xref: /linux/drivers/firewire/ohci.c (revision 7061835997daba9e73c723c85bd70bc4c44aef77)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Driver for OHCI 1394 controllers
4  *
5  * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
6  */
7 
8 #include <linux/bitops.h>
9 #include <linux/bug.h>
10 #include <linux/compiler.h>
11 #include <linux/delay.h>
12 #include <linux/device.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/firewire.h>
15 #include <linux/firewire-constants.h>
16 #include <linux/init.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/kernel.h>
20 #include <linux/list.h>
21 #include <linux/mm.h>
22 #include <linux/module.h>
23 #include <linux/moduleparam.h>
24 #include <linux/mutex.h>
25 #include <linux/pci.h>
26 #include <linux/pci_ids.h>
27 #include <linux/slab.h>
28 #include <linux/spinlock.h>
29 #include <linux/string.h>
30 #include <linux/time.h>
31 #include <linux/vmalloc.h>
32 #include <linux/workqueue.h>
33 
34 #include <asm/byteorder.h>
35 #include <asm/page.h>
36 
37 #ifdef CONFIG_PPC_PMAC
38 #include <asm/pmac_feature.h>
39 #endif
40 
41 #include "core.h"
42 #include "ohci.h"
43 #include "packet-header-definitions.h"
44 #include "phy-packet-definitions.h"
45 
46 #include <trace/events/firewire.h>
47 
48 static u32 cond_le32_to_cpu(__le32 value, bool has_be_header_quirk);
49 
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/firewire_ohci.h>
52 
53 #define ohci_notice(ohci, f, args...)	dev_notice(ohci->card.device, f, ##args)
54 #define ohci_err(ohci, f, args...)	dev_err(ohci->card.device, f, ##args)
55 
56 #define DESCRIPTOR_OUTPUT_MORE		0
57 #define DESCRIPTOR_OUTPUT_LAST		(1 << 12)
58 #define DESCRIPTOR_INPUT_MORE		(2 << 12)
59 #define DESCRIPTOR_INPUT_LAST		(3 << 12)
60 #define DESCRIPTOR_STATUS		(1 << 11)
61 #define DESCRIPTOR_KEY_IMMEDIATE	(2 << 8)
62 #define DESCRIPTOR_PING			(1 << 7)
63 #define DESCRIPTOR_YY			(1 << 6)
64 #define DESCRIPTOR_NO_IRQ		(0 << 4)
65 #define DESCRIPTOR_IRQ_ERROR		(1 << 4)
66 #define DESCRIPTOR_IRQ_ALWAYS		(3 << 4)
67 #define DESCRIPTOR_BRANCH_ALWAYS	(3 << 2)
68 #define DESCRIPTOR_WAIT			(3 << 0)
69 
70 #define DESCRIPTOR_CMD			(0xf << 12)
71 
72 struct descriptor {
73 	__le16 req_count;
74 	__le16 control;
75 	__le32 data_address;
76 	__le32 branch_address;
77 	__le16 res_count;
78 	__le16 transfer_status;
79 } __aligned(16);
80 
81 #define CONTROL_SET(regs)	(regs)
82 #define CONTROL_CLEAR(regs)	((regs) + 4)
83 #define COMMAND_PTR(regs)	((regs) + 12)
84 #define CONTEXT_MATCH(regs)	((regs) + 16)
85 
86 #define AR_BUFFER_SIZE	(32*1024)
87 #define AR_BUFFERS_MIN	DIV_ROUND_UP(AR_BUFFER_SIZE, PAGE_SIZE)
88 /* we need at least two pages for proper list management */
89 #define AR_BUFFERS	(AR_BUFFERS_MIN >= 2 ? AR_BUFFERS_MIN : 2)
90 
91 #define MAX_ASYNC_PAYLOAD	4096
92 #define MAX_AR_PACKET_SIZE	(16 + MAX_ASYNC_PAYLOAD + 4)
93 #define AR_WRAPAROUND_PAGES	DIV_ROUND_UP(MAX_AR_PACKET_SIZE, PAGE_SIZE)
94 
95 struct ar_context {
96 	struct fw_ohci *ohci;
97 	struct page *pages[AR_BUFFERS];
98 	void *buffer;
99 	struct descriptor *descriptors;
100 	dma_addr_t descriptors_bus;
101 	void *pointer;
102 	unsigned int last_buffer_index;
103 	u32 regs;
104 	struct work_struct work;
105 };
106 
107 struct context;
108 
109 typedef int (*descriptor_callback_t)(struct context *ctx,
110 				     struct descriptor *d,
111 				     struct descriptor *last);
112 
113 /*
114  * A buffer that contains a block of DMA-able coherent memory used for
115  * storing a portion of a DMA descriptor program.
116  */
117 struct descriptor_buffer {
118 	struct list_head list;
119 	dma_addr_t buffer_bus;
120 	size_t buffer_size;
121 	size_t used;
122 	struct descriptor buffer[];
123 };
124 
125 struct context {
126 	struct fw_ohci *ohci;
127 	u32 regs;
128 	int total_allocation;
129 	u32 current_bus;
130 	bool running;
131 
132 	/*
133 	 * List of page-sized buffers for storing DMA descriptors.
134 	 * Head of list contains buffers in use and tail of list contains
135 	 * free buffers.
136 	 */
137 	struct list_head buffer_list;
138 
139 	/*
140 	 * Pointer to a buffer inside buffer_list that contains the tail
141 	 * end of the current DMA program.
142 	 */
143 	struct descriptor_buffer *buffer_tail;
144 
145 	/*
146 	 * The descriptor containing the branch address of the first
147 	 * descriptor that has not yet been filled by the device.
148 	 */
149 	struct descriptor *last;
150 
151 	/*
152 	 * The last descriptor block in the DMA program. It contains the branch
153 	 * address that must be updated upon appending a new descriptor.
154 	 */
155 	struct descriptor *prev;
156 	int prev_z;
157 
158 	descriptor_callback_t callback;
159 };
160 
161 struct at_context {
162 	struct context context;
163 	struct work_struct work;
164 	bool flushing;
165 };
166 
167 struct iso_context {
168 	struct fw_iso_context base;
169 	struct context context;
170 	void *header;
171 	size_t header_length;
172 	unsigned long flushing_completions;
173 	u32 mc_buffer_bus;
174 	u16 mc_completed;
175 	u16 last_timestamp;
176 	u8 sync;
177 	u8 tags;
178 };
179 
180 #define CONFIG_ROM_SIZE		(CSR_CONFIG_ROM_END - CSR_CONFIG_ROM)
181 
182 struct fw_ohci {
183 	struct fw_card card;
184 
185 	__iomem char *registers;
186 	int node_id;
187 	int generation;
188 	int request_generation;	/* for timestamping incoming requests */
189 	unsigned quirks;
190 	unsigned int pri_req_max;
191 	u32 bus_time;
192 	bool bus_time_running;
193 	bool is_root;
194 	bool csr_state_setclear_abdicate;
195 	int n_ir;
196 	int n_it;
197 	/*
198 	 * Spinlock for accessing fw_ohci data.  Never call out of
199 	 * this driver with this lock held.
200 	 */
201 	spinlock_t lock;
202 
203 	struct mutex phy_reg_mutex;
204 
205 	void *misc_buffer;
206 	dma_addr_t misc_buffer_bus;
207 
208 	struct ar_context ar_request_ctx;
209 	struct ar_context ar_response_ctx;
210 	struct at_context at_request_ctx;
211 	struct at_context at_response_ctx;
212 
213 	u32 it_context_support;
214 	u32 it_context_mask;     /* unoccupied IT contexts */
215 	struct iso_context *it_context_list;
216 	u64 ir_context_channels; /* unoccupied channels */
217 	u32 ir_context_support;
218 	u32 ir_context_mask;     /* unoccupied IR contexts */
219 	struct iso_context *ir_context_list;
220 	u64 mc_channels; /* channels in use by the multichannel IR context */
221 	bool mc_allocated;
222 
223 	__be32    *config_rom;
224 	dma_addr_t config_rom_bus;
225 	__be32    *next_config_rom;
226 	dma_addr_t next_config_rom_bus;
227 	__be32     next_header;
228 
229 	__le32    *self_id;
230 	dma_addr_t self_id_bus;
231 	struct work_struct bus_reset_work;
232 
233 	u32 self_id_buffer[512];
234 };
235 
236 static struct workqueue_struct *selfid_workqueue;
237 
fw_ohci(struct fw_card * card)238 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
239 {
240 	return container_of(card, struct fw_ohci, card);
241 }
242 
243 #define IT_CONTEXT_CYCLE_MATCH_ENABLE	0x80000000
244 #define IR_CONTEXT_BUFFER_FILL		0x80000000
245 #define IR_CONTEXT_ISOCH_HEADER		0x40000000
246 #define IR_CONTEXT_CYCLE_MATCH_ENABLE	0x20000000
247 #define IR_CONTEXT_MULTI_CHANNEL_MODE	0x10000000
248 #define IR_CONTEXT_DUAL_BUFFER_MODE	0x08000000
249 
250 #define CONTEXT_RUN	0x8000
251 #define CONTEXT_WAKE	0x1000
252 #define CONTEXT_DEAD	0x0800
253 #define CONTEXT_ACTIVE	0x0400
254 
255 #define OHCI1394_MAX_AT_REQ_RETRIES	0xf
256 #define OHCI1394_MAX_AT_RESP_RETRIES	0x2
257 #define OHCI1394_MAX_PHYS_RESP_RETRIES	0x8
258 
259 #define OHCI1394_REGISTER_SIZE		0x800
260 #define OHCI1394_PCI_HCI_Control	0x40
261 #define SELF_ID_BUF_SIZE		0x800
262 #define OHCI_VERSION_1_1		0x010010
263 
264 static char ohci_driver_name[] = KBUILD_MODNAME;
265 
266 #define PCI_VENDOR_ID_PINNACLE_SYSTEMS	0x11bd
267 #define PCI_DEVICE_ID_AGERE_FW643	0x5901
268 #define PCI_DEVICE_ID_CREATIVE_SB1394	0x4001
269 #define PCI_DEVICE_ID_JMICRON_JMB38X_FW	0x2380
270 #define PCI_DEVICE_ID_TI_TSB12LV22	0x8009
271 #define PCI_DEVICE_ID_TI_TSB12LV26	0x8020
272 #define PCI_DEVICE_ID_TI_TSB82AA2	0x8025
273 #define PCI_DEVICE_ID_VIA_VT630X	0x3044
274 #define PCI_REV_ID_VIA_VT6306		0x46
275 #define PCI_DEVICE_ID_VIA_VT6315	0x3403
276 
277 #define QUIRK_CYCLE_TIMER		0x1
278 #define QUIRK_RESET_PACKET		0x2
279 #define QUIRK_BE_HEADERS		0x4
280 #define QUIRK_NO_1394A			0x8
281 #define QUIRK_NO_MSI			0x10
282 #define QUIRK_TI_SLLZ059		0x20
283 #define QUIRK_IR_WAKE			0x40
284 
285 // On PCI Express Root Complex in any type of AMD Ryzen machine, VIA VT6306/6307/6308 with Asmedia
286 // ASM1083/1085 brings an inconvenience that the read accesses to 'Isochronous Cycle Timer' register
287 // (at offset 0xf0 in PCI I/O space) often causes unexpected system reboot. The mechanism is not
288 // clear, since the read access to the other registers is enough safe; e.g. 'Node ID' register,
289 // while it is probable due to detection of any type of PCIe error.
290 #define QUIRK_REBOOT_BY_CYCLE_TIMER_READ	0x80000000
291 
292 #if IS_ENABLED(CONFIG_X86)
293 
has_reboot_by_cycle_timer_read_quirk(const struct fw_ohci * ohci)294 static bool has_reboot_by_cycle_timer_read_quirk(const struct fw_ohci *ohci)
295 {
296 	return !!(ohci->quirks & QUIRK_REBOOT_BY_CYCLE_TIMER_READ);
297 }
298 
299 #define PCI_DEVICE_ID_ASMEDIA_ASM108X	0x1080
300 
detect_vt630x_with_asm1083_on_amd_ryzen_machine(const struct pci_dev * pdev)301 static bool detect_vt630x_with_asm1083_on_amd_ryzen_machine(const struct pci_dev *pdev)
302 {
303 	const struct pci_dev *pcie_to_pci_bridge;
304 
305 	// Detect any type of AMD Ryzen machine.
306 	if (!static_cpu_has(X86_FEATURE_ZEN))
307 		return false;
308 
309 	// Detect VIA VT6306/6307/6308.
310 	if (pdev->vendor != PCI_VENDOR_ID_VIA)
311 		return false;
312 	if (pdev->device != PCI_DEVICE_ID_VIA_VT630X)
313 		return false;
314 
315 	// Detect Asmedia ASM1083/1085.
316 	pcie_to_pci_bridge = pdev->bus->self;
317 	if (pcie_to_pci_bridge->vendor != PCI_VENDOR_ID_ASMEDIA)
318 		return false;
319 	if (pcie_to_pci_bridge->device != PCI_DEVICE_ID_ASMEDIA_ASM108X)
320 		return false;
321 
322 	return true;
323 }
324 
325 #else
326 #define has_reboot_by_cycle_timer_read_quirk(ohci) false
327 #define detect_vt630x_with_asm1083_on_amd_ryzen_machine(pdev)	false
328 #endif
329 
330 /* In case of multiple matches in ohci_quirks[], only the first one is used. */
331 static const struct {
332 	unsigned short vendor, device, revision, flags;
333 } ohci_quirks[] = {
334 	{PCI_VENDOR_ID_AL, PCI_ANY_ID, PCI_ANY_ID,
335 		QUIRK_CYCLE_TIMER},
336 
337 	{PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_FW, PCI_ANY_ID,
338 		QUIRK_BE_HEADERS},
339 
340 	{PCI_VENDOR_ID_ATT, PCI_DEVICE_ID_AGERE_FW643, 6,
341 		QUIRK_NO_MSI},
342 
343 	{PCI_VENDOR_ID_CREATIVE, PCI_DEVICE_ID_CREATIVE_SB1394, PCI_ANY_ID,
344 		QUIRK_RESET_PACKET},
345 
346 	{PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, PCI_ANY_ID,
347 		QUIRK_NO_MSI},
348 
349 	{PCI_VENDOR_ID_NEC, PCI_ANY_ID, PCI_ANY_ID,
350 		QUIRK_CYCLE_TIMER},
351 
352 	{PCI_VENDOR_ID_O2, PCI_ANY_ID, PCI_ANY_ID,
353 		QUIRK_NO_MSI},
354 
355 	{PCI_VENDOR_ID_RICOH, PCI_ANY_ID, PCI_ANY_ID,
356 		QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
357 
358 	{PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV22, PCI_ANY_ID,
359 		QUIRK_CYCLE_TIMER | QUIRK_RESET_PACKET | QUIRK_NO_1394A},
360 
361 	{PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV26, PCI_ANY_ID,
362 		QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
363 
364 	{PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB82AA2, PCI_ANY_ID,
365 		QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
366 
367 	{PCI_VENDOR_ID_TI, PCI_ANY_ID, PCI_ANY_ID,
368 		QUIRK_RESET_PACKET},
369 
370 	{PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT630X, PCI_REV_ID_VIA_VT6306,
371 		QUIRK_CYCLE_TIMER | QUIRK_IR_WAKE},
372 
373 	{PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT6315, 0,
374 		QUIRK_CYCLE_TIMER /* FIXME: necessary? */ | QUIRK_NO_MSI},
375 
376 	{PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT6315, PCI_ANY_ID,
377 		QUIRK_NO_MSI},
378 
379 	{PCI_VENDOR_ID_VIA, PCI_ANY_ID, PCI_ANY_ID,
380 		QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
381 };
382 
383 /* This overrides anything that was found in ohci_quirks[]. */
384 static int param_quirks;
385 module_param_named(quirks, param_quirks, int, 0644);
386 MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
387 	", nonatomic cycle timer = "	__stringify(QUIRK_CYCLE_TIMER)
388 	", reset packet generation = "	__stringify(QUIRK_RESET_PACKET)
389 	", AR/selfID endianness = "	__stringify(QUIRK_BE_HEADERS)
390 	", no 1394a enhancements = "	__stringify(QUIRK_NO_1394A)
391 	", disable MSI = "		__stringify(QUIRK_NO_MSI)
392 	", TI SLLZ059 erratum = "	__stringify(QUIRK_TI_SLLZ059)
393 	", IR wake unreliable = "	__stringify(QUIRK_IR_WAKE)
394 	")");
395 
396 #define OHCI_PARAM_DEBUG_AT_AR		1
397 #define OHCI_PARAM_DEBUG_SELFIDS	2
398 #define OHCI_PARAM_DEBUG_IRQS		4
399 
400 static int param_debug;
401 module_param_named(debug, param_debug, int, 0644);
402 MODULE_PARM_DESC(debug, "Verbose logging, deprecated in v6.11 kernel or later. (default = 0"
403 	", AT/AR events = "	__stringify(OHCI_PARAM_DEBUG_AT_AR)
404 	", self-IDs = "		__stringify(OHCI_PARAM_DEBUG_SELFIDS)
405 	", IRQs = "		__stringify(OHCI_PARAM_DEBUG_IRQS)
406 	", or a combination, or all = -1)");
407 
408 static bool param_remote_dma;
409 module_param_named(remote_dma, param_remote_dma, bool, 0444);
410 MODULE_PARM_DESC(remote_dma, "Enable unfiltered remote DMA (default = N)");
411 
log_irqs(struct fw_ohci * ohci,u32 evt)412 static void log_irqs(struct fw_ohci *ohci, u32 evt)
413 {
414 	if (likely(!(param_debug & OHCI_PARAM_DEBUG_IRQS)))
415 		return;
416 
417 	ohci_notice(ohci, "IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
418 	    evt & OHCI1394_selfIDComplete	? " selfID"		: "",
419 	    evt & OHCI1394_RQPkt		? " AR_req"		: "",
420 	    evt & OHCI1394_RSPkt		? " AR_resp"		: "",
421 	    evt & OHCI1394_reqTxComplete	? " AT_req"		: "",
422 	    evt & OHCI1394_respTxComplete	? " AT_resp"		: "",
423 	    evt & OHCI1394_isochRx		? " IR"			: "",
424 	    evt & OHCI1394_isochTx		? " IT"			: "",
425 	    evt & OHCI1394_postedWriteErr	? " postedWriteErr"	: "",
426 	    evt & OHCI1394_cycleTooLong		? " cycleTooLong"	: "",
427 	    evt & OHCI1394_cycle64Seconds	? " cycle64Seconds"	: "",
428 	    evt & OHCI1394_cycleInconsistent	? " cycleInconsistent"	: "",
429 	    evt & OHCI1394_regAccessFail	? " regAccessFail"	: "",
430 	    evt & OHCI1394_unrecoverableError	? " unrecoverableError"	: "",
431 	    evt & OHCI1394_busReset		? " busReset"		: "",
432 	    evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
433 		    OHCI1394_RSPkt | OHCI1394_reqTxComplete |
434 		    OHCI1394_respTxComplete | OHCI1394_isochRx |
435 		    OHCI1394_isochTx | OHCI1394_postedWriteErr |
436 		    OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
437 		    OHCI1394_cycleInconsistent |
438 		    OHCI1394_regAccessFail | OHCI1394_busReset)
439 						? " ?"			: "");
440 }
441 
log_selfids(struct fw_ohci * ohci,int generation,int self_id_count)442 static void log_selfids(struct fw_ohci *ohci, int generation, int self_id_count)
443 {
444 	static const char *const speed[] = {
445 		[0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
446 	};
447 	static const char *const power[] = {
448 		[0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
449 		[4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
450 	};
451 	static const char port[] = {
452 		[PHY_PACKET_SELF_ID_PORT_STATUS_NONE] = '.',
453 		[PHY_PACKET_SELF_ID_PORT_STATUS_NCONN] = '-',
454 		[PHY_PACKET_SELF_ID_PORT_STATUS_PARENT] = 'p',
455 		[PHY_PACKET_SELF_ID_PORT_STATUS_CHILD] = 'c',
456 	};
457 	struct self_id_sequence_enumerator enumerator = {
458 		.cursor = ohci->self_id_buffer,
459 		.quadlet_count = self_id_count,
460 	};
461 
462 	if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
463 		return;
464 
465 	ohci_notice(ohci, "%d selfIDs, generation %d, local node ID %04x\n",
466 		    self_id_count, generation, ohci->node_id);
467 
468 	while (enumerator.quadlet_count > 0) {
469 		unsigned int quadlet_count;
470 		unsigned int port_index;
471 		const u32 *s;
472 		int i;
473 
474 		s = self_id_sequence_enumerator_next(&enumerator, &quadlet_count);
475 		if (IS_ERR(s))
476 			break;
477 
478 		ohci_notice(ohci,
479 		    "selfID 0: %08x, phy %d [%c%c%c] %s gc=%d %s %s%s%s\n",
480 		    *s,
481 		    phy_packet_self_id_get_phy_id(*s),
482 		    port[self_id_sequence_get_port_status(s, quadlet_count, 0)],
483 		    port[self_id_sequence_get_port_status(s, quadlet_count, 1)],
484 		    port[self_id_sequence_get_port_status(s, quadlet_count, 2)],
485 		    speed[*s >> 14 & 3], *s >> 16 & 63,
486 		    power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
487 		    *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
488 
489 		port_index = 3;
490 		for (i = 1; i < quadlet_count; ++i) {
491 			ohci_notice(ohci,
492 			    "selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
493 			    s[i],
494 			    phy_packet_self_id_get_phy_id(s[i]),
495 			    port[self_id_sequence_get_port_status(s, quadlet_count, port_index)],
496 			    port[self_id_sequence_get_port_status(s, quadlet_count, port_index + 1)],
497 			    port[self_id_sequence_get_port_status(s, quadlet_count, port_index + 2)],
498 			    port[self_id_sequence_get_port_status(s, quadlet_count, port_index + 3)],
499 			    port[self_id_sequence_get_port_status(s, quadlet_count, port_index + 4)],
500 			    port[self_id_sequence_get_port_status(s, quadlet_count, port_index + 5)],
501 			    port[self_id_sequence_get_port_status(s, quadlet_count, port_index + 6)],
502 			    port[self_id_sequence_get_port_status(s, quadlet_count, port_index + 7)]
503 			);
504 
505 			port_index += 8;
506 		}
507 	}
508 }
509 
510 static const char *evts[] = {
511 	[0x00] = "evt_no_status",	[0x01] = "-reserved-",
512 	[0x02] = "evt_long_packet",	[0x03] = "evt_missing_ack",
513 	[0x04] = "evt_underrun",	[0x05] = "evt_overrun",
514 	[0x06] = "evt_descriptor_read",	[0x07] = "evt_data_read",
515 	[0x08] = "evt_data_write",	[0x09] = "evt_bus_reset",
516 	[0x0a] = "evt_timeout",		[0x0b] = "evt_tcode_err",
517 	[0x0c] = "-reserved-",		[0x0d] = "-reserved-",
518 	[0x0e] = "evt_unknown",		[0x0f] = "evt_flushed",
519 	[0x10] = "-reserved-",		[0x11] = "ack_complete",
520 	[0x12] = "ack_pending ",	[0x13] = "-reserved-",
521 	[0x14] = "ack_busy_X",		[0x15] = "ack_busy_A",
522 	[0x16] = "ack_busy_B",		[0x17] = "-reserved-",
523 	[0x18] = "-reserved-",		[0x19] = "-reserved-",
524 	[0x1a] = "-reserved-",		[0x1b] = "ack_tardy",
525 	[0x1c] = "-reserved-",		[0x1d] = "ack_data_error",
526 	[0x1e] = "ack_type_error",	[0x1f] = "-reserved-",
527 	[0x20] = "pending/cancelled",
528 };
529 
log_ar_at_event(struct fw_ohci * ohci,char dir,int speed,u32 * header,int evt)530 static void log_ar_at_event(struct fw_ohci *ohci,
531 			    char dir, int speed, u32 *header, int evt)
532 {
533 	static const char *const tcodes[] = {
534 		[TCODE_WRITE_QUADLET_REQUEST]	= "QW req",
535 		[TCODE_WRITE_BLOCK_REQUEST]	= "BW req",
536 		[TCODE_WRITE_RESPONSE]		= "W resp",
537 		[0x3]				= "-reserved-",
538 		[TCODE_READ_QUADLET_REQUEST]	= "QR req",
539 		[TCODE_READ_BLOCK_REQUEST]	= "BR req",
540 		[TCODE_READ_QUADLET_RESPONSE]	= "QR resp",
541 		[TCODE_READ_BLOCK_RESPONSE]	= "BR resp",
542 		[TCODE_CYCLE_START]		= "cycle start",
543 		[TCODE_LOCK_REQUEST]		= "Lk req",
544 		[TCODE_STREAM_DATA]		= "async stream packet",
545 		[TCODE_LOCK_RESPONSE]		= "Lk resp",
546 		[0xc]				= "-reserved-",
547 		[0xd]				= "-reserved-",
548 		[TCODE_LINK_INTERNAL]		= "link internal",
549 		[0xf]				= "-reserved-",
550 	};
551 	int tcode = async_header_get_tcode(header);
552 	char specific[12];
553 
554 	if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
555 		return;
556 
557 	if (unlikely(evt >= ARRAY_SIZE(evts)))
558 		evt = 0x1f;
559 
560 	if (evt == OHCI1394_evt_bus_reset) {
561 		ohci_notice(ohci, "A%c evt_bus_reset, generation %d\n",
562 			    dir, (header[2] >> 16) & 0xff);
563 		return;
564 	}
565 
566 	switch (tcode) {
567 	case TCODE_WRITE_QUADLET_REQUEST:
568 	case TCODE_READ_QUADLET_RESPONSE:
569 	case TCODE_CYCLE_START:
570 		snprintf(specific, sizeof(specific), " = %08x",
571 			 be32_to_cpu((__force __be32)header[3]));
572 		break;
573 	case TCODE_WRITE_BLOCK_REQUEST:
574 	case TCODE_READ_BLOCK_REQUEST:
575 	case TCODE_READ_BLOCK_RESPONSE:
576 	case TCODE_LOCK_REQUEST:
577 	case TCODE_LOCK_RESPONSE:
578 		snprintf(specific, sizeof(specific), " %x,%x",
579 			 async_header_get_data_length(header),
580 			 async_header_get_extended_tcode(header));
581 		break;
582 	default:
583 		specific[0] = '\0';
584 	}
585 
586 	switch (tcode) {
587 	case TCODE_STREAM_DATA:
588 		ohci_notice(ohci, "A%c %s, %s\n",
589 			    dir, evts[evt], tcodes[tcode]);
590 		break;
591 	case TCODE_LINK_INTERNAL:
592 		ohci_notice(ohci, "A%c %s, PHY %08x %08x\n",
593 			    dir, evts[evt], header[1], header[2]);
594 		break;
595 	case TCODE_WRITE_QUADLET_REQUEST:
596 	case TCODE_WRITE_BLOCK_REQUEST:
597 	case TCODE_READ_QUADLET_REQUEST:
598 	case TCODE_READ_BLOCK_REQUEST:
599 	case TCODE_LOCK_REQUEST:
600 		ohci_notice(ohci,
601 			    "A%c spd %x tl %02x, %04x -> %04x, %s, %s, %012llx%s\n",
602 			    dir, speed, async_header_get_tlabel(header),
603 			    async_header_get_source(header), async_header_get_destination(header),
604 			    evts[evt], tcodes[tcode], async_header_get_offset(header), specific);
605 		break;
606 	default:
607 		ohci_notice(ohci,
608 			    "A%c spd %x tl %02x, %04x -> %04x, %s, %s%s\n",
609 			    dir, speed, async_header_get_tlabel(header),
610 			    async_header_get_source(header), async_header_get_destination(header),
611 			    evts[evt], tcodes[tcode], specific);
612 	}
613 }
614 
reg_write(const struct fw_ohci * ohci,int offset,u32 data)615 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
616 {
617 	writel(data, ohci->registers + offset);
618 }
619 
reg_read(const struct fw_ohci * ohci,int offset)620 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
621 {
622 	return readl(ohci->registers + offset);
623 }
624 
flush_writes(const struct fw_ohci * ohci)625 static inline void flush_writes(const struct fw_ohci *ohci)
626 {
627 	/* Do a dummy read to flush writes. */
628 	reg_read(ohci, OHCI1394_Version);
629 }
630 
631 /*
632  * Beware!  read_phy_reg(), write_phy_reg(), update_phy_reg(), and
633  * read_paged_phy_reg() require the caller to hold ohci->phy_reg_mutex.
634  * In other words, only use ohci_read_phy_reg() and ohci_update_phy_reg()
635  * directly.  Exceptions are intrinsically serialized contexts like pci_probe.
636  */
read_phy_reg(struct fw_ohci * ohci,int addr)637 static int read_phy_reg(struct fw_ohci *ohci, int addr)
638 {
639 	u32 val;
640 	int i;
641 
642 	reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
643 	for (i = 0; i < 3 + 100; i++) {
644 		val = reg_read(ohci, OHCI1394_PhyControl);
645 		if (!~val)
646 			return -ENODEV; /* Card was ejected. */
647 
648 		if (val & OHCI1394_PhyControl_ReadDone)
649 			return OHCI1394_PhyControl_ReadData(val);
650 
651 		/*
652 		 * Try a few times without waiting.  Sleeping is necessary
653 		 * only when the link/PHY interface is busy.
654 		 */
655 		if (i >= 3)
656 			msleep(1);
657 	}
658 	ohci_err(ohci, "failed to read phy reg %d\n", addr);
659 	dump_stack();
660 
661 	return -EBUSY;
662 }
663 
write_phy_reg(const struct fw_ohci * ohci,int addr,u32 val)664 static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
665 {
666 	int i;
667 
668 	reg_write(ohci, OHCI1394_PhyControl,
669 		  OHCI1394_PhyControl_Write(addr, val));
670 	for (i = 0; i < 3 + 100; i++) {
671 		val = reg_read(ohci, OHCI1394_PhyControl);
672 		if (!~val)
673 			return -ENODEV; /* Card was ejected. */
674 
675 		if (!(val & OHCI1394_PhyControl_WritePending))
676 			return 0;
677 
678 		if (i >= 3)
679 			msleep(1);
680 	}
681 	ohci_err(ohci, "failed to write phy reg %d, val %u\n", addr, val);
682 	dump_stack();
683 
684 	return -EBUSY;
685 }
686 
update_phy_reg(struct fw_ohci * ohci,int addr,int clear_bits,int set_bits)687 static int update_phy_reg(struct fw_ohci *ohci, int addr,
688 			  int clear_bits, int set_bits)
689 {
690 	int ret = read_phy_reg(ohci, addr);
691 	if (ret < 0)
692 		return ret;
693 
694 	/*
695 	 * The interrupt status bits are cleared by writing a one bit.
696 	 * Avoid clearing them unless explicitly requested in set_bits.
697 	 */
698 	if (addr == 5)
699 		clear_bits |= PHY_INT_STATUS_BITS;
700 
701 	return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
702 }
703 
read_paged_phy_reg(struct fw_ohci * ohci,int page,int addr)704 static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
705 {
706 	int ret;
707 
708 	ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5);
709 	if (ret < 0)
710 		return ret;
711 
712 	return read_phy_reg(ohci, addr);
713 }
714 
ohci_read_phy_reg(struct fw_card * card,int addr)715 static int ohci_read_phy_reg(struct fw_card *card, int addr)
716 {
717 	struct fw_ohci *ohci = fw_ohci(card);
718 
719 	guard(mutex)(&ohci->phy_reg_mutex);
720 
721 	return read_phy_reg(ohci, addr);
722 }
723 
ohci_update_phy_reg(struct fw_card * card,int addr,int clear_bits,int set_bits)724 static int ohci_update_phy_reg(struct fw_card *card, int addr,
725 			       int clear_bits, int set_bits)
726 {
727 	struct fw_ohci *ohci = fw_ohci(card);
728 
729 	guard(mutex)(&ohci->phy_reg_mutex);
730 
731 	return update_phy_reg(ohci, addr, clear_bits, set_bits);
732 }
733 
ar_buffer_bus(struct ar_context * ctx,unsigned int i)734 static inline dma_addr_t ar_buffer_bus(struct ar_context *ctx, unsigned int i)
735 {
736 	return page_private(ctx->pages[i]);
737 }
738 
ar_context_link_page(struct ar_context * ctx,unsigned int index)739 static void ar_context_link_page(struct ar_context *ctx, unsigned int index)
740 {
741 	struct descriptor *d;
742 
743 	d = &ctx->descriptors[index];
744 	d->branch_address  &= cpu_to_le32(~0xf);
745 	d->res_count       =  cpu_to_le16(PAGE_SIZE);
746 	d->transfer_status =  0;
747 
748 	wmb(); /* finish init of new descriptors before branch_address update */
749 	d = &ctx->descriptors[ctx->last_buffer_index];
750 	d->branch_address  |= cpu_to_le32(1);
751 
752 	ctx->last_buffer_index = index;
753 
754 	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
755 }
756 
ar_context_release(struct ar_context * ctx)757 static void ar_context_release(struct ar_context *ctx)
758 {
759 	struct device *dev = ctx->ohci->card.device;
760 	unsigned int i;
761 
762 	if (!ctx->buffer)
763 		return;
764 
765 	vunmap(ctx->buffer);
766 
767 	for (i = 0; i < AR_BUFFERS; i++) {
768 		if (ctx->pages[i])
769 			dma_free_pages(dev, PAGE_SIZE, ctx->pages[i],
770 				       ar_buffer_bus(ctx, i), DMA_FROM_DEVICE);
771 	}
772 }
773 
ar_context_abort(struct ar_context * ctx,const char * error_msg)774 static void ar_context_abort(struct ar_context *ctx, const char *error_msg)
775 {
776 	struct fw_ohci *ohci = ctx->ohci;
777 
778 	if (reg_read(ohci, CONTROL_CLEAR(ctx->regs)) & CONTEXT_RUN) {
779 		reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
780 		flush_writes(ohci);
781 
782 		ohci_err(ohci, "AR error: %s; DMA stopped\n", error_msg);
783 	}
784 	/* FIXME: restart? */
785 }
786 
ar_next_buffer_index(unsigned int index)787 static inline unsigned int ar_next_buffer_index(unsigned int index)
788 {
789 	return (index + 1) % AR_BUFFERS;
790 }
791 
ar_first_buffer_index(struct ar_context * ctx)792 static inline unsigned int ar_first_buffer_index(struct ar_context *ctx)
793 {
794 	return ar_next_buffer_index(ctx->last_buffer_index);
795 }
796 
797 /*
798  * We search for the buffer that contains the last AR packet DMA data written
799  * by the controller.
800  */
ar_search_last_active_buffer(struct ar_context * ctx,unsigned int * buffer_offset)801 static unsigned int ar_search_last_active_buffer(struct ar_context *ctx,
802 						 unsigned int *buffer_offset)
803 {
804 	unsigned int i, next_i, last = ctx->last_buffer_index;
805 	__le16 res_count, next_res_count;
806 
807 	i = ar_first_buffer_index(ctx);
808 	res_count = READ_ONCE(ctx->descriptors[i].res_count);
809 
810 	/* A buffer that is not yet completely filled must be the last one. */
811 	while (i != last && res_count == 0) {
812 
813 		/* Peek at the next descriptor. */
814 		next_i = ar_next_buffer_index(i);
815 		rmb(); /* read descriptors in order */
816 		next_res_count = READ_ONCE(ctx->descriptors[next_i].res_count);
817 		/*
818 		 * If the next descriptor is still empty, we must stop at this
819 		 * descriptor.
820 		 */
821 		if (next_res_count == cpu_to_le16(PAGE_SIZE)) {
822 			/*
823 			 * The exception is when the DMA data for one packet is
824 			 * split over three buffers; in this case, the middle
825 			 * buffer's descriptor might be never updated by the
826 			 * controller and look still empty, and we have to peek
827 			 * at the third one.
828 			 */
829 			if (MAX_AR_PACKET_SIZE > PAGE_SIZE && i != last) {
830 				next_i = ar_next_buffer_index(next_i);
831 				rmb();
832 				next_res_count = READ_ONCE(ctx->descriptors[next_i].res_count);
833 				if (next_res_count != cpu_to_le16(PAGE_SIZE))
834 					goto next_buffer_is_active;
835 			}
836 
837 			break;
838 		}
839 
840 next_buffer_is_active:
841 		i = next_i;
842 		res_count = next_res_count;
843 	}
844 
845 	rmb(); /* read res_count before the DMA data */
846 
847 	*buffer_offset = PAGE_SIZE - le16_to_cpu(res_count);
848 	if (*buffer_offset > PAGE_SIZE) {
849 		*buffer_offset = 0;
850 		ar_context_abort(ctx, "corrupted descriptor");
851 	}
852 
853 	return i;
854 }
855 
ar_sync_buffers_for_cpu(struct ar_context * ctx,unsigned int end_buffer_index,unsigned int end_buffer_offset)856 static void ar_sync_buffers_for_cpu(struct ar_context *ctx,
857 				    unsigned int end_buffer_index,
858 				    unsigned int end_buffer_offset)
859 {
860 	unsigned int i;
861 
862 	i = ar_first_buffer_index(ctx);
863 	while (i != end_buffer_index) {
864 		dma_sync_single_for_cpu(ctx->ohci->card.device,
865 					ar_buffer_bus(ctx, i),
866 					PAGE_SIZE, DMA_FROM_DEVICE);
867 		i = ar_next_buffer_index(i);
868 	}
869 	if (end_buffer_offset > 0)
870 		dma_sync_single_for_cpu(ctx->ohci->card.device,
871 					ar_buffer_bus(ctx, i),
872 					end_buffer_offset, DMA_FROM_DEVICE);
873 }
874 
875 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
cond_le32_to_cpu(__le32 value,bool has_be_header_quirk)876 static u32 cond_le32_to_cpu(__le32 value, bool has_be_header_quirk)
877 {
878 	return has_be_header_quirk ? (__force __u32)value : le32_to_cpu(value);
879 }
880 
has_be_header_quirk(const struct fw_ohci * ohci)881 static bool has_be_header_quirk(const struct fw_ohci *ohci)
882 {
883 	return !!(ohci->quirks & QUIRK_BE_HEADERS);
884 }
885 #else
cond_le32_to_cpu(__le32 value,bool has_be_header_quirk __maybe_unused)886 static u32 cond_le32_to_cpu(__le32 value, bool has_be_header_quirk __maybe_unused)
887 {
888 	return le32_to_cpu(value);
889 }
890 
has_be_header_quirk(const struct fw_ohci * ohci)891 static bool has_be_header_quirk(const struct fw_ohci *ohci)
892 {
893 	return false;
894 }
895 #endif
896 
handle_ar_packet(struct ar_context * ctx,__le32 * buffer)897 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
898 {
899 	struct fw_ohci *ohci = ctx->ohci;
900 	struct fw_packet p;
901 	u32 status, length, tcode;
902 	int evt;
903 
904 	p.header[0] = cond_le32_to_cpu(buffer[0], has_be_header_quirk(ohci));
905 	p.header[1] = cond_le32_to_cpu(buffer[1], has_be_header_quirk(ohci));
906 	p.header[2] = cond_le32_to_cpu(buffer[2], has_be_header_quirk(ohci));
907 
908 	tcode = async_header_get_tcode(p.header);
909 	switch (tcode) {
910 	case TCODE_WRITE_QUADLET_REQUEST:
911 	case TCODE_READ_QUADLET_RESPONSE:
912 		p.header[3] = (__force __u32) buffer[3];
913 		p.header_length = 16;
914 		p.payload_length = 0;
915 		break;
916 
917 	case TCODE_READ_BLOCK_REQUEST :
918 		p.header[3] = cond_le32_to_cpu(buffer[3], has_be_header_quirk(ohci));
919 		p.header_length = 16;
920 		p.payload_length = 0;
921 		break;
922 
923 	case TCODE_WRITE_BLOCK_REQUEST:
924 	case TCODE_READ_BLOCK_RESPONSE:
925 	case TCODE_LOCK_REQUEST:
926 	case TCODE_LOCK_RESPONSE:
927 		p.header[3] = cond_le32_to_cpu(buffer[3], has_be_header_quirk(ohci));
928 		p.header_length = 16;
929 		p.payload_length = async_header_get_data_length(p.header);
930 		if (p.payload_length > MAX_ASYNC_PAYLOAD) {
931 			ar_context_abort(ctx, "invalid packet length");
932 			return NULL;
933 		}
934 		break;
935 
936 	case TCODE_WRITE_RESPONSE:
937 	case TCODE_READ_QUADLET_REQUEST:
938 	case TCODE_LINK_INTERNAL:
939 		p.header_length = 12;
940 		p.payload_length = 0;
941 		break;
942 
943 	default:
944 		ar_context_abort(ctx, "invalid tcode");
945 		return NULL;
946 	}
947 
948 	p.payload = (void *) buffer + p.header_length;
949 
950 	/* FIXME: What to do about evt_* errors? */
951 	length = (p.header_length + p.payload_length + 3) / 4;
952 	status = cond_le32_to_cpu(buffer[length], has_be_header_quirk(ohci));
953 	evt    = (status >> 16) & 0x1f;
954 
955 	p.ack        = evt - 16;
956 	p.speed      = (status >> 21) & 0x7;
957 	p.timestamp  = status & 0xffff;
958 	p.generation = ohci->request_generation;
959 
960 	log_ar_at_event(ohci, 'R', p.speed, p.header, evt);
961 
962 	/*
963 	 * Several controllers, notably from NEC and VIA, forget to
964 	 * write ack_complete status at PHY packet reception.
965 	 */
966 	if (evt == OHCI1394_evt_no_status && tcode == TCODE_LINK_INTERNAL)
967 		p.ack = ACK_COMPLETE;
968 
969 	/*
970 	 * The OHCI bus reset handler synthesizes a PHY packet with
971 	 * the new generation number when a bus reset happens (see
972 	 * section 8.4.2.3).  This helps us determine when a request
973 	 * was received and make sure we send the response in the same
974 	 * generation.  We only need this for requests; for responses
975 	 * we use the unique tlabel for finding the matching
976 	 * request.
977 	 *
978 	 * Alas some chips sometimes emit bus reset packets with a
979 	 * wrong generation.  We set the correct generation for these
980 	 * at a slightly incorrect time (in bus_reset_work).
981 	 */
982 	if (evt == OHCI1394_evt_bus_reset) {
983 		if (!(ohci->quirks & QUIRK_RESET_PACKET))
984 			ohci->request_generation = (p.header[2] >> 16) & 0xff;
985 	} else if (ctx == &ohci->ar_request_ctx) {
986 		fw_core_handle_request(&ohci->card, &p);
987 	} else {
988 		fw_core_handle_response(&ohci->card, &p);
989 	}
990 
991 	return buffer + length + 1;
992 }
993 
handle_ar_packets(struct ar_context * ctx,void * p,void * end)994 static void *handle_ar_packets(struct ar_context *ctx, void *p, void *end)
995 {
996 	void *next;
997 
998 	while (p < end) {
999 		next = handle_ar_packet(ctx, p);
1000 		if (!next)
1001 			return p;
1002 		p = next;
1003 	}
1004 
1005 	return p;
1006 }
1007 
ar_recycle_buffers(struct ar_context * ctx,unsigned int end_buffer)1008 static void ar_recycle_buffers(struct ar_context *ctx, unsigned int end_buffer)
1009 {
1010 	unsigned int i;
1011 
1012 	i = ar_first_buffer_index(ctx);
1013 	while (i != end_buffer) {
1014 		dma_sync_single_for_device(ctx->ohci->card.device,
1015 					   ar_buffer_bus(ctx, i),
1016 					   PAGE_SIZE, DMA_FROM_DEVICE);
1017 		ar_context_link_page(ctx, i);
1018 		i = ar_next_buffer_index(i);
1019 	}
1020 }
1021 
ohci_ar_context_work(struct work_struct * work)1022 static void ohci_ar_context_work(struct work_struct *work)
1023 {
1024 	struct ar_context *ctx = from_work(ctx, work, work);
1025 	unsigned int end_buffer_index, end_buffer_offset;
1026 	void *p, *end;
1027 
1028 	p = ctx->pointer;
1029 	if (!p)
1030 		return;
1031 
1032 	end_buffer_index = ar_search_last_active_buffer(ctx, &end_buffer_offset);
1033 	ar_sync_buffers_for_cpu(ctx, end_buffer_index, end_buffer_offset);
1034 	end = ctx->buffer + end_buffer_index * PAGE_SIZE + end_buffer_offset;
1035 
1036 	if (end_buffer_index < ar_first_buffer_index(ctx)) {
1037 		// The filled part of the overall buffer wraps around; handle all packets up to the
1038 		// buffer end here.  If the last packet wraps around, its tail will be visible after
1039 		// the buffer end because the buffer start pages are mapped there again.
1040 		void *buffer_end = ctx->buffer + AR_BUFFERS * PAGE_SIZE;
1041 		p = handle_ar_packets(ctx, p, buffer_end);
1042 		if (p < buffer_end)
1043 			goto error;
1044 		// adjust p to point back into the actual buffer
1045 		p -= AR_BUFFERS * PAGE_SIZE;
1046 	}
1047 
1048 	p = handle_ar_packets(ctx, p, end);
1049 	if (p != end) {
1050 		if (p > end)
1051 			ar_context_abort(ctx, "inconsistent descriptor");
1052 		goto error;
1053 	}
1054 
1055 	ctx->pointer = p;
1056 	ar_recycle_buffers(ctx, end_buffer_index);
1057 
1058 	return;
1059 error:
1060 	ctx->pointer = NULL;
1061 }
1062 
ar_context_init(struct ar_context * ctx,struct fw_ohci * ohci,unsigned int descriptors_offset,u32 regs)1063 static int ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci,
1064 			   unsigned int descriptors_offset, u32 regs)
1065 {
1066 	struct device *dev = ohci->card.device;
1067 	unsigned int i;
1068 	dma_addr_t dma_addr;
1069 	struct page *pages[AR_BUFFERS + AR_WRAPAROUND_PAGES];
1070 	struct descriptor *d;
1071 
1072 	ctx->regs        = regs;
1073 	ctx->ohci        = ohci;
1074 	INIT_WORK(&ctx->work, ohci_ar_context_work);
1075 
1076 	for (i = 0; i < AR_BUFFERS; i++) {
1077 		ctx->pages[i] = dma_alloc_pages(dev, PAGE_SIZE, &dma_addr,
1078 						DMA_FROM_DEVICE, GFP_KERNEL);
1079 		if (!ctx->pages[i])
1080 			goto out_of_memory;
1081 		set_page_private(ctx->pages[i], dma_addr);
1082 		dma_sync_single_for_device(dev, dma_addr, PAGE_SIZE,
1083 					   DMA_FROM_DEVICE);
1084 	}
1085 
1086 	for (i = 0; i < AR_BUFFERS; i++)
1087 		pages[i]              = ctx->pages[i];
1088 	for (i = 0; i < AR_WRAPAROUND_PAGES; i++)
1089 		pages[AR_BUFFERS + i] = ctx->pages[i];
1090 	ctx->buffer = vmap(pages, ARRAY_SIZE(pages), VM_MAP, PAGE_KERNEL);
1091 	if (!ctx->buffer)
1092 		goto out_of_memory;
1093 
1094 	ctx->descriptors     = ohci->misc_buffer     + descriptors_offset;
1095 	ctx->descriptors_bus = ohci->misc_buffer_bus + descriptors_offset;
1096 
1097 	for (i = 0; i < AR_BUFFERS; i++) {
1098 		d = &ctx->descriptors[i];
1099 		d->req_count      = cpu_to_le16(PAGE_SIZE);
1100 		d->control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
1101 						DESCRIPTOR_STATUS |
1102 						DESCRIPTOR_BRANCH_ALWAYS);
1103 		d->data_address   = cpu_to_le32(ar_buffer_bus(ctx, i));
1104 		d->branch_address = cpu_to_le32(ctx->descriptors_bus +
1105 			ar_next_buffer_index(i) * sizeof(struct descriptor));
1106 	}
1107 
1108 	return 0;
1109 
1110 out_of_memory:
1111 	ar_context_release(ctx);
1112 
1113 	return -ENOMEM;
1114 }
1115 
ar_context_run(struct ar_context * ctx)1116 static void ar_context_run(struct ar_context *ctx)
1117 {
1118 	unsigned int i;
1119 
1120 	for (i = 0; i < AR_BUFFERS; i++)
1121 		ar_context_link_page(ctx, i);
1122 
1123 	ctx->pointer = ctx->buffer;
1124 
1125 	reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ctx->descriptors_bus | 1);
1126 	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
1127 }
1128 
find_branch_descriptor(struct descriptor * d,int z)1129 static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
1130 {
1131 	__le16 branch;
1132 
1133 	branch = d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS);
1134 
1135 	/* figure out which descriptor the branch address goes in */
1136 	if (z == 2 && branch == cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
1137 		return d;
1138 	else
1139 		return d + z - 1;
1140 }
1141 
context_retire_descriptors(struct context * ctx)1142 static void context_retire_descriptors(struct context *ctx)
1143 {
1144 	struct descriptor *d, *last;
1145 	u32 address;
1146 	int z;
1147 	struct descriptor_buffer *desc;
1148 
1149 	desc = list_entry(ctx->buffer_list.next,
1150 			struct descriptor_buffer, list);
1151 	last = ctx->last;
1152 	while (last->branch_address != 0) {
1153 		struct descriptor_buffer *old_desc = desc;
1154 		address = le32_to_cpu(last->branch_address);
1155 		z = address & 0xf;
1156 		address &= ~0xf;
1157 		ctx->current_bus = address;
1158 
1159 		/* If the branch address points to a buffer outside of the
1160 		 * current buffer, advance to the next buffer. */
1161 		if (address < desc->buffer_bus ||
1162 				address >= desc->buffer_bus + desc->used)
1163 			desc = list_entry(desc->list.next,
1164 					struct descriptor_buffer, list);
1165 		d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
1166 		last = find_branch_descriptor(d, z);
1167 
1168 		if (!ctx->callback(ctx, d, last))
1169 			break;
1170 
1171 		if (old_desc != desc) {
1172 			// If we've advanced to the next buffer, move the previous buffer to the
1173 			// free list.
1174 			old_desc->used = 0;
1175 			guard(spinlock_irqsave)(&ctx->ohci->lock);
1176 			list_move_tail(&old_desc->list, &ctx->buffer_list);
1177 		}
1178 		ctx->last = last;
1179 	}
1180 }
1181 
ohci_at_context_work(struct work_struct * work)1182 static void ohci_at_context_work(struct work_struct *work)
1183 {
1184 	struct at_context *ctx = from_work(ctx, work, work);
1185 
1186 	context_retire_descriptors(&ctx->context);
1187 }
1188 
ohci_isoc_context_work(struct work_struct * work)1189 static void ohci_isoc_context_work(struct work_struct *work)
1190 {
1191 	struct fw_iso_context *base = from_work(base, work, work);
1192 	struct iso_context *isoc_ctx = container_of(base, struct iso_context, base);
1193 
1194 	context_retire_descriptors(&isoc_ctx->context);
1195 }
1196 
1197 /*
1198  * Allocate a new buffer and add it to the list of free buffers for this
1199  * context.  Must be called with ohci->lock held.
1200  */
context_add_buffer(struct context * ctx)1201 static int context_add_buffer(struct context *ctx)
1202 {
1203 	struct descriptor_buffer *desc;
1204 	dma_addr_t bus_addr;
1205 	int offset;
1206 
1207 	/*
1208 	 * 16MB of descriptors should be far more than enough for any DMA
1209 	 * program.  This will catch run-away userspace or DoS attacks.
1210 	 */
1211 	if (ctx->total_allocation >= 16*1024*1024)
1212 		return -ENOMEM;
1213 
1214 	desc = dmam_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE, &bus_addr, GFP_ATOMIC);
1215 	if (!desc)
1216 		return -ENOMEM;
1217 
1218 	offset = (void *)&desc->buffer - (void *)desc;
1219 	/*
1220 	 * Some controllers, like JMicron ones, always issue 0x20-byte DMA reads
1221 	 * for descriptors, even 0x10-byte ones. This can cause page faults when
1222 	 * an IOMMU is in use and the oversized read crosses a page boundary.
1223 	 * Work around this by always leaving at least 0x10 bytes of padding.
1224 	 */
1225 	desc->buffer_size = PAGE_SIZE - offset - 0x10;
1226 	desc->buffer_bus = bus_addr + offset;
1227 	desc->used = 0;
1228 
1229 	list_add_tail(&desc->list, &ctx->buffer_list);
1230 	ctx->total_allocation += PAGE_SIZE;
1231 
1232 	return 0;
1233 }
1234 
context_init(struct context * ctx,struct fw_ohci * ohci,u32 regs,descriptor_callback_t callback)1235 static int context_init(struct context *ctx, struct fw_ohci *ohci,
1236 			u32 regs, descriptor_callback_t callback)
1237 {
1238 	ctx->ohci = ohci;
1239 	ctx->regs = regs;
1240 	ctx->total_allocation = 0;
1241 
1242 	INIT_LIST_HEAD(&ctx->buffer_list);
1243 	if (context_add_buffer(ctx) < 0)
1244 		return -ENOMEM;
1245 
1246 	ctx->buffer_tail = list_entry(ctx->buffer_list.next,
1247 			struct descriptor_buffer, list);
1248 
1249 	ctx->callback = callback;
1250 
1251 	/*
1252 	 * We put a dummy descriptor in the buffer that has a NULL
1253 	 * branch address and looks like it's been sent.  That way we
1254 	 * have a descriptor to append DMA programs to.
1255 	 */
1256 	memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
1257 	ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
1258 	ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
1259 	ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
1260 	ctx->last = ctx->buffer_tail->buffer;
1261 	ctx->prev = ctx->buffer_tail->buffer;
1262 	ctx->prev_z = 1;
1263 
1264 	return 0;
1265 }
1266 
context_release(struct context * ctx)1267 static void context_release(struct context *ctx)
1268 {
1269 	struct fw_card *card = &ctx->ohci->card;
1270 	struct descriptor_buffer *desc, *tmp;
1271 
1272 	list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list) {
1273 		dmam_free_coherent(card->device, PAGE_SIZE, desc,
1274 				   desc->buffer_bus - ((void *)&desc->buffer - (void *)desc));
1275 	}
1276 }
1277 
1278 /* Must be called with ohci->lock held */
context_get_descriptors(struct context * ctx,int z,dma_addr_t * d_bus)1279 static struct descriptor *context_get_descriptors(struct context *ctx,
1280 						  int z, dma_addr_t *d_bus)
1281 {
1282 	struct descriptor *d = NULL;
1283 	struct descriptor_buffer *desc = ctx->buffer_tail;
1284 
1285 	if (z * sizeof(*d) > desc->buffer_size)
1286 		return NULL;
1287 
1288 	if (z * sizeof(*d) > desc->buffer_size - desc->used) {
1289 		/* No room for the descriptor in this buffer, so advance to the
1290 		 * next one. */
1291 
1292 		if (desc->list.next == &ctx->buffer_list) {
1293 			/* If there is no free buffer next in the list,
1294 			 * allocate one. */
1295 			if (context_add_buffer(ctx) < 0)
1296 				return NULL;
1297 		}
1298 		desc = list_entry(desc->list.next,
1299 				struct descriptor_buffer, list);
1300 		ctx->buffer_tail = desc;
1301 	}
1302 
1303 	d = desc->buffer + desc->used / sizeof(*d);
1304 	memset(d, 0, z * sizeof(*d));
1305 	*d_bus = desc->buffer_bus + desc->used;
1306 
1307 	return d;
1308 }
1309 
context_run(struct context * ctx,u32 extra)1310 static void context_run(struct context *ctx, u32 extra)
1311 {
1312 	struct fw_ohci *ohci = ctx->ohci;
1313 
1314 	reg_write(ohci, COMMAND_PTR(ctx->regs),
1315 		  le32_to_cpu(ctx->last->branch_address));
1316 	reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
1317 	reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
1318 	ctx->running = true;
1319 	flush_writes(ohci);
1320 }
1321 
context_append(struct context * ctx,struct descriptor * d,int z,int extra)1322 static void context_append(struct context *ctx,
1323 			   struct descriptor *d, int z, int extra)
1324 {
1325 	dma_addr_t d_bus;
1326 	struct descriptor_buffer *desc = ctx->buffer_tail;
1327 	struct descriptor *d_branch;
1328 
1329 	d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
1330 
1331 	desc->used += (z + extra) * sizeof(*d);
1332 
1333 	wmb(); /* finish init of new descriptors before branch_address update */
1334 
1335 	d_branch = find_branch_descriptor(ctx->prev, ctx->prev_z);
1336 	d_branch->branch_address = cpu_to_le32(d_bus | z);
1337 
1338 	/*
1339 	 * VT6306 incorrectly checks only the single descriptor at the
1340 	 * CommandPtr when the wake bit is written, so if it's a
1341 	 * multi-descriptor block starting with an INPUT_MORE, put a copy of
1342 	 * the branch address in the first descriptor.
1343 	 *
1344 	 * Not doing this for transmit contexts since not sure how it interacts
1345 	 * with skip addresses.
1346 	 */
1347 	if (unlikely(ctx->ohci->quirks & QUIRK_IR_WAKE) &&
1348 	    d_branch != ctx->prev &&
1349 	    (ctx->prev->control & cpu_to_le16(DESCRIPTOR_CMD)) ==
1350 	     cpu_to_le16(DESCRIPTOR_INPUT_MORE)) {
1351 		ctx->prev->branch_address = cpu_to_le32(d_bus | z);
1352 	}
1353 
1354 	ctx->prev = d;
1355 	ctx->prev_z = z;
1356 }
1357 
context_stop(struct context * ctx)1358 static void context_stop(struct context *ctx)
1359 {
1360 	struct fw_ohci *ohci = ctx->ohci;
1361 	u32 reg;
1362 	int i;
1363 
1364 	reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
1365 	ctx->running = false;
1366 
1367 	for (i = 0; i < 1000; i++) {
1368 		reg = reg_read(ohci, CONTROL_SET(ctx->regs));
1369 		if ((reg & CONTEXT_ACTIVE) == 0)
1370 			return;
1371 
1372 		if (i)
1373 			udelay(10);
1374 	}
1375 	ohci_err(ohci, "DMA context still active (0x%08x)\n", reg);
1376 }
1377 
1378 struct driver_data {
1379 	u8 inline_data[8];
1380 	struct fw_packet *packet;
1381 };
1382 
1383 /*
1384  * This function appends a packet to the DMA queue for transmission.
1385  * Must always be called with the ochi->lock held to ensure proper
1386  * generation handling and locking around packet queue manipulation.
1387  */
at_context_queue_packet(struct at_context * ctx,struct fw_packet * packet)1388 static int at_context_queue_packet(struct at_context *ctx, struct fw_packet *packet)
1389 {
1390 	struct context *context = &ctx->context;
1391 	struct fw_ohci *ohci = context->ohci;
1392 	dma_addr_t d_bus, payload_bus;
1393 	struct driver_data *driver_data;
1394 	struct descriptor *d, *last;
1395 	__le32 *header;
1396 	int z, tcode;
1397 
1398 	d = context_get_descriptors(context, 4, &d_bus);
1399 	if (d == NULL) {
1400 		packet->ack = RCODE_SEND_ERROR;
1401 		return -1;
1402 	}
1403 
1404 	d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1405 	d[0].res_count = cpu_to_le16(packet->timestamp);
1406 
1407 	tcode = async_header_get_tcode(packet->header);
1408 	header = (__le32 *) &d[1];
1409 	switch (tcode) {
1410 	case TCODE_WRITE_QUADLET_REQUEST:
1411 	case TCODE_WRITE_BLOCK_REQUEST:
1412 	case TCODE_WRITE_RESPONSE:
1413 	case TCODE_READ_QUADLET_REQUEST:
1414 	case TCODE_READ_BLOCK_REQUEST:
1415 	case TCODE_READ_QUADLET_RESPONSE:
1416 	case TCODE_READ_BLOCK_RESPONSE:
1417 	case TCODE_LOCK_REQUEST:
1418 	case TCODE_LOCK_RESPONSE:
1419 		ohci1394_at_data_set_src_bus_id(header, false);
1420 		ohci1394_at_data_set_speed(header, packet->speed);
1421 		ohci1394_at_data_set_tlabel(header, async_header_get_tlabel(packet->header));
1422 		ohci1394_at_data_set_retry(header, async_header_get_retry(packet->header));
1423 		ohci1394_at_data_set_tcode(header, tcode);
1424 
1425 		ohci1394_at_data_set_destination_id(header,
1426 						    async_header_get_destination(packet->header));
1427 
1428 		if (ctx == &ohci->at_response_ctx) {
1429 			ohci1394_at_data_set_rcode(header, async_header_get_rcode(packet->header));
1430 		} else {
1431 			ohci1394_at_data_set_destination_offset(header,
1432 							async_header_get_offset(packet->header));
1433 		}
1434 
1435 		if (tcode_is_block_packet(tcode))
1436 			header[3] = cpu_to_le32(packet->header[3]);
1437 		else
1438 			header[3] = (__force __le32) packet->header[3];
1439 
1440 		d[0].req_count = cpu_to_le16(packet->header_length);
1441 		break;
1442 	case TCODE_LINK_INTERNAL:
1443 		ohci1394_at_data_set_speed(header, packet->speed);
1444 		ohci1394_at_data_set_tcode(header, TCODE_LINK_INTERNAL);
1445 
1446 		header[1] = cpu_to_le32(packet->header[1]);
1447 		header[2] = cpu_to_le32(packet->header[2]);
1448 		d[0].req_count = cpu_to_le16(12);
1449 
1450 		if (is_ping_packet(&packet->header[1]))
1451 			d[0].control |= cpu_to_le16(DESCRIPTOR_PING);
1452 		break;
1453 
1454 	case TCODE_STREAM_DATA:
1455 		ohci1394_it_data_set_speed(header, packet->speed);
1456 		ohci1394_it_data_set_tag(header, isoc_header_get_tag(packet->header[0]));
1457 		ohci1394_it_data_set_channel(header, isoc_header_get_channel(packet->header[0]));
1458 		ohci1394_it_data_set_tcode(header, TCODE_STREAM_DATA);
1459 		ohci1394_it_data_set_sync(header, isoc_header_get_sy(packet->header[0]));
1460 
1461 		ohci1394_it_data_set_data_length(header, isoc_header_get_data_length(packet->header[0]));
1462 
1463 		d[0].req_count = cpu_to_le16(8);
1464 		break;
1465 
1466 	default:
1467 		/* BUG(); */
1468 		packet->ack = RCODE_SEND_ERROR;
1469 		return -1;
1470 	}
1471 
1472 	BUILD_BUG_ON(sizeof(struct driver_data) > sizeof(struct descriptor));
1473 	driver_data = (struct driver_data *) &d[3];
1474 	driver_data->packet = packet;
1475 	packet->driver_data = driver_data;
1476 
1477 	if (packet->payload_length > 0) {
1478 		if (packet->payload_length > sizeof(driver_data->inline_data)) {
1479 			payload_bus = dma_map_single(ohci->card.device,
1480 						     packet->payload,
1481 						     packet->payload_length,
1482 						     DMA_TO_DEVICE);
1483 			if (dma_mapping_error(ohci->card.device, payload_bus)) {
1484 				packet->ack = RCODE_SEND_ERROR;
1485 				return -1;
1486 			}
1487 			packet->payload_bus	= payload_bus;
1488 			packet->payload_mapped	= true;
1489 		} else {
1490 			memcpy(driver_data->inline_data, packet->payload,
1491 			       packet->payload_length);
1492 			payload_bus = d_bus + 3 * sizeof(*d);
1493 		}
1494 
1495 		d[2].req_count    = cpu_to_le16(packet->payload_length);
1496 		d[2].data_address = cpu_to_le32(payload_bus);
1497 		last = &d[2];
1498 		z = 3;
1499 	} else {
1500 		last = &d[0];
1501 		z = 2;
1502 	}
1503 
1504 	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1505 				     DESCRIPTOR_IRQ_ALWAYS |
1506 				     DESCRIPTOR_BRANCH_ALWAYS);
1507 
1508 	/* FIXME: Document how the locking works. */
1509 	if (ohci->generation != packet->generation) {
1510 		if (packet->payload_mapped)
1511 			dma_unmap_single(ohci->card.device, payload_bus,
1512 					 packet->payload_length, DMA_TO_DEVICE);
1513 		packet->ack = RCODE_GENERATION;
1514 		return -1;
1515 	}
1516 
1517 	context_append(context, d, z, 4 - z);
1518 
1519 	if (context->running)
1520 		reg_write(ohci, CONTROL_SET(context->regs), CONTEXT_WAKE);
1521 	else
1522 		context_run(context, 0);
1523 
1524 	return 0;
1525 }
1526 
at_context_flush(struct at_context * ctx)1527 static void at_context_flush(struct at_context *ctx)
1528 {
1529 	// Avoid dead lock due to programming mistake.
1530 	if (WARN_ON_ONCE(current_work() == &ctx->work))
1531 		return;
1532 
1533 	disable_work_sync(&ctx->work);
1534 
1535 	WRITE_ONCE(ctx->flushing, true);
1536 	ohci_at_context_work(&ctx->work);
1537 	WRITE_ONCE(ctx->flushing, false);
1538 
1539 	enable_work(&ctx->work);
1540 }
1541 
handle_at_packet(struct context * context,struct descriptor * d,struct descriptor * last)1542 static int handle_at_packet(struct context *context,
1543 			    struct descriptor *d,
1544 			    struct descriptor *last)
1545 {
1546 	struct at_context *ctx = container_of(context, struct at_context, context);
1547 	struct fw_ohci *ohci = ctx->context.ohci;
1548 	struct driver_data *driver_data;
1549 	struct fw_packet *packet;
1550 	int evt;
1551 
1552 	if (last->transfer_status == 0 && !READ_ONCE(ctx->flushing))
1553 		/* This descriptor isn't done yet, stop iteration. */
1554 		return 0;
1555 
1556 	driver_data = (struct driver_data *) &d[3];
1557 	packet = driver_data->packet;
1558 	if (packet == NULL)
1559 		/* This packet was cancelled, just continue. */
1560 		return 1;
1561 
1562 	if (packet->payload_mapped)
1563 		dma_unmap_single(ohci->card.device, packet->payload_bus,
1564 				 packet->payload_length, DMA_TO_DEVICE);
1565 
1566 	evt = le16_to_cpu(last->transfer_status) & 0x1f;
1567 	packet->timestamp = le16_to_cpu(last->res_count);
1568 
1569 	log_ar_at_event(ohci, 'T', packet->speed, packet->header, evt);
1570 
1571 	switch (evt) {
1572 	case OHCI1394_evt_timeout:
1573 		/* Async response transmit timed out. */
1574 		packet->ack = RCODE_CANCELLED;
1575 		break;
1576 
1577 	case OHCI1394_evt_flushed:
1578 		/*
1579 		 * The packet was flushed should give same error as
1580 		 * when we try to use a stale generation count.
1581 		 */
1582 		packet->ack = RCODE_GENERATION;
1583 		break;
1584 
1585 	case OHCI1394_evt_missing_ack:
1586 		if (READ_ONCE(ctx->flushing))
1587 			packet->ack = RCODE_GENERATION;
1588 		else {
1589 			/*
1590 			 * Using a valid (current) generation count, but the
1591 			 * node is not on the bus or not sending acks.
1592 			 */
1593 			packet->ack = RCODE_NO_ACK;
1594 		}
1595 		break;
1596 
1597 	case ACK_COMPLETE + 0x10:
1598 	case ACK_PENDING + 0x10:
1599 	case ACK_BUSY_X + 0x10:
1600 	case ACK_BUSY_A + 0x10:
1601 	case ACK_BUSY_B + 0x10:
1602 	case ACK_DATA_ERROR + 0x10:
1603 	case ACK_TYPE_ERROR + 0x10:
1604 		packet->ack = evt - 0x10;
1605 		break;
1606 
1607 	case OHCI1394_evt_no_status:
1608 		if (READ_ONCE(ctx->flushing)) {
1609 			packet->ack = RCODE_GENERATION;
1610 			break;
1611 		}
1612 		fallthrough;
1613 
1614 	default:
1615 		packet->ack = RCODE_SEND_ERROR;
1616 		break;
1617 	}
1618 
1619 	packet->callback(packet, &ohci->card, packet->ack);
1620 
1621 	return 1;
1622 }
1623 
1624 static u32 get_cycle_time(struct fw_ohci *ohci);
1625 
handle_local_rom(struct fw_ohci * ohci,struct fw_packet * packet,u32 csr)1626 static void handle_local_rom(struct fw_ohci *ohci,
1627 			     struct fw_packet *packet, u32 csr)
1628 {
1629 	struct fw_packet response;
1630 	int tcode, length, i;
1631 
1632 	tcode = async_header_get_tcode(packet->header);
1633 	if (tcode_is_block_packet(tcode))
1634 		length = async_header_get_data_length(packet->header);
1635 	else
1636 		length = 4;
1637 
1638 	i = csr - CSR_CONFIG_ROM;
1639 	if (i + length > CONFIG_ROM_SIZE) {
1640 		fw_fill_response(&response, packet->header,
1641 				 RCODE_ADDRESS_ERROR, NULL, 0);
1642 	} else if (!tcode_is_read_request(tcode)) {
1643 		fw_fill_response(&response, packet->header,
1644 				 RCODE_TYPE_ERROR, NULL, 0);
1645 	} else {
1646 		fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1647 				 (void *) ohci->config_rom + i, length);
1648 	}
1649 
1650 	// Timestamping on behalf of the hardware.
1651 	response.timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ohci));
1652 	fw_core_handle_response(&ohci->card, &response);
1653 }
1654 
handle_local_lock(struct fw_ohci * ohci,struct fw_packet * packet,u32 csr)1655 static void handle_local_lock(struct fw_ohci *ohci,
1656 			      struct fw_packet *packet, u32 csr)
1657 {
1658 	struct fw_packet response;
1659 	int tcode, length, ext_tcode, sel, try;
1660 	__be32 *payload, lock_old;
1661 	u32 lock_arg, lock_data;
1662 
1663 	tcode = async_header_get_tcode(packet->header);
1664 	length = async_header_get_data_length(packet->header);
1665 	payload = packet->payload;
1666 	ext_tcode = async_header_get_extended_tcode(packet->header);
1667 
1668 	if (tcode == TCODE_LOCK_REQUEST &&
1669 	    ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1670 		lock_arg = be32_to_cpu(payload[0]);
1671 		lock_data = be32_to_cpu(payload[1]);
1672 	} else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1673 		lock_arg = 0;
1674 		lock_data = 0;
1675 	} else {
1676 		fw_fill_response(&response, packet->header,
1677 				 RCODE_TYPE_ERROR, NULL, 0);
1678 		goto out;
1679 	}
1680 
1681 	sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1682 	reg_write(ohci, OHCI1394_CSRData, lock_data);
1683 	reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1684 	reg_write(ohci, OHCI1394_CSRControl, sel);
1685 
1686 	for (try = 0; try < 20; try++)
1687 		if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) {
1688 			lock_old = cpu_to_be32(reg_read(ohci,
1689 							OHCI1394_CSRData));
1690 			fw_fill_response(&response, packet->header,
1691 					 RCODE_COMPLETE,
1692 					 &lock_old, sizeof(lock_old));
1693 			goto out;
1694 		}
1695 
1696 	ohci_err(ohci, "swap not done (CSR lock timeout)\n");
1697 	fw_fill_response(&response, packet->header, RCODE_BUSY, NULL, 0);
1698 
1699  out:
1700 	// Timestamping on behalf of the hardware.
1701 	response.timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ohci));
1702 	fw_core_handle_response(&ohci->card, &response);
1703 }
1704 
handle_local_request(struct at_context * ctx,struct fw_packet * packet)1705 static void handle_local_request(struct at_context *ctx, struct fw_packet *packet)
1706 {
1707 	struct fw_ohci *ohci = ctx->context.ohci;
1708 	u64 offset, csr;
1709 
1710 	if (ctx == &ohci->at_request_ctx) {
1711 		packet->ack = ACK_PENDING;
1712 		packet->callback(packet, &ohci->card, packet->ack);
1713 	}
1714 
1715 	offset = async_header_get_offset(packet->header);
1716 	csr = offset - CSR_REGISTER_BASE;
1717 
1718 	/* Handle config rom reads. */
1719 	if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1720 		handle_local_rom(ohci, packet, csr);
1721 	else switch (csr) {
1722 	case CSR_BUS_MANAGER_ID:
1723 	case CSR_BANDWIDTH_AVAILABLE:
1724 	case CSR_CHANNELS_AVAILABLE_HI:
1725 	case CSR_CHANNELS_AVAILABLE_LO:
1726 		handle_local_lock(ohci, packet, csr);
1727 		break;
1728 	default:
1729 		if (ctx == &ohci->at_request_ctx)
1730 			fw_core_handle_request(&ohci->card, packet);
1731 		else
1732 			fw_core_handle_response(&ohci->card, packet);
1733 		break;
1734 	}
1735 
1736 	if (ctx == &ohci->at_response_ctx) {
1737 		packet->ack = ACK_COMPLETE;
1738 		packet->callback(packet, &ohci->card, packet->ack);
1739 	}
1740 }
1741 
at_context_transmit(struct at_context * ctx,struct fw_packet * packet)1742 static void at_context_transmit(struct at_context *ctx, struct fw_packet *packet)
1743 {
1744 	struct fw_ohci *ohci = ctx->context.ohci;
1745 	unsigned long flags;
1746 	int ret;
1747 
1748 	spin_lock_irqsave(&ohci->lock, flags);
1749 
1750 	if (async_header_get_destination(packet->header) == ohci->node_id &&
1751 	    ohci->generation == packet->generation) {
1752 		spin_unlock_irqrestore(&ohci->lock, flags);
1753 
1754 		// Timestamping on behalf of the hardware.
1755 		packet->timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ohci));
1756 
1757 		handle_local_request(ctx, packet);
1758 		return;
1759 	}
1760 
1761 	ret = at_context_queue_packet(ctx, packet);
1762 	spin_unlock_irqrestore(&ohci->lock, flags);
1763 
1764 	if (ret < 0) {
1765 		// Timestamping on behalf of the hardware.
1766 		packet->timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ohci));
1767 
1768 		packet->callback(packet, &ohci->card, packet->ack);
1769 	}
1770 }
1771 
detect_dead_context(struct fw_ohci * ohci,const char * name,unsigned int regs)1772 static void detect_dead_context(struct fw_ohci *ohci,
1773 				const char *name, unsigned int regs)
1774 {
1775 	u32 ctl;
1776 
1777 	ctl = reg_read(ohci, CONTROL_SET(regs));
1778 	if (ctl & CONTEXT_DEAD)
1779 		ohci_err(ohci, "DMA context %s has stopped, error code: %s\n",
1780 			name, evts[ctl & 0x1f]);
1781 }
1782 
handle_dead_contexts(struct fw_ohci * ohci)1783 static void handle_dead_contexts(struct fw_ohci *ohci)
1784 {
1785 	unsigned int i;
1786 	char name[8];
1787 
1788 	detect_dead_context(ohci, "ATReq", OHCI1394_AsReqTrContextBase);
1789 	detect_dead_context(ohci, "ATRsp", OHCI1394_AsRspTrContextBase);
1790 	detect_dead_context(ohci, "ARReq", OHCI1394_AsReqRcvContextBase);
1791 	detect_dead_context(ohci, "ARRsp", OHCI1394_AsRspRcvContextBase);
1792 	for (i = 0; i < 32; ++i) {
1793 		if (!(ohci->it_context_support & (1 << i)))
1794 			continue;
1795 		sprintf(name, "IT%u", i);
1796 		detect_dead_context(ohci, name, OHCI1394_IsoXmitContextBase(i));
1797 	}
1798 	for (i = 0; i < 32; ++i) {
1799 		if (!(ohci->ir_context_support & (1 << i)))
1800 			continue;
1801 		sprintf(name, "IR%u", i);
1802 		detect_dead_context(ohci, name, OHCI1394_IsoRcvContextBase(i));
1803 	}
1804 	/* TODO: maybe try to flush and restart the dead contexts */
1805 }
1806 
cycle_timer_ticks(u32 cycle_timer)1807 static u32 cycle_timer_ticks(u32 cycle_timer)
1808 {
1809 	u32 ticks;
1810 
1811 	ticks = cycle_timer & 0xfff;
1812 	ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
1813 	ticks += (3072 * 8000) * (cycle_timer >> 25);
1814 
1815 	return ticks;
1816 }
1817 
1818 /*
1819  * Some controllers exhibit one or more of the following bugs when updating the
1820  * iso cycle timer register:
1821  *  - When the lowest six bits are wrapping around to zero, a read that happens
1822  *    at the same time will return garbage in the lowest ten bits.
1823  *  - When the cycleOffset field wraps around to zero, the cycleCount field is
1824  *    not incremented for about 60 ns.
1825  *  - Occasionally, the entire register reads zero.
1826  *
1827  * To catch these, we read the register three times and ensure that the
1828  * difference between each two consecutive reads is approximately the same, i.e.
1829  * less than twice the other.  Furthermore, any negative difference indicates an
1830  * error.  (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1831  * execute, so we have enough precision to compute the ratio of the differences.)
1832  */
get_cycle_time(struct fw_ohci * ohci)1833 static u32 get_cycle_time(struct fw_ohci *ohci)
1834 {
1835 	u32 c0, c1, c2;
1836 	u32 t0, t1, t2;
1837 	s32 diff01, diff12;
1838 	int i;
1839 
1840 	if (has_reboot_by_cycle_timer_read_quirk(ohci))
1841 		return 0;
1842 
1843 	c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1844 
1845 	if (ohci->quirks & QUIRK_CYCLE_TIMER) {
1846 		i = 0;
1847 		c1 = c2;
1848 		c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1849 		do {
1850 			c0 = c1;
1851 			c1 = c2;
1852 			c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1853 			t0 = cycle_timer_ticks(c0);
1854 			t1 = cycle_timer_ticks(c1);
1855 			t2 = cycle_timer_ticks(c2);
1856 			diff01 = t1 - t0;
1857 			diff12 = t2 - t1;
1858 		} while ((diff01 <= 0 || diff12 <= 0 ||
1859 			  diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
1860 			 && i++ < 20);
1861 	}
1862 
1863 	return c2;
1864 }
1865 
1866 /*
1867  * This function has to be called at least every 64 seconds.  The bus_time
1868  * field stores not only the upper 25 bits of the BUS_TIME register but also
1869  * the most significant bit of the cycle timer in bit 6 so that we can detect
1870  * changes in this bit.
1871  */
update_bus_time(struct fw_ohci * ohci)1872 static u32 update_bus_time(struct fw_ohci *ohci)
1873 {
1874 	u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;
1875 
1876 	if (unlikely(!ohci->bus_time_running)) {
1877 		reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_cycle64Seconds);
1878 		ohci->bus_time = (lower_32_bits(ktime_get_seconds()) & ~0x7f) |
1879 		                 (cycle_time_seconds & 0x40);
1880 		ohci->bus_time_running = true;
1881 	}
1882 
1883 	if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
1884 		ohci->bus_time += 0x40;
1885 
1886 	return ohci->bus_time | cycle_time_seconds;
1887 }
1888 
get_status_for_port(struct fw_ohci * ohci,int port_index,enum phy_packet_self_id_port_status * status)1889 static int get_status_for_port(struct fw_ohci *ohci, int port_index,
1890 			       enum phy_packet_self_id_port_status *status)
1891 {
1892 	int reg;
1893 
1894 	scoped_guard(mutex, &ohci->phy_reg_mutex) {
1895 		reg = write_phy_reg(ohci, 7, port_index);
1896 		if (reg < 0)
1897 			return reg;
1898 
1899 		reg = read_phy_reg(ohci, 8);
1900 		if (reg < 0)
1901 			return reg;
1902 	}
1903 
1904 	switch (reg & 0x0f) {
1905 	case 0x06:
1906 		// is child node (connected to parent node)
1907 		*status = PHY_PACKET_SELF_ID_PORT_STATUS_PARENT;
1908 		break;
1909 	case 0x0e:
1910 		// is parent node (connected to child node)
1911 		*status = PHY_PACKET_SELF_ID_PORT_STATUS_CHILD;
1912 		break;
1913 	default:
1914 		// not connected
1915 		*status = PHY_PACKET_SELF_ID_PORT_STATUS_NCONN;
1916 		break;
1917 	}
1918 
1919 	return 0;
1920 }
1921 
get_self_id_pos(struct fw_ohci * ohci,u32 self_id,int self_id_count)1922 static int get_self_id_pos(struct fw_ohci *ohci, u32 self_id,
1923 	int self_id_count)
1924 {
1925 	unsigned int left_phy_id = phy_packet_self_id_get_phy_id(self_id);
1926 	int i;
1927 
1928 	for (i = 0; i < self_id_count; i++) {
1929 		u32 entry = ohci->self_id_buffer[i];
1930 		unsigned int right_phy_id = phy_packet_self_id_get_phy_id(entry);
1931 
1932 		if (left_phy_id == right_phy_id)
1933 			return -1;
1934 		if (left_phy_id < right_phy_id)
1935 			return i;
1936 	}
1937 	return i;
1938 }
1939 
detect_initiated_reset(struct fw_ohci * ohci,bool * is_initiated_reset)1940 static int detect_initiated_reset(struct fw_ohci *ohci, bool *is_initiated_reset)
1941 {
1942 	int reg;
1943 
1944 	guard(mutex)(&ohci->phy_reg_mutex);
1945 
1946 	// Select page 7
1947 	reg = write_phy_reg(ohci, 7, 0xe0);
1948 	if (reg < 0)
1949 		return reg;
1950 
1951 	reg = read_phy_reg(ohci, 8);
1952 	if (reg < 0)
1953 		return reg;
1954 
1955 	// set PMODE bit
1956 	reg |= 0x40;
1957 	reg = write_phy_reg(ohci, 8, reg);
1958 	if (reg < 0)
1959 		return reg;
1960 
1961 	// read register 12
1962 	reg = read_phy_reg(ohci, 12);
1963 	if (reg < 0)
1964 		return reg;
1965 
1966 	// bit 3 indicates "initiated reset"
1967 	*is_initiated_reset = !!((reg & 0x08) == 0x08);
1968 
1969 	return 0;
1970 }
1971 
1972 /*
1973  * TI TSB82AA2B and TSB12LV26 do not receive the selfID of a locally
1974  * attached TSB41BA3D phy; see http://www.ti.com/litv/pdf/sllz059.
1975  * Construct the selfID from phy register contents.
1976  */
find_and_insert_self_id(struct fw_ohci * ohci,int self_id_count)1977 static int find_and_insert_self_id(struct fw_ohci *ohci, int self_id_count)
1978 {
1979 	int reg, i, pos, err;
1980 	bool is_initiated_reset;
1981 	u32 self_id = 0;
1982 
1983 	// link active 1, speed 3, bridge 0, contender 1, more packets 0.
1984 	phy_packet_set_packet_identifier(&self_id, PHY_PACKET_PACKET_IDENTIFIER_SELF_ID);
1985 	phy_packet_self_id_zero_set_link_active(&self_id, true);
1986 	phy_packet_self_id_zero_set_scode(&self_id, SCODE_800);
1987 	phy_packet_self_id_zero_set_contender(&self_id, true);
1988 
1989 	reg = reg_read(ohci, OHCI1394_NodeID);
1990 	if (!(reg & OHCI1394_NodeID_idValid)) {
1991 		ohci_notice(ohci,
1992 			    "node ID not valid, new bus reset in progress\n");
1993 		return -EBUSY;
1994 	}
1995 	phy_packet_self_id_set_phy_id(&self_id, reg & 0x3f);
1996 
1997 	reg = ohci_read_phy_reg(&ohci->card, 4);
1998 	if (reg < 0)
1999 		return reg;
2000 	phy_packet_self_id_zero_set_power_class(&self_id, reg & 0x07);
2001 
2002 	reg = ohci_read_phy_reg(&ohci->card, 1);
2003 	if (reg < 0)
2004 		return reg;
2005 	phy_packet_self_id_zero_set_gap_count(&self_id, reg & 0x3f);
2006 
2007 	for (i = 0; i < 3; i++) {
2008 		enum phy_packet_self_id_port_status status;
2009 
2010 		err = get_status_for_port(ohci, i, &status);
2011 		if (err < 0)
2012 			return err;
2013 
2014 		self_id_sequence_set_port_status(&self_id, 1, i, status);
2015 	}
2016 
2017 	err = detect_initiated_reset(ohci, &is_initiated_reset);
2018 	if (err < 0)
2019 		return err;
2020 	phy_packet_self_id_zero_set_initiated_reset(&self_id, is_initiated_reset);
2021 
2022 	pos = get_self_id_pos(ohci, self_id, self_id_count);
2023 	if (pos >= 0) {
2024 		memmove(&(ohci->self_id_buffer[pos+1]),
2025 			&(ohci->self_id_buffer[pos]),
2026 			(self_id_count - pos) * sizeof(*ohci->self_id_buffer));
2027 		ohci->self_id_buffer[pos] = self_id;
2028 		self_id_count++;
2029 	}
2030 	return self_id_count;
2031 }
2032 
bus_reset_work(struct work_struct * work)2033 static void bus_reset_work(struct work_struct *work)
2034 {
2035 	struct fw_ohci *ohci = from_work(ohci, work, bus_reset_work);
2036 	int self_id_count, generation, new_generation, i, j;
2037 	u32 reg, quadlet;
2038 	void *free_rom = NULL;
2039 	dma_addr_t free_rom_bus = 0;
2040 	bool is_new_root;
2041 
2042 	reg = reg_read(ohci, OHCI1394_NodeID);
2043 	if (!(reg & OHCI1394_NodeID_idValid)) {
2044 		ohci_notice(ohci,
2045 			    "node ID not valid, new bus reset in progress\n");
2046 		return;
2047 	}
2048 	if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
2049 		ohci_notice(ohci, "malconfigured bus\n");
2050 		return;
2051 	}
2052 	ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
2053 			       OHCI1394_NodeID_nodeNumber);
2054 
2055 	is_new_root = (reg & OHCI1394_NodeID_root) != 0;
2056 	if (!(ohci->is_root && is_new_root))
2057 		reg_write(ohci, OHCI1394_LinkControlSet,
2058 			  OHCI1394_LinkControl_cycleMaster);
2059 	ohci->is_root = is_new_root;
2060 
2061 	reg = reg_read(ohci, OHCI1394_SelfIDCount);
2062 	if (ohci1394_self_id_count_is_error(reg)) {
2063 		ohci_notice(ohci, "self ID receive error\n");
2064 		return;
2065 	}
2066 	/*
2067 	 * The count in the SelfIDCount register is the number of
2068 	 * bytes in the self ID receive buffer.  Since we also receive
2069 	 * the inverted quadlets and a header quadlet, we shift one
2070 	 * bit extra to get the actual number of self IDs.
2071 	 */
2072 	self_id_count = ohci1394_self_id_count_get_size(reg) >> 1;
2073 
2074 	if (self_id_count > 252) {
2075 		ohci_notice(ohci, "bad selfIDSize (%08x)\n", reg);
2076 		return;
2077 	}
2078 
2079 	quadlet = cond_le32_to_cpu(ohci->self_id[0], has_be_header_quirk(ohci));
2080 	generation = ohci1394_self_id_receive_q0_get_generation(quadlet);
2081 	rmb();
2082 
2083 	for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
2084 		u32 id  = cond_le32_to_cpu(ohci->self_id[i], has_be_header_quirk(ohci));
2085 		u32 id2 = cond_le32_to_cpu(ohci->self_id[i + 1], has_be_header_quirk(ohci));
2086 
2087 		if (id != ~id2) {
2088 			/*
2089 			 * If the invalid data looks like a cycle start packet,
2090 			 * it's likely to be the result of the cycle master
2091 			 * having a wrong gap count.  In this case, the self IDs
2092 			 * so far are valid and should be processed so that the
2093 			 * bus manager can then correct the gap count.
2094 			 */
2095 			if (id == 0xffff008f) {
2096 				ohci_notice(ohci, "ignoring spurious self IDs\n");
2097 				self_id_count = j;
2098 				break;
2099 			}
2100 
2101 			ohci_notice(ohci, "bad self ID %d/%d (%08x != ~%08x)\n",
2102 				    j, self_id_count, id, id2);
2103 			return;
2104 		}
2105 		ohci->self_id_buffer[j] = id;
2106 	}
2107 
2108 	if (ohci->quirks & QUIRK_TI_SLLZ059) {
2109 		self_id_count = find_and_insert_self_id(ohci, self_id_count);
2110 		if (self_id_count < 0) {
2111 			ohci_notice(ohci,
2112 				    "could not construct local self ID\n");
2113 			return;
2114 		}
2115 	}
2116 
2117 	if (self_id_count == 0) {
2118 		ohci_notice(ohci, "no self IDs\n");
2119 		return;
2120 	}
2121 	rmb();
2122 
2123 	/*
2124 	 * Check the consistency of the self IDs we just read.  The
2125 	 * problem we face is that a new bus reset can start while we
2126 	 * read out the self IDs from the DMA buffer. If this happens,
2127 	 * the DMA buffer will be overwritten with new self IDs and we
2128 	 * will read out inconsistent data.  The OHCI specification
2129 	 * (section 11.2) recommends a technique similar to
2130 	 * linux/seqlock.h, where we remember the generation of the
2131 	 * self IDs in the buffer before reading them out and compare
2132 	 * it to the current generation after reading them out.  If
2133 	 * the two generations match we know we have a consistent set
2134 	 * of self IDs.
2135 	 */
2136 
2137 	reg = reg_read(ohci, OHCI1394_SelfIDCount);
2138 	new_generation = ohci1394_self_id_count_get_generation(reg);
2139 	if (new_generation != generation) {
2140 		ohci_notice(ohci, "new bus reset, discarding self ids\n");
2141 		return;
2142 	}
2143 
2144 	// FIXME: Document how the locking works.
2145 	scoped_guard(spinlock_irq, &ohci->lock) {
2146 		ohci->generation = -1; // prevent AT packet queueing
2147 		context_stop(&ohci->at_request_ctx.context);
2148 		context_stop(&ohci->at_response_ctx.context);
2149 	}
2150 
2151 	/*
2152 	 * Per OHCI 1.2 draft, clause 7.2.3.3, hardware may leave unsent
2153 	 * packets in the AT queues and software needs to drain them.
2154 	 * Some OHCI 1.1 controllers (JMicron) apparently require this too.
2155 	 */
2156 	at_context_flush(&ohci->at_request_ctx);
2157 	at_context_flush(&ohci->at_response_ctx);
2158 
2159 	scoped_guard(spinlock_irq, &ohci->lock) {
2160 		ohci->generation = generation;
2161 		reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
2162 		reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_busReset);
2163 
2164 		if (ohci->quirks & QUIRK_RESET_PACKET)
2165 			ohci->request_generation = generation;
2166 
2167 		// This next bit is unrelated to the AT context stuff but we have to do it under the
2168 		// spinlock also. If a new config rom was set up before this reset, the old one is
2169 		// now no longer in use and we can free it. Update the config rom pointers to point
2170 		// to the current config rom and clear the next_config_rom pointer so a new update
2171 		// can take place.
2172 		if (ohci->next_config_rom != NULL) {
2173 			if (ohci->next_config_rom != ohci->config_rom) {
2174 				free_rom      = ohci->config_rom;
2175 				free_rom_bus  = ohci->config_rom_bus;
2176 			}
2177 			ohci->config_rom      = ohci->next_config_rom;
2178 			ohci->config_rom_bus  = ohci->next_config_rom_bus;
2179 			ohci->next_config_rom = NULL;
2180 
2181 			// Restore config_rom image and manually update config_rom registers.
2182 			// Writing the header quadlet will indicate that the config rom is ready,
2183 			// so we do that last.
2184 			reg_write(ohci, OHCI1394_BusOptions, be32_to_cpu(ohci->config_rom[2]));
2185 			ohci->config_rom[0] = ohci->next_header;
2186 			reg_write(ohci, OHCI1394_ConfigROMhdr, be32_to_cpu(ohci->next_header));
2187 		}
2188 
2189 		if (param_remote_dma) {
2190 			reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
2191 			reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
2192 		}
2193 	}
2194 
2195 	if (free_rom)
2196 		dmam_free_coherent(ohci->card.device, CONFIG_ROM_SIZE, free_rom, free_rom_bus);
2197 
2198 	log_selfids(ohci, generation, self_id_count);
2199 
2200 	fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
2201 				 self_id_count, ohci->self_id_buffer,
2202 				 ohci->csr_state_setclear_abdicate);
2203 	ohci->csr_state_setclear_abdicate = false;
2204 }
2205 
irq_handler(int irq,void * data)2206 static irqreturn_t irq_handler(int irq, void *data)
2207 {
2208 	struct fw_ohci *ohci = data;
2209 	u32 event, iso_event;
2210 	int i;
2211 
2212 	event = reg_read(ohci, OHCI1394_IntEventClear);
2213 
2214 	if (!event || !~event)
2215 		return IRQ_NONE;
2216 
2217 	if (unlikely(param_debug > 0)) {
2218 		dev_notice_ratelimited(ohci->card.device,
2219 				       "The debug parameter is superseded by tracepoints events, and deprecated.");
2220 	}
2221 
2222 	/*
2223 	 * busReset and postedWriteErr events must not be cleared yet
2224 	 * (OHCI 1.1 clauses 7.2.3.2 and 13.2.8.1)
2225 	 */
2226 	reg_write(ohci, OHCI1394_IntEventClear,
2227 		  event & ~(OHCI1394_busReset | OHCI1394_postedWriteErr));
2228 	trace_irqs(ohci->card.index, event);
2229 	log_irqs(ohci, event);
2230 	// The flag is masked again at bus_reset_work() scheduled by selfID event.
2231 	if (event & OHCI1394_busReset)
2232 		reg_write(ohci, OHCI1394_IntMaskClear, OHCI1394_busReset);
2233 
2234 	if (event & OHCI1394_selfIDComplete) {
2235 		if (trace_self_id_complete_enabled()) {
2236 			u32 reg = reg_read(ohci, OHCI1394_SelfIDCount);
2237 
2238 			trace_self_id_complete(ohci->card.index, reg, ohci->self_id,
2239 					       has_be_header_quirk(ohci));
2240 		}
2241 		queue_work(selfid_workqueue, &ohci->bus_reset_work);
2242 	}
2243 
2244 	if (event & OHCI1394_RQPkt)
2245 		queue_work(ohci->card.async_wq, &ohci->ar_request_ctx.work);
2246 
2247 	if (event & OHCI1394_RSPkt)
2248 		queue_work(ohci->card.async_wq, &ohci->ar_response_ctx.work);
2249 
2250 	if (event & OHCI1394_reqTxComplete)
2251 		queue_work(ohci->card.async_wq, &ohci->at_request_ctx.work);
2252 
2253 	if (event & OHCI1394_respTxComplete)
2254 		queue_work(ohci->card.async_wq, &ohci->at_response_ctx.work);
2255 
2256 	if (event & OHCI1394_isochRx) {
2257 		iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
2258 		reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
2259 
2260 		while (iso_event) {
2261 			i = ffs(iso_event) - 1;
2262 			fw_iso_context_schedule_flush_completions(&ohci->ir_context_list[i].base);
2263 			iso_event &= ~(1 << i);
2264 		}
2265 	}
2266 
2267 	if (event & OHCI1394_isochTx) {
2268 		iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
2269 		reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
2270 
2271 		while (iso_event) {
2272 			i = ffs(iso_event) - 1;
2273 			fw_iso_context_schedule_flush_completions(&ohci->it_context_list[i].base);
2274 			iso_event &= ~(1 << i);
2275 		}
2276 	}
2277 
2278 	if (unlikely(event & OHCI1394_regAccessFail))
2279 		ohci_err(ohci, "register access failure\n");
2280 
2281 	if (unlikely(event & OHCI1394_postedWriteErr)) {
2282 		reg_read(ohci, OHCI1394_PostedWriteAddressHi);
2283 		reg_read(ohci, OHCI1394_PostedWriteAddressLo);
2284 		reg_write(ohci, OHCI1394_IntEventClear,
2285 			  OHCI1394_postedWriteErr);
2286 		dev_err_ratelimited(ohci->card.device, "PCI posted write error\n");
2287 	}
2288 
2289 	if (unlikely(event & OHCI1394_cycleTooLong)) {
2290 		dev_notice_ratelimited(ohci->card.device, "isochronous cycle too long\n");
2291 		reg_write(ohci, OHCI1394_LinkControlSet,
2292 			  OHCI1394_LinkControl_cycleMaster);
2293 	}
2294 
2295 	if (unlikely(event & OHCI1394_cycleInconsistent)) {
2296 		/*
2297 		 * We need to clear this event bit in order to make
2298 		 * cycleMatch isochronous I/O work.  In theory we should
2299 		 * stop active cycleMatch iso contexts now and restart
2300 		 * them at least two cycles later.  (FIXME?)
2301 		 */
2302 		dev_notice_ratelimited(ohci->card.device, "isochronous cycle inconsistent\n");
2303 	}
2304 
2305 	if (unlikely(event & OHCI1394_unrecoverableError))
2306 		handle_dead_contexts(ohci);
2307 
2308 	if (event & OHCI1394_cycle64Seconds) {
2309 		guard(spinlock)(&ohci->lock);
2310 		update_bus_time(ohci);
2311 	} else
2312 		flush_writes(ohci);
2313 
2314 	return IRQ_HANDLED;
2315 }
2316 
software_reset(struct fw_ohci * ohci)2317 static int software_reset(struct fw_ohci *ohci)
2318 {
2319 	u32 val;
2320 	int i;
2321 
2322 	reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
2323 	for (i = 0; i < 500; i++) {
2324 		val = reg_read(ohci, OHCI1394_HCControlSet);
2325 		if (!~val)
2326 			return -ENODEV; /* Card was ejected. */
2327 
2328 		if (!(val & OHCI1394_HCControl_softReset))
2329 			return 0;
2330 
2331 		msleep(1);
2332 	}
2333 
2334 	return -EBUSY;
2335 }
2336 
copy_config_rom(__be32 * dest,const __be32 * src,size_t length)2337 static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
2338 {
2339 	size_t size = length * 4;
2340 
2341 	memcpy(dest, src, size);
2342 	if (size < CONFIG_ROM_SIZE)
2343 		memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
2344 }
2345 
configure_1394a_enhancements(struct fw_ohci * ohci)2346 static int configure_1394a_enhancements(struct fw_ohci *ohci)
2347 {
2348 	bool enable_1394a;
2349 	int ret, clear, set, offset;
2350 
2351 	/* Check if the driver should configure link and PHY. */
2352 	if (!(reg_read(ohci, OHCI1394_HCControlSet) &
2353 	      OHCI1394_HCControl_programPhyEnable))
2354 		return 0;
2355 
2356 	/* Paranoia: check whether the PHY supports 1394a, too. */
2357 	enable_1394a = false;
2358 	ret = read_phy_reg(ohci, 2);
2359 	if (ret < 0)
2360 		return ret;
2361 	if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
2362 		ret = read_paged_phy_reg(ohci, 1, 8);
2363 		if (ret < 0)
2364 			return ret;
2365 		if (ret >= 1)
2366 			enable_1394a = true;
2367 	}
2368 
2369 	if (ohci->quirks & QUIRK_NO_1394A)
2370 		enable_1394a = false;
2371 
2372 	/* Configure PHY and link consistently. */
2373 	if (enable_1394a) {
2374 		clear = 0;
2375 		set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2376 	} else {
2377 		clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2378 		set = 0;
2379 	}
2380 	ret = update_phy_reg(ohci, 5, clear, set);
2381 	if (ret < 0)
2382 		return ret;
2383 
2384 	if (enable_1394a)
2385 		offset = OHCI1394_HCControlSet;
2386 	else
2387 		offset = OHCI1394_HCControlClear;
2388 	reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);
2389 
2390 	/* Clean up: configuration has been taken care of. */
2391 	reg_write(ohci, OHCI1394_HCControlClear,
2392 		  OHCI1394_HCControl_programPhyEnable);
2393 
2394 	return 0;
2395 }
2396 
probe_tsb41ba3d(struct fw_ohci * ohci)2397 static int probe_tsb41ba3d(struct fw_ohci *ohci)
2398 {
2399 	/* TI vendor ID = 0x080028, TSB41BA3D product ID = 0x833005 (sic) */
2400 	static const u8 id[] = { 0x08, 0x00, 0x28, 0x83, 0x30, 0x05, };
2401 	int reg, i;
2402 
2403 	reg = read_phy_reg(ohci, 2);
2404 	if (reg < 0)
2405 		return reg;
2406 	if ((reg & PHY_EXTENDED_REGISTERS) != PHY_EXTENDED_REGISTERS)
2407 		return 0;
2408 
2409 	for (i = ARRAY_SIZE(id) - 1; i >= 0; i--) {
2410 		reg = read_paged_phy_reg(ohci, 1, i + 10);
2411 		if (reg < 0)
2412 			return reg;
2413 		if (reg != id[i])
2414 			return 0;
2415 	}
2416 	return 1;
2417 }
2418 
ohci_enable(struct fw_card * card,const __be32 * config_rom,size_t length)2419 static int ohci_enable(struct fw_card *card,
2420 		       const __be32 *config_rom, size_t length)
2421 {
2422 	struct fw_ohci *ohci = fw_ohci(card);
2423 	u32 lps, version, irqs;
2424 	int i, ret;
2425 
2426 	ret = software_reset(ohci);
2427 	if (ret < 0) {
2428 		ohci_err(ohci, "failed to reset ohci card\n");
2429 		return ret;
2430 	}
2431 
2432 	/*
2433 	 * Now enable LPS, which we need in order to start accessing
2434 	 * most of the registers.  In fact, on some cards (ALI M5251),
2435 	 * accessing registers in the SClk domain without LPS enabled
2436 	 * will lock up the machine.  Wait 50msec to make sure we have
2437 	 * full link enabled.  However, with some cards (well, at least
2438 	 * a JMicron PCIe card), we have to try again sometimes.
2439 	 *
2440 	 * TI TSB82AA2 + TSB81BA3(A) cards signal LPS enabled early but
2441 	 * cannot actually use the phy at that time.  These need tens of
2442 	 * millisecods pause between LPS write and first phy access too.
2443 	 */
2444 
2445 	reg_write(ohci, OHCI1394_HCControlSet,
2446 		  OHCI1394_HCControl_LPS |
2447 		  OHCI1394_HCControl_postedWriteEnable);
2448 	flush_writes(ohci);
2449 
2450 	for (lps = 0, i = 0; !lps && i < 3; i++) {
2451 		msleep(50);
2452 		lps = reg_read(ohci, OHCI1394_HCControlSet) &
2453 		      OHCI1394_HCControl_LPS;
2454 	}
2455 
2456 	if (!lps) {
2457 		ohci_err(ohci, "failed to set Link Power Status\n");
2458 		return -EIO;
2459 	}
2460 
2461 	if (ohci->quirks & QUIRK_TI_SLLZ059) {
2462 		ret = probe_tsb41ba3d(ohci);
2463 		if (ret < 0)
2464 			return ret;
2465 		if (ret)
2466 			ohci_notice(ohci, "local TSB41BA3D phy\n");
2467 		else
2468 			ohci->quirks &= ~QUIRK_TI_SLLZ059;
2469 	}
2470 
2471 	reg_write(ohci, OHCI1394_HCControlClear,
2472 		  OHCI1394_HCControl_noByteSwapData);
2473 
2474 	reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
2475 	reg_write(ohci, OHCI1394_LinkControlSet,
2476 		  OHCI1394_LinkControl_cycleTimerEnable |
2477 		  OHCI1394_LinkControl_cycleMaster);
2478 
2479 	reg_write(ohci, OHCI1394_ATRetries,
2480 		  OHCI1394_MAX_AT_REQ_RETRIES |
2481 		  (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
2482 		  (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
2483 		  (200 << 16));
2484 
2485 	ohci->bus_time_running = false;
2486 
2487 	for (i = 0; i < 32; i++)
2488 		if (ohci->ir_context_support & (1 << i))
2489 			reg_write(ohci, OHCI1394_IsoRcvContextControlClear(i),
2490 				  IR_CONTEXT_MULTI_CHANNEL_MODE);
2491 
2492 	version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2493 	if (version >= OHCI_VERSION_1_1) {
2494 		reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
2495 			  0xfffffffe);
2496 		card->broadcast_channel_auto_allocated = true;
2497 	}
2498 
2499 	/* Get implemented bits of the priority arbitration request counter. */
2500 	reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
2501 	ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
2502 	reg_write(ohci, OHCI1394_FairnessControl, 0);
2503 	card->priority_budget_implemented = ohci->pri_req_max != 0;
2504 
2505 	reg_write(ohci, OHCI1394_PhyUpperBound, FW_MAX_PHYSICAL_RANGE >> 16);
2506 	reg_write(ohci, OHCI1394_IntEventClear, ~0);
2507 	reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2508 
2509 	ret = configure_1394a_enhancements(ohci);
2510 	if (ret < 0)
2511 		return ret;
2512 
2513 	/* Activate link_on bit and contender bit in our self ID packets.*/
2514 	ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
2515 	if (ret < 0)
2516 		return ret;
2517 
2518 	/*
2519 	 * When the link is not yet enabled, the atomic config rom
2520 	 * update mechanism described below in ohci_set_config_rom()
2521 	 * is not active.  We have to update ConfigRomHeader and
2522 	 * BusOptions manually, and the write to ConfigROMmap takes
2523 	 * effect immediately.  We tie this to the enabling of the
2524 	 * link, so we have a valid config rom before enabling - the
2525 	 * OHCI requires that ConfigROMhdr and BusOptions have valid
2526 	 * values before enabling.
2527 	 *
2528 	 * However, when the ConfigROMmap is written, some controllers
2529 	 * always read back quadlets 0 and 2 from the config rom to
2530 	 * the ConfigRomHeader and BusOptions registers on bus reset.
2531 	 * They shouldn't do that in this initial case where the link
2532 	 * isn't enabled.  This means we have to use the same
2533 	 * workaround here, setting the bus header to 0 and then write
2534 	 * the right values in the bus reset work item.
2535 	 */
2536 
2537 	if (config_rom) {
2538 		ohci->next_config_rom = dmam_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2539 							    &ohci->next_config_rom_bus, GFP_KERNEL);
2540 		if (ohci->next_config_rom == NULL)
2541 			return -ENOMEM;
2542 
2543 		copy_config_rom(ohci->next_config_rom, config_rom, length);
2544 	} else {
2545 		/*
2546 		 * In the suspend case, config_rom is NULL, which
2547 		 * means that we just reuse the old config rom.
2548 		 */
2549 		ohci->next_config_rom = ohci->config_rom;
2550 		ohci->next_config_rom_bus = ohci->config_rom_bus;
2551 	}
2552 
2553 	ohci->next_header = ohci->next_config_rom[0];
2554 	ohci->next_config_rom[0] = 0;
2555 	reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
2556 	reg_write(ohci, OHCI1394_BusOptions,
2557 		  be32_to_cpu(ohci->next_config_rom[2]));
2558 	reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2559 
2560 	reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
2561 
2562 	irqs =	OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
2563 		OHCI1394_RQPkt | OHCI1394_RSPkt |
2564 		OHCI1394_isochTx | OHCI1394_isochRx |
2565 		OHCI1394_postedWriteErr |
2566 		OHCI1394_selfIDComplete |
2567 		OHCI1394_regAccessFail |
2568 		OHCI1394_cycleInconsistent |
2569 		OHCI1394_unrecoverableError |
2570 		OHCI1394_cycleTooLong |
2571 		OHCI1394_masterIntEnable |
2572 		OHCI1394_busReset;
2573 	reg_write(ohci, OHCI1394_IntMaskSet, irqs);
2574 
2575 	reg_write(ohci, OHCI1394_HCControlSet,
2576 		  OHCI1394_HCControl_linkEnable |
2577 		  OHCI1394_HCControl_BIBimageValid);
2578 
2579 	reg_write(ohci, OHCI1394_LinkControlSet,
2580 		  OHCI1394_LinkControl_rcvSelfID |
2581 		  OHCI1394_LinkControl_rcvPhyPkt);
2582 
2583 	ar_context_run(&ohci->ar_request_ctx);
2584 	ar_context_run(&ohci->ar_response_ctx);
2585 
2586 	flush_writes(ohci);
2587 
2588 	/* We are ready to go, reset bus to finish initialization. */
2589 	fw_schedule_bus_reset(&ohci->card, false, true);
2590 
2591 	return 0;
2592 }
2593 
ohci_set_config_rom(struct fw_card * card,const __be32 * config_rom,size_t length)2594 static int ohci_set_config_rom(struct fw_card *card,
2595 			       const __be32 *config_rom, size_t length)
2596 {
2597 	struct fw_ohci *ohci;
2598 	__be32 *next_config_rom;
2599 	dma_addr_t next_config_rom_bus;
2600 
2601 	ohci = fw_ohci(card);
2602 
2603 	/*
2604 	 * When the OHCI controller is enabled, the config rom update
2605 	 * mechanism is a bit tricky, but easy enough to use.  See
2606 	 * section 5.5.6 in the OHCI specification.
2607 	 *
2608 	 * The OHCI controller caches the new config rom address in a
2609 	 * shadow register (ConfigROMmapNext) and needs a bus reset
2610 	 * for the changes to take place.  When the bus reset is
2611 	 * detected, the controller loads the new values for the
2612 	 * ConfigRomHeader and BusOptions registers from the specified
2613 	 * config rom and loads ConfigROMmap from the ConfigROMmapNext
2614 	 * shadow register. All automatically and atomically.
2615 	 *
2616 	 * Now, there's a twist to this story.  The automatic load of
2617 	 * ConfigRomHeader and BusOptions doesn't honor the
2618 	 * noByteSwapData bit, so with a be32 config rom, the
2619 	 * controller will load be32 values in to these registers
2620 	 * during the atomic update, even on little endian
2621 	 * architectures.  The workaround we use is to put a 0 in the
2622 	 * header quadlet; 0 is endian agnostic and means that the
2623 	 * config rom isn't ready yet.  In the bus reset work item we
2624 	 * then set up the real values for the two registers.
2625 	 *
2626 	 * We use ohci->lock to avoid racing with the code that sets
2627 	 * ohci->next_config_rom to NULL (see bus_reset_work).
2628 	 */
2629 
2630 	next_config_rom = dmam_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2631 					      &next_config_rom_bus, GFP_KERNEL);
2632 	if (next_config_rom == NULL)
2633 		return -ENOMEM;
2634 
2635 	scoped_guard(spinlock_irq, &ohci->lock) {
2636 		// If there is not an already pending config_rom update, push our new allocation
2637 		// into the ohci->next_config_rom and then mark the local variable as null so that
2638 		// we won't deallocate the new buffer.
2639 		//
2640 		// OTOH, if there is a pending config_rom update, just use that buffer with the new
2641 		// config_rom data, and let this routine free the unused DMA allocation.
2642 		if (ohci->next_config_rom == NULL) {
2643 			ohci->next_config_rom = next_config_rom;
2644 			ohci->next_config_rom_bus = next_config_rom_bus;
2645 			next_config_rom = NULL;
2646 		}
2647 
2648 		copy_config_rom(ohci->next_config_rom, config_rom, length);
2649 
2650 		ohci->next_header = config_rom[0];
2651 		ohci->next_config_rom[0] = 0;
2652 
2653 		reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2654 	}
2655 
2656 	/* If we didn't use the DMA allocation, delete it. */
2657 	if (next_config_rom != NULL) {
2658 		dmam_free_coherent(ohci->card.device, CONFIG_ROM_SIZE, next_config_rom,
2659 				   next_config_rom_bus);
2660 	}
2661 
2662 	/*
2663 	 * Now initiate a bus reset to have the changes take
2664 	 * effect. We clean up the old config rom memory and DMA
2665 	 * mappings in the bus reset work item, since the OHCI
2666 	 * controller could need to access it before the bus reset
2667 	 * takes effect.
2668 	 */
2669 
2670 	fw_schedule_bus_reset(&ohci->card, true, true);
2671 
2672 	return 0;
2673 }
2674 
ohci_send_request(struct fw_card * card,struct fw_packet * packet)2675 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
2676 {
2677 	struct fw_ohci *ohci = fw_ohci(card);
2678 
2679 	at_context_transmit(&ohci->at_request_ctx, packet);
2680 }
2681 
ohci_send_response(struct fw_card * card,struct fw_packet * packet)2682 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
2683 {
2684 	struct fw_ohci *ohci = fw_ohci(card);
2685 
2686 	at_context_transmit(&ohci->at_response_ctx, packet);
2687 }
2688 
ohci_cancel_packet(struct fw_card * card,struct fw_packet * packet)2689 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
2690 {
2691 	struct fw_ohci *ohci = fw_ohci(card);
2692 	struct at_context *ctx = &ohci->at_request_ctx;
2693 	struct driver_data *driver_data = packet->driver_data;
2694 	int ret = -ENOENT;
2695 
2696 	// Avoid dead lock due to programming mistake.
2697 	if (WARN_ON_ONCE(current_work() == &ctx->work))
2698 		return 0;
2699 	disable_work_sync(&ctx->work);
2700 
2701 	if (packet->ack != 0)
2702 		goto out;
2703 
2704 	if (packet->payload_mapped)
2705 		dma_unmap_single(ohci->card.device, packet->payload_bus,
2706 				 packet->payload_length, DMA_TO_DEVICE);
2707 
2708 	log_ar_at_event(ohci, 'T', packet->speed, packet->header, 0x20);
2709 	driver_data->packet = NULL;
2710 	packet->ack = RCODE_CANCELLED;
2711 
2712 	// Timestamping on behalf of the hardware.
2713 	packet->timestamp = cycle_time_to_ohci_tstamp(get_cycle_time(ohci));
2714 
2715 	packet->callback(packet, &ohci->card, packet->ack);
2716 	ret = 0;
2717  out:
2718 	enable_work(&ctx->work);
2719 
2720 	return ret;
2721 }
2722 
ohci_enable_phys_dma(struct fw_card * card,int node_id,int generation)2723 static int ohci_enable_phys_dma(struct fw_card *card,
2724 				int node_id, int generation)
2725 {
2726 	struct fw_ohci *ohci = fw_ohci(card);
2727 	int n, ret = 0;
2728 
2729 	if (param_remote_dma)
2730 		return 0;
2731 
2732 	/*
2733 	 * FIXME:  Make sure this bitmask is cleared when we clear the busReset
2734 	 * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
2735 	 */
2736 
2737 	guard(spinlock_irqsave)(&ohci->lock);
2738 
2739 	if (ohci->generation != generation)
2740 		return -ESTALE;
2741 
2742 	/*
2743 	 * Note, if the node ID contains a non-local bus ID, physical DMA is
2744 	 * enabled for _all_ nodes on remote buses.
2745 	 */
2746 
2747 	n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
2748 	if (n < 32)
2749 		reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
2750 	else
2751 		reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
2752 
2753 	flush_writes(ohci);
2754 
2755 	return ret;
2756 }
2757 
ohci_read_csr(struct fw_card * card,int csr_offset)2758 static u32 ohci_read_csr(struct fw_card *card, int csr_offset)
2759 {
2760 	struct fw_ohci *ohci = fw_ohci(card);
2761 	u32 value;
2762 
2763 	switch (csr_offset) {
2764 	case CSR_STATE_CLEAR:
2765 	case CSR_STATE_SET:
2766 		if (ohci->is_root &&
2767 		    (reg_read(ohci, OHCI1394_LinkControlSet) &
2768 		     OHCI1394_LinkControl_cycleMaster))
2769 			value = CSR_STATE_BIT_CMSTR;
2770 		else
2771 			value = 0;
2772 		if (ohci->csr_state_setclear_abdicate)
2773 			value |= CSR_STATE_BIT_ABDICATE;
2774 
2775 		return value;
2776 
2777 	case CSR_NODE_IDS:
2778 		return reg_read(ohci, OHCI1394_NodeID) << 16;
2779 
2780 	case CSR_CYCLE_TIME:
2781 		return get_cycle_time(ohci);
2782 
2783 	case CSR_BUS_TIME:
2784 	{
2785 		// We might be called just after the cycle timer has wrapped around but just before
2786 		// the cycle64Seconds handler, so we better check here, too, if the bus time needs
2787 		// to be updated.
2788 
2789 		guard(spinlock_irqsave)(&ohci->lock);
2790 		return update_bus_time(ohci);
2791 	}
2792 	case CSR_BUSY_TIMEOUT:
2793 		value = reg_read(ohci, OHCI1394_ATRetries);
2794 		return (value >> 4) & 0x0ffff00f;
2795 
2796 	case CSR_PRIORITY_BUDGET:
2797 		return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
2798 			(ohci->pri_req_max << 8);
2799 
2800 	default:
2801 		WARN_ON(1);
2802 		return 0;
2803 	}
2804 }
2805 
ohci_write_csr(struct fw_card * card,int csr_offset,u32 value)2806 static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value)
2807 {
2808 	struct fw_ohci *ohci = fw_ohci(card);
2809 
2810 	switch (csr_offset) {
2811 	case CSR_STATE_CLEAR:
2812 		if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2813 			reg_write(ohci, OHCI1394_LinkControlClear,
2814 				  OHCI1394_LinkControl_cycleMaster);
2815 			flush_writes(ohci);
2816 		}
2817 		if (value & CSR_STATE_BIT_ABDICATE)
2818 			ohci->csr_state_setclear_abdicate = false;
2819 		break;
2820 
2821 	case CSR_STATE_SET:
2822 		if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2823 			reg_write(ohci, OHCI1394_LinkControlSet,
2824 				  OHCI1394_LinkControl_cycleMaster);
2825 			flush_writes(ohci);
2826 		}
2827 		if (value & CSR_STATE_BIT_ABDICATE)
2828 			ohci->csr_state_setclear_abdicate = true;
2829 		break;
2830 
2831 	case CSR_NODE_IDS:
2832 		reg_write(ohci, OHCI1394_NodeID, value >> 16);
2833 		flush_writes(ohci);
2834 		break;
2835 
2836 	case CSR_CYCLE_TIME:
2837 		reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
2838 		reg_write(ohci, OHCI1394_IntEventSet,
2839 			  OHCI1394_cycleInconsistent);
2840 		flush_writes(ohci);
2841 		break;
2842 
2843 	case CSR_BUS_TIME:
2844 	{
2845 		guard(spinlock_irqsave)(&ohci->lock);
2846 		ohci->bus_time = (update_bus_time(ohci) & 0x40) | (value & ~0x7f);
2847 		break;
2848 	}
2849 	case CSR_BUSY_TIMEOUT:
2850 		value = (value & 0xf) | ((value & 0xf) << 4) |
2851 			((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
2852 		reg_write(ohci, OHCI1394_ATRetries, value);
2853 		flush_writes(ohci);
2854 		break;
2855 
2856 	case CSR_PRIORITY_BUDGET:
2857 		reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
2858 		flush_writes(ohci);
2859 		break;
2860 
2861 	default:
2862 		WARN_ON(1);
2863 		break;
2864 	}
2865 }
2866 
flush_iso_completions(struct iso_context * ctx,enum fw_iso_context_completions_cause cause)2867 static void flush_iso_completions(struct iso_context *ctx, enum fw_iso_context_completions_cause cause)
2868 {
2869 	trace_isoc_inbound_single_completions(&ctx->base, ctx->last_timestamp, cause, ctx->header,
2870 					      ctx->header_length);
2871 	trace_isoc_outbound_completions(&ctx->base, ctx->last_timestamp, cause, ctx->header,
2872 					ctx->header_length);
2873 
2874 	ctx->base.callback.sc(&ctx->base, ctx->last_timestamp,
2875 			      ctx->header_length, ctx->header,
2876 			      ctx->base.callback_data);
2877 	ctx->header_length = 0;
2878 }
2879 
copy_iso_headers(struct iso_context * ctx,const u32 * dma_hdr)2880 static void copy_iso_headers(struct iso_context *ctx, const u32 *dma_hdr)
2881 {
2882 	u32 *ctx_hdr;
2883 
2884 	if (ctx->header_length + ctx->base.header_size > PAGE_SIZE) {
2885 		if (ctx->base.drop_overflow_headers)
2886 			return;
2887 		flush_iso_completions(ctx, FW_ISO_CONTEXT_COMPLETIONS_CAUSE_HEADER_OVERFLOW);
2888 	}
2889 
2890 	ctx_hdr = ctx->header + ctx->header_length;
2891 	ctx->last_timestamp = (u16)le32_to_cpu((__force __le32)dma_hdr[0]);
2892 
2893 	/*
2894 	 * The two iso header quadlets are byteswapped to little
2895 	 * endian by the controller, but we want to present them
2896 	 * as big endian for consistency with the bus endianness.
2897 	 */
2898 	if (ctx->base.header_size > 0)
2899 		ctx_hdr[0] = swab32(dma_hdr[1]); /* iso packet header */
2900 	if (ctx->base.header_size > 4)
2901 		ctx_hdr[1] = swab32(dma_hdr[0]); /* timestamp */
2902 	if (ctx->base.header_size > 8)
2903 		memcpy(&ctx_hdr[2], &dma_hdr[2], ctx->base.header_size - 8);
2904 	ctx->header_length += ctx->base.header_size;
2905 }
2906 
handle_ir_packet_per_buffer(struct context * context,struct descriptor * d,struct descriptor * last)2907 static int handle_ir_packet_per_buffer(struct context *context,
2908 				       struct descriptor *d,
2909 				       struct descriptor *last)
2910 {
2911 	struct iso_context *ctx =
2912 		container_of(context, struct iso_context, context);
2913 	struct descriptor *pd;
2914 	u32 buffer_dma;
2915 
2916 	for (pd = d; pd <= last; pd++)
2917 		if (pd->transfer_status)
2918 			break;
2919 	if (pd > last)
2920 		/* Descriptor(s) not done yet, stop iteration */
2921 		return 0;
2922 
2923 	while (!(d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))) {
2924 		d++;
2925 		buffer_dma = le32_to_cpu(d->data_address);
2926 		dma_sync_single_range_for_cpu(context->ohci->card.device,
2927 					      buffer_dma & PAGE_MASK,
2928 					      buffer_dma & ~PAGE_MASK,
2929 					      le16_to_cpu(d->req_count),
2930 					      DMA_FROM_DEVICE);
2931 	}
2932 
2933 	copy_iso_headers(ctx, (u32 *) (last + 1));
2934 
2935 	if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
2936 		flush_iso_completions(ctx, FW_ISO_CONTEXT_COMPLETIONS_CAUSE_INTERRUPT);
2937 
2938 	return 1;
2939 }
2940 
2941 /* d == last because each descriptor block is only a single descriptor. */
handle_ir_buffer_fill(struct context * context,struct descriptor * d,struct descriptor * last)2942 static int handle_ir_buffer_fill(struct context *context,
2943 				 struct descriptor *d,
2944 				 struct descriptor *last)
2945 {
2946 	struct iso_context *ctx =
2947 		container_of(context, struct iso_context, context);
2948 	unsigned int req_count, res_count, completed;
2949 	u32 buffer_dma;
2950 
2951 	req_count = le16_to_cpu(last->req_count);
2952 	res_count = le16_to_cpu(READ_ONCE(last->res_count));
2953 	completed = req_count - res_count;
2954 	buffer_dma = le32_to_cpu(last->data_address);
2955 
2956 	if (completed > 0) {
2957 		ctx->mc_buffer_bus = buffer_dma;
2958 		ctx->mc_completed = completed;
2959 	}
2960 
2961 	if (res_count != 0)
2962 		/* Descriptor(s) not done yet, stop iteration */
2963 		return 0;
2964 
2965 	dma_sync_single_range_for_cpu(context->ohci->card.device,
2966 				      buffer_dma & PAGE_MASK,
2967 				      buffer_dma & ~PAGE_MASK,
2968 				      completed, DMA_FROM_DEVICE);
2969 
2970 	if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS)) {
2971 		trace_isoc_inbound_multiple_completions(&ctx->base, completed,
2972 							FW_ISO_CONTEXT_COMPLETIONS_CAUSE_INTERRUPT);
2973 
2974 		ctx->base.callback.mc(&ctx->base,
2975 				      buffer_dma + completed,
2976 				      ctx->base.callback_data);
2977 		ctx->mc_completed = 0;
2978 	}
2979 
2980 	return 1;
2981 }
2982 
flush_ir_buffer_fill(struct iso_context * ctx)2983 static void flush_ir_buffer_fill(struct iso_context *ctx)
2984 {
2985 	dma_sync_single_range_for_cpu(ctx->context.ohci->card.device,
2986 				      ctx->mc_buffer_bus & PAGE_MASK,
2987 				      ctx->mc_buffer_bus & ~PAGE_MASK,
2988 				      ctx->mc_completed, DMA_FROM_DEVICE);
2989 
2990 	trace_isoc_inbound_multiple_completions(&ctx->base, ctx->mc_completed,
2991 						FW_ISO_CONTEXT_COMPLETIONS_CAUSE_FLUSH);
2992 
2993 	ctx->base.callback.mc(&ctx->base,
2994 			      ctx->mc_buffer_bus + ctx->mc_completed,
2995 			      ctx->base.callback_data);
2996 	ctx->mc_completed = 0;
2997 }
2998 
sync_it_packet_for_cpu(struct context * context,struct descriptor * pd)2999 static inline void sync_it_packet_for_cpu(struct context *context,
3000 					  struct descriptor *pd)
3001 {
3002 	__le16 control;
3003 	u32 buffer_dma;
3004 
3005 	/* only packets beginning with OUTPUT_MORE* have data buffers */
3006 	if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
3007 		return;
3008 
3009 	/* skip over the OUTPUT_MORE_IMMEDIATE descriptor */
3010 	pd += 2;
3011 
3012 	/*
3013 	 * If the packet has a header, the first OUTPUT_MORE/LAST descriptor's
3014 	 * data buffer is in the context program's coherent page and must not
3015 	 * be synced.
3016 	 */
3017 	if ((le32_to_cpu(pd->data_address) & PAGE_MASK) ==
3018 	    (context->current_bus          & PAGE_MASK)) {
3019 		if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
3020 			return;
3021 		pd++;
3022 	}
3023 
3024 	do {
3025 		buffer_dma = le32_to_cpu(pd->data_address);
3026 		dma_sync_single_range_for_cpu(context->ohci->card.device,
3027 					      buffer_dma & PAGE_MASK,
3028 					      buffer_dma & ~PAGE_MASK,
3029 					      le16_to_cpu(pd->req_count),
3030 					      DMA_TO_DEVICE);
3031 		control = pd->control;
3032 		pd++;
3033 	} while (!(control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS)));
3034 }
3035 
handle_it_packet(struct context * context,struct descriptor * d,struct descriptor * last)3036 static int handle_it_packet(struct context *context,
3037 			    struct descriptor *d,
3038 			    struct descriptor *last)
3039 {
3040 	struct iso_context *ctx =
3041 		container_of(context, struct iso_context, context);
3042 	struct descriptor *pd;
3043 	__be32 *ctx_hdr;
3044 
3045 	for (pd = d; pd <= last; pd++)
3046 		if (pd->transfer_status)
3047 			break;
3048 	if (pd > last)
3049 		/* Descriptor(s) not done yet, stop iteration */
3050 		return 0;
3051 
3052 	sync_it_packet_for_cpu(context, d);
3053 
3054 	if (ctx->header_length + 4 > PAGE_SIZE) {
3055 		if (ctx->base.drop_overflow_headers)
3056 			return 1;
3057 		flush_iso_completions(ctx, FW_ISO_CONTEXT_COMPLETIONS_CAUSE_HEADER_OVERFLOW);
3058 	}
3059 
3060 	ctx_hdr = ctx->header + ctx->header_length;
3061 	ctx->last_timestamp = le16_to_cpu(last->res_count);
3062 	/* Present this value as big-endian to match the receive code */
3063 	*ctx_hdr = cpu_to_be32((le16_to_cpu(pd->transfer_status) << 16) |
3064 			       le16_to_cpu(pd->res_count));
3065 	ctx->header_length += 4;
3066 
3067 	if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
3068 		flush_iso_completions(ctx, FW_ISO_CONTEXT_COMPLETIONS_CAUSE_INTERRUPT);
3069 
3070 	return 1;
3071 }
3072 
set_multichannel_mask(struct fw_ohci * ohci,u64 channels)3073 static void set_multichannel_mask(struct fw_ohci *ohci, u64 channels)
3074 {
3075 	u32 hi = channels >> 32, lo = channels;
3076 
3077 	reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, ~hi);
3078 	reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, ~lo);
3079 	reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet, hi);
3080 	reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet, lo);
3081 	ohci->mc_channels = channels;
3082 }
3083 
ohci_allocate_iso_context(struct fw_card * card,int type,int channel,size_t header_size)3084 static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
3085 				int type, int channel, size_t header_size)
3086 {
3087 	struct fw_ohci *ohci = fw_ohci(card);
3088 	struct iso_context *ctx;
3089 	descriptor_callback_t callback;
3090 	u64 *channels;
3091 	u32 *mask, regs;
3092 	int index, ret = -EBUSY;
3093 
3094 	scoped_guard(spinlock_irq, &ohci->lock) {
3095 		switch (type) {
3096 		case FW_ISO_CONTEXT_TRANSMIT:
3097 			mask     = &ohci->it_context_mask;
3098 			callback = handle_it_packet;
3099 			index    = ffs(*mask) - 1;
3100 			if (index >= 0) {
3101 				*mask &= ~(1 << index);
3102 				regs = OHCI1394_IsoXmitContextBase(index);
3103 				ctx  = &ohci->it_context_list[index];
3104 			}
3105 			break;
3106 
3107 		case FW_ISO_CONTEXT_RECEIVE:
3108 			channels = &ohci->ir_context_channels;
3109 			mask     = &ohci->ir_context_mask;
3110 			callback = handle_ir_packet_per_buffer;
3111 			index    = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
3112 			if (index >= 0) {
3113 				*channels &= ~(1ULL << channel);
3114 				*mask     &= ~(1 << index);
3115 				regs = OHCI1394_IsoRcvContextBase(index);
3116 				ctx  = &ohci->ir_context_list[index];
3117 			}
3118 			break;
3119 
3120 		case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3121 			mask     = &ohci->ir_context_mask;
3122 			callback = handle_ir_buffer_fill;
3123 			index    = !ohci->mc_allocated ? ffs(*mask) - 1 : -1;
3124 			if (index >= 0) {
3125 				ohci->mc_allocated = true;
3126 				*mask &= ~(1 << index);
3127 				regs = OHCI1394_IsoRcvContextBase(index);
3128 				ctx  = &ohci->ir_context_list[index];
3129 			}
3130 			break;
3131 
3132 		default:
3133 			index = -1;
3134 			ret = -ENOSYS;
3135 		}
3136 
3137 		if (index < 0)
3138 			return ERR_PTR(ret);
3139 	}
3140 
3141 	memset(ctx, 0, sizeof(*ctx));
3142 	ctx->header_length = 0;
3143 	ctx->header = (void *) __get_free_page(GFP_KERNEL);
3144 	if (ctx->header == NULL) {
3145 		ret = -ENOMEM;
3146 		goto out;
3147 	}
3148 	ret = context_init(&ctx->context, ohci, regs, callback);
3149 	if (ret < 0)
3150 		goto out_with_header;
3151 	fw_iso_context_init_work(&ctx->base, ohci_isoc_context_work);
3152 
3153 	if (type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL) {
3154 		set_multichannel_mask(ohci, 0);
3155 		ctx->mc_completed = 0;
3156 	}
3157 
3158 	return &ctx->base;
3159 
3160  out_with_header:
3161 	free_page((unsigned long)ctx->header);
3162  out:
3163 	scoped_guard(spinlock_irq, &ohci->lock) {
3164 		switch (type) {
3165 		case FW_ISO_CONTEXT_RECEIVE:
3166 			*channels |= 1ULL << channel;
3167 			break;
3168 
3169 		case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3170 			ohci->mc_allocated = false;
3171 			break;
3172 		}
3173 		*mask |= 1 << index;
3174 	}
3175 
3176 	return ERR_PTR(ret);
3177 }
3178 
ohci_start_iso(struct fw_iso_context * base,s32 cycle,u32 sync,u32 tags)3179 static int ohci_start_iso(struct fw_iso_context *base,
3180 			  s32 cycle, u32 sync, u32 tags)
3181 {
3182 	struct iso_context *ctx = container_of(base, struct iso_context, base);
3183 	struct fw_ohci *ohci = ctx->context.ohci;
3184 	u32 control = IR_CONTEXT_ISOCH_HEADER, match;
3185 	int index;
3186 
3187 	/* the controller cannot start without any queued packets */
3188 	if (ctx->context.last->branch_address == 0)
3189 		return -ENODATA;
3190 
3191 	switch (ctx->base.type) {
3192 	case FW_ISO_CONTEXT_TRANSMIT:
3193 		index = ctx - ohci->it_context_list;
3194 		match = 0;
3195 		if (cycle >= 0)
3196 			match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
3197 				(cycle & 0x7fff) << 16;
3198 
3199 		reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
3200 		reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
3201 		context_run(&ctx->context, match);
3202 		break;
3203 
3204 	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3205 		control |= IR_CONTEXT_BUFFER_FILL|IR_CONTEXT_MULTI_CHANNEL_MODE;
3206 		fallthrough;
3207 	case FW_ISO_CONTEXT_RECEIVE:
3208 		index = ctx - ohci->ir_context_list;
3209 		match = (tags << 28) | (sync << 8) | ctx->base.channel;
3210 		if (cycle >= 0) {
3211 			match |= (cycle & 0x07fff) << 12;
3212 			control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
3213 		}
3214 
3215 		reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
3216 		reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
3217 		reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
3218 		context_run(&ctx->context, control);
3219 
3220 		ctx->sync = sync;
3221 		ctx->tags = tags;
3222 
3223 		break;
3224 	}
3225 
3226 	return 0;
3227 }
3228 
ohci_stop_iso(struct fw_iso_context * base)3229 static int ohci_stop_iso(struct fw_iso_context *base)
3230 {
3231 	struct fw_ohci *ohci = fw_ohci(base->card);
3232 	struct iso_context *ctx = container_of(base, struct iso_context, base);
3233 	int index;
3234 
3235 	switch (ctx->base.type) {
3236 	case FW_ISO_CONTEXT_TRANSMIT:
3237 		index = ctx - ohci->it_context_list;
3238 		reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
3239 		break;
3240 
3241 	case FW_ISO_CONTEXT_RECEIVE:
3242 	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3243 		index = ctx - ohci->ir_context_list;
3244 		reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
3245 		break;
3246 	}
3247 	flush_writes(ohci);
3248 	context_stop(&ctx->context);
3249 
3250 	return 0;
3251 }
3252 
ohci_free_iso_context(struct fw_iso_context * base)3253 static void ohci_free_iso_context(struct fw_iso_context *base)
3254 {
3255 	struct fw_ohci *ohci = fw_ohci(base->card);
3256 	struct iso_context *ctx = container_of(base, struct iso_context, base);
3257 	int index;
3258 
3259 	ohci_stop_iso(base);
3260 	context_release(&ctx->context);
3261 	free_page((unsigned long)ctx->header);
3262 
3263 	guard(spinlock_irqsave)(&ohci->lock);
3264 
3265 	switch (base->type) {
3266 	case FW_ISO_CONTEXT_TRANSMIT:
3267 		index = ctx - ohci->it_context_list;
3268 		ohci->it_context_mask |= 1 << index;
3269 		break;
3270 
3271 	case FW_ISO_CONTEXT_RECEIVE:
3272 		index = ctx - ohci->ir_context_list;
3273 		ohci->ir_context_mask |= 1 << index;
3274 		ohci->ir_context_channels |= 1ULL << base->channel;
3275 		break;
3276 
3277 	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3278 		index = ctx - ohci->ir_context_list;
3279 		ohci->ir_context_mask |= 1 << index;
3280 		ohci->ir_context_channels |= ohci->mc_channels;
3281 		ohci->mc_channels = 0;
3282 		ohci->mc_allocated = false;
3283 		break;
3284 	}
3285 }
3286 
ohci_set_iso_channels(struct fw_iso_context * base,u64 * channels)3287 static int ohci_set_iso_channels(struct fw_iso_context *base, u64 *channels)
3288 {
3289 	struct fw_ohci *ohci = fw_ohci(base->card);
3290 
3291 	switch (base->type) {
3292 	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3293 	{
3294 		guard(spinlock_irqsave)(&ohci->lock);
3295 
3296 		// Don't allow multichannel to grab other contexts' channels.
3297 		if (~ohci->ir_context_channels & ~ohci->mc_channels & *channels) {
3298 			*channels = ohci->ir_context_channels;
3299 			return -EBUSY;
3300 		} else {
3301 			set_multichannel_mask(ohci, *channels);
3302 			return 0;
3303 		}
3304 	}
3305 	default:
3306 		return -EINVAL;
3307 	}
3308 }
3309 
ohci_resume_iso_dma(struct fw_ohci * ohci)3310 static void __maybe_unused ohci_resume_iso_dma(struct fw_ohci *ohci)
3311 {
3312 	int i;
3313 	struct iso_context *ctx;
3314 
3315 	for (i = 0 ; i < ohci->n_ir ; i++) {
3316 		ctx = &ohci->ir_context_list[i];
3317 		if (ctx->context.running)
3318 			ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3319 	}
3320 
3321 	for (i = 0 ; i < ohci->n_it ; i++) {
3322 		ctx = &ohci->it_context_list[i];
3323 		if (ctx->context.running)
3324 			ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3325 	}
3326 }
3327 
queue_iso_transmit(struct iso_context * ctx,struct fw_iso_packet * packet,struct fw_iso_buffer * buffer,unsigned long payload)3328 static int queue_iso_transmit(struct iso_context *ctx,
3329 			      struct fw_iso_packet *packet,
3330 			      struct fw_iso_buffer *buffer,
3331 			      unsigned long payload)
3332 {
3333 	struct descriptor *d, *last, *pd;
3334 	struct fw_iso_packet *p;
3335 	__le32 *header;
3336 	dma_addr_t d_bus, page_bus;
3337 	u32 z, header_z, payload_z, irq;
3338 	u32 payload_index, payload_end_index, next_page_index;
3339 	int page, end_page, i, length, offset;
3340 
3341 	p = packet;
3342 	payload_index = payload;
3343 
3344 	if (p->skip)
3345 		z = 1;
3346 	else
3347 		z = 2;
3348 	if (p->header_length > 0)
3349 		z++;
3350 
3351 	/* Determine the first page the payload isn't contained in. */
3352 	end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
3353 	if (p->payload_length > 0)
3354 		payload_z = end_page - (payload_index >> PAGE_SHIFT);
3355 	else
3356 		payload_z = 0;
3357 
3358 	z += payload_z;
3359 
3360 	/* Get header size in number of descriptors. */
3361 	header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
3362 
3363 	d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
3364 	if (d == NULL)
3365 		return -ENOMEM;
3366 
3367 	if (!p->skip) {
3368 		d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
3369 		d[0].req_count = cpu_to_le16(8);
3370 		/*
3371 		 * Link the skip address to this descriptor itself.  This causes
3372 		 * a context to skip a cycle whenever lost cycles or FIFO
3373 		 * overruns occur, without dropping the data.  The application
3374 		 * should then decide whether this is an error condition or not.
3375 		 * FIXME:  Make the context's cycle-lost behaviour configurable?
3376 		 */
3377 		d[0].branch_address = cpu_to_le32(d_bus | z);
3378 
3379 		header = (__le32 *) &d[1];
3380 
3381 		ohci1394_it_data_set_speed(header, ctx->base.speed);
3382 		ohci1394_it_data_set_tag(header, p->tag);
3383 		ohci1394_it_data_set_channel(header, ctx->base.channel);
3384 		ohci1394_it_data_set_tcode(header, TCODE_STREAM_DATA);
3385 		ohci1394_it_data_set_sync(header, p->sy);
3386 
3387 		ohci1394_it_data_set_data_length(header, p->header_length + p->payload_length);
3388 	}
3389 
3390 	if (p->header_length > 0) {
3391 		d[2].req_count    = cpu_to_le16(p->header_length);
3392 		d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
3393 		memcpy(&d[z], p->header, p->header_length);
3394 	}
3395 
3396 	pd = d + z - payload_z;
3397 	payload_end_index = payload_index + p->payload_length;
3398 	for (i = 0; i < payload_z; i++) {
3399 		page               = payload_index >> PAGE_SHIFT;
3400 		offset             = payload_index & ~PAGE_MASK;
3401 		next_page_index    = (page + 1) << PAGE_SHIFT;
3402 		length             =
3403 			min(next_page_index, payload_end_index) - payload_index;
3404 		pd[i].req_count    = cpu_to_le16(length);
3405 
3406 		page_bus = page_private(buffer->pages[page]);
3407 		pd[i].data_address = cpu_to_le32(page_bus + offset);
3408 
3409 		dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3410 						 page_bus, offset, length,
3411 						 DMA_TO_DEVICE);
3412 
3413 		payload_index += length;
3414 	}
3415 
3416 	if (p->interrupt)
3417 		irq = DESCRIPTOR_IRQ_ALWAYS;
3418 	else
3419 		irq = DESCRIPTOR_NO_IRQ;
3420 
3421 	last = z == 2 ? d : d + z - 1;
3422 	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
3423 				     DESCRIPTOR_STATUS |
3424 				     DESCRIPTOR_BRANCH_ALWAYS |
3425 				     irq);
3426 
3427 	context_append(&ctx->context, d, z, header_z);
3428 
3429 	return 0;
3430 }
3431 
queue_iso_packet_per_buffer(struct iso_context * ctx,struct fw_iso_packet * packet,struct fw_iso_buffer * buffer,unsigned long payload)3432 static int queue_iso_packet_per_buffer(struct iso_context *ctx,
3433 				       struct fw_iso_packet *packet,
3434 				       struct fw_iso_buffer *buffer,
3435 				       unsigned long payload)
3436 {
3437 	struct device *device = ctx->context.ohci->card.device;
3438 	struct descriptor *d, *pd;
3439 	dma_addr_t d_bus, page_bus;
3440 	u32 z, header_z, rest;
3441 	int i, j, length;
3442 	int page, offset, packet_count, header_size, payload_per_buffer;
3443 
3444 	/*
3445 	 * The OHCI controller puts the isochronous header and trailer in the
3446 	 * buffer, so we need at least 8 bytes.
3447 	 */
3448 	packet_count = packet->header_length / ctx->base.header_size;
3449 	header_size  = max(ctx->base.header_size, (size_t)8);
3450 
3451 	/* Get header size in number of descriptors. */
3452 	header_z = DIV_ROUND_UP(header_size, sizeof(*d));
3453 	page     = payload >> PAGE_SHIFT;
3454 	offset   = payload & ~PAGE_MASK;
3455 	payload_per_buffer = packet->payload_length / packet_count;
3456 
3457 	for (i = 0; i < packet_count; i++) {
3458 		/* d points to the header descriptor */
3459 		z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
3460 		d = context_get_descriptors(&ctx->context,
3461 				z + header_z, &d_bus);
3462 		if (d == NULL)
3463 			return -ENOMEM;
3464 
3465 		d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
3466 					      DESCRIPTOR_INPUT_MORE);
3467 		if (packet->skip && i == 0)
3468 			d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3469 		d->req_count    = cpu_to_le16(header_size);
3470 		d->res_count    = d->req_count;
3471 		d->transfer_status = 0;
3472 		d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
3473 
3474 		rest = payload_per_buffer;
3475 		pd = d;
3476 		for (j = 1; j < z; j++) {
3477 			pd++;
3478 			pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3479 						  DESCRIPTOR_INPUT_MORE);
3480 
3481 			if (offset + rest < PAGE_SIZE)
3482 				length = rest;
3483 			else
3484 				length = PAGE_SIZE - offset;
3485 			pd->req_count = cpu_to_le16(length);
3486 			pd->res_count = pd->req_count;
3487 			pd->transfer_status = 0;
3488 
3489 			page_bus = page_private(buffer->pages[page]);
3490 			pd->data_address = cpu_to_le32(page_bus + offset);
3491 
3492 			dma_sync_single_range_for_device(device, page_bus,
3493 							 offset, length,
3494 							 DMA_FROM_DEVICE);
3495 
3496 			offset = (offset + length) & ~PAGE_MASK;
3497 			rest -= length;
3498 			if (offset == 0)
3499 				page++;
3500 		}
3501 		pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3502 					  DESCRIPTOR_INPUT_LAST |
3503 					  DESCRIPTOR_BRANCH_ALWAYS);
3504 		if (packet->interrupt && i == packet_count - 1)
3505 			pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3506 
3507 		context_append(&ctx->context, d, z, header_z);
3508 	}
3509 
3510 	return 0;
3511 }
3512 
queue_iso_buffer_fill(struct iso_context * ctx,struct fw_iso_packet * packet,struct fw_iso_buffer * buffer,unsigned long payload)3513 static int queue_iso_buffer_fill(struct iso_context *ctx,
3514 				 struct fw_iso_packet *packet,
3515 				 struct fw_iso_buffer *buffer,
3516 				 unsigned long payload)
3517 {
3518 	struct descriptor *d;
3519 	dma_addr_t d_bus, page_bus;
3520 	int page, offset, rest, z, i, length;
3521 
3522 	page   = payload >> PAGE_SHIFT;
3523 	offset = payload & ~PAGE_MASK;
3524 	rest   = packet->payload_length;
3525 
3526 	/* We need one descriptor for each page in the buffer. */
3527 	z = DIV_ROUND_UP(offset + rest, PAGE_SIZE);
3528 
3529 	if (WARN_ON(offset & 3 || rest & 3 || page + z > buffer->page_count))
3530 		return -EFAULT;
3531 
3532 	for (i = 0; i < z; i++) {
3533 		d = context_get_descriptors(&ctx->context, 1, &d_bus);
3534 		if (d == NULL)
3535 			return -ENOMEM;
3536 
3537 		d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
3538 					 DESCRIPTOR_BRANCH_ALWAYS);
3539 		if (packet->skip && i == 0)
3540 			d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3541 		if (packet->interrupt && i == z - 1)
3542 			d->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3543 
3544 		if (offset + rest < PAGE_SIZE)
3545 			length = rest;
3546 		else
3547 			length = PAGE_SIZE - offset;
3548 		d->req_count = cpu_to_le16(length);
3549 		d->res_count = d->req_count;
3550 		d->transfer_status = 0;
3551 
3552 		page_bus = page_private(buffer->pages[page]);
3553 		d->data_address = cpu_to_le32(page_bus + offset);
3554 
3555 		dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3556 						 page_bus, offset, length,
3557 						 DMA_FROM_DEVICE);
3558 
3559 		rest -= length;
3560 		offset = 0;
3561 		page++;
3562 
3563 		context_append(&ctx->context, d, 1, 0);
3564 	}
3565 
3566 	return 0;
3567 }
3568 
ohci_queue_iso(struct fw_iso_context * base,struct fw_iso_packet * packet,struct fw_iso_buffer * buffer,unsigned long payload)3569 static int ohci_queue_iso(struct fw_iso_context *base,
3570 			  struct fw_iso_packet *packet,
3571 			  struct fw_iso_buffer *buffer,
3572 			  unsigned long payload)
3573 {
3574 	struct iso_context *ctx = container_of(base, struct iso_context, base);
3575 
3576 	guard(spinlock_irqsave)(&ctx->context.ohci->lock);
3577 
3578 	switch (base->type) {
3579 	case FW_ISO_CONTEXT_TRANSMIT:
3580 		return queue_iso_transmit(ctx, packet, buffer, payload);
3581 	case FW_ISO_CONTEXT_RECEIVE:
3582 		return queue_iso_packet_per_buffer(ctx, packet, buffer, payload);
3583 	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3584 		return queue_iso_buffer_fill(ctx, packet, buffer, payload);
3585 	default:
3586 		return -ENOSYS;
3587 	}
3588 }
3589 
ohci_flush_queue_iso(struct fw_iso_context * base)3590 static void ohci_flush_queue_iso(struct fw_iso_context *base)
3591 {
3592 	struct context *ctx =
3593 			&container_of(base, struct iso_context, base)->context;
3594 
3595 	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
3596 }
3597 
ohci_flush_iso_completions(struct fw_iso_context * base)3598 static int ohci_flush_iso_completions(struct fw_iso_context *base)
3599 {
3600 	struct iso_context *ctx = container_of(base, struct iso_context, base);
3601 	int ret = 0;
3602 
3603 	if (!test_and_set_bit_lock(0, &ctx->flushing_completions)) {
3604 		ohci_isoc_context_work(&base->work);
3605 
3606 		switch (base->type) {
3607 		case FW_ISO_CONTEXT_TRANSMIT:
3608 		case FW_ISO_CONTEXT_RECEIVE:
3609 			if (ctx->header_length != 0)
3610 				flush_iso_completions(ctx, FW_ISO_CONTEXT_COMPLETIONS_CAUSE_FLUSH);
3611 			break;
3612 		case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3613 			if (ctx->mc_completed != 0)
3614 				flush_ir_buffer_fill(ctx);
3615 			break;
3616 		default:
3617 			ret = -ENOSYS;
3618 		}
3619 
3620 		clear_bit_unlock(0, &ctx->flushing_completions);
3621 		smp_mb__after_atomic();
3622 	}
3623 
3624 	return ret;
3625 }
3626 
3627 static const struct fw_card_driver ohci_driver = {
3628 	.enable			= ohci_enable,
3629 	.read_phy_reg		= ohci_read_phy_reg,
3630 	.update_phy_reg		= ohci_update_phy_reg,
3631 	.set_config_rom		= ohci_set_config_rom,
3632 	.send_request		= ohci_send_request,
3633 	.send_response		= ohci_send_response,
3634 	.cancel_packet		= ohci_cancel_packet,
3635 	.enable_phys_dma	= ohci_enable_phys_dma,
3636 	.read_csr		= ohci_read_csr,
3637 	.write_csr		= ohci_write_csr,
3638 
3639 	.allocate_iso_context	= ohci_allocate_iso_context,
3640 	.free_iso_context	= ohci_free_iso_context,
3641 	.set_iso_channels	= ohci_set_iso_channels,
3642 	.queue_iso		= ohci_queue_iso,
3643 	.flush_queue_iso	= ohci_flush_queue_iso,
3644 	.flush_iso_completions	= ohci_flush_iso_completions,
3645 	.start_iso		= ohci_start_iso,
3646 	.stop_iso		= ohci_stop_iso,
3647 };
3648 
3649 #ifdef CONFIG_PPC_PMAC
pmac_ohci_on(struct pci_dev * dev)3650 static void pmac_ohci_on(struct pci_dev *dev)
3651 {
3652 	if (machine_is(powermac)) {
3653 		struct device_node *ofn = pci_device_to_OF_node(dev);
3654 
3655 		if (ofn) {
3656 			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
3657 			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
3658 		}
3659 	}
3660 }
3661 
pmac_ohci_off(struct pci_dev * dev)3662 static void pmac_ohci_off(struct pci_dev *dev)
3663 {
3664 	if (machine_is(powermac)) {
3665 		struct device_node *ofn = pci_device_to_OF_node(dev);
3666 
3667 		if (ofn) {
3668 			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
3669 			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
3670 		}
3671 	}
3672 }
3673 #else
pmac_ohci_on(struct pci_dev * dev)3674 static inline void pmac_ohci_on(struct pci_dev *dev) {}
pmac_ohci_off(struct pci_dev * dev)3675 static inline void pmac_ohci_off(struct pci_dev *dev) {}
3676 #endif /* CONFIG_PPC_PMAC */
3677 
release_ohci(struct device * dev,void * data)3678 static void release_ohci(struct device *dev, void *data)
3679 {
3680 	struct pci_dev *pdev = to_pci_dev(dev);
3681 	struct fw_ohci *ohci = pci_get_drvdata(pdev);
3682 
3683 	pmac_ohci_off(pdev);
3684 
3685 	ar_context_release(&ohci->ar_response_ctx);
3686 	ar_context_release(&ohci->ar_request_ctx);
3687 
3688 	dev_notice(dev, "removed fw-ohci device\n");
3689 }
3690 
pci_probe(struct pci_dev * dev,const struct pci_device_id * ent)3691 static int pci_probe(struct pci_dev *dev,
3692 			       const struct pci_device_id *ent)
3693 {
3694 	struct fw_ohci *ohci;
3695 	u32 bus_options, max_receive, link_speed, version;
3696 	u64 guid;
3697 	int i, flags, irq, err;
3698 	size_t size;
3699 
3700 	if (dev->vendor == PCI_VENDOR_ID_PINNACLE_SYSTEMS) {
3701 		dev_err(&dev->dev, "Pinnacle MovieBoard is not yet supported\n");
3702 		return -ENOSYS;
3703 	}
3704 
3705 	ohci = devres_alloc(release_ohci, sizeof(*ohci), GFP_KERNEL);
3706 	if (ohci == NULL)
3707 		return -ENOMEM;
3708 	fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
3709 	pci_set_drvdata(dev, ohci);
3710 	pmac_ohci_on(dev);
3711 	devres_add(&dev->dev, ohci);
3712 
3713 	err = pcim_enable_device(dev);
3714 	if (err) {
3715 		dev_err(&dev->dev, "failed to enable OHCI hardware\n");
3716 		return err;
3717 	}
3718 
3719 	pci_set_master(dev);
3720 	pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
3721 
3722 	spin_lock_init(&ohci->lock);
3723 	mutex_init(&ohci->phy_reg_mutex);
3724 
3725 	INIT_WORK(&ohci->bus_reset_work, bus_reset_work);
3726 
3727 	if (!(pci_resource_flags(dev, 0) & IORESOURCE_MEM) ||
3728 	    pci_resource_len(dev, 0) < OHCI1394_REGISTER_SIZE) {
3729 		ohci_err(ohci, "invalid MMIO resource\n");
3730 		return -ENXIO;
3731 	}
3732 
3733 	ohci->registers = pcim_iomap_region(dev, 0, ohci_driver_name);
3734 	if (IS_ERR(ohci->registers)) {
3735 		ohci_err(ohci, "request and map MMIO resource unavailable\n");
3736 		return -ENXIO;
3737 	}
3738 
3739 	for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
3740 		if ((ohci_quirks[i].vendor == dev->vendor) &&
3741 		    (ohci_quirks[i].device == (unsigned short)PCI_ANY_ID ||
3742 		     ohci_quirks[i].device == dev->device) &&
3743 		    (ohci_quirks[i].revision == (unsigned short)PCI_ANY_ID ||
3744 		     ohci_quirks[i].revision >= dev->revision)) {
3745 			ohci->quirks = ohci_quirks[i].flags;
3746 			break;
3747 		}
3748 	if (param_quirks)
3749 		ohci->quirks = param_quirks;
3750 
3751 	if (detect_vt630x_with_asm1083_on_amd_ryzen_machine(dev))
3752 		ohci->quirks |= QUIRK_REBOOT_BY_CYCLE_TIMER_READ;
3753 
3754 	/*
3755 	 * Because dma_alloc_coherent() allocates at least one page,
3756 	 * we save space by using a common buffer for the AR request/
3757 	 * response descriptors and the self IDs buffer.
3758 	 */
3759 	BUILD_BUG_ON(AR_BUFFERS * sizeof(struct descriptor) > PAGE_SIZE/4);
3760 	BUILD_BUG_ON(SELF_ID_BUF_SIZE > PAGE_SIZE/2);
3761 	ohci->misc_buffer = dmam_alloc_coherent(&dev->dev, PAGE_SIZE, &ohci->misc_buffer_bus,
3762 						GFP_KERNEL);
3763 	if (!ohci->misc_buffer)
3764 		return -ENOMEM;
3765 
3766 	err = ar_context_init(&ohci->ar_request_ctx, ohci, 0,
3767 			      OHCI1394_AsReqRcvContextControlSet);
3768 	if (err < 0)
3769 		return err;
3770 
3771 	err = ar_context_init(&ohci->ar_response_ctx, ohci, PAGE_SIZE/4,
3772 			      OHCI1394_AsRspRcvContextControlSet);
3773 	if (err < 0)
3774 		return err;
3775 
3776 	err = context_init(&ohci->at_request_ctx.context, ohci,
3777 			   OHCI1394_AsReqTrContextControlSet, handle_at_packet);
3778 	if (err < 0)
3779 		return err;
3780 	INIT_WORK(&ohci->at_request_ctx.work, ohci_at_context_work);
3781 
3782 	err = context_init(&ohci->at_response_ctx.context, ohci,
3783 			   OHCI1394_AsRspTrContextControlSet, handle_at_packet);
3784 	if (err < 0)
3785 		return err;
3786 	INIT_WORK(&ohci->at_response_ctx.work, ohci_at_context_work);
3787 
3788 	reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
3789 	ohci->ir_context_channels = ~0ULL;
3790 	ohci->ir_context_support = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
3791 	reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
3792 	ohci->ir_context_mask = ohci->ir_context_support;
3793 	ohci->n_ir = hweight32(ohci->ir_context_mask);
3794 	size = sizeof(struct iso_context) * ohci->n_ir;
3795 	ohci->ir_context_list = devm_kzalloc(&dev->dev, size, GFP_KERNEL);
3796 	if (!ohci->ir_context_list)
3797 		return -ENOMEM;
3798 
3799 	reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
3800 	ohci->it_context_support = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
3801 	/* JMicron JMB38x often shows 0 at first read, just ignore it */
3802 	if (!ohci->it_context_support) {
3803 		ohci_notice(ohci, "overriding IsoXmitIntMask\n");
3804 		ohci->it_context_support = 0xf;
3805 	}
3806 	reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
3807 	ohci->it_context_mask = ohci->it_context_support;
3808 	ohci->n_it = hweight32(ohci->it_context_mask);
3809 	size = sizeof(struct iso_context) * ohci->n_it;
3810 	ohci->it_context_list = devm_kzalloc(&dev->dev, size, GFP_KERNEL);
3811 	if (!ohci->it_context_list)
3812 		return -ENOMEM;
3813 
3814 	ohci->self_id     = ohci->misc_buffer     + PAGE_SIZE/2;
3815 	ohci->self_id_bus = ohci->misc_buffer_bus + PAGE_SIZE/2;
3816 
3817 	bus_options = reg_read(ohci, OHCI1394_BusOptions);
3818 	max_receive = (bus_options >> 12) & 0xf;
3819 	link_speed = bus_options & 0x7;
3820 	guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
3821 		reg_read(ohci, OHCI1394_GUIDLo);
3822 
3823 	flags = PCI_IRQ_INTX;
3824 	if (!(ohci->quirks & QUIRK_NO_MSI))
3825 		flags |= PCI_IRQ_MSI;
3826 	err = pci_alloc_irq_vectors(dev, 1, 1, flags);
3827 	if (err < 0)
3828 		return err;
3829 	irq = pci_irq_vector(dev, 0);
3830 	if (irq < 0) {
3831 		err = irq;
3832 		goto fail_msi;
3833 	}
3834 
3835 	err = request_threaded_irq(irq, irq_handler, NULL,
3836 				   pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED, ohci_driver_name,
3837 				   ohci);
3838 	if (err < 0) {
3839 		ohci_err(ohci, "failed to allocate interrupt %d\n", irq);
3840 		goto fail_msi;
3841 	}
3842 
3843 	err = fw_card_add(&ohci->card, max_receive, link_speed, guid, ohci->n_it + ohci->n_ir);
3844 	if (err)
3845 		goto fail_irq;
3846 
3847 	version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
3848 	ohci_notice(ohci,
3849 		    "added OHCI v%x.%x device as card %d, "
3850 		    "%d IR + %d IT contexts, quirks 0x%x%s\n",
3851 		    version >> 16, version & 0xff, ohci->card.index,
3852 		    ohci->n_ir, ohci->n_it, ohci->quirks,
3853 		    reg_read(ohci, OHCI1394_PhyUpperBound) ?
3854 			", physUB" : "");
3855 
3856 	return 0;
3857 
3858  fail_irq:
3859 	free_irq(irq, ohci);
3860  fail_msi:
3861 	pci_free_irq_vectors(dev);
3862 
3863 	return err;
3864 }
3865 
pci_remove(struct pci_dev * dev)3866 static void pci_remove(struct pci_dev *dev)
3867 {
3868 	struct fw_ohci *ohci = pci_get_drvdata(dev);
3869 	int irq;
3870 
3871 	/*
3872 	 * If the removal is happening from the suspend state, LPS won't be
3873 	 * enabled and host registers (eg., IntMaskClear) won't be accessible.
3874 	 */
3875 	if (reg_read(ohci, OHCI1394_HCControlSet) & OHCI1394_HCControl_LPS) {
3876 		reg_write(ohci, OHCI1394_IntMaskClear, ~0);
3877 		flush_writes(ohci);
3878 	}
3879 	cancel_work_sync(&ohci->bus_reset_work);
3880 	fw_core_remove_card(&ohci->card);
3881 
3882 	/*
3883 	 * FIXME: Fail all pending packets here, now that the upper
3884 	 * layers can't queue any more.
3885 	 */
3886 
3887 	software_reset(ohci);
3888 
3889 	irq = pci_irq_vector(dev, 0);
3890 	if (irq >= 0)
3891 		free_irq(irq, ohci);
3892 	pci_free_irq_vectors(dev);
3893 
3894 	dev_notice(&dev->dev, "removing fw-ohci device\n");
3895 }
3896 
pci_suspend(struct device * dev)3897 static int __maybe_unused pci_suspend(struct device *dev)
3898 {
3899 	struct pci_dev *pdev = to_pci_dev(dev);
3900 	struct fw_ohci *ohci = pci_get_drvdata(pdev);
3901 
3902 	software_reset(ohci);
3903 	pmac_ohci_off(pdev);
3904 
3905 	return 0;
3906 }
3907 
3908 
pci_resume(struct device * dev)3909 static int __maybe_unused pci_resume(struct device *dev)
3910 {
3911 	struct pci_dev *pdev = to_pci_dev(dev);
3912 	struct fw_ohci *ohci = pci_get_drvdata(pdev);
3913 	int err;
3914 
3915 	pmac_ohci_on(pdev);
3916 
3917 	/* Some systems don't setup GUID register on resume from ram  */
3918 	if (!reg_read(ohci, OHCI1394_GUIDLo) &&
3919 					!reg_read(ohci, OHCI1394_GUIDHi)) {
3920 		reg_write(ohci, OHCI1394_GUIDLo, (u32)ohci->card.guid);
3921 		reg_write(ohci, OHCI1394_GUIDHi, (u32)(ohci->card.guid >> 32));
3922 	}
3923 
3924 	err = ohci_enable(&ohci->card, NULL, 0);
3925 	if (err)
3926 		return err;
3927 
3928 	ohci_resume_iso_dma(ohci);
3929 
3930 	return 0;
3931 }
3932 
3933 static const struct pci_device_id pci_table[] = {
3934 	{ PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
3935 	{ }
3936 };
3937 
3938 MODULE_DEVICE_TABLE(pci, pci_table);
3939 
3940 static SIMPLE_DEV_PM_OPS(pci_pm_ops, pci_suspend, pci_resume);
3941 
3942 static struct pci_driver fw_ohci_pci_driver = {
3943 	.name		= ohci_driver_name,
3944 	.id_table	= pci_table,
3945 	.probe		= pci_probe,
3946 	.remove		= pci_remove,
3947 	.driver.pm	= &pci_pm_ops,
3948 };
3949 
fw_ohci_init(void)3950 static int __init fw_ohci_init(void)
3951 {
3952 	selfid_workqueue = alloc_workqueue(KBUILD_MODNAME, WQ_MEM_RECLAIM, 0);
3953 	if (!selfid_workqueue)
3954 		return -ENOMEM;
3955 
3956 	return pci_register_driver(&fw_ohci_pci_driver);
3957 }
3958 
fw_ohci_cleanup(void)3959 static void __exit fw_ohci_cleanup(void)
3960 {
3961 	pci_unregister_driver(&fw_ohci_pci_driver);
3962 	destroy_workqueue(selfid_workqueue);
3963 }
3964 
3965 module_init(fw_ohci_init);
3966 module_exit(fw_ohci_cleanup);
3967 
3968 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
3969 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
3970 MODULE_LICENSE("GPL");
3971 
3972 /* Provide a module alias so root-on-sbp2 initrds don't break. */
3973 MODULE_ALIAS("ohci1394");
3974