_ohci * ohci)625 static inline void flush_writes(const struct fw_ohci *ohci)
626 {
627 /* Do a dummy read to flush writes. */
628 reg_read(ohci, OHCI1394_Version);
629 }
630
631 /*
632 * Beware! read_phy_reg(), write_phy_reg(), update_phy_reg(), and
633 * read_paged_phy_reg() require the caller to hold ohci->phy_reg_mutex.
634 * In other words, only use ohci_read_phy_reg() and ohci_update_phy_reg()
635 * directly. Exceptions are intrinsically serialized contexts like pci_probe.
636 */
read_phy_reg(struct fw_ohci * ohci,int addr)637 static int read_phy_reg(struct fw_ohci *ohci, int addr)
638 {
639 u32 val;
640 int i;
641
642 reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
643 for (i = 0; i < 3 + 100; i++) {
644 val = reg_read(ohci, OHCI1394_PhyControl);
645 if (!~val)
646 return -ENODEV; /* Card was ejected. */
647
648 if (val & OHCI1394_PhyControl_ReadDone)
649 return OHCI1394_PhyControl_ReadData(val);
650
651 /*
652 * Try a few times without waiting. Sleeping is necessary
653 * only when the link/PHY interface is busy.
654 */
655 if (i >= 3)
656 msleep(1);
657 }
658 ohci_err(ohci, "failed to read phy reg %d\n", addr);
659 dump_stack();
660
661 return -EBUSY;
662 }
663
write_phy_reg(const struct fw_ohci * ohci,int addr,u32 val)664 static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
665 {
666 int i;
667
668 reg_write(ohci, OHCI1394_PhyControl,
669 OHCI1394_PhyControl_Write(addr, val));
670 for (i = 0; i < 3 + 100; i++) {
671 val = reg_read(ohci, OHCI1394_PhyControl);
672 if (!~val)
673 return -ENODEV; /* Card was ejected. */
674
675 if (!(val & OHCI1394_PhyControl_WritePending))
676 return 0;
677
678 if (i >= 3)
679 msleep(1);
680 }
681 ohci_err(ohci, "failed to write phy reg %d, val %u\n", addr, val);
682 dump_stack();
683
684 return -EBUSY;
685 }
686
update_phy_reg(struct fw_ohci * ohci,int addr,int clear_bits,int set_bits)687 static int update_phy_reg(struct fw_ohci *ohci, int addr,
688 int clear_bits, int set_bits)
689 {
690 int ret = read_phy_reg(ohci, addr);
691 if (ret < 0)
692 return ret;
693
694 /*
695 * The interrupt status bits are cleared by writing a one bit.
696 * Avoid clearing them unless explicitly requested in set_bits.
697 */
698 if (addr == 5)
699 clear_bits |= PHY_INT_STATUS_BITS;
700
701 return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
702 }
703
read_paged_phy_reg(struct fw_ohci * ohci,int page,int addr)704 static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
705 {
706 int ret;
707
708 ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5);
709 if (ret < 0)
710 return ret;
711
712 return read_phy_reg(ohci, addr);
713 }
714
ohci_read_phy_reg(struct fw_card * card,int addr)715 static int ohci_read_phy_reg(struct fw_card *card, int addr)
716 {
717 struct fw_ohci *ohci = fw_ohci(card);
718
719 guard(mutex)(&ohci->phy_reg_mutex);
720
721 return read_phy_reg(ohci, addr);
722 }
723
ohci_update_phy_reg(struct fw_card * card,int addr,int clear_bits,int set_bits)724 static int ohci_update_phy_reg(struct fw_card *card, int addr,
725 int clear_bits, int set_bits)
726 {
727 struct fw_ohci *ohci = fw_ohci(card);
728
729 guard(mutex)(&ohci->phy_reg_mutex);
730
731 return update_phy_reg(ohci, addr, clear_bits, set_bits);
732 }
733
ar_buffer_bus(struct ar_context * ctx,unsigned int i)734 static inline dma_addr_t ar_buffer_bus(struct ar_context *ctx, unsigned int i)
735 {
736 return page_private(ctx->pages[i]);
737 }
738
ar_context_link_page(struct ar_context * ctx,unsigned int index)739 static void ar_context_link_page(struct ar_context *ctx, unsigned int index)
740 {
741 struct descriptor *d;
742
743 d = &ctx->descriptors[index];
744 d->branch_address &= cpu_to_le32(~0xf);
745 d->res_count = cpu_to_le16(PAGE_SIZE);
746 d->transfer_status = 0;
747
748 wmb(); /* finish init of new descriptors before branch_address update */
749 d = &ctx->descriptors[ctx->last_buffer_index];
750 d->branch_address |= cpu_to_le32(1);
751
752 ctx->last_buffer_index = index;
753
754 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
755 }
756
ar_context_release(struct ar_context * ctx)757 static void ar_context_release(struct ar_context *ctx)
758 {
759 struct device *dev = ctx->ohci->card.device;
760 unsigned int i;
761
762 if (!ctx->buffer)
763 return;
764
765 vunmap(ctx->buffer);
766
767 for (i = 0; i < AR_BUFFERS; i++) {
768 if (ctx->pages[i])
769 dma_free_pages(dev, PAGE_SIZE, ctx->pages[i],
770 ar_buffer_bus(ctx, i), DMA_FROM_DEVICE);
771 }
772 }
773
ar_context_abort(struct ar_context * ctx,const char * error_msg)774 static void ar_context_abort(struct ar_context *ctx, const char *error_msg)
775 {
776 struct fw_ohci *ohci = ctx->ohci;
777
778 if (reg_read(ohci, CONTROL_CLEAR(ctx->regs)) & CONTEXT_RUN) {
779 reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
780 flush_writes(ohci);
781
782 ohci_err(ohci, "AR error: %s; DMA stopped\n", error_msg);
783 }
784 /* FIXME: restart? */
785 }
786
ar_next_buffer_index(unsigned int index)787 static inline unsigned int ar_next_buffer_index(unsigned int index)
788 {
789 return (index + 1) % AR_BUFFERS;
790 }
791
ar_first_buffer_index(struct ar_context * ctx)792 static inline unsigned int ar_first_buffer_index(struct ar_context *ctx)
793 {
794 return ar_next_buffer_index(ctx->last_buffer_index);
795 }
796
797 /*
798 * We search for the buffer that contains the last AR packet DMA data written
799 * by the controller.
800 */
ar_search_last_active_buffer(struct ar_context * ctx,unsigned int * buffer_offset)801 static unsigned int ar_search_last_active_buffer(struct ar_context *ctx,
802 unsigned int *buffer_offset)
803 {
804 unsigned int i, next_i, last = ctx->last_buffer_index;
805 __le16 res_count, next_res_count;
806
807 i = ar_first_buffer_index(ctx);
808 res_count = READ_ONCE(ctx->descriptors[i].res_count);
809
810 /* A buffer that is not yet completely filled must be the last one. */
811 while (i != last && res_count == 0) {
812
813 /* Peek at the next descriptor. */
814 next_i = ar_next_buffer_index(i);
815 rmb(); /* read descriptors in order */
816 next_res_count = READ_ONCE(ctx->descriptors[next_i].res_count);
817 /*
818 * If the next descriptor is still empty, we must stop at this
819 * descriptor.
820 */
821 if (next_res_count == cpu_to_le16(PAGE_SIZE)) {
822 /*
823 * The exception is when the DMA data for one packet is
824 * split over three buffers; in this case, the middle
825 * buffer's descriptor might be never updated by the
826 * controller and look still empty, and we have to peek
827 * at the third one.
828 */
829 if (MAX_AR_PACKET_SIZE > PAGE_SIZE && i != last) {
830 next_i = ar_next_buffer_index(next_i);
831 rmb();
832 next_res_count = READ_ONCE(ctx->descriptors[next_i].res_count);
833 if (next_res_count != cpu_to_le16(PAGE_SIZE))
834 goto next_buffer_is_active;
835 }
836
837 break;
838 }
839
840 next_buffer_is_active:
841 i = next_i;
842 res_count = next_res_count;
843 }
844
845 rmb(); /* read res_count before the DMA data */
846
847 *buffer_offset = PAGE_SIZE - le16_to_cpu(res_count);
848 if (*buffer_offset > PAGE_SIZE) {
849 *buffer_offset = 0;
850 ar_context_abort(ctx, "corrupted descriptor");
851 }
852
853 return i;
854 }
855
ar_sync_buffers_for_cpu(struct ar_context * ctx,unsigned int end_buffer_index,unsigned int end_buffer_offset)856 static void ar_sync_buffers_for_cpu(struct ar_context *ctx,
857 unsigned int end_buffer_index,
858 unsigned int end_buffer_offset)
859 {
860 unsigned int i;
861
862 i = ar_first_buffer_index(ctx);
863 while (i != end_buffer_index) {
864 dma_sync_single_for_cpu(ctx->ohci->card.device,
865 ar_buffer_bus(ctx, i),
866 PAGE_SIZE, DMA_FROM_DEVICE);
867 i = ar_next_buffer_index(i);
868 }
869 if (end_buffer_offset > 0)
870 dma_sync_single_for_cpu(ctx->ohci->card.device,
871 ar_buffer_bus(ctx, i),
872 end_buffer_offset, DMA_FROM_DEVICE);
873 }
874
875 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
cond_le32_to_cpu(__le32 value,bool has_be_header_quirk)876 static u32 cond_le32_to_cpu(__le32 value, bool has_be_header_quirk)
877 {
878 return has_be_header_quirk ? (__force __u32)value : le32_to_cpu(value);
879 }
880
has_be_header_quirk(const struct fw_ohci * ohci)881 static bool has_be_header_quirk(const struct fw_ohci *ohci)
882 {
883 return !!(ohci->quirks & QUIRK_BE_HEADERS);
884 }
885 #else
cond_le32_to_cpu(__le32 value,bool has_be_header_quirk __maybe_unused)886 static u32 cond_le32_to_cpu(__le32 value, bool has_be_header_quirk __maybe_unused)
887 {
888 return le32_to_cpu(value);
889 }
890
has_be_header_quirk(const struct fw_ohci * ohci)891 static bool has_be_header_quirk(const struct fw_ohci *ohci)
892 {
893 return false;
894 }
895 #endif
896
handle_ar_packet(struct ar_context * ctx,__le32 * buffer)897 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
898 {
899 struct fw_ohci *ohci = ctx->ohci;
900 struct fw_packet p;
901 u32 status, length, tcode;
902 int evt;
903
904 p.header[0] = cond_le32_to_cpu(buffer[0], has_be_header_quirk(ohci));
905 p.header[1] = cond_le32_to_cpu(buffer[1], has_be_header_quirk(ohci));
906 p.header[2] = cond_le32_to_cpu(buffer[2], has_be_header_quirk(ohci));
907
908 tcode = async_header_get_tcode(p.header);
909 switch (tcode) {
910 case TCODE_WRITE_QUADLET_REQUEST:
911 case TCODE_READ_QUADLET_RESPONSE:
912 p.header[3] = (__force __u32) buffer[3];
913 p.header_length = 16;
914 p.payload_length = 0;
915 break;
916
917 case TCODE_READ_BLOCK_REQUEST :
918 p.header[3] = cond_le32_to_cpu(buffer[3], has_be_header_quirk(ohci));
919 p.header_length = 16;
920 p.payload_length = 0;
921 break;
922
923 case TCODE_WRITE_BLOCK_REQUEST:
924 case TCODE_READ_BLOCK_RESPONSE:
925 case TCODE_LOCK_REQUEST:
926 case TCODE_LOCK_RESPONSE:
927 p.header[3] = cond_le32_to_cpu(buffer[3], has_be_header_quirk(ohci));
928 p.header_length = 16;
929 p.payload_length = async_header_get_data_length(p.header);
930 if (p.payload_length > MAX_ASYNC_PAYLOAD) {
931 ar_context_abort(ctx, "invalid packet length");
932 return NULL;
933 }
934 break;
935
936 case TCODE_WRITE_RESPONSE:
937 case TCODE_READ_QUADLET_REQUEST:
938 case TCODE_LINK_INTERNAL:
939 p.header_length = 12;
940 p.payload_length = 0;
941 break;
942
943 default:
944 ar_context_abort(ctx, "invalid tcode");
945 return NULL;
946 }
947
948 p.payload = (void *) buffer + p.header_length;
949
950 /* FIXME: What to do about evt_* errors? */
951 length = (p.header_length + p.payload_length + 3) / 4;
952 status = cond_le32_to_cpu(buffer[length], has_be_header_quirk(ohci));
953 evt = (status >> 16) & 0x1f;
954
955 p.ack = evt - 16;
956 p.speed = (status >> 21) & 0x7;
957 p.timestamp = status & 0xffff;
958 p.generation = ohci->request_generation;
959
960 log_ar_at_event(ohci, 'R', p.speed, p.header, evt);
961
962 /*
963 * Several controllers, notably from NEC and VIA, forget to
964 * write ack_complete status at PHY packet reception.
965 */
966 if (evt == OHCI1394_evt_no_status && tcode == TCODE_LINK_INTERNAL)
967 p.ack = ACK_COMPLETE;
968
969 /*
970 * The OHCI bus reset handler synthesizes a PHY packet with
971 * the new generation number when a bus reset happens (see
972 * section 8.4.2.3). This helps us determine when a request
973 * was received and make sure we send the response in the same
974 * generation. We only need this for requests; for responses
975 * we use the unique tlabel for finding the matching
976 * request.
977 *
978 * Alas some chips sometimes emit bus reset packets with a
979 * wrong generation. We set the correct generation for these
980 * at a slightly incorrect time (in bus_reset_work).
981 */
982 if (evt == OHCI1394_evt_bus_reset) {
983 if (!(ohci->quirks & QUIRK_RESET_PACKET))
984 ohci->request_generation = (p.header[2] >> 16) & 0xff;
985 } else if (ctx == &ohci->ar_request_ctx) {
986 fw_core_handle_request(&ohci->card, &p);
987 } else {
988 fw_core_handle_response(&ohci->card, &p);
989 }
990
991 return buffer + length + 1;
992 }
993
handle_ar_packets(struct ar_context * ctx,void * p,void * end)994 static void *handle_ar_packets(struct ar_context *ctx, void *p, void *end)
995 {
996 void *next;
997
998 while (p < end) {
999 next = handle_ar_packet(ctx, p);
1000 if (!next)
1001 return p;
1002 p = next;
1003 }
1004
1005 return p;
1006 }
1007
ar_recycle_buffers(struct ar_context * ctx,unsigned int end_buffer)1008 static void ar_recycle_buffers(struct ar_context *ctx, unsigned int end_buffer)
1009 {
1010 unsigned int i;
1011
1012 i = ar_first_buffer_index(ctx);
1013 while (i != end_buffer) {
1014 dma_sync_single_for_device(ctx->ohci->card.device,
1015 ar_buffer_bus(ctx, i),
1016 PAGE_SIZE, DMA_FROM_DEVICE);
1017 ar_context_link_page(ctx, i);
1018 i = ar_next_buffer_index(i);
1019 }
1020 }
1021
ohci_ar_context_work(struct work_struct * work)1022 static void ohci_ar_context_work(struct work_struct *work)
1023 {
1024 struct ar_context *ctx = from_work(ctx, work, work);
1025 unsigned int end_buffer_index, end_buffer_offset;
1026 void *p, *end;
1027
1028 p = ctx->pointer;
1029 if (!p)
1030 return;
1031
1032 end_buffer_index = ar_search_last_active_buffer(ctx, &end_buffer_offset);
1033 ar_sync_buffers_for_cpu(ctx, end_buffer_index, end_buffer_offset);
1034 end = ctx->buffer + end_buffer_index * PAGE_SIZE + end_buffer_offset;
1035
1036 if (end_buffer_index < ar_first_buffer_index(ctx)) {
1037 // The filled part of the overall buffer wraps around; handle all packets up to the
1038 // buffer end here. If the last packet wraps around, its tail will be visible after
1039 // the buffer end because the buffer start pages are mapped there again.
1040 void *buffer_end = ctx->buffer + AR_BUFFERS * PAGE_SIZE;
1041 p = handle_ar_packets(ctx, p, buffer_end);
1042 if (p < buffer_end)
1043 goto error;
1044 // adjust p to point back into the actual buffer
1045 p -= AR_BUFFERS * PAGE_SIZE;
1046 }
1047
1048 p = handle_ar_packets(ctx, p, end);
1049 if (p != end) {
1050 if (p > end)
1051 ar_context_abort(ctx, "inconsistent descriptor");
1052 goto error;
1053 }
1054
1055 ctx->pointer = p;
1056 ar_recycle_buffers(ctx, end_buffer_index);
1057
1058 return;
1059 error:
1060 ctx->pointer = NULL;
1061 }
1062
ar_context_init(struct ar_context * ctx,struct fw_ohci * ohci,unsigned int descriptors_offset,u32 regs)1063 static int ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci,
1064 unsigned int descriptors_offset, u32 regs)
1065 {
1066 struct device *dev = ohci->card.device;
1067 unsigned int i;
1068 dma_addr_t dma_addr;
1069 struct page *pages[AR_BUFFERS + AR_WRAPAROUND_PAGES];
1070 struct descriptor *d;
1071
1072 ctx->regs = regs;
1073 ctx->ohci = ohci;
1074 INIT_WORK(&ctx->work, ohci_ar_context_work);
1075
1076 for (i = 0; i < AR_BUFFERS; i++) {
1077 ctx->pages[i] = dma_alloc_pages(dev, PAGE_SIZE, &dma_addr,
1078 DMA_FROM_DEVICE, GFP_KERNEL);
1079 if (!ctx->pages[i])
1080 goto out_of_memory;
1081 set_page_private(ctx->pages[i], dma_addr);
1082 dma_sync_single_for_device(dev, dma_addr, PAGE_SIZE,
1083 DMA_FROM_DEVICE);
1084 }
1085
1086 for (i = 0; i < AR_BUFFERS; i++)
1087 pages[i] = ctx->pages[i];
1088 for (i = 0; i < AR_WRAPAROUND_PAGES; i++)
1089 pages[AR_BUFFERS + i] = ctx->pages[i];
1090 ctx->buffer = vmap(pages, ARRAY_SIZE(pages), VM_MAP, PAGE_KERNEL);
1091 if (!ctx->buffer)
1092 goto out_of_memory;
1093
1094 ctx->descriptors = ohci->misc_buffer + descriptors_offset;
1095 ctx->descriptors_bus = ohci->misc_buffer_bus + descriptors_offset;
1096
1097 for (i = 0; i < AR_BUFFERS; i++) {
1098 d = &ctx->descriptors[i];
1099 d->req_count = cpu_to_le16(PAGE_SIZE);
1100 d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
1101 DESCRIPTOR_STATUS |
1102 DESCRIPTOR_BRANCH_ALWAYS);
1103 d->data_address = cpu_to_le32(ar_buffer_bus(ctx, i));
1104 d->branch_address = cpu_to_le32(ctx->descriptors_bus +
1105 ar_next_buffer_index(i) * sizeof(struct descriptor));
1106 }
1107
1108 return 0;
1109
1110 out_of_memory:
1111 ar_context_release(ctx);
1112
1113 return -ENOMEM;
1114 }
1115
ar_context_run(struct ar_context * ctx)1116 static void ar_context_run(struct ar_context *ctx)
1117 {
1118 unsigned int i;
1119
1120 for (i = 0; i < AR_BUFFERS; i++)
1121 ar_context_link_page(ctx, i);
1122
1123 ctx->pointer = ctx->buffer;
1124
1125 reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ctx->descriptors_bus | 1);
1126 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
1127 }
1128
find_branch_descriptor(struct descriptor * d,int z)1129 static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
1130 {
1131 __le16 branch;
1132
1133 branch = d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS);
1134
1135 /* figure out which descriptor the branch address goes in */
1136 if (z == 2 && branch == cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
1137 return d;
1138 else
1139 return d + z - 1;
1140 }
1141
context_retire_descriptors(struct context * ctx)1142 static void context_retire_descriptors(struct context *ctx)
1143 {
1144 struct descriptor *d, *last;
1145 u32 address;
1146 int z;
1147 struct descriptor_buffer *desc;
1148
1149 desc = list_entry(ctx->buffer_list.next,
1150 struct descriptor_buffer, list);
1151 last = ctx->last;
1152 while (last->branch_address != 0) {
1153 struct descriptor_buffer *old_desc = desc;
1154 address = le32_to_cpu(last->branch_address);
1155 z = address & 0xf;
1156 address &= ~0xf;
1157 ctx->current_bus = address;
1158
1159 /* If the branch address points to a buffer outside of the
1160 * current buffer, advance to the next buffer. */
1161 if (address < desc->buffer_bus ||
1162 address >= desc->buffer_bus + desc->used)
1163 desc = list_entry(desc->list.next,
1164 struct descriptor_buffer, list);
1165 d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
1166 last = find_branch_descriptor(d, z);
1167
1168 if (!ctx->callback(ctx, d, last))
1169 break;
1170
1171 if (old_desc != desc) {
1172 // If we've advanced to the next buffer, move the previous buffer to the
1173 // free list.
1174 old_desc->used = 0;
1175 guard(spinlock_irqsave)(&ctx->ohci->lock);
1176 list_move_tail(&old_desc->list, &ctx->buffer_list);
1177 }
1178 ctx->last = last;
1179 }
1180 }
1181
ohci_at_context_work(struct work_struct * work)1182 static void ohci_at_context_work(struct work_struct *work)
1183 {
1184 struct at_context *ctx = from_work(ctx, work, work);
1185
1186 context_retire_descriptors(&ctx->context);
1187 }
1188
ohci_isoc_context_work(struct work_struct * work)1189 static void ohci_isoc_context_work(struct work_struct *work)
1190 {
1191 struct fw_iso_context *base = from_work(base, work, work);
1192 struct iso_context *isoc_ctx = container_of(base, struct iso_context, base);
1193
1194 context_retire_descriptors(&isoc_ctx->context);
1195 }
1196
1197 /*
1198 * Allocate a new buffer and add it to the list of free buffers for this
1199 * context. Must be called with ohci->lock held.
1200 */
context_add_buffer(struct context * ctx)1201 static int context_add_buffer(struct context *ctx)
1202 {
1203 struct descriptor_buffer *desc;
1204 dma_addr_t bus_addr;
1205 int offset;
1206
1207 /*
1208 * 16MB of descriptors should be far more than enough for any DMA
1209 * program. This will catch run-away userspace or DoS attacks.
1210 */
1211 if (ctx->total_allocation >= 16*1024*1024)
1212 return -ENOMEM;
1213
1214 desc = dmam_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE, &bus_addr, GFP_ATOMIC);
1215 if (!desc)
1216 return -ENOMEM;
1217
1218 offset = (void *)&desc->buffer - (void *)desc;
1219 /*
1220 * Some controllers, like JMicron ones, always issue 0x20-byte DMA reads
1221 * for descriptors, even 0x10-byte ones. This can cause page faults when
1222 * an IOMMU is in use and the oversized read crosses a page boundary.
1223 * Work around this by always leaving at least 0x10 bytes of padding.
1224 */
1225 desc->buffer_size = PAGE_SIZE - offset - 0x10;
1226 desc->buffer_bus = bus_addr + offset;
1227 desc->used = 0;
1228
1229 list_add_tail(&desc->list, &ctx->buffer_list);
1230 ctx->total_allocation += PAGE_SIZE;
1231
1232 return 0;
1233 }
1234
context_init(struct context * ctx,struct fw_ohci * ohci,u32 regs,descriptor_callback_t callback)1235 static int context_init(struct context *ctx, struct fw_ohci *ohci,
1236 u32 regs, descriptor_callback_t callback)
1237 {
1238 ctx->ohci = ohci;
1239 ctx->regs = regs;
1240 ctx->total_allocation = 0;
1241
1242 INIT_LIST_HEAD(&ctx->buffer_list);
1243 if (context_add_buffer(ctx) < 0)
1244 return -ENOMEM;
1245
1246 ctx->buffer_tail = list_entry(ctx->buffer_list.next,
1247 struct descriptor_buffer, list);
1248
1249 ctx->callback = callback;
1250
1251 /*
1252 * We put a dummy descriptor in the buffer that has a NULL
1253 * branch address and looks like it's been sent. That way we
1254 * have a descriptor to append DMA programs to.
1255 */
1256 memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
1257 ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
1258 ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
1259 ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
1260 ctx->last = ctx->buffer_tail->buffer;
1261 ctx->prev = ctx->buffer_tail->buffer;
1262 ctx->prev_z = 1;
1263
1264 return 0;
1265 }
1266
context_release(struct context * ctx)1267 static void context_release(struct context *ctx)
1268 {
1269 struct fw_card *card = &ctx->ohci->card;
1270 struct descriptor_buffer *desc, *tmp;
1271
1272 list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list) {
1273 dmam_free_coherent(card->device, PAGE_SIZE, desc,
1274 desc->buffer_bus - ((void *)&desc->buffer - (void *)desc));
1275 }
1276 }
1277
1278 /* Must be called with ohci->lock held */
context_get_descriptors(struct context * ctx,int z,dma_addr_t * d_bus)1279 static struct descriptor *context_get_descriptors(struct context *ctx,
1280 int z, dma_addr_t *d_bus)
1281 {
1282 struct descriptor *d = NULL;
1283 struct descriptor_buffer *desc = ctx->buffer_tail;
1284
1285 if (z * sizeof(*d) > desc->buffer_size)
1286 return NULL;
1287
1288 if (z * sizeof(*d) > desc->buffer_size - desc->used) {
1289 /* No room for the descriptor in this buffer, so advance to the
1290 * next one. */
1291
1292 if (desc->list.next == &ctx->buffer_list) {
1293 /* If there is no free buffer next in the list,
1294 * allocate one. */
1295 if (context_add_buffer(ctx) < 0)
1296 return NULL;
1297 }
1298 desc = list_entry(desc->list.next,
1299 struct descriptor_buffer, list);
1300 ctx->buffer_tail = desc;
1301 }
1302
1303 d = desc->buffer + desc->used / sizeof(*d);
1304 memset(d, 0, z * sizeof(*d));
1305 *d_bus = desc->buffer_bus + desc->used;
1306
1307 return d;
1308 }
1309
context_run(struct context * ctx,u32 extra)1310 static void context_run(struct context *ctx, u32 extra)
1311 {
1312 struct fw_ohci *ohci = ctx->ohci;
1313
1314 reg_write(ohci, COMMAND_PTR(ctx->regs),
1315 le32_to_cpu(ctx->last->branch_address));
1316 reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
1317 reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
1318 ctx->running = true;
1319 flush_writes(ohci);
1320 }
1321
context_append(struct context * ctx,struct descriptor * d,int z,int extra)1322 static void context_append(struct context *ctx,
1323 struct descriptor *d, int z, int extra)
1324 {
1325 dma_addr_t d_bus;
1326 struct descriptor_buffer *desc = ctx->buffer_tail;
1327 struct descriptor *d_branch;
1328
1329 d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
1330
1331 desc->used += (z + extra) * sizeof(*d);
1332
1333 wmb(); /* finish init of new descriptors before branch_address update */
1334
1335 d_branch = find_branch_descriptor(ctx->prev, ctx->prev_z);
1336 d_branch->branch_address = cpu_to_le32(d_bus | z);
1337
1338 /*
1339 * VT6306 incorrectly checks only the single descriptor at the
1340 * CommandPtr when the wake bit is written, so if it's a
1341 * multi-descriptor block starting with an INPUT_MORE, put a copy of
1342 * the branch address in the first descriptor.
1343 *
1344 * Not doing this for transmit contexts since not sure how it interacts
1345 * with skip addresses.
1346 */
1347 if (unlikely(ctx->ohci->quirks & QUIRK_IR_WAKE) &&
1348 d_branch != ctx->prev &&
1349 (ctx->prev->control & cpu_to_le16(DESCRIPTOR_CMD)) ==
1350 cpu_to_le16(DESCRIPTOR_INPUT_MORE)) {
1351 ctx->prev->branch_address = cpu_to_le32(d_bus | z);
1352 }
1353
1354 ctx->prev = d;
1355 ctx->prev_z = z;
1356 }
1357
context_stop(struct context * ctx)1358 static void context_stop(struct context *ctx)
1359 {
1360 struct fw_ohci *ohci = ctx->ohci;
1361 u32 reg;
1362 int i;
1363
1364 reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
1365 ctx->running = false;
1366
1367 for (i = 0; i < 1000; i++) {
1368 reg = reg_read(ohci, CONTROL_SET(ctx->regs));
1369 if ((reg & CONTEXT_ACTIVE) == 0)
1370 return;
1371
1372 if (i)
1373 udelay(10);
1374 }
1375 ohci_err(ohci, "DMA context still active (0x%08x)\n", reg);
1376 }
1377
1378 struct driver_data {
1379 u8 inline_data[8];
1380 struct fw_packet *packet;
1381 };
1382
1383 /*
1384 * This function appends a packet to the DMA queue for transmission.
1385 * Must always be called with the ochi->lock held to ensure proper
1386 * generation handling and locking around packet queue manipulation.
1387 */
at_context_queue_packet(struct at_context * ctx,struct fw_packet * packet)1388 static int at_context_queue_packet(struct at_context *ctx, struct fw_packet *packet)
1389 {
1390 struct context *context = &ctx->context;
1391 struct fw_ohci *ohci = context->ohci;
1392 dma_addr_t d_bus, payload_bus;
1393 struct driver_data *driver_data;
1394 struct descriptor *d, *last;
1395 __le32 *header;
1396 int z, tcode;
1397
1398 d = context_get_descriptors(context, 4, &d_bus);
1399 if (d == NULL) {
1400 packet->ack = RCODE_SEND_ERROR;
1401 return -1;
1402 }
1403
1404 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1405 d[0].res_count = cpu_to_le16(packet->timestamp);
1406
1407 tcode = async_header_get_tcode(packet->header);
1408 header = (__le32 *) &d[1];
1409 switch (tcode) {
1410 case TCODE_WRITE_QUADLET_REQUEST:
1411 case TCODE_WRITE_BLOCK_REQUEST:
1412 case TCODE_WRITE_RESPONSE:
1413 case TCODE_READ_QUADLET_REQUEST:
1414 case TCODE_READ_BLOCK_REQUEST:
1415 case TCODE_READ_QUADLET_RESPONSE:
1416 case TCODE_READ_BLOCK_RESPONSE:
1417 case TCODE_LOCK_REQUEST:
1418 case TCODE_LOCK_RESPONSE:
1419 ohci1394_at_data_set_src_bus_id(header, false);
1420 ohci1394_at_data_set_speed(header, packet->speed);
1421 ohci1394_at_data_set_tlabel(header, async_header_get_tlabel(packet->header));
1422 ohci1394_at_data_set_retry(header, async_header_get_retry(packet->header));
1423 ohci1394_at_data_set_tcode(header, tcode);
1424
1425 ohci1394_at_data_set_destination_id(header,
1426 async_header_get_destination(packet->header));
1427
1428 if (ctx == &ohci->at_response_ctx) {
1429 ohci1394_at_data_set_rcode(header, async_header_get_rcode(packet->header));
1430 } else {
1431 ohci1394_at_data_set_destination_offset(header,
1432 async_header_get_offset(packet->header));
1433 }
1434
1435 if (tcode_is_block_packet(tcode))
1436 header[3] = cpu_to_le32(packet->header[3]);
1437 else
1438 header[3] = (__force __le32) packet->header[3];
1439
1440 d[0].req_count = cpu_to_le16(packet->header_length);
1441 break;
1442 case TCODE_LINK_INTERNAL:
1443 ohci1394_at_data_set_speed(header, packet->speed);
1444 ohci1394_at_data_set_tcode(header, TCODE_LINK_INTERNAL);
1445
1446 header[1] = cpu_to_le32(packet->header[1]);
1447 header[2] = cpu_to_le32(packet->header[2]);
1448 d[0].req_count = cpu_to_le16(12);
1449
1450 if (is_ping_packet(&packet->header[1]))
1451 d[0].control |= cpu_to_le16(DESCRIPTOR_PING);
1452 break;
1453
1454 case TCODE_STREAM_DATA:
1455 ohci1394_it_data_set_speed(header, packet->speed);
1456 ohci1394_it_data_set_tag(header, isoc_header_get_tag(packet->header[0]));
1457 ohci1394_it_data_set_channel(header, isoc_header_get_channel(packet->header[0]));
1458 ohci1394_it_data_set_tcode(header, TCODE_STREAM_DATA);
1459 ohci1394_it_data_set_sync(header, isoc_header_get_sy(packet->header[0]));
1460
1461 ohci1394_it_data_set_data_length(header, isoc_header_get_data_length(packet->header[0]));
1462
1463 d[0].req_count = cpu_to_le16(8);
1464 break;
1465
1466 default:
1467 /* BUG(); */
1468 packet->ack = RCODE_SEND_ERROR;
1469 return -1;
1470 }
1471
1472 BUILD_BUG_ON(sizeof(struct driver_data) > sizeof(struct descriptor));
1473 driver_data = (struct driver_data *) &d[3];
1474 driver_data->packet = packet;
1475 packet->driver_data = driver_data;
1476
1477 if (packet->payload_length > 0) {
1478 if (packet->payload_length > sizeof(driver_data->inline_data)) {
1479 payload_bus = dma_map_single(ohci->card.device,
1480 packet->payload,
1481 packet->payload_length,
1482 DMA_TO_DEVICE);
1483 if (dma_mapping_error(ohci->card.device, payload_bus)) {
1484 packet->ack = RCODE_SEND_ERROR;
1485 return -1;
1486 }
1487 packet->payload_bus = payload_bus;
1488 packet->payload_mapped = true;
1489 } else {
1490 memcpy(driver_data->inline_data, packet->payload,
1491 packet->payload_length);
1492 payload_bus = d_bus + 3 * sizeof(*d);
1493 }
1494
1495 d[2].req_count = cpu_to_le16(packet->payload_length);
1496 d[2].data_address = cpu_to_le32(payload_bus);
1497 last = &d[2];
1498 z = 3;
1499 } else {
1500 last = &d[0];
1501 z = 2;
1502 }
1503
1504 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1505 DESCRIPTOR_IRQ_ALWAYS |
1506 DESCRIPTOR_BRANCH_ALWAYS);
1507
1508 /* FIXME: Document how the locking works. */
1509 if (ohci->generation != packet->generation) {
1510 if (packet->payload_mapped)
1511 dma_unmap_single(ohci->card.device, payload_bus,
1512 packet->payload_length, DMA_TO_DEVICE);
1513 packet->ack = RCODE_GENERATION;
1514 return -1;
1515 }
1516
1517 context_append(context, d, z, 4 - z);
1518
1519 if (context->running)
1520 reg_write(ohci, CONTROL_SET(context->regs), CONTEXT_WAKE);
1521 else
1522 context_run(context, 0);
1523
1524 return 0;
1525 }
1526
at_context_flush(struct at_context * ctx)1527 static void at_context_flush(struct at_context *ctx)
1528 {
1529 // Avoid dead lock due to programming mistake.
1530 if (WARN_ON_ONCE(current_work() == &ctx->work))
1531 return;
1532
1533 disable_work_sync(&ctx->work);
1534
1535 WRITE_ONCE(ctx->flushing, true);
1536 ohci_at_context_work(&ctx->work);
1537 WRITE_ONCE(ctx->flushing, false);
1538
1539 enable_work(&ctx->work);
1540 }
1541
handle_at_packet(struct context * context,struct descriptor * d,struct descriptor * last)1542 static int handle_at_packet(struct context *context,
1543 struct descriptor *d,
1544 struct descriptor *last)
1545 {
1546 struct at_context *ctx = container_of(context, struct at_context, context);
1547 struct fw_ohci *ohci = ctx->context.ohci;
1548 struct driver_data *driver_data;
1549 struct fw_packet *packet;
1550 int evt;
1551
1552 if (last->transfer_status == 0 && !READ_ONCE(ctx->flushing))
1553 /* This descriptor isn't done yet, stop iteration. */
1554 return 0;
1555
1556 driver_data = (struct driver_data *) &d[3];
1557 packet = driver_data->packet;
1558 if (packet == NULL)
1559 /* This packet was cancelled, just continue. */
1560 return 1;
1561
1562 if (packet->payload_mapped)
1563 dma_unmap_single(ohci->card.device, packet->payload_bus,
1564 packet->payload_length, DMA_TO_DEVICE);
1565
1566 evt = le16_to_cpu(last->transfer_status) & 0x1f;
1567 packet->timestamp = le16_to_cpu(last->res_count);
1568
1569 log_ar_at_event(ohci, 'T', packet->speed, packet->header, evt);
1570
1571 switch (evt) {
1572 case OHCI1394_evt_timeout:
1573 /* Async response transmit timed out. */
1574 packet->ack = RCODE_CANCELLED;
1575 break;
1576
1577 case OHCI1394_evt_flushed:
1578 /*
1579 * The packet was flushed should give same error as
1580 * when we try to use a stale generation count.
1581 */
1582 packet->ack = RCODE_GENERATION;
1583 break;
1584
1585 case OHCI1394_evt_missing_ack:
1586 if (READ_ONCE(ctx->flushing))
1587 packet->ack = RCODE_GENERATION;
1588 else {
1589 /*
1590 * Using a valid (current) generation count, but the
1591 * node is not on the bus or not sending acks.
1592 */
1593 packet->ack = RCODE_NO_ACK;
1594 }
1595 break;
1596
1597 case ACK_COMPLETE + 0x10:
1598 case ACK_PENDING + 0x10:
1599 case ACK_BUSY_X + 0x10:
1600 case ACK_BUSY_A + 0x10:
1601 case ACK_BUSY_B + 0x10:
1602 case ACK_DATA_ERROR + 0x10:
1603 case ACK_TYPE_ERROR + 0x10:
1604 packet->ack = evt - 0x10;
1605 break;
1606
1607 case OHCI1394_evt_no_status:
1608 if (READ_ONCE(ctx->flushing)) {
1609 packet->ack = RCODE_GENERATION;
1610 break;
1611 }
1612 fallthrough;
1613
1614 default:
1615 packet->ack = RCODE_SEND_ERROR;
1616 break;
1617 }
1618
1619 packet->callback(packet, &ohci->card, packet->ack);
1620
1621 return 1;
1622 }
1623
1624 static u32 get_cycle_time(struct fw_ohci *ohci);
1625
handle_local_rom(struct fw_ohci * ohci,struct fw_packet * packet,u32 csr)1626 static void handle_local_rom(struct fw_ohci *ohci,
1627 struct fw_packet *packet, u32 csr)
1628 {
1629 struct fw_packet response;
1630 int tcode, length, i;
1631
1632 tcode = async_header_get_tcode(packet->header);
1633 if (tcode_is_block_packet(tcode))
1634 length = async_header_get_data_length(packet->header);
1635 else
1636 length = 4;
1637
1638 i = csr - CSR_CONFIG_ROM;
1639 if (i + length > CONFIG_ROM_SIZE) {
1640 fw_fill_response(&response, packet->header,
1641 RCODE_ADDRESS_ERROR, NULL, 0);
1642 } else if (!tcode_is_read_request(tcode)) {
1643 fw_fill_response(&response, packet->header,
1644 RCODE_TYPE_ERROR, NULL, 0);
1645 } else {
1646 fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1647 (void *) ohci->config_rom + i, length);
1648 }
1649
1650 // Timestamping on behalf of the hardware.
1651 response.timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ohci));
1652 fw_core_handle_response(&ohci->card, &response);
1653 }
1654
handle_local_lock(struct fw_ohci * ohci,struct fw_packet * packet,u32 csr)1655 static void handle_local_lock(struct fw_ohci *ohci,
1656 struct fw_packet *packet, u32 csr)
1657 {
1658 struct fw_packet response;
1659 int tcode, length, ext_tcode, sel, try;
1660 __be32 *payload, lock_old;
1661 u32 lock_arg, lock_data;
1662
1663 tcode = async_header_get_tcode(packet->header);
1664 length = async_header_get_data_length(packet->header);
1665 payload = packet->payload;
1666 ext_tcode = async_header_get_extended_tcode(packet->header);
1667
1668 if (tcode == TCODE_LOCK_REQUEST &&
1669 ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1670 lock_arg = be32_to_cpu(payload[0]);
1671 lock_data = be32_to_cpu(payload[1]);
1672 } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1673 lock_arg = 0;
1674 lock_data = 0;
1675 } else {
1676 fw_fill_response(&response, packet->header,
1677 RCODE_TYPE_ERROR, NULL, 0);
1678 goto out;
1679 }
1680
1681 sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1682 reg_write(ohci, OHCI1394_CSRData, lock_data);
1683 reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1684 reg_write(ohci, OHCI1394_CSRControl, sel);
1685
1686 for (try = 0; try < 20; try++)
1687 if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) {
1688 lock_old = cpu_to_be32(reg_read(ohci,
1689 OHCI1394_CSRData));
1690 fw_fill_response(&response, packet->header,
1691 RCODE_COMPLETE,
1692 &lock_old, sizeof(lock_old));
1693 goto out;
1694 }
1695
1696 ohci_err(ohci, "swap not done (CSR lock timeout)\n");
1697 fw_fill_response(&response, packet->header, RCODE_BUSY, NULL, 0);
1698
1699 out:
1700 // Timestamping on behalf of the hardware.
1701 response.timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ohci));
1702 fw_core_handle_response(&ohci->card, &response);
1703 }
1704
handle_local_request(struct at_context * ctx,struct fw_packet * packet)1705 static void handle_local_request(struct at_context *ctx, struct fw_packet *packet)
1706 {
1707 struct fw_ohci *ohci = ctx->context.ohci;
1708 u64 offset, csr;
1709
1710 if (ctx == &ohci->at_request_ctx) {
1711 packet->ack = ACK_PENDING;
1712 packet->callback(packet, &ohci->card, packet->ack);
1713 }
1714
1715 offset = async_header_get_offset(packet->header);
1716 csr = offset - CSR_REGISTER_BASE;
1717
1718 /* Handle config rom reads. */
1719 if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1720 handle_local_rom(ohci, packet, csr);
1721 else switch (csr) {
1722 case CSR_BUS_MANAGER_ID:
1723 case CSR_BANDWIDTH_AVAILABLE:
1724 case CSR_CHANNELS_AVAILABLE_HI:
1725 case CSR_CHANNELS_AVAILABLE_LO:
1726 handle_local_lock(ohci, packet, csr);
1727 break;
1728 default:
1729 if (ctx == &ohci->at_request_ctx)
1730 fw_core_handle_request(&ohci->card, packet);
1731 else
1732 fw_core_handle_response(&ohci->card, packet);
1733 break;
1734 }
1735
1736 if (ctx == &ohci->at_response_ctx) {
1737 packet->ack = ACK_COMPLETE;
1738 packet->callback(packet, &ohci->card, packet->ack);
1739 }
1740 }
1741
at_context_transmit(struct at_context * ctx,struct fw_packet * packet)1742 static void at_context_transmit(struct at_context *ctx, struct fw_packet *packet)
1743 {
1744 struct fw_ohci *ohci = ctx->context.ohci;
1745 unsigned long flags;
1746 int ret;
1747
1748 spin_lock_irqsave(&ohci->lock, flags);
1749
1750 if (async_header_get_destination(packet->header) == ohci->node_id &&
1751 ohci->generation == packet->generation) {
1752 spin_unlock_irqrestore(&ohci->lock, flags);
1753
1754 // Timestamping on behalf of the hardware.
1755 packet->timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ohci));
1756
1757 handle_local_request(ctx, packet);
1758 return;
1759 }
1760
1761 ret = at_context_queue_packet(ctx, packet);
1762 spin_unlock_irqrestore(&ohci->lock, flags);
1763
1764 if (ret < 0) {
1765 // Timestamping on behalf of the hardware.
1766 packet->timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ohci));
1767
1768 packet->callback(packet, &ohci->card, packet->ack);
1769 }
1770 }
1771
detect_dead_context(struct fw_ohci * ohci,const char * name,unsigned int regs)1772 static void detect_dead_context(struct fw_ohci *ohci,
1773 const char *name, unsigned int regs)
1774 {
1775 u32 ctl;
1776
1777 ctl = reg_read(ohci, CONTROL_SET(regs));
1778 if (ctl & CONTEXT_DEAD)
1779 ohci_err(ohci, "DMA context %s has stopped, error code: %s\n",
1780 name, evts[ctl & 0x1f]);
1781 }
1782
handle_dead_contexts(struct fw_ohci * ohci)1783 static void handle_dead_contexts(struct fw_ohci *ohci)
1784 {
1785 unsigned int i;
1786 char name[8];
1787
1788 detect_dead_context(ohci, "ATReq", OHCI1394_AsReqTrContextBase);
1789 detect_dead_context(ohci, "ATRsp", OHCI1394_AsRspTrContextBase);
1790 detect_dead_context(ohci, "ARReq", OHCI1394_AsReqRcvContextBase);
1791 detect_dead_context(ohci, "ARRsp", OHCI1394_AsRspRcvContextBase);
1792 for (i = 0; i < 32; ++i) {
1793 if (!(ohci->it_context_support & (1 << i)))
1794 continue;
1795 sprintf(name, "IT%u", i);
1796 detect_dead_context(ohci, name, OHCI1394_IsoXmitContextBase(i));
1797 }
1798 for (i = 0; i < 32; ++i) {
1799 if (!(ohci->ir_context_support & (1 << i)))
1800 continue;
1801 sprintf(name, "IR%u", i);
1802 detect_dead_context(ohci, name, OHCI1394_IsoRcvContextBase(i));
1803 }
1804 /* TODO: maybe try to flush and restart the dead contexts */
1805 }
1806
cycle_timer_ticks(u32 cycle_timer)1807 static u32 cycle_timer_ticks(u32 cycle_timer)
1808 {
1809 u32 ticks;
1810
1811 ticks = cycle_timer & 0xfff;
1812 ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
1813 ticks += (3072 * 8000) * (cycle_timer >> 25);
1814
1815 return ticks;
1816 }
1817
1818 /*
1819 * Some controllers exhibit one or more of the following bugs when updating the
1820 * iso cycle timer register:
1821 * - When the lowest six bits are wrapping around to zero, a read that happens
1822 * at the same time will return garbage in the lowest ten bits.
1823 * - When the cycleOffset field wraps around to zero, the cycleCount field is
1824 * not incremented for about 60 ns.
1825 * - Occasionally, the entire register reads zero.
1826 *
1827 * To catch these, we read the register three times and ensure that the
1828 * difference between each two consecutive reads is approximately the same, i.e.
1829 * less than twice the other. Furthermore, any negative difference indicates an
1830 * error. (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1831 * execute, so we have enough precision to compute the ratio of the differences.)
1832 */
get_cycle_time(struct fw_ohci * ohci)1833 static u32 get_cycle_time(struct fw_ohci *ohci)
1834 {
1835 u32 c0, c1, c2;
1836 u32 t0, t1, t2;
1837 s32 diff01, diff12;
1838 int i;
1839
1840 if (has_reboot_by_cycle_timer_read_quirk(ohci))
1841 return 0;
1842
1843 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1844
1845 if (ohci->quirks & QUIRK_CYCLE_TIMER) {
1846 i = 0;
1847 c1 = c2;
1848 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1849 do {
1850 c0 = c1;
1851 c1 = c2;
1852 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1853 t0 = cycle_timer_ticks(c0);
1854 t1 = cycle_timer_ticks(c1);
1855 t2 = cycle_timer_ticks(c2);
1856 diff01 = t1 - t0;
1857 diff12 = t2 - t1;
1858 } while ((diff01 <= 0 || diff12 <= 0 ||
1859 diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
1860 && i++ < 20);
1861 }
1862
1863 return c2;
1864 }
1865
1866 /*
1867 * This function has to be called at least every 64 seconds. The bus_time
1868 * field stores not only the upper 25 bits of the BUS_TIME register but also
1869 * the most significant bit of the cycle timer in bit 6 so that we can detect
1870 * changes in this bit.
1871 */
update_bus_time(struct fw_ohci * ohci)1872 static u32 update_bus_time(struct fw_ohci *ohci)
1873 {
1874 u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;
1875
1876 if (unlikely(!ohci->bus_time_running)) {
1877 reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_cycle64Seconds);
1878 ohci->bus_time = (lower_32_bits(ktime_get_seconds()) & ~0x7f) |
1879 (cycle_time_seconds & 0x40);
1880 ohci->bus_time_running = true;
1881 }
1882
1883 if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
1884 ohci->bus_time += 0x40;
1885
1886 return ohci->bus_time | cycle_time_seconds;
1887 }
1888
get_status_for_port(struct fw_ohci * ohci,int port_index,enum phy_packet_self_id_port_status * status)1889 static int get_status_for_port(struct fw_ohci *ohci, int port_index,
1890 enum phy_packet_self_id_port_status *status)
1891 {
1892 int reg;
1893
1894 scoped_guard(mutex, &ohci->phy_reg_mutex) {
1895 reg = write_phy_reg(ohci, 7, port_index);
1896 if (reg < 0)
1897 return reg;
1898
1899 reg = read_phy_reg(ohci, 8);
1900 if (reg < 0)
1901 return reg;
1902 }
1903
1904 switch (reg & 0x0f) {
1905 case 0x06:
1906 // is child node (connected to parent node)
1907 *status = PHY_PACKET_SELF_ID_PORT_STATUS_PARENT;
1908 break;
1909 case 0x0e:
1910 // is parent node (connected to child node)
1911 *status = PHY_PACKET_SELF_ID_PORT_STATUS_CHILD;
1912 break;
1913 default:
1914 // not connected
1915 *status = PHY_PACKET_SELF_ID_PORT_STATUS_NCONN;
1916 break;
1917 }
1918
1919 return 0;
1920 }
1921
get_self_id_pos(struct fw_ohci * ohci,u32 self_id,int self_id_count)1922 static int get_self_id_pos(struct fw_ohci *ohci, u32 self_id,
1923 int self_id_count)
1924 {
1925 unsigned int left_phy_id = phy_packet_self_id_get_phy_id(self_id);
1926 int i;
1927
1928 for (i = 0; i < self_id_count; i++) {
1929 u32 entry = ohci->self_id_buffer[i];
1930 unsigned int right_phy_id = phy_packet_self_id_get_phy_id(entry);
1931
1932 if (left_phy_id == right_phy_id)
1933 return -1;
1934 if (left_phy_id < right_phy_id)
1935 return i;
1936 }
1937 return i;
1938 }
1939
detect_initiated_reset(struct fw_ohci * ohci,bool * is_initiated_reset)1940 static int detect_initiated_reset(struct fw_ohci *ohci, bool *is_initiated_reset)
1941 {
1942 int reg;
1943
1944 guard(mutex)(&ohci->phy_reg_mutex);
1945
1946 // Select page 7
1947 reg = write_phy_reg(ohci, 7, 0xe0);
1948 if (reg < 0)
1949 return reg;
1950
1951 reg = read_phy_reg(ohci, 8);
1952 if (reg < 0)
1953 return reg;
1954
1955 // set PMODE bit
1956 reg |= 0x40;
1957 reg = write_phy_reg(ohci, 8, reg);
1958 if (reg < 0)
1959 return reg;
1960
1961 // read register 12
1962 reg = read_phy_reg(ohci, 12);
1963 if (reg < 0)
1964 return reg;
1965
1966 // bit 3 indicates "initiated reset"
1967 *is_initiated_reset = !!((reg & 0x08) == 0x08);
1968
1969 return 0;
1970 }
1971
1972 /*
1973 * TI TSB82AA2B and TSB12LV26 do not receive the selfID of a locally
1974 * attached TSB41BA3D phy; see http://www.ti.com/litv/pdf/sllz059.
1975 * Construct the selfID from phy register contents.
1976 */
find_and_insert_self_id(struct fw_ohci * ohci,int self_id_count)1977 static int find_and_insert_self_id(struct fw_ohci *ohci, int self_id_count)
1978 {
1979 int reg, i, pos, err;
1980 bool is_initiated_reset;
1981 u32 self_id = 0;
1982
1983 // link active 1, speed 3, bridge 0, contender 1, more packets 0.
1984 phy_packet_set_packet_identifier(&self_id, PHY_PACKET_PACKET_IDENTIFIER_SELF_ID);
1985 phy_packet_self_id_zero_set_link_active(&self_id, true);
1986 phy_packet_self_id_zero_set_scode(&self_id, SCODE_800);
1987 phy_packet_self_id_zero_set_contender(&self_id, true);
1988
1989 reg = reg_read(ohci, OHCI1394_NodeID);
1990 if (!(reg & OHCI1394_NodeID_idValid)) {
1991 ohci_notice(ohci,
1992 "node ID not valid, new bus reset in progress\n");
1993 return -EBUSY;
1994 }
1995 phy_packet_self_id_set_phy_id(&self_id, reg & 0x3f);
1996
1997 reg = ohci_read_phy_reg(&ohci->card, 4);
1998 if (reg < 0)
1999 return reg;
2000 phy_packet_self_id_zero_set_power_class(&self_id, reg & 0x07);
2001
2002 reg = ohci_read_phy_reg(&ohci->card, 1);
2003 if (reg < 0)
2004 return reg;
2005 phy_packet_self_id_zero_set_gap_count(&self_id, reg & 0x3f);
2006
2007 for (i = 0; i < 3; i++) {
2008 enum phy_packet_self_id_port_status status;
2009
2010 err = get_status_for_port(ohci, i, &status);
2011 if (err < 0)
2012 return err;
2013
2014 self_id_sequence_set_port_status(&self_id, 1, i, status);
2015 }
2016
2017 err = detect_initiated_reset(ohci, &is_initiated_reset);
2018 if (err < 0)
2019 return err;
2020 phy_packet_self_id_zero_set_initiated_reset(&self_id, is_initiated_reset);
2021
2022 pos = get_self_id_pos(ohci, self_id, self_id_count);
2023 if (pos >= 0) {
2024 memmove(&(ohci->self_id_buffer[pos+1]),
2025 &(ohci->self_id_buffer[pos]),
2026 (self_id_count - pos) * sizeof(*ohci->self_id_buffer));
2027 ohci->self_id_buffer[pos] = self_id;
2028 self_id_count++;
2029 }
2030 return self_id_count;
2031 }
2032
bus_reset_work(struct work_struct * work)2033 static void bus_reset_work(struct work_struct *work)
2034 {
2035 struct fw_ohci *ohci = from_work(ohci, work, bus_reset_work);
2036 int self_id_count, generation, new_generation, i, j;
2037 u32 reg, quadlet;
2038 void *free_rom = NULL;
2039 dma_addr_t free_rom_bus = 0;
2040 bool is_new_root;
2041
2042 reg = reg_read(ohci, OHCI1394_NodeID);
2043 if (!(reg & OHCI1394_NodeID_idValid)) {
2044 ohci_notice(ohci,
2045 "node ID not valid, new bus reset in progress\n");
2046 return;
2047 }
2048 if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
2049 ohci_notice(ohci, "malconfigured bus\n");
2050 return;
2051 }
2052 ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
2053 OHCI1394_NodeID_nodeNumber);
2054
2055 is_new_root = (reg & OHCI1394_NodeID_root) != 0;
2056 if (!(ohci->is_root && is_new_root))
2057 reg_write(ohci, OHCI1394_LinkControlSet,
2058 OHCI1394_LinkControl_cycleMaster);
2059 ohci->is_root = is_new_root;
2060
2061 reg = reg_read(ohci, OHCI1394_SelfIDCount);
2062 if (ohci1394_self_id_count_is_error(reg)) {
2063 ohci_notice(ohci, "self ID receive error\n");
2064 return;
2065 }
2066 /*
2067 * The count in the SelfIDCount register is the number of
2068 * bytes in the self ID receive buffer. Since we also receive
2069 * the inverted quadlets and a header quadlet, we shift one
2070 * bit extra to get the actual number of self IDs.
2071 */
2072 self_id_count = ohci1394_self_id_count_get_size(reg) >> 1;
2073
2074 if (self_id_count > 252) {
2075 ohci_notice(ohci, "bad selfIDSize (%08x)\n", reg);
2076 return;
2077 }
2078
2079 quadlet = cond_le32_to_cpu(ohci->self_id[0], has_be_header_quirk(ohci));
2080 generation = ohci1394_self_id_receive_q0_get_generation(quadlet);
2081 rmb();
2082
2083 for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
2084 u32 id = cond_le32_to_cpu(ohci->self_id[i], has_be_header_quirk(ohci));
2085 u32 id2 = cond_le32_to_cpu(ohci->self_id[i + 1], has_be_header_quirk(ohci));
2086
2087 if (id != ~id2) {
2088 /*
2089 * If the invalid data looks like a cycle start packet,
2090 * it's likely to be the result of the cycle master
2091 * having a wrong gap count. In this case, the self IDs
2092 * so far are valid and should be processed so that the
2093 * bus manager can then correct the gap count.
2094 */
2095 if (id == 0xffff008f) {
2096 ohci_notice(ohci, "ignoring spurious self IDs\n");
2097 self_id_count = j;
2098 break;
2099 }
2100
2101 ohci_notice(ohci, "bad self ID %d/%d (%08x != ~%08x)\n",
2102 j, self_id_count, id, id2);
2103 return;
2104 }
2105 ohci->self_id_buffer[j] = id;
2106 }
2107
2108 if (ohci->quirks & QUIRK_TI_SLLZ059) {
2109 self_id_count = find_and_insert_self_id(ohci, self_id_count);
2110 if (self_id_count < 0) {
2111 ohci_notice(ohci,
2112 "could not construct local self ID\n");
2113 return;
2114 }
2115 }
2116
2117 if (self_id_count == 0) {
2118 ohci_notice(ohci, "no self IDs\n");
2119 return;
2120 }
2121 rmb();
2122
2123 /*
2124 * Check the consistency of the self IDs we just read. The
2125 * problem we face is that a new bus reset can start while we
2126 * read out the self IDs from the DMA buffer. If this happens,
2127 * the DMA buffer will be overwritten with new self IDs and we
2128 * will read out inconsistent data. The OHCI specification
2129 * (section 11.2) recommends a technique similar to
2130 * linux/seqlock.h, where we remember the generation of the
2131 * self IDs in the buffer before reading them out and compare
2132 * it to the current generation after reading them out. If
2133 * the two generations match we know we have a consistent set
2134 * of self IDs.
2135 */
2136
2137 reg = reg_read(ohci, OHCI1394_SelfIDCount);
2138 new_generation = ohci1394_self_id_count_get_generation(reg);
2139 if (new_generation != generation) {
2140 ohci_notice(ohci, "new bus reset, discarding self ids\n");
2141 return;
2142 }
2143
2144 // FIXME: Document how the locking works.
2145 scoped_guard(spinlock_irq, &ohci->lock) {
2146 ohci->generation = -1; // prevent AT packet queueing
2147 context_stop(&ohci->at_request_ctx.context);
2148 context_stop(&ohci->at_response_ctx.context);
2149 }
2150
2151 /*
2152 * Per OHCI 1.2 draft, clause 7.2.3.3, hardware may leave unsent
2153 * packets in the AT queues and software needs to drain them.
2154 * Some OHCI 1.1 controllers (JMicron) apparently require this too.
2155 */
2156 at_context_flush(&ohci->at_request_ctx);
2157 at_context_flush(&ohci->at_response_ctx);
2158
2159 scoped_guard(spinlock_irq, &ohci->lock) {
2160 ohci->generation = generation;
2161 reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
2162 reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_busReset);
2163
2164 if (ohci->quirks & QUIRK_RESET_PACKET)
2165 ohci->request_generation = generation;
2166
2167 // This next bit is unrelated to the AT context stuff but we have to do it under the
2168 // spinlock also. If a new config rom was set up before this reset, the old one is
2169 // now no longer in use and we can free it. Update the config rom pointers to point
2170 // to the current config rom and clear the next_config_rom pointer so a new update
2171 // can take place.
2172 if (ohci->next_config_rom != NULL) {
2173 if (ohci->next_config_rom != ohci->config_rom) {
2174 free_rom = ohci->config_rom;
2175 free_rom_bus = ohci->config_rom_bus;
2176 }
2177 ohci->config_rom = ohci->next_config_rom;
2178 ohci->config_rom_bus = ohci->next_config_rom_bus;
2179 ohci->next_config_rom = NULL;
2180
2181 // Restore config_rom image and manually update config_rom registers.
2182 // Writing the header quadlet will indicate that the config rom is ready,
2183 // so we do that last.
2184 reg_write(ohci, OHCI1394_BusOptions, be32_to_cpu(ohci->config_rom[2]));
2185 ohci->config_rom[0] = ohci->next_header;
2186 reg_write(ohci, OHCI1394_ConfigROMhdr, be32_to_cpu(ohci->next_header));
2187 }
2188
2189 if (param_remote_dma) {
2190 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
2191 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
2192 }
2193 }
2194
2195 if (free_rom)
2196 dmam_free_coherent(ohci->card.device, CONFIG_ROM_SIZE, free_rom, free_rom_bus);
2197
2198 log_selfids(ohci, generation, self_id_count);
2199
2200 fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
2201 self_id_count, ohci->self_id_buffer,
2202 ohci->csr_state_setclear_abdicate);
2203 ohci->csr_state_setclear_abdicate = false;
2204 }
2205
irq_handler(int irq,void * data)2206 static irqreturn_t irq_handler(int irq, void *data)
2207 {
2208 struct fw_ohci *ohci = data;
2209 u32 event, iso_event;
2210 int i;
2211
2212 event = reg_read(ohci, OHCI1394_IntEventClear);
2213
2214 if (!event || !~event)
2215 return IRQ_NONE;
2216
2217 if (unlikely(param_debug > 0)) {
2218 dev_notice_ratelimited(ohci->card.device,
2219 "The debug parameter is superseded by tracepoints events, and deprecated.");
2220 }
2221
2222 /*
2223 * busReset and postedWriteErr events must not be cleared yet
2224 * (OHCI 1.1 clauses 7.2.3.2 and 13.2.8.1)
2225 */
2226 reg_write(ohci, OHCI1394_IntEventClear,
2227 event & ~(OHCI1394_busReset | OHCI1394_postedWriteErr));
2228 trace_irqs(ohci->card.index, event);
2229 log_irqs(ohci, event);
2230 // The flag is masked again at bus_reset_work() scheduled by selfID event.
2231 if (event & OHCI1394_busReset)
2232 reg_write(ohci, OHCI1394_IntMaskClear, OHCI1394_busReset);
2233
2234 if (event & OHCI1394_selfIDComplete) {
2235 if (trace_self_id_complete_enabled()) {
2236 u32 reg = reg_read(ohci, OHCI1394_SelfIDCount);
2237
2238 trace_self_id_complete(ohci->card.index, reg, ohci->self_id,
2239 has_be_header_quirk(ohci));
2240 }
2241 queue_work(selfid_workqueue, &ohci->bus_reset_work);
2242 }
2243
2244 if (event & OHCI1394_RQPkt)
2245 queue_work(ohci->card.async_wq, &ohci->ar_request_ctx.work);
2246
2247 if (event & OHCI1394_RSPkt)
2248 queue_work(ohci->card.async_wq, &ohci->ar_response_ctx.work);
2249
2250 if (event & OHCI1394_reqTxComplete)
2251 queue_work(ohci->card.async_wq, &ohci->at_request_ctx.work);
2252
2253 if (event & OHCI1394_respTxComplete)
2254 queue_work(ohci->card.async_wq, &ohci->at_response_ctx.work);
2255
2256 if (event & OHCI1394_isochRx) {
2257 iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
2258 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
2259
2260 while (iso_event) {
2261 i = ffs(iso_event) - 1;
2262 fw_iso_context_schedule_flush_completions(&ohci->ir_context_list[i].base);
2263 iso_event &= ~(1 << i);
2264 }
2265 }
2266
2267 if (event & OHCI1394_isochTx) {
2268 iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
2269 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
2270
2271 while (iso_event) {
2272 i = ffs(iso_event) - 1;
2273 fw_iso_context_schedule_flush_completions(&ohci->it_context_list[i].base);
2274 iso_event &= ~(1 << i);
2275 }
2276 }
2277
2278 if (unlikely(event & OHCI1394_regAccessFail))
2279 ohci_err(ohci, "register access failure\n");
2280
2281 if (unlikely(event & OHCI1394_postedWriteErr)) {
2282 reg_read(ohci, OHCI1394_PostedWriteAddressHi);
2283 reg_read(ohci, OHCI1394_PostedWriteAddressLo);
2284 reg_write(ohci, OHCI1394_IntEventClear,
2285 OHCI1394_postedWriteErr);
2286 dev_err_ratelimited(ohci->card.device, "PCI posted write error\n");
2287 }
2288
2289 if (unlikely(event & OHCI1394_cycleTooLong)) {
2290 dev_notice_ratelimited(ohci->card.device, "isochronous cycle too long\n");
2291 reg_write(ohci, OHCI1394_LinkControlSet,
2292 OHCI1394_LinkControl_cycleMaster);
2293 }
2294
2295 if (unlikely(event & OHCI1394_cycleInconsistent)) {
2296 /*
2297 * We need to clear this event bit in order to make
2298 * cycleMatch isochronous I/O work. In theory we should
2299 * stop active cycleMatch iso contexts now and restart
2300 * them at least two cycles later. (FIXME?)
2301 */
2302 dev_notice_ratelimited(ohci->card.device, "isochronous cycle inconsistent\n");
2303 }
2304
2305 if (unlikely(event & OHCI1394_unrecoverableError))
2306 handle_dead_contexts(ohci);
2307
2308 if (event & OHCI1394_cycle64Seconds) {
2309 guard(spinlock)(&ohci->lock);
2310 update_bus_time(ohci);
2311 } else
2312 flush_writes(ohci);
2313
2314 return IRQ_HANDLED;
2315 }
2316
software_reset(struct fw_ohci * ohci)2317 static int software_reset(struct fw_ohci *ohci)
2318 {
2319 u32 val;
2320 int i;
2321
2322 reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
2323 for (i = 0; i < 500; i++) {
2324 val = reg_read(ohci, OHCI1394_HCControlSet);
2325 if (!~val)
2326 return -ENODEV; /* Card was ejected. */
2327
2328 if (!(val & OHCI1394_HCControl_softReset))
2329 return 0;
2330
2331 msleep(1);
2332 }
2333
2334 return -EBUSY;
2335 }
2336
copy_config_rom(__be32 * dest,const __be32 * src,size_t length)2337 static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
2338 {
2339 size_t size = length * 4;
2340
2341 memcpy(dest, src, size);
2342 if (size < CONFIG_ROM_SIZE)
2343 memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
2344 }
2345
configure_1394a_enhancements(struct fw_ohci * ohci)2346 static int configure_1394a_enhancements(struct fw_ohci *ohci)
2347 {
2348 bool enable_1394a;
2349 int ret, clear, set, offset;
2350
2351 /* Check if the driver should configure link and PHY. */
2352 if (!(reg_read(ohci, OHCI1394_HCControlSet) &
2353 OHCI1394_HCControl_programPhyEnable))
2354 return 0;
2355
2356 /* Paranoia: check whether the PHY supports 1394a, too. */
2357 enable_1394a = false;
2358 ret = read_phy_reg(ohci, 2);
2359 if (ret < 0)
2360 return ret;
2361 if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
2362 ret = read_paged_phy_reg(ohci, 1, 8);
2363 if (ret < 0)
2364 return ret;
2365 if (ret >= 1)
2366 enable_1394a = true;
2367 }
2368
2369 if (ohci->quirks & QUIRK_NO_1394A)
2370 enable_1394a = false;
2371
2372 /* Configure PHY and link consistently. */
2373 if (enable_1394a) {
2374 clear = 0;
2375 set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2376 } else {
2377 clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2378 set = 0;
2379 }
2380 ret = update_phy_reg(ohci, 5, clear, set);
2381 if (ret < 0)
2382 return ret;
2383
2384 if (enable_1394a)
2385 offset = OHCI1394_HCControlSet;
2386 else
2387 offset = OHCI1394_HCControlClear;
2388 reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);
2389
2390 /* Clean up: configuration has been taken care of. */
2391 reg_write(ohci, OHCI1394_HCControlClear,
2392 OHCI1394_HCControl_programPhyEnable);
2393
2394 return 0;
2395 }
2396
probe_tsb41ba3d(struct fw_ohci * ohci)2397 static int probe_tsb41ba3d(struct fw_ohci *ohci)
2398 {
2399 /* TI vendor ID = 0x080028, TSB41BA3D product ID = 0x833005 (sic) */
2400 static const u8 id[] = { 0x08, 0x00, 0x28, 0x83, 0x30, 0x05, };
2401 int reg, i;
2402
2403 reg = read_phy_reg(ohci, 2);
2404 if (reg < 0)
2405 return reg;
2406 if ((reg & PHY_EXTENDED_REGISTERS) != PHY_EXTENDED_REGISTERS)
2407 return 0;
2408
2409 for (i = ARRAY_SIZE(id) - 1; i >= 0; i--) {
2410 reg = read_paged_phy_reg(ohci, 1, i + 10);
2411 if (reg < 0)
2412 return reg;
2413 if (reg != id[i])
2414 return 0;
2415 }
2416 return 1;
2417 }
2418
ohci_enable(struct fw_card * card,const __be32 * config_rom,size_t length)2419 static int ohci_enable(struct fw_card *card,
2420 const __be32 *config_rom, size_t length)
2421 {
2422 struct fw_ohci *ohci = fw_ohci(card);
2423 u32 lps, version, irqs;
2424 int i, ret;
2425
2426 ret = software_reset(ohci);
2427 if (ret < 0) {
2428 ohci_err(ohci, "failed to reset ohci card\n");
2429 return ret;
2430 }
2431
2432 /*
2433 * Now enable LPS, which we need in order to start accessing
2434 * most of the registers. In fact, on some cards (ALI M5251),
2435 * accessing registers in the SClk domain without LPS enabled
2436 * will lock up the machine. Wait 50msec to make sure we have
2437 * full link enabled. However, with some cards (well, at least
2438 * a JMicron PCIe card), we have to try again sometimes.
2439 *
2440 * TI TSB82AA2 + TSB81BA3(A) cards signal LPS enabled early but
2441 * cannot actually use the phy at that time. These need tens of
2442 * millisecods pause between LPS write and first phy access too.
2443 */
2444
2445 reg_write(ohci, OHCI1394_HCControlSet,
2446 OHCI1394_HCControl_LPS |
2447 OHCI1394_HCControl_postedWriteEnable);
2448 flush_writes(ohci);
2449
2450 for (lps = 0, i = 0; !lps && i < 3; i++) {
2451 msleep(50);
2452 lps = reg_read(ohci, OHCI1394_HCControlSet) &
2453 OHCI1394_HCControl_LPS;
2454 }
2455
2456 if (!lps) {
2457 ohci_err(ohci, "failed to set Link Power Status\n");
2458 return -EIO;
2459 }
2460
2461 if (ohci->quirks & QUIRK_TI_SLLZ059) {
2462 ret = probe_tsb41ba3d(ohci);
2463 if (ret < 0)
2464 return ret;
2465 if (ret)
2466 ohci_notice(ohci, "local TSB41BA3D phy\n");
2467 else
2468 ohci->quirks &= ~QUIRK_TI_SLLZ059;
2469 }
2470
2471 reg_write(ohci, OHCI1394_HCControlClear,
2472 OHCI1394_HCControl_noByteSwapData);
2473
2474 reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
2475 reg_write(ohci, OHCI1394_LinkControlSet,
2476 OHCI1394_LinkControl_cycleTimerEnable |
2477 OHCI1394_LinkControl_cycleMaster);
2478
2479 reg_write(ohci, OHCI1394_ATRetries,
2480 OHCI1394_MAX_AT_REQ_RETRIES |
2481 (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
2482 (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
2483 (200 << 16));
2484
2485 ohci->bus_time_running = false;
2486
2487 for (i = 0; i < 32; i++)
2488 if (ohci->ir_context_support & (1 << i))
2489 reg_write(ohci, OHCI1394_IsoRcvContextControlClear(i),
2490 IR_CONTEXT_MULTI_CHANNEL_MODE);
2491
2492 version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2493 if (version >= OHCI_VERSION_1_1) {
2494 reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
2495 0xfffffffe);
2496 card->broadcast_channel_auto_allocated = true;
2497 }
2498
2499 /* Get implemented bits of the priority arbitration request counter. */
2500 reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
2501 ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
2502 reg_write(ohci, OHCI1394_FairnessControl, 0);
2503 card->priority_budget_implemented = ohci->pri_req_max != 0;
2504
2505 reg_write(ohci, OHCI1394_PhyUpperBound, FW_MAX_PHYSICAL_RANGE >> 16);
2506 reg_write(ohci, OHCI1394_IntEventClear, ~0);
2507 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2508
2509 ret = configure_1394a_enhancements(ohci);
2510 if (ret < 0)
2511 return ret;
2512
2513 /* Activate link_on bit and contender bit in our self ID packets.*/
2514 ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
2515 if (ret < 0)
2516 return ret;
2517
2518 /*
2519 * When the link is not yet enabled, the atomic config rom
2520 * update mechanism described below in ohci_set_config_rom()
2521 * is not active. We have to update ConfigRomHeader and
2522 * BusOptions manually, and the write to ConfigROMmap takes
2523 * effect immediately. We tie this to the enabling of the
2524 * link, so we have a valid config rom before enabling - the
2525 * OHCI requires that ConfigROMhdr and BusOptions have valid
2526 * values before enabling.
2527 *
2528 * However, when the ConfigROMmap is written, some controllers
2529 * always read back quadlets 0 and 2 from the config rom to
2530 * the ConfigRomHeader and BusOptions registers on bus reset.
2531 * They shouldn't do that in this initial case where the link
2532 * isn't enabled. This means we have to use the same
2533 * workaround here, setting the bus header to 0 and then write
2534 * the right values in the bus reset work item.
2535 */
2536
2537 if (config_rom) {
2538 ohci->next_config_rom = dmam_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2539 &ohci->next_config_rom_bus, GFP_KERNEL);
2540 if (ohci->next_config_rom == NULL)
2541 return -ENOMEM;
2542
2543 copy_config_rom(ohci->next_config_rom, config_rom, length);
2544 } else {
2545 /*
2546 * In the suspend case, config_rom is NULL, which
2547 * means that we just reuse the old config rom.
2548 */
2549 ohci->next_config_rom = ohci->config_rom;
2550 ohci->next_config_rom_bus = ohci->config_rom_bus;
2551 }
2552
2553 ohci->next_header = ohci->next_config_rom[0];
2554 ohci->next_config_rom[0] = 0;
2555 reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
2556 reg_write(ohci, OHCI1394_BusOptions,
2557 be32_to_cpu(ohci->next_config_rom[2]));
2558 reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2559
2560 reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
2561
2562 irqs = OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
2563 OHCI1394_RQPkt | OHCI1394_RSPkt |
2564 OHCI1394_isochTx | OHCI1394_isochRx |
2565 OHCI1394_postedWriteErr |
2566 OHCI1394_selfIDComplete |
2567 OHCI1394_regAccessFail |
2568 OHCI1394_cycleInconsistent |
2569 OHCI1394_unrecoverableError |
2570 OHCI1394_cycleTooLong |
2571 OHCI1394_masterIntEnable |
2572 OHCI1394_busReset;
2573 reg_write(ohci, OHCI1394_IntMaskSet, irqs);
2574
2575 reg_write(ohci, OHCI1394_HCControlSet,
2576 OHCI1394_HCControl_linkEnable |
2577 OHCI1394_HCControl_BIBimageValid);
2578
2579 reg_write(ohci, OHCI1394_LinkControlSet,
2580 OHCI1394_LinkControl_rcvSelfID |
2581 OHCI1394_LinkControl_rcvPhyPkt);
2582
2583 ar_context_run(&ohci->ar_request_ctx);
2584 ar_context_run(&ohci->ar_response_ctx);
2585
2586 flush_writes(ohci);
2587
2588 /* We are ready to go, reset bus to finish initialization. */
2589 fw_schedule_bus_reset(&ohci->card, false, true);
2590
2591 return 0;
2592 }
2593
ohci_set_config_rom(struct fw_card * card,const __be32 * config_rom,size_t length)2594 static int ohci_set_config_rom(struct fw_card *card,
2595 const __be32 *config_rom, size_t length)
2596 {
2597 struct fw_ohci *ohci;
2598 __be32 *next_config_rom;
2599 dma_addr_t next_config_rom_bus;
2600
2601 ohci = fw_ohci(card);
2602
2603 /*
2604 * When the OHCI controller is enabled, the config rom update
2605 * mechanism is a bit tricky, but easy enough to use. See
2606 * section 5.5.6 in the OHCI specification.
2607 *
2608 * The OHCI controller caches the new config rom address in a
2609 * shadow register (ConfigROMmapNext) and needs a bus reset
2610 * for the changes to take place. When the bus reset is
2611 * detected, the controller loads the new values for the
2612 * ConfigRomHeader and BusOptions registers from the specified
2613 * config rom and loads ConfigROMmap from the ConfigROMmapNext
2614 * shadow register. All automatically and atomically.
2615 *
2616 * Now, there's a twist to this story. The automatic load of
2617 * ConfigRomHeader and BusOptions doesn't honor the
2618 * noByteSwapData bit, so with a be32 config rom, the
2619 * controller will load be32 values in to these registers
2620 * during the atomic update, even on little endian
2621 * architectures. The workaround we use is to put a 0 in the
2622 * header quadlet; 0 is endian agnostic and means that the
2623 * config rom isn't ready yet. In the bus reset work item we
2624 * then set up the real values for the two registers.
2625 *
2626 * We use ohci->lock to avoid racing with the code that sets
2627 * ohci->next_config_rom to NULL (see bus_reset_work).
2628 */
2629
2630 next_config_rom = dmam_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2631 &next_config_rom_bus, GFP_KERNEL);
2632 if (next_config_rom == NULL)
2633 return -ENOMEM;
2634
2635 scoped_guard(spinlock_irq, &ohci->lock) {
2636 // If there is not an already pending config_rom update, push our new allocation
2637 // into the ohci->next_config_rom and then mark the local variable as null so that
2638 // we won't deallocate the new buffer.
2639 //
2640 // OTOH, if there is a pending config_rom update, just use that buffer with the new
2641 // config_rom data, and let this routine free the unused DMA allocation.
2642 if (ohci->next_config_rom == NULL) {
2643 ohci->next_config_rom = next_config_rom;
2644 ohci->next_config_rom_bus = next_config_rom_bus;
2645 next_config_rom = NULL;
2646 }
2647
2648 copy_config_rom(ohci->next_config_rom, config_rom, length);
2649
2650 ohci->next_header = config_rom[0];
2651 ohci->next_config_rom[0] = 0;
2652
2653 reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2654 }
2655
2656 /* If we didn't use the DMA allocation, delete it. */
2657 if (next_config_rom != NULL) {
2658 dmam_free_coherent(ohci->card.device, CONFIG_ROM_SIZE, next_config_rom,
2659 next_config_rom_bus);
2660 }
2661
2662 /*
2663 * Now initiate a bus reset to have the changes take
2664 * effect. We clean up the old config rom memory and DMA
2665 * mappings in the bus reset work item, since the OHCI
2666 * controller could need to access it before the bus reset
2667 * takes effect.
2668 */
2669
2670 fw_schedule_bus_reset(&ohci->card, true, true);
2671
2672 return 0;
2673 }
2674
ohci_send_request(struct fw_card * card,struct fw_packet * packet)2675 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
2676 {
2677 struct fw_ohci *ohci = fw_ohci(card);
2678
2679 at_context_transmit(&ohci->at_request_ctx, packet);
2680 }
2681
ohci_send_response(struct fw_card * card,struct fw_packet * packet)2682 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
2683 {
2684 struct fw_ohci *ohci = fw_ohci(card);
2685
2686 at_context_transmit(&ohci->at_response_ctx, packet);
2687 }
2688
ohci_cancel_packet(struct fw_card * card,struct fw_packet * packet)2689 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
2690 {
2691 struct fw_ohci *ohci = fw_ohci(card);
2692 struct at_context *ctx = &ohci->at_request_ctx;
2693 struct driver_data *driver_data = packet->driver_data;
2694 int ret = -ENOENT;
2695
2696 // Avoid dead lock due to programming mistake.
2697 if (WARN_ON_ONCE(current_work() == &ctx->work))
2698 return 0;
2699 disable_work_sync(&ctx->work);
2700
2701 if (packet->ack != 0)
2702 goto out;
2703
2704 if (packet->payload_mapped)
2705 dma_unmap_single(ohci->card.device, packet->payload_bus,
2706 packet->payload_length, DMA_TO_DEVICE);
2707
2708 log_ar_at_event(ohci, 'T', packet->speed, packet->header, 0x20);
2709 driver_data->packet = NULL;
2710 packet->ack = RCODE_CANCELLED;
2711
2712 // Timestamping on behalf of the hardware.
2713 packet->timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ohci));
2714
2715 packet->callback(packet, &ohci->card, packet->ack);
2716 ret = 0;
2717 out:
2718 enable_work(&ctx->work);
2719
2720 return ret;
2721 }
2722
ohci_enable_phys_dma(struct fw_card * card,int node_id,int generation)2723 static int ohci_enable_phys_dma(struct fw_card *card,
2724 int node_id, int generation)
2725 {
2726 struct fw_ohci *ohci = fw_ohci(card);
2727 int n, ret = 0;
2728
2729 if (param_remote_dma)
2730 return 0;
2731
2732 /*
2733 * FIXME: Make sure this bitmask is cleared when we clear the busReset
2734 * interrupt bit. Clear physReqResourceAllBuses on bus reset.
2735 */
2736
2737 guard(spinlock_irqsave)(&ohci->lock);
2738
2739 if (ohci->generation != generation)
2740 return -ESTALE;
2741
2742 /*
2743 * Note, if the node ID contains a non-local bus ID, physical DMA is
2744 * enabled for _all_ nodes on remote buses.
2745 */
2746
2747 n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
2748 if (n < 32)
2749 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
2750 else
2751 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
2752
2753 flush_writes(ohci);
2754
2755 return ret;
2756 }
2757
ohci_read_csr(struct fw_card * card,int csr_offset)2758 static u32 ohci_read_csr(struct fw_card *card, int csr_offset)
2759 {
2760 struct fw_ohci *ohci = fw_ohci(card);
2761 u32 value;
2762
2763 switch (csr_offset) {
2764 case CSR_STATE_CLEAR:
2765 case CSR_STATE_SET:
2766 if (ohci->is_root &&
2767 (reg_read(ohci, OHCI1394_LinkControlSet) &
2768 OHCI1394_LinkControl_cycleMaster))
2769 value = CSR_STATE_BIT_CMSTR;
2770 else
2771 value = 0;
2772 if (ohci->csr_state_setclear_abdicate)
2773 value |= CSR_STATE_BIT_ABDICATE;
2774
2775 return value;
2776
2777 case CSR_NODE_IDS:
2778 return reg_read(ohci, OHCI1394_NodeID) << 16;
2779
2780 case CSR_CYCLE_TIME:
2781 return get_cycle_time(ohci);
2782
2783 case CSR_BUS_TIME:
2784 {
2785 // We might be called just after the cycle timer has wrapped around but just before
2786 // the cycle64Seconds handler, so we better check here, too, if the bus time needs
2787 // to be updated.
2788
2789 guard(spinlock_irqsave)(&ohci->lock);
2790 return update_bus_time(ohci);
2791 }
2792 case CSR_BUSY_TIMEOUT:
2793 value = reg_read(ohci, OHCI1394_ATRetries);
2794 return (value >> 4) & 0x0ffff00f;
2795
2796 case CSR_PRIORITY_BUDGET:
2797 return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
2798 (ohci->pri_req_max << 8);
2799
2800 default:
2801 WARN_ON(1);
2802 return 0;
2803 }
2804 }
2805
ohci_write_csr(struct fw_card * card,int csr_offset,u32 value)2806 static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value)
2807 {
2808 struct fw_ohci *ohci = fw_ohci(card);
2809
2810 switch (csr_offset) {
2811 case CSR_STATE_CLEAR:
2812 if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2813 reg_write(ohci, OHCI1394_LinkControlClear,
2814 OHCI1394_LinkControl_cycleMaster);
2815 flush_writes(ohci);
2816 }
2817 if (value & CSR_STATE_BIT_ABDICATE)
2818 ohci->csr_state_setclear_abdicate = false;
2819 break;
2820
2821 case CSR_STATE_SET:
2822 if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2823 reg_write(ohci, OHCI1394_LinkControlSet,
2824 OHCI1394_LinkControl_cycleMaster);
2825 flush_writes(ohci);
2826 }
2827 if (value & CSR_STATE_BIT_ABDICATE)
2828 ohci->csr_state_setclear_abdicate = true;
2829 break;
2830
2831 case CSR_NODE_IDS:
2832 reg_write(ohci, OHCI1394_NodeID, value >> 16);
2833 flush_writes(ohci);
2834 break;
2835
2836 case CSR_CYCLE_TIME:
2837 reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
2838 reg_write(ohci, OHCI1394_IntEventSet,
2839 OHCI1394_cycleInconsistent);
2840 flush_writes(ohci);
2841 break;
2842
2843 case CSR_BUS_TIME:
2844 {
2845 guard(spinlock_irqsave)(&ohci->lock);
2846 ohci->bus_time = (update_bus_time(ohci) & 0x40) | (value & ~0x7f);
2847 break;
2848 }
2849 case CSR_BUSY_TIMEOUT:
2850 value = (value & 0xf) | ((value & 0xf) << 4) |
2851 ((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
2852 reg_write(ohci, OHCI1394_ATRetries, value);
2853 flush_writes(ohci);
2854 break;
2855
2856 case CSR_PRIORITY_BUDGET:
2857 reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
2858 flush_writes(ohci);
2859 break;
2860
2861 default:
2862 WARN_ON(1);
2863 break;
2864 }
2865 }
2866
flush_iso_completions(struct iso_context * ctx,enum fw_iso_context_completions_cause cause)2867 static void flush_iso_completions(struct iso_context *ctx, enum fw_iso_context_completions_cause cause)
2868 {
2869 trace_isoc_inbound_single_completions(&ctx->base, ctx->last_timestamp, cause, ctx->header,
2870 ctx->header_length);
2871 trace_isoc_outbound_completions(&ctx->base, ctx->last_timestamp, cause, ctx->header,
2872 ctx->header_length);
2873
2874 ctx->base.callback.sc(&ctx->base, ctx->last_timestamp,
2875 ctx->header_length, ctx->header,
2876 ctx->base.callback_data);
2877 ctx->header_length = 0;
2878 }
2879
copy_iso_headers(struct iso_context * ctx,const u32 * dma_hdr)2880 static void copy_iso_headers(struct iso_context *ctx, const u32 *dma_hdr)
2881 {
2882 u32 *ctx_hdr;
2883
2884 if (ctx->header_length + ctx->base.header_size > PAGE_SIZE) {
2885 if (ctx->base.drop_overflow_headers)
2886 return;
2887 flush_iso_completions(ctx, FW_ISO_CONTEXT_COMPLETIONS_CAUSE_HEADER_OVERFLOW);
2888 }
2889
2890 ctx_hdr = ctx->header + ctx->header_length;
2891 ctx->last_timestamp = (u16)le32_to_cpu((__force __le32)dma_hdr[0]);
2892
2893 /*
2894 * The two iso header quadlets are byteswapped to little
2895 * endian by the controller, but we want to present them
2896 * as big endian for consistency with the bus endianness.
2897 */
2898 if (ctx->base.header_size > 0)
2899 ctx_hdr[0] = swab32(dma_hdr[1]); /* iso packet header */
2900 if (ctx->base.header_size > 4)
2901 ctx_hdr[1] = swab32(dma_hdr[0]); /* timestamp */
2902 if (ctx->base.header_size > 8)
2903 memcpy(&ctx_hdr[2], &dma_hdr[2], ctx->base.header_size - 8);
2904 ctx->header_length += ctx->base.header_size;
2905 }
2906
handle_ir_packet_per_buffer(struct context * context,struct descriptor * d,struct descriptor * last)2907 static int handle_ir_packet_per_buffer(struct context *context,
2908 struct descriptor *d,
2909 struct descriptor *last)
2910 {
2911 struct iso_context *ctx =
2912 container_of(context, struct iso_context, context);
2913 struct descriptor *pd;
2914 u32 buffer_dma;
2915
2916 for (pd = d; pd <= last; pd++)
2917 if (pd->transfer_status)
2918 break;
2919 if (pd > last)
2920 /* Descriptor(s) not done yet, stop iteration */
2921 return 0;
2922
2923 while (!(d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))) {
2924 d++;
2925 buffer_dma = le32_to_cpu(d->data_address);
2926 dma_sync_single_range_for_cpu(context->ohci->card.device,
2927 buffer_dma & PAGE_MASK,
2928 buffer_dma & ~PAGE_MASK,
2929 le16_to_cpu(d->req_count),
2930 DMA_FROM_DEVICE);
2931 }
2932
2933 copy_iso_headers(ctx, (u32 *) (last + 1));
2934
2935 if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
2936 flush_iso_completions(ctx, FW_ISO_CONTEXT_COMPLETIONS_CAUSE_INTERRUPT);
2937
2938 return 1;
2939 }
2940
2941 /* d == last because each descriptor block is only a single descriptor. */
handle_ir_buffer_fill(struct context * context,struct descriptor * d,struct descriptor * last)2942 static int handle_ir_buffer_fill(struct context *context,
2943 struct descriptor *d,
2944 struct descriptor *last)
2945 {
2946 struct iso_context *ctx =
2947 container_of(context, struct iso_context, context);
2948 unsigned int req_count, res_count, completed;
2949 u32 buffer_dma;
2950
2951 req_count = le16_to_cpu(last->req_count);
2952 res_count = le16_to_cpu(READ_ONCE(last->res_count));
2953 completed = req_count - res_count;
2954 buffer_dma = le32_to_cpu(last->data_address);
2955
2956 if (completed > 0) {
2957 ctx->mc_buffer_bus = buffer_dma;
2958 ctx->mc_completed = completed;
2959 }
2960
2961 if (res_count != 0)
2962 /* Descriptor(s) not done yet, stop iteration */
2963 return 0;
2964
2965 dma_sync_single_range_for_cpu(context->ohci->card.device,
2966 buffer_dma & PAGE_MASK,
2967 buffer_dma & ~PAGE_MASK,
2968 completed, DMA_FROM_DEVICE);
2969
2970 if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS)) {
2971 trace_isoc_inbound_multiple_completions(&ctx->base, completed,
2972 FW_ISO_CONTEXT_COMPLETIONS_CAUSE_INTERRUPT);
2973
2974 ctx->base.callback.mc(&ctx->base,
2975 buffer_dma + completed,
2976 ctx->base.callback_data);
2977 ctx->mc_completed = 0;
2978 }
2979
2980 return 1;
2981 }
2982
flush_ir_buffer_fill(struct iso_context * ctx)2983 static void flush_ir_buffer_fill(struct iso_context *ctx)
2984 {
2985 dma_sync_single_range_for_cpu(ctx->context.ohci->card.device,
2986 ctx->mc_buffer_bus & PAGE_MASK,
2987 ctx->mc_buffer_bus & ~PAGE_MASK,
2988 ctx->mc_completed, DMA_FROM_DEVICE);
2989
2990 trace_isoc_inbound_multiple_completions(&ctx->base, ctx->mc_completed,
2991 FW_ISO_CONTEXT_COMPLETIONS_CAUSE_FLUSH);
2992
2993 ctx->base.callback.mc(&ctx->base,
2994 ctx->mc_buffer_bus + ctx->mc_completed,
2995 ctx->base.callback_data);
2996 ctx->mc_completed = 0;
2997 }
2998
sync_it_packet_for_cpu(struct context * context,struct descriptor * pd)2999 static inline void sync_it_packet_for_cpu(struct context *context,
3000 struct descriptor *pd)
3001 {
3002 __le16 control;
3003 u32 buffer_dma;
3004
3005 /* only packets beginning with OUTPUT_MORE* have data buffers */
3006 if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
3007 return;
3008
3009 /* skip over the OUTPUT_MORE_IMMEDIATE descriptor */
3010 pd += 2;
3011
3012 /*
3013 * If the packet has a header, the first OUTPUT_MORE/LAST descriptor's
3014 * data buffer is in the context program's coherent page and must not
3015 * be synced.
3016 */
3017 if ((le32_to_cpu(pd->data_address) & PAGE_MASK) ==
3018 (context->current_bus & PAGE_MASK)) {
3019 if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
3020 return;
3021 pd++;
3022 }
3023
3024 do {
3025 buffer_dma = le32_to_cpu(pd->data_address);
3026 dma_sync_single_range_for_cpu(context->ohci->card.device,
3027 buffer_dma & PAGE_MASK,
3028 buffer_dma & ~PAGE_MASK,
3029 le16_to_cpu(pd->req_count),
3030 DMA_TO_DEVICE);
3031 control = pd->control;
3032 pd++;
3033 } while (!(control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS)));
3034 }
3035
handle_it_packet(struct context * context,struct descriptor * d,struct descriptor * last)3036 static int handle_it_packet(struct context *context,
3037 struct descriptor *d,
3038 struct descriptor *last)
3039 {
3040 struct iso_context *ctx =
3041 container_of(context, struct iso_context, context);
3042 struct descriptor *pd;
3043 __be32 *ctx_hdr;
3044
3045 for (pd = d; pd <= last; pd++)
3046 if (pd->transfer_status)
3047 break;
3048 if (pd > last)
3049 /* Descriptor(s) not done yet, stop iteration */
3050 return 0;
3051
3052 sync_it_packet_for_cpu(context, d);
3053
3054 if (ctx->header_length + 4 > PAGE_SIZE) {
3055 if (ctx->base.drop_overflow_headers)
3056 return 1;
3057 flush_iso_completions(ctx, FW_ISO_CONTEXT_COMPLETIONS_CAUSE_HEADER_OVERFLOW);
3058 }
3059
3060 ctx_hdr = ctx->header + ctx->header_length;
3061 ctx->last_timestamp = le16_to_cpu(last->res_count);
3062 /* Present this value as big-endian to match the receive code */
3063 *ctx_hdr = cpu_to_be32((le16_to_cpu(pd->transfer_status) << 16) |
3064 le16_to_cpu(pd->res_count));
3065 ctx->header_length += 4;
3066
3067 if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
3068 flush_iso_completions(ctx, FW_ISO_CONTEXT_COMPLETIONS_CAUSE_INTERRUPT);
3069
3070 return 1;
3071 }
3072
set_multichannel_mask(struct fw_ohci * ohci,u64 channels)3073 static void set_multichannel_mask(struct fw_ohci *ohci, u64 channels)
3074 {
3075 u32 hi = channels >> 32, lo = channels;
3076
3077 reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, ~hi);
3078 reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, ~lo);
3079 reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet, hi);
3080 reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet, lo);
3081 ohci->mc_channels = channels;
3082 }
3083
ohci_allocate_iso_context(struct fw_card * card,int type,int channel,size_t header_size)3084 static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
3085 int type, int channel, size_t header_size)
3086 {
3087 struct fw_ohci *ohci = fw_ohci(card);
3088 struct iso_context *ctx;
3089 descriptor_callback_t callback;
3090 u64 *channels;
3091 u32 *mask, regs;
3092 int index, ret = -EBUSY;
3093
3094 scoped_guard(spinlock_irq, &ohci->lock) {
3095 switch (type) {
3096 case FW_ISO_CONTEXT_TRANSMIT:
3097 mask = &ohci->it_context_mask;
3098 callback = handle_it_packet;
3099 index = ffs(*mask) - 1;
3100 if (index >= 0) {
3101 *mask &= ~(1 << index);
3102 regs = OHCI1394_IsoXmitContextBase(index);
3103 ctx = &ohci->it_context_list[index];
3104 }
3105 break;
3106
3107 case FW_ISO_CONTEXT_RECEIVE:
3108 channels = &ohci->ir_context_channels;
3109 mask = &ohci->ir_context_mask;
3110 callback = handle_ir_packet_per_buffer;
3111 index = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
3112 if (index >= 0) {
3113 *channels &= ~(1ULL << channel);
3114 *mask &= ~(1 << index);
3115 regs = OHCI1394_IsoRcvContextBase(index);
3116 ctx = &ohci->ir_context_list[index];
3117 }
3118 break;
3119
3120 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3121 mask = &ohci->ir_context_mask;
3122 callback = handle_ir_buffer_fill;
3123 index = !ohci->mc_allocated ? ffs(*mask) - 1 : -1;
3124 if (index >= 0) {
3125 ohci->mc_allocated = true;
3126 *mask &= ~(1 << index);
3127 regs = OHCI1394_IsoRcvContextBase(index);
3128 ctx = &ohci->ir_context_list[index];
3129 }
3130 break;
3131
3132 default:
3133 index = -1;
3134 ret = -ENOSYS;
3135 }
3136
3137 if (index < 0)
3138 return ERR_PTR(ret);
3139 }
3140
3141 memset(ctx, 0, sizeof(*ctx));
3142 ctx->header_length = 0;
3143 ctx->header = (void *) __get_free_page(GFP_KERNEL);
3144 if (ctx->header == NULL) {
3145 ret = -ENOMEM;
3146 goto out;
3147 }
3148 ret = context_init(&ctx->context, ohci, regs, callback);
3149 if (ret < 0)
3150 goto out_with_header;
3151 fw_iso_context_init_work(&ctx->base, ohci_isoc_context_work);
3152
3153 if (type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL) {
3154 set_multichannel_mask(ohci, 0);
3155 ctx->mc_completed = 0;
3156 }
3157
3158 return &ctx->base;
3159
3160 out_with_header:
3161 free_page((unsigned long)ctx->header);
3162 out:
3163 scoped_guard(spinlock_irq, &ohci->lock) {
3164 switch (type) {
3165 case FW_ISO_CONTEXT_RECEIVE:
3166 *channels |= 1ULL << channel;
3167 break;
3168
3169 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3170 ohci->mc_allocated = false;
3171 break;
3172 }
3173 *mask |= 1 << index;
3174 }
3175
3176 return ERR_PTR(ret);
3177 }
3178
ohci_start_iso(struct fw_iso_context * base,s32 cycle,u32 sync,u32 tags)3179 static int ohci_start_iso(struct fw_iso_context *base,
3180 s32 cycle, u32 sync, u32 tags)
3181 {
3182 struct iso_context *ctx = container_of(base, struct iso_context, base);
3183 struct fw_ohci *ohci = ctx->context.ohci;
3184 u32 control = IR_CONTEXT_ISOCH_HEADER, match;
3185 int index;
3186
3187 /* the controller cannot start without any queued packets */
3188 if (ctx->context.last->branch_address == 0)
3189 return -ENODATA;
3190
3191 switch (ctx->base.type) {
3192 case FW_ISO_CONTEXT_TRANSMIT:
3193 index = ctx - ohci->it_context_list;
3194 match = 0;
3195 if (cycle >= 0)
3196 match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
3197 (cycle & 0x7fff) << 16;
3198
3199 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
3200 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
3201 context_run(&ctx->context, match);
3202 break;
3203
3204 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3205 control |= IR_CONTEXT_BUFFER_FILL|IR_CONTEXT_MULTI_CHANNEL_MODE;
3206 fallthrough;
3207 case FW_ISO_CONTEXT_RECEIVE:
3208 index = ctx - ohci->ir_context_list;
3209 match = (tags << 28) | (sync << 8) | ctx->base.channel;
3210 if (cycle >= 0) {
3211 match |= (cycle & 0x07fff) << 12;
3212 control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
3213 }
3214
3215 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
3216 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
3217 reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
3218 context_run(&ctx->context, control);
3219
3220 ctx->sync = sync;
3221 ctx->tags = tags;
3222
3223 break;
3224 }
3225
3226 return 0;
3227 }
3228
ohci_stop_iso(struct fw_iso_context * base)3229 static int ohci_stop_iso(struct fw_iso_context *base)
3230 {
3231 struct fw_ohci *ohci = fw_ohci(base->card);
3232 struct iso_context *ctx = container_of(base, struct iso_context, base);
3233 int index;
3234
3235 switch (ctx->base.type) {
3236 case FW_ISO_CONTEXT_TRANSMIT:
3237 index = ctx - ohci->it_context_list;
3238 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
3239 break;
3240
3241 case FW_ISO_CONTEXT_RECEIVE:
3242 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3243 index = ctx - ohci->ir_context_list;
3244 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
3245 break;
3246 }
3247 flush_writes(ohci);
3248 context_stop(&ctx->context);
3249
3250 return 0;
3251 }
3252
ohci_free_iso_context(struct fw_iso_context * base)3253 static void ohci_free_iso_context(struct fw_iso_context *base)
3254 {
3255 struct fw_ohci *ohci = fw_ohci(base->card);
3256 struct iso_context *ctx = container_of(base, struct iso_context, base);
3257 int index;
3258
3259 ohci_stop_iso(base);
3260 context_release(&ctx->context);
3261 free_page((unsigned long)ctx->header);
3262
3263 guard(spinlock_irqsave)(&ohci->lock);
3264
3265 switch (base->type) {
3266 case FW_ISO_CONTEXT_TRANSMIT:
3267 index = ctx - ohci->it_context_list;
3268 ohci->it_context_mask |= 1 << index;
3269 break;
3270
3271 case FW_ISO_CONTEXT_RECEIVE:
3272 index = ctx - ohci->ir_context_list;
3273 ohci->ir_context_mask |= 1 << index;
3274 ohci->ir_context_channels |= 1ULL << base->channel;
3275 break;
3276
3277 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3278 index = ctx - ohci->ir_context_list;
3279 ohci->ir_context_mask |= 1 << index;
3280 ohci->ir_context_channels |= ohci->mc_channels;
3281 ohci->mc_channels = 0;
3282 ohci->mc_allocated = false;
3283 break;
3284 }
3285 }
3286
ohci_set_iso_channels(struct fw_iso_context * base,u64 * channels)3287 static int ohci_set_iso_channels(struct fw_iso_context *base, u64 *channels)
3288 {
3289 struct fw_ohci *ohci = fw_ohci(base->card);
3290
3291 switch (base->type) {
3292 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3293 {
3294 guard(spinlock_irqsave)(&ohci->lock);
3295
3296 // Don't allow multichannel to grab other contexts' channels.
3297 if (~ohci->ir_context_channels & ~ohci->mc_channels & *channels) {
3298 *channels = ohci->ir_context_channels;
3299 return -EBUSY;
3300 } else {
3301 set_multichannel_mask(ohci, *channels);
3302 return 0;
3303 }
3304 }
3305 default:
3306 return -EINVAL;
3307 }
3308 }
3309
ohci_resume_iso_dma(struct fw_ohci * ohci)3310 static void __maybe_unused ohci_resume_iso_dma(struct fw_ohci *ohci)
3311 {
3312 int i;
3313 struct iso_context *ctx;
3314
3315 for (i = 0 ; i < ohci->n_ir ; i++) {
3316 ctx = &ohci->ir_context_list[i];
3317 if (ctx->context.running)
3318 ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3319 }
3320
3321 for (i = 0 ; i < ohci->n_it ; i++) {
3322 ctx = &ohci->it_context_list[i];
3323 if (ctx->context.running)
3324 ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3325 }
3326 }
3327
queue_iso_transmit(struct iso_context * ctx,struct fw_iso_packet * packet,struct fw_iso_buffer * buffer,unsigned long payload)3328 static int queue_iso_transmit(struct iso_context *ctx,
3329 struct fw_iso_packet *packet,
3330 struct fw_iso_buffer *buffer,
3331 unsigned long payload)
3332 {
3333 struct descriptor *d, *last, *pd;
3334 struct fw_iso_packet *p;
3335 __le32 *header;
3336 dma_addr_t d_bus, page_bus;
3337 u32 z, header_z, payload_z, irq;
3338 u32 payload_index, payload_end_index, next_page_index;
3339 int page, end_page, i, length, offset;
3340
3341 p = packet;
3342 payload_index = payload;
3343
3344 if (p->skip)
3345 z = 1;
3346 else
3347 z = 2;
3348 if (p->header_length > 0)
3349 z++;
3350
3351 /* Determine the first page the payload isn't contained in. */
3352 end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
3353 if (p->payload_length > 0)
3354 payload_z = end_page - (payload_index >> PAGE_SHIFT);
3355 else
3356 payload_z = 0;
3357
3358 z += payload_z;
3359
3360 /* Get header size in number of descriptors. */
3361 header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
3362
3363 d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
3364 if (d == NULL)
3365 return -ENOMEM;
3366
3367 if (!p->skip) {
3368 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
3369 d[0].req_count = cpu_to_le16(8);
3370 /*
3371 * Link the skip address to this descriptor itself. This causes
3372 * a context to skip a cycle whenever lost cycles or FIFO
3373 * overruns occur, without dropping the data. The application
3374 * should then decide whether this is an error condition or not.
3375 * FIXME: Make the context's cycle-lost behaviour configurable?
3376 */
3377 d[0].branch_address = cpu_to_le32(d_bus | z);
3378
3379 header = (__le32 *) &d[1];
3380
3381 ohci1394_it_data_set_speed(header, ctx->base.speed);
3382 ohci1394_it_data_set_tag(header, p->tag);
3383 ohci1394_it_data_set_channel(header, ctx->base.channel);
3384 ohci1394_it_data_set_tcode(header, TCODE_STREAM_DATA);
3385 ohci1394_it_data_set_sync(header, p->sy);
3386
3387 ohci1394_it_data_set_data_length(header, p->header_length + p->payload_length);
3388 }
3389
3390 if (p->header_length > 0) {
3391 d[2].req_count = cpu_to_le16(p->header_length);
3392 d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
3393 memcpy(&d[z], p->header, p->header_length);
3394 }
3395
3396 pd = d + z - payload_z;
3397 payload_end_index = payload_index + p->payload_length;
3398 for (i = 0; i < payload_z; i++) {
3399 page = payload_index >> PAGE_SHIFT;
3400 offset = payload_index & ~PAGE_MASK;
3401 next_page_index = (page + 1) << PAGE_SHIFT;
3402 length =
3403 min(next_page_index, payload_end_index) - payload_index;
3404 pd[i].req_count = cpu_to_le16(length);
3405
3406 page_bus = page_private(buffer->pages[page]);
3407 pd[i].data_address = cpu_to_le32(page_bus + offset);
3408
3409 dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3410 page_bus, offset, length,
3411 DMA_TO_DEVICE);
3412
3413 payload_index += length;
3414 }
3415
3416 if (p->interrupt)
3417 irq = DESCRIPTOR_IRQ_ALWAYS;
3418 else
3419 irq = DESCRIPTOR_NO_IRQ;
3420
3421 last = z == 2 ? d : d + z - 1;
3422 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
3423 DESCRIPTOR_STATUS |
3424 DESCRIPTOR_BRANCH_ALWAYS |
3425 irq);
3426
3427 context_append(&ctx->context, d, z, header_z);
3428
3429 return 0;
3430 }
3431
queue_iso_packet_per_buffer(struct iso_context * ctx,struct fw_iso_packet * packet,struct fw_iso_buffer * buffer,unsigned long payload)3432 static int queue_iso_packet_per_buffer(struct iso_context *ctx,
3433 struct fw_iso_packet *packet,
3434 struct fw_iso_buffer *buffer,
3435 unsigned long payload)
3436 {
3437 struct device *device = ctx->context.ohci->card.device;
3438 struct descriptor *d, *pd;
3439 dma_addr_t d_bus, page_bus;
3440 u32 z, header_z, rest;
3441 int i, j, length;
3442 int page, offset, packet_count, header_size, payload_per_buffer;
3443
3444 /*
3445 * The OHCI controller puts the isochronous header and trailer in the
3446 * buffer, so we need at least 8 bytes.
3447 */
3448 packet_count = packet->header_length / ctx->base.header_size;
3449 header_size = max(ctx->base.header_size, (size_t)8);
3450
3451 /* Get header size in number of descriptors. */
3452 header_z = DIV_ROUND_UP(header_size, sizeof(*d));
3453 page = payload >> PAGE_SHIFT;
3454 offset = payload & ~PAGE_MASK;
3455 payload_per_buffer = packet->payload_length / packet_count;
3456
3457 for (i = 0; i < packet_count; i++) {
3458 /* d points to the header descriptor */
3459 z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
3460 d = context_get_descriptors(&ctx->context,
3461 z + header_z, &d_bus);
3462 if (d == NULL)
3463 return -ENOMEM;
3464
3465 d->control = cpu_to_le16(DESCRIPTOR_STATUS |
3466 DESCRIPTOR_INPUT_MORE);
3467 if (packet->skip && i == 0)
3468 d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3469 d->req_count = cpu_to_le16(header_size);
3470 d->res_count = d->req_count;
3471 d->transfer_status = 0;
3472 d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
3473
3474 rest = payload_per_buffer;
3475 pd = d;
3476 for (j = 1; j < z; j++) {
3477 pd++;
3478 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3479 DESCRIPTOR_INPUT_MORE);
3480
3481 if (offset + rest < PAGE_SIZE)
3482 length = rest;
3483 else
3484 length = PAGE_SIZE - offset;
3485 pd->req_count = cpu_to_le16(length);
3486 pd->res_count = pd->req_count;
3487 pd->transfer_status = 0;
3488
3489 page_bus = page_private(buffer->pages[page]);
3490 pd->data_address = cpu_to_le32(page_bus + offset);
3491
3492 dma_sync_single_range_for_device(device, page_bus,
3493 offset, length,
3494 DMA_FROM_DEVICE);
3495
3496 offset = (offset + length) & ~PAGE_MASK;
3497 rest -= length;
3498 if (offset == 0)
3499 page++;
3500 }
3501 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3502 DESCRIPTOR_INPUT_LAST |
3503 DESCRIPTOR_BRANCH_ALWAYS);
3504 if (packet->interrupt && i == packet_count - 1)
3505 pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3506
3507 context_append(&ctx->context, d, z, header_z);
3508 }
3509
3510 return 0;
3511 }
3512
queue_iso_buffer_fill(struct iso_context * ctx,struct fw_iso_packet * packet,struct fw_iso_buffer * buffer,unsigned long payload)3513 static int queue_iso_buffer_fill(struct iso_context *ctx,
3514 struct fw_iso_packet *packet,
3515 struct fw_iso_buffer *buffer,
3516 unsigned long payload)
3517 {
3518 struct descriptor *d;
3519 dma_addr_t d_bus, page_bus;
3520 int page, offset, rest, z, i, length;
3521
3522 page = payload >> PAGE_SHIFT;
3523 offset = payload & ~PAGE_MASK;
3524 rest = packet->payload_length;
3525
3526 /* We need one descriptor for each page in the buffer. */
3527 z = DIV_ROUND_UP(offset + rest, PAGE_SIZE);
3528
3529 if (WARN_ON(offset & 3 || rest & 3 || page + z > buffer->page_count))
3530 return -EFAULT;
3531
3532 for (i = 0; i < z; i++) {
3533 d = context_get_descriptors(&ctx->context, 1, &d_bus);
3534 if (d == NULL)
3535 return -ENOMEM;
3536
3537 d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
3538 DESCRIPTOR_BRANCH_ALWAYS);
3539 if (packet->skip && i == 0)
3540 d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3541 if (packet->interrupt && i == z - 1)
3542 d->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3543
3544 if (offset + rest < PAGE_SIZE)
3545 length = rest;
3546 else
3547 length = PAGE_SIZE - offset;
3548 d->req_count = cpu_to_le16(length);
3549 d->res_count = d->req_count;
3550 d->transfer_status = 0;
3551
3552 page_bus = page_private(buffer->pages[page]);
3553 d->data_address = cpu_to_le32(page_bus + offset);
3554
3555 dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3556 page_bus, offset, length,
3557 DMA_FROM_DEVICE);
3558
3559 rest -= length;
3560 offset = 0;
3561 page++;
3562
3563 context_append(&ctx->context, d, 1, 0);
3564 }
3565
3566 return 0;
3567 }
3568
ohci_queue_iso(struct fw_iso_context * base,struct fw_iso_packet * packet,struct fw_iso_buffer * buffer,unsigned long payload)3569 static int ohci_queue_iso(struct fw_iso_context *base,
3570 struct fw_iso_packet *packet,
3571 struct fw_iso_buffer *buffer,
3572 unsigned long payload)
3573 {
3574 struct iso_context *ctx = container_of(base, struct iso_context, base);
3575
3576 guard(spinlock_irqsave)(&ctx->context.ohci->lock);
3577
3578 switch (base->type) {
3579 case FW_ISO_CONTEXT_TRANSMIT:
3580 return queue_iso_transmit(ctx, packet, buffer, payload);
3581 case FW_ISO_CONTEXT_RECEIVE:
3582 return queue_iso_packet_per_buffer(ctx, packet, buffer, payload);
3583 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3584 return queue_iso_buffer_fill(ctx, packet, buffer, payload);
3585 default:
3586 return -ENOSYS;
3587 }
3588 }
3589
ohci_flush_queue_iso(struct fw_iso_context * base)3590 static void ohci_flush_queue_iso(struct fw_iso_context *base)
3591 {
3592 struct context *ctx =
3593 &container_of(base, struct iso_context, base)->context;
3594
3595 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
3596 }
3597
ohci_flush_iso_completions(struct fw_iso_context * base)3598 static int ohci_flush_iso_completions(struct fw_iso_context *base)
3599 {
3600 struct iso_context *ctx = container_of(base, struct iso_context, base);
3601 int ret = 0;
3602
3603 if (!test_and_set_bit_lock(0, &ctx->flushing_completions)) {
3604 ohci_isoc_context_work(&base->work);
3605
3606 switch (base->type) {
3607 case FW_ISO_CONTEXT_TRANSMIT:
3608 case FW_ISO_CONTEXT_RECEIVE:
3609 if (ctx->header_length != 0)
3610 flush_iso_completions(ctx, FW_ISO_CONTEXT_COMPLETIONS_CAUSE_FLUSH);
3611 break;
3612 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3613 if (ctx->mc_completed != 0)
3614 flush_ir_buffer_fill(ctx);
3615 break;
3616 default:
3617 ret = -ENOSYS;
3618 }
3619
3620 clear_bit_unlock(0, &ctx->flushing_completions);
3621 smp_mb__after_atomic();
3622 }
3623
3624 return ret;
3625 }
3626
3627 static const struct fw_card_driver ohci_driver = {
3628 .enable = ohci_enable,
3629 .read_phy_reg = ohci_read_phy_reg,
3630 .update_phy_reg = ohci_update_phy_reg,
3631 .set_config_rom = ohci_set_config_rom,
3632 .send_request = ohci_send_request,
3633 .send_response = ohci_send_response,
3634 .cancel_packet = ohci_cancel_packet,
3635 .enable_phys_dma = ohci_enable_phys_dma,
3636 .read_csr = ohci_read_csr,
3637 .write_csr = ohci_write_csr,
3638
3639 .allocate_iso_context = ohci_allocate_iso_context,
3640 .free_iso_context = ohci_free_iso_context,
3641 .set_iso_channels = ohci_set_iso_channels,
3642 .queue_iso = ohci_queue_iso,
3643 .flush_queue_iso = ohci_flush_queue_iso,
3644 .flush_iso_completions = ohci_flush_iso_completions,
3645 .start_iso = ohci_start_iso,
3646 .stop_iso = ohci_stop_iso,
3647 };
3648
3649 #ifdef CONFIG_PPC_PMAC
pmac_ohci_on(struct pci_dev * dev)3650 static void pmac_ohci_on(struct pci_dev *dev)
3651 {
3652 if (machine_is(powermac)) {
3653 struct device_node *ofn = pci_device_to_OF_node(dev);
3654
3655 if (ofn) {
3656 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
3657 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
3658 }
3659 }
3660 }
3661
pmac_ohci_off(struct pci_dev * dev)3662 static void pmac_ohci_off(struct pci_dev *dev)
3663 {
3664 if (machine_is(powermac)) {
3665 struct device_node *ofn = pci_device_to_OF_node(dev);
3666
3667 if (ofn) {
3668 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
3669 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
3670 }
3671 }
3672 }
3673 #else
pmac_ohci_on(struct pci_dev * dev)3674 static inline void pmac_ohci_on(struct pci_dev *dev) {}
pmac_ohci_off(struct pci_dev * dev)3675 static inline void pmac_ohci_off(struct pci_dev *dev) {}
3676 #endif /* CONFIG_PPC_PMAC */
3677
release_ohci(struct device * dev,void * data)3678 static void release_ohci(struct device *dev, void *data)
3679 {
3680 struct pci_dev *pdev = to_pci_dev(dev);
3681 struct fw_ohci *ohci = pci_get_drvdata(pdev);
3682
3683 pmac_ohci_off(pdev);
3684
3685 ar_context_release(&ohci->ar_response_ctx);
3686 ar_context_release(&ohci->ar_request_ctx);
3687
3688 dev_notice(dev, "removed fw-ohci device\n");
3689 }
3690
pci_probe(struct pci_dev * dev,const struct pci_device_id * ent)3691 static int pci_probe(struct pci_dev *dev,
3692 const struct pci_device_id *ent)
3693 {
3694 struct fw_ohci *ohci;
3695 u32 bus_options, max_receive, link_speed, version;
3696 u64 guid;
3697 int i, flags, irq, err;
3698 size_t size;
3699
3700 if (dev->vendor == PCI_VENDOR_ID_PINNACLE_SYSTEMS) {
3701 dev_err(&dev->dev, "Pinnacle MovieBoard is not yet supported\n");
3702 return -ENOSYS;
3703 }
3704
3705 ohci = devres_alloc(release_ohci, sizeof(*ohci), GFP_KERNEL);
3706 if (ohci == NULL)
3707 return -ENOMEM;
3708 fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
3709 pci_set_drvdata(dev, ohci);
3710 pmac_ohci_on(dev);
3711 devres_add(&dev->dev, ohci);
3712
3713 err = pcim_enable_device(dev);
3714 if (err) {
3715 dev_err(&dev->dev, "failed to enable OHCI hardware\n");
3716 return err;
3717 }
3718
3719 pci_set_master(dev);
3720 pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
3721
3722 spin_lock_init(&ohci->lock);
3723 mutex_init(&ohci->phy_reg_mutex);
3724
3725 INIT_WORK(&ohci->bus_reset_work, bus_reset_work);
3726
3727 if (!(pci_resource_flags(dev, 0) & IORESOURCE_MEM) ||
3728 pci_resource_len(dev, 0) < OHCI1394_REGISTER_SIZE) {
3729 ohci_err(ohci, "invalid MMIO resource\n");
3730 return -ENXIO;
3731 }
3732
3733 ohci->registers = pcim_iomap_region(dev, 0, ohci_driver_name);
3734 if (IS_ERR(ohci->registers)) {
3735 ohci_err(ohci, "request and map MMIO resource unavailable\n");
3736 return -ENXIO;
3737 }
3738
3739 for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
3740 if ((ohci_quirks[i].vendor == dev->vendor) &&
3741 (ohci_quirks[i].device == (unsigned short)PCI_ANY_ID ||
3742 ohci_quirks[i].device == dev->device) &&
3743 (ohci_quirks[i].revision == (unsigned short)PCI_ANY_ID ||
3744 ohci_quirks[i].revision >= dev->revision)) {
3745 ohci->quirks = ohci_quirks[i].flags;
3746 break;
3747 }
3748 if (param_quirks)
3749 ohci->quirks = param_quirks;
3750
3751 if (detect_vt630x_with_asm1083_on_amd_ryzen_machine(dev))
3752 ohci->quirks |= QUIRK_REBOOT_BY_CYCLE_TIMER_READ;
3753
3754 /*
3755 * Because dma_alloc_coherent() allocates at least one page,
3756 * we save space by using a common buffer for the AR request/
3757 * response descriptors and the self IDs buffer.
3758 */
3759 BUILD_BUG_ON(AR_BUFFERS * sizeof(struct descriptor) > PAGE_SIZE/4);
3760 BUILD_BUG_ON(SELF_ID_BUF_SIZE > PAGE_SIZE/2);
3761 ohci->misc_buffer = dmam_alloc_coherent(&dev->dev, PAGE_SIZE, &ohci->misc_buffer_bus,
3762 GFP_KERNEL);
3763 if (!ohci->misc_buffer)
3764 return -ENOMEM;
3765
3766 err = ar_context_init(&ohci->ar_request_ctx, ohci, 0,
3767 OHCI1394_AsReqRcvContextControlSet);
3768 if (err < 0)
3769 return err;
3770
3771 err = ar_context_init(&ohci->ar_response_ctx, ohci, PAGE_SIZE/4,
3772 OHCI1394_AsRspRcvContextControlSet);
3773 if (err < 0)
3774 return err;
3775
3776 err = context_init(&ohci->at_request_ctx.context, ohci,
3777 OHCI1394_AsReqTrContextControlSet, handle_at_packet);
3778 if (err < 0)
3779 return err;
3780 INIT_WORK(&ohci->at_request_ctx.work, ohci_at_context_work);
3781
3782 err = context_init(&ohci->at_response_ctx.context, ohci,
3783 OHCI1394_AsRspTrContextControlSet, handle_at_packet);
3784 if (err < 0)
3785 return err;
3786 INIT_WORK(&ohci->at_response_ctx.work, ohci_at_context_work);
3787
3788 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
3789 ohci->ir_context_channels = ~0ULL;
3790 ohci->ir_context_support = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
3791 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
3792 ohci->ir_context_mask = ohci->ir_context_support;
3793 ohci->n_ir = hweight32(ohci->ir_context_mask);
3794 size = sizeof(struct iso_context) * ohci->n_ir;
3795 ohci->ir_context_list = devm_kzalloc(&dev->dev, size, GFP_KERNEL);
3796 if (!ohci->ir_context_list)
3797 return -ENOMEM;
3798
3799 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
3800 ohci->it_context_support = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
3801 /* JMicron JMB38x often shows 0 at first read, just ignore it */
3802 if (!ohci->it_context_support) {
3803 ohci_notice(ohci, "overriding IsoXmitIntMask\n");
3804 ohci->it_context_support = 0xf;
3805 }
3806 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
3807 ohci->it_context_mask = ohci->it_context_support;
3808 ohci->n_it = hweight32(ohci->it_context_mask);
3809 size = sizeof(struct iso_context) * ohci->n_it;
3810 ohci->it_context_list = devm_kzalloc(&dev->dev, size, GFP_KERNEL);
3811 if (!ohci->it_context_list)
3812 return -ENOMEM;
3813
3814 ohci->self_id = ohci->misc_buffer + PAGE_SIZE/2;
3815 ohci->self_id_bus = ohci->misc_buffer_bus + PAGE_SIZE/2;
3816
3817 bus_options = reg_read(ohci, OHCI1394_BusOptions);
3818 max_receive = (bus_options >> 12) & 0xf;
3819 link_speed = bus_options & 0x7;
3820 guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
3821 reg_read(ohci, OHCI1394_GUIDLo);
3822
3823 flags = PCI_IRQ_INTX;
3824 if (!(ohci->quirks & QUIRK_NO_MSI))
3825 flags |= PCI_IRQ_MSI;
3826 err = pci_alloc_irq_vectors(dev, 1, 1, flags);
3827 if (err < 0)
3828 return err;
3829 irq = pci_irq_vector(dev, 0);
3830 if (irq < 0) {
3831 err = irq;
3832 goto fail_msi;
3833 }
3834
3835 err = request_threaded_irq(irq, irq_handler, NULL,
3836 pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED, ohci_driver_name,
3837 ohci);
3838 if (err < 0) {
3839 ohci_err(ohci, "failed to allocate interrupt %d\n", irq);
3840 goto fail_msi;
3841 }
3842
3843 err = fw_card_add(&ohci->card, max_receive, link_speed, guid, ohci->n_it + ohci->n_ir);
3844 if (err)
3845 goto fail_irq;
3846
3847 version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
3848 ohci_notice(ohci,
3849 "added OHCI v%x.%x device as card %d, "
3850 "%d IR + %d IT contexts, quirks 0x%x%s\n",
3851 version >> 16, version & 0xff, ohci->card.index,
3852 ohci->n_ir, ohci->n_it, ohci->quirks,
3853 reg_read(ohci, OHCI1394_PhyUpperBound) ?
3854 ", physUB" : "");
3855
3856 return 0;
3857
3858 fail_irq:
3859 free_irq(irq, ohci);
3860 fail_msi:
3861 pci_free_irq_vectors(dev);
3862
3863 return err;
3864 }
3865
pci_remove(struct pci_dev * dev)3866 static void pci_remove(struct pci_dev *dev)
3867 {
3868 struct fw_ohci *ohci = pci_get_drvdata(dev);
3869 int irq;
3870
3871 /*
3872 * If the removal is happening from the suspend state, LPS won't be
3873 * enabled and host registers (eg., IntMaskClear) won't be accessible.
3874 */
3875 if (reg_read(ohci, OHCI1394_HCControlSet) & OHCI1394_HCControl_LPS) {
3876 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
3877 flush_writes(ohci);
3878 }
3879 cancel_work_sync(&ohci->bus_reset_work);
3880 fw_core_remove_card(&ohci->card);
3881
3882 /*
3883 * FIXME: Fail all pending packets here, now that the upper
3884 * layers can't queue any more.
3885 */
3886
3887 software_reset(ohci);
3888
3889 irq = pci_irq_vector(dev, 0);
3890 if (irq >= 0)
3891 free_irq(irq, ohci);
3892 pci_free_irq_vectors(dev);
3893
3894 dev_notice(&dev->dev, "removing fw-ohci device\n");
3895 }
3896
pci_suspend(struct device * dev)3897 static int __maybe_unused pci_suspend(struct device *dev)
3898 {
3899 struct pci_dev *pdev = to_pci_dev(dev);
3900 struct fw_ohci *ohci = pci_get_drvdata(pdev);
3901
3902 software_reset(ohci);
3903 pmac_ohci_off(pdev);
3904
3905 return 0;
3906 }
3907
3908
pci_resume(struct device * dev)3909 static int __maybe_unused pci_resume(struct device *dev)
3910 {
3911 struct pci_dev *pdev = to_pci_dev(dev);
3912 struct fw_ohci *ohci = pci_get_drvdata(pdev);
3913 int err;
3914
3915 pmac_ohci_on(pdev);
3916
3917 /* Some systems don't setup GUID register on resume from ram */
3918 if (!reg_read(ohci, OHCI1394_GUIDLo) &&
3919 !reg_read(ohci, OHCI1394_GUIDHi)) {
3920 reg_write(ohci, OHCI1394_GUIDLo, (u32)ohci->card.guid);
3921 reg_write(ohci, OHCI1394_GUIDHi, (u32)(ohci->card.guid >> 32));
3922 }
3923
3924 err = ohci_enable(&ohci->card, NULL, 0);
3925 if (err)
3926 return err;
3927
3928 ohci_resume_iso_dma(ohci);
3929
3930 return 0;
3931 }
3932
3933 static const struct pci_device_id pci_table[] = {
3934 { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
3935 { }
3936 };
3937
3938 MODULE_DEVICE_TABLE(pci, pci_table);
3939
3940 static SIMPLE_DEV_PM_OPS(pci_pm_ops, pci_suspend, pci_resume);
3941
3942 static struct pci_driver fw_ohci_pci_driver = {
3943 .name = ohci_driver_name,
3944 .id_table = pci_table,
3945 .probe = pci_probe,
3946 .remove = pci_remove,
3947 .driver.pm = &pci_pm_ops,
3948 };
3949
fw_ohci_init(void)3950 static int __init fw_ohci_init(void)
3951 {
3952 selfid_workqueue = alloc_workqueue(KBUILD_MODNAME, WQ_MEM_RECLAIM, 0);
3953 if (!selfid_workqueue)
3954 return -ENOMEM;
3955
3956 return pci_register_driver(&fw_ohci_pci_driver);
3957 }
3958
fw_ohci_cleanup(void)3959 static void __exit fw_ohci_cleanup(void)
3960 {
3961 pci_unregister_driver(&fw_ohci_pci_driver);
3962 destroy_workqueue(selfid_workqueue);
3963 }
3964
3965 module_init(fw_ohci_init);
3966 module_exit(fw_ohci_cleanup);
3967
3968 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
3969 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
3970 MODULE_LICENSE("GPL");
3971
3972 /* Provide a module alias so root-on-sbp2 initrds don't break. */
3973 MODULE_ALIAS("ohci1394");
3974