xref: /linux/drivers/mtd/nand/raw/brcmnand/brcmnand.c (revision ab93e0dd72c37d378dd936f031ffb83ff2bd87ce)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright © 2010-2015 Broadcom Corporation
4  */
5 
6 #include <linux/clk.h>
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/delay.h>
10 #include <linux/device.h>
11 #include <linux/platform_device.h>
12 #include <linux/platform_data/brcmnand.h>
13 #include <linux/err.h>
14 #include <linux/completion.h>
15 #include <linux/interrupt.h>
16 #include <linux/spinlock.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/ioport.h>
19 #include <linux/bug.h>
20 #include <linux/kernel.h>
21 #include <linux/bitops.h>
22 #include <linux/mm.h>
23 #include <linux/mtd/mtd.h>
24 #include <linux/mtd/rawnand.h>
25 #include <linux/mtd/partitions.h>
26 #include <linux/of.h>
27 #include <linux/of_platform.h>
28 #include <linux/slab.h>
29 #include <linux/static_key.h>
30 #include <linux/list.h>
31 #include <linux/log2.h>
32 #include <linux/string_choices.h>
33 
34 #include "brcmnand.h"
35 
36 /*
37  * This flag controls if WP stays on between erase/write commands to mitigate
38  * flash corruption due to power glitches. Values:
39  * 0: NAND_WP is not used or not available
40  * 1: NAND_WP is set by default, cleared for erase/write operations
41  * 2: NAND_WP is always cleared
42  */
43 static int wp_on = 1;
44 module_param(wp_on, int, 0444);
45 
46 /***********************************************************************
47  * Definitions
48  ***********************************************************************/
49 
50 #define DRV_NAME			"brcmnand"
51 
52 #define CMD_NULL			0x00
53 #define CMD_PAGE_READ			0x01
54 #define CMD_SPARE_AREA_READ		0x02
55 #define CMD_STATUS_READ			0x03
56 #define CMD_PROGRAM_PAGE		0x04
57 #define CMD_PROGRAM_SPARE_AREA		0x05
58 #define CMD_COPY_BACK			0x06
59 #define CMD_DEVICE_ID_READ		0x07
60 #define CMD_BLOCK_ERASE			0x08
61 #define CMD_FLASH_RESET			0x09
62 #define CMD_BLOCKS_LOCK			0x0a
63 #define CMD_BLOCKS_LOCK_DOWN		0x0b
64 #define CMD_BLOCKS_UNLOCK		0x0c
65 #define CMD_READ_BLOCKS_LOCK_STATUS	0x0d
66 #define CMD_PARAMETER_READ		0x0e
67 #define CMD_PARAMETER_CHANGE_COL	0x0f
68 #define CMD_LOW_LEVEL_OP		0x10
69 #define CMD_NOT_SUPPORTED		0xff
70 
71 struct brcm_nand_dma_desc {
72 	u32 next_desc;
73 	u32 next_desc_ext;
74 	u32 cmd_irq;
75 	u32 dram_addr;
76 	u32 dram_addr_ext;
77 	u32 tfr_len;
78 	u32 total_len;
79 	u32 flash_addr;
80 	u32 flash_addr_ext;
81 	u32 cs;
82 	u32 pad2[5];
83 	u32 status_valid;
84 } __packed;
85 
86 /* Bitfields for brcm_nand_dma_desc::status_valid */
87 #define FLASH_DMA_ECC_ERROR	(1 << 8)
88 #define FLASH_DMA_CORR_ERROR	(1 << 9)
89 
90 /* Bitfields for DMA_MODE */
91 #define FLASH_DMA_MODE_STOP_ON_ERROR	BIT(1) /* stop in Uncorr ECC error */
92 #define FLASH_DMA_MODE_MODE		BIT(0) /* link list */
93 #define FLASH_DMA_MODE_MASK		(FLASH_DMA_MODE_STOP_ON_ERROR |	\
94 						FLASH_DMA_MODE_MODE)
95 
96 /* 512B flash cache in the NAND controller HW */
97 #define FC_SHIFT		9U
98 #define FC_BYTES		512U
99 #define FC_WORDS		(FC_BYTES >> 2)
100 
101 #define BRCMNAND_MIN_PAGESIZE	512
102 #define BRCMNAND_MIN_BLOCKSIZE	(8 * 1024)
103 #define BRCMNAND_MIN_DEVSIZE	(4ULL * 1024 * 1024)
104 
105 #define NAND_CTRL_RDY			(INTFC_CTLR_READY | INTFC_FLASH_READY)
106 #define NAND_POLL_STATUS_TIMEOUT_MS	500
107 
108 #define EDU_CMD_WRITE          0x00
109 #define EDU_CMD_READ           0x01
110 #define EDU_STATUS_ACTIVE      BIT(0)
111 #define EDU_ERR_STATUS_ERRACK  BIT(0)
112 #define EDU_DONE_MASK		GENMASK(1, 0)
113 
114 #define EDU_CONFIG_MODE_NAND   BIT(0)
115 #define EDU_CONFIG_SWAP_BYTE   BIT(1)
116 #ifdef CONFIG_CPU_BIG_ENDIAN
117 #define EDU_CONFIG_SWAP_CFG     EDU_CONFIG_SWAP_BYTE
118 #else
119 #define EDU_CONFIG_SWAP_CFG     0
120 #endif
121 
122 /* edu registers */
123 enum edu_reg {
124 	EDU_CONFIG = 0,
125 	EDU_DRAM_ADDR,
126 	EDU_EXT_ADDR,
127 	EDU_LENGTH,
128 	EDU_CMD,
129 	EDU_STOP,
130 	EDU_STATUS,
131 	EDU_DONE,
132 	EDU_ERR_STATUS,
133 };
134 
135 static const u16  edu_regs[] = {
136 	[EDU_CONFIG] = 0x00,
137 	[EDU_DRAM_ADDR] = 0x04,
138 	[EDU_EXT_ADDR] = 0x08,
139 	[EDU_LENGTH] = 0x0c,
140 	[EDU_CMD] = 0x10,
141 	[EDU_STOP] = 0x14,
142 	[EDU_STATUS] = 0x18,
143 	[EDU_DONE] = 0x1c,
144 	[EDU_ERR_STATUS] = 0x20,
145 };
146 
147 /* flash_dma registers */
148 enum flash_dma_reg {
149 	FLASH_DMA_REVISION = 0,
150 	FLASH_DMA_FIRST_DESC,
151 	FLASH_DMA_FIRST_DESC_EXT,
152 	FLASH_DMA_CTRL,
153 	FLASH_DMA_MODE,
154 	FLASH_DMA_STATUS,
155 	FLASH_DMA_INTERRUPT_DESC,
156 	FLASH_DMA_INTERRUPT_DESC_EXT,
157 	FLASH_DMA_ERROR_STATUS,
158 	FLASH_DMA_CURRENT_DESC,
159 	FLASH_DMA_CURRENT_DESC_EXT,
160 };
161 
162 /* flash_dma registers v0*/
163 static const u16 flash_dma_regs_v0[] = {
164 	[FLASH_DMA_REVISION]		= 0x00,
165 	[FLASH_DMA_FIRST_DESC]		= 0x04,
166 	[FLASH_DMA_CTRL]		= 0x08,
167 	[FLASH_DMA_MODE]		= 0x0c,
168 	[FLASH_DMA_STATUS]		= 0x10,
169 	[FLASH_DMA_INTERRUPT_DESC]	= 0x14,
170 	[FLASH_DMA_ERROR_STATUS]	= 0x18,
171 	[FLASH_DMA_CURRENT_DESC]	= 0x1c,
172 };
173 
174 /* flash_dma registers v1*/
175 static const u16 flash_dma_regs_v1[] = {
176 	[FLASH_DMA_REVISION]		= 0x00,
177 	[FLASH_DMA_FIRST_DESC]		= 0x04,
178 	[FLASH_DMA_FIRST_DESC_EXT]	= 0x08,
179 	[FLASH_DMA_CTRL]		= 0x0c,
180 	[FLASH_DMA_MODE]		= 0x10,
181 	[FLASH_DMA_STATUS]		= 0x14,
182 	[FLASH_DMA_INTERRUPT_DESC]	= 0x18,
183 	[FLASH_DMA_INTERRUPT_DESC_EXT]	= 0x1c,
184 	[FLASH_DMA_ERROR_STATUS]	= 0x20,
185 	[FLASH_DMA_CURRENT_DESC]	= 0x24,
186 	[FLASH_DMA_CURRENT_DESC_EXT]	= 0x28,
187 };
188 
189 /* flash_dma registers v4 */
190 static const u16 flash_dma_regs_v4[] = {
191 	[FLASH_DMA_REVISION]		= 0x00,
192 	[FLASH_DMA_FIRST_DESC]		= 0x08,
193 	[FLASH_DMA_FIRST_DESC_EXT]	= 0x0c,
194 	[FLASH_DMA_CTRL]		= 0x10,
195 	[FLASH_DMA_MODE]		= 0x14,
196 	[FLASH_DMA_STATUS]		= 0x18,
197 	[FLASH_DMA_INTERRUPT_DESC]	= 0x20,
198 	[FLASH_DMA_INTERRUPT_DESC_EXT]	= 0x24,
199 	[FLASH_DMA_ERROR_STATUS]	= 0x28,
200 	[FLASH_DMA_CURRENT_DESC]	= 0x30,
201 	[FLASH_DMA_CURRENT_DESC_EXT]	= 0x34,
202 };
203 
204 /* Native command conversion for legacy controllers (< v5.0) */
205 static const u8 native_cmd_conv[] = {
206 	[NAND_CMD_READ0]	= CMD_NOT_SUPPORTED,
207 	[NAND_CMD_READ1]	= CMD_NOT_SUPPORTED,
208 	[NAND_CMD_RNDOUT]	= CMD_PARAMETER_CHANGE_COL,
209 	[NAND_CMD_PAGEPROG]	= CMD_NOT_SUPPORTED,
210 	[NAND_CMD_READOOB]	= CMD_NOT_SUPPORTED,
211 	[NAND_CMD_ERASE1]	= CMD_BLOCK_ERASE,
212 	[NAND_CMD_STATUS]	= CMD_NOT_SUPPORTED,
213 	[NAND_CMD_SEQIN]	= CMD_NOT_SUPPORTED,
214 	[NAND_CMD_RNDIN]	= CMD_NOT_SUPPORTED,
215 	[NAND_CMD_READID]	= CMD_DEVICE_ID_READ,
216 	[NAND_CMD_ERASE2]	= CMD_NULL,
217 	[NAND_CMD_PARAM]	= CMD_PARAMETER_READ,
218 	[NAND_CMD_GET_FEATURES]	= CMD_NOT_SUPPORTED,
219 	[NAND_CMD_SET_FEATURES]	= CMD_NOT_SUPPORTED,
220 	[NAND_CMD_RESET]	= CMD_NOT_SUPPORTED,
221 	[NAND_CMD_READSTART]	= CMD_NOT_SUPPORTED,
222 	[NAND_CMD_READCACHESEQ]	= CMD_NOT_SUPPORTED,
223 	[NAND_CMD_READCACHEEND]	= CMD_NOT_SUPPORTED,
224 	[NAND_CMD_RNDOUTSTART]	= CMD_NULL,
225 	[NAND_CMD_CACHEDPROG]	= CMD_NOT_SUPPORTED,
226 };
227 
228 /* Controller feature flags */
229 enum {
230 	BRCMNAND_HAS_1K_SECTORS			= BIT(0),
231 	BRCMNAND_HAS_PREFETCH			= BIT(1),
232 	BRCMNAND_HAS_CACHE_MODE			= BIT(2),
233 	BRCMNAND_HAS_WP				= BIT(3),
234 };
235 
236 struct brcmnand_host;
237 
238 static DEFINE_STATIC_KEY_FALSE(brcmnand_soc_has_ops_key);
239 
240 struct brcmnand_controller {
241 	struct device		*dev;
242 	struct nand_controller	controller;
243 	void __iomem		*nand_base;
244 	void __iomem		*nand_fc; /* flash cache */
245 	void __iomem		*flash_dma_base;
246 	int			irq;
247 	unsigned int		dma_irq;
248 	int			nand_version;
249 
250 	/* Some SoCs provide custom interrupt status register(s) */
251 	struct brcmnand_soc	*soc;
252 
253 	/* Some SoCs have a gateable clock for the controller */
254 	struct clk		*clk;
255 
256 	int			cmd_pending;
257 	bool			dma_pending;
258 	bool                    edu_pending;
259 	struct completion	done;
260 	struct completion	dma_done;
261 	struct completion       edu_done;
262 
263 	/* List of NAND hosts (one for each chip-select) */
264 	struct list_head host_list;
265 
266 	/* Functions to be called from exec_op */
267 	int (*check_instr)(struct nand_chip *chip,
268 			   const struct nand_operation *op);
269 	int (*exec_instr)(struct nand_chip *chip,
270 			  const struct nand_operation *op);
271 
272 	/* EDU info, per-transaction */
273 	const u16               *edu_offsets;
274 	void __iomem            *edu_base;
275 	int			edu_irq;
276 	int                     edu_count;
277 	u64                     edu_dram_addr;
278 	u32                     edu_ext_addr;
279 	u32                     edu_cmd;
280 	u32                     edu_config;
281 	int			sas; /* spare area size, per flash cache */
282 	int			sector_size_1k;
283 	u8			*oob;
284 
285 	/* flash_dma reg */
286 	const u16		*flash_dma_offsets;
287 	struct brcm_nand_dma_desc *dma_desc;
288 	dma_addr_t		dma_pa;
289 
290 	int (*dma_trans)(struct brcmnand_host *host, u64 addr, u32 *buf,
291 			 u8 *oob, u32 len, u8 dma_cmd);
292 
293 	/* in-memory cache of the FLASH_CACHE, used only for some commands */
294 	u8			flash_cache[FC_BYTES];
295 
296 	/* Controller revision details */
297 	const u16		*reg_offsets;
298 	unsigned int		reg_spacing; /* between CS1, CS2, ... regs */
299 	const u8		*cs_offsets; /* within each chip-select */
300 	const u8		*cs0_offsets; /* within CS0, if different */
301 	unsigned int		max_block_size;
302 	const unsigned int	*block_sizes;
303 	unsigned int		max_page_size;
304 	const unsigned int	*page_sizes;
305 	unsigned int		page_size_shift;
306 	unsigned int		max_oob;
307 	u32			ecc_level_shift;
308 	u32			features;
309 
310 	/* for low-power standby/resume only */
311 	u32			nand_cs_nand_select;
312 	u32			nand_cs_nand_xor;
313 	u32			corr_stat_threshold;
314 	u32			flash_dma_mode;
315 	u32                     flash_edu_mode;
316 	bool			pio_poll_mode;
317 };
318 
319 struct brcmnand_cfg {
320 	u64			device_size;
321 	unsigned int		block_size;
322 	unsigned int		page_size;
323 	unsigned int		spare_area_size;
324 	unsigned int		device_width;
325 	unsigned int		col_adr_bytes;
326 	unsigned int		blk_adr_bytes;
327 	unsigned int		ful_adr_bytes;
328 	unsigned int		sector_size_1k;
329 	unsigned int		ecc_level;
330 	/* use for low-power standby/resume only */
331 	u32			acc_control;
332 	u32			config;
333 	u32			config_ext;
334 	u32			timing_1;
335 	u32			timing_2;
336 };
337 
338 struct brcmnand_host {
339 	struct list_head	node;
340 
341 	struct nand_chip	chip;
342 	struct platform_device	*pdev;
343 	int			cs;
344 
345 	struct brcmnand_cfg	hwcfg;
346 	struct brcmnand_controller *ctrl;
347 };
348 
349 enum brcmnand_reg {
350 	BRCMNAND_CMD_START = 0,
351 	BRCMNAND_CMD_EXT_ADDRESS,
352 	BRCMNAND_CMD_ADDRESS,
353 	BRCMNAND_INTFC_STATUS,
354 	BRCMNAND_CS_SELECT,
355 	BRCMNAND_CS_XOR,
356 	BRCMNAND_LL_OP,
357 	BRCMNAND_CS0_BASE,
358 	BRCMNAND_CS1_BASE,		/* CS1 regs, if non-contiguous */
359 	BRCMNAND_CORR_THRESHOLD,
360 	BRCMNAND_CORR_THRESHOLD_EXT,
361 	BRCMNAND_UNCORR_COUNT,
362 	BRCMNAND_CORR_COUNT,
363 	BRCMNAND_READ_ERROR_COUNT,
364 	BRCMNAND_CORR_EXT_ADDR,
365 	BRCMNAND_CORR_ADDR,
366 	BRCMNAND_UNCORR_EXT_ADDR,
367 	BRCMNAND_UNCORR_ADDR,
368 	BRCMNAND_SEMAPHORE,
369 	BRCMNAND_ID,
370 	BRCMNAND_ID_EXT,
371 	BRCMNAND_LL_RDATA,
372 	BRCMNAND_OOB_READ_BASE,
373 	BRCMNAND_OOB_READ_10_BASE,	/* offset 0x10, if non-contiguous */
374 	BRCMNAND_OOB_WRITE_BASE,
375 	BRCMNAND_OOB_WRITE_10_BASE,	/* offset 0x10, if non-contiguous */
376 	BRCMNAND_FC_BASE,
377 };
378 
379 /* BRCMNAND v2.1-v2.2 */
380 static const u16 brcmnand_regs_v21[] = {
381 	[BRCMNAND_CMD_START]		=  0x04,
382 	[BRCMNAND_CMD_EXT_ADDRESS]	=  0x08,
383 	[BRCMNAND_CMD_ADDRESS]		=  0x0c,
384 	[BRCMNAND_INTFC_STATUS]		=  0x5c,
385 	[BRCMNAND_CS_SELECT]		=  0x14,
386 	[BRCMNAND_CS_XOR]		=  0x18,
387 	[BRCMNAND_LL_OP]		=     0,
388 	[BRCMNAND_CS0_BASE]		=  0x40,
389 	[BRCMNAND_CS1_BASE]		=     0,
390 	[BRCMNAND_CORR_THRESHOLD]	=     0,
391 	[BRCMNAND_CORR_THRESHOLD_EXT]	=     0,
392 	[BRCMNAND_UNCORR_COUNT]		=     0,
393 	[BRCMNAND_CORR_COUNT]		=     0,
394 	[BRCMNAND_READ_ERROR_COUNT]	=     0,
395 	[BRCMNAND_CORR_EXT_ADDR]	=  0x60,
396 	[BRCMNAND_CORR_ADDR]		=  0x64,
397 	[BRCMNAND_UNCORR_EXT_ADDR]	=  0x68,
398 	[BRCMNAND_UNCORR_ADDR]		=  0x6c,
399 	[BRCMNAND_SEMAPHORE]		=  0x50,
400 	[BRCMNAND_ID]			=  0x54,
401 	[BRCMNAND_ID_EXT]		=     0,
402 	[BRCMNAND_LL_RDATA]		=     0,
403 	[BRCMNAND_OOB_READ_BASE]	=  0x20,
404 	[BRCMNAND_OOB_READ_10_BASE]	=     0,
405 	[BRCMNAND_OOB_WRITE_BASE]	=  0x30,
406 	[BRCMNAND_OOB_WRITE_10_BASE]	=     0,
407 	[BRCMNAND_FC_BASE]		= 0x200,
408 };
409 
410 /* BRCMNAND v3.3-v4.0 */
411 static const u16 brcmnand_regs_v33[] = {
412 	[BRCMNAND_CMD_START]		=  0x04,
413 	[BRCMNAND_CMD_EXT_ADDRESS]	=  0x08,
414 	[BRCMNAND_CMD_ADDRESS]		=  0x0c,
415 	[BRCMNAND_INTFC_STATUS]		=  0x6c,
416 	[BRCMNAND_CS_SELECT]		=  0x14,
417 	[BRCMNAND_CS_XOR]		=  0x18,
418 	[BRCMNAND_LL_OP]		= 0x178,
419 	[BRCMNAND_CS0_BASE]		=  0x40,
420 	[BRCMNAND_CS1_BASE]		=  0xd0,
421 	[BRCMNAND_CORR_THRESHOLD]	=  0x84,
422 	[BRCMNAND_CORR_THRESHOLD_EXT]	=     0,
423 	[BRCMNAND_UNCORR_COUNT]		=     0,
424 	[BRCMNAND_CORR_COUNT]		=     0,
425 	[BRCMNAND_READ_ERROR_COUNT]	=  0x80,
426 	[BRCMNAND_CORR_EXT_ADDR]	=  0x70,
427 	[BRCMNAND_CORR_ADDR]		=  0x74,
428 	[BRCMNAND_UNCORR_EXT_ADDR]	=  0x78,
429 	[BRCMNAND_UNCORR_ADDR]		=  0x7c,
430 	[BRCMNAND_SEMAPHORE]		=  0x58,
431 	[BRCMNAND_ID]			=  0x60,
432 	[BRCMNAND_ID_EXT]		=  0x64,
433 	[BRCMNAND_LL_RDATA]		= 0x17c,
434 	[BRCMNAND_OOB_READ_BASE]	=  0x20,
435 	[BRCMNAND_OOB_READ_10_BASE]	= 0x130,
436 	[BRCMNAND_OOB_WRITE_BASE]	=  0x30,
437 	[BRCMNAND_OOB_WRITE_10_BASE]	=     0,
438 	[BRCMNAND_FC_BASE]		= 0x200,
439 };
440 
441 /* BRCMNAND v5.0 */
442 static const u16 brcmnand_regs_v50[] = {
443 	[BRCMNAND_CMD_START]		=  0x04,
444 	[BRCMNAND_CMD_EXT_ADDRESS]	=  0x08,
445 	[BRCMNAND_CMD_ADDRESS]		=  0x0c,
446 	[BRCMNAND_INTFC_STATUS]		=  0x6c,
447 	[BRCMNAND_CS_SELECT]		=  0x14,
448 	[BRCMNAND_CS_XOR]		=  0x18,
449 	[BRCMNAND_LL_OP]		= 0x178,
450 	[BRCMNAND_CS0_BASE]		=  0x40,
451 	[BRCMNAND_CS1_BASE]		=  0xd0,
452 	[BRCMNAND_CORR_THRESHOLD]	=  0x84,
453 	[BRCMNAND_CORR_THRESHOLD_EXT]	=     0,
454 	[BRCMNAND_UNCORR_COUNT]		=     0,
455 	[BRCMNAND_CORR_COUNT]		=     0,
456 	[BRCMNAND_READ_ERROR_COUNT]	=  0x80,
457 	[BRCMNAND_CORR_EXT_ADDR]	=  0x70,
458 	[BRCMNAND_CORR_ADDR]		=  0x74,
459 	[BRCMNAND_UNCORR_EXT_ADDR]	=  0x78,
460 	[BRCMNAND_UNCORR_ADDR]		=  0x7c,
461 	[BRCMNAND_SEMAPHORE]		=  0x58,
462 	[BRCMNAND_ID]			=  0x60,
463 	[BRCMNAND_ID_EXT]		=  0x64,
464 	[BRCMNAND_LL_RDATA]		= 0x17c,
465 	[BRCMNAND_OOB_READ_BASE]	=  0x20,
466 	[BRCMNAND_OOB_READ_10_BASE]	= 0x130,
467 	[BRCMNAND_OOB_WRITE_BASE]	=  0x30,
468 	[BRCMNAND_OOB_WRITE_10_BASE]	= 0x140,
469 	[BRCMNAND_FC_BASE]		= 0x200,
470 };
471 
472 /* BRCMNAND v6.0 - v7.1 */
473 static const u16 brcmnand_regs_v60[] = {
474 	[BRCMNAND_CMD_START]		=  0x04,
475 	[BRCMNAND_CMD_EXT_ADDRESS]	=  0x08,
476 	[BRCMNAND_CMD_ADDRESS]		=  0x0c,
477 	[BRCMNAND_INTFC_STATUS]		=  0x14,
478 	[BRCMNAND_CS_SELECT]		=  0x18,
479 	[BRCMNAND_CS_XOR]		=  0x1c,
480 	[BRCMNAND_LL_OP]		=  0x20,
481 	[BRCMNAND_CS0_BASE]		=  0x50,
482 	[BRCMNAND_CS1_BASE]		=     0,
483 	[BRCMNAND_CORR_THRESHOLD]	=  0xc0,
484 	[BRCMNAND_CORR_THRESHOLD_EXT]	=  0xc4,
485 	[BRCMNAND_UNCORR_COUNT]		=  0xfc,
486 	[BRCMNAND_CORR_COUNT]		= 0x100,
487 	[BRCMNAND_READ_ERROR_COUNT]	= 0x104,
488 	[BRCMNAND_CORR_EXT_ADDR]	= 0x10c,
489 	[BRCMNAND_CORR_ADDR]		= 0x110,
490 	[BRCMNAND_UNCORR_EXT_ADDR]	= 0x114,
491 	[BRCMNAND_UNCORR_ADDR]		= 0x118,
492 	[BRCMNAND_SEMAPHORE]		= 0x150,
493 	[BRCMNAND_ID]			= 0x194,
494 	[BRCMNAND_ID_EXT]		= 0x198,
495 	[BRCMNAND_LL_RDATA]		= 0x19c,
496 	[BRCMNAND_OOB_READ_BASE]	= 0x200,
497 	[BRCMNAND_OOB_READ_10_BASE]	=     0,
498 	[BRCMNAND_OOB_WRITE_BASE]	= 0x280,
499 	[BRCMNAND_OOB_WRITE_10_BASE]	=     0,
500 	[BRCMNAND_FC_BASE]		= 0x400,
501 };
502 
503 /* BRCMNAND v7.1 */
504 static const u16 brcmnand_regs_v71[] = {
505 	[BRCMNAND_CMD_START]		=  0x04,
506 	[BRCMNAND_CMD_EXT_ADDRESS]	=  0x08,
507 	[BRCMNAND_CMD_ADDRESS]		=  0x0c,
508 	[BRCMNAND_INTFC_STATUS]		=  0x14,
509 	[BRCMNAND_CS_SELECT]		=  0x18,
510 	[BRCMNAND_CS_XOR]		=  0x1c,
511 	[BRCMNAND_LL_OP]		=  0x20,
512 	[BRCMNAND_CS0_BASE]		=  0x50,
513 	[BRCMNAND_CS1_BASE]		=     0,
514 	[BRCMNAND_CORR_THRESHOLD]	=  0xdc,
515 	[BRCMNAND_CORR_THRESHOLD_EXT]	=  0xe0,
516 	[BRCMNAND_UNCORR_COUNT]		=  0xfc,
517 	[BRCMNAND_CORR_COUNT]		= 0x100,
518 	[BRCMNAND_READ_ERROR_COUNT]	= 0x104,
519 	[BRCMNAND_CORR_EXT_ADDR]	= 0x10c,
520 	[BRCMNAND_CORR_ADDR]		= 0x110,
521 	[BRCMNAND_UNCORR_EXT_ADDR]	= 0x114,
522 	[BRCMNAND_UNCORR_ADDR]		= 0x118,
523 	[BRCMNAND_SEMAPHORE]		= 0x150,
524 	[BRCMNAND_ID]			= 0x194,
525 	[BRCMNAND_ID_EXT]		= 0x198,
526 	[BRCMNAND_LL_RDATA]		= 0x19c,
527 	[BRCMNAND_OOB_READ_BASE]	= 0x200,
528 	[BRCMNAND_OOB_READ_10_BASE]	=     0,
529 	[BRCMNAND_OOB_WRITE_BASE]	= 0x280,
530 	[BRCMNAND_OOB_WRITE_10_BASE]	=     0,
531 	[BRCMNAND_FC_BASE]		= 0x400,
532 };
533 
534 /* BRCMNAND v7.2 */
535 static const u16 brcmnand_regs_v72[] = {
536 	[BRCMNAND_CMD_START]		=  0x04,
537 	[BRCMNAND_CMD_EXT_ADDRESS]	=  0x08,
538 	[BRCMNAND_CMD_ADDRESS]		=  0x0c,
539 	[BRCMNAND_INTFC_STATUS]		=  0x14,
540 	[BRCMNAND_CS_SELECT]		=  0x18,
541 	[BRCMNAND_CS_XOR]		=  0x1c,
542 	[BRCMNAND_LL_OP]		=  0x20,
543 	[BRCMNAND_CS0_BASE]		=  0x50,
544 	[BRCMNAND_CS1_BASE]		=     0,
545 	[BRCMNAND_CORR_THRESHOLD]	=  0xdc,
546 	[BRCMNAND_CORR_THRESHOLD_EXT]	=  0xe0,
547 	[BRCMNAND_UNCORR_COUNT]		=  0xfc,
548 	[BRCMNAND_CORR_COUNT]		= 0x100,
549 	[BRCMNAND_READ_ERROR_COUNT]	= 0x104,
550 	[BRCMNAND_CORR_EXT_ADDR]	= 0x10c,
551 	[BRCMNAND_CORR_ADDR]		= 0x110,
552 	[BRCMNAND_UNCORR_EXT_ADDR]	= 0x114,
553 	[BRCMNAND_UNCORR_ADDR]		= 0x118,
554 	[BRCMNAND_SEMAPHORE]		= 0x150,
555 	[BRCMNAND_ID]			= 0x194,
556 	[BRCMNAND_ID_EXT]		= 0x198,
557 	[BRCMNAND_LL_RDATA]		= 0x19c,
558 	[BRCMNAND_OOB_READ_BASE]	= 0x200,
559 	[BRCMNAND_OOB_READ_10_BASE]	=     0,
560 	[BRCMNAND_OOB_WRITE_BASE]	= 0x400,
561 	[BRCMNAND_OOB_WRITE_10_BASE]	=     0,
562 	[BRCMNAND_FC_BASE]		= 0x600,
563 };
564 
565 enum brcmnand_cs_reg {
566 	BRCMNAND_CS_CFG_EXT = 0,
567 	BRCMNAND_CS_CFG,
568 	BRCMNAND_CS_ACC_CONTROL,
569 	BRCMNAND_CS_TIMING1,
570 	BRCMNAND_CS_TIMING2,
571 };
572 
573 /* Per chip-select offsets for v7.1 */
574 static const u8 brcmnand_cs_offsets_v71[] = {
575 	[BRCMNAND_CS_ACC_CONTROL]	= 0x00,
576 	[BRCMNAND_CS_CFG_EXT]		= 0x04,
577 	[BRCMNAND_CS_CFG]		= 0x08,
578 	[BRCMNAND_CS_TIMING1]		= 0x0c,
579 	[BRCMNAND_CS_TIMING2]		= 0x10,
580 };
581 
582 /* Per chip-select offsets for pre v7.1, except CS0 on <= v5.0 */
583 static const u8 brcmnand_cs_offsets[] = {
584 	[BRCMNAND_CS_ACC_CONTROL]	= 0x00,
585 	[BRCMNAND_CS_CFG_EXT]		= 0x04,
586 	[BRCMNAND_CS_CFG]		= 0x04,
587 	[BRCMNAND_CS_TIMING1]		= 0x08,
588 	[BRCMNAND_CS_TIMING2]		= 0x0c,
589 };
590 
591 /* Per chip-select offset for <= v5.0 on CS0 only */
592 static const u8 brcmnand_cs_offsets_cs0[] = {
593 	[BRCMNAND_CS_ACC_CONTROL]	= 0x00,
594 	[BRCMNAND_CS_CFG_EXT]		= 0x08,
595 	[BRCMNAND_CS_CFG]		= 0x08,
596 	[BRCMNAND_CS_TIMING1]		= 0x10,
597 	[BRCMNAND_CS_TIMING2]		= 0x14,
598 };
599 
600 /*
601  * Bitfields for the CFG and CFG_EXT registers. Pre-v7.1 controllers only had
602  * one config register, but once the bitfields overflowed, newer controllers
603  * (v7.1 and newer) added a CFG_EXT register and shuffled a few fields around.
604  */
605 enum {
606 	CFG_BLK_ADR_BYTES_SHIFT		= 8,
607 	CFG_COL_ADR_BYTES_SHIFT		= 12,
608 	CFG_FUL_ADR_BYTES_SHIFT		= 16,
609 	CFG_BUS_WIDTH_SHIFT		= 23,
610 	CFG_BUS_WIDTH			= BIT(CFG_BUS_WIDTH_SHIFT),
611 	CFG_DEVICE_SIZE_SHIFT		= 24,
612 
613 	/* Only for v2.1 */
614 	CFG_PAGE_SIZE_SHIFT_v2_1	= 30,
615 
616 	/* Only for pre-v7.1 (with no CFG_EXT register) */
617 	CFG_PAGE_SIZE_SHIFT		= 20,
618 	CFG_BLK_SIZE_SHIFT		= 28,
619 
620 	/* Only for v7.1+ (with CFG_EXT register) */
621 	CFG_EXT_PAGE_SIZE_SHIFT		= 0,
622 	CFG_EXT_BLK_SIZE_SHIFT		= 4,
623 };
624 
625 /* BRCMNAND_INTFC_STATUS */
626 enum {
627 	INTFC_FLASH_STATUS		= GENMASK(7, 0),
628 
629 	INTFC_ERASED			= BIT(27),
630 	INTFC_OOB_VALID			= BIT(28),
631 	INTFC_CACHE_VALID		= BIT(29),
632 	INTFC_FLASH_READY		= BIT(30),
633 	INTFC_CTLR_READY		= BIT(31),
634 };
635 
636 /***********************************************************************
637  * NAND ACC CONTROL bitfield
638  *
639  * Some bits have remained constant throughout hardware revision, while
640  * others have shifted around.
641  ***********************************************************************/
642 
643 /* Constant for all versions (where supported) */
644 enum {
645 	/* See BRCMNAND_HAS_CACHE_MODE */
646 	ACC_CONTROL_CACHE_MODE				= BIT(22),
647 
648 	/* See BRCMNAND_HAS_PREFETCH */
649 	ACC_CONTROL_PREFETCH				= BIT(23),
650 
651 	ACC_CONTROL_PAGE_HIT				= BIT(24),
652 	ACC_CONTROL_WR_PREEMPT				= BIT(25),
653 	ACC_CONTROL_PARTIAL_PAGE			= BIT(26),
654 	ACC_CONTROL_RD_ERASED				= BIT(27),
655 	ACC_CONTROL_FAST_PGM_RDIN			= BIT(28),
656 	ACC_CONTROL_WR_ECC				= BIT(30),
657 	ACC_CONTROL_RD_ECC				= BIT(31),
658 };
659 
660 #define	ACC_CONTROL_ECC_SHIFT			16
661 /* Only for v7.2 */
662 #define	ACC_CONTROL_ECC_EXT_SHIFT		13
663 
664 static int brcmnand_status(struct brcmnand_host *host);
665 
brcmnand_non_mmio_ops(struct brcmnand_controller * ctrl)666 static inline bool brcmnand_non_mmio_ops(struct brcmnand_controller *ctrl)
667 {
668 #if IS_ENABLED(CONFIG_MTD_NAND_BRCMNAND_BCMA)
669 	return static_branch_unlikely(&brcmnand_soc_has_ops_key);
670 #else
671 	return false;
672 #endif
673 }
674 
nand_readreg(struct brcmnand_controller * ctrl,u32 offs)675 static inline u32 nand_readreg(struct brcmnand_controller *ctrl, u32 offs)
676 {
677 	if (brcmnand_non_mmio_ops(ctrl))
678 		return brcmnand_soc_read(ctrl->soc, offs);
679 	return brcmnand_readl(ctrl->nand_base + offs);
680 }
681 
nand_writereg(struct brcmnand_controller * ctrl,u32 offs,u32 val)682 static inline void nand_writereg(struct brcmnand_controller *ctrl, u32 offs,
683 				 u32 val)
684 {
685 	if (brcmnand_non_mmio_ops(ctrl))
686 		brcmnand_soc_write(ctrl->soc, val, offs);
687 	else
688 		brcmnand_writel(val, ctrl->nand_base + offs);
689 }
690 
brcmnand_revision_init(struct brcmnand_controller * ctrl)691 static int brcmnand_revision_init(struct brcmnand_controller *ctrl)
692 {
693 	static const unsigned int block_sizes_v6[] = { 8, 16, 128, 256, 512, 1024, 2048, 0 };
694 	static const unsigned int block_sizes_v4[] = { 16, 128, 8, 512, 256, 1024, 2048, 0 };
695 	static const unsigned int block_sizes_v2_2[] = { 16, 128, 8, 512, 256, 0 };
696 	static const unsigned int block_sizes_v2_1[] = { 16, 128, 8, 512, 0 };
697 	static const unsigned int page_sizes_v3_4[] = { 512, 2048, 4096, 8192, 0 };
698 	static const unsigned int page_sizes_v2_2[] = { 512, 2048, 4096, 0 };
699 	static const unsigned int page_sizes_v2_1[] = { 512, 2048, 0 };
700 
701 	ctrl->nand_version = nand_readreg(ctrl, 0) & 0xffff;
702 
703 	/* Only support v2.1+ */
704 	if (ctrl->nand_version < 0x0201) {
705 		dev_err(ctrl->dev, "version %#x not supported\n",
706 			ctrl->nand_version);
707 		return -ENODEV;
708 	}
709 
710 	/* Register offsets */
711 	if (ctrl->nand_version >= 0x0702)
712 		ctrl->reg_offsets = brcmnand_regs_v72;
713 	else if (ctrl->nand_version == 0x0701)
714 		ctrl->reg_offsets = brcmnand_regs_v71;
715 	else if (ctrl->nand_version >= 0x0600)
716 		ctrl->reg_offsets = brcmnand_regs_v60;
717 	else if (ctrl->nand_version >= 0x0500)
718 		ctrl->reg_offsets = brcmnand_regs_v50;
719 	else if (ctrl->nand_version >= 0x0303)
720 		ctrl->reg_offsets = brcmnand_regs_v33;
721 	else if (ctrl->nand_version >= 0x0201)
722 		ctrl->reg_offsets = brcmnand_regs_v21;
723 
724 	/* Chip-select stride */
725 	if (ctrl->nand_version >= 0x0701)
726 		ctrl->reg_spacing = 0x14;
727 	else
728 		ctrl->reg_spacing = 0x10;
729 
730 	/* Per chip-select registers */
731 	if (ctrl->nand_version >= 0x0701) {
732 		ctrl->cs_offsets = brcmnand_cs_offsets_v71;
733 	} else {
734 		ctrl->cs_offsets = brcmnand_cs_offsets;
735 
736 		/* v3.3-5.0 have a different CS0 offset layout */
737 		if (ctrl->nand_version >= 0x0303 &&
738 		    ctrl->nand_version <= 0x0500)
739 			ctrl->cs0_offsets = brcmnand_cs_offsets_cs0;
740 	}
741 
742 	/* Page / block sizes */
743 	if (ctrl->nand_version >= 0x0701) {
744 		/* >= v7.1 use nice power-of-2 values! */
745 		ctrl->max_page_size = 16 * 1024;
746 		ctrl->max_block_size = 2 * 1024 * 1024;
747 	} else {
748 		if (ctrl->nand_version >= 0x0304)
749 			ctrl->page_sizes = page_sizes_v3_4;
750 		else if (ctrl->nand_version >= 0x0202)
751 			ctrl->page_sizes = page_sizes_v2_2;
752 		else
753 			ctrl->page_sizes = page_sizes_v2_1;
754 
755 		if (ctrl->nand_version >= 0x0202)
756 			ctrl->page_size_shift = CFG_PAGE_SIZE_SHIFT;
757 		else
758 			ctrl->page_size_shift = CFG_PAGE_SIZE_SHIFT_v2_1;
759 
760 		if (ctrl->nand_version >= 0x0600)
761 			ctrl->block_sizes = block_sizes_v6;
762 		else if (ctrl->nand_version >= 0x0400)
763 			ctrl->block_sizes = block_sizes_v4;
764 		else if (ctrl->nand_version >= 0x0202)
765 			ctrl->block_sizes = block_sizes_v2_2;
766 		else
767 			ctrl->block_sizes = block_sizes_v2_1;
768 
769 		if (ctrl->nand_version < 0x0400) {
770 			if (ctrl->nand_version < 0x0202)
771 				ctrl->max_page_size = 2048;
772 			else
773 				ctrl->max_page_size = 4096;
774 			ctrl->max_block_size = 512 * 1024;
775 		}
776 	}
777 
778 	/* Maximum spare area sector size (per 512B) */
779 	if (ctrl->nand_version == 0x0702)
780 		ctrl->max_oob = 128;
781 	else if (ctrl->nand_version >= 0x0600)
782 		ctrl->max_oob = 64;
783 	else if (ctrl->nand_version >= 0x0500)
784 		ctrl->max_oob = 32;
785 	else
786 		ctrl->max_oob = 16;
787 
788 	/* v6.0 and newer (except v6.1) have prefetch support */
789 	if (ctrl->nand_version >= 0x0600 && ctrl->nand_version != 0x0601)
790 		ctrl->features |= BRCMNAND_HAS_PREFETCH;
791 
792 	/*
793 	 * v6.x has cache mode, but it's implemented differently. Ignore it for
794 	 * now.
795 	 */
796 	if (ctrl->nand_version >= 0x0700)
797 		ctrl->features |= BRCMNAND_HAS_CACHE_MODE;
798 
799 	if (ctrl->nand_version >= 0x0500)
800 		ctrl->features |= BRCMNAND_HAS_1K_SECTORS;
801 
802 	if (ctrl->nand_version >= 0x0700)
803 		ctrl->features |= BRCMNAND_HAS_WP;
804 	else if (of_property_read_bool(ctrl->dev->of_node, "brcm,nand-has-wp"))
805 		ctrl->features |= BRCMNAND_HAS_WP;
806 
807 	/* v7.2 has different ecc level shift in the acc register */
808 	if (ctrl->nand_version == 0x0702)
809 		ctrl->ecc_level_shift = ACC_CONTROL_ECC_EXT_SHIFT;
810 	else
811 		ctrl->ecc_level_shift = ACC_CONTROL_ECC_SHIFT;
812 
813 	return 0;
814 }
815 
brcmnand_flash_dma_revision_init(struct brcmnand_controller * ctrl)816 static void brcmnand_flash_dma_revision_init(struct brcmnand_controller *ctrl)
817 {
818 	/* flash_dma register offsets */
819 	if (ctrl->nand_version >= 0x0703)
820 		ctrl->flash_dma_offsets = flash_dma_regs_v4;
821 	else if (ctrl->nand_version == 0x0602)
822 		ctrl->flash_dma_offsets = flash_dma_regs_v0;
823 	else
824 		ctrl->flash_dma_offsets = flash_dma_regs_v1;
825 }
826 
brcmnand_read_reg(struct brcmnand_controller * ctrl,enum brcmnand_reg reg)827 static inline u32 brcmnand_read_reg(struct brcmnand_controller *ctrl,
828 		enum brcmnand_reg reg)
829 {
830 	u16 offs = ctrl->reg_offsets[reg];
831 
832 	if (offs)
833 		return nand_readreg(ctrl, offs);
834 	else
835 		return 0;
836 }
837 
brcmnand_write_reg(struct brcmnand_controller * ctrl,enum brcmnand_reg reg,u32 val)838 static inline void brcmnand_write_reg(struct brcmnand_controller *ctrl,
839 				      enum brcmnand_reg reg, u32 val)
840 {
841 	u16 offs = ctrl->reg_offsets[reg];
842 
843 	if (offs)
844 		nand_writereg(ctrl, offs, val);
845 }
846 
brcmnand_rmw_reg(struct brcmnand_controller * ctrl,enum brcmnand_reg reg,u32 mask,unsigned int shift,u32 val)847 static inline void brcmnand_rmw_reg(struct brcmnand_controller *ctrl,
848 				    enum brcmnand_reg reg, u32 mask, unsigned
849 				    int shift, u32 val)
850 {
851 	u32 tmp = brcmnand_read_reg(ctrl, reg);
852 
853 	tmp &= ~mask;
854 	tmp |= val << shift;
855 	brcmnand_write_reg(ctrl, reg, tmp);
856 }
857 
brcmnand_read_fc(struct brcmnand_controller * ctrl,int word)858 static inline u32 brcmnand_read_fc(struct brcmnand_controller *ctrl, int word)
859 {
860 	if (brcmnand_non_mmio_ops(ctrl))
861 		return brcmnand_soc_read(ctrl->soc, BRCMNAND_NON_MMIO_FC_ADDR);
862 	return __raw_readl(ctrl->nand_fc + word * 4);
863 }
864 
brcmnand_write_fc(struct brcmnand_controller * ctrl,int word,u32 val)865 static inline void brcmnand_write_fc(struct brcmnand_controller *ctrl,
866 				     int word, u32 val)
867 {
868 	if (brcmnand_non_mmio_ops(ctrl))
869 		brcmnand_soc_write(ctrl->soc, val, BRCMNAND_NON_MMIO_FC_ADDR);
870 	else
871 		__raw_writel(val, ctrl->nand_fc + word * 4);
872 }
873 
edu_writel(struct brcmnand_controller * ctrl,enum edu_reg reg,u32 val)874 static inline void edu_writel(struct brcmnand_controller *ctrl,
875 			      enum edu_reg reg, u32 val)
876 {
877 	u16 offs = ctrl->edu_offsets[reg];
878 
879 	brcmnand_writel(val, ctrl->edu_base + offs);
880 }
881 
edu_readl(struct brcmnand_controller * ctrl,enum edu_reg reg)882 static inline u32 edu_readl(struct brcmnand_controller *ctrl,
883 			    enum edu_reg reg)
884 {
885 	u16 offs = ctrl->edu_offsets[reg];
886 
887 	return brcmnand_readl(ctrl->edu_base + offs);
888 }
889 
brcmnand_read_data_bus(struct brcmnand_controller * ctrl,void __iomem * flash_cache,u32 * buffer,int fc_words)890 static inline void brcmnand_read_data_bus(struct brcmnand_controller *ctrl,
891 					  void __iomem *flash_cache, u32 *buffer, int fc_words)
892 {
893 	struct brcmnand_soc *soc = ctrl->soc;
894 	int i;
895 
896 	if (soc && soc->read_data_bus) {
897 		soc->read_data_bus(soc, flash_cache, buffer, fc_words);
898 	} else {
899 		for (i = 0; i < fc_words; i++)
900 			buffer[i] = brcmnand_read_fc(ctrl, i);
901 	}
902 }
903 
brcmnand_clear_ecc_addr(struct brcmnand_controller * ctrl)904 static void brcmnand_clear_ecc_addr(struct brcmnand_controller *ctrl)
905 {
906 
907 	/* Clear error addresses */
908 	brcmnand_write_reg(ctrl, BRCMNAND_UNCORR_ADDR, 0);
909 	brcmnand_write_reg(ctrl, BRCMNAND_CORR_ADDR, 0);
910 	brcmnand_write_reg(ctrl, BRCMNAND_UNCORR_EXT_ADDR, 0);
911 	brcmnand_write_reg(ctrl, BRCMNAND_CORR_EXT_ADDR, 0);
912 }
913 
brcmnand_get_uncorrecc_addr(struct brcmnand_controller * ctrl)914 static u64 brcmnand_get_uncorrecc_addr(struct brcmnand_controller *ctrl)
915 {
916 	u64 err_addr;
917 
918 	err_addr = brcmnand_read_reg(ctrl, BRCMNAND_UNCORR_ADDR);
919 	err_addr |= ((u64)(brcmnand_read_reg(ctrl,
920 					     BRCMNAND_UNCORR_EXT_ADDR)
921 					     & 0xffff) << 32);
922 
923 	return err_addr;
924 }
925 
brcmnand_get_correcc_addr(struct brcmnand_controller * ctrl)926 static u64 brcmnand_get_correcc_addr(struct brcmnand_controller *ctrl)
927 {
928 	u64 err_addr;
929 
930 	err_addr = brcmnand_read_reg(ctrl, BRCMNAND_CORR_ADDR);
931 	err_addr |= ((u64)(brcmnand_read_reg(ctrl,
932 					     BRCMNAND_CORR_EXT_ADDR)
933 					     & 0xffff) << 32);
934 
935 	return err_addr;
936 }
937 
brcmnand_set_cmd_addr(struct mtd_info * mtd,u64 addr)938 static void brcmnand_set_cmd_addr(struct mtd_info *mtd, u64 addr)
939 {
940 	struct nand_chip *chip =  mtd_to_nand(mtd);
941 	struct brcmnand_host *host = nand_get_controller_data(chip);
942 	struct brcmnand_controller *ctrl = host->ctrl;
943 
944 	brcmnand_write_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS,
945 			   (host->cs << 16) | ((addr >> 32) & 0xffff));
946 	(void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS);
947 	brcmnand_write_reg(ctrl, BRCMNAND_CMD_ADDRESS,
948 			   lower_32_bits(addr));
949 	(void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS);
950 }
951 
brcmnand_cs_offset(struct brcmnand_controller * ctrl,int cs,enum brcmnand_cs_reg reg)952 static inline u16 brcmnand_cs_offset(struct brcmnand_controller *ctrl, int cs,
953 				     enum brcmnand_cs_reg reg)
954 {
955 	u16 offs_cs0 = ctrl->reg_offsets[BRCMNAND_CS0_BASE];
956 	u16 offs_cs1 = ctrl->reg_offsets[BRCMNAND_CS1_BASE];
957 	u8 cs_offs;
958 
959 	if (cs == 0 && ctrl->cs0_offsets)
960 		cs_offs = ctrl->cs0_offsets[reg];
961 	else
962 		cs_offs = ctrl->cs_offsets[reg];
963 
964 	if (cs && offs_cs1)
965 		return offs_cs1 + (cs - 1) * ctrl->reg_spacing + cs_offs;
966 
967 	return offs_cs0 + cs * ctrl->reg_spacing + cs_offs;
968 }
969 
brcmnand_corr_total(struct brcmnand_controller * ctrl)970 static inline u32 brcmnand_corr_total(struct brcmnand_controller *ctrl)
971 {
972 	if (ctrl->nand_version < 0x400)
973 		return 0;
974 	return brcmnand_read_reg(ctrl, BRCMNAND_READ_ERROR_COUNT);
975 }
976 
brcmnand_wr_corr_thresh(struct brcmnand_host * host,u8 val)977 static void brcmnand_wr_corr_thresh(struct brcmnand_host *host, u8 val)
978 {
979 	struct brcmnand_controller *ctrl = host->ctrl;
980 	unsigned int shift = 0, bits;
981 	enum brcmnand_reg reg = BRCMNAND_CORR_THRESHOLD;
982 	int cs = host->cs;
983 
984 	if (!ctrl->reg_offsets[reg])
985 		return;
986 
987 	if (ctrl->nand_version == 0x0702)
988 		bits = 7;
989 	else if (ctrl->nand_version >= 0x0600)
990 		bits = 6;
991 	else if (ctrl->nand_version >= 0x0500)
992 		bits = 5;
993 	else
994 		bits = 4;
995 
996 	if (ctrl->nand_version >= 0x0702) {
997 		if (cs >= 4)
998 			reg = BRCMNAND_CORR_THRESHOLD_EXT;
999 		shift = (cs % 4) * bits;
1000 	} else if (ctrl->nand_version >= 0x0600) {
1001 		if (cs >= 5)
1002 			reg = BRCMNAND_CORR_THRESHOLD_EXT;
1003 		shift = (cs % 5) * bits;
1004 	}
1005 	brcmnand_rmw_reg(ctrl, reg, (bits - 1) << shift, shift, val);
1006 }
1007 
brcmnand_cmd_shift(struct brcmnand_controller * ctrl)1008 static inline int brcmnand_cmd_shift(struct brcmnand_controller *ctrl)
1009 {
1010 	/* Kludge for the BCMA-based NAND controller which does not actually
1011 	 * shift the command
1012 	 */
1013 	if (ctrl->nand_version == 0x0304 && brcmnand_non_mmio_ops(ctrl))
1014 		return 0;
1015 
1016 	if (ctrl->nand_version < 0x0602)
1017 		return 24;
1018 	return 0;
1019 }
1020 
brcmnand_spare_area_mask(struct brcmnand_controller * ctrl)1021 static inline u32 brcmnand_spare_area_mask(struct brcmnand_controller *ctrl)
1022 {
1023 	if (ctrl->nand_version == 0x0702)
1024 		return GENMASK(7, 0);
1025 	else if (ctrl->nand_version >= 0x0600)
1026 		return GENMASK(6, 0);
1027 	else if (ctrl->nand_version >= 0x0303)
1028 		return GENMASK(5, 0);
1029 	else
1030 		return GENMASK(4, 0);
1031 }
1032 
brcmnand_ecc_level_mask(struct brcmnand_controller * ctrl)1033 static inline u32 brcmnand_ecc_level_mask(struct brcmnand_controller *ctrl)
1034 {
1035 	u32 mask = (ctrl->nand_version >= 0x0600) ? 0x1f : 0x0f;
1036 
1037 	mask <<= ACC_CONTROL_ECC_SHIFT;
1038 
1039 	/* v7.2 includes additional ECC levels */
1040 	if (ctrl->nand_version == 0x0702)
1041 		mask |= 0x7 << ACC_CONTROL_ECC_EXT_SHIFT;
1042 
1043 	return mask;
1044 }
1045 
brcmnand_set_ecc_enabled(struct brcmnand_host * host,int en)1046 static void brcmnand_set_ecc_enabled(struct brcmnand_host *host, int en)
1047 {
1048 	struct brcmnand_controller *ctrl = host->ctrl;
1049 	u16 offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_ACC_CONTROL);
1050 	u32 acc_control = nand_readreg(ctrl, offs);
1051 	u32 ecc_flags = ACC_CONTROL_WR_ECC | ACC_CONTROL_RD_ECC;
1052 
1053 	if (en) {
1054 		acc_control |= ecc_flags; /* enable RD/WR ECC */
1055 		acc_control &= ~brcmnand_ecc_level_mask(ctrl);
1056 		acc_control |= host->hwcfg.ecc_level << ctrl->ecc_level_shift;
1057 	} else {
1058 		acc_control &= ~ecc_flags; /* disable RD/WR ECC */
1059 		acc_control &= ~brcmnand_ecc_level_mask(ctrl);
1060 	}
1061 
1062 	nand_writereg(ctrl, offs, acc_control);
1063 }
1064 
brcmnand_sector_1k_shift(struct brcmnand_controller * ctrl)1065 static inline int brcmnand_sector_1k_shift(struct brcmnand_controller *ctrl)
1066 {
1067 	if (ctrl->nand_version >= 0x0702)
1068 		return 9;
1069 	else if (ctrl->nand_version >= 0x0600)
1070 		return 7;
1071 	else if (ctrl->nand_version >= 0x0500)
1072 		return 6;
1073 	else
1074 		return -1;
1075 }
1076 
brcmnand_get_sector_size_1k(struct brcmnand_host * host)1077 static bool brcmnand_get_sector_size_1k(struct brcmnand_host *host)
1078 {
1079 	struct brcmnand_controller *ctrl = host->ctrl;
1080 	int sector_size_bit = brcmnand_sector_1k_shift(ctrl);
1081 	u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
1082 						  BRCMNAND_CS_ACC_CONTROL);
1083 	u32 acc_control;
1084 
1085 	if (sector_size_bit < 0)
1086 		return false;
1087 
1088 	acc_control = nand_readreg(ctrl, acc_control_offs);
1089 
1090 	return ((acc_control & BIT(sector_size_bit)) != 0);
1091 }
1092 
brcmnand_set_sector_size_1k(struct brcmnand_host * host,int val)1093 static void brcmnand_set_sector_size_1k(struct brcmnand_host *host, int val)
1094 {
1095 	struct brcmnand_controller *ctrl = host->ctrl;
1096 	int shift = brcmnand_sector_1k_shift(ctrl);
1097 	u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
1098 						  BRCMNAND_CS_ACC_CONTROL);
1099 	u32 tmp;
1100 
1101 	if (shift < 0)
1102 		return;
1103 
1104 	tmp = nand_readreg(ctrl, acc_control_offs);
1105 	tmp &= ~(1 << shift);
1106 	tmp |= (!!val) << shift;
1107 	nand_writereg(ctrl, acc_control_offs, tmp);
1108 }
1109 
brcmnand_get_spare_size(struct brcmnand_host * host)1110 static int brcmnand_get_spare_size(struct brcmnand_host *host)
1111 {
1112 	struct brcmnand_controller *ctrl = host->ctrl;
1113 	u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
1114 						  BRCMNAND_CS_ACC_CONTROL);
1115 	u32 acc = nand_readreg(ctrl, acc_control_offs);
1116 
1117 	return (acc & brcmnand_spare_area_mask(ctrl));
1118 }
1119 
brcmnand_get_ecc_settings(struct brcmnand_host * host,struct nand_chip * chip)1120 static void brcmnand_get_ecc_settings(struct brcmnand_host *host, struct nand_chip *chip)
1121 {
1122 	struct brcmnand_controller *ctrl = host->ctrl;
1123 	u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
1124 						  BRCMNAND_CS_ACC_CONTROL);
1125 	bool sector_size_1k = brcmnand_get_sector_size_1k(host);
1126 	int spare_area_size, ecc_level;
1127 	u32 acc;
1128 
1129 	spare_area_size = brcmnand_get_spare_size(host);
1130 	acc = nand_readreg(ctrl, acc_control_offs);
1131 	ecc_level = (acc & brcmnand_ecc_level_mask(ctrl)) >> ctrl->ecc_level_shift;
1132 	if (sector_size_1k)
1133 		chip->ecc.strength = ecc_level * 2;
1134 	else if (spare_area_size == 16 && ecc_level == 15)
1135 		chip->ecc.strength = 1; /* hamming */
1136 	else
1137 		chip->ecc.strength = ecc_level;
1138 
1139 	if (chip->ecc.size == 0) {
1140 		if (sector_size_1k)
1141 			chip->ecc.size = 1024;
1142 		else
1143 			chip->ecc.size = 512;
1144 	}
1145 }
1146 
1147 /***********************************************************************
1148  * CS_NAND_SELECT
1149  ***********************************************************************/
1150 
1151 enum {
1152 	CS_SELECT_NAND_WP			= BIT(29),
1153 	CS_SELECT_AUTO_DEVICE_ID_CFG		= BIT(30),
1154 };
1155 
bcmnand_ctrl_poll_status(struct brcmnand_host * host,u32 mask,u32 expected_val,unsigned long timeout_ms)1156 static int bcmnand_ctrl_poll_status(struct brcmnand_host *host,
1157 				    u32 mask, u32 expected_val,
1158 				    unsigned long timeout_ms)
1159 {
1160 	struct brcmnand_controller *ctrl = host->ctrl;
1161 	unsigned long limit;
1162 	u32 val;
1163 
1164 	if (!timeout_ms)
1165 		timeout_ms = NAND_POLL_STATUS_TIMEOUT_MS;
1166 
1167 	limit = jiffies + msecs_to_jiffies(timeout_ms);
1168 	do {
1169 		if (mask & INTFC_FLASH_STATUS)
1170 			brcmnand_status(host);
1171 
1172 		val = brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS);
1173 		if ((val & mask) == expected_val)
1174 			return 0;
1175 
1176 		cpu_relax();
1177 	} while (time_after(limit, jiffies));
1178 
1179 	/*
1180 	 * do a final check after time out in case the CPU was busy and the driver
1181 	 * did not get enough time to perform the polling to avoid false alarms
1182 	 */
1183 	if (mask & INTFC_FLASH_STATUS)
1184 		brcmnand_status(host);
1185 
1186 	val = brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS);
1187 	if ((val & mask) == expected_val)
1188 		return 0;
1189 
1190 	dev_err(ctrl->dev, "timeout on status poll (expected %x got %x)\n",
1191 		expected_val, val & mask);
1192 
1193 	return -ETIMEDOUT;
1194 }
1195 
brcmnand_set_wp(struct brcmnand_controller * ctrl,bool en)1196 static inline void brcmnand_set_wp(struct brcmnand_controller *ctrl, bool en)
1197 {
1198 	u32 val = en ? CS_SELECT_NAND_WP : 0;
1199 
1200 	brcmnand_rmw_reg(ctrl, BRCMNAND_CS_SELECT, CS_SELECT_NAND_WP, 0, val);
1201 }
1202 
1203 /***********************************************************************
1204  * Flash DMA
1205  ***********************************************************************/
1206 
has_flash_dma(struct brcmnand_controller * ctrl)1207 static inline bool has_flash_dma(struct brcmnand_controller *ctrl)
1208 {
1209 	return ctrl->flash_dma_base;
1210 }
1211 
has_edu(struct brcmnand_controller * ctrl)1212 static inline bool has_edu(struct brcmnand_controller *ctrl)
1213 {
1214 	return ctrl->edu_base;
1215 }
1216 
use_dma(struct brcmnand_controller * ctrl)1217 static inline bool use_dma(struct brcmnand_controller *ctrl)
1218 {
1219 	return has_flash_dma(ctrl) || has_edu(ctrl);
1220 }
1221 
disable_ctrl_irqs(struct brcmnand_controller * ctrl)1222 static inline void disable_ctrl_irqs(struct brcmnand_controller *ctrl)
1223 {
1224 	if (ctrl->pio_poll_mode)
1225 		return;
1226 
1227 	if (has_flash_dma(ctrl)) {
1228 		ctrl->flash_dma_base = NULL;
1229 		disable_irq(ctrl->dma_irq);
1230 	}
1231 
1232 	disable_irq(ctrl->irq);
1233 	ctrl->pio_poll_mode = true;
1234 }
1235 
flash_dma_buf_ok(const void * buf)1236 static inline bool flash_dma_buf_ok(const void *buf)
1237 {
1238 	return buf && !is_vmalloc_addr(buf) &&
1239 		likely(IS_ALIGNED((uintptr_t)buf, 4));
1240 }
1241 
flash_dma_writel(struct brcmnand_controller * ctrl,enum flash_dma_reg dma_reg,u32 val)1242 static inline void flash_dma_writel(struct brcmnand_controller *ctrl,
1243 				    enum flash_dma_reg dma_reg, u32 val)
1244 {
1245 	u16 offs = ctrl->flash_dma_offsets[dma_reg];
1246 
1247 	brcmnand_writel(val, ctrl->flash_dma_base + offs);
1248 }
1249 
flash_dma_readl(struct brcmnand_controller * ctrl,enum flash_dma_reg dma_reg)1250 static inline u32 flash_dma_readl(struct brcmnand_controller *ctrl,
1251 				  enum flash_dma_reg dma_reg)
1252 {
1253 	u16 offs = ctrl->flash_dma_offsets[dma_reg];
1254 
1255 	return brcmnand_readl(ctrl->flash_dma_base + offs);
1256 }
1257 
1258 /* Low-level operation types: command, address, write, or read */
1259 enum brcmnand_llop_type {
1260 	LL_OP_CMD,
1261 	LL_OP_ADDR,
1262 	LL_OP_WR,
1263 	LL_OP_RD,
1264 };
1265 
1266 /***********************************************************************
1267  * Internal support functions
1268  ***********************************************************************/
1269 
is_hamming_ecc(struct brcmnand_controller * ctrl,struct brcmnand_cfg * cfg)1270 static inline bool is_hamming_ecc(struct brcmnand_controller *ctrl,
1271 				  struct brcmnand_cfg *cfg)
1272 {
1273 	if (ctrl->nand_version <= 0x0701)
1274 		return cfg->sector_size_1k == 0 && cfg->spare_area_size == 16 &&
1275 			cfg->ecc_level == 15;
1276 	else
1277 		return cfg->sector_size_1k == 0 && ((cfg->spare_area_size == 16 &&
1278 			cfg->ecc_level == 15) ||
1279 			(cfg->spare_area_size == 28 && cfg->ecc_level == 16));
1280 }
1281 
1282 /*
1283  * Set mtd->ooblayout to the appropriate mtd_ooblayout_ops given
1284  * the layout/configuration.
1285  * Returns -ERRCODE on failure.
1286  */
brcmnand_hamming_ooblayout_ecc(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)1287 static int brcmnand_hamming_ooblayout_ecc(struct mtd_info *mtd, int section,
1288 					  struct mtd_oob_region *oobregion)
1289 {
1290 	struct nand_chip *chip = mtd_to_nand(mtd);
1291 	struct brcmnand_host *host = nand_get_controller_data(chip);
1292 	struct brcmnand_cfg *cfg = &host->hwcfg;
1293 	int sas = cfg->spare_area_size << cfg->sector_size_1k;
1294 	int sectors = cfg->page_size / (512 << cfg->sector_size_1k);
1295 
1296 	if (section >= sectors)
1297 		return -ERANGE;
1298 
1299 	oobregion->offset = (section * sas) + 6;
1300 	oobregion->length = 3;
1301 
1302 	return 0;
1303 }
1304 
brcmnand_hamming_ooblayout_free(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)1305 static int brcmnand_hamming_ooblayout_free(struct mtd_info *mtd, int section,
1306 					   struct mtd_oob_region *oobregion)
1307 {
1308 	struct nand_chip *chip = mtd_to_nand(mtd);
1309 	struct brcmnand_host *host = nand_get_controller_data(chip);
1310 	struct brcmnand_cfg *cfg = &host->hwcfg;
1311 	int sas = cfg->spare_area_size << cfg->sector_size_1k;
1312 	int sectors = cfg->page_size / (512 << cfg->sector_size_1k);
1313 	u32 next;
1314 
1315 	if (section > sectors)
1316 		return -ERANGE;
1317 
1318 	next = (section * sas);
1319 	if (section < sectors)
1320 		next += 6;
1321 
1322 	if (section) {
1323 		oobregion->offset = ((section - 1) * sas) + 9;
1324 	} else {
1325 		if (cfg->page_size > 512) {
1326 			/* Large page NAND uses first 2 bytes for BBI */
1327 			oobregion->offset = 2;
1328 		} else {
1329 			/* Small page NAND uses last byte before ECC for BBI */
1330 			oobregion->offset = 0;
1331 			next--;
1332 		}
1333 	}
1334 
1335 	oobregion->length = next - oobregion->offset;
1336 
1337 	return 0;
1338 }
1339 
1340 static const struct mtd_ooblayout_ops brcmnand_hamming_ooblayout_ops = {
1341 	.ecc = brcmnand_hamming_ooblayout_ecc,
1342 	.free = brcmnand_hamming_ooblayout_free,
1343 };
1344 
brcmnand_bch_ooblayout_ecc(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)1345 static int brcmnand_bch_ooblayout_ecc(struct mtd_info *mtd, int section,
1346 				      struct mtd_oob_region *oobregion)
1347 {
1348 	struct nand_chip *chip = mtd_to_nand(mtd);
1349 	struct brcmnand_host *host = nand_get_controller_data(chip);
1350 	struct brcmnand_cfg *cfg = &host->hwcfg;
1351 	int sas = cfg->spare_area_size << cfg->sector_size_1k;
1352 	int sectors = cfg->page_size / (512 << cfg->sector_size_1k);
1353 
1354 	if (section >= sectors)
1355 		return -ERANGE;
1356 
1357 	oobregion->offset = ((section + 1) * sas) - chip->ecc.bytes;
1358 	oobregion->length = chip->ecc.bytes;
1359 
1360 	return 0;
1361 }
1362 
brcmnand_bch_ooblayout_free_lp(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)1363 static int brcmnand_bch_ooblayout_free_lp(struct mtd_info *mtd, int section,
1364 					  struct mtd_oob_region *oobregion)
1365 {
1366 	struct nand_chip *chip = mtd_to_nand(mtd);
1367 	struct brcmnand_host *host = nand_get_controller_data(chip);
1368 	struct brcmnand_cfg *cfg = &host->hwcfg;
1369 	int sas = cfg->spare_area_size << cfg->sector_size_1k;
1370 	int sectors = cfg->page_size / (512 << cfg->sector_size_1k);
1371 
1372 	if (section >= sectors)
1373 		return -ERANGE;
1374 
1375 	if (sas <= chip->ecc.bytes)
1376 		return 0;
1377 
1378 	oobregion->offset = section * sas;
1379 	oobregion->length = sas - chip->ecc.bytes;
1380 
1381 	if (!section) {
1382 		oobregion->offset++;
1383 		oobregion->length--;
1384 	}
1385 
1386 	return 0;
1387 }
1388 
brcmnand_bch_ooblayout_free_sp(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)1389 static int brcmnand_bch_ooblayout_free_sp(struct mtd_info *mtd, int section,
1390 					  struct mtd_oob_region *oobregion)
1391 {
1392 	struct nand_chip *chip = mtd_to_nand(mtd);
1393 	struct brcmnand_host *host = nand_get_controller_data(chip);
1394 	struct brcmnand_cfg *cfg = &host->hwcfg;
1395 	int sas = cfg->spare_area_size << cfg->sector_size_1k;
1396 
1397 	if (section > 1 || sas - chip->ecc.bytes < 6 ||
1398 	    (section && sas - chip->ecc.bytes == 6))
1399 		return -ERANGE;
1400 
1401 	if (!section) {
1402 		oobregion->offset = 0;
1403 		oobregion->length = 5;
1404 	} else {
1405 		oobregion->offset = 6;
1406 		oobregion->length = sas - chip->ecc.bytes - 6;
1407 	}
1408 
1409 	return 0;
1410 }
1411 
1412 static const struct mtd_ooblayout_ops brcmnand_bch_lp_ooblayout_ops = {
1413 	.ecc = brcmnand_bch_ooblayout_ecc,
1414 	.free = brcmnand_bch_ooblayout_free_lp,
1415 };
1416 
1417 static const struct mtd_ooblayout_ops brcmnand_bch_sp_ooblayout_ops = {
1418 	.ecc = brcmnand_bch_ooblayout_ecc,
1419 	.free = brcmnand_bch_ooblayout_free_sp,
1420 };
1421 
brcmstb_choose_ecc_layout(struct brcmnand_host * host)1422 static int brcmstb_choose_ecc_layout(struct brcmnand_host *host)
1423 {
1424 	struct brcmnand_cfg *p = &host->hwcfg;
1425 	struct mtd_info *mtd = nand_to_mtd(&host->chip);
1426 	struct nand_ecc_ctrl *ecc = &host->chip.ecc;
1427 	unsigned int ecc_level = p->ecc_level;
1428 	int sas = p->spare_area_size << p->sector_size_1k;
1429 	int sectors = p->page_size / (512 << p->sector_size_1k);
1430 
1431 	if (p->sector_size_1k)
1432 		ecc_level <<= 1;
1433 
1434 	if (is_hamming_ecc(host->ctrl, p)) {
1435 		ecc->bytes = 3 * sectors;
1436 		mtd_set_ooblayout(mtd, &brcmnand_hamming_ooblayout_ops);
1437 		return 0;
1438 	}
1439 
1440 	/*
1441 	 * CONTROLLER_VERSION:
1442 	 *   < v5.0: ECC_REQ = ceil(BCH_T * 13/8)
1443 	 *  >= v5.0: ECC_REQ = ceil(BCH_T * 14/8)
1444 	 * But we will just be conservative.
1445 	 */
1446 	ecc->bytes = DIV_ROUND_UP(ecc_level * 14, 8);
1447 	if (p->page_size == 512)
1448 		mtd_set_ooblayout(mtd, &brcmnand_bch_sp_ooblayout_ops);
1449 	else
1450 		mtd_set_ooblayout(mtd, &brcmnand_bch_lp_ooblayout_ops);
1451 
1452 	if (ecc->bytes >= sas) {
1453 		dev_err(&host->pdev->dev,
1454 			"error: ECC too large for OOB (ECC bytes %d, spare sector %d)\n",
1455 			ecc->bytes, sas);
1456 		return -EINVAL;
1457 	}
1458 
1459 	return 0;
1460 }
1461 
brcmnand_wp(struct mtd_info * mtd,int wp)1462 static void brcmnand_wp(struct mtd_info *mtd, int wp)
1463 {
1464 	struct nand_chip *chip = mtd_to_nand(mtd);
1465 	struct brcmnand_host *host = nand_get_controller_data(chip);
1466 	struct brcmnand_controller *ctrl = host->ctrl;
1467 
1468 	if ((ctrl->features & BRCMNAND_HAS_WP) && wp_on == 1) {
1469 		static int old_wp = -1;
1470 		int ret;
1471 
1472 		if (old_wp != wp) {
1473 			dev_dbg(ctrl->dev, "WP %s\n", str_on_off(wp));
1474 			old_wp = wp;
1475 		}
1476 
1477 		/*
1478 		 * make sure ctrl/flash ready before and after
1479 		 * changing state of #WP pin
1480 		 */
1481 		ret = bcmnand_ctrl_poll_status(host, NAND_CTRL_RDY |
1482 					       NAND_STATUS_READY,
1483 					       NAND_CTRL_RDY |
1484 					       NAND_STATUS_READY, 0);
1485 		if (ret)
1486 			return;
1487 
1488 		brcmnand_set_wp(ctrl, wp);
1489 		/* force controller operation to update internal copy of NAND chip status */
1490 		brcmnand_status(host);
1491 		/* NAND_STATUS_WP 0x00 = protected, 0x80 = not protected */
1492 		ret = bcmnand_ctrl_poll_status(host,
1493 					       NAND_CTRL_RDY |
1494 					       NAND_STATUS_READY |
1495 					       NAND_STATUS_WP,
1496 					       NAND_CTRL_RDY |
1497 					       NAND_STATUS_READY |
1498 					       (wp ? 0 : NAND_STATUS_WP), 0);
1499 
1500 		if (ret)
1501 			dev_err_ratelimited(&host->pdev->dev,
1502 					    "nand #WP expected %s\n",
1503 					    str_on_off(wp));
1504 	}
1505 }
1506 
1507 /* Helper functions for reading and writing OOB registers */
oob_reg_read(struct brcmnand_controller * ctrl,u32 offs)1508 static inline u8 oob_reg_read(struct brcmnand_controller *ctrl, u32 offs)
1509 {
1510 	u16 offset0, offset10, reg_offs;
1511 
1512 	offset0 = ctrl->reg_offsets[BRCMNAND_OOB_READ_BASE];
1513 	offset10 = ctrl->reg_offsets[BRCMNAND_OOB_READ_10_BASE];
1514 
1515 	if (offs >= ctrl->max_oob)
1516 		return 0x77;
1517 
1518 	if (offs >= 16 && offset10)
1519 		reg_offs = offset10 + ((offs - 0x10) & ~0x03);
1520 	else
1521 		reg_offs = offset0 + (offs & ~0x03);
1522 
1523 	return nand_readreg(ctrl, reg_offs) >> (24 - ((offs & 0x03) << 3));
1524 }
1525 
oob_reg_write(struct brcmnand_controller * ctrl,u32 offs,u32 data)1526 static inline void oob_reg_write(struct brcmnand_controller *ctrl, u32 offs,
1527 				 u32 data)
1528 {
1529 	u16 offset0, offset10, reg_offs;
1530 
1531 	offset0 = ctrl->reg_offsets[BRCMNAND_OOB_WRITE_BASE];
1532 	offset10 = ctrl->reg_offsets[BRCMNAND_OOB_WRITE_10_BASE];
1533 
1534 	if (offs >= ctrl->max_oob)
1535 		return;
1536 
1537 	if (offs >= 16 && offset10)
1538 		reg_offs = offset10 + ((offs - 0x10) & ~0x03);
1539 	else
1540 		reg_offs = offset0 + (offs & ~0x03);
1541 
1542 	nand_writereg(ctrl, reg_offs, data);
1543 }
1544 
1545 /*
1546  * read_oob_from_regs - read data from OOB registers
1547  * @ctrl: NAND controller
1548  * @i: sub-page sector index
1549  * @oob: buffer to read to
1550  * @sas: spare area sector size (i.e., OOB size per FLASH_CACHE)
1551  * @sector_1k: 1 for 1KiB sectors, 0 for 512B, other values are illegal
1552  */
read_oob_from_regs(struct brcmnand_controller * ctrl,int i,u8 * oob,int sas,int sector_1k)1553 static int read_oob_from_regs(struct brcmnand_controller *ctrl, int i, u8 *oob,
1554 			      int sas, int sector_1k)
1555 {
1556 	int tbytes = sas << sector_1k;
1557 	int j;
1558 
1559 	/* Adjust OOB values for 1K sector size */
1560 	if (sector_1k && (i & 0x01))
1561 		tbytes = max(0, tbytes - (int)ctrl->max_oob);
1562 	tbytes = min_t(int, tbytes, ctrl->max_oob);
1563 
1564 	for (j = 0; j < tbytes; j++)
1565 		oob[j] = oob_reg_read(ctrl, j);
1566 	return tbytes;
1567 }
1568 
1569 /*
1570  * write_oob_to_regs - write data to OOB registers
1571  * @i: sub-page sector index
1572  * @oob: buffer to write from
1573  * @sas: spare area sector size (i.e., OOB size per FLASH_CACHE)
1574  * @sector_1k: 1 for 1KiB sectors, 0 for 512B, other values are illegal
1575  */
write_oob_to_regs(struct brcmnand_controller * ctrl,int i,const u8 * oob,int sas,int sector_1k)1576 static int write_oob_to_regs(struct brcmnand_controller *ctrl, int i,
1577 			     const u8 *oob, int sas, int sector_1k)
1578 {
1579 	int tbytes = sas << sector_1k;
1580 	int j, k = 0;
1581 	u32 last = 0xffffffff;
1582 	u8 *plast = (u8 *)&last;
1583 
1584 	/* Adjust OOB values for 1K sector size */
1585 	if (sector_1k && (i & 0x01))
1586 		tbytes = max(0, tbytes - (int)ctrl->max_oob);
1587 	tbytes = min_t(int, tbytes, ctrl->max_oob);
1588 
1589 	/*
1590 	 * tbytes may not be multiple of words. Make sure we don't read out of
1591 	 * the boundary and stop at last word.
1592 	 */
1593 	for (j = 0; (j + 3) < tbytes; j += 4)
1594 		oob_reg_write(ctrl, j,
1595 				(oob[j + 0] << 24) |
1596 				(oob[j + 1] << 16) |
1597 				(oob[j + 2] <<  8) |
1598 				(oob[j + 3] <<  0));
1599 
1600 	/* handle the remaining bytes */
1601 	while (j < tbytes)
1602 		plast[k++] = oob[j++];
1603 
1604 	if (tbytes & 0x3)
1605 		oob_reg_write(ctrl, (tbytes & ~0x3), (__force u32)cpu_to_be32(last));
1606 
1607 	return tbytes;
1608 }
1609 
brcmnand_edu_init(struct brcmnand_controller * ctrl)1610 static void brcmnand_edu_init(struct brcmnand_controller *ctrl)
1611 {
1612 	/* initialize edu */
1613 	edu_writel(ctrl, EDU_ERR_STATUS, 0);
1614 	edu_readl(ctrl, EDU_ERR_STATUS);
1615 	edu_writel(ctrl, EDU_DONE, 0);
1616 	edu_writel(ctrl, EDU_DONE, 0);
1617 	edu_writel(ctrl, EDU_DONE, 0);
1618 	edu_writel(ctrl, EDU_DONE, 0);
1619 	edu_readl(ctrl, EDU_DONE);
1620 }
1621 
1622 /* edu irq */
brcmnand_edu_irq(int irq,void * data)1623 static irqreturn_t brcmnand_edu_irq(int irq, void *data)
1624 {
1625 	struct brcmnand_controller *ctrl = data;
1626 
1627 	if (ctrl->edu_count) {
1628 		ctrl->edu_count--;
1629 		while (!(edu_readl(ctrl, EDU_DONE) & EDU_DONE_MASK))
1630 			udelay(1);
1631 		edu_writel(ctrl, EDU_DONE, 0);
1632 		edu_readl(ctrl, EDU_DONE);
1633 	}
1634 
1635 	if (ctrl->edu_count) {
1636 		ctrl->edu_dram_addr += FC_BYTES;
1637 		ctrl->edu_ext_addr += FC_BYTES;
1638 
1639 		edu_writel(ctrl, EDU_DRAM_ADDR, (u32)ctrl->edu_dram_addr);
1640 		edu_readl(ctrl, EDU_DRAM_ADDR);
1641 		edu_writel(ctrl, EDU_EXT_ADDR, ctrl->edu_ext_addr);
1642 		edu_readl(ctrl, EDU_EXT_ADDR);
1643 
1644 		if (ctrl->oob) {
1645 			if (ctrl->edu_cmd == EDU_CMD_READ) {
1646 				ctrl->oob += read_oob_from_regs(ctrl,
1647 							ctrl->edu_count + 1,
1648 							ctrl->oob, ctrl->sas,
1649 							ctrl->sector_size_1k);
1650 			} else {
1651 				brcmnand_write_reg(ctrl, BRCMNAND_CMD_ADDRESS,
1652 						   ctrl->edu_ext_addr);
1653 				brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS);
1654 				ctrl->oob += write_oob_to_regs(ctrl,
1655 							       ctrl->edu_count,
1656 							       ctrl->oob, ctrl->sas,
1657 							       ctrl->sector_size_1k);
1658 			}
1659 		}
1660 
1661 		mb(); /* flush previous writes */
1662 		edu_writel(ctrl, EDU_CMD, ctrl->edu_cmd);
1663 		edu_readl(ctrl, EDU_CMD);
1664 
1665 		return IRQ_HANDLED;
1666 	}
1667 
1668 	complete(&ctrl->edu_done);
1669 
1670 	return IRQ_HANDLED;
1671 }
1672 
brcmnand_ctlrdy_irq(int irq,void * data)1673 static irqreturn_t brcmnand_ctlrdy_irq(int irq, void *data)
1674 {
1675 	struct brcmnand_controller *ctrl = data;
1676 
1677 	/* Discard all NAND_CTLRDY interrupts during DMA */
1678 	if (ctrl->dma_pending)
1679 		return IRQ_HANDLED;
1680 
1681 	/* check if you need to piggy back on the ctrlrdy irq */
1682 	if (ctrl->edu_pending) {
1683 		if (irq == ctrl->irq && ((int)ctrl->edu_irq >= 0))
1684 	/* Discard interrupts while using dedicated edu irq */
1685 			return IRQ_HANDLED;
1686 
1687 	/* no registered edu irq, call handler */
1688 		return brcmnand_edu_irq(irq, data);
1689 	}
1690 
1691 	complete(&ctrl->done);
1692 	return IRQ_HANDLED;
1693 }
1694 
1695 /* Handle SoC-specific interrupt hardware */
brcmnand_irq(int irq,void * data)1696 static irqreturn_t brcmnand_irq(int irq, void *data)
1697 {
1698 	struct brcmnand_controller *ctrl = data;
1699 
1700 	if (ctrl->soc->ctlrdy_ack(ctrl->soc))
1701 		return brcmnand_ctlrdy_irq(irq, data);
1702 
1703 	return IRQ_NONE;
1704 }
1705 
brcmnand_dma_irq(int irq,void * data)1706 static irqreturn_t brcmnand_dma_irq(int irq, void *data)
1707 {
1708 	struct brcmnand_controller *ctrl = data;
1709 
1710 	complete(&ctrl->dma_done);
1711 
1712 	return IRQ_HANDLED;
1713 }
1714 
brcmnand_send_cmd(struct brcmnand_host * host,int cmd)1715 static void brcmnand_send_cmd(struct brcmnand_host *host, int cmd)
1716 {
1717 	struct brcmnand_controller *ctrl = host->ctrl;
1718 	int ret;
1719 	u64 cmd_addr;
1720 
1721 	cmd_addr = brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS);
1722 
1723 	dev_dbg(ctrl->dev, "send native cmd %d addr 0x%llx\n", cmd, cmd_addr);
1724 
1725 	/*
1726 	 * If we came here through _panic_write and there is a pending
1727 	 * command, try to wait for it. If it times out, rather than
1728 	 * hitting BUG_ON, just return so we don't crash while crashing.
1729 	 */
1730 	if (oops_in_progress) {
1731 		if (ctrl->cmd_pending &&
1732 			bcmnand_ctrl_poll_status(host, NAND_CTRL_RDY, NAND_CTRL_RDY, 0))
1733 			return;
1734 	} else
1735 		BUG_ON(ctrl->cmd_pending != 0);
1736 	ctrl->cmd_pending = cmd;
1737 
1738 	ret = bcmnand_ctrl_poll_status(host, NAND_CTRL_RDY, NAND_CTRL_RDY, 0);
1739 	WARN_ON(ret);
1740 
1741 	mb(); /* flush previous writes */
1742 	brcmnand_write_reg(ctrl, BRCMNAND_CMD_START,
1743 			   cmd << brcmnand_cmd_shift(ctrl));
1744 }
1745 
brcmstb_nand_wait_for_completion(struct nand_chip * chip)1746 static bool brcmstb_nand_wait_for_completion(struct nand_chip *chip)
1747 {
1748 	struct brcmnand_host *host = nand_get_controller_data(chip);
1749 	struct brcmnand_controller *ctrl = host->ctrl;
1750 	struct mtd_info *mtd = nand_to_mtd(chip);
1751 	bool err = false;
1752 	int sts;
1753 
1754 	if (mtd->oops_panic_write || ctrl->irq < 0) {
1755 		/* switch to interrupt polling and PIO mode */
1756 		disable_ctrl_irqs(ctrl);
1757 		sts = bcmnand_ctrl_poll_status(host, NAND_CTRL_RDY,
1758 					       NAND_CTRL_RDY, 0);
1759 		err = sts < 0;
1760 	} else {
1761 		unsigned long timeo = msecs_to_jiffies(
1762 						NAND_POLL_STATUS_TIMEOUT_MS);
1763 		/* wait for completion interrupt */
1764 		sts = wait_for_completion_timeout(&ctrl->done, timeo);
1765 		err = !sts;
1766 	}
1767 
1768 	return err;
1769 }
1770 
brcmnand_waitfunc(struct nand_chip * chip)1771 static int brcmnand_waitfunc(struct nand_chip *chip)
1772 {
1773 	struct brcmnand_host *host = nand_get_controller_data(chip);
1774 	struct brcmnand_controller *ctrl = host->ctrl;
1775 	bool err = false;
1776 
1777 	dev_dbg(ctrl->dev, "wait on native cmd %d\n", ctrl->cmd_pending);
1778 	if (ctrl->cmd_pending)
1779 		err = brcmstb_nand_wait_for_completion(chip);
1780 
1781 	ctrl->cmd_pending = 0;
1782 	if (err) {
1783 		u32 cmd = brcmnand_read_reg(ctrl, BRCMNAND_CMD_START)
1784 					>> brcmnand_cmd_shift(ctrl);
1785 
1786 		dev_err_ratelimited(ctrl->dev,
1787 			"timeout waiting for command %#02x\n", cmd);
1788 		dev_err_ratelimited(ctrl->dev, "intfc status %08x\n",
1789 			brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS));
1790 		return -ETIMEDOUT;
1791 	}
1792 	return brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS) &
1793 				 INTFC_FLASH_STATUS;
1794 }
1795 
brcmnand_status(struct brcmnand_host * host)1796 static int brcmnand_status(struct brcmnand_host *host)
1797 {
1798 	struct nand_chip *chip = &host->chip;
1799 	struct mtd_info *mtd = nand_to_mtd(chip);
1800 
1801 	brcmnand_set_cmd_addr(mtd, 0);
1802 	brcmnand_send_cmd(host, CMD_STATUS_READ);
1803 
1804 	return brcmnand_waitfunc(chip);
1805 }
1806 
brcmnand_reset(struct brcmnand_host * host)1807 static int brcmnand_reset(struct brcmnand_host *host)
1808 {
1809 	struct nand_chip *chip = &host->chip;
1810 
1811 	brcmnand_send_cmd(host, CMD_FLASH_RESET);
1812 
1813 	return brcmnand_waitfunc(chip);
1814 }
1815 
1816 enum {
1817 	LLOP_RE				= BIT(16),
1818 	LLOP_WE				= BIT(17),
1819 	LLOP_ALE			= BIT(18),
1820 	LLOP_CLE			= BIT(19),
1821 	LLOP_RETURN_IDLE		= BIT(31),
1822 
1823 	LLOP_DATA_MASK			= GENMASK(15, 0),
1824 };
1825 
brcmnand_low_level_op(struct brcmnand_host * host,enum brcmnand_llop_type type,u32 data,bool last_op)1826 static int brcmnand_low_level_op(struct brcmnand_host *host,
1827 				 enum brcmnand_llop_type type, u32 data,
1828 				 bool last_op)
1829 {
1830 	struct nand_chip *chip = &host->chip;
1831 	struct brcmnand_controller *ctrl = host->ctrl;
1832 	u32 tmp;
1833 
1834 	tmp = data & LLOP_DATA_MASK;
1835 	switch (type) {
1836 	case LL_OP_CMD:
1837 		tmp |= LLOP_WE | LLOP_CLE;
1838 		break;
1839 	case LL_OP_ADDR:
1840 		/* WE | ALE */
1841 		tmp |= LLOP_WE | LLOP_ALE;
1842 		break;
1843 	case LL_OP_WR:
1844 		/* WE */
1845 		tmp |= LLOP_WE;
1846 		break;
1847 	case LL_OP_RD:
1848 		/* RE */
1849 		tmp |= LLOP_RE;
1850 		break;
1851 	}
1852 	if (last_op)
1853 		/* RETURN_IDLE */
1854 		tmp |= LLOP_RETURN_IDLE;
1855 
1856 	dev_dbg(ctrl->dev, "ll_op cmd %#x\n", tmp);
1857 
1858 	brcmnand_write_reg(ctrl, BRCMNAND_LL_OP, tmp);
1859 	(void)brcmnand_read_reg(ctrl, BRCMNAND_LL_OP);
1860 
1861 	brcmnand_send_cmd(host, CMD_LOW_LEVEL_OP);
1862 	return brcmnand_waitfunc(chip);
1863 }
1864 
1865 /*
1866  *  Kick EDU engine
1867  */
brcmnand_edu_trans(struct brcmnand_host * host,u64 addr,u32 * buf,u8 * oob,u32 len,u8 cmd)1868 static int brcmnand_edu_trans(struct brcmnand_host *host, u64 addr, u32 *buf,
1869 			      u8 *oob, u32 len, u8 cmd)
1870 {
1871 	struct brcmnand_controller *ctrl = host->ctrl;
1872 	struct brcmnand_cfg *cfg = &host->hwcfg;
1873 	unsigned long timeo = msecs_to_jiffies(200);
1874 	int ret = 0;
1875 	int dir = (cmd == CMD_PAGE_READ ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
1876 	u8 edu_cmd = (cmd == CMD_PAGE_READ ? EDU_CMD_READ : EDU_CMD_WRITE);
1877 	unsigned int trans = len >> FC_SHIFT;
1878 	dma_addr_t pa;
1879 
1880 	dev_dbg(ctrl->dev, "EDU %s %p:%p\n",
1881 		str_read_write(edu_cmd == EDU_CMD_READ), buf, oob);
1882 
1883 	pa = dma_map_single(ctrl->dev, buf, len, dir);
1884 	if (dma_mapping_error(ctrl->dev, pa)) {
1885 		dev_err(ctrl->dev, "unable to map buffer for EDU DMA\n");
1886 		return -ENOMEM;
1887 	}
1888 
1889 	ctrl->edu_pending = true;
1890 	ctrl->edu_dram_addr = pa;
1891 	ctrl->edu_ext_addr = addr;
1892 	ctrl->edu_cmd = edu_cmd;
1893 	ctrl->edu_count = trans;
1894 	ctrl->sas = cfg->spare_area_size;
1895 	ctrl->oob = oob;
1896 
1897 	edu_writel(ctrl, EDU_DRAM_ADDR, (u32)ctrl->edu_dram_addr);
1898 	edu_readl(ctrl,  EDU_DRAM_ADDR);
1899 	edu_writel(ctrl, EDU_EXT_ADDR, ctrl->edu_ext_addr);
1900 	edu_readl(ctrl, EDU_EXT_ADDR);
1901 	edu_writel(ctrl, EDU_LENGTH, FC_BYTES);
1902 	edu_readl(ctrl, EDU_LENGTH);
1903 
1904 	if (ctrl->oob && (ctrl->edu_cmd == EDU_CMD_WRITE)) {
1905 		brcmnand_write_reg(ctrl, BRCMNAND_CMD_ADDRESS,
1906 				   ctrl->edu_ext_addr);
1907 		brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS);
1908 		ctrl->oob += write_oob_to_regs(ctrl,
1909 					       1,
1910 					       ctrl->oob, ctrl->sas,
1911 					       ctrl->sector_size_1k);
1912 	}
1913 
1914 	/* Start edu engine */
1915 	mb(); /* flush previous writes */
1916 	edu_writel(ctrl, EDU_CMD, ctrl->edu_cmd);
1917 	edu_readl(ctrl, EDU_CMD);
1918 
1919 	if (wait_for_completion_timeout(&ctrl->edu_done, timeo) <= 0) {
1920 		dev_err(ctrl->dev,
1921 			"timeout waiting for EDU; status %#x, error status %#x\n",
1922 			edu_readl(ctrl, EDU_STATUS),
1923 			edu_readl(ctrl, EDU_ERR_STATUS));
1924 	}
1925 
1926 	dma_unmap_single(ctrl->dev, pa, len, dir);
1927 
1928 	/* read last subpage oob */
1929 	if (ctrl->oob && (ctrl->edu_cmd == EDU_CMD_READ)) {
1930 		ctrl->oob += read_oob_from_regs(ctrl,
1931 						1,
1932 						ctrl->oob, ctrl->sas,
1933 						ctrl->sector_size_1k);
1934 	}
1935 
1936 	/* for program page check NAND status */
1937 	if (((brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS) &
1938 	      INTFC_FLASH_STATUS) & NAND_STATUS_FAIL) &&
1939 	    edu_cmd == EDU_CMD_WRITE) {
1940 		dev_info(ctrl->dev, "program failed at %llx\n",
1941 			 (unsigned long long)addr);
1942 		ret = -EIO;
1943 	}
1944 
1945 	/* Make sure the EDU status is clean */
1946 	if (edu_readl(ctrl, EDU_STATUS) & EDU_STATUS_ACTIVE)
1947 		dev_warn(ctrl->dev, "EDU still active: %#x\n",
1948 			 edu_readl(ctrl, EDU_STATUS));
1949 
1950 	if (unlikely(edu_readl(ctrl, EDU_ERR_STATUS) & EDU_ERR_STATUS_ERRACK)) {
1951 		dev_warn(ctrl->dev, "EDU RBUS error at addr %llx\n",
1952 			 (unsigned long long)addr);
1953 		ret = -EIO;
1954 	}
1955 
1956 	ctrl->edu_pending = false;
1957 	brcmnand_edu_init(ctrl);
1958 	edu_writel(ctrl, EDU_STOP, 0); /* force stop */
1959 	edu_readl(ctrl, EDU_STOP);
1960 
1961 	if (!ret && edu_cmd == EDU_CMD_READ) {
1962 		u64 err_addr = 0;
1963 
1964 		/*
1965 		 * check for ECC errors here, subpage ECC errors are
1966 		 * retained in ECC error address register
1967 		 */
1968 		err_addr = brcmnand_get_uncorrecc_addr(ctrl);
1969 		if (!err_addr) {
1970 			err_addr = brcmnand_get_correcc_addr(ctrl);
1971 			if (err_addr)
1972 				ret = -EUCLEAN;
1973 		} else
1974 			ret = -EBADMSG;
1975 	}
1976 
1977 	return ret;
1978 }
1979 
1980 /*
1981  * Construct a FLASH_DMA descriptor as part of a linked list. You must know the
1982  * following ahead of time:
1983  *  - Is this descriptor the beginning or end of a linked list?
1984  *  - What is the (DMA) address of the next descriptor in the linked list?
1985  */
brcmnand_fill_dma_desc(struct brcmnand_host * host,struct brcm_nand_dma_desc * desc,u64 addr,dma_addr_t buf,u32 len,u8 dma_cmd,bool begin,bool end,dma_addr_t next_desc)1986 static int brcmnand_fill_dma_desc(struct brcmnand_host *host,
1987 				  struct brcm_nand_dma_desc *desc, u64 addr,
1988 				  dma_addr_t buf, u32 len, u8 dma_cmd,
1989 				  bool begin, bool end,
1990 				  dma_addr_t next_desc)
1991 {
1992 	memset(desc, 0, sizeof(*desc));
1993 	/* Descriptors are written in native byte order (wordwise) */
1994 	desc->next_desc = lower_32_bits(next_desc);
1995 	desc->next_desc_ext = upper_32_bits(next_desc);
1996 	desc->cmd_irq = (dma_cmd << 24) |
1997 		(end ? (0x03 << 8) : 0) | /* IRQ | STOP */
1998 		(!!begin) | ((!!end) << 1); /* head, tail */
1999 #ifdef CONFIG_CPU_BIG_ENDIAN
2000 	desc->cmd_irq |= 0x01 << 12;
2001 #endif
2002 	desc->dram_addr = lower_32_bits(buf);
2003 	desc->dram_addr_ext = upper_32_bits(buf);
2004 	desc->tfr_len = len;
2005 	desc->total_len = len;
2006 	desc->flash_addr = lower_32_bits(addr);
2007 	desc->flash_addr_ext = upper_32_bits(addr);
2008 	desc->cs = host->cs;
2009 	desc->status_valid = 0x01;
2010 	return 0;
2011 }
2012 
2013 /*
2014  * Kick the FLASH_DMA engine, with a given DMA descriptor
2015  */
brcmnand_dma_run(struct brcmnand_host * host,dma_addr_t desc)2016 static void brcmnand_dma_run(struct brcmnand_host *host, dma_addr_t desc)
2017 {
2018 	struct brcmnand_controller *ctrl = host->ctrl;
2019 	unsigned long timeo = msecs_to_jiffies(100);
2020 
2021 	flash_dma_writel(ctrl, FLASH_DMA_FIRST_DESC, lower_32_bits(desc));
2022 	(void)flash_dma_readl(ctrl, FLASH_DMA_FIRST_DESC);
2023 	if (ctrl->nand_version > 0x0602) {
2024 		flash_dma_writel(ctrl, FLASH_DMA_FIRST_DESC_EXT,
2025 				 upper_32_bits(desc));
2026 		(void)flash_dma_readl(ctrl, FLASH_DMA_FIRST_DESC_EXT);
2027 	}
2028 
2029 	/* Start FLASH_DMA engine */
2030 	ctrl->dma_pending = true;
2031 	mb(); /* flush previous writes */
2032 	flash_dma_writel(ctrl, FLASH_DMA_CTRL, 0x03); /* wake | run */
2033 
2034 	if (wait_for_completion_timeout(&ctrl->dma_done, timeo) <= 0) {
2035 		dev_err(ctrl->dev,
2036 				"timeout waiting for DMA; status %#x, error status %#x\n",
2037 				flash_dma_readl(ctrl, FLASH_DMA_STATUS),
2038 				flash_dma_readl(ctrl, FLASH_DMA_ERROR_STATUS));
2039 	}
2040 	ctrl->dma_pending = false;
2041 	flash_dma_writel(ctrl, FLASH_DMA_CTRL, 0); /* force stop */
2042 }
2043 
brcmnand_dma_trans(struct brcmnand_host * host,u64 addr,u32 * buf,u8 * oob,u32 len,u8 dma_cmd)2044 static int brcmnand_dma_trans(struct brcmnand_host *host, u64 addr, u32 *buf,
2045 			      u8 *oob, u32 len, u8 dma_cmd)
2046 {
2047 	struct brcmnand_controller *ctrl = host->ctrl;
2048 	dma_addr_t buf_pa;
2049 	int dir = dma_cmd == CMD_PAGE_READ ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
2050 
2051 	buf_pa = dma_map_single(ctrl->dev, buf, len, dir);
2052 	if (dma_mapping_error(ctrl->dev, buf_pa)) {
2053 		dev_err(ctrl->dev, "unable to map buffer for DMA\n");
2054 		return -ENOMEM;
2055 	}
2056 
2057 	brcmnand_fill_dma_desc(host, ctrl->dma_desc, addr, buf_pa, len,
2058 				   dma_cmd, true, true, 0);
2059 
2060 	brcmnand_dma_run(host, ctrl->dma_pa);
2061 
2062 	dma_unmap_single(ctrl->dev, buf_pa, len, dir);
2063 
2064 	if (ctrl->dma_desc->status_valid & FLASH_DMA_ECC_ERROR)
2065 		return -EBADMSG;
2066 	else if (ctrl->dma_desc->status_valid & FLASH_DMA_CORR_ERROR)
2067 		return -EUCLEAN;
2068 
2069 	return 0;
2070 }
2071 
2072 /*
2073  * Assumes proper CS is already set
2074  */
brcmnand_read_by_pio(struct mtd_info * mtd,struct nand_chip * chip,u64 addr,unsigned int trans,u32 * buf,u8 * oob,u64 * err_addr,unsigned int * corr)2075 static int brcmnand_read_by_pio(struct mtd_info *mtd, struct nand_chip *chip,
2076 				u64 addr, unsigned int trans, u32 *buf,
2077 				u8 *oob, u64 *err_addr, unsigned int *corr)
2078 {
2079 	struct brcmnand_host *host = nand_get_controller_data(chip);
2080 	struct brcmnand_controller *ctrl = host->ctrl;
2081 	int i, ret = 0;
2082 	unsigned int prev_corr;
2083 
2084 	if (corr)
2085 		*corr = 0;
2086 
2087 	brcmnand_clear_ecc_addr(ctrl);
2088 
2089 	for (i = 0; i < trans; i++, addr += FC_BYTES) {
2090 		prev_corr = brcmnand_corr_total(ctrl);
2091 		brcmnand_set_cmd_addr(mtd, addr);
2092 		/* SPARE_AREA_READ does not use ECC, so just use PAGE_READ */
2093 		brcmnand_send_cmd(host, CMD_PAGE_READ);
2094 		brcmnand_waitfunc(chip);
2095 
2096 		if (likely(buf)) {
2097 			brcmnand_soc_data_bus_prepare(ctrl->soc, false);
2098 
2099 			brcmnand_read_data_bus(ctrl, ctrl->nand_fc, buf, FC_WORDS);
2100 			buf += FC_WORDS;
2101 
2102 			brcmnand_soc_data_bus_unprepare(ctrl->soc, false);
2103 		}
2104 
2105 		if (oob)
2106 			oob += read_oob_from_regs(ctrl, i, oob,
2107 					mtd->oobsize / trans,
2108 					host->hwcfg.sector_size_1k);
2109 
2110 		if (ret != -EBADMSG) {
2111 			*err_addr = brcmnand_get_uncorrecc_addr(ctrl);
2112 
2113 			if (*err_addr)
2114 				ret = -EBADMSG;
2115 			else {
2116 				*err_addr = brcmnand_get_correcc_addr(ctrl);
2117 
2118 				if (*err_addr) {
2119 					ret = -EUCLEAN;
2120 
2121 					if (corr && (brcmnand_corr_total(ctrl) - prev_corr) > *corr)
2122 						*corr = brcmnand_corr_total(ctrl) - prev_corr;
2123 				}
2124 			}
2125 		}
2126 	}
2127 
2128 	return ret;
2129 }
2130 
2131 /*
2132  * Check a page to see if it is erased (w/ bitflips) after an uncorrectable ECC
2133  * error
2134  *
2135  * Because the HW ECC signals an ECC error if an erase paged has even a single
2136  * bitflip, we must check each ECC error to see if it is actually an erased
2137  * page with bitflips, not a truly corrupted page.
2138  *
2139  * On a real error, return a negative error code (-EBADMSG for ECC error), and
2140  * buf will contain raw data.
2141  * Otherwise, buf gets filled with 0xffs and return the maximum number of
2142  * bitflips-per-ECC-sector to the caller.
2143  *
2144  */
brcmstb_nand_verify_erased_page(struct mtd_info * mtd,struct nand_chip * chip,void * buf,u64 addr)2145 static int brcmstb_nand_verify_erased_page(struct mtd_info *mtd,
2146 		  struct nand_chip *chip, void *buf, u64 addr)
2147 {
2148 	struct mtd_oob_region ecc;
2149 	int i;
2150 	int bitflips = 0;
2151 	int page = addr >> chip->page_shift;
2152 	int ret;
2153 	void *ecc_bytes;
2154 	void *ecc_chunk;
2155 
2156 	if (!buf)
2157 		buf = nand_get_data_buf(chip);
2158 
2159 	/* read without ecc for verification */
2160 	ret = chip->ecc.read_page_raw(chip, buf, true, page);
2161 	if (ret)
2162 		return ret;
2163 
2164 	for (i = 0; i < chip->ecc.steps; i++) {
2165 		ecc_chunk = buf + chip->ecc.size * i;
2166 
2167 		mtd_ooblayout_ecc(mtd, i, &ecc);
2168 		ecc_bytes = chip->oob_poi + ecc.offset;
2169 
2170 		ret = nand_check_erased_ecc_chunk(ecc_chunk, chip->ecc.size,
2171 						  ecc_bytes, ecc.length,
2172 						  NULL, 0,
2173 						  chip->ecc.strength);
2174 		if (ret < 0)
2175 			return ret;
2176 
2177 		bitflips = max(bitflips, ret);
2178 	}
2179 
2180 	return bitflips;
2181 }
2182 
brcmnand_read(struct mtd_info * mtd,struct nand_chip * chip,u64 addr,unsigned int trans,u32 * buf,u8 * oob)2183 static int brcmnand_read(struct mtd_info *mtd, struct nand_chip *chip,
2184 			 u64 addr, unsigned int trans, u32 *buf, u8 *oob)
2185 {
2186 	struct brcmnand_host *host = nand_get_controller_data(chip);
2187 	struct brcmnand_controller *ctrl = host->ctrl;
2188 	u64 err_addr = 0;
2189 	int err;
2190 	bool retry = true;
2191 	bool edu_err = false;
2192 	unsigned int corrected = 0; /* max corrected bits per subpage */
2193 	unsigned int prev_tot = brcmnand_corr_total(ctrl);
2194 
2195 	dev_dbg(ctrl->dev, "read %llx -> %p\n", (unsigned long long)addr, buf);
2196 
2197 try_dmaread:
2198 	brcmnand_clear_ecc_addr(ctrl);
2199 
2200 	if (ctrl->dma_trans && (has_edu(ctrl) || !oob) &&
2201 	    flash_dma_buf_ok(buf)) {
2202 		err = ctrl->dma_trans(host, addr, buf, oob,
2203 				      trans * FC_BYTES,
2204 				      CMD_PAGE_READ);
2205 
2206 		if (err) {
2207 			if (mtd_is_bitflip_or_eccerr(err))
2208 				err_addr = addr;
2209 			else
2210 				return -EIO;
2211 		}
2212 
2213 		if (has_edu(ctrl) && err_addr)
2214 			edu_err = true;
2215 
2216 	} else {
2217 		if (oob)
2218 			memset(oob, 0x99, mtd->oobsize);
2219 
2220 		err = brcmnand_read_by_pio(mtd, chip, addr, trans, buf,
2221 					   oob, &err_addr, &corrected);
2222 	}
2223 
2224 	mtd->ecc_stats.corrected += brcmnand_corr_total(ctrl) - prev_tot;
2225 
2226 	if (mtd_is_eccerr(err)) {
2227 		/*
2228 		 * On controller version and 7.0, 7.1 , DMA read after a
2229 		 * prior PIO read that reported uncorrectable error,
2230 		 * the DMA engine captures this error following DMA read
2231 		 * cleared only on subsequent DMA read, so just retry once
2232 		 * to clear a possible false error reported for current DMA
2233 		 * read
2234 		 */
2235 		if ((ctrl->nand_version == 0x0700) ||
2236 		    (ctrl->nand_version == 0x0701)) {
2237 			if (retry) {
2238 				retry = false;
2239 				goto try_dmaread;
2240 			}
2241 		}
2242 
2243 		/*
2244 		 * Controller version 7.2 has hw encoder to detect erased page
2245 		 * bitflips, apply sw verification for older controllers only
2246 		 */
2247 		if (ctrl->nand_version < 0x0702) {
2248 			err = brcmstb_nand_verify_erased_page(mtd, chip, buf,
2249 							      addr);
2250 			/* erased page bitflips corrected */
2251 			if (err >= 0)
2252 				return err;
2253 		}
2254 
2255 		dev_err(ctrl->dev, "uncorrectable error at 0x%llx\n",
2256 			(unsigned long long)err_addr);
2257 		mtd->ecc_stats.failed++;
2258 		/* NAND layer expects zero on ECC errors */
2259 		return 0;
2260 	}
2261 
2262 	if (mtd_is_bitflip(err)) {
2263 		/* in case of EDU correctable error we read again using PIO */
2264 		if (edu_err)
2265 			err = brcmnand_read_by_pio(mtd, chip, addr, trans, buf,
2266 						   oob, &err_addr, &corrected);
2267 
2268 		dev_dbg(ctrl->dev, "corrected error at 0x%llx\n",
2269 			(unsigned long long)err_addr);
2270 		/*
2271 		 * if flipped bits accumulator is not supported but we detected
2272 		 * a correction, increase stat by 1 to match previous behavior.
2273 		 */
2274 		if (brcmnand_corr_total(ctrl) == prev_tot)
2275 			mtd->ecc_stats.corrected++;
2276 
2277 		/* Always exceed the software-imposed threshold */
2278 		return max(mtd->bitflip_threshold, corrected);
2279 	}
2280 
2281 	return 0;
2282 }
2283 
brcmnand_read_page(struct nand_chip * chip,uint8_t * buf,int oob_required,int page)2284 static int brcmnand_read_page(struct nand_chip *chip, uint8_t *buf,
2285 			      int oob_required, int page)
2286 {
2287 	struct mtd_info *mtd = nand_to_mtd(chip);
2288 	u8 *oob = oob_required ? (u8 *)chip->oob_poi : NULL;
2289 	u64 addr = (u64)page << chip->page_shift;
2290 
2291 	return brcmnand_read(mtd, chip, addr, mtd->writesize >> FC_SHIFT,
2292 			     (u32 *)buf, oob);
2293 }
2294 
brcmnand_read_page_raw(struct nand_chip * chip,uint8_t * buf,int oob_required,int page)2295 static int brcmnand_read_page_raw(struct nand_chip *chip, uint8_t *buf,
2296 				  int oob_required, int page)
2297 {
2298 	struct brcmnand_host *host = nand_get_controller_data(chip);
2299 	struct mtd_info *mtd = nand_to_mtd(chip);
2300 	u8 *oob = oob_required ? (u8 *)chip->oob_poi : NULL;
2301 	int ret;
2302 	u64 addr = (u64)page << chip->page_shift;
2303 
2304 	brcmnand_set_ecc_enabled(host, 0);
2305 	ret = brcmnand_read(mtd, chip, addr, mtd->writesize >> FC_SHIFT,
2306 			    (u32 *)buf, oob);
2307 	brcmnand_set_ecc_enabled(host, 1);
2308 	return ret;
2309 }
2310 
brcmnand_read_oob(struct nand_chip * chip,int page)2311 static int brcmnand_read_oob(struct nand_chip *chip, int page)
2312 {
2313 	struct mtd_info *mtd = nand_to_mtd(chip);
2314 
2315 	return brcmnand_read(mtd, chip, (u64)page << chip->page_shift,
2316 			mtd->writesize >> FC_SHIFT,
2317 			NULL, (u8 *)chip->oob_poi);
2318 }
2319 
brcmnand_read_oob_raw(struct nand_chip * chip,int page)2320 static int brcmnand_read_oob_raw(struct nand_chip *chip, int page)
2321 {
2322 	struct mtd_info *mtd = nand_to_mtd(chip);
2323 	struct brcmnand_host *host = nand_get_controller_data(chip);
2324 
2325 	brcmnand_set_ecc_enabled(host, 0);
2326 	brcmnand_read(mtd, chip, (u64)page << chip->page_shift,
2327 		mtd->writesize >> FC_SHIFT,
2328 		NULL, (u8 *)chip->oob_poi);
2329 	brcmnand_set_ecc_enabled(host, 1);
2330 	return 0;
2331 }
2332 
brcmnand_write(struct mtd_info * mtd,struct nand_chip * chip,u64 addr,const u32 * buf,u8 * oob)2333 static int brcmnand_write(struct mtd_info *mtd, struct nand_chip *chip,
2334 			  u64 addr, const u32 *buf, u8 *oob)
2335 {
2336 	struct brcmnand_host *host = nand_get_controller_data(chip);
2337 	struct brcmnand_controller *ctrl = host->ctrl;
2338 	unsigned int i, j, trans = mtd->writesize >> FC_SHIFT;
2339 	int status, ret = 0;
2340 
2341 	dev_dbg(ctrl->dev, "write %llx <- %p\n", (unsigned long long)addr, buf);
2342 
2343 	if (unlikely((unsigned long)buf & 0x03)) {
2344 		dev_warn(ctrl->dev, "unaligned buffer: %p\n", buf);
2345 		buf = (u32 *)((unsigned long)buf & ~0x03);
2346 	}
2347 
2348 	brcmnand_wp(mtd, 0);
2349 
2350 	for (i = 0; i < ctrl->max_oob; i += 4)
2351 		oob_reg_write(ctrl, i, 0xffffffff);
2352 
2353 	if (mtd->oops_panic_write)
2354 		/* switch to interrupt polling and PIO mode */
2355 		disable_ctrl_irqs(ctrl);
2356 
2357 	if (use_dma(ctrl) && (has_edu(ctrl) || !oob) && flash_dma_buf_ok(buf)) {
2358 		if (ctrl->dma_trans(host, addr, (u32 *)buf, oob, mtd->writesize,
2359 				    CMD_PROGRAM_PAGE))
2360 
2361 			ret = -EIO;
2362 
2363 		goto out;
2364 	}
2365 
2366 	for (i = 0; i < trans; i++, addr += FC_BYTES) {
2367 		/* full address MUST be set before populating FC */
2368 		brcmnand_set_cmd_addr(mtd, addr);
2369 
2370 		if (buf) {
2371 			brcmnand_soc_data_bus_prepare(ctrl->soc, false);
2372 
2373 			for (j = 0; j < FC_WORDS; j++, buf++)
2374 				brcmnand_write_fc(ctrl, j, *buf);
2375 
2376 			brcmnand_soc_data_bus_unprepare(ctrl->soc, false);
2377 		} else if (oob) {
2378 			for (j = 0; j < FC_WORDS; j++)
2379 				brcmnand_write_fc(ctrl, j, 0xffffffff);
2380 		}
2381 
2382 		if (oob) {
2383 			oob += write_oob_to_regs(ctrl, i, oob,
2384 					mtd->oobsize / trans,
2385 					host->hwcfg.sector_size_1k);
2386 		}
2387 
2388 		/* we cannot use SPARE_AREA_PROGRAM when PARTIAL_PAGE_EN=0 */
2389 		brcmnand_send_cmd(host, CMD_PROGRAM_PAGE);
2390 		status = brcmnand_waitfunc(chip);
2391 
2392 		if (status < 0) {
2393 			ret = status;
2394 			goto out;
2395 		}
2396 
2397 		if (status & NAND_STATUS_FAIL) {
2398 			dev_info(ctrl->dev, "program failed at %llx\n",
2399 				(unsigned long long)addr);
2400 			ret = -EIO;
2401 			goto out;
2402 		}
2403 	}
2404 out:
2405 	brcmnand_wp(mtd, 1);
2406 	return ret;
2407 }
2408 
brcmnand_write_page(struct nand_chip * chip,const uint8_t * buf,int oob_required,int page)2409 static int brcmnand_write_page(struct nand_chip *chip, const uint8_t *buf,
2410 			       int oob_required, int page)
2411 {
2412 	struct mtd_info *mtd = nand_to_mtd(chip);
2413 	void *oob = oob_required ? chip->oob_poi : NULL;
2414 	u64 addr = (u64)page << chip->page_shift;
2415 
2416 	return brcmnand_write(mtd, chip, addr, (const u32 *)buf, oob);
2417 }
2418 
brcmnand_write_page_raw(struct nand_chip * chip,const uint8_t * buf,int oob_required,int page)2419 static int brcmnand_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
2420 				   int oob_required, int page)
2421 {
2422 	struct mtd_info *mtd = nand_to_mtd(chip);
2423 	struct brcmnand_host *host = nand_get_controller_data(chip);
2424 	void *oob = oob_required ? chip->oob_poi : NULL;
2425 	u64 addr = (u64)page << chip->page_shift;
2426 	int ret = 0;
2427 
2428 	brcmnand_set_ecc_enabled(host, 0);
2429 	ret = brcmnand_write(mtd, chip, addr, (const u32 *)buf, oob);
2430 	brcmnand_set_ecc_enabled(host, 1);
2431 
2432 	return ret;
2433 }
2434 
brcmnand_write_oob(struct nand_chip * chip,int page)2435 static int brcmnand_write_oob(struct nand_chip *chip, int page)
2436 {
2437 	return brcmnand_write(nand_to_mtd(chip), chip,
2438 			      (u64)page << chip->page_shift, NULL,
2439 			      chip->oob_poi);
2440 }
2441 
brcmnand_write_oob_raw(struct nand_chip * chip,int page)2442 static int brcmnand_write_oob_raw(struct nand_chip *chip, int page)
2443 {
2444 	struct mtd_info *mtd = nand_to_mtd(chip);
2445 	struct brcmnand_host *host = nand_get_controller_data(chip);
2446 	int ret;
2447 
2448 	brcmnand_set_ecc_enabled(host, 0);
2449 	ret = brcmnand_write(mtd, chip, (u64)page << chip->page_shift, NULL,
2450 				 (u8 *)chip->oob_poi);
2451 	brcmnand_set_ecc_enabled(host, 1);
2452 
2453 	return ret;
2454 }
2455 
brcmnand_exec_instr(struct brcmnand_host * host,int i,const struct nand_operation * op)2456 static int brcmnand_exec_instr(struct brcmnand_host *host, int i,
2457 		const struct nand_operation *op)
2458 {
2459 	const struct nand_op_instr *instr = &op->instrs[i];
2460 	struct brcmnand_controller *ctrl = host->ctrl;
2461 	const u8 *out;
2462 	bool last_op;
2463 	int ret = 0;
2464 	u8 *in;
2465 
2466 	/*
2467 	 * The controller needs to be aware of the last command in the operation
2468 	 * (WAITRDY excepted).
2469 	 */
2470 	last_op = ((i == (op->ninstrs - 1)) && (instr->type != NAND_OP_WAITRDY_INSTR)) ||
2471 		  ((i == (op->ninstrs - 2)) && (op->instrs[i + 1].type == NAND_OP_WAITRDY_INSTR));
2472 
2473 	switch (instr->type) {
2474 	case NAND_OP_CMD_INSTR:
2475 		brcmnand_low_level_op(host, LL_OP_CMD, instr->ctx.cmd.opcode, last_op);
2476 		break;
2477 
2478 	case NAND_OP_ADDR_INSTR:
2479 		for (i = 0; i < instr->ctx.addr.naddrs; i++)
2480 			brcmnand_low_level_op(host, LL_OP_ADDR, instr->ctx.addr.addrs[i],
2481 					      last_op && (i == (instr->ctx.addr.naddrs - 1)));
2482 		break;
2483 
2484 	case NAND_OP_DATA_IN_INSTR:
2485 		in = instr->ctx.data.buf.in;
2486 		for (i = 0; i < instr->ctx.data.len; i++) {
2487 			brcmnand_low_level_op(host, LL_OP_RD, 0,
2488 					      last_op && (i == (instr->ctx.data.len - 1)));
2489 			in[i] = brcmnand_read_reg(host->ctrl, BRCMNAND_LL_RDATA);
2490 		}
2491 		break;
2492 
2493 	case NAND_OP_DATA_OUT_INSTR:
2494 		out = instr->ctx.data.buf.out;
2495 		for (i = 0; i < instr->ctx.data.len; i++)
2496 			brcmnand_low_level_op(host, LL_OP_WR, out[i],
2497 					      last_op && (i == (instr->ctx.data.len - 1)));
2498 		break;
2499 
2500 	case NAND_OP_WAITRDY_INSTR:
2501 		ret = bcmnand_ctrl_poll_status(host, NAND_CTRL_RDY, NAND_CTRL_RDY, 0);
2502 		break;
2503 
2504 	default:
2505 		dev_err(ctrl->dev, "unsupported instruction type: %d\n",
2506 			instr->type);
2507 		ret = -EINVAL;
2508 		break;
2509 	}
2510 
2511 	return ret;
2512 }
2513 
brcmnand_op_is_status(const struct nand_operation * op)2514 static int brcmnand_op_is_status(const struct nand_operation *op)
2515 {
2516 	if (op->ninstrs == 2 &&
2517 	    op->instrs[0].type == NAND_OP_CMD_INSTR &&
2518 	    op->instrs[0].ctx.cmd.opcode == NAND_CMD_STATUS &&
2519 	    op->instrs[1].type == NAND_OP_DATA_IN_INSTR)
2520 		return 1;
2521 
2522 	return 0;
2523 }
2524 
brcmnand_op_is_reset(const struct nand_operation * op)2525 static int brcmnand_op_is_reset(const struct nand_operation *op)
2526 {
2527 	if (op->ninstrs == 2 &&
2528 	    op->instrs[0].type == NAND_OP_CMD_INSTR &&
2529 	    op->instrs[0].ctx.cmd.opcode == NAND_CMD_RESET &&
2530 	    op->instrs[1].type == NAND_OP_WAITRDY_INSTR)
2531 		return 1;
2532 
2533 	return 0;
2534 }
2535 
brcmnand_check_instructions(struct nand_chip * chip,const struct nand_operation * op)2536 static int brcmnand_check_instructions(struct nand_chip *chip,
2537 				       const struct nand_operation *op)
2538 {
2539 	return 0;
2540 }
2541 
brcmnand_exec_instructions(struct nand_chip * chip,const struct nand_operation * op)2542 static int brcmnand_exec_instructions(struct nand_chip *chip,
2543 				      const struct nand_operation *op)
2544 {
2545 	struct brcmnand_host *host = nand_get_controller_data(chip);
2546 	unsigned int i;
2547 	int ret = 0;
2548 
2549 	for (i = 0; i < op->ninstrs; i++) {
2550 		ret = brcmnand_exec_instr(host, i, op);
2551 		if (ret)
2552 			break;
2553 	}
2554 
2555 	return ret;
2556 }
2557 
brcmnand_check_instructions_legacy(struct nand_chip * chip,const struct nand_operation * op)2558 static int brcmnand_check_instructions_legacy(struct nand_chip *chip,
2559 					      const struct nand_operation *op)
2560 {
2561 	const struct nand_op_instr *instr;
2562 	unsigned int i;
2563 	u8 cmd;
2564 
2565 	for (i = 0; i < op->ninstrs; i++) {
2566 		instr = &op->instrs[i];
2567 
2568 		switch (instr->type) {
2569 		case NAND_OP_CMD_INSTR:
2570 			cmd = native_cmd_conv[instr->ctx.cmd.opcode];
2571 			if (cmd == CMD_NOT_SUPPORTED)
2572 				return -EOPNOTSUPP;
2573 			break;
2574 		case NAND_OP_ADDR_INSTR:
2575 		case NAND_OP_DATA_IN_INSTR:
2576 		case NAND_OP_WAITRDY_INSTR:
2577 			break;
2578 		default:
2579 			return -EOPNOTSUPP;
2580 		}
2581 	}
2582 
2583 	return 0;
2584 }
2585 
brcmnand_exec_instructions_legacy(struct nand_chip * chip,const struct nand_operation * op)2586 static int brcmnand_exec_instructions_legacy(struct nand_chip *chip,
2587 					     const struct nand_operation *op)
2588 {
2589 	struct mtd_info *mtd = nand_to_mtd(chip);
2590 	struct brcmnand_host *host = nand_get_controller_data(chip);
2591 	struct brcmnand_controller *ctrl = host->ctrl;
2592 	const struct nand_op_instr *instr;
2593 	unsigned int i, j;
2594 	u8 cmd = CMD_NULL, last_cmd = CMD_NULL;
2595 	int ret = 0;
2596 	u64 last_addr;
2597 
2598 	for (i = 0; i < op->ninstrs; i++) {
2599 		instr = &op->instrs[i];
2600 
2601 		if (instr->type == NAND_OP_CMD_INSTR) {
2602 			cmd = native_cmd_conv[instr->ctx.cmd.opcode];
2603 			if (cmd == CMD_NOT_SUPPORTED) {
2604 				dev_err(ctrl->dev, "unsupported cmd=%d\n",
2605 					instr->ctx.cmd.opcode);
2606 				ret = -EOPNOTSUPP;
2607 				break;
2608 			}
2609 		} else if (instr->type == NAND_OP_ADDR_INSTR) {
2610 			u64 addr = 0;
2611 
2612 			if (cmd == CMD_NULL)
2613 				continue;
2614 
2615 			if (instr->ctx.addr.naddrs > 8) {
2616 				dev_err(ctrl->dev, "unsupported naddrs=%u\n",
2617 					instr->ctx.addr.naddrs);
2618 				ret = -EOPNOTSUPP;
2619 				break;
2620 			}
2621 
2622 			for (j = 0; j < instr->ctx.addr.naddrs; j++)
2623 				addr |= (instr->ctx.addr.addrs[j]) << (j << 3);
2624 
2625 			if (cmd == CMD_BLOCK_ERASE)
2626 				addr <<= chip->page_shift;
2627 			else if (cmd == CMD_PARAMETER_CHANGE_COL)
2628 				addr &= ~((u64)(FC_BYTES - 1));
2629 
2630 			brcmnand_set_cmd_addr(mtd, addr);
2631 			brcmnand_send_cmd(host, cmd);
2632 			last_addr = addr;
2633 			last_cmd = cmd;
2634 			cmd = CMD_NULL;
2635 			brcmnand_waitfunc(chip);
2636 
2637 			if (last_cmd == CMD_PARAMETER_READ ||
2638 			    last_cmd == CMD_PARAMETER_CHANGE_COL) {
2639 				/* Copy flash cache word-wise */
2640 				u32 *flash_cache = (u32 *)ctrl->flash_cache;
2641 
2642 				brcmnand_soc_data_bus_prepare(ctrl->soc, true);
2643 
2644 				/*
2645 				 * Must cache the FLASH_CACHE now, since changes in
2646 				 * SECTOR_SIZE_1K may invalidate it
2647 				 */
2648 				for (j = 0; j < FC_WORDS; j++)
2649 					/*
2650 					 * Flash cache is big endian for parameter pages, at
2651 					 * least on STB SoCs
2652 					 */
2653 					flash_cache[j] = be32_to_cpu(brcmnand_read_fc(ctrl, j));
2654 
2655 				brcmnand_soc_data_bus_unprepare(ctrl->soc, true);
2656 			}
2657 		} else if (instr->type == NAND_OP_DATA_IN_INSTR) {
2658 			u8 *in = instr->ctx.data.buf.in;
2659 
2660 			if (last_cmd == CMD_DEVICE_ID_READ) {
2661 				u32 val;
2662 
2663 				if (instr->ctx.data.len > 8) {
2664 					dev_err(ctrl->dev, "unsupported len=%u\n",
2665 						instr->ctx.data.len);
2666 					ret = -EOPNOTSUPP;
2667 					break;
2668 				}
2669 
2670 				for (j = 0; j < instr->ctx.data.len; j++) {
2671 					if (j == 0)
2672 						val = brcmnand_read_reg(ctrl, BRCMNAND_ID);
2673 					else if (j == 4)
2674 						val = brcmnand_read_reg(ctrl, BRCMNAND_ID_EXT);
2675 
2676 					in[j] = (val >> (24 - ((j % 4) << 3))) & 0xff;
2677 				}
2678 			} else if (last_cmd == CMD_PARAMETER_READ ||
2679 				   last_cmd == CMD_PARAMETER_CHANGE_COL) {
2680 				u64 addr;
2681 				u32 offs;
2682 
2683 				for (j = 0; j < instr->ctx.data.len; j++) {
2684 					addr = last_addr + j;
2685 					offs = addr & (FC_BYTES - 1);
2686 
2687 					if (j > 0 && offs == 0)
2688 						nand_change_read_column_op(chip, addr, NULL, 0,
2689 									   false);
2690 
2691 					in[j] = ctrl->flash_cache[offs];
2692 				}
2693 			}
2694 		} else if (instr->type == NAND_OP_WAITRDY_INSTR) {
2695 			ret = bcmnand_ctrl_poll_status(host, NAND_CTRL_RDY, NAND_CTRL_RDY, 0);
2696 			if (ret)
2697 				break;
2698 		} else {
2699 			dev_err(ctrl->dev, "unsupported instruction type: %d\n", instr->type);
2700 			ret = -EOPNOTSUPP;
2701 			break;
2702 		}
2703 	}
2704 
2705 	return ret;
2706 }
2707 
brcmnand_exec_op(struct nand_chip * chip,const struct nand_operation * op,bool check_only)2708 static int brcmnand_exec_op(struct nand_chip *chip,
2709 			    const struct nand_operation *op,
2710 			    bool check_only)
2711 {
2712 	struct brcmnand_host *host = nand_get_controller_data(chip);
2713 	struct brcmnand_controller *ctrl = host->ctrl;
2714 	struct mtd_info *mtd = nand_to_mtd(chip);
2715 	u8 *status;
2716 	int ret = 0;
2717 
2718 	if (check_only)
2719 		return ctrl->check_instr(chip, op);
2720 
2721 	if (brcmnand_op_is_status(op)) {
2722 		status = op->instrs[1].ctx.data.buf.in;
2723 		ret = brcmnand_status(host);
2724 		if (ret < 0)
2725 			return ret;
2726 
2727 		*status = ret & 0xFF;
2728 
2729 		return 0;
2730 	} else if (brcmnand_op_is_reset(op)) {
2731 		ret = brcmnand_reset(host);
2732 		if (ret < 0)
2733 			return ret;
2734 
2735 		brcmnand_wp(mtd, 1);
2736 
2737 		return 0;
2738 	}
2739 
2740 	if (op->deassert_wp)
2741 		brcmnand_wp(mtd, 0);
2742 
2743 	ret = ctrl->exec_instr(chip, op);
2744 
2745 	if (op->deassert_wp)
2746 		brcmnand_wp(mtd, 1);
2747 
2748 	return ret;
2749 }
2750 
2751 /***********************************************************************
2752  * Per-CS setup (1 NAND device)
2753  ***********************************************************************/
2754 
brcmnand_set_cfg(struct brcmnand_host * host,struct brcmnand_cfg * cfg)2755 static int brcmnand_set_cfg(struct brcmnand_host *host,
2756 			    struct brcmnand_cfg *cfg)
2757 {
2758 	struct brcmnand_controller *ctrl = host->ctrl;
2759 	struct nand_chip *chip = &host->chip;
2760 	u16 cfg_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_CFG);
2761 	u16 cfg_ext_offs = brcmnand_cs_offset(ctrl, host->cs,
2762 			BRCMNAND_CS_CFG_EXT);
2763 	u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
2764 			BRCMNAND_CS_ACC_CONTROL);
2765 	u8 block_size = 0, page_size = 0, device_size = 0;
2766 	u32 tmp;
2767 
2768 	if (ctrl->block_sizes) {
2769 		int i, found;
2770 
2771 		for (i = 0, found = 0; ctrl->block_sizes[i]; i++)
2772 			if (ctrl->block_sizes[i] * 1024 == cfg->block_size) {
2773 				block_size = i;
2774 				found = 1;
2775 			}
2776 		if (!found) {
2777 			dev_warn(ctrl->dev, "invalid block size %u\n",
2778 					cfg->block_size);
2779 			return -EINVAL;
2780 		}
2781 	} else {
2782 		block_size = ffs(cfg->block_size) - ffs(BRCMNAND_MIN_BLOCKSIZE);
2783 	}
2784 
2785 	if (cfg->block_size < BRCMNAND_MIN_BLOCKSIZE || (ctrl->max_block_size &&
2786 				cfg->block_size > ctrl->max_block_size)) {
2787 		dev_warn(ctrl->dev, "invalid block size %u\n",
2788 				cfg->block_size);
2789 		block_size = 0;
2790 	}
2791 
2792 	if (ctrl->page_sizes) {
2793 		int i, found;
2794 
2795 		for (i = 0, found = 0; ctrl->page_sizes[i]; i++)
2796 			if (ctrl->page_sizes[i] == cfg->page_size) {
2797 				page_size = i;
2798 				found = 1;
2799 			}
2800 		if (!found) {
2801 			dev_warn(ctrl->dev, "invalid page size %u\n",
2802 					cfg->page_size);
2803 			return -EINVAL;
2804 		}
2805 	} else {
2806 		page_size = ffs(cfg->page_size) - ffs(BRCMNAND_MIN_PAGESIZE);
2807 	}
2808 
2809 	if (cfg->page_size < BRCMNAND_MIN_PAGESIZE || (ctrl->max_page_size &&
2810 				cfg->page_size > ctrl->max_page_size)) {
2811 		dev_warn(ctrl->dev, "invalid page size %u\n", cfg->page_size);
2812 		return -EINVAL;
2813 	}
2814 
2815 	if (fls64(cfg->device_size) < fls64(BRCMNAND_MIN_DEVSIZE)) {
2816 		dev_warn(ctrl->dev, "invalid device size 0x%llx\n",
2817 			(unsigned long long)cfg->device_size);
2818 		return -EINVAL;
2819 	}
2820 	device_size = fls64(cfg->device_size) - fls64(BRCMNAND_MIN_DEVSIZE);
2821 
2822 	tmp = (cfg->blk_adr_bytes << CFG_BLK_ADR_BYTES_SHIFT) |
2823 		(cfg->col_adr_bytes << CFG_COL_ADR_BYTES_SHIFT) |
2824 		(cfg->ful_adr_bytes << CFG_FUL_ADR_BYTES_SHIFT) |
2825 		(!!(cfg->device_width == 16) << CFG_BUS_WIDTH_SHIFT) |
2826 		(device_size << CFG_DEVICE_SIZE_SHIFT);
2827 	if (cfg_offs == cfg_ext_offs) {
2828 		tmp |= (page_size << ctrl->page_size_shift) |
2829 		       (block_size << CFG_BLK_SIZE_SHIFT);
2830 		nand_writereg(ctrl, cfg_offs, tmp);
2831 	} else {
2832 		nand_writereg(ctrl, cfg_offs, tmp);
2833 		tmp = (page_size << CFG_EXT_PAGE_SIZE_SHIFT) |
2834 		      (block_size << CFG_EXT_BLK_SIZE_SHIFT);
2835 		nand_writereg(ctrl, cfg_ext_offs, tmp);
2836 	}
2837 
2838 	tmp = nand_readreg(ctrl, acc_control_offs);
2839 	tmp &= ~brcmnand_ecc_level_mask(ctrl);
2840 	tmp &= ~brcmnand_spare_area_mask(ctrl);
2841 	if (ctrl->nand_version >= 0x0302) {
2842 		tmp |= cfg->ecc_level << ctrl->ecc_level_shift;
2843 		tmp |= cfg->spare_area_size;
2844 	}
2845 	nand_writereg(ctrl, acc_control_offs, tmp);
2846 
2847 	brcmnand_set_sector_size_1k(host, cfg->sector_size_1k);
2848 
2849 	/* threshold = ceil(BCH-level * 0.75) */
2850 	brcmnand_wr_corr_thresh(host, DIV_ROUND_UP(chip->ecc.strength * 3, 4));
2851 
2852 	return 0;
2853 }
2854 
brcmnand_print_cfg(struct brcmnand_host * host,char * buf,struct brcmnand_cfg * cfg)2855 static void brcmnand_print_cfg(struct brcmnand_host *host,
2856 			       char *buf, struct brcmnand_cfg *cfg)
2857 {
2858 	buf += sprintf(buf,
2859 		"%lluMiB total, %uKiB blocks, %u%s pages, %uB OOB, %u-bit",
2860 		(unsigned long long)cfg->device_size >> 20,
2861 		cfg->block_size >> 10,
2862 		cfg->page_size >= 1024 ? cfg->page_size >> 10 : cfg->page_size,
2863 		cfg->page_size >= 1024 ? "KiB" : "B",
2864 		cfg->spare_area_size, cfg->device_width);
2865 
2866 	/* Account for Hamming ECC and for BCH 512B vs 1KiB sectors */
2867 	if (is_hamming_ecc(host->ctrl, cfg))
2868 		sprintf(buf, ", Hamming ECC");
2869 	else if (cfg->sector_size_1k)
2870 		sprintf(buf, ", BCH-%u (1KiB sector)", cfg->ecc_level << 1);
2871 	else
2872 		sprintf(buf, ", BCH-%u", cfg->ecc_level);
2873 }
2874 
2875 /*
2876  * Minimum number of bytes to address a page. Calculated as:
2877  *     roundup(log2(size / page-size) / 8)
2878  *
2879  * NB: the following does not "round up" for non-power-of-2 'size'; but this is
2880  *     OK because many other things will break if 'size' is irregular...
2881  */
get_blk_adr_bytes(u64 size,u32 writesize)2882 static inline int get_blk_adr_bytes(u64 size, u32 writesize)
2883 {
2884 	return ALIGN(ilog2(size) - ilog2(writesize), 8) >> 3;
2885 }
2886 
brcmnand_setup_dev(struct brcmnand_host * host)2887 static int brcmnand_setup_dev(struct brcmnand_host *host)
2888 {
2889 	struct mtd_info *mtd = nand_to_mtd(&host->chip);
2890 	struct nand_chip *chip = &host->chip;
2891 	const struct nand_ecc_props *requirements =
2892 		nanddev_get_ecc_requirements(&chip->base);
2893 	struct nand_memory_organization *memorg =
2894 		nanddev_get_memorg(&chip->base);
2895 	struct brcmnand_controller *ctrl = host->ctrl;
2896 	struct brcmnand_cfg *cfg = &host->hwcfg;
2897 	struct device_node *np = nand_get_flash_node(chip);
2898 	u32 offs, tmp, oob_sector;
2899 	bool use_strap = false;
2900 	char msg[128];
2901 	int ret;
2902 
2903 	memset(cfg, 0, sizeof(*cfg));
2904 	use_strap = of_property_read_bool(np, "brcm,nand-ecc-use-strap");
2905 
2906 	/*
2907 	 * Either nand-ecc-xxx or brcm,nand-ecc-use-strap can be set. Error out
2908 	 * if both exist.
2909 	 */
2910 	if (chip->ecc.strength && use_strap) {
2911 		dev_err(ctrl->dev,
2912 			"ECC strap and DT ECC configuration properties are mutually exclusive\n");
2913 		return -EINVAL;
2914 	}
2915 
2916 	if (use_strap)
2917 		brcmnand_get_ecc_settings(host, chip);
2918 
2919 	ret = of_property_read_u32(np, "brcm,nand-oob-sector-size",
2920 				   &oob_sector);
2921 	if (ret) {
2922 		if (use_strap)
2923 			cfg->spare_area_size = brcmnand_get_spare_size(host);
2924 		else
2925 			/* Use detected size */
2926 			cfg->spare_area_size = mtd->oobsize /
2927 						(mtd->writesize >> FC_SHIFT);
2928 	} else {
2929 		cfg->spare_area_size = oob_sector;
2930 	}
2931 	if (cfg->spare_area_size > ctrl->max_oob)
2932 		cfg->spare_area_size = ctrl->max_oob;
2933 	/*
2934 	 * Set mtd and memorg oobsize to be consistent with controller's
2935 	 * spare_area_size, as the rest is inaccessible.
2936 	 */
2937 	mtd->oobsize = cfg->spare_area_size * (mtd->writesize >> FC_SHIFT);
2938 	memorg->oobsize = mtd->oobsize;
2939 
2940 	cfg->device_size = mtd->size;
2941 	cfg->block_size = mtd->erasesize;
2942 	cfg->page_size = mtd->writesize;
2943 	cfg->device_width = (chip->options & NAND_BUSWIDTH_16) ? 16 : 8;
2944 	cfg->col_adr_bytes = 2;
2945 	cfg->blk_adr_bytes = get_blk_adr_bytes(mtd->size, mtd->writesize);
2946 
2947 	if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST) {
2948 		dev_err(ctrl->dev, "only HW ECC supported; selected: %d\n",
2949 			chip->ecc.engine_type);
2950 		return -EINVAL;
2951 	}
2952 
2953 	if (chip->ecc.algo == NAND_ECC_ALGO_UNKNOWN) {
2954 		if (chip->ecc.strength == 1 && chip->ecc.size == 512)
2955 			/* Default to Hamming for 1-bit ECC, if unspecified */
2956 			chip->ecc.algo = NAND_ECC_ALGO_HAMMING;
2957 		else
2958 			/* Otherwise, BCH */
2959 			chip->ecc.algo = NAND_ECC_ALGO_BCH;
2960 	}
2961 
2962 	if (chip->ecc.algo == NAND_ECC_ALGO_HAMMING &&
2963 	    (chip->ecc.strength != 1 || chip->ecc.size != 512)) {
2964 		dev_err(ctrl->dev, "invalid Hamming params: %d bits per %d bytes\n",
2965 			chip->ecc.strength, chip->ecc.size);
2966 		return -EINVAL;
2967 	}
2968 
2969 	if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_NONE &&
2970 	    (!chip->ecc.size || !chip->ecc.strength)) {
2971 		if (requirements->step_size && requirements->strength) {
2972 			/* use detected ECC parameters */
2973 			chip->ecc.size = requirements->step_size;
2974 			chip->ecc.strength = requirements->strength;
2975 			dev_info(ctrl->dev, "Using ECC step-size %d, strength %d\n",
2976 				chip->ecc.size, chip->ecc.strength);
2977 		}
2978 	}
2979 
2980 	switch (chip->ecc.size) {
2981 	case 512:
2982 		if (chip->ecc.algo == NAND_ECC_ALGO_HAMMING)
2983 			cfg->ecc_level = 15;
2984 		else
2985 			cfg->ecc_level = chip->ecc.strength;
2986 		cfg->sector_size_1k = 0;
2987 		break;
2988 	case 1024:
2989 		if (!(ctrl->features & BRCMNAND_HAS_1K_SECTORS)) {
2990 			dev_err(ctrl->dev, "1KB sectors not supported\n");
2991 			return -EINVAL;
2992 		}
2993 		if (chip->ecc.strength & 0x1) {
2994 			dev_err(ctrl->dev,
2995 				"odd ECC not supported with 1KB sectors\n");
2996 			return -EINVAL;
2997 		}
2998 
2999 		cfg->ecc_level = chip->ecc.strength >> 1;
3000 		cfg->sector_size_1k = 1;
3001 		break;
3002 	default:
3003 		dev_err(ctrl->dev, "unsupported ECC size: %d\n",
3004 			chip->ecc.size);
3005 		return -EINVAL;
3006 	}
3007 
3008 	cfg->ful_adr_bytes = cfg->blk_adr_bytes;
3009 	if (mtd->writesize > 512)
3010 		cfg->ful_adr_bytes += cfg->col_adr_bytes;
3011 	else
3012 		cfg->ful_adr_bytes += 1;
3013 
3014 	ret = brcmnand_set_cfg(host, cfg);
3015 	if (ret)
3016 		return ret;
3017 
3018 	brcmnand_set_ecc_enabled(host, 1);
3019 
3020 	brcmnand_print_cfg(host, msg, cfg);
3021 	dev_info(ctrl->dev, "detected %s\n", msg);
3022 
3023 	/* Configure ACC_CONTROL */
3024 	offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_ACC_CONTROL);
3025 	tmp = nand_readreg(ctrl, offs);
3026 	tmp &= ~ACC_CONTROL_PARTIAL_PAGE;
3027 	tmp &= ~ACC_CONTROL_RD_ERASED;
3028 
3029 	/* We need to turn on Read from erased paged protected by ECC */
3030 	if (ctrl->nand_version >= 0x0702)
3031 		tmp |= ACC_CONTROL_RD_ERASED;
3032 	tmp &= ~ACC_CONTROL_FAST_PGM_RDIN;
3033 	if (ctrl->features & BRCMNAND_HAS_PREFETCH)
3034 		tmp &= ~ACC_CONTROL_PREFETCH;
3035 
3036 	nand_writereg(ctrl, offs, tmp);
3037 
3038 	return 0;
3039 }
3040 
brcmnand_attach_chip(struct nand_chip * chip)3041 static int brcmnand_attach_chip(struct nand_chip *chip)
3042 {
3043 	struct mtd_info *mtd = nand_to_mtd(chip);
3044 	struct brcmnand_host *host = nand_get_controller_data(chip);
3045 	int ret;
3046 
3047 	chip->options |= NAND_NO_SUBPAGE_WRITE;
3048 	/*
3049 	 * Avoid (for instance) kmap()'d buffers from JFFS2, which we can't DMA
3050 	 * to/from, and have nand_base pass us a bounce buffer instead, as
3051 	 * needed.
3052 	 */
3053 	chip->options |= NAND_USES_DMA;
3054 
3055 	if (chip->bbt_options & NAND_BBT_USE_FLASH)
3056 		chip->bbt_options |= NAND_BBT_NO_OOB;
3057 
3058 	if (brcmnand_setup_dev(host))
3059 		return -ENXIO;
3060 
3061 	chip->ecc.size = host->hwcfg.sector_size_1k ? 1024 : 512;
3062 
3063 	/* only use our internal HW threshold */
3064 	mtd->bitflip_threshold = 1;
3065 
3066 	ret = brcmstb_choose_ecc_layout(host);
3067 
3068 	/* If OOB is written with ECC enabled it will cause ECC errors */
3069 	if (is_hamming_ecc(host->ctrl, &host->hwcfg)) {
3070 		chip->ecc.write_oob = brcmnand_write_oob_raw;
3071 		chip->ecc.read_oob = brcmnand_read_oob_raw;
3072 	}
3073 
3074 	return ret;
3075 }
3076 
3077 static const struct nand_controller_ops brcmnand_controller_ops = {
3078 	.attach_chip = brcmnand_attach_chip,
3079 	.exec_op = brcmnand_exec_op,
3080 };
3081 
brcmnand_init_cs(struct brcmnand_host * host,const char * const * part_probe_types)3082 static int brcmnand_init_cs(struct brcmnand_host *host,
3083 			    const char * const *part_probe_types)
3084 {
3085 	struct brcmnand_controller *ctrl = host->ctrl;
3086 	struct device *dev = ctrl->dev;
3087 	struct mtd_info *mtd;
3088 	struct nand_chip *chip;
3089 	int ret;
3090 	u16 cfg_offs;
3091 
3092 	mtd = nand_to_mtd(&host->chip);
3093 	chip = &host->chip;
3094 
3095 	nand_set_controller_data(chip, host);
3096 	mtd->name = devm_kasprintf(dev, GFP_KERNEL, "brcmnand.%d",
3097 				   host->cs);
3098 	if (!mtd->name)
3099 		return -ENOMEM;
3100 
3101 	mtd->owner = THIS_MODULE;
3102 	mtd->dev.parent = dev;
3103 
3104 	chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
3105 	chip->ecc.read_page = brcmnand_read_page;
3106 	chip->ecc.write_page = brcmnand_write_page;
3107 	chip->ecc.read_page_raw = brcmnand_read_page_raw;
3108 	chip->ecc.write_page_raw = brcmnand_write_page_raw;
3109 	chip->ecc.write_oob_raw = brcmnand_write_oob_raw;
3110 	chip->ecc.read_oob_raw = brcmnand_read_oob_raw;
3111 	chip->ecc.read_oob = brcmnand_read_oob;
3112 	chip->ecc.write_oob = brcmnand_write_oob;
3113 
3114 	chip->controller = &ctrl->controller;
3115 	ctrl->controller.controller_wp = 1;
3116 
3117 	/*
3118 	 * The bootloader might have configured 16bit mode but
3119 	 * NAND READID command only works in 8bit mode. We force
3120 	 * 8bit mode here to ensure that NAND READID commands works.
3121 	 */
3122 	cfg_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_CFG);
3123 	nand_writereg(ctrl, cfg_offs,
3124 		      nand_readreg(ctrl, cfg_offs) & ~CFG_BUS_WIDTH);
3125 
3126 	ret = nand_scan(chip, 1);
3127 	if (ret)
3128 		return ret;
3129 
3130 	ret = mtd_device_parse_register(mtd, part_probe_types, NULL, NULL, 0);
3131 	if (ret)
3132 		nand_cleanup(chip);
3133 
3134 	return ret;
3135 }
3136 
brcmnand_save_restore_cs_config(struct brcmnand_host * host,int restore)3137 static void brcmnand_save_restore_cs_config(struct brcmnand_host *host,
3138 					    int restore)
3139 {
3140 	struct brcmnand_controller *ctrl = host->ctrl;
3141 	u16 cfg_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_CFG);
3142 	u16 cfg_ext_offs = brcmnand_cs_offset(ctrl, host->cs,
3143 			BRCMNAND_CS_CFG_EXT);
3144 	u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
3145 			BRCMNAND_CS_ACC_CONTROL);
3146 	u16 t1_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_TIMING1);
3147 	u16 t2_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_TIMING2);
3148 
3149 	if (restore) {
3150 		nand_writereg(ctrl, cfg_offs, host->hwcfg.config);
3151 		if (cfg_offs != cfg_ext_offs)
3152 			nand_writereg(ctrl, cfg_ext_offs,
3153 				      host->hwcfg.config_ext);
3154 		nand_writereg(ctrl, acc_control_offs, host->hwcfg.acc_control);
3155 		nand_writereg(ctrl, t1_offs, host->hwcfg.timing_1);
3156 		nand_writereg(ctrl, t2_offs, host->hwcfg.timing_2);
3157 	} else {
3158 		host->hwcfg.config = nand_readreg(ctrl, cfg_offs);
3159 		if (cfg_offs != cfg_ext_offs)
3160 			host->hwcfg.config_ext =
3161 				nand_readreg(ctrl, cfg_ext_offs);
3162 		host->hwcfg.acc_control = nand_readreg(ctrl, acc_control_offs);
3163 		host->hwcfg.timing_1 = nand_readreg(ctrl, t1_offs);
3164 		host->hwcfg.timing_2 = nand_readreg(ctrl, t2_offs);
3165 	}
3166 }
3167 
brcmnand_suspend(struct device * dev)3168 static int brcmnand_suspend(struct device *dev)
3169 {
3170 	struct brcmnand_controller *ctrl = dev_get_drvdata(dev);
3171 	struct brcmnand_host *host;
3172 
3173 	list_for_each_entry(host, &ctrl->host_list, node)
3174 		brcmnand_save_restore_cs_config(host, 0);
3175 
3176 	ctrl->nand_cs_nand_select = brcmnand_read_reg(ctrl, BRCMNAND_CS_SELECT);
3177 	ctrl->nand_cs_nand_xor = brcmnand_read_reg(ctrl, BRCMNAND_CS_XOR);
3178 	ctrl->corr_stat_threshold =
3179 		brcmnand_read_reg(ctrl, BRCMNAND_CORR_THRESHOLD);
3180 
3181 	if (has_flash_dma(ctrl))
3182 		ctrl->flash_dma_mode = flash_dma_readl(ctrl, FLASH_DMA_MODE);
3183 	else if (has_edu(ctrl))
3184 		ctrl->edu_config = edu_readl(ctrl, EDU_CONFIG);
3185 
3186 	return 0;
3187 }
3188 
brcmnand_resume(struct device * dev)3189 static int brcmnand_resume(struct device *dev)
3190 {
3191 	struct brcmnand_controller *ctrl = dev_get_drvdata(dev);
3192 	struct brcmnand_host *host;
3193 
3194 	if (has_flash_dma(ctrl)) {
3195 		flash_dma_writel(ctrl, FLASH_DMA_MODE, ctrl->flash_dma_mode);
3196 		flash_dma_writel(ctrl, FLASH_DMA_ERROR_STATUS, 0);
3197 	}
3198 
3199 	if (has_edu(ctrl)) {
3200 		ctrl->edu_config = edu_readl(ctrl, EDU_CONFIG);
3201 		edu_writel(ctrl, EDU_CONFIG, ctrl->edu_config);
3202 		edu_readl(ctrl, EDU_CONFIG);
3203 		brcmnand_edu_init(ctrl);
3204 	}
3205 
3206 	brcmnand_write_reg(ctrl, BRCMNAND_CS_SELECT, ctrl->nand_cs_nand_select);
3207 	brcmnand_write_reg(ctrl, BRCMNAND_CS_XOR, ctrl->nand_cs_nand_xor);
3208 	brcmnand_write_reg(ctrl, BRCMNAND_CORR_THRESHOLD,
3209 			ctrl->corr_stat_threshold);
3210 	if (ctrl->soc) {
3211 		/* Clear/re-enable interrupt */
3212 		ctrl->soc->ctlrdy_ack(ctrl->soc);
3213 		ctrl->soc->ctlrdy_set_enabled(ctrl->soc, true);
3214 	}
3215 
3216 	list_for_each_entry(host, &ctrl->host_list, node) {
3217 		struct nand_chip *chip = &host->chip;
3218 
3219 		brcmnand_save_restore_cs_config(host, 1);
3220 
3221 		/* Reset the chip, required by some chips after power-up */
3222 		nand_reset(chip, 0);
3223 	}
3224 
3225 	return 0;
3226 }
3227 
3228 const struct dev_pm_ops brcmnand_pm_ops = {
3229 	.suspend		= brcmnand_suspend,
3230 	.resume			= brcmnand_resume,
3231 };
3232 EXPORT_SYMBOL_GPL(brcmnand_pm_ops);
3233 
3234 static const struct of_device_id __maybe_unused brcmnand_of_match[] = {
3235 	{ .compatible = "brcm,brcmnand-v2.1" },
3236 	{ .compatible = "brcm,brcmnand-v2.2" },
3237 	{ .compatible = "brcm,brcmnand-v4.0" },
3238 	{ .compatible = "brcm,brcmnand-v5.0" },
3239 	{ .compatible = "brcm,brcmnand-v6.0" },
3240 	{ .compatible = "brcm,brcmnand-v6.1" },
3241 	{ .compatible = "brcm,brcmnand-v6.2" },
3242 	{ .compatible = "brcm,brcmnand-v7.0" },
3243 	{ .compatible = "brcm,brcmnand-v7.1" },
3244 	{ .compatible = "brcm,brcmnand-v7.2" },
3245 	{ .compatible = "brcm,brcmnand-v7.3" },
3246 	{},
3247 };
3248 MODULE_DEVICE_TABLE(of, brcmnand_of_match);
3249 
3250 /***********************************************************************
3251  * Platform driver setup (per controller)
3252  ***********************************************************************/
brcmnand_edu_setup(struct platform_device * pdev)3253 static int brcmnand_edu_setup(struct platform_device *pdev)
3254 {
3255 	struct device *dev = &pdev->dev;
3256 	struct brcmnand_controller *ctrl = dev_get_drvdata(&pdev->dev);
3257 	struct resource *res;
3258 	int ret;
3259 
3260 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "flash-edu");
3261 	if (res) {
3262 		ctrl->edu_base = devm_ioremap_resource(dev, res);
3263 		if (IS_ERR(ctrl->edu_base))
3264 			return PTR_ERR(ctrl->edu_base);
3265 
3266 		ctrl->edu_offsets = edu_regs;
3267 
3268 		edu_writel(ctrl, EDU_CONFIG, EDU_CONFIG_MODE_NAND |
3269 			   EDU_CONFIG_SWAP_CFG);
3270 		edu_readl(ctrl, EDU_CONFIG);
3271 
3272 		/* initialize edu */
3273 		brcmnand_edu_init(ctrl);
3274 
3275 		ctrl->edu_irq = platform_get_irq_optional(pdev, 1);
3276 		if (ctrl->edu_irq < 0) {
3277 			dev_warn(dev,
3278 				 "FLASH EDU enabled, using ctlrdy irq\n");
3279 		} else {
3280 			ret = devm_request_irq(dev, ctrl->edu_irq,
3281 					       brcmnand_edu_irq, 0,
3282 					       "brcmnand-edu", ctrl);
3283 			if (ret < 0) {
3284 				dev_err(ctrl->dev, "can't allocate IRQ %d: error %d\n",
3285 					ctrl->edu_irq, ret);
3286 				return ret;
3287 			}
3288 
3289 			dev_info(dev, "FLASH EDU enabled using irq %u\n",
3290 				 ctrl->edu_irq);
3291 		}
3292 	}
3293 
3294 	return 0;
3295 }
3296 
brcmnand_probe(struct platform_device * pdev,struct brcmnand_soc * soc)3297 int brcmnand_probe(struct platform_device *pdev, struct brcmnand_soc *soc)
3298 {
3299 	struct brcmnand_platform_data *pd = dev_get_platdata(&pdev->dev);
3300 	struct device *dev = &pdev->dev;
3301 	struct device_node *dn = dev->of_node, *child;
3302 	struct brcmnand_controller *ctrl;
3303 	struct brcmnand_host *host;
3304 	struct resource *res;
3305 	int ret;
3306 
3307 	if (dn && !of_match_node(brcmnand_of_match, dn))
3308 		return -ENODEV;
3309 
3310 	ctrl = devm_kzalloc(dev, sizeof(*ctrl), GFP_KERNEL);
3311 	if (!ctrl)
3312 		return -ENOMEM;
3313 
3314 	dev_set_drvdata(dev, ctrl);
3315 	ctrl->dev = dev;
3316 	ctrl->soc = soc;
3317 
3318 	/* Enable the static key if the soc provides I/O operations indicating
3319 	 * that a non-memory mapped IO access path must be used
3320 	 */
3321 	if (brcmnand_soc_has_ops(ctrl->soc))
3322 		static_branch_enable(&brcmnand_soc_has_ops_key);
3323 
3324 	init_completion(&ctrl->done);
3325 	init_completion(&ctrl->dma_done);
3326 	init_completion(&ctrl->edu_done);
3327 	nand_controller_init(&ctrl->controller);
3328 	ctrl->controller.ops = &brcmnand_controller_ops;
3329 	INIT_LIST_HEAD(&ctrl->host_list);
3330 
3331 	/* NAND register range */
3332 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3333 	ctrl->nand_base = devm_ioremap_resource(dev, res);
3334 	if (IS_ERR(ctrl->nand_base) && !brcmnand_soc_has_ops(soc))
3335 		return PTR_ERR(ctrl->nand_base);
3336 
3337 	/* Enable clock before using NAND registers */
3338 	ctrl->clk = devm_clk_get(dev, "nand");
3339 	if (!IS_ERR(ctrl->clk)) {
3340 		ret = clk_prepare_enable(ctrl->clk);
3341 		if (ret)
3342 			return ret;
3343 	} else {
3344 		ret = PTR_ERR(ctrl->clk);
3345 		if (ret == -EPROBE_DEFER)
3346 			return ret;
3347 
3348 		ctrl->clk = NULL;
3349 	}
3350 
3351 	/* Initialize NAND revision */
3352 	ret = brcmnand_revision_init(ctrl);
3353 	if (ret)
3354 		goto err;
3355 
3356 	/* Only v5.0+ controllers have low level ops support */
3357 	if (ctrl->nand_version >= 0x0500) {
3358 		ctrl->check_instr = brcmnand_check_instructions;
3359 		ctrl->exec_instr = brcmnand_exec_instructions;
3360 	} else {
3361 		ctrl->check_instr = brcmnand_check_instructions_legacy;
3362 		ctrl->exec_instr = brcmnand_exec_instructions_legacy;
3363 	}
3364 
3365 	/*
3366 	 * Most chips have this cache at a fixed offset within 'nand' block.
3367 	 * Some must specify this region separately.
3368 	 */
3369 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand-cache");
3370 	if (res) {
3371 		ctrl->nand_fc = devm_ioremap_resource(dev, res);
3372 		if (IS_ERR(ctrl->nand_fc)) {
3373 			ret = PTR_ERR(ctrl->nand_fc);
3374 			goto err;
3375 		}
3376 	} else {
3377 		ctrl->nand_fc = ctrl->nand_base +
3378 				ctrl->reg_offsets[BRCMNAND_FC_BASE];
3379 	}
3380 
3381 	/* FLASH_DMA */
3382 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "flash-dma");
3383 	if (res) {
3384 		ctrl->flash_dma_base = devm_ioremap_resource(dev, res);
3385 		if (IS_ERR(ctrl->flash_dma_base)) {
3386 			ret = PTR_ERR(ctrl->flash_dma_base);
3387 			goto err;
3388 		}
3389 
3390 		/* initialize the dma version */
3391 		brcmnand_flash_dma_revision_init(ctrl);
3392 
3393 		ret = -EIO;
3394 		if (ctrl->nand_version >= 0x0700)
3395 			ret = dma_set_mask_and_coherent(&pdev->dev,
3396 							DMA_BIT_MASK(40));
3397 		if (ret)
3398 			ret = dma_set_mask_and_coherent(&pdev->dev,
3399 							DMA_BIT_MASK(32));
3400 		if (ret)
3401 			goto err;
3402 
3403 		/* linked-list and stop on error */
3404 		flash_dma_writel(ctrl, FLASH_DMA_MODE, FLASH_DMA_MODE_MASK);
3405 		flash_dma_writel(ctrl, FLASH_DMA_ERROR_STATUS, 0);
3406 
3407 		/* Allocate descriptor(s) */
3408 		ctrl->dma_desc = dmam_alloc_coherent(dev,
3409 						     sizeof(*ctrl->dma_desc),
3410 						     &ctrl->dma_pa, GFP_KERNEL);
3411 		if (!ctrl->dma_desc) {
3412 			ret = -ENOMEM;
3413 			goto err;
3414 		}
3415 
3416 		ctrl->dma_irq = platform_get_irq(pdev, 1);
3417 		if ((int)ctrl->dma_irq < 0) {
3418 			dev_err(dev, "missing FLASH_DMA IRQ\n");
3419 			ret = -ENODEV;
3420 			goto err;
3421 		}
3422 
3423 		ret = devm_request_irq(dev, ctrl->dma_irq,
3424 				brcmnand_dma_irq, 0, DRV_NAME,
3425 				ctrl);
3426 		if (ret < 0) {
3427 			dev_err(dev, "can't allocate IRQ %d: error %d\n",
3428 					ctrl->dma_irq, ret);
3429 			goto err;
3430 		}
3431 
3432 		dev_info(dev, "enabling FLASH_DMA\n");
3433 		/* set flash dma transfer function to call */
3434 		ctrl->dma_trans = brcmnand_dma_trans;
3435 	} else	{
3436 		ret = brcmnand_edu_setup(pdev);
3437 		if (ret < 0)
3438 			goto err;
3439 
3440 		if (has_edu(ctrl))
3441 			/* set edu transfer function to call */
3442 			ctrl->dma_trans = brcmnand_edu_trans;
3443 	}
3444 
3445 	/* Disable automatic device ID config, direct addressing */
3446 	brcmnand_rmw_reg(ctrl, BRCMNAND_CS_SELECT,
3447 			 CS_SELECT_AUTO_DEVICE_ID_CFG | 0xff, 0, 0);
3448 	/* Disable XOR addressing */
3449 	brcmnand_rmw_reg(ctrl, BRCMNAND_CS_XOR, 0xff, 0, 0);
3450 
3451 	/* Check if the board connects the WP pin */
3452 	if (of_property_read_bool(dn, "brcm,wp-not-connected"))
3453 		wp_on = 0;
3454 
3455 	if (ctrl->features & BRCMNAND_HAS_WP) {
3456 		/* Permanently disable write protection */
3457 		if (wp_on == 2)
3458 			brcmnand_set_wp(ctrl, false);
3459 	} else {
3460 		wp_on = 0;
3461 	}
3462 
3463 	/* IRQ */
3464 	ctrl->irq = platform_get_irq_optional(pdev, 0);
3465 	if (ctrl->irq > 0) {
3466 		/*
3467 		 * Some SoCs integrate this controller (e.g., its interrupt bits) in
3468 		 * interesting ways
3469 		 */
3470 		if (soc) {
3471 			ret = devm_request_irq(dev, ctrl->irq, brcmnand_irq, 0,
3472 					       DRV_NAME, ctrl);
3473 
3474 			/* Enable interrupt */
3475 			ctrl->soc->ctlrdy_ack(ctrl->soc);
3476 			ctrl->soc->ctlrdy_set_enabled(ctrl->soc, true);
3477 		} else {
3478 			/* Use standard interrupt infrastructure */
3479 			ret = devm_request_irq(dev, ctrl->irq, brcmnand_ctlrdy_irq, 0,
3480 					       DRV_NAME, ctrl);
3481 		}
3482 		if (ret < 0) {
3483 			dev_err(dev, "can't allocate IRQ %d: error %d\n",
3484 				ctrl->irq, ret);
3485 			goto err;
3486 		}
3487 	}
3488 
3489 	for_each_available_child_of_node(dn, child) {
3490 		if (of_device_is_compatible(child, "brcm,nandcs")) {
3491 
3492 			host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL);
3493 			if (!host) {
3494 				of_node_put(child);
3495 				ret = -ENOMEM;
3496 				goto err;
3497 			}
3498 			host->pdev = pdev;
3499 			host->ctrl = ctrl;
3500 
3501 			ret = of_property_read_u32(child, "reg", &host->cs);
3502 			if (ret) {
3503 				dev_err(dev, "can't get chip-select\n");
3504 				devm_kfree(dev, host);
3505 				continue;
3506 			}
3507 
3508 			nand_set_flash_node(&host->chip, child);
3509 
3510 			ret = brcmnand_init_cs(host, NULL);
3511 			if (ret) {
3512 				if (ret == -EPROBE_DEFER) {
3513 					of_node_put(child);
3514 					goto err;
3515 				}
3516 				devm_kfree(dev, host);
3517 				continue; /* Try all chip-selects */
3518 			}
3519 
3520 			list_add_tail(&host->node, &ctrl->host_list);
3521 		}
3522 	}
3523 
3524 	if (!list_empty(&ctrl->host_list))
3525 		return 0;
3526 
3527 	if (!pd) {
3528 		ret = -ENODEV;
3529 		goto err;
3530 	}
3531 
3532 	/* If we got there we must have been probing via platform data */
3533 	host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL);
3534 	if (!host) {
3535 		ret = -ENOMEM;
3536 		goto err;
3537 	}
3538 	host->pdev = pdev;
3539 	host->ctrl = ctrl;
3540 	host->cs = pd->chip_select;
3541 	host->chip.ecc.size = pd->ecc_stepsize;
3542 	host->chip.ecc.strength = pd->ecc_strength;
3543 
3544 	ret = brcmnand_init_cs(host, pd->part_probe_types);
3545 	if (ret)
3546 		goto err;
3547 
3548 	list_add_tail(&host->node, &ctrl->host_list);
3549 
3550 	/* No chip-selects could initialize properly */
3551 	if (list_empty(&ctrl->host_list)) {
3552 		ret = -ENODEV;
3553 		goto err;
3554 	}
3555 
3556 	return 0;
3557 
3558 err:
3559 	clk_disable_unprepare(ctrl->clk);
3560 	return ret;
3561 
3562 }
3563 EXPORT_SYMBOL_GPL(brcmnand_probe);
3564 
brcmnand_remove(struct platform_device * pdev)3565 void brcmnand_remove(struct platform_device *pdev)
3566 {
3567 	struct brcmnand_controller *ctrl = dev_get_drvdata(&pdev->dev);
3568 	struct brcmnand_host *host;
3569 	struct nand_chip *chip;
3570 	int ret;
3571 
3572 	list_for_each_entry(host, &ctrl->host_list, node) {
3573 		chip = &host->chip;
3574 		ret = mtd_device_unregister(nand_to_mtd(chip));
3575 		WARN_ON(ret);
3576 		nand_cleanup(chip);
3577 	}
3578 
3579 	clk_disable_unprepare(ctrl->clk);
3580 
3581 	dev_set_drvdata(&pdev->dev, NULL);
3582 }
3583 EXPORT_SYMBOL_GPL(brcmnand_remove);
3584 
3585 MODULE_LICENSE("GPL v2");
3586 MODULE_AUTHOR("Kevin Cernekee");
3587 MODULE_AUTHOR("Brian Norris");
3588 MODULE_DESCRIPTION("NAND driver for Broadcom chips");
3589 MODULE_ALIAS("platform:brcmnand");
3590