xref: /linux/drivers/gpu/drm/amd/display/dc/sspl/dc_spl.c (revision 428ac7ce7f82d11f072cba6000987826746a017b)
1 // SPDX-License-Identifier: MIT
2 //
3 // Copyright 2024 Advanced Micro Devices, Inc.
4 
5 #include "dc_spl.h"
6 #include "dc_spl_scl_easf_filters.h"
7 #include "dc_spl_isharp_filters.h"
8 #include "spl_debug.h"
9 
10 #define IDENTITY_RATIO(ratio) (spl_fixpt_u3d19(ratio) == (1 << 19))
11 #define MIN_VIEWPORT_SIZE 12
12 
spl_is_yuv420(enum spl_pixel_format format)13 static bool spl_is_yuv420(enum spl_pixel_format format)
14 {
15 	if ((format >= SPL_PIXEL_FORMAT_420BPP8) &&
16 		(format <= SPL_PIXEL_FORMAT_420BPP10))
17 		return true;
18 
19 	return false;
20 }
21 
spl_is_rgb8(enum spl_pixel_format format)22 static bool spl_is_rgb8(enum spl_pixel_format format)
23 {
24 	if (format == SPL_PIXEL_FORMAT_ARGB8888)
25 		return true;
26 
27 	return false;
28 }
29 
spl_is_video_format(enum spl_pixel_format format)30 static bool spl_is_video_format(enum spl_pixel_format format)
31 {
32 	if (format >= SPL_PIXEL_FORMAT_VIDEO_BEGIN
33 		&& format <= SPL_PIXEL_FORMAT_VIDEO_END)
34 		return true;
35 	else
36 		return false;
37 }
38 
spl_is_subsampled_format(enum spl_pixel_format format)39 static bool spl_is_subsampled_format(enum spl_pixel_format format)
40 {
41 	if (format >= SPL_PIXEL_FORMAT_SUBSAMPLED_BEGIN
42 		&& format <= SPL_PIXEL_FORMAT_SUBSAMPLED_END)
43 		return true;
44 	else
45 		return false;
46 }
47 
intersect_rec(const struct spl_rect * r0,const struct spl_rect * r1)48 static struct spl_rect intersect_rec(const struct spl_rect *r0, const struct spl_rect *r1)
49 {
50 	struct spl_rect rec;
51 	int r0_x_end = r0->x + r0->width;
52 	int r1_x_end = r1->x + r1->width;
53 	int r0_y_end = r0->y + r0->height;
54 	int r1_y_end = r1->y + r1->height;
55 
56 	rec.x = r0->x > r1->x ? r0->x : r1->x;
57 	rec.width = r0_x_end > r1_x_end ? r1_x_end - rec.x : r0_x_end - rec.x;
58 	rec.y = r0->y > r1->y ? r0->y : r1->y;
59 	rec.height = r0_y_end > r1_y_end ? r1_y_end - rec.y : r0_y_end - rec.y;
60 
61 	/* in case that there is no intersection */
62 	if (rec.width < 0 || rec.height < 0)
63 		memset(&rec, 0, sizeof(rec));
64 
65 	return rec;
66 }
67 
shift_rec(const struct spl_rect * rec_in,int x,int y)68 static struct spl_rect shift_rec(const struct spl_rect *rec_in, int x, int y)
69 {
70 	struct spl_rect rec_out = *rec_in;
71 
72 	rec_out.x += x;
73 	rec_out.y += y;
74 
75 	return rec_out;
76 }
77 
spl_opp_adjust_rect(struct spl_rect * rec,const struct spl_opp_adjust * adjust)78 static void spl_opp_adjust_rect(struct spl_rect *rec, const struct spl_opp_adjust *adjust)
79 {
80 	if ((rec->x + adjust->x) >= 0)
81 		rec->x += adjust->x;
82 
83 	if ((rec->y + adjust->y) >= 0)
84 		rec->y += adjust->y;
85 
86 	if ((rec->width + adjust->width) >= 1)
87 		rec->width += adjust->width;
88 
89 	if ((rec->height + adjust->height) >= 1)
90 		rec->height += adjust->height;
91 }
92 
calculate_plane_rec_in_timing_active(struct spl_in * spl_in,const struct spl_rect * rec_in)93 static struct spl_rect calculate_plane_rec_in_timing_active(
94 		struct spl_in *spl_in,
95 		const struct spl_rect *rec_in)
96 {
97 	/*
98 	 * The following diagram shows an example where we map a 1920x1200
99 	 * desktop to a 2560x1440 timing with a plane rect in the middle
100 	 * of the screen. To map a plane rect from Stream Source to Timing
101 	 * Active space, we first multiply stream scaling ratios (i.e 2304/1920
102 	 * horizontal and 1440/1200 vertical) to the plane's x and y, then
103 	 * we add stream destination offsets (i.e 128 horizontal, 0 vertical).
104 	 * This will give us a plane rect's position in Timing Active. However
105 	 * we have to remove the fractional. The rule is that we find left/right
106 	 * and top/bottom positions and round the value to the adjacent integer.
107 	 *
108 	 * Stream Source Space
109 	 * ------------
110 	 *        __________________________________________________
111 	 *       |Stream Source (1920 x 1200) ^                     |
112 	 *       |                            y                     |
113 	 *       |         <------- w --------|>                    |
114 	 *       |          __________________V                     |
115 	 *       |<-- x -->|Plane//////////////| ^                  |
116 	 *       |         |(pre scale)////////| |                  |
117 	 *       |         |///////////////////| |                  |
118 	 *       |         |///////////////////| h                  |
119 	 *       |         |///////////////////| |                  |
120 	 *       |         |///////////////////| |                  |
121 	 *       |         |///////////////////| V                  |
122 	 *       |                                                  |
123 	 *       |                                                  |
124 	 *       |__________________________________________________|
125 	 *
126 	 *
127 	 * Timing Active Space
128 	 * ---------------------------------
129 	 *
130 	 *       Timing Active (2560 x 1440)
131 	 *        __________________________________________________
132 	 *       |*****|  Stteam Destination (2304 x 1440)    |*****|
133 	 *       |*****|                                      |*****|
134 	 *       |<128>|                                      |*****|
135 	 *       |*****|     __________________               |*****|
136 	 *       |*****|    |Plane/////////////|              |*****|
137 	 *       |*****|    |(post scale)//////|              |*****|
138 	 *       |*****|    |//////////////////|              |*****|
139 	 *       |*****|    |//////////////////|              |*****|
140 	 *       |*****|    |//////////////////|              |*****|
141 	 *       |*****|    |//////////////////|              |*****|
142 	 *       |*****|                                      |*****|
143 	 *       |*****|                                      |*****|
144 	 *       |*****|                                      |*****|
145 	 *       |*****|______________________________________|*****|
146 	 *
147 	 * So the resulting formulas are shown below:
148 	 *
149 	 * recout_x = 128 + round(plane_x * 2304 / 1920)
150 	 * recout_w = 128 + round((plane_x + plane_w) * 2304 / 1920) - recout_x
151 	 * recout_y = 0 + round(plane_y * 1440 / 1200)
152 	 * recout_h = 0 + round((plane_y + plane_h) * 1440 / 1200) - recout_y
153 	 *
154 	 * NOTE: fixed point division is not error free. To reduce errors
155 	 * introduced by fixed point division, we divide only after
156 	 * multiplication is complete.
157 	 */
158 	const struct spl_rect *stream_src = &spl_in->basic_out.src_rect;
159 	const struct spl_rect *stream_dst = &spl_in->basic_out.dst_rect;
160 	struct spl_rect rec_out = {0};
161 	struct spl_fixed31_32 temp;
162 
163 
164 	temp = spl_fixpt_from_fraction(rec_in->x * (long long)stream_dst->width,
165 			stream_src->width);
166 	rec_out.x = stream_dst->x + spl_fixpt_round(temp);
167 
168 	temp = spl_fixpt_from_fraction(
169 			(rec_in->x + rec_in->width) * (long long)stream_dst->width,
170 			stream_src->width);
171 	rec_out.width = stream_dst->x + spl_fixpt_round(temp) - rec_out.x;
172 
173 	temp = spl_fixpt_from_fraction(rec_in->y * (long long)stream_dst->height,
174 			stream_src->height);
175 	rec_out.y = stream_dst->y + spl_fixpt_round(temp);
176 
177 	temp = spl_fixpt_from_fraction(
178 			(rec_in->y + rec_in->height) * (long long)stream_dst->height,
179 			stream_src->height);
180 	rec_out.height = stream_dst->y + spl_fixpt_round(temp) - rec_out.y;
181 
182 	return rec_out;
183 }
184 
calculate_mpc_slice_in_timing_active(struct spl_in * spl_in,struct spl_rect * plane_clip_rec)185 static struct spl_rect calculate_mpc_slice_in_timing_active(
186 		struct spl_in *spl_in,
187 		struct spl_rect *plane_clip_rec)
188 {
189 	bool use_recout_width_aligned =
190 		spl_in->basic_in.num_h_slices_recout_width_align.use_recout_width_aligned;
191 	int mpc_slice_count =
192 		spl_in->basic_in.num_h_slices_recout_width_align.num_slices_recout_width.mpc_num_h_slices;
193 	int recout_width_align =
194 		spl_in->basic_in.num_h_slices_recout_width_align.num_slices_recout_width.mpc_recout_width_align;
195 	int mpc_slice_idx = spl_in->basic_in.mpc_h_slice_index;
196 	int epimo = mpc_slice_count - plane_clip_rec->width % mpc_slice_count - 1;
197 	struct spl_rect mpc_rec;
198 
199 	if (spl_in->basic_in.custom_width != 0) {
200 		mpc_rec.width = spl_in->basic_in.custom_width;
201 		mpc_rec.x = spl_in->basic_in.custom_x;
202 		mpc_rec.height = plane_clip_rec->height;
203 		mpc_rec.y = plane_clip_rec->y;
204 	} else if (use_recout_width_aligned) {
205 		mpc_rec.width = recout_width_align;
206 		if ((mpc_rec.width * (mpc_slice_idx + 1)) > plane_clip_rec->width) {
207 			mpc_rec.width = plane_clip_rec->width % recout_width_align;
208 			mpc_rec.x = plane_clip_rec->x + recout_width_align * mpc_slice_idx;
209 		} else
210 			mpc_rec.x = plane_clip_rec->x + mpc_rec.width * mpc_slice_idx;
211 		mpc_rec.height = plane_clip_rec->height;
212 		mpc_rec.y = plane_clip_rec->y;
213 
214 	} else {
215 		mpc_rec.width = plane_clip_rec->width / mpc_slice_count;
216 		mpc_rec.x = plane_clip_rec->x + mpc_rec.width * mpc_slice_idx;
217 		mpc_rec.height = plane_clip_rec->height;
218 		mpc_rec.y = plane_clip_rec->y;
219 	}
220 	SPL_ASSERT(mpc_slice_count == 1 ||
221 			spl_in->basic_out.view_format != SPL_VIEW_3D_SIDE_BY_SIDE ||
222 			mpc_rec.width % 2 == 0);
223 
224 	/* extra pixels in the division remainder need to go to pipes after
225 	 * the extra pixel index minus one(epimo) defined here as:
226 	 */
227 	if (mpc_slice_idx > epimo && spl_in->basic_in.custom_width == 0) {
228 		mpc_rec.x += mpc_slice_idx - epimo - 1;
229 		mpc_rec.width += 1;
230 	}
231 
232 	if (spl_in->basic_out.view_format == SPL_VIEW_3D_TOP_AND_BOTTOM) {
233 		SPL_ASSERT(mpc_rec.height % 2 == 0);
234 		mpc_rec.height /= 2;
235 	}
236 	return mpc_rec;
237 }
238 
calculate_odm_slice_in_timing_active(struct spl_in * spl_in)239 static struct spl_rect calculate_odm_slice_in_timing_active(struct spl_in *spl_in)
240 {
241 	int odm_slice_count = spl_in->basic_out.odm_combine_factor;
242 	int odm_slice_idx = spl_in->odm_slice_index;
243 	bool is_last_odm_slice = (odm_slice_idx + 1) == odm_slice_count;
244 	int h_active = spl_in->basic_out.output_size.width;
245 	int v_active = spl_in->basic_out.output_size.height;
246 	int odm_slice_width;
247 	struct spl_rect odm_rec;
248 
249 	if (spl_in->basic_out.odm_combine_factor > 0) {
250 		odm_slice_width = h_active / odm_slice_count;
251 		/*
252 		 * deprecated, caller must pass in odm slice rect i.e OPP input
253 		 * rect in timing active for the new interface.
254 		 */
255 		if (spl_in->basic_out.use_two_pixels_per_container && (odm_slice_width % 2))
256 			odm_slice_width++;
257 
258 		odm_rec.x = odm_slice_width * odm_slice_idx;
259 		odm_rec.width = is_last_odm_slice ?
260 			/* last slice width is the reminder of h_active */
261 			h_active - odm_slice_width * (odm_slice_count - 1) :
262 			/* odm slice width is the floor of h_active / count */
263 			odm_slice_width;
264 		odm_rec.y = 0;
265 		odm_rec.height = v_active;
266 
267 		return odm_rec;
268 	}
269 
270 	return spl_in->basic_out.odm_slice_rect;
271 }
272 
spl_calculate_recout(struct spl_in * spl_in,struct spl_scratch * spl_scratch,struct spl_out * spl_out)273 static void spl_calculate_recout(struct spl_in *spl_in, struct spl_scratch *spl_scratch, struct spl_out *spl_out)
274 {
275 	/*
276 	 * A plane clip represents the desired plane size and position in Stream
277 	 * Source Space. Stream Source is the destination where all planes are
278 	 * blended (i.e. positioned, scaled and overlaid). It is a canvas where
279 	 * all planes associated with the current stream are drawn together.
280 	 * After Stream Source is completed, we will further scale and
281 	 * reposition the entire canvas of the stream source to Stream
282 	 * Destination in Timing Active Space. This could be due to display
283 	 * overscan adjustment where we will need to rescale and reposition all
284 	 * the planes so they can fit into a TV with overscan or downscale
285 	 * upscale features such as GPU scaling or VSR.
286 	 *
287 	 * This two step blending is a virtual procedure in software. In
288 	 * hardware there is no such thing as Stream Source. all planes are
289 	 * blended once in Timing Active Space. Software virtualizes a Stream
290 	 * Source space to decouple the math complicity so scaling param
291 	 * calculation focuses on one step at a time.
292 	 *
293 	 * In the following two diagrams, user applied 10% overscan adjustment
294 	 * so the Stream Source needs to be scaled down a little before mapping
295 	 * to Timing Active Space. As a result the Plane Clip is also scaled
296 	 * down by the same ratio, Plane Clip position (i.e. x and y) with
297 	 * respect to Stream Source is also scaled down. To map it in Timing
298 	 * Active Space additional x and y offsets from Stream Destination are
299 	 * added to Plane Clip as well.
300 	 *
301 	 * Stream Source Space
302 	 * ------------
303 	 *        __________________________________________________
304 	 *       |Stream Source (3840 x 2160) ^                     |
305 	 *       |                            y                     |
306 	 *       |                            |                     |
307 	 *       |          __________________V                     |
308 	 *       |<-- x -->|Plane Clip/////////|                    |
309 	 *       |         |(pre scale)////////|                    |
310 	 *       |         |///////////////////|                    |
311 	 *       |         |///////////////////|                    |
312 	 *       |         |///////////////////|                    |
313 	 *       |         |///////////////////|                    |
314 	 *       |         |///////////////////|                    |
315 	 *       |                                                  |
316 	 *       |                                                  |
317 	 *       |__________________________________________________|
318 	 *
319 	 *
320 	 * Timing Active Space (3840 x 2160)
321 	 * ---------------------------------
322 	 *
323 	 *       Timing Active
324 	 *        __________________________________________________
325 	 *       | y_____________________________________________   |
326 	 *       |x |Stream Destination (3456 x 1944)            |  |
327 	 *       |  |                                            |  |
328 	 *       |  |        __________________                  |  |
329 	 *       |  |       |Plane Clip////////|                 |  |
330 	 *       |  |       |(post scale)//////|                 |  |
331 	 *       |  |       |//////////////////|                 |  |
332 	 *       |  |       |//////////////////|                 |  |
333 	 *       |  |       |//////////////////|                 |  |
334 	 *       |  |       |//////////////////|                 |  |
335 	 *       |  |                                            |  |
336 	 *       |  |                                            |  |
337 	 *       |  |____________________________________________|  |
338 	 *       |__________________________________________________|
339 	 *
340 	 *
341 	 * In Timing Active Space a plane clip could be further sliced into
342 	 * pieces called MPC slices. Each Pipe Context is responsible for
343 	 * processing only one MPC slice so the plane processing workload can be
344 	 * distributed to multiple DPP Pipes. MPC slices could be blended
345 	 * together to a single ODM slice. Each ODM slice is responsible for
346 	 * processing a portion of Timing Active divided horizontally so the
347 	 * output pixel processing workload can be distributed to multiple OPP
348 	 * pipes. All ODM slices are mapped together in ODM block so all MPC
349 	 * slices belong to different ODM slices could be pieced together to
350 	 * form a single image in Timing Active. MPC slices must belong to
351 	 * single ODM slice. If an MPC slice goes across ODM slice boundary, it
352 	 * needs to be divided into two MPC slices one for each ODM slice.
353 	 *
354 	 * In the following diagram the output pixel processing workload is
355 	 * divided horizontally into two ODM slices one for each OPP blend tree.
356 	 * OPP0 blend tree is responsible for processing left half of Timing
357 	 * Active, while OPP2 blend tree is responsible for processing right
358 	 * half.
359 	 *
360 	 * The plane has two MPC slices. However since the right MPC slice goes
361 	 * across ODM boundary, two DPP pipes are needed one for each OPP blend
362 	 * tree. (i.e. DPP1 for OPP0 blend tree and DPP2 for OPP2 blend tree).
363 	 *
364 	 * Assuming that we have a Pipe Context associated with OPP0 and DPP1
365 	 * working on processing the plane in the diagram. We want to know the
366 	 * width and height of the shaded rectangle and its relative position
367 	 * with respect to the ODM slice0. This is called the recout of the pipe
368 	 * context.
369 	 *
370 	 * Planes can be at arbitrary size and position and there could be an
371 	 * arbitrary number of MPC and ODM slices. The algorithm needs to take
372 	 * all scenarios into account.
373 	 *
374 	 * Timing Active Space (3840 x 2160)
375 	 * ---------------------------------
376 	 *
377 	 *       Timing Active
378 	 *        __________________________________________________
379 	 *       |OPP0(ODM slice0)^        |OPP2(ODM slice1)        |
380 	 *       |                y        |                        |
381 	 *       |                |  <- w ->                        |
382 	 *       |           _____V________|____                    |
383 	 *       |          |DPP0 ^  |DPP1 |DPP2|                   |
384 	 *       |<------ x |-----|->|/////|    |                   |
385 	 *       |          |     |  |/////|    |                   |
386 	 *       |          |     h  |/////|    |                   |
387 	 *       |          |     |  |/////|    |                   |
388 	 *       |          |_____V__|/////|____|                   |
389 	 *       |                         |                        |
390 	 *       |                         |                        |
391 	 *       |                         |                        |
392 	 *       |_________________________|________________________|
393 	 *
394 	 *
395 	 */
396 	struct spl_rect plane_clip;
397 	struct spl_rect mpc_slice_of_plane_clip;
398 	struct spl_rect odm_slice;
399 	struct spl_rect overlapping_area;
400 
401 	plane_clip = calculate_plane_rec_in_timing_active(spl_in,
402 			&spl_in->basic_in.clip_rect);
403 	/* guard plane clip from drawing beyond stream dst here */
404 	plane_clip = intersect_rec(&plane_clip,
405 				&spl_in->basic_out.dst_rect);
406 	mpc_slice_of_plane_clip = calculate_mpc_slice_in_timing_active(
407 			spl_in, &plane_clip);
408 	odm_slice = calculate_odm_slice_in_timing_active(spl_in);
409 	overlapping_area = intersect_rec(&mpc_slice_of_plane_clip, &odm_slice);
410 
411 	if (overlapping_area.height > 0 &&
412 			overlapping_area.width > 0) {
413 		/* shift the overlapping area so it is with respect to current
414 		 * ODM slice's position
415 		 */
416 		spl_scratch->scl_data.recout = shift_rec(
417 				&overlapping_area,
418 				-odm_slice.x, -odm_slice.y);
419 		spl_scratch->scl_data.recout.height -=
420 			spl_in->debug.visual_confirm_base_offset;
421 		spl_scratch->scl_data.recout.height -=
422 			spl_in->debug.visual_confirm_dpp_offset;
423 	} else
424 		/* if there is no overlap, zero recout */
425 		memset(&spl_scratch->scl_data.recout, 0,
426 				sizeof(struct spl_rect));
427 }
428 
429 /* Calculate scaling ratios */
spl_calculate_scaling_ratios(struct spl_in * spl_in,struct spl_scratch * spl_scratch,struct spl_out * spl_out)430 static void spl_calculate_scaling_ratios(struct spl_in *spl_in,
431 		struct spl_scratch *spl_scratch,
432 		struct spl_out *spl_out)
433 {
434 	const int in_w = spl_in->basic_out.src_rect.width;
435 	const int in_h = spl_in->basic_out.src_rect.height;
436 	const int out_w = spl_in->basic_out.dst_rect.width;
437 	const int out_h = spl_in->basic_out.dst_rect.height;
438 	struct spl_rect surf_src = spl_in->basic_in.src_rect;
439 
440 	/*Swap surf_src height and width since scaling ratios are in recout rotation*/
441 	if (spl_in->basic_in.rotation == SPL_ROTATION_ANGLE_90 ||
442 		spl_in->basic_in.rotation == SPL_ROTATION_ANGLE_270)
443 		spl_swap(surf_src.height, surf_src.width);
444 
445 	spl_scratch->scl_data.ratios.horz = spl_fixpt_from_fraction(
446 					surf_src.width,
447 					spl_in->basic_in.dst_rect.width);
448 	spl_scratch->scl_data.ratios.vert = spl_fixpt_from_fraction(
449 					surf_src.height,
450 					spl_in->basic_in.dst_rect.height);
451 
452 	if (spl_in->basic_out.view_format == SPL_VIEW_3D_SIDE_BY_SIDE)
453 		spl_scratch->scl_data.ratios.horz.value *= 2;
454 	else if (spl_in->basic_out.view_format == SPL_VIEW_3D_TOP_AND_BOTTOM)
455 		spl_scratch->scl_data.ratios.vert.value *= 2;
456 
457 	spl_scratch->scl_data.ratios.vert.value = spl_div64_s64(
458 		spl_scratch->scl_data.ratios.vert.value * in_h, out_h);
459 	spl_scratch->scl_data.ratios.horz.value = spl_div64_s64(
460 		spl_scratch->scl_data.ratios.horz.value * in_w, out_w);
461 
462 	spl_scratch->scl_data.ratios.horz_c = spl_scratch->scl_data.ratios.horz;
463 	spl_scratch->scl_data.ratios.vert_c = spl_scratch->scl_data.ratios.vert;
464 
465 	if (spl_is_yuv420(spl_in->basic_in.format)) {
466 		spl_scratch->scl_data.ratios.horz_c.value /= 2;
467 		spl_scratch->scl_data.ratios.vert_c.value /= 2;
468 	}
469 	spl_scratch->scl_data.ratios.horz = spl_fixpt_truncate(
470 			spl_scratch->scl_data.ratios.horz, 19);
471 	spl_scratch->scl_data.ratios.vert = spl_fixpt_truncate(
472 			spl_scratch->scl_data.ratios.vert, 19);
473 	spl_scratch->scl_data.ratios.horz_c = spl_fixpt_truncate(
474 			spl_scratch->scl_data.ratios.horz_c, 19);
475 	spl_scratch->scl_data.ratios.vert_c = spl_fixpt_truncate(
476 			spl_scratch->scl_data.ratios.vert_c, 19);
477 
478 	/*
479 	 * Coefficient table and some registers are different based on ratio
480 	 * that is output/input.  Currently we calculate input/output
481 	 * Store 1/ratio in recip_ratio for those lookups
482 	 */
483 	spl_scratch->scl_data.recip_ratios.horz = spl_fixpt_recip(
484 			spl_scratch->scl_data.ratios.horz);
485 	spl_scratch->scl_data.recip_ratios.vert = spl_fixpt_recip(
486 			spl_scratch->scl_data.ratios.vert);
487 	spl_scratch->scl_data.recip_ratios.horz_c = spl_fixpt_recip(
488 			spl_scratch->scl_data.ratios.horz_c);
489 	spl_scratch->scl_data.recip_ratios.vert_c = spl_fixpt_recip(
490 			spl_scratch->scl_data.ratios.vert_c);
491 }
492 
493 /* Calculate Viewport size */
spl_calculate_viewport_size(struct spl_in * spl_in,struct spl_scratch * spl_scratch)494 static void spl_calculate_viewport_size(struct spl_in *spl_in, struct spl_scratch *spl_scratch)
495 {
496 	spl_scratch->scl_data.viewport.width = spl_fixpt_ceil(spl_fixpt_mul_int(spl_scratch->scl_data.ratios.horz,
497 							spl_scratch->scl_data.recout.width));
498 	spl_scratch->scl_data.viewport.height = spl_fixpt_ceil(spl_fixpt_mul_int(spl_scratch->scl_data.ratios.vert,
499 							spl_scratch->scl_data.recout.height));
500 	spl_scratch->scl_data.viewport_c.width = spl_fixpt_ceil(spl_fixpt_mul_int(spl_scratch->scl_data.ratios.horz_c,
501 						spl_scratch->scl_data.recout.width));
502 	spl_scratch->scl_data.viewport_c.height = spl_fixpt_ceil(spl_fixpt_mul_int(spl_scratch->scl_data.ratios.vert_c,
503 						spl_scratch->scl_data.recout.height));
504 	if (spl_in->basic_in.rotation == SPL_ROTATION_ANGLE_90 ||
505 			spl_in->basic_in.rotation == SPL_ROTATION_ANGLE_270) {
506 		spl_swap(spl_scratch->scl_data.viewport.width, spl_scratch->scl_data.viewport.height);
507 		spl_swap(spl_scratch->scl_data.viewport_c.width, spl_scratch->scl_data.viewport_c.height);
508 	}
509 }
510 
spl_get_vp_scan_direction(enum spl_rotation_angle rotation,bool horizontal_mirror,bool * orthogonal_rotation,bool * flip_vert_scan_dir,bool * flip_horz_scan_dir)511 static void spl_get_vp_scan_direction(enum spl_rotation_angle rotation,
512 			   bool horizontal_mirror,
513 			   bool *orthogonal_rotation,
514 			   bool *flip_vert_scan_dir,
515 			   bool *flip_horz_scan_dir)
516 {
517 	*orthogonal_rotation = false;
518 	*flip_vert_scan_dir = false;
519 	*flip_horz_scan_dir = false;
520 	if (rotation == SPL_ROTATION_ANGLE_180) {
521 		*flip_vert_scan_dir = true;
522 		*flip_horz_scan_dir = true;
523 	} else if (rotation == SPL_ROTATION_ANGLE_90) {
524 		*orthogonal_rotation = true;
525 		*flip_horz_scan_dir = true;
526 	} else if (rotation == SPL_ROTATION_ANGLE_270) {
527 		*orthogonal_rotation = true;
528 		*flip_vert_scan_dir = true;
529 	}
530 
531 	if (horizontal_mirror)
532 		*flip_horz_scan_dir = !*flip_horz_scan_dir;
533 }
534 
535 /*
536  * We completely calculate vp offset, size and inits here based entirely on scaling
537  * ratios and recout for pixel perfect pipe combine.
538  */
spl_calculate_init_and_vp(bool flip_scan_dir,int recout_offset_within_recout_full,int recout_size,int src_size,int taps,struct spl_fixed31_32 ratio,struct spl_fixed31_32 init_adj,struct spl_fixed31_32 * init,int * vp_offset,int * vp_size)539 static void spl_calculate_init_and_vp(bool flip_scan_dir,
540 				int recout_offset_within_recout_full,
541 				int recout_size,
542 				int src_size,
543 				int taps,
544 				struct spl_fixed31_32 ratio,
545 				struct spl_fixed31_32 init_adj,
546 				struct spl_fixed31_32 *init,
547 				int *vp_offset,
548 				int *vp_size)
549 {
550 	struct spl_fixed31_32 temp;
551 	int int_part;
552 
553 	/*
554 	 * First of the taps starts sampling pixel number <init_int_part> corresponding to recout
555 	 * pixel 1. Next recout pixel samples int part of <init + scaling ratio> and so on.
556 	 * All following calculations are based on this logic.
557 	 *
558 	 * Init calculated according to formula:
559 	 * init = (scaling_ratio + number_of_taps + 1) / 2
560 	 * init_bot = init + scaling_ratio
561 	 * to get pixel perfect combine add the fraction from calculating vp offset
562 	 */
563 	temp = spl_fixpt_mul_int(ratio, recout_offset_within_recout_full);
564 	*vp_offset = spl_fixpt_floor(temp);
565 	temp.value &= 0xffffffff;
566 	*init = spl_fixpt_add(spl_fixpt_div_int(spl_fixpt_add_int(ratio, taps + 1), 2), temp);
567 	*init = spl_fixpt_add(*init, init_adj);
568 	*init = spl_fixpt_truncate(*init, 19);
569 
570 	/*
571 	 * If viewport has non 0 offset and there are more taps than covered by init then
572 	 * we should decrease the offset and increase init so we are never sampling
573 	 * outside of viewport.
574 	 */
575 	int_part = spl_fixpt_floor(*init);
576 	if (int_part < taps) {
577 		int_part = taps - int_part;
578 		if (int_part > *vp_offset)
579 			int_part = *vp_offset;
580 		*vp_offset -= int_part;
581 		*init = spl_fixpt_add_int(*init, int_part);
582 	}
583 	/*
584 	 * If taps are sampling outside of viewport at end of recout and there are more pixels
585 	 * available in the surface we should increase the viewport size, regardless set vp to
586 	 * only what is used.
587 	 */
588 	temp = spl_fixpt_add(*init, spl_fixpt_mul_int(ratio, recout_size - 1));
589 	*vp_size = spl_fixpt_floor(temp);
590 	if (*vp_size + *vp_offset > src_size)
591 		*vp_size = src_size - *vp_offset;
592 
593 	/* We did all the math assuming we are scanning same direction as display does,
594 	 * however mirror/rotation changes how vp scans vs how it is offset. If scan direction
595 	 * is flipped we simply need to calculate offset from the other side of plane.
596 	 * Note that outside of viewport all scaling hardware works in recout space.
597 	 */
598 	if (flip_scan_dir)
599 		*vp_offset = src_size - *vp_offset - *vp_size;
600 }
601 
602 /*Calculate inits and viewport */
spl_calculate_inits_and_viewports(struct spl_in * spl_in,struct spl_scratch * spl_scratch)603 static void spl_calculate_inits_and_viewports(struct spl_in *spl_in,
604 		struct spl_scratch *spl_scratch)
605 {
606 	struct spl_rect src = spl_in->basic_in.src_rect;
607 	struct spl_rect recout_dst_in_active_timing;
608 	struct spl_rect recout_clip_in_active_timing;
609 	struct spl_rect recout_clip_in_recout_dst;
610 	struct spl_rect overlap_in_active_timing;
611 	struct spl_rect odm_slice = calculate_odm_slice_in_timing_active(spl_in);
612 	int vpc_div = spl_is_subsampled_format(spl_in->basic_in.format) ? 2 : 1;
613 	bool orthogonal_rotation, flip_vert_scan_dir, flip_horz_scan_dir;
614 	struct spl_fixed31_32 init_adj_h = spl_fixpt_zero;
615 	struct spl_fixed31_32 init_adj_v = spl_fixpt_zero;
616 
617 	recout_clip_in_active_timing = shift_rec(
618 			&spl_scratch->scl_data.recout, odm_slice.x, odm_slice.y);
619 	recout_dst_in_active_timing = calculate_plane_rec_in_timing_active(
620 			spl_in, &spl_in->basic_in.dst_rect);
621 	overlap_in_active_timing = intersect_rec(&recout_clip_in_active_timing,
622 			&recout_dst_in_active_timing);
623 	if (overlap_in_active_timing.width > 0 &&
624 			overlap_in_active_timing.height > 0)
625 		recout_clip_in_recout_dst = shift_rec(&overlap_in_active_timing,
626 				-recout_dst_in_active_timing.x,
627 				-recout_dst_in_active_timing.y);
628 	else
629 		memset(&recout_clip_in_recout_dst, 0, sizeof(struct spl_rect));
630 	/*
631 	 * Work in recout rotation since that requires less transformations
632 	 */
633 	spl_get_vp_scan_direction(
634 			spl_in->basic_in.rotation,
635 			spl_in->basic_in.horizontal_mirror,
636 			&orthogonal_rotation,
637 			&flip_vert_scan_dir,
638 			&flip_horz_scan_dir);
639 
640 	if (spl_is_subsampled_format(spl_in->basic_in.format)) {
641 		/* this gives the direction of the cositing (negative will move
642 		 * left, right otherwise)
643 		 */
644 		int sign = 1;
645 
646 		switch (spl_in->basic_in.cositing) {
647 
648 		case CHROMA_COSITING_TOPLEFT:
649 			init_adj_h = spl_fixpt_from_fraction(sign, 4);
650 			init_adj_v = spl_fixpt_from_fraction(sign, 4);
651 			break;
652 		case CHROMA_COSITING_LEFT:
653 			init_adj_h = spl_fixpt_from_fraction(sign, 4);
654 			init_adj_v = spl_fixpt_zero;
655 			break;
656 		case CHROMA_COSITING_NONE:
657 		default:
658 			init_adj_h = spl_fixpt_zero;
659 			init_adj_v = spl_fixpt_zero;
660 			break;
661 		}
662 	}
663 
664 	if (orthogonal_rotation) {
665 		spl_swap(src.width, src.height);
666 		spl_swap(flip_vert_scan_dir, flip_horz_scan_dir);
667 		spl_swap(init_adj_h, init_adj_v);
668 	}
669 
670 	spl_calculate_init_and_vp(
671 			flip_horz_scan_dir,
672 			recout_clip_in_recout_dst.x,
673 			spl_scratch->scl_data.recout.width,
674 			src.width,
675 			spl_scratch->scl_data.taps.h_taps,
676 			spl_scratch->scl_data.ratios.horz,
677 			spl_fixpt_zero,
678 			&spl_scratch->scl_data.inits.h,
679 			&spl_scratch->scl_data.viewport.x,
680 			&spl_scratch->scl_data.viewport.width);
681 	spl_calculate_init_and_vp(
682 			flip_horz_scan_dir,
683 			recout_clip_in_recout_dst.x,
684 			spl_scratch->scl_data.recout.width,
685 			src.width / vpc_div,
686 			spl_scratch->scl_data.taps.h_taps_c,
687 			spl_scratch->scl_data.ratios.horz_c,
688 			init_adj_h,
689 			&spl_scratch->scl_data.inits.h_c,
690 			&spl_scratch->scl_data.viewport_c.x,
691 			&spl_scratch->scl_data.viewport_c.width);
692 	spl_calculate_init_and_vp(
693 			flip_vert_scan_dir,
694 			recout_clip_in_recout_dst.y,
695 			spl_scratch->scl_data.recout.height,
696 			src.height,
697 			spl_scratch->scl_data.taps.v_taps,
698 			spl_scratch->scl_data.ratios.vert,
699 			spl_fixpt_zero,
700 			&spl_scratch->scl_data.inits.v,
701 			&spl_scratch->scl_data.viewport.y,
702 			&spl_scratch->scl_data.viewport.height);
703 	spl_calculate_init_and_vp(
704 			flip_vert_scan_dir,
705 			recout_clip_in_recout_dst.y,
706 			spl_scratch->scl_data.recout.height,
707 			src.height / vpc_div,
708 			spl_scratch->scl_data.taps.v_taps_c,
709 			spl_scratch->scl_data.ratios.vert_c,
710 			init_adj_v,
711 			&spl_scratch->scl_data.inits.v_c,
712 			&spl_scratch->scl_data.viewport_c.y,
713 			&spl_scratch->scl_data.viewport_c.height);
714 	if (orthogonal_rotation) {
715 		spl_swap(spl_scratch->scl_data.viewport.x, spl_scratch->scl_data.viewport.y);
716 		spl_swap(spl_scratch->scl_data.viewport.width, spl_scratch->scl_data.viewport.height);
717 		spl_swap(spl_scratch->scl_data.viewport_c.x, spl_scratch->scl_data.viewport_c.y);
718 		spl_swap(spl_scratch->scl_data.viewport_c.width, spl_scratch->scl_data.viewport_c.height);
719 	}
720 	spl_scratch->scl_data.viewport.x += src.x;
721 	spl_scratch->scl_data.viewport.y += src.y;
722 	SPL_ASSERT(src.x % vpc_div == 0 && src.y % vpc_div == 0);
723 	spl_scratch->scl_data.viewport_c.x += src.x / vpc_div;
724 	spl_scratch->scl_data.viewport_c.y += src.y / vpc_div;
725 }
726 
spl_handle_3d_recout(struct spl_in * spl_in,struct spl_rect * recout)727 static void spl_handle_3d_recout(struct spl_in *spl_in, struct spl_rect *recout)
728 {
729 	/*
730 	 * Handle side by side and top bottom 3d recout offsets after vp calculation
731 	 * since 3d is special and needs to calculate vp as if there is no recout offset
732 	 * This may break with rotation, good thing we aren't mixing hw rotation and 3d
733 	 */
734 	if (spl_in->basic_in.mpc_h_slice_index) {
735 		SPL_ASSERT(spl_in->basic_in.rotation == SPL_ROTATION_ANGLE_0 ||
736 			(spl_in->basic_out.view_format != SPL_VIEW_3D_TOP_AND_BOTTOM &&
737 					spl_in->basic_out.view_format != SPL_VIEW_3D_SIDE_BY_SIDE));
738 		if (spl_in->basic_out.view_format == SPL_VIEW_3D_TOP_AND_BOTTOM)
739 			recout->y += recout->height;
740 		else if (spl_in->basic_out.view_format == SPL_VIEW_3D_SIDE_BY_SIDE)
741 			recout->x += recout->width;
742 	}
743 }
744 
spl_clamp_viewport(struct spl_rect * viewport,int min_viewport_size)745 static void spl_clamp_viewport(struct spl_rect *viewport, int min_viewport_size)
746 {
747 	if (min_viewport_size == 0)
748 		min_viewport_size = MIN_VIEWPORT_SIZE;
749 	/* Clamp minimum viewport size */
750 	if (viewport->height < min_viewport_size)
751 		viewport->height = min_viewport_size;
752 	if (viewport->width < min_viewport_size)
753 		viewport->width = min_viewport_size;
754 }
755 
spl_get_dscl_mode(const struct spl_in * spl_in,const struct spl_scaler_data * data,bool enable_isharp,bool enable_easf)756 static enum scl_mode spl_get_dscl_mode(const struct spl_in *spl_in,
757 				const struct spl_scaler_data *data,
758 				bool enable_isharp, bool enable_easf)
759 {
760 	const long long one = spl_fixpt_one.value;
761 	enum spl_pixel_format pixel_format = spl_in->basic_in.format;
762 
763 	/* Bypass if ratio is 1:1 with no ISHARP or force scale on */
764 	if (data->ratios.horz.value == one
765 			&& data->ratios.vert.value == one
766 			&& data->ratios.horz_c.value == one
767 			&& data->ratios.vert_c.value == one
768 			&& !spl_in->basic_out.always_scale
769 			&& !enable_isharp)
770 		return SCL_MODE_SCALING_444_BYPASS;
771 
772 	if (!spl_is_subsampled_format(pixel_format)) {
773 		if (spl_is_video_format(pixel_format))
774 			return SCL_MODE_SCALING_444_YCBCR_ENABLE;
775 		else
776 			return SCL_MODE_SCALING_444_RGB_ENABLE;
777 	}
778 
779 	/*
780 	 * Bypass YUV if Y is 1:1 with no ISHARP
781 	 * Do not bypass UV at 1:1 for cositing to be applied
782 	 */
783 	if (!enable_isharp) {
784 		if (data->ratios.horz.value == one && data->ratios.vert.value == one && !spl_in->basic_out.always_scale)
785 			return SCL_MODE_SCALING_420_LUMA_BYPASS;
786 	}
787 
788 	return SCL_MODE_SCALING_420_YCBCR_ENABLE;
789 }
790 
spl_choose_lls_policy(enum spl_pixel_format format,enum linear_light_scaling * lls_pref)791 static void spl_choose_lls_policy(enum spl_pixel_format format,
792 	enum linear_light_scaling *lls_pref)
793 {
794 	if (spl_is_subsampled_format(format))
795 		*lls_pref = LLS_PREF_NO;
796 	else /* RGB or YUV444 */
797 		*lls_pref = LLS_PREF_YES;
798 }
799 
800 /* Enable EASF ?*/
enable_easf(struct spl_in * spl_in,struct spl_scratch * spl_scratch)801 static bool enable_easf(struct spl_in *spl_in, struct spl_scratch *spl_scratch)
802 {
803 	int vratio = 0;
804 	int hratio = 0;
805 	bool skip_easf = false;
806 
807 	if (spl_in->disable_easf)
808 		skip_easf = true;
809 
810 	vratio = spl_fixpt_ceil(spl_scratch->scl_data.ratios.vert);
811 	hratio = spl_fixpt_ceil(spl_scratch->scl_data.ratios.horz);
812 
813 	/*
814 	 * No EASF support for downscaling > 2:1
815 	 * EASF support for upscaling or downscaling up to 2:1
816 	 */
817 	if ((vratio > 2) || (hratio > 2))
818 		skip_easf = true;
819 
820 	/*
821 	 * If lls_pref is LLS_PREF_DONT_CARE, then use pixel format
822 	 *  to determine whether to use LINEAR or NONLINEAR scaling
823 	 */
824 	if (spl_in->lls_pref == LLS_PREF_DONT_CARE)
825 		spl_choose_lls_policy(spl_in->basic_in.format,
826 			&spl_in->lls_pref);
827 
828 	/* Check for linear scaling or EASF preferred */
829 	if (spl_in->lls_pref != LLS_PREF_YES && !spl_in->prefer_easf)
830 		skip_easf = true;
831 
832 	return skip_easf;
833 }
834 
835 /* Check if video is in fullscreen mode */
spl_is_video_fullscreen(struct spl_in * spl_in)836 static bool spl_is_video_fullscreen(struct spl_in *spl_in)
837 {
838 	if (spl_is_video_format(spl_in->basic_in.format) && spl_in->is_fullscreen)
839 		return true;
840 	return false;
841 }
842 
spl_get_isharp_en(struct spl_in * spl_in,struct spl_scratch * spl_scratch)843 static bool spl_get_isharp_en(struct spl_in *spl_in,
844 	struct spl_scratch *spl_scratch)
845 {
846 	bool enable_isharp = false;
847 	int vratio = 0;
848 	int hratio = 0;
849 	struct spl_taps taps = spl_scratch->scl_data.taps;
850 	bool fullscreen = spl_is_video_fullscreen(spl_in);
851 
852 	/* Return if adaptive sharpness is disabled */
853 	if (spl_in->adaptive_sharpness.enable == false)
854 		return enable_isharp;
855 
856 	vratio = spl_fixpt_ceil(spl_scratch->scl_data.ratios.vert);
857 	hratio = spl_fixpt_ceil(spl_scratch->scl_data.ratios.horz);
858 
859 	/* No iSHARP support for downscaling */
860 	if (vratio > 1 || hratio > 1)
861 		return enable_isharp;
862 
863 	// Scaling is up to 1:1 (no scaling) or upscaling
864 
865 	/*
866 	 * Apply sharpness to RGB and YUV (NV12/P010)
867 	 *  surfaces based on policy setting
868 	 */
869 	if (!spl_is_video_format(spl_in->basic_in.format) &&
870 		(spl_in->sharpen_policy == SHARPEN_YUV))
871 		return enable_isharp;
872 	else if ((spl_is_video_format(spl_in->basic_in.format) && !fullscreen) &&
873 		(spl_in->sharpen_policy == SHARPEN_RGB_FULLSCREEN_YUV))
874 		return enable_isharp;
875 	else if (!spl_in->is_fullscreen &&
876 			spl_in->sharpen_policy == SHARPEN_FULLSCREEN_ALL)
877 		return enable_isharp;
878 
879 	/*
880 	 * Apply sharpness if supports horizontal taps 4,6 AND
881 	 *  vertical taps 3, 4, 6
882 	 */
883 	if ((taps.h_taps == 4 || taps.h_taps == 6) &&
884 		(taps.v_taps == 3 || taps.v_taps == 4 || taps.v_taps == 6))
885 		enable_isharp = true;
886 
887 	return enable_isharp;
888 }
889 
890 /* Calculate number of tap with adaptive scaling off */
spl_get_taps_non_adaptive_scaler(struct spl_scratch * spl_scratch,const struct spl_taps * in_taps,bool is_subsampled)891 static void spl_get_taps_non_adaptive_scaler(
892 		struct spl_scratch *spl_scratch,
893 		const struct spl_taps *in_taps,
894 		bool is_subsampled)
895 {
896 	bool check_max_downscale = false;
897 
898 	if (in_taps->h_taps == 0) {
899 		if (spl_fixpt_ceil(spl_scratch->scl_data.ratios.horz) > 1)
900 			spl_scratch->scl_data.taps.h_taps = spl_min(2 * spl_fixpt_ceil(
901 				spl_scratch->scl_data.ratios.horz), 8);
902 		else
903 			spl_scratch->scl_data.taps.h_taps = 4;
904 	} else
905 		spl_scratch->scl_data.taps.h_taps = in_taps->h_taps;
906 
907 	if (in_taps->v_taps == 0) {
908 		if (spl_fixpt_ceil(spl_scratch->scl_data.ratios.vert) > 1)
909 			spl_scratch->scl_data.taps.v_taps = spl_min(2 * spl_fixpt_ceil(
910 				spl_scratch->scl_data.ratios.vert), 8);
911 		else
912 			spl_scratch->scl_data.taps.v_taps = 4;
913 	} else
914 		spl_scratch->scl_data.taps.v_taps = in_taps->v_taps;
915 
916 	if (in_taps->v_taps_c == 0) {
917 		if (spl_fixpt_ceil(spl_scratch->scl_data.ratios.vert_c) > 1)
918 			spl_scratch->scl_data.taps.v_taps_c = spl_min(2 * spl_fixpt_ceil(
919 				spl_scratch->scl_data.ratios.vert_c), 8);
920 		else
921 			spl_scratch->scl_data.taps.v_taps_c = 4;
922 	} else
923 		spl_scratch->scl_data.taps.v_taps_c = in_taps->v_taps_c;
924 
925 	if (in_taps->h_taps_c == 0) {
926 		if (spl_fixpt_ceil(spl_scratch->scl_data.ratios.horz_c) > 1)
927 			spl_scratch->scl_data.taps.h_taps_c = spl_min(2 * spl_fixpt_ceil(
928 				spl_scratch->scl_data.ratios.horz_c), 8);
929 		else
930 			spl_scratch->scl_data.taps.h_taps_c = 4;
931 	} else if ((in_taps->h_taps_c % 2) != 0 && in_taps->h_taps_c != 1)
932 		/* Only 1 and even h_taps_c are supported by hw */
933 		spl_scratch->scl_data.taps.h_taps_c = in_taps->h_taps_c - 1;
934 	else
935 		spl_scratch->scl_data.taps.h_taps_c = in_taps->h_taps_c;
936 
937 
938 	/*
939 	 * Max downscale supported is 6.0x.  Add ASSERT to catch if go beyond that
940 	 */
941 	check_max_downscale = spl_fixpt_le(spl_scratch->scl_data.ratios.horz,
942 		spl_fixpt_from_fraction(6, 1));
943 	SPL_ASSERT(check_max_downscale);
944 	check_max_downscale = spl_fixpt_le(spl_scratch->scl_data.ratios.vert,
945 		spl_fixpt_from_fraction(6, 1));
946 	SPL_ASSERT(check_max_downscale);
947 	check_max_downscale = spl_fixpt_le(spl_scratch->scl_data.ratios.horz_c,
948 		spl_fixpt_from_fraction(6, 1));
949 	SPL_ASSERT(check_max_downscale);
950 	check_max_downscale = spl_fixpt_le(spl_scratch->scl_data.ratios.vert_c,
951 		spl_fixpt_from_fraction(6, 1));
952 	SPL_ASSERT(check_max_downscale);
953 
954 
955 	if (IDENTITY_RATIO(spl_scratch->scl_data.ratios.horz))
956 		spl_scratch->scl_data.taps.h_taps = 1;
957 	if (IDENTITY_RATIO(spl_scratch->scl_data.ratios.vert))
958 		spl_scratch->scl_data.taps.v_taps = 1;
959 	if (IDENTITY_RATIO(spl_scratch->scl_data.ratios.horz_c) && !is_subsampled)
960 		spl_scratch->scl_data.taps.h_taps_c = 1;
961 	if (IDENTITY_RATIO(spl_scratch->scl_data.ratios.vert_c) && !is_subsampled)
962 		spl_scratch->scl_data.taps.v_taps_c = 1;
963 
964 }
965 
966 /* Calculate optimal number of taps */
spl_get_optimal_number_of_taps(int max_downscale_src_width,struct spl_in * spl_in,struct spl_scratch * spl_scratch,const struct spl_taps * in_taps,bool * enable_easf_v,bool * enable_easf_h,bool * enable_isharp)967 static bool spl_get_optimal_number_of_taps(
968 	  int max_downscale_src_width, struct spl_in *spl_in, struct spl_scratch *spl_scratch,
969 	  const struct spl_taps *in_taps, bool *enable_easf_v, bool *enable_easf_h,
970 	  bool *enable_isharp)
971 {
972 	int num_part_y, num_part_c;
973 	unsigned int max_taps_y, max_taps_c;
974 	unsigned int min_taps_y, min_taps_c;
975 	enum lb_memory_config lb_config;
976 	bool skip_easf          = false;
977 	bool is_subsampled = spl_is_subsampled_format(spl_in->basic_in.format);
978 
979 	if (spl_scratch->scl_data.viewport.width > spl_scratch->scl_data.h_active &&
980 		max_downscale_src_width != 0 &&
981 		spl_scratch->scl_data.viewport.width > max_downscale_src_width) {
982 		spl_get_taps_non_adaptive_scaler(spl_scratch, in_taps, is_subsampled);
983 		*enable_easf_v = false;
984 		*enable_easf_h = false;
985 		*enable_isharp = false;
986 		return false;
987 	}
988 
989 	/* Disable adaptive scaler and sharpener when integer scaling is enabled */
990 	if (spl_in->scaling_quality.integer_scaling) {
991 		spl_get_taps_non_adaptive_scaler(spl_scratch, in_taps, is_subsampled);
992 		*enable_easf_v = false;
993 		*enable_easf_h = false;
994 		*enable_isharp = false;
995 		return true;
996 	}
997 
998 	/* Check if we are using EASF or not */
999 	skip_easf = enable_easf(spl_in, spl_scratch);
1000 
1001 	/*
1002 	 * Set default taps if none are provided
1003 	 * From programming guide: taps = min{ ceil(2*H_RATIO,1), 8} for downscaling
1004 	 * taps = 4 for upscaling
1005 	 */
1006 	if (skip_easf) {
1007 		spl_get_taps_non_adaptive_scaler(spl_scratch, in_taps, is_subsampled);
1008 	}
1009 	else {
1010 		if (spl_is_video_format(spl_in->basic_in.format)) {
1011 			spl_scratch->scl_data.taps.h_taps = 6;
1012 			spl_scratch->scl_data.taps.v_taps = 6;
1013 			spl_scratch->scl_data.taps.h_taps_c = 4;
1014 			spl_scratch->scl_data.taps.v_taps_c = 4;
1015 		} else { /* RGB */
1016 			spl_scratch->scl_data.taps.h_taps = 6;
1017 			spl_scratch->scl_data.taps.v_taps = 6;
1018 			spl_scratch->scl_data.taps.h_taps_c = 6;
1019 			spl_scratch->scl_data.taps.v_taps_c = 6;
1020 		}
1021 	}
1022 
1023 	/*Ensure we can support the requested number of vtaps*/
1024 	min_taps_y = spl_fixpt_ceil(spl_scratch->scl_data.ratios.vert);
1025 	min_taps_c = spl_fixpt_ceil(spl_scratch->scl_data.ratios.vert_c);
1026 
1027 	/* Use LB_MEMORY_CONFIG_3 for 4:2:0 */
1028 	if (spl_is_yuv420(spl_in->basic_in.format))
1029 		lb_config = LB_MEMORY_CONFIG_3;
1030 	else
1031 		lb_config = LB_MEMORY_CONFIG_0;
1032 	// Determine max vtap support by calculating how much line buffer can fit
1033 	spl_in->callbacks.spl_calc_lb_num_partitions(spl_in->basic_out.alpha_en, &spl_scratch->scl_data,
1034 			lb_config, &num_part_y, &num_part_c);
1035 	/* MAX_V_TAPS = MIN (NUM_LINES - MAX(CEILING(V_RATIO,1)-2, 0), 8) */
1036 	if (spl_fixpt_ceil(spl_scratch->scl_data.ratios.vert) > 2)
1037 		if ((spl_fixpt_ceil(spl_scratch->scl_data.ratios.vert) - 2) > num_part_y)
1038 			max_taps_y = 0;
1039 		else
1040 			max_taps_y = num_part_y - (spl_fixpt_ceil(spl_scratch->scl_data.ratios.vert) - 2);
1041 	else
1042 		max_taps_y = num_part_y;
1043 
1044 	if (spl_fixpt_ceil(spl_scratch->scl_data.ratios.vert_c) > 2)
1045 		if ((spl_fixpt_ceil(spl_scratch->scl_data.ratios.vert_c) - 2) > num_part_c)
1046 			max_taps_c = 0;
1047 		else
1048 			max_taps_c = num_part_c - (spl_fixpt_ceil(spl_scratch->scl_data.ratios.vert_c) - 2);
1049 	else
1050 		max_taps_c = num_part_c;
1051 
1052 	if (max_taps_y < min_taps_y)
1053 		return false;
1054 	else if (max_taps_c < min_taps_c)
1055 		return false;
1056 
1057 	if (spl_scratch->scl_data.taps.v_taps > max_taps_y)
1058 		spl_scratch->scl_data.taps.v_taps = max_taps_y;
1059 
1060 	if (spl_scratch->scl_data.taps.v_taps_c > max_taps_c)
1061 		spl_scratch->scl_data.taps.v_taps_c = max_taps_c;
1062 
1063 	if (!skip_easf) {
1064 		/*
1065 		 * RGB ( L + NL ) and Linear HDR support 6x6, 6x4, 6x3, 4x4, 4x3
1066 		 * NL YUV420 only supports 6x6, 6x4 for Y and 4x4 for UV
1067 		 *
1068 		 * If LB does not support 3, 4, or 6 taps, then disable EASF_V
1069 		 *  and only enable EASF_H.  So for RGB, support 6x2, 4x2
1070 		 *  and for NL YUV420, support 6x2 for Y and 4x2 for UV
1071 		 *
1072 		 * All other cases, have to disable EASF_V and EASF_H
1073 		 *
1074 		 * If optimal no of taps is 5, then set it to 4
1075 		 * If optimal no of taps is 7 or 8, then fine since max tap is 6
1076 		 *
1077 		 */
1078 		if (spl_scratch->scl_data.taps.v_taps == 5)
1079 			spl_scratch->scl_data.taps.v_taps = 4;
1080 
1081 		if (spl_scratch->scl_data.taps.v_taps_c == 5)
1082 			spl_scratch->scl_data.taps.v_taps_c = 4;
1083 
1084 		if (spl_scratch->scl_data.taps.h_taps == 5)
1085 			spl_scratch->scl_data.taps.h_taps = 4;
1086 
1087 		if (spl_scratch->scl_data.taps.h_taps_c == 5)
1088 			spl_scratch->scl_data.taps.h_taps_c = 4;
1089 
1090 		if (spl_is_video_format(spl_in->basic_in.format)) {
1091 			if (spl_scratch->scl_data.taps.h_taps <= 4) {
1092 				*enable_easf_v = false;
1093 				*enable_easf_h = false;
1094 			} else if (spl_scratch->scl_data.taps.v_taps <= 3) {
1095 				*enable_easf_v = false;
1096 				*enable_easf_h = true;
1097 			} else {
1098 				*enable_easf_v = true;
1099 				*enable_easf_h = true;
1100 			}
1101 			SPL_ASSERT((spl_scratch->scl_data.taps.v_taps > 1) &&
1102 				(spl_scratch->scl_data.taps.v_taps_c > 1));
1103 		} else { /* RGB */
1104 			if (spl_scratch->scl_data.taps.h_taps <= 3) {
1105 				*enable_easf_v = false;
1106 				*enable_easf_h = false;
1107 			} else if (spl_scratch->scl_data.taps.v_taps < 3) {
1108 				*enable_easf_v = false;
1109 				*enable_easf_h = true;
1110 			} else {
1111 				*enable_easf_v = true;
1112 				*enable_easf_h = true;
1113 			}
1114 			SPL_ASSERT(spl_scratch->scl_data.taps.v_taps > 1);
1115 		}
1116 	} else {
1117 		*enable_easf_v = false;
1118 		*enable_easf_h = false;
1119 	} // end of if prefer_easf
1120 
1121 	/* Sharpener requires scaler to be enabled, including for 1:1
1122 	 * Check if ISHARP can be enabled
1123 	 * If ISHARP is not enabled, set taps to 1 if ratio is 1:1
1124 	 *  except for chroma taps.  Keep previous taps so it can
1125 	 *  handle cositing
1126 	 */
1127 
1128 	*enable_isharp = spl_get_isharp_en(spl_in, spl_scratch);
1129 	if (!*enable_isharp && !spl_in->basic_out.always_scale)	{
1130 		if ((IDENTITY_RATIO(spl_scratch->scl_data.ratios.horz)) &&
1131 			(IDENTITY_RATIO(spl_scratch->scl_data.ratios.vert))) {
1132 			spl_scratch->scl_data.taps.h_taps = 1;
1133 			spl_scratch->scl_data.taps.v_taps = 1;
1134 			if (IDENTITY_RATIO(spl_scratch->scl_data.ratios.horz_c) && !is_subsampled)
1135 				spl_scratch->scl_data.taps.h_taps_c = 1;
1136 
1137 			if (IDENTITY_RATIO(spl_scratch->scl_data.ratios.vert_c) && !is_subsampled)
1138 				spl_scratch->scl_data.taps.v_taps_c = 1;
1139 
1140 			*enable_easf_v = false;
1141 			*enable_easf_h = false;
1142 		} else {
1143 			if ((!*enable_easf_h) &&
1144 				(IDENTITY_RATIO(spl_scratch->scl_data.ratios.horz)))
1145 				spl_scratch->scl_data.taps.h_taps = 1;
1146 
1147 			if ((!*enable_easf_v) &&
1148 				(IDENTITY_RATIO(spl_scratch->scl_data.ratios.vert)))
1149 				spl_scratch->scl_data.taps.v_taps = 1;
1150 
1151 			if ((!*enable_easf_h) && !is_subsampled &&
1152 				(IDENTITY_RATIO(spl_scratch->scl_data.ratios.horz_c)))
1153 				spl_scratch->scl_data.taps.h_taps_c = 1;
1154 
1155 			if ((!*enable_easf_v) && !is_subsampled &&
1156 				(IDENTITY_RATIO(spl_scratch->scl_data.ratios.vert_c)))
1157 				spl_scratch->scl_data.taps.v_taps_c = 1;
1158 
1159 		}
1160 	}
1161 	return true;
1162 }
1163 
spl_set_black_color_data(enum spl_pixel_format format,struct scl_black_color * scl_black_color)1164 static void spl_set_black_color_data(enum spl_pixel_format format,
1165 			struct scl_black_color *scl_black_color)
1166 {
1167 	bool ycbcr = spl_is_video_format(format);
1168 	if (ycbcr)	{
1169 		scl_black_color->offset_rgb_y = BLACK_OFFSET_RGB_Y;
1170 		scl_black_color->offset_rgb_cbcr = BLACK_OFFSET_CBCR;
1171 	}	else {
1172 		scl_black_color->offset_rgb_y = 0x0;
1173 		scl_black_color->offset_rgb_cbcr = 0x0;
1174 	}
1175 }
1176 
spl_set_manual_ratio_init_data(struct dscl_prog_data * dscl_prog_data,const struct spl_scaler_data * scl_data)1177 static void spl_set_manual_ratio_init_data(struct dscl_prog_data *dscl_prog_data,
1178 		const struct spl_scaler_data *scl_data)
1179 {
1180 	struct spl_fixed31_32 bot;
1181 
1182 	dscl_prog_data->ratios.h_scale_ratio = spl_fixpt_u3d19(scl_data->ratios.horz) << 5;
1183 	dscl_prog_data->ratios.v_scale_ratio = spl_fixpt_u3d19(scl_data->ratios.vert) << 5;
1184 	dscl_prog_data->ratios.h_scale_ratio_c = spl_fixpt_u3d19(scl_data->ratios.horz_c) << 5;
1185 	dscl_prog_data->ratios.v_scale_ratio_c = spl_fixpt_u3d19(scl_data->ratios.vert_c) << 5;
1186 	/*
1187 	 * 0.24 format for fraction, first five bits zeroed
1188 	 */
1189 	dscl_prog_data->init.h_filter_init_frac =
1190 			spl_fixpt_u0d19(scl_data->inits.h) << 5;
1191 	dscl_prog_data->init.h_filter_init_int =
1192 			spl_fixpt_floor(scl_data->inits.h);
1193 	dscl_prog_data->init.h_filter_init_frac_c =
1194 			spl_fixpt_u0d19(scl_data->inits.h_c) << 5;
1195 	dscl_prog_data->init.h_filter_init_int_c =
1196 			spl_fixpt_floor(scl_data->inits.h_c);
1197 	dscl_prog_data->init.v_filter_init_frac =
1198 			spl_fixpt_u0d19(scl_data->inits.v) << 5;
1199 	dscl_prog_data->init.v_filter_init_int =
1200 			spl_fixpt_floor(scl_data->inits.v);
1201 	dscl_prog_data->init.v_filter_init_frac_c =
1202 			spl_fixpt_u0d19(scl_data->inits.v_c) << 5;
1203 	dscl_prog_data->init.v_filter_init_int_c =
1204 			spl_fixpt_floor(scl_data->inits.v_c);
1205 
1206 	bot = spl_fixpt_add(scl_data->inits.v, scl_data->ratios.vert);
1207 	dscl_prog_data->init.v_filter_init_bot_frac = spl_fixpt_u0d19(bot) << 5;
1208 	dscl_prog_data->init.v_filter_init_bot_int = spl_fixpt_floor(bot);
1209 	bot = spl_fixpt_add(scl_data->inits.v_c, scl_data->ratios.vert_c);
1210 	dscl_prog_data->init.v_filter_init_bot_frac_c = spl_fixpt_u0d19(bot) << 5;
1211 	dscl_prog_data->init.v_filter_init_bot_int_c = spl_fixpt_floor(bot);
1212 }
1213 
spl_set_taps_data(struct dscl_prog_data * dscl_prog_data,const struct spl_scaler_data * scl_data)1214 static void spl_set_taps_data(struct dscl_prog_data *dscl_prog_data,
1215 		const struct spl_scaler_data *scl_data)
1216 {
1217 	dscl_prog_data->taps.v_taps = scl_data->taps.v_taps - 1;
1218 	dscl_prog_data->taps.h_taps = scl_data->taps.h_taps - 1;
1219 	dscl_prog_data->taps.v_taps_c = scl_data->taps.v_taps_c - 1;
1220 	dscl_prog_data->taps.h_taps_c = scl_data->taps.h_taps_c - 1;
1221 }
1222 
1223 /* Populate dscl prog data structure from scaler data calculated by SPL */
spl_set_dscl_prog_data(struct spl_in * spl_in,struct spl_scratch * spl_scratch,struct spl_out * spl_out,bool enable_easf_v,bool enable_easf_h,bool enable_isharp)1224 static void spl_set_dscl_prog_data(struct spl_in *spl_in, struct spl_scratch *spl_scratch,
1225 	struct spl_out *spl_out, bool enable_easf_v, bool enable_easf_h, bool enable_isharp)
1226 {
1227 	struct dscl_prog_data *dscl_prog_data = spl_out->dscl_prog_data;
1228 
1229 	const struct spl_scaler_data *data = &spl_scratch->scl_data;
1230 
1231 	struct scl_black_color *scl_black_color = &dscl_prog_data->scl_black_color;
1232 
1233 	bool enable_easf = enable_easf_v || enable_easf_h;
1234 
1235 	// Set values for recout
1236 	dscl_prog_data->recout = spl_scratch->scl_data.recout;
1237 	// Set values for MPC Size
1238 	dscl_prog_data->mpc_size.width = spl_scratch->scl_data.h_active;
1239 	dscl_prog_data->mpc_size.height = spl_scratch->scl_data.v_active;
1240 
1241 	// SCL_MODE - Set SCL_MODE data
1242 	dscl_prog_data->dscl_mode = spl_get_dscl_mode(spl_in, data, enable_isharp,
1243 		enable_easf);
1244 
1245 	// SCL_BLACK_COLOR
1246 	spl_set_black_color_data(spl_in->basic_in.format, scl_black_color);
1247 
1248 	/* Manually calculate scale ratio and init values */
1249 	spl_set_manual_ratio_init_data(dscl_prog_data, data);
1250 
1251 	// Set HTaps/VTaps
1252 	spl_set_taps_data(dscl_prog_data, data);
1253 	// Set viewport
1254 	dscl_prog_data->viewport = spl_scratch->scl_data.viewport;
1255 	// Set viewport_c
1256 	dscl_prog_data->viewport_c = spl_scratch->scl_data.viewport_c;
1257 	// Set filters data
1258 	spl_set_filters_data(dscl_prog_data, data, enable_easf_v, enable_easf_h);
1259 }
1260 
1261 /* Calculate C0-C3 coefficients based on HDR_mult */
spl_calculate_c0_c3_hdr(struct dscl_prog_data * dscl_prog_data,uint32_t sdr_white_level_nits)1262 static void spl_calculate_c0_c3_hdr(struct dscl_prog_data *dscl_prog_data, uint32_t sdr_white_level_nits)
1263 {
1264 	struct spl_fixed31_32 hdr_mult, c0_mult, c1_mult, c2_mult;
1265 	struct spl_fixed31_32 c0_calc, c1_calc, c2_calc;
1266 	struct spl_custom_float_format fmt;
1267 	uint32_t hdr_multx100_int;
1268 
1269 	if ((sdr_white_level_nits >= 80) && (sdr_white_level_nits <= 480))
1270 		hdr_multx100_int = sdr_white_level_nits * 100 / 80;
1271 	else
1272 		hdr_multx100_int = 100; /* default for 80 nits otherwise */
1273 
1274 	hdr_mult = spl_fixpt_from_fraction((long long)hdr_multx100_int, 100LL);
1275 	c0_mult = spl_fixpt_from_fraction(2126LL, 10000LL);
1276 	c1_mult = spl_fixpt_from_fraction(7152LL, 10000LL);
1277 	c2_mult = spl_fixpt_from_fraction(722LL, 10000LL);
1278 
1279 	c0_calc = spl_fixpt_mul(hdr_mult, spl_fixpt_mul(c0_mult, spl_fixpt_from_fraction(
1280 		16384LL, 125LL)));
1281 	c1_calc = spl_fixpt_mul(hdr_mult, spl_fixpt_mul(c1_mult, spl_fixpt_from_fraction(
1282 		16384LL, 125LL)));
1283 	c2_calc = spl_fixpt_mul(hdr_mult, spl_fixpt_mul(c2_mult, spl_fixpt_from_fraction(
1284 		16384LL, 125LL)));
1285 
1286 	fmt.exponenta_bits = 5;
1287 	fmt.mantissa_bits = 10;
1288 	fmt.sign = true;
1289 
1290 	// fp1.5.10, C0 coefficient (LN_rec709:  HDR_MULT * 0.212600 * 2^14/125)
1291 	spl_convert_to_custom_float_format(c0_calc, &fmt, &dscl_prog_data->easf_matrix_c0);
1292 	// fp1.5.10, C1 coefficient (LN_rec709:  HDR_MULT * 0.715200 * 2^14/125)
1293 	spl_convert_to_custom_float_format(c1_calc, &fmt, &dscl_prog_data->easf_matrix_c1);
1294 	// fp1.5.10, C2 coefficient (LN_rec709:  HDR_MULT * 0.072200 * 2^14/125)
1295 	spl_convert_to_custom_float_format(c2_calc, &fmt, &dscl_prog_data->easf_matrix_c2);
1296 	dscl_prog_data->easf_matrix_c3 = 0x0; // fp1.5.10, C3 coefficient
1297 }
1298 
1299 /* Set EASF data */
spl_set_easf_data(struct spl_scratch * spl_scratch,struct spl_out * spl_out,bool enable_easf_v,bool enable_easf_h,enum linear_light_scaling lls_pref,enum spl_pixel_format format,enum system_setup setup,uint32_t sdr_white_level_nits)1300 static void spl_set_easf_data(struct spl_scratch *spl_scratch, struct spl_out *spl_out, bool enable_easf_v,
1301 	bool enable_easf_h, enum linear_light_scaling lls_pref,
1302 	enum spl_pixel_format format, enum system_setup setup,
1303 	uint32_t sdr_white_level_nits)
1304 {
1305 	struct dscl_prog_data *dscl_prog_data = spl_out->dscl_prog_data;
1306 	if (enable_easf_v) {
1307 		dscl_prog_data->easf_v_en = true;
1308 		dscl_prog_data->easf_v_ring = 0;
1309 		dscl_prog_data->easf_v_sharp_factor = 1;
1310 		dscl_prog_data->easf_v_bf1_en = 1;	// 1-bit, BF1 calculation enable, 0=disable, 1=enable
1311 		dscl_prog_data->easf_v_bf2_mode = 0xF;	// 4-bit, BF2 calculation mode
1312 		/* 2-bit, BF3 chroma mode correction calculation mode */
1313 		dscl_prog_data->easf_v_bf3_mode = spl_get_v_bf3_mode(
1314 			spl_scratch->scl_data.recip_ratios.vert);
1315 		/* FP1.5.10 [ minCoef ]*/
1316 		dscl_prog_data->easf_v_ringest_3tap_dntilt_uptilt =
1317 			spl_get_3tap_dntilt_uptilt_offset(spl_scratch->scl_data.taps.v_taps,
1318 				spl_scratch->scl_data.recip_ratios.vert);
1319 		/* FP1.5.10 [ upTiltMaxVal ]*/
1320 		dscl_prog_data->easf_v_ringest_3tap_uptilt_max =
1321 			spl_get_3tap_uptilt_maxval(spl_scratch->scl_data.taps.v_taps,
1322 				spl_scratch->scl_data.recip_ratios.vert);
1323 		/* FP1.5.10 [ dnTiltSlope ]*/
1324 		dscl_prog_data->easf_v_ringest_3tap_dntilt_slope =
1325 			spl_get_3tap_dntilt_slope(spl_scratch->scl_data.taps.v_taps,
1326 				spl_scratch->scl_data.recip_ratios.vert);
1327 		/* FP1.5.10 [ upTilt1Slope ]*/
1328 		dscl_prog_data->easf_v_ringest_3tap_uptilt1_slope =
1329 			spl_get_3tap_uptilt1_slope(spl_scratch->scl_data.taps.v_taps,
1330 				spl_scratch->scl_data.recip_ratios.vert);
1331 		/* FP1.5.10 [ upTilt2Slope ]*/
1332 		dscl_prog_data->easf_v_ringest_3tap_uptilt2_slope =
1333 			spl_get_3tap_uptilt2_slope(spl_scratch->scl_data.taps.v_taps,
1334 				spl_scratch->scl_data.recip_ratios.vert);
1335 		/* FP1.5.10 [ upTilt2Offset ]*/
1336 		dscl_prog_data->easf_v_ringest_3tap_uptilt2_offset =
1337 			spl_get_3tap_uptilt2_offset(spl_scratch->scl_data.taps.v_taps,
1338 				spl_scratch->scl_data.recip_ratios.vert);
1339 		/* FP1.5.10; (2.0) Ring reducer gain for 4 or 6-tap mode [H_REDUCER_GAIN4] */
1340 		dscl_prog_data->easf_v_ringest_eventap_reduceg1 =
1341 			spl_get_reducer_gain4(spl_scratch->scl_data.taps.v_taps,
1342 				spl_scratch->scl_data.recip_ratios.vert);
1343 		/* FP1.5.10; (2.5) Ring reducer gain for 6-tap mode [V_REDUCER_GAIN6] */
1344 		dscl_prog_data->easf_v_ringest_eventap_reduceg2 =
1345 			spl_get_reducer_gain6(spl_scratch->scl_data.taps.v_taps,
1346 				spl_scratch->scl_data.recip_ratios.vert);
1347 		/* FP1.5.10; (-0.135742) Ring gain for 6-tap set to -139/1024 */
1348 		dscl_prog_data->easf_v_ringest_eventap_gain1 =
1349 			spl_get_gainRing4(spl_scratch->scl_data.taps.v_taps,
1350 				spl_scratch->scl_data.recip_ratios.vert);
1351 		/* FP1.5.10; (-0.024414) Ring gain for 6-tap set to -25/1024 */
1352 		dscl_prog_data->easf_v_ringest_eventap_gain2 =
1353 			spl_get_gainRing6(spl_scratch->scl_data.taps.v_taps,
1354 				spl_scratch->scl_data.recip_ratios.vert);
1355 		dscl_prog_data->easf_v_bf_maxa = 63; //Vertical Max BF value A in U0.6 format.Selected if V_FCNTL == 0
1356 		dscl_prog_data->easf_v_bf_maxb = 63; //Vertical Max BF value A in U0.6 format.Selected if V_FCNTL == 1
1357 		dscl_prog_data->easf_v_bf_mina = 0;	//Vertical Min BF value A in U0.6 format.Selected if V_FCNTL == 0
1358 		dscl_prog_data->easf_v_bf_minb = 0;	//Vertical Min BF value A in U0.6 format.Selected if V_FCNTL == 1
1359 		if (lls_pref == LLS_PREF_YES)	{
1360 			dscl_prog_data->easf_v_bf2_flat1_gain = 4;	// U1.3, BF2 Flat1 Gain control
1361 			dscl_prog_data->easf_v_bf2_flat2_gain = 8;	// U4.0, BF2 Flat2 Gain control
1362 			dscl_prog_data->easf_v_bf2_roc_gain = 4;	// U2.2, Rate Of Change control
1363 
1364 			dscl_prog_data->easf_v_bf1_pwl_in_seg0 = 0x600;	// S0.10, BF1 PWL Segment 0 = -512
1365 			dscl_prog_data->easf_v_bf1_pwl_base_seg0 = 0;	// U0.6, BF1 Base PWL Segment 0
1366 			dscl_prog_data->easf_v_bf1_pwl_slope_seg0 = 3;	// S7.3, BF1 Slope PWL Segment 0
1367 			dscl_prog_data->easf_v_bf1_pwl_in_seg1 = 0x7EC;	// S0.10, BF1 PWL Segment 1 = -20
1368 			dscl_prog_data->easf_v_bf1_pwl_base_seg1 = 12;	// U0.6, BF1 Base PWL Segment 1
1369 			dscl_prog_data->easf_v_bf1_pwl_slope_seg1 = 326;	// S7.3, BF1 Slope PWL Segment 1
1370 			dscl_prog_data->easf_v_bf1_pwl_in_seg2 = 0;	// S0.10, BF1 PWL Segment 2
1371 			dscl_prog_data->easf_v_bf1_pwl_base_seg2 = 63;	// U0.6, BF1 Base PWL Segment 2
1372 			dscl_prog_data->easf_v_bf1_pwl_slope_seg2 = 0;	// S7.3, BF1 Slope PWL Segment 2
1373 			dscl_prog_data->easf_v_bf1_pwl_in_seg3 = 16;	// S0.10, BF1 PWL Segment 3
1374 			dscl_prog_data->easf_v_bf1_pwl_base_seg3 = 63;	// U0.6, BF1 Base PWL Segment 3
1375 			dscl_prog_data->easf_v_bf1_pwl_slope_seg3 = 0x7C8;	// S7.3, BF1 Slope PWL Segment 3 = -56
1376 			dscl_prog_data->easf_v_bf1_pwl_in_seg4 = 32;	// S0.10, BF1 PWL Segment 4
1377 			dscl_prog_data->easf_v_bf1_pwl_base_seg4 = 56;	// U0.6, BF1 Base PWL Segment 4
1378 			dscl_prog_data->easf_v_bf1_pwl_slope_seg4 = 0x7D0;	// S7.3, BF1 Slope PWL Segment 4 = -48
1379 			dscl_prog_data->easf_v_bf1_pwl_in_seg5 = 48;	// S0.10, BF1 PWL Segment 5
1380 			dscl_prog_data->easf_v_bf1_pwl_base_seg5 = 50;	// U0.6, BF1 Base PWL Segment 5
1381 			dscl_prog_data->easf_v_bf1_pwl_slope_seg5 = 0x710;	// S7.3, BF1 Slope PWL Segment 5 = -240
1382 			dscl_prog_data->easf_v_bf1_pwl_in_seg6 = 64;	// S0.10, BF1 PWL Segment 6
1383 			dscl_prog_data->easf_v_bf1_pwl_base_seg6 = 20;	// U0.6, BF1 Base PWL Segment 6
1384 			dscl_prog_data->easf_v_bf1_pwl_slope_seg6 = 0x760;	// S7.3, BF1 Slope PWL Segment 6 = -160
1385 			dscl_prog_data->easf_v_bf1_pwl_in_seg7 = 80;	// S0.10, BF1 PWL Segment 7
1386 			dscl_prog_data->easf_v_bf1_pwl_base_seg7 = 0;	// U0.6, BF1 Base PWL Segment 7
1387 
1388 			dscl_prog_data->easf_v_bf3_pwl_in_set0 = 0x000;	// FP0.6.6, BF3 Input value PWL Segment 0
1389 			dscl_prog_data->easf_v_bf3_pwl_base_set0 = 63;	// S0.6, BF3 Base PWL Segment 0
1390 			dscl_prog_data->easf_v_bf3_pwl_slope_set0 = 0x12C5;	// FP1.6.6, BF3 Slope PWL Segment 0
1391 			dscl_prog_data->easf_v_bf3_pwl_in_set1 =
1392 				0x0B37; // FP0.6.6, BF3 Input value PWL Segment 1 (0.0078125 * 125^3)
1393 			dscl_prog_data->easf_v_bf3_pwl_base_set1 = 62;	// S0.6, BF3 Base PWL Segment 1
1394 			dscl_prog_data->easf_v_bf3_pwl_slope_set1 =
1395 				0x13B8;	// FP1.6.6, BF3 Slope PWL Segment 1
1396 			dscl_prog_data->easf_v_bf3_pwl_in_set2 =
1397 				0x0BB7;	// FP0.6.6, BF3 Input value PWL Segment 2 (0.03125 * 125^3)
1398 			dscl_prog_data->easf_v_bf3_pwl_base_set2 = 20;	// S0.6, BF3 Base PWL Segment 2
1399 			dscl_prog_data->easf_v_bf3_pwl_slope_set2 =
1400 				0x1356;	// FP1.6.6, BF3 Slope PWL Segment 2
1401 			dscl_prog_data->easf_v_bf3_pwl_in_set3 =
1402 				0x0BF7;	// FP0.6.6, BF3 Input value PWL Segment 3 (0.0625 * 125^3)
1403 			dscl_prog_data->easf_v_bf3_pwl_base_set3 = 0;	// S0.6, BF3 Base PWL Segment 3
1404 			dscl_prog_data->easf_v_bf3_pwl_slope_set3 =
1405 				0x136B;	// FP1.6.6, BF3 Slope PWL Segment 3
1406 			dscl_prog_data->easf_v_bf3_pwl_in_set4 =
1407 				0x0C37;	// FP0.6.6, BF3 Input value PWL Segment 4 (0.125 * 125^3)
1408 			dscl_prog_data->easf_v_bf3_pwl_base_set4 = 0x4E;	// S0.6, BF3 Base PWL Segment 4 = -50
1409 			dscl_prog_data->easf_v_bf3_pwl_slope_set4 =
1410 				0x1200;	// FP1.6.6, BF3 Slope PWL Segment 4
1411 			dscl_prog_data->easf_v_bf3_pwl_in_set5 =
1412 				0x0CF7;	// FP0.6.6, BF3 Input value PWL Segment 5 (1.0 * 125^3)
1413 			dscl_prog_data->easf_v_bf3_pwl_base_set5 = 0x41;	// S0.6, BF3 Base PWL Segment 5 = -63
1414 		}	else	{
1415 			dscl_prog_data->easf_v_bf2_flat1_gain = 13;	// U1.3, BF2 Flat1 Gain control
1416 			dscl_prog_data->easf_v_bf2_flat2_gain = 15;	// U4.0, BF2 Flat2 Gain control
1417 			dscl_prog_data->easf_v_bf2_roc_gain = 14;	// U2.2, Rate Of Change control
1418 
1419 			dscl_prog_data->easf_v_bf1_pwl_in_seg0 = 0x440;	// S0.10, BF1 PWL Segment 0 = -960
1420 			dscl_prog_data->easf_v_bf1_pwl_base_seg0 = 0;	// U0.6, BF1 Base PWL Segment 0
1421 			dscl_prog_data->easf_v_bf1_pwl_slope_seg0 = 2;	// S7.3, BF1 Slope PWL Segment 0
1422 			dscl_prog_data->easf_v_bf1_pwl_in_seg1 = 0x7C4;	// S0.10, BF1 PWL Segment 1 = -60
1423 			dscl_prog_data->easf_v_bf1_pwl_base_seg1 = 12;	// U0.6, BF1 Base PWL Segment 1
1424 			dscl_prog_data->easf_v_bf1_pwl_slope_seg1 = 109;	// S7.3, BF1 Slope PWL Segment 1
1425 			dscl_prog_data->easf_v_bf1_pwl_in_seg2 = 0;	// S0.10, BF1 PWL Segment 2
1426 			dscl_prog_data->easf_v_bf1_pwl_base_seg2 = 63;	// U0.6, BF1 Base PWL Segment 2
1427 			dscl_prog_data->easf_v_bf1_pwl_slope_seg2 = 0;	// S7.3, BF1 Slope PWL Segment 2
1428 			dscl_prog_data->easf_v_bf1_pwl_in_seg3 = 48;	// S0.10, BF1 PWL Segment 3
1429 			dscl_prog_data->easf_v_bf1_pwl_base_seg3 = 63;	// U0.6, BF1 Base PWL Segment 3
1430 			dscl_prog_data->easf_v_bf1_pwl_slope_seg3 = 0x7ED;	// S7.3, BF1 Slope PWL Segment 3 = -19
1431 			dscl_prog_data->easf_v_bf1_pwl_in_seg4 = 96;	// S0.10, BF1 PWL Segment 4
1432 			dscl_prog_data->easf_v_bf1_pwl_base_seg4 = 56;	// U0.6, BF1 Base PWL Segment 4
1433 			dscl_prog_data->easf_v_bf1_pwl_slope_seg4 = 0x7F0;	// S7.3, BF1 Slope PWL Segment 4 = -16
1434 			dscl_prog_data->easf_v_bf1_pwl_in_seg5 = 144;	// S0.10, BF1 PWL Segment 5
1435 			dscl_prog_data->easf_v_bf1_pwl_base_seg5 = 50;	// U0.6, BF1 Base PWL Segment 5
1436 			dscl_prog_data->easf_v_bf1_pwl_slope_seg5 = 0x7B0;	// S7.3, BF1 Slope PWL Segment 5 = -80
1437 			dscl_prog_data->easf_v_bf1_pwl_in_seg6 = 192;	// S0.10, BF1 PWL Segment 6
1438 			dscl_prog_data->easf_v_bf1_pwl_base_seg6 = 20;	// U0.6, BF1 Base PWL Segment 6
1439 			dscl_prog_data->easf_v_bf1_pwl_slope_seg6 = 0x7CB;	// S7.3, BF1 Slope PWL Segment 6 = -53
1440 			dscl_prog_data->easf_v_bf1_pwl_in_seg7 = 240;	// S0.10, BF1 PWL Segment 7
1441 			dscl_prog_data->easf_v_bf1_pwl_base_seg7 = 0;	// U0.6, BF1 Base PWL Segment 7
1442 
1443 			dscl_prog_data->easf_v_bf3_pwl_in_set0 = 0x000;	// FP0.6.6, BF3 Input value PWL Segment 0
1444 			dscl_prog_data->easf_v_bf3_pwl_base_set0 = 63;	// S0.6, BF3 Base PWL Segment 0
1445 			dscl_prog_data->easf_v_bf3_pwl_slope_set0 = 0x0000;	// FP1.6.6, BF3 Slope PWL Segment 0
1446 			dscl_prog_data->easf_v_bf3_pwl_in_set1 =
1447 				0x06C0; // FP0.6.6, BF3 Input value PWL Segment 1 (0.0625)
1448 			dscl_prog_data->easf_v_bf3_pwl_base_set1 = 63;	// S0.6, BF3 Base PWL Segment 1
1449 			dscl_prog_data->easf_v_bf3_pwl_slope_set1 = 0x1896;	// FP1.6.6, BF3 Slope PWL Segment 1
1450 			dscl_prog_data->easf_v_bf3_pwl_in_set2 =
1451 				0x0700;	// FP0.6.6, BF3 Input value PWL Segment 2 (0.125)
1452 			dscl_prog_data->easf_v_bf3_pwl_base_set2 = 20;	// S0.6, BF3 Base PWL Segment 2
1453 			dscl_prog_data->easf_v_bf3_pwl_slope_set2 = 0x1810;	// FP1.6.6, BF3 Slope PWL Segment 2
1454 			dscl_prog_data->easf_v_bf3_pwl_in_set3 =
1455 				0x0740;	// FP0.6.6, BF3 Input value PWL Segment 3 (0.25)
1456 			dscl_prog_data->easf_v_bf3_pwl_base_set3 = 0;	// S0.6, BF3 Base PWL Segment 3
1457 			dscl_prog_data->easf_v_bf3_pwl_slope_set3 =
1458 				0x1878;	// FP1.6.6, BF3 Slope PWL Segment 3
1459 			dscl_prog_data->easf_v_bf3_pwl_in_set4 =
1460 				0x0761;	// FP0.6.6, BF3 Input value PWL Segment 4 (0.375)
1461 			dscl_prog_data->easf_v_bf3_pwl_base_set4 = 0x44;	// S0.6, BF3 Base PWL Segment 4 = -60
1462 			dscl_prog_data->easf_v_bf3_pwl_slope_set4 = 0x1760;	// FP1.6.6, BF3 Slope PWL Segment 4
1463 			dscl_prog_data->easf_v_bf3_pwl_in_set5 =
1464 				0x0780;	// FP0.6.6, BF3 Input value PWL Segment 5 (0.5)
1465 			dscl_prog_data->easf_v_bf3_pwl_base_set5 = 0x41;	// S0.6, BF3 Base PWL Segment 5 = -63
1466 		}
1467 	} else
1468 		dscl_prog_data->easf_v_en = false;
1469 
1470 	if (enable_easf_h) {
1471 		dscl_prog_data->easf_h_en = true;
1472 		dscl_prog_data->easf_h_ring = 0;
1473 		dscl_prog_data->easf_h_sharp_factor = 1;
1474 		dscl_prog_data->easf_h_bf1_en =
1475 			1;	// 1-bit, BF1 calculation enable, 0=disable, 1=enable
1476 		dscl_prog_data->easf_h_bf2_mode =
1477 			0xF;	// 4-bit, BF2 calculation mode
1478 		/* 2-bit, BF3 chroma mode correction calculation mode */
1479 		dscl_prog_data->easf_h_bf3_mode = spl_get_h_bf3_mode(
1480 			spl_scratch->scl_data.recip_ratios.horz);
1481 		/* FP1.5.10; (2.0) Ring reducer gain for 4 or 6-tap mode [H_REDUCER_GAIN4] */
1482 		dscl_prog_data->easf_h_ringest_eventap_reduceg1 =
1483 			spl_get_reducer_gain4(spl_scratch->scl_data.taps.h_taps,
1484 				spl_scratch->scl_data.recip_ratios.horz);
1485 		/* FP1.5.10; (2.5) Ring reducer gain for 6-tap mode [V_REDUCER_GAIN6] */
1486 		dscl_prog_data->easf_h_ringest_eventap_reduceg2 =
1487 			spl_get_reducer_gain6(spl_scratch->scl_data.taps.h_taps,
1488 				spl_scratch->scl_data.recip_ratios.horz);
1489 		/* FP1.5.10; (-0.135742) Ring gain for 6-tap set to -139/1024 */
1490 		dscl_prog_data->easf_h_ringest_eventap_gain1 =
1491 			spl_get_gainRing4(spl_scratch->scl_data.taps.h_taps,
1492 				spl_scratch->scl_data.recip_ratios.horz);
1493 		/* FP1.5.10; (-0.024414) Ring gain for 6-tap set to -25/1024 */
1494 		dscl_prog_data->easf_h_ringest_eventap_gain2 =
1495 			spl_get_gainRing6(spl_scratch->scl_data.taps.h_taps,
1496 				spl_scratch->scl_data.recip_ratios.horz);
1497 		dscl_prog_data->easf_h_bf_maxa = 63; //Horz Max BF value A in U0.6 format.Selected if H_FCNTL==0
1498 		dscl_prog_data->easf_h_bf_maxb = 63; //Horz Max BF value B in U0.6 format.Selected if H_FCNTL==1
1499 		dscl_prog_data->easf_h_bf_mina = 0;	//Horz Min BF value B in U0.6 format.Selected if H_FCNTL==0
1500 		dscl_prog_data->easf_h_bf_minb = 0;	//Horz Min BF value B in U0.6 format.Selected if H_FCNTL==1
1501 		if (lls_pref == LLS_PREF_YES)	{
1502 			dscl_prog_data->easf_h_bf2_flat1_gain = 4;	// U1.3, BF2 Flat1 Gain control
1503 			dscl_prog_data->easf_h_bf2_flat2_gain = 8;	// U4.0, BF2 Flat2 Gain control
1504 			dscl_prog_data->easf_h_bf2_roc_gain = 4;	// U2.2, Rate Of Change control
1505 
1506 			dscl_prog_data->easf_h_bf1_pwl_in_seg0 = 0x600;	// S0.10, BF1 PWL Segment 0 = -512
1507 			dscl_prog_data->easf_h_bf1_pwl_base_seg0 = 0;	// U0.6, BF1 Base PWL Segment 0
1508 			dscl_prog_data->easf_h_bf1_pwl_slope_seg0 = 3;	// S7.3, BF1 Slope PWL Segment 0
1509 			dscl_prog_data->easf_h_bf1_pwl_in_seg1 = 0x7EC;	// S0.10, BF1 PWL Segment 1 = -20
1510 			dscl_prog_data->easf_h_bf1_pwl_base_seg1 = 12;	// U0.6, BF1 Base PWL Segment 1
1511 			dscl_prog_data->easf_h_bf1_pwl_slope_seg1 = 326;	// S7.3, BF1 Slope PWL Segment 1
1512 			dscl_prog_data->easf_h_bf1_pwl_in_seg2 = 0;	// S0.10, BF1 PWL Segment 2
1513 			dscl_prog_data->easf_h_bf1_pwl_base_seg2 = 63;	// U0.6, BF1 Base PWL Segment 2
1514 			dscl_prog_data->easf_h_bf1_pwl_slope_seg2 = 0;	// S7.3, BF1 Slope PWL Segment 2
1515 			dscl_prog_data->easf_h_bf1_pwl_in_seg3 = 16;	// S0.10, BF1 PWL Segment 3
1516 			dscl_prog_data->easf_h_bf1_pwl_base_seg3 = 63;	// U0.6, BF1 Base PWL Segment 3
1517 			dscl_prog_data->easf_h_bf1_pwl_slope_seg3 = 0x7C8;	// S7.3, BF1 Slope PWL Segment 3 = -56
1518 			dscl_prog_data->easf_h_bf1_pwl_in_seg4 = 32;	// S0.10, BF1 PWL Segment 4
1519 			dscl_prog_data->easf_h_bf1_pwl_base_seg4 = 56;	// U0.6, BF1 Base PWL Segment 4
1520 			dscl_prog_data->easf_h_bf1_pwl_slope_seg4 = 0x7D0;	// S7.3, BF1 Slope PWL Segment 4 = -48
1521 			dscl_prog_data->easf_h_bf1_pwl_in_seg5 = 48;	// S0.10, BF1 PWL Segment 5
1522 			dscl_prog_data->easf_h_bf1_pwl_base_seg5 = 50;	// U0.6, BF1 Base PWL Segment 5
1523 			dscl_prog_data->easf_h_bf1_pwl_slope_seg5 = 0x710;	// S7.3, BF1 Slope PWL Segment 5 = -240
1524 			dscl_prog_data->easf_h_bf1_pwl_in_seg6 = 64;	// S0.10, BF1 PWL Segment 6
1525 			dscl_prog_data->easf_h_bf1_pwl_base_seg6 = 20;	// U0.6, BF1 Base PWL Segment 6
1526 			dscl_prog_data->easf_h_bf1_pwl_slope_seg6 = 0x760;	// S7.3, BF1 Slope PWL Segment 6 = -160
1527 			dscl_prog_data->easf_h_bf1_pwl_in_seg7 = 80;	// S0.10, BF1 PWL Segment 7
1528 			dscl_prog_data->easf_h_bf1_pwl_base_seg7 = 0;	// U0.6, BF1 Base PWL Segment 7
1529 
1530 			dscl_prog_data->easf_h_bf3_pwl_in_set0 = 0x000;	// FP0.6.6, BF3 Input value PWL Segment 0
1531 			dscl_prog_data->easf_h_bf3_pwl_base_set0 = 63;	// S0.6, BF3 Base PWL Segment 0
1532 			dscl_prog_data->easf_h_bf3_pwl_slope_set0 = 0x12C5;	// FP1.6.6, BF3 Slope PWL Segment 0
1533 			dscl_prog_data->easf_h_bf3_pwl_in_set1 =
1534 				0x0B37;	// FP0.6.6, BF3 Input value PWL Segment 1 (0.0078125 * 125^3)
1535 			dscl_prog_data->easf_h_bf3_pwl_base_set1 = 62;	// S0.6, BF3 Base PWL Segment 1
1536 			dscl_prog_data->easf_h_bf3_pwl_slope_set1 =	0x13B8;	// FP1.6.6, BF3 Slope PWL Segment 1
1537 			dscl_prog_data->easf_h_bf3_pwl_in_set2 =
1538 				0x0BB7;	// FP0.6.6, BF3 Input value PWL Segment 2 (0.03125 * 125^3)
1539 			dscl_prog_data->easf_h_bf3_pwl_base_set2 = 20;	// S0.6, BF3 Base PWL Segment 2
1540 			dscl_prog_data->easf_h_bf3_pwl_slope_set2 =	0x1356;	// FP1.6.6, BF3 Slope PWL Segment 2
1541 			dscl_prog_data->easf_h_bf3_pwl_in_set3 =
1542 				0x0BF7;	// FP0.6.6, BF3 Input value PWL Segment 3 (0.0625 * 125^3)
1543 			dscl_prog_data->easf_h_bf3_pwl_base_set3 = 0;	// S0.6, BF3 Base PWL Segment 3
1544 			dscl_prog_data->easf_h_bf3_pwl_slope_set3 =	0x136B;	// FP1.6.6, BF3 Slope PWL Segment 3
1545 			dscl_prog_data->easf_h_bf3_pwl_in_set4 =
1546 				0x0C37;	// FP0.6.6, BF3 Input value PWL Segment 4 (0.125 * 125^3)
1547 			dscl_prog_data->easf_h_bf3_pwl_base_set4 = 0x4E;	// S0.6, BF3 Base PWL Segment 4 = -50
1548 			dscl_prog_data->easf_h_bf3_pwl_slope_set4 = 0x1200;	// FP1.6.6, BF3 Slope PWL Segment 4
1549 			dscl_prog_data->easf_h_bf3_pwl_in_set5 =
1550 				0x0CF7;	// FP0.6.6, BF3 Input value PWL Segment 5 (1.0 * 125^3)
1551 			dscl_prog_data->easf_h_bf3_pwl_base_set5 = 0x41;	// S0.6, BF3 Base PWL Segment 5 = -63
1552 		} else {
1553 			dscl_prog_data->easf_h_bf2_flat1_gain = 13;	// U1.3, BF2 Flat1 Gain control
1554 			dscl_prog_data->easf_h_bf2_flat2_gain = 15;	// U4.0, BF2 Flat2 Gain control
1555 			dscl_prog_data->easf_h_bf2_roc_gain = 14;	// U2.2, Rate Of Change control
1556 
1557 			dscl_prog_data->easf_h_bf1_pwl_in_seg0 = 0x440;	// S0.10, BF1 PWL Segment 0 = -960
1558 			dscl_prog_data->easf_h_bf1_pwl_base_seg0 = 0;	// U0.6, BF1 Base PWL Segment 0
1559 			dscl_prog_data->easf_h_bf1_pwl_slope_seg0 = 2;	// S7.3, BF1 Slope PWL Segment 0
1560 			dscl_prog_data->easf_h_bf1_pwl_in_seg1 = 0x7C4;	// S0.10, BF1 PWL Segment 1 = -60
1561 			dscl_prog_data->easf_h_bf1_pwl_base_seg1 = 12;	// U0.6, BF1 Base PWL Segment 1
1562 			dscl_prog_data->easf_h_bf1_pwl_slope_seg1 = 109;	// S7.3, BF1 Slope PWL Segment 1
1563 			dscl_prog_data->easf_h_bf1_pwl_in_seg2 = 0;	// S0.10, BF1 PWL Segment 2
1564 			dscl_prog_data->easf_h_bf1_pwl_base_seg2 = 63;	// U0.6, BF1 Base PWL Segment 2
1565 			dscl_prog_data->easf_h_bf1_pwl_slope_seg2 = 0;	// S7.3, BF1 Slope PWL Segment 2
1566 			dscl_prog_data->easf_h_bf1_pwl_in_seg3 = 48;	// S0.10, BF1 PWL Segment 3
1567 			dscl_prog_data->easf_h_bf1_pwl_base_seg3 = 63;	// U0.6, BF1 Base PWL Segment 3
1568 			dscl_prog_data->easf_h_bf1_pwl_slope_seg3 = 0x7ED;	// S7.3, BF1 Slope PWL Segment 3 = -19
1569 			dscl_prog_data->easf_h_bf1_pwl_in_seg4 = 96;	// S0.10, BF1 PWL Segment 4
1570 			dscl_prog_data->easf_h_bf1_pwl_base_seg4 = 56;	// U0.6, BF1 Base PWL Segment 4
1571 			dscl_prog_data->easf_h_bf1_pwl_slope_seg4 = 0x7F0;	// S7.3, BF1 Slope PWL Segment 4 = -16
1572 			dscl_prog_data->easf_h_bf1_pwl_in_seg5 = 144;	// S0.10, BF1 PWL Segment 5
1573 			dscl_prog_data->easf_h_bf1_pwl_base_seg5 = 50;	// U0.6, BF1 Base PWL Segment 5
1574 			dscl_prog_data->easf_h_bf1_pwl_slope_seg5 = 0x7B0;	// S7.3, BF1 Slope PWL Segment 5 = -80
1575 			dscl_prog_data->easf_h_bf1_pwl_in_seg6 = 192;	// S0.10, BF1 PWL Segment 6
1576 			dscl_prog_data->easf_h_bf1_pwl_base_seg6 = 20;	// U0.6, BF1 Base PWL Segment 6
1577 			dscl_prog_data->easf_h_bf1_pwl_slope_seg6 = 0x7CB;	// S7.3, BF1 Slope PWL Segment 6 = -53
1578 			dscl_prog_data->easf_h_bf1_pwl_in_seg7 = 240;	// S0.10, BF1 PWL Segment 7
1579 			dscl_prog_data->easf_h_bf1_pwl_base_seg7 = 0;	// U0.6, BF1 Base PWL Segment 7
1580 
1581 			dscl_prog_data->easf_h_bf3_pwl_in_set0 = 0x000;	// FP0.6.6, BF3 Input value PWL Segment 0
1582 			dscl_prog_data->easf_h_bf3_pwl_base_set0 = 63;	// S0.6, BF3 Base PWL Segment 0
1583 			dscl_prog_data->easf_h_bf3_pwl_slope_set0 = 0x0000;	// FP1.6.6, BF3 Slope PWL Segment 0
1584 			dscl_prog_data->easf_h_bf3_pwl_in_set1 =
1585 				0x06C0;	// FP0.6.6, BF3 Input value PWL Segment 1 (0.0625)
1586 			dscl_prog_data->easf_h_bf3_pwl_base_set1 = 63;	// S0.6, BF3 Base PWL Segment 1
1587 			dscl_prog_data->easf_h_bf3_pwl_slope_set1 = 0x1896;	// FP1.6.6, BF3 Slope PWL Segment 1
1588 			dscl_prog_data->easf_h_bf3_pwl_in_set2 =
1589 				0x0700;	// FP0.6.6, BF3 Input value PWL Segment 2 (0.125)
1590 			dscl_prog_data->easf_h_bf3_pwl_base_set2 = 20;	// S0.6, BF3 Base PWL Segment 2
1591 			dscl_prog_data->easf_h_bf3_pwl_slope_set2 = 0x1810;	// FP1.6.6, BF3 Slope PWL Segment 2
1592 			dscl_prog_data->easf_h_bf3_pwl_in_set3 =
1593 				0x0740;	// FP0.6.6, BF3 Input value PWL Segment 3 (0.25)
1594 			dscl_prog_data->easf_h_bf3_pwl_base_set3 = 0;	// S0.6, BF3 Base PWL Segment 3
1595 			dscl_prog_data->easf_h_bf3_pwl_slope_set3 = 0x1878;	// FP1.6.6, BF3 Slope PWL Segment 3
1596 			dscl_prog_data->easf_h_bf3_pwl_in_set4 =
1597 				0x0761;	// FP0.6.6, BF3 Input value PWL Segment 4 (0.375)
1598 			dscl_prog_data->easf_h_bf3_pwl_base_set4 = 0x44;	// S0.6, BF3 Base PWL Segment 4 = -60
1599 			dscl_prog_data->easf_h_bf3_pwl_slope_set4 = 0x1760;	// FP1.6.6, BF3 Slope PWL Segment 4
1600 			dscl_prog_data->easf_h_bf3_pwl_in_set5 =
1601 				0x0780;	// FP0.6.6, BF3 Input value PWL Segment 5 (0.5)
1602 			dscl_prog_data->easf_h_bf3_pwl_base_set5 = 0x41;	// S0.6, BF3 Base PWL Segment 5 = -63
1603 		} // if (lls_pref == LLS_PREF_YES)
1604 	} else
1605 		dscl_prog_data->easf_h_en = false;
1606 
1607 	if (lls_pref == LLS_PREF_YES)	{
1608 		dscl_prog_data->easf_ltonl_en = 1;	// Linear input
1609 		if ((setup == HDR_L) && (spl_is_rgb8(format))) {
1610 			/* Calculate C0-C3 coefficients based on HDR multiplier */
1611 			spl_calculate_c0_c3_hdr(dscl_prog_data, sdr_white_level_nits);
1612 		} else { // HDR_L ( DWM ) and SDR_L
1613 			dscl_prog_data->easf_matrix_c0 =
1614 				0x4EF7;	// fp1.5.10, C0 coefficient (LN_rec709:  0.2126 * (2^14)/125 = 27.86590720)
1615 			dscl_prog_data->easf_matrix_c1 =
1616 				0x55DC;	// fp1.5.10, C1 coefficient (LN_rec709:  0.7152 * (2^14)/125 = 93.74269440)
1617 			dscl_prog_data->easf_matrix_c2 =
1618 				0x48BB;	// fp1.5.10, C2 coefficient (LN_rec709:  0.0722 * (2^14)/125 = 9.46339840)
1619 			dscl_prog_data->easf_matrix_c3 =
1620 				0x0;	// fp1.5.10, C3 coefficient
1621 		}
1622 	}	else	{
1623 		dscl_prog_data->easf_ltonl_en = 0;	// Non-Linear input
1624 		dscl_prog_data->easf_matrix_c0 =
1625 			0x3434;	// fp1.5.10, C0 coefficient (LN_BT2020:  0.262695312500000)
1626 		dscl_prog_data->easf_matrix_c1 =
1627 			0x396D;	// fp1.5.10, C1 coefficient (LN_BT2020:  0.678222656250000)
1628 		dscl_prog_data->easf_matrix_c2 =
1629 			0x2B97;	// fp1.5.10, C2 coefficient (LN_BT2020:  0.059295654296875)
1630 		dscl_prog_data->easf_matrix_c3 =
1631 			0x0;	// fp1.5.10, C3 coefficient
1632 	}
1633 
1634 	if (spl_is_subsampled_format(format)) { /* TODO: 0 = RGB, 1 = YUV */
1635 		dscl_prog_data->easf_matrix_mode = 1;
1636 		/*
1637 		 * 2-bit, BF3 chroma mode correction calculation mode
1638 		 * Needs to be disabled for YUV420 mode
1639 		 * Override lookup value
1640 		 */
1641 		dscl_prog_data->easf_v_bf3_mode = 0;
1642 		dscl_prog_data->easf_h_bf3_mode = 0;
1643 	} else
1644 		dscl_prog_data->easf_matrix_mode = 0;
1645 
1646 }
1647 
1648 /*Set isharp noise detection */
spl_set_isharp_noise_det_mode(struct dscl_prog_data * dscl_prog_data,const struct spl_scaler_data * data)1649 static void spl_set_isharp_noise_det_mode(struct dscl_prog_data *dscl_prog_data,
1650 	const struct spl_scaler_data *data)
1651 {
1652 	// ISHARP_NOISEDET_MODE
1653 	// 0: 3x5 as VxH
1654 	// 1: 4x5 as VxH
1655 	// 2:
1656 	// 3: 5x5 as VxH
1657 	if (data->taps.v_taps == 6)
1658 		dscl_prog_data->isharp_noise_det.mode = 3;
1659 	else if (data->taps.v_taps == 4)
1660 		dscl_prog_data->isharp_noise_det.mode = 1;
1661 	else if (data->taps.v_taps == 3)
1662 		dscl_prog_data->isharp_noise_det.mode = 0;
1663 };
1664 /* Set Sharpener data */
spl_set_isharp_data(struct dscl_prog_data * dscl_prog_data,struct adaptive_sharpness adp_sharpness,bool enable_isharp,enum linear_light_scaling lls_pref,enum spl_pixel_format format,const struct spl_scaler_data * data,struct spl_fixed31_32 ratio,enum system_setup setup,enum scale_to_sharpness_policy scale_to_sharpness_policy)1665 static void spl_set_isharp_data(struct dscl_prog_data *dscl_prog_data,
1666 		struct adaptive_sharpness adp_sharpness, bool enable_isharp,
1667 		enum linear_light_scaling lls_pref, enum spl_pixel_format format,
1668 		const struct spl_scaler_data *data, struct spl_fixed31_32 ratio,
1669 		enum system_setup setup, enum scale_to_sharpness_policy scale_to_sharpness_policy)
1670 {
1671 	/* Turn off sharpener if not required */
1672 	if (!enable_isharp) {
1673 		dscl_prog_data->isharp_en = 0;
1674 		return;
1675 	}
1676 
1677 	spl_build_isharp_1dlut_from_reference_curve(ratio, setup, adp_sharpness,
1678 		scale_to_sharpness_policy);
1679 	memcpy(dscl_prog_data->isharp_delta, spl_get_pregen_filter_isharp_1D_lut(setup),
1680 		sizeof(uint32_t) * ISHARP_LUT_TABLE_SIZE);
1681 	dscl_prog_data->sharpness_level = adp_sharpness.sharpness_level;
1682 
1683 	dscl_prog_data->isharp_en = 1;	// ISHARP_EN
1684 	// Set ISHARP_NOISEDET_MODE if htaps = 6-tap
1685 	if (data->taps.h_taps == 6) {
1686 		dscl_prog_data->isharp_noise_det.enable = 1;	/* ISHARP_NOISEDET_EN */
1687 		spl_set_isharp_noise_det_mode(dscl_prog_data, data);	/* ISHARP_NOISEDET_MODE */
1688 	} else
1689 		dscl_prog_data->isharp_noise_det.enable = 0;	// ISHARP_NOISEDET_EN
1690 	// Program noise detection threshold
1691 	dscl_prog_data->isharp_noise_det.uthreshold = 24;	// ISHARP_NOISEDET_UTHRE
1692 	dscl_prog_data->isharp_noise_det.dthreshold = 4;	// ISHARP_NOISEDET_DTHRE
1693 	// Program noise detection gain
1694 	dscl_prog_data->isharp_noise_det.pwl_start_in = 3;	// ISHARP_NOISEDET_PWL_START_IN
1695 	dscl_prog_data->isharp_noise_det.pwl_end_in = 13;	// ISHARP_NOISEDET_PWL_END_IN
1696 	dscl_prog_data->isharp_noise_det.pwl_slope = 1623;	// ISHARP_NOISEDET_PWL_SLOPE
1697 
1698 	if (lls_pref == LLS_PREF_NO) /* ISHARP_FMT_MODE */
1699 		dscl_prog_data->isharp_fmt.mode = 1;
1700 	else
1701 		dscl_prog_data->isharp_fmt.mode = 0;
1702 
1703 	dscl_prog_data->isharp_fmt.norm = 0x3C00;	// ISHARP_FMT_NORM
1704 	dscl_prog_data->isharp_lba.mode = 0;	// ISHARP_LBA_MODE
1705 
1706 	if (setup == SDR_L) {
1707 		// ISHARP_LBA_PWL_SEG0: ISHARP Local Brightness Adjustment PWL Segment 0
1708 		dscl_prog_data->isharp_lba.in_seg[0] = 0;	// ISHARP LBA PWL for Seg 0. INPUT value in U0.10 format
1709 		dscl_prog_data->isharp_lba.base_seg[0] = 0;	// ISHARP LBA PWL for Seg 0. BASE value in U0.6 format
1710 		dscl_prog_data->isharp_lba.slope_seg[0] = 62;	// ISHARP LBA for Seg 0. SLOPE value in S5.3 format
1711 		// ISHARP_LBA_PWL_SEG1: ISHARP LBA PWL Segment 1
1712 		dscl_prog_data->isharp_lba.in_seg[1] = 130;	// ISHARP LBA PWL for Seg 1. INPUT value in U0.10 format
1713 		dscl_prog_data->isharp_lba.base_seg[1] = 63; // ISHARP LBA PWL for Seg 1. BASE value in U0.6 format
1714 		dscl_prog_data->isharp_lba.slope_seg[1] = 0; // ISHARP LBA for Seg 1. SLOPE value in S5.3 format
1715 		// ISHARP_LBA_PWL_SEG2: ISHARP LBA PWL Segment 2
1716 		dscl_prog_data->isharp_lba.in_seg[2] = 450; // ISHARP LBA PWL for Seg 2. INPUT value in U0.10 format
1717 		dscl_prog_data->isharp_lba.base_seg[2] = 63; // ISHARP LBA PWL for Seg 2. BASE value in U0.6 format
1718 		dscl_prog_data->isharp_lba.slope_seg[2] = 0x18D; // ISHARP LBA for Seg 2. SLOPE value in S5.3 format = -115
1719 		// ISHARP_LBA_PWL_SEG3: ISHARP LBA PWL Segment 3
1720 		dscl_prog_data->isharp_lba.in_seg[3] = 520; // ISHARP LBA PWL for Seg 3.INPUT value in U0.10 format
1721 		dscl_prog_data->isharp_lba.base_seg[3] = 0; // ISHARP LBA PWL for Seg 3. BASE value in U0.6 format
1722 		dscl_prog_data->isharp_lba.slope_seg[3] = 0; // ISHARP LBA for Seg 3. SLOPE value in S5.3 format
1723 		// ISHARP_LBA_PWL_SEG4: ISHARP LBA PWL Segment 4
1724 		dscl_prog_data->isharp_lba.in_seg[4] = 520; // ISHARP LBA PWL for Seg 4.INPUT value in U0.10 format
1725 		dscl_prog_data->isharp_lba.base_seg[4] = 0; // ISHARP LBA PWL for Seg 4. BASE value in U0.6 format
1726 		dscl_prog_data->isharp_lba.slope_seg[4] = 0; // ISHARP LBA for Seg 4. SLOPE value in S5.3 format
1727 		// ISHARP_LBA_PWL_SEG5: ISHARP LBA PWL Segment 5
1728 		dscl_prog_data->isharp_lba.in_seg[5] = 520; // ISHARP LBA PWL for Seg 5.INPUT value in U0.10 format
1729 		dscl_prog_data->isharp_lba.base_seg[5] = 0;	// ISHARP LBA PWL for Seg 5. BASE value in U0.6 format
1730 	} else if (setup == HDR_L) {
1731 		// ISHARP_LBA_PWL_SEG0: ISHARP Local Brightness Adjustment PWL Segment 0
1732 		dscl_prog_data->isharp_lba.in_seg[0] = 0;	// ISHARP LBA PWL for Seg 0. INPUT value in U0.10 format
1733 		dscl_prog_data->isharp_lba.base_seg[0] = 0;	// ISHARP LBA PWL for Seg 0. BASE value in U0.6 format
1734 		dscl_prog_data->isharp_lba.slope_seg[0] = 32;	// ISHARP LBA for Seg 0. SLOPE value in S5.3 format
1735 		// ISHARP_LBA_PWL_SEG1: ISHARP LBA PWL Segment 1
1736 		dscl_prog_data->isharp_lba.in_seg[1] = 254;	// ISHARP LBA PWL for Seg 1. INPUT value in U0.10 format
1737 		dscl_prog_data->isharp_lba.base_seg[1] = 63; // ISHARP LBA PWL for Seg 1. BASE value in U0.6 format
1738 		dscl_prog_data->isharp_lba.slope_seg[1] = 0; // ISHARP LBA for Seg 1. SLOPE value in S5.3 format
1739 		// ISHARP_LBA_PWL_SEG2: ISHARP LBA PWL Segment 2
1740 		dscl_prog_data->isharp_lba.in_seg[2] = 559; // ISHARP LBA PWL for Seg 2. INPUT value in U0.10 format
1741 		dscl_prog_data->isharp_lba.base_seg[2] = 63; // ISHARP LBA PWL for Seg 2. BASE value in U0.6 format
1742 		dscl_prog_data->isharp_lba.slope_seg[2] = 0x10C; // ISHARP LBA for Seg 2. SLOPE value in S5.3 format = -244
1743 		// ISHARP_LBA_PWL_SEG3: ISHARP LBA PWL Segment 3
1744 		dscl_prog_data->isharp_lba.in_seg[3] = 592; // ISHARP LBA PWL for Seg 3.INPUT value in U0.10 format
1745 		dscl_prog_data->isharp_lba.base_seg[3] = 0; // ISHARP LBA PWL for Seg 3. BASE value in U0.6 format
1746 		dscl_prog_data->isharp_lba.slope_seg[3] = 0; // ISHARP LBA for Seg 3. SLOPE value in S5.3 format
1747 		// ISHARP_LBA_PWL_SEG4: ISHARP LBA PWL Segment 4
1748 		dscl_prog_data->isharp_lba.in_seg[4] = 1023; // ISHARP LBA PWL for Seg 4.INPUT value in U0.10 format
1749 		dscl_prog_data->isharp_lba.base_seg[4] = 0; // ISHARP LBA PWL for Seg 4. BASE value in U0.6 format
1750 		dscl_prog_data->isharp_lba.slope_seg[4] = 0; // ISHARP LBA for Seg 4. SLOPE value in S5.3 format
1751 		// ISHARP_LBA_PWL_SEG5: ISHARP LBA PWL Segment 5
1752 		dscl_prog_data->isharp_lba.in_seg[5] = 1023; // ISHARP LBA PWL for Seg 5.INPUT value in U0.10 format
1753 		dscl_prog_data->isharp_lba.base_seg[5] = 0;	// ISHARP LBA PWL for Seg 5. BASE value in U0.6 format
1754 	} else {
1755 		// ISHARP_LBA_PWL_SEG0: ISHARP Local Brightness Adjustment PWL Segment 0
1756 		dscl_prog_data->isharp_lba.in_seg[0] = 0;	// ISHARP LBA PWL for Seg 0. INPUT value in U0.10 format
1757 		dscl_prog_data->isharp_lba.base_seg[0] = 0;	// ISHARP LBA PWL for Seg 0. BASE value in U0.6 format
1758 		dscl_prog_data->isharp_lba.slope_seg[0] = 40;	// ISHARP LBA for Seg 0. SLOPE value in S5.3 format
1759 		// ISHARP_LBA_PWL_SEG1: ISHARP LBA PWL Segment 1
1760 		dscl_prog_data->isharp_lba.in_seg[1] = 204;	// ISHARP LBA PWL for Seg 1. INPUT value in U0.10 format
1761 		dscl_prog_data->isharp_lba.base_seg[1] = 63; // ISHARP LBA PWL for Seg 1. BASE value in U0.6 format
1762 		dscl_prog_data->isharp_lba.slope_seg[1] = 0; // ISHARP LBA for Seg 1. SLOPE value in S5.3 format
1763 		// ISHARP_LBA_PWL_SEG2: ISHARP LBA PWL Segment 2
1764 		dscl_prog_data->isharp_lba.in_seg[2] = 818; // ISHARP LBA PWL for Seg 2. INPUT value in U0.10 format
1765 		dscl_prog_data->isharp_lba.base_seg[2] = 63; // ISHARP LBA PWL for Seg 2. BASE value in U0.6 format
1766 		dscl_prog_data->isharp_lba.slope_seg[2] = 0x1D9; // ISHARP LBA for Seg 2. SLOPE value in S5.3 format = -39
1767 		// ISHARP_LBA_PWL_SEG3: ISHARP LBA PWL Segment 3
1768 		dscl_prog_data->isharp_lba.in_seg[3] = 1023; // ISHARP LBA PWL for Seg 3.INPUT value in U0.10 format
1769 		dscl_prog_data->isharp_lba.base_seg[3] = 0; // ISHARP LBA PWL for Seg 3. BASE value in U0.6 format
1770 		dscl_prog_data->isharp_lba.slope_seg[3] = 0; // ISHARP LBA for Seg 3. SLOPE value in S5.3 format
1771 		// ISHARP_LBA_PWL_SEG4: ISHARP LBA PWL Segment 4
1772 		dscl_prog_data->isharp_lba.in_seg[4] = 1023; // ISHARP LBA PWL for Seg 4.INPUT value in U0.10 format
1773 		dscl_prog_data->isharp_lba.base_seg[4] = 0; // ISHARP LBA PWL for Seg 4. BASE value in U0.6 format
1774 		dscl_prog_data->isharp_lba.slope_seg[4] = 0; // ISHARP LBA for Seg 4. SLOPE value in S5.3 format
1775 		// ISHARP_LBA_PWL_SEG5: ISHARP LBA PWL Segment 5
1776 		dscl_prog_data->isharp_lba.in_seg[5] = 1023; // ISHARP LBA PWL for Seg 5.INPUT value in U0.10 format
1777 		dscl_prog_data->isharp_lba.base_seg[5] = 0;	// ISHARP LBA PWL for Seg 5. BASE value in U0.6 format
1778 	}
1779 
1780 	// Program the nldelta soft clip values
1781 	if (lls_pref == LLS_PREF_YES) {
1782 		dscl_prog_data->isharp_nldelta_sclip.enable_p = 0;	/* ISHARP_NLDELTA_SCLIP_EN_P */
1783 		dscl_prog_data->isharp_nldelta_sclip.pivot_p = 0;	/* ISHARP_NLDELTA_SCLIP_PIVOT_P */
1784 		dscl_prog_data->isharp_nldelta_sclip.slope_p = 0;	/* ISHARP_NLDELTA_SCLIP_SLOPE_P */
1785 		dscl_prog_data->isharp_nldelta_sclip.enable_n = 1;	/* ISHARP_NLDELTA_SCLIP_EN_N */
1786 		dscl_prog_data->isharp_nldelta_sclip.pivot_n = 71;	/* ISHARP_NLDELTA_SCLIP_PIVOT_N */
1787 		dscl_prog_data->isharp_nldelta_sclip.slope_n = 16;	/* ISHARP_NLDELTA_SCLIP_SLOPE_N */
1788 	} else {
1789 		dscl_prog_data->isharp_nldelta_sclip.enable_p = 1;	/* ISHARP_NLDELTA_SCLIP_EN_P */
1790 		dscl_prog_data->isharp_nldelta_sclip.pivot_p = 70;	/* ISHARP_NLDELTA_SCLIP_PIVOT_P */
1791 		dscl_prog_data->isharp_nldelta_sclip.slope_p = 24;	/* ISHARP_NLDELTA_SCLIP_SLOPE_P */
1792 		dscl_prog_data->isharp_nldelta_sclip.enable_n = 1;	/* ISHARP_NLDELTA_SCLIP_EN_N */
1793 		dscl_prog_data->isharp_nldelta_sclip.pivot_n = 70;	/* ISHARP_NLDELTA_SCLIP_PIVOT_N */
1794 		dscl_prog_data->isharp_nldelta_sclip.slope_n = 24;	/* ISHARP_NLDELTA_SCLIP_SLOPE_N */
1795 	}
1796 
1797 	// Set the values as per lookup table
1798 	spl_set_blur_scale_data(dscl_prog_data, data);
1799 }
1800 
1801 /* Calculate recout, scaling ratio, and viewport, then get optimal number of taps */
spl_calculate_number_of_taps(struct spl_in * spl_in,struct spl_scratch * spl_scratch,struct spl_out * spl_out,bool * enable_easf_v,bool * enable_easf_h,bool * enable_isharp)1802 static bool spl_calculate_number_of_taps(struct spl_in *spl_in, struct spl_scratch *spl_scratch, struct spl_out *spl_out,
1803 	bool *enable_easf_v, bool *enable_easf_h, bool *enable_isharp)
1804 {
1805 	bool res = false;
1806 
1807 	memset(spl_scratch, 0, sizeof(struct spl_scratch));
1808 	spl_scratch->scl_data.h_active = spl_in->h_active;
1809 	spl_scratch->scl_data.v_active = spl_in->v_active;
1810 
1811 	// All SPL calls
1812 	/* recout calculation */
1813 	/* depends on h_active */
1814 	spl_calculate_recout(spl_in, spl_scratch, spl_out);
1815 	/* depends on pixel format */
1816 	spl_calculate_scaling_ratios(spl_in, spl_scratch, spl_out);
1817 	/* Adjust recout for opp if needed */
1818 	spl_opp_adjust_rect(&spl_scratch->scl_data.recout, &spl_in->basic_in.opp_recout_adjust);
1819 	/* depends on scaling ratios and recout, does not calculate offset yet */
1820 	spl_calculate_viewport_size(spl_in, spl_scratch);
1821 
1822 	res = spl_get_optimal_number_of_taps(
1823 			  spl_in->basic_out.max_downscale_src_width, spl_in,
1824 			  spl_scratch, &spl_in->scaling_quality, enable_easf_v,
1825 			  enable_easf_h, enable_isharp);
1826 	return res;
1827 }
1828 
1829 /* Calculate scaler parameters */
SPL_NAMESPACE(spl_calculate_scaler_params (struct spl_in * spl_in,struct spl_out * spl_out))1830 bool SPL_NAMESPACE(spl_calculate_scaler_params(struct spl_in *spl_in, struct spl_out *spl_out))
1831 {
1832 	bool res = false;
1833 	bool enable_easf_v = false;
1834 	bool enable_easf_h = false;
1835 	int vratio = 0;
1836 	int hratio = 0;
1837 	struct spl_scratch spl_scratch;
1838 	struct spl_fixed31_32 isharp_scale_ratio;
1839 	enum system_setup setup;
1840 	bool enable_isharp = false;
1841 	const struct spl_scaler_data *data = &spl_scratch.scl_data;
1842 
1843 	res = spl_calculate_number_of_taps(spl_in, &spl_scratch, spl_out,
1844 		&enable_easf_v, &enable_easf_h, &enable_isharp);
1845 
1846 	/*
1847 	 * Depends on recout, scaling ratios, h_active and taps
1848 	 * May need to re-check lb size after this in some obscure scenario
1849 	 */
1850 	if (res)
1851 		spl_calculate_inits_and_viewports(spl_in, &spl_scratch);
1852 	// Handle 3d recout
1853 	spl_handle_3d_recout(spl_in, &spl_scratch.scl_data.recout);
1854 	// Clamp
1855 	spl_clamp_viewport(&spl_scratch.scl_data.viewport, spl_in->min_viewport_size);
1856 
1857 	// Save all calculated parameters in dscl_prog_data structure to program hw registers
1858 	spl_set_dscl_prog_data(spl_in, &spl_scratch, spl_out, enable_easf_v, enable_easf_h, enable_isharp);
1859 
1860 	if (!res)
1861 		return res;
1862 
1863 	if (spl_in->lls_pref == LLS_PREF_YES) {
1864 		if (spl_in->is_hdr_on)
1865 			setup = HDR_L;
1866 		else
1867 			setup = SDR_L;
1868 	} else {
1869 		if (spl_in->is_hdr_on)
1870 			setup = HDR_NL;
1871 		else
1872 			setup = SDR_NL;
1873 	}
1874 
1875 	// Set EASF
1876 	spl_set_easf_data(&spl_scratch, spl_out, enable_easf_v, enable_easf_h, spl_in->lls_pref,
1877 		spl_in->basic_in.format, setup, spl_in->sdr_white_level_nits);
1878 
1879 	// Set iSHARP
1880 	vratio = spl_fixpt_ceil(spl_scratch.scl_data.ratios.vert);
1881 	hratio = spl_fixpt_ceil(spl_scratch.scl_data.ratios.horz);
1882 	if (vratio <= hratio)
1883 		isharp_scale_ratio = spl_scratch.scl_data.recip_ratios.vert;
1884 	else
1885 		isharp_scale_ratio = spl_scratch.scl_data.recip_ratios.horz;
1886 
1887 	spl_set_isharp_data(spl_out->dscl_prog_data, spl_in->adaptive_sharpness, enable_isharp,
1888 		spl_in->lls_pref, spl_in->basic_in.format, data, isharp_scale_ratio, setup,
1889 		spl_in->debug.scale_to_sharpness_policy);
1890 
1891 	return res;
1892 }
1893 
1894 /* External interface to get number of taps only */
SPL_NAMESPACE(spl_get_number_of_taps (struct spl_in * spl_in,struct spl_out * spl_out))1895 bool SPL_NAMESPACE(spl_get_number_of_taps(struct spl_in *spl_in, struct spl_out *spl_out))
1896 {
1897 	bool res = false;
1898 	bool enable_easf_v = false;
1899 	bool enable_easf_h = false;
1900 	bool enable_isharp = false;
1901 	struct spl_scratch spl_scratch;
1902 	struct dscl_prog_data *dscl_prog_data = spl_out->dscl_prog_data;
1903 	const struct spl_scaler_data *data = &spl_scratch.scl_data;
1904 
1905 	res = spl_calculate_number_of_taps(spl_in, &spl_scratch, spl_out,
1906 		&enable_easf_v, &enable_easf_h, &enable_isharp);
1907 	spl_set_taps_data(dscl_prog_data, data);
1908 	return res;
1909 }
1910 
1911