xref: /linux/arch/s390/kernel/process.c (revision bc46b7cbc58c4cb562b6a45a1fbc7b8e7b23df58)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This file handles the architecture dependent parts of process handling.
4  *
5  *    Copyright IBM Corp. 1999, 2009
6  *    Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>,
7  *		 Hartmut Penner <hp@de.ibm.com>,
8  *		 Denis Joseph Barrow,
9  */
10 
11 #include <linux/elf-randomize.h>
12 #include <linux/compiler.h>
13 #include <linux/cpu.h>
14 #include <linux/sched.h>
15 #include <linux/sched/debug.h>
16 #include <linux/sched/task.h>
17 #include <linux/sched/task_stack.h>
18 #include <linux/kernel.h>
19 #include <linux/mm.h>
20 #include <linux/elfcore.h>
21 #include <linux/smp.h>
22 #include <linux/slab.h>
23 #include <linux/interrupt.h>
24 #include <linux/tick.h>
25 #include <linux/personality.h>
26 #include <linux/syscalls.h>
27 #include <linux/compat.h>
28 #include <linux/kprobes.h>
29 #include <linux/random.h>
30 #include <linux/init_task.h>
31 #include <linux/entry-common.h>
32 #include <linux/io.h>
33 #include <asm/guarded_storage.h>
34 #include <asm/access-regs.h>
35 #include <asm/switch_to.h>
36 #include <asm/cpu_mf.h>
37 #include <asm/processor.h>
38 #include <asm/ptrace.h>
39 #include <asm/vtimer.h>
40 #include <asm/exec.h>
41 #include <asm/fpu.h>
42 #include <asm/irq.h>
43 #include <asm/nmi.h>
44 #include <asm/smp.h>
45 #include <asm/stacktrace.h>
46 #include <asm/runtime_instr.h>
47 #include <asm/unwind.h>
48 #include "entry.h"
49 
50 void ret_from_fork(void) asm("ret_from_fork");
51 
__ret_from_fork(struct task_struct * prev,struct pt_regs * regs)52 void __ret_from_fork(struct task_struct *prev, struct pt_regs *regs)
53 {
54 	void (*func)(void *arg);
55 
56 	schedule_tail(prev);
57 
58 	if (!user_mode(regs)) {
59 		/* Kernel thread */
60 		func = (void *)regs->gprs[9];
61 		func((void *)regs->gprs[10]);
62 	}
63 	clear_pt_regs_flag(regs, PIF_SYSCALL);
64 	syscall_exit_to_user_mode(regs);
65 }
66 
flush_thread(void)67 void flush_thread(void)
68 {
69 }
70 
arch_setup_new_exec(void)71 void arch_setup_new_exec(void)
72 {
73 	if (get_lowcore()->current_pid != current->pid) {
74 		get_lowcore()->current_pid = current->pid;
75 		if (test_facility(40))
76 			lpp(&get_lowcore()->lpp);
77 	}
78 }
79 
arch_release_task_struct(struct task_struct * tsk)80 void arch_release_task_struct(struct task_struct *tsk)
81 {
82 	runtime_instr_release(tsk);
83 	guarded_storage_release(tsk);
84 }
85 
arch_dup_task_struct(struct task_struct * dst,struct task_struct * src)86 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
87 {
88 	save_user_fpu_regs();
89 
90 	*dst = *src;
91 	dst->thread.kfpu_flags = 0;
92 
93 	/*
94 	 * Don't transfer over the runtime instrumentation or the guarded
95 	 * storage control block pointers. These fields are cleared here instead
96 	 * of in copy_thread() to avoid premature freeing of associated memory
97 	 * on fork() failure. Wait to clear the RI flag because ->stack still
98 	 * refers to the source thread.
99 	 */
100 	dst->thread.ri_cb = NULL;
101 	dst->thread.gs_cb = NULL;
102 	dst->thread.gs_bc_cb = NULL;
103 
104 	return 0;
105 }
106 
copy_thread(struct task_struct * p,const struct kernel_clone_args * args)107 int copy_thread(struct task_struct *p, const struct kernel_clone_args *args)
108 {
109 	unsigned long clone_flags = args->flags;
110 	unsigned long new_stackp = args->stack;
111 	unsigned long tls = args->tls;
112 	struct fake_frame
113 	{
114 		struct stack_frame sf;
115 		struct pt_regs childregs;
116 	} *frame;
117 
118 	frame = container_of(task_pt_regs(p), struct fake_frame, childregs);
119 	p->thread.ksp = (unsigned long) frame;
120 	/* Save access registers to new thread structure. */
121 	save_access_regs(&p->thread.acrs[0]);
122 	/* start new process with ar4 pointing to the correct address space */
123 	/* Don't copy debug registers */
124 	memset(&p->thread.per_user, 0, sizeof(p->thread.per_user));
125 	memset(&p->thread.per_event, 0, sizeof(p->thread.per_event));
126 	clear_tsk_thread_flag(p, TIF_SINGLE_STEP);
127 	p->thread.per_flags = 0;
128 	/* Initialize per thread user and system timer values */
129 	p->thread.user_timer = 0;
130 	p->thread.guest_timer = 0;
131 	p->thread.system_timer = 0;
132 	p->thread.hardirq_timer = 0;
133 	p->thread.softirq_timer = 0;
134 	p->thread.last_break = 1;
135 
136 	frame->sf.back_chain = 0;
137 	frame->sf.gprs[11 - 6] = (unsigned long)&frame->childregs;
138 	frame->sf.gprs[12 - 6] = (unsigned long)p;
139 	/* new return point is ret_from_fork */
140 	frame->sf.gprs[14 - 6] = (unsigned long)ret_from_fork;
141 	/* fake return stack for resume(), don't go back to schedule */
142 	frame->sf.gprs[15 - 6] = (unsigned long)frame;
143 
144 	/* Store access registers to kernel stack of new process. */
145 	if (unlikely(args->fn)) {
146 		/* kernel thread */
147 		memset(&frame->childregs, 0, sizeof(struct pt_regs));
148 		frame->childregs.psw.mask = PSW_KERNEL_BITS | PSW_MASK_IO |
149 					    PSW_MASK_EXT | PSW_MASK_MCHECK;
150 		frame->childregs.gprs[9] = (unsigned long)args->fn;
151 		frame->childregs.gprs[10] = (unsigned long)args->fn_arg;
152 		frame->childregs.orig_gpr2 = -1;
153 		frame->childregs.last_break = 1;
154 		return 0;
155 	}
156 	frame->childregs = *current_pt_regs();
157 	frame->childregs.gprs[2] = 0;	/* child returns 0 on fork. */
158 	frame->childregs.flags = 0;
159 	if (new_stackp)
160 		frame->childregs.gprs[15] = new_stackp;
161 	/*
162 	 * Clear the runtime instrumentation flag after the above childregs
163 	 * copy. The CB pointer was already cleared in arch_dup_task_struct().
164 	 */
165 	frame->childregs.psw.mask &= ~PSW_MASK_RI;
166 
167 	/* Set a new TLS ?  */
168 	if (clone_flags & CLONE_SETTLS) {
169 		if (is_compat_task()) {
170 			p->thread.acrs[0] = (unsigned int)tls;
171 		} else {
172 			p->thread.acrs[0] = (unsigned int)(tls >> 32);
173 			p->thread.acrs[1] = (unsigned int)tls;
174 		}
175 	}
176 	/*
177 	 * s390 stores the svc return address in arch_data when calling
178 	 * sigreturn()/restart_syscall() via vdso. 1 means no valid address
179 	 * stored.
180 	 */
181 	p->restart_block.arch_data = 1;
182 	return 0;
183 }
184 
execve_tail(void)185 void execve_tail(void)
186 {
187 	current->thread.ufpu.fpc = 0;
188 	fpu_sfpc(0);
189 }
190 
__switch_to(struct task_struct * prev,struct task_struct * next)191 struct task_struct *__switch_to(struct task_struct *prev, struct task_struct *next)
192 {
193 	save_user_fpu_regs();
194 	save_kernel_fpu_regs(&prev->thread);
195 	save_access_regs(&prev->thread.acrs[0]);
196 	save_ri_cb(prev->thread.ri_cb);
197 	save_gs_cb(prev->thread.gs_cb);
198 	update_cr_regs(next);
199 	restore_kernel_fpu_regs(&next->thread);
200 	restore_access_regs(&next->thread.acrs[0]);
201 	restore_ri_cb(next->thread.ri_cb, prev->thread.ri_cb);
202 	restore_gs_cb(next->thread.gs_cb);
203 	return __switch_to_asm(prev, next);
204 }
205 
__get_wchan(struct task_struct * p)206 unsigned long __get_wchan(struct task_struct *p)
207 {
208 	struct unwind_state state;
209 	unsigned long ip = 0;
210 
211 	if (!task_stack_page(p))
212 		return 0;
213 
214 	if (!try_get_task_stack(p))
215 		return 0;
216 
217 	unwind_for_each_frame(&state, p, NULL, 0) {
218 		if (state.stack_info.type != STACK_TYPE_TASK) {
219 			ip = 0;
220 			break;
221 		}
222 
223 		ip = unwind_get_return_address(&state);
224 		if (!ip)
225 			break;
226 
227 		if (!in_sched_functions(ip))
228 			break;
229 	}
230 
231 	put_task_stack(p);
232 	return ip;
233 }
234 
arch_align_stack(unsigned long sp)235 unsigned long arch_align_stack(unsigned long sp)
236 {
237 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
238 		sp -= get_random_u32_below(PAGE_SIZE);
239 	return sp & ~0xf;
240 }
241 
brk_rnd(void)242 static inline unsigned long brk_rnd(void)
243 {
244 	return (get_random_u16() & BRK_RND_MASK) << PAGE_SHIFT;
245 }
246 
arch_randomize_brk(struct mm_struct * mm)247 unsigned long arch_randomize_brk(struct mm_struct *mm)
248 {
249 	unsigned long ret;
250 
251 	ret = PAGE_ALIGN(mm->brk + brk_rnd());
252 	return (ret > mm->brk) ? ret : mm->brk;
253 }
254