xref: /linux/arch/x86/lib/insn-eval.c (revision ab93e0dd72c37d378dd936f031ffb83ff2bd87ce) !
1 /*
2  * Utility functions for x86 operand and address decoding
3  *
4  * Copyright (C) Intel Corporation 2017
5  */
6 #include <linux/kernel.h>
7 #include <linux/string.h>
8 #include <linux/ratelimit.h>
9 #include <linux/mmu_context.h>
10 #include <asm/desc_defs.h>
11 #include <asm/desc.h>
12 #include <asm/inat.h>
13 #include <asm/insn.h>
14 #include <asm/insn-eval.h>
15 #include <asm/ldt.h>
16 #include <asm/msr.h>
17 #include <asm/vm86.h>
18 
19 #undef pr_fmt
20 #define pr_fmt(fmt) "insn: " fmt
21 
22 enum reg_type {
23 	REG_TYPE_RM = 0,
24 	REG_TYPE_REG,
25 	REG_TYPE_INDEX,
26 	REG_TYPE_BASE,
27 };
28 
29 /**
30  * is_string_insn() - Determine if instruction is a string instruction
31  * @insn:	Instruction containing the opcode to inspect
32  *
33  * Returns:
34  *
35  * true if the instruction, determined by the opcode, is any of the
36  * string instructions as defined in the Intel Software Development manual.
37  * False otherwise.
38  */
is_string_insn(struct insn * insn)39 static bool is_string_insn(struct insn *insn)
40 {
41 	/* All string instructions have a 1-byte opcode. */
42 	if (insn->opcode.nbytes != 1)
43 		return false;
44 
45 	switch (insn->opcode.bytes[0]) {
46 	case 0x6c ... 0x6f:	/* INS, OUTS */
47 	case 0xa4 ... 0xa7:	/* MOVS, CMPS */
48 	case 0xaa ... 0xaf:	/* STOS, LODS, SCAS */
49 		return true;
50 	default:
51 		return false;
52 	}
53 }
54 
55 /**
56  * insn_has_rep_prefix() - Determine if instruction has a REP prefix
57  * @insn:	Instruction containing the prefix to inspect
58  *
59  * Returns:
60  *
61  * true if the instruction has a REP prefix, false if not.
62  */
insn_has_rep_prefix(struct insn * insn)63 bool insn_has_rep_prefix(struct insn *insn)
64 {
65 	insn_byte_t p;
66 	int i;
67 
68 	insn_get_prefixes(insn);
69 
70 	for_each_insn_prefix(insn, i, p) {
71 		if (p == 0xf2 || p == 0xf3)
72 			return true;
73 	}
74 
75 	return false;
76 }
77 
78 /**
79  * get_seg_reg_override_idx() - obtain segment register override index
80  * @insn:	Valid instruction with segment override prefixes
81  *
82  * Inspect the instruction prefixes in @insn and find segment overrides, if any.
83  *
84  * Returns:
85  *
86  * A constant identifying the segment register to use, among CS, SS, DS,
87  * ES, FS, or GS. INAT_SEG_REG_DEFAULT is returned if no segment override
88  * prefixes were found.
89  *
90  * -EINVAL in case of error.
91  */
get_seg_reg_override_idx(struct insn * insn)92 static int get_seg_reg_override_idx(struct insn *insn)
93 {
94 	int idx = INAT_SEG_REG_DEFAULT;
95 	int num_overrides = 0, i;
96 	insn_byte_t p;
97 
98 	insn_get_prefixes(insn);
99 
100 	/* Look for any segment override prefixes. */
101 	for_each_insn_prefix(insn, i, p) {
102 		insn_attr_t attr;
103 
104 		attr = inat_get_opcode_attribute(p);
105 		switch (attr) {
106 		case INAT_MAKE_PREFIX(INAT_PFX_CS):
107 			idx = INAT_SEG_REG_CS;
108 			num_overrides++;
109 			break;
110 		case INAT_MAKE_PREFIX(INAT_PFX_SS):
111 			idx = INAT_SEG_REG_SS;
112 			num_overrides++;
113 			break;
114 		case INAT_MAKE_PREFIX(INAT_PFX_DS):
115 			idx = INAT_SEG_REG_DS;
116 			num_overrides++;
117 			break;
118 		case INAT_MAKE_PREFIX(INAT_PFX_ES):
119 			idx = INAT_SEG_REG_ES;
120 			num_overrides++;
121 			break;
122 		case INAT_MAKE_PREFIX(INAT_PFX_FS):
123 			idx = INAT_SEG_REG_FS;
124 			num_overrides++;
125 			break;
126 		case INAT_MAKE_PREFIX(INAT_PFX_GS):
127 			idx = INAT_SEG_REG_GS;
128 			num_overrides++;
129 			break;
130 		/* No default action needed. */
131 		}
132 	}
133 
134 	/* More than one segment override prefix leads to undefined behavior. */
135 	if (num_overrides > 1)
136 		return -EINVAL;
137 
138 	return idx;
139 }
140 
141 /**
142  * check_seg_overrides() - check if segment override prefixes are allowed
143  * @insn:	Valid instruction with segment override prefixes
144  * @regoff:	Operand offset, in pt_regs, for which the check is performed
145  *
146  * For a particular register used in register-indirect addressing, determine if
147  * segment override prefixes can be used. Specifically, no overrides are allowed
148  * for rDI if used with a string instruction.
149  *
150  * Returns:
151  *
152  * True if segment override prefixes can be used with the register indicated
153  * in @regoff. False if otherwise.
154  */
check_seg_overrides(struct insn * insn,int regoff)155 static bool check_seg_overrides(struct insn *insn, int regoff)
156 {
157 	if (regoff == offsetof(struct pt_regs, di) && is_string_insn(insn))
158 		return false;
159 
160 	return true;
161 }
162 
163 /**
164  * resolve_default_seg() - resolve default segment register index for an operand
165  * @insn:	Instruction with opcode and address size. Must be valid.
166  * @regs:	Register values as seen when entering kernel mode
167  * @off:	Operand offset, in pt_regs, for which resolution is needed
168  *
169  * Resolve the default segment register index associated with the instruction
170  * operand register indicated by @off. Such index is resolved based on defaults
171  * described in the Intel Software Development Manual.
172  *
173  * Returns:
174  *
175  * If in protected mode, a constant identifying the segment register to use,
176  * among CS, SS, ES or DS. If in long mode, INAT_SEG_REG_IGNORE.
177  *
178  * -EINVAL in case of error.
179  */
resolve_default_seg(struct insn * insn,struct pt_regs * regs,int off)180 static int resolve_default_seg(struct insn *insn, struct pt_regs *regs, int off)
181 {
182 	if (any_64bit_mode(regs))
183 		return INAT_SEG_REG_IGNORE;
184 	/*
185 	 * Resolve the default segment register as described in Section 3.7.4
186 	 * of the Intel Software Development Manual Vol. 1:
187 	 *
188 	 *  + DS for all references involving r[ABCD]X, and rSI.
189 	 *  + If used in a string instruction, ES for rDI. Otherwise, DS.
190 	 *  + AX, CX and DX are not valid register operands in 16-bit address
191 	 *    encodings but are valid for 32-bit and 64-bit encodings.
192 	 *  + -EDOM is reserved to identify for cases in which no register
193 	 *    is used (i.e., displacement-only addressing). Use DS.
194 	 *  + SS for rSP or rBP.
195 	 *  + CS for rIP.
196 	 */
197 
198 	switch (off) {
199 	case offsetof(struct pt_regs, ax):
200 	case offsetof(struct pt_regs, cx):
201 	case offsetof(struct pt_regs, dx):
202 		/* Need insn to verify address size. */
203 		if (insn->addr_bytes == 2)
204 			return -EINVAL;
205 
206 		fallthrough;
207 
208 	case -EDOM:
209 	case offsetof(struct pt_regs, bx):
210 	case offsetof(struct pt_regs, si):
211 		return INAT_SEG_REG_DS;
212 
213 	case offsetof(struct pt_regs, di):
214 		if (is_string_insn(insn))
215 			return INAT_SEG_REG_ES;
216 		return INAT_SEG_REG_DS;
217 
218 	case offsetof(struct pt_regs, bp):
219 	case offsetof(struct pt_regs, sp):
220 		return INAT_SEG_REG_SS;
221 
222 	case offsetof(struct pt_regs, ip):
223 		return INAT_SEG_REG_CS;
224 
225 	default:
226 		return -EINVAL;
227 	}
228 }
229 
230 /**
231  * resolve_seg_reg() - obtain segment register index
232  * @insn:	Instruction with operands
233  * @regs:	Register values as seen when entering kernel mode
234  * @regoff:	Operand offset, in pt_regs, used to determine segment register
235  *
236  * Determine the segment register associated with the operands and, if
237  * applicable, prefixes and the instruction pointed by @insn.
238  *
239  * The segment register associated to an operand used in register-indirect
240  * addressing depends on:
241  *
242  * a) Whether running in long mode (in such a case segments are ignored, except
243  * if FS or GS are used).
244  *
245  * b) Whether segment override prefixes can be used. Certain instructions and
246  *    registers do not allow override prefixes.
247  *
248  * c) Whether segment overrides prefixes are found in the instruction prefixes.
249  *
250  * d) If there are not segment override prefixes or they cannot be used, the
251  *    default segment register associated with the operand register is used.
252  *
253  * The function checks first if segment override prefixes can be used with the
254  * operand indicated by @regoff. If allowed, obtain such overridden segment
255  * register index. Lastly, if not prefixes were found or cannot be used, resolve
256  * the segment register index to use based on the defaults described in the
257  * Intel documentation. In long mode, all segment register indexes will be
258  * ignored, except if overrides were found for FS or GS. All these operations
259  * are done using helper functions.
260  *
261  * The operand register, @regoff, is represented as the offset from the base of
262  * pt_regs.
263  *
264  * As stated, the main use of this function is to determine the segment register
265  * index based on the instruction, its operands and prefixes. Hence, @insn
266  * must be valid. However, if @regoff indicates rIP, we don't need to inspect
267  * @insn at all as in this case CS is used in all cases. This case is checked
268  * before proceeding further.
269  *
270  * Please note that this function does not return the value in the segment
271  * register (i.e., the segment selector) but our defined index. The segment
272  * selector needs to be obtained using get_segment_selector() and passing the
273  * segment register index resolved by this function.
274  *
275  * Returns:
276  *
277  * An index identifying the segment register to use, among CS, SS, DS,
278  * ES, FS, or GS. INAT_SEG_REG_IGNORE is returned if running in long mode.
279  *
280  * -EINVAL in case of error.
281  */
resolve_seg_reg(struct insn * insn,struct pt_regs * regs,int regoff)282 static int resolve_seg_reg(struct insn *insn, struct pt_regs *regs, int regoff)
283 {
284 	int idx;
285 
286 	/*
287 	 * In the unlikely event of having to resolve the segment register
288 	 * index for rIP, do it first. Segment override prefixes should not
289 	 * be used. Hence, it is not necessary to inspect the instruction,
290 	 * which may be invalid at this point.
291 	 */
292 	if (regoff == offsetof(struct pt_regs, ip)) {
293 		if (any_64bit_mode(regs))
294 			return INAT_SEG_REG_IGNORE;
295 		else
296 			return INAT_SEG_REG_CS;
297 	}
298 
299 	if (!insn)
300 		return -EINVAL;
301 
302 	if (!check_seg_overrides(insn, regoff))
303 		return resolve_default_seg(insn, regs, regoff);
304 
305 	idx = get_seg_reg_override_idx(insn);
306 	if (idx < 0)
307 		return idx;
308 
309 	if (idx == INAT_SEG_REG_DEFAULT)
310 		return resolve_default_seg(insn, regs, regoff);
311 
312 	/*
313 	 * In long mode, segment override prefixes are ignored, except for
314 	 * overrides for FS and GS.
315 	 */
316 	if (any_64bit_mode(regs)) {
317 		if (idx != INAT_SEG_REG_FS &&
318 		    idx != INAT_SEG_REG_GS)
319 			idx = INAT_SEG_REG_IGNORE;
320 	}
321 
322 	return idx;
323 }
324 
325 /**
326  * get_segment_selector() - obtain segment selector
327  * @regs:		Register values as seen when entering kernel mode
328  * @seg_reg_idx:	Segment register index to use
329  *
330  * Obtain the segment selector from any of the CS, SS, DS, ES, FS, GS segment
331  * registers. In CONFIG_X86_32, the segment is obtained from either pt_regs or
332  * kernel_vm86_regs as applicable. In CONFIG_X86_64, CS and SS are obtained
333  * from pt_regs. DS, ES, FS and GS are obtained by reading the actual CPU
334  * registers. This done for only for completeness as in CONFIG_X86_64 segment
335  * registers are ignored.
336  *
337  * Returns:
338  *
339  * Value of the segment selector, including null when running in
340  * long mode.
341  *
342  * -EINVAL on error.
343  */
get_segment_selector(struct pt_regs * regs,int seg_reg_idx)344 static short get_segment_selector(struct pt_regs *regs, int seg_reg_idx)
345 {
346 	unsigned short sel;
347 
348 #ifdef CONFIG_X86_64
349 	switch (seg_reg_idx) {
350 	case INAT_SEG_REG_IGNORE:
351 		return 0;
352 	case INAT_SEG_REG_CS:
353 		return (unsigned short)(regs->cs & 0xffff);
354 	case INAT_SEG_REG_SS:
355 		return (unsigned short)(regs->ss & 0xffff);
356 	case INAT_SEG_REG_DS:
357 		savesegment(ds, sel);
358 		return sel;
359 	case INAT_SEG_REG_ES:
360 		savesegment(es, sel);
361 		return sel;
362 	case INAT_SEG_REG_FS:
363 		savesegment(fs, sel);
364 		return sel;
365 	case INAT_SEG_REG_GS:
366 		savesegment(gs, sel);
367 		return sel;
368 	default:
369 		return -EINVAL;
370 	}
371 #else /* CONFIG_X86_32 */
372 	struct kernel_vm86_regs *vm86regs = (struct kernel_vm86_regs *)regs;
373 
374 	if (v8086_mode(regs)) {
375 		switch (seg_reg_idx) {
376 		case INAT_SEG_REG_CS:
377 			return (unsigned short)(regs->cs & 0xffff);
378 		case INAT_SEG_REG_SS:
379 			return (unsigned short)(regs->ss & 0xffff);
380 		case INAT_SEG_REG_DS:
381 			return vm86regs->ds;
382 		case INAT_SEG_REG_ES:
383 			return vm86regs->es;
384 		case INAT_SEG_REG_FS:
385 			return vm86regs->fs;
386 		case INAT_SEG_REG_GS:
387 			return vm86regs->gs;
388 		case INAT_SEG_REG_IGNORE:
389 		default:
390 			return -EINVAL;
391 		}
392 	}
393 
394 	switch (seg_reg_idx) {
395 	case INAT_SEG_REG_CS:
396 		return (unsigned short)(regs->cs & 0xffff);
397 	case INAT_SEG_REG_SS:
398 		return (unsigned short)(regs->ss & 0xffff);
399 	case INAT_SEG_REG_DS:
400 		return (unsigned short)(regs->ds & 0xffff);
401 	case INAT_SEG_REG_ES:
402 		return (unsigned short)(regs->es & 0xffff);
403 	case INAT_SEG_REG_FS:
404 		return (unsigned short)(regs->fs & 0xffff);
405 	case INAT_SEG_REG_GS:
406 		savesegment(gs, sel);
407 		return sel;
408 	case INAT_SEG_REG_IGNORE:
409 	default:
410 		return -EINVAL;
411 	}
412 #endif /* CONFIG_X86_64 */
413 }
414 
415 static const int pt_regoff[] = {
416 	offsetof(struct pt_regs, ax),
417 	offsetof(struct pt_regs, cx),
418 	offsetof(struct pt_regs, dx),
419 	offsetof(struct pt_regs, bx),
420 	offsetof(struct pt_regs, sp),
421 	offsetof(struct pt_regs, bp),
422 	offsetof(struct pt_regs, si),
423 	offsetof(struct pt_regs, di),
424 #ifdef CONFIG_X86_64
425 	offsetof(struct pt_regs, r8),
426 	offsetof(struct pt_regs, r9),
427 	offsetof(struct pt_regs, r10),
428 	offsetof(struct pt_regs, r11),
429 	offsetof(struct pt_regs, r12),
430 	offsetof(struct pt_regs, r13),
431 	offsetof(struct pt_regs, r14),
432 	offsetof(struct pt_regs, r15),
433 #else
434 	offsetof(struct pt_regs, ds),
435 	offsetof(struct pt_regs, es),
436 	offsetof(struct pt_regs, fs),
437 	offsetof(struct pt_regs, gs),
438 #endif
439 };
440 
pt_regs_offset(struct pt_regs * regs,int regno)441 int pt_regs_offset(struct pt_regs *regs, int regno)
442 {
443 	if ((unsigned)regno < ARRAY_SIZE(pt_regoff))
444 		return pt_regoff[regno];
445 	return -EDOM;
446 }
447 
get_regno(struct insn * insn,enum reg_type type)448 static int get_regno(struct insn *insn, enum reg_type type)
449 {
450 	int nr_registers = ARRAY_SIZE(pt_regoff);
451 	int regno = 0;
452 
453 	/*
454 	 * Don't possibly decode a 32-bit instructions as
455 	 * reading a 64-bit-only register.
456 	 */
457 	if (IS_ENABLED(CONFIG_X86_64) && !insn->x86_64)
458 		nr_registers -= 8;
459 
460 	switch (type) {
461 	case REG_TYPE_RM:
462 		regno = X86_MODRM_RM(insn->modrm.value);
463 
464 		/*
465 		 * ModRM.mod == 0 and ModRM.rm == 5 means a 32-bit displacement
466 		 * follows the ModRM byte.
467 		 */
468 		if (!X86_MODRM_MOD(insn->modrm.value) && regno == 5)
469 			return -EDOM;
470 
471 		if (X86_REX_B(insn->rex_prefix.value))
472 			regno += 8;
473 		break;
474 
475 	case REG_TYPE_REG:
476 		regno = X86_MODRM_REG(insn->modrm.value);
477 
478 		if (X86_REX_R(insn->rex_prefix.value))
479 			regno += 8;
480 		break;
481 
482 	case REG_TYPE_INDEX:
483 		regno = X86_SIB_INDEX(insn->sib.value);
484 		if (X86_REX_X(insn->rex_prefix.value))
485 			regno += 8;
486 
487 		/*
488 		 * If ModRM.mod != 3 and SIB.index = 4 the scale*index
489 		 * portion of the address computation is null. This is
490 		 * true only if REX.X is 0. In such a case, the SIB index
491 		 * is used in the address computation.
492 		 */
493 		if (X86_MODRM_MOD(insn->modrm.value) != 3 && regno == 4)
494 			return -EDOM;
495 		break;
496 
497 	case REG_TYPE_BASE:
498 		regno = X86_SIB_BASE(insn->sib.value);
499 		/*
500 		 * If ModRM.mod is 0 and SIB.base == 5, the base of the
501 		 * register-indirect addressing is 0. In this case, a
502 		 * 32-bit displacement follows the SIB byte.
503 		 */
504 		if (!X86_MODRM_MOD(insn->modrm.value) && regno == 5)
505 			return -EDOM;
506 
507 		if (X86_REX_B(insn->rex_prefix.value))
508 			regno += 8;
509 		break;
510 
511 	default:
512 		pr_err_ratelimited("invalid register type: %d\n", type);
513 		return -EINVAL;
514 	}
515 
516 	if (regno >= nr_registers) {
517 		WARN_ONCE(1, "decoded an instruction with an invalid register");
518 		return -EINVAL;
519 	}
520 	return regno;
521 }
522 
get_reg_offset(struct insn * insn,struct pt_regs * regs,enum reg_type type)523 static int get_reg_offset(struct insn *insn, struct pt_regs *regs,
524 			  enum reg_type type)
525 {
526 	int regno = get_regno(insn, type);
527 
528 	if (regno < 0)
529 		return regno;
530 
531 	return pt_regs_offset(regs, regno);
532 }
533 
534 /**
535  * get_reg_offset_16() - Obtain offset of register indicated by instruction
536  * @insn:	Instruction containing ModRM byte
537  * @regs:	Register values as seen when entering kernel mode
538  * @offs1:	Offset of the first operand register
539  * @offs2:	Offset of the second operand register, if applicable
540  *
541  * Obtain the offset, in pt_regs, of the registers indicated by the ModRM byte
542  * in @insn. This function is to be used with 16-bit address encodings. The
543  * @offs1 and @offs2 will be written with the offset of the two registers
544  * indicated by the instruction. In cases where any of the registers is not
545  * referenced by the instruction, the value will be set to -EDOM.
546  *
547  * Returns:
548  *
549  * 0 on success, -EINVAL on error.
550  */
get_reg_offset_16(struct insn * insn,struct pt_regs * regs,int * offs1,int * offs2)551 static int get_reg_offset_16(struct insn *insn, struct pt_regs *regs,
552 			     int *offs1, int *offs2)
553 {
554 	/*
555 	 * 16-bit addressing can use one or two registers. Specifics of
556 	 * encodings are given in Table 2-1. "16-Bit Addressing Forms with the
557 	 * ModR/M Byte" of the Intel Software Development Manual.
558 	 */
559 	static const int regoff1[] = {
560 		offsetof(struct pt_regs, bx),
561 		offsetof(struct pt_regs, bx),
562 		offsetof(struct pt_regs, bp),
563 		offsetof(struct pt_regs, bp),
564 		offsetof(struct pt_regs, si),
565 		offsetof(struct pt_regs, di),
566 		offsetof(struct pt_regs, bp),
567 		offsetof(struct pt_regs, bx),
568 	};
569 
570 	static const int regoff2[] = {
571 		offsetof(struct pt_regs, si),
572 		offsetof(struct pt_regs, di),
573 		offsetof(struct pt_regs, si),
574 		offsetof(struct pt_regs, di),
575 		-EDOM,
576 		-EDOM,
577 		-EDOM,
578 		-EDOM,
579 	};
580 
581 	if (!offs1 || !offs2)
582 		return -EINVAL;
583 
584 	/* Operand is a register, use the generic function. */
585 	if (X86_MODRM_MOD(insn->modrm.value) == 3) {
586 		*offs1 = insn_get_modrm_rm_off(insn, regs);
587 		*offs2 = -EDOM;
588 		return 0;
589 	}
590 
591 	*offs1 = regoff1[X86_MODRM_RM(insn->modrm.value)];
592 	*offs2 = regoff2[X86_MODRM_RM(insn->modrm.value)];
593 
594 	/*
595 	 * If ModRM.mod is 0 and ModRM.rm is 110b, then we use displacement-
596 	 * only addressing. This means that no registers are involved in
597 	 * computing the effective address. Thus, ensure that the first
598 	 * register offset is invalid. The second register offset is already
599 	 * invalid under the aforementioned conditions.
600 	 */
601 	if ((X86_MODRM_MOD(insn->modrm.value) == 0) &&
602 	    (X86_MODRM_RM(insn->modrm.value) == 6))
603 		*offs1 = -EDOM;
604 
605 	return 0;
606 }
607 
608 /**
609  * get_desc() - Obtain contents of a segment descriptor
610  * @out:	Segment descriptor contents on success
611  * @sel:	Segment selector
612  *
613  * Given a segment selector, obtain a pointer to the segment descriptor.
614  * Both global and local descriptor tables are supported.
615  *
616  * Returns:
617  *
618  * True on success, false on failure.
619  *
620  * NULL on error.
621  */
get_desc(struct desc_struct * out,unsigned short sel)622 static bool get_desc(struct desc_struct *out, unsigned short sel)
623 {
624 	struct desc_ptr gdt_desc = {0, 0};
625 	unsigned long desc_base;
626 
627 #ifdef CONFIG_MODIFY_LDT_SYSCALL
628 	if ((sel & SEGMENT_TI_MASK) == SEGMENT_LDT) {
629 		bool success = false;
630 		struct ldt_struct *ldt;
631 
632 		/* Bits [15:3] contain the index of the desired entry. */
633 		sel >>= 3;
634 
635 		/*
636 		 * If we're not in a valid context with a real (not just lazy)
637 		 * user mm, then don't even try.
638 		 */
639 		if (!nmi_uaccess_okay())
640 			return false;
641 
642 		mutex_lock(&current->mm->context.lock);
643 		ldt = current->mm->context.ldt;
644 		if (ldt && sel < ldt->nr_entries) {
645 			*out = ldt->entries[sel];
646 			success = true;
647 		}
648 
649 		mutex_unlock(&current->mm->context.lock);
650 
651 		return success;
652 	}
653 #endif
654 	native_store_gdt(&gdt_desc);
655 
656 	/*
657 	 * Segment descriptors have a size of 8 bytes. Thus, the index is
658 	 * multiplied by 8 to obtain the memory offset of the desired descriptor
659 	 * from the base of the GDT. As bits [15:3] of the segment selector
660 	 * contain the index, it can be regarded as multiplied by 8 already.
661 	 * All that remains is to clear bits [2:0].
662 	 */
663 	desc_base = sel & ~(SEGMENT_RPL_MASK | SEGMENT_TI_MASK);
664 
665 	if (desc_base > gdt_desc.size)
666 		return false;
667 
668 	*out = *(struct desc_struct *)(gdt_desc.address + desc_base);
669 	return true;
670 }
671 
672 /**
673  * insn_get_seg_base() - Obtain base address of segment descriptor.
674  * @regs:		Register values as seen when entering kernel mode
675  * @seg_reg_idx:	Index of the segment register pointing to seg descriptor
676  *
677  * Obtain the base address of the segment as indicated by the segment descriptor
678  * pointed by the segment selector. The segment selector is obtained from the
679  * input segment register index @seg_reg_idx.
680  *
681  * Returns:
682  *
683  * In protected mode, base address of the segment. Zero in long mode,
684  * except when FS or GS are used. In virtual-8086 mode, the segment
685  * selector shifted 4 bits to the right.
686  *
687  * -1L in case of error.
688  */
insn_get_seg_base(struct pt_regs * regs,int seg_reg_idx)689 unsigned long insn_get_seg_base(struct pt_regs *regs, int seg_reg_idx)
690 {
691 	struct desc_struct desc;
692 	short sel;
693 
694 	sel = get_segment_selector(regs, seg_reg_idx);
695 	if (sel < 0)
696 		return -1L;
697 
698 	if (v8086_mode(regs))
699 		/*
700 		 * Base is simply the segment selector shifted 4
701 		 * bits to the right.
702 		 */
703 		return (unsigned long)(sel << 4);
704 
705 	if (any_64bit_mode(regs)) {
706 		/*
707 		 * Only FS or GS will have a base address, the rest of
708 		 * the segments' bases are forced to 0.
709 		 */
710 		unsigned long base;
711 
712 		if (seg_reg_idx == INAT_SEG_REG_FS) {
713 			rdmsrq(MSR_FS_BASE, base);
714 		} else if (seg_reg_idx == INAT_SEG_REG_GS) {
715 			/*
716 			 * swapgs was called at the kernel entry point. Thus,
717 			 * MSR_KERNEL_GS_BASE will have the user-space GS base.
718 			 */
719 			if (user_mode(regs))
720 				rdmsrq(MSR_KERNEL_GS_BASE, base);
721 			else
722 				rdmsrq(MSR_GS_BASE, base);
723 		} else {
724 			base = 0;
725 		}
726 		return base;
727 	}
728 
729 	/* In protected mode the segment selector cannot be null. */
730 	if (!sel)
731 		return -1L;
732 
733 	if (!get_desc(&desc, sel))
734 		return -1L;
735 
736 	return get_desc_base(&desc);
737 }
738 
739 /**
740  * get_seg_limit() - Obtain the limit of a segment descriptor
741  * @regs:		Register values as seen when entering kernel mode
742  * @seg_reg_idx:	Index of the segment register pointing to seg descriptor
743  *
744  * Obtain the limit of the segment as indicated by the segment descriptor
745  * pointed by the segment selector. The segment selector is obtained from the
746  * input segment register index @seg_reg_idx.
747  *
748  * Returns:
749  *
750  * In protected mode, the limit of the segment descriptor in bytes.
751  * In long mode and virtual-8086 mode, segment limits are not enforced. Thus,
752  * limit is returned as -1L to imply a limit-less segment.
753  *
754  * Zero is returned on error.
755  */
get_seg_limit(struct pt_regs * regs,int seg_reg_idx)756 static unsigned long get_seg_limit(struct pt_regs *regs, int seg_reg_idx)
757 {
758 	struct desc_struct desc;
759 	unsigned long limit;
760 	short sel;
761 
762 	sel = get_segment_selector(regs, seg_reg_idx);
763 	if (sel < 0)
764 		return 0;
765 
766 	if (any_64bit_mode(regs) || v8086_mode(regs))
767 		return -1L;
768 
769 	if (!sel)
770 		return 0;
771 
772 	if (!get_desc(&desc, sel))
773 		return 0;
774 
775 	/*
776 	 * If the granularity bit is set, the limit is given in multiples
777 	 * of 4096. This also means that the 12 least significant bits are
778 	 * not tested when checking the segment limits. In practice,
779 	 * this means that the segment ends in (limit << 12) + 0xfff.
780 	 */
781 	limit = get_desc_limit(&desc);
782 	if (desc.g)
783 		limit = (limit << 12) + 0xfff;
784 
785 	return limit;
786 }
787 
788 /**
789  * insn_get_code_seg_params() - Obtain code segment parameters
790  * @regs:	Structure with register values as seen when entering kernel mode
791  *
792  * Obtain address and operand sizes of the code segment. It is obtained from the
793  * selector contained in the CS register in regs. In protected mode, the default
794  * address is determined by inspecting the L and D bits of the segment
795  * descriptor. In virtual-8086 mode, the default is always two bytes for both
796  * address and operand sizes.
797  *
798  * Returns:
799  *
800  * An int containing ORed-in default parameters on success.
801  *
802  * -EINVAL on error.
803  */
insn_get_code_seg_params(struct pt_regs * regs)804 int insn_get_code_seg_params(struct pt_regs *regs)
805 {
806 	struct desc_struct desc;
807 	short sel;
808 
809 	if (v8086_mode(regs))
810 		/* Address and operand size are both 16-bit. */
811 		return INSN_CODE_SEG_PARAMS(2, 2);
812 
813 	sel = get_segment_selector(regs, INAT_SEG_REG_CS);
814 	if (sel < 0)
815 		return sel;
816 
817 	if (!get_desc(&desc, sel))
818 		return -EINVAL;
819 
820 	/*
821 	 * The most significant byte of the Type field of the segment descriptor
822 	 * determines whether a segment contains data or code. If this is a data
823 	 * segment, return error.
824 	 */
825 	if (!(desc.type & BIT(3)))
826 		return -EINVAL;
827 
828 	switch ((desc.l << 1) | desc.d) {
829 	case 0: /*
830 		 * Legacy mode. CS.L=0, CS.D=0. Address and operand size are
831 		 * both 16-bit.
832 		 */
833 		return INSN_CODE_SEG_PARAMS(2, 2);
834 	case 1: /*
835 		 * Legacy mode. CS.L=0, CS.D=1. Address and operand size are
836 		 * both 32-bit.
837 		 */
838 		return INSN_CODE_SEG_PARAMS(4, 4);
839 	case 2: /*
840 		 * IA-32e 64-bit mode. CS.L=1, CS.D=0. Address size is 64-bit;
841 		 * operand size is 32-bit.
842 		 */
843 		return INSN_CODE_SEG_PARAMS(4, 8);
844 	case 3: /* Invalid setting. CS.L=1, CS.D=1 */
845 		fallthrough;
846 	default:
847 		return -EINVAL;
848 	}
849 }
850 
851 /**
852  * insn_get_modrm_rm_off() - Obtain register in r/m part of the ModRM byte
853  * @insn:	Instruction containing the ModRM byte
854  * @regs:	Register values as seen when entering kernel mode
855  *
856  * Returns:
857  *
858  * The register indicated by the r/m part of the ModRM byte. The
859  * register is obtained as an offset from the base of pt_regs. In specific
860  * cases, the returned value can be -EDOM to indicate that the particular value
861  * of ModRM does not refer to a register and shall be ignored.
862  */
insn_get_modrm_rm_off(struct insn * insn,struct pt_regs * regs)863 int insn_get_modrm_rm_off(struct insn *insn, struct pt_regs *regs)
864 {
865 	return get_reg_offset(insn, regs, REG_TYPE_RM);
866 }
867 
868 /**
869  * insn_get_modrm_reg_off() - Obtain register in reg part of the ModRM byte
870  * @insn:	Instruction containing the ModRM byte
871  * @regs:	Register values as seen when entering kernel mode
872  *
873  * Returns:
874  *
875  * The register indicated by the reg part of the ModRM byte. The
876  * register is obtained as an offset from the base of pt_regs.
877  */
insn_get_modrm_reg_off(struct insn * insn,struct pt_regs * regs)878 int insn_get_modrm_reg_off(struct insn *insn, struct pt_regs *regs)
879 {
880 	return get_reg_offset(insn, regs, REG_TYPE_REG);
881 }
882 
883 /**
884  * insn_get_modrm_reg_ptr() - Obtain register pointer based on ModRM byte
885  * @insn:	Instruction containing the ModRM byte
886  * @regs:	Register values as seen when entering kernel mode
887  *
888  * Returns:
889  *
890  * The register indicated by the reg part of the ModRM byte.
891  * The register is obtained as a pointer within pt_regs.
892  */
insn_get_modrm_reg_ptr(struct insn * insn,struct pt_regs * regs)893 unsigned long *insn_get_modrm_reg_ptr(struct insn *insn, struct pt_regs *regs)
894 {
895 	int offset;
896 
897 	offset = insn_get_modrm_reg_off(insn, regs);
898 	if (offset < 0)
899 		return NULL;
900 	return (void *)regs + offset;
901 }
902 
903 /**
904  * get_seg_base_limit() - obtain base address and limit of a segment
905  * @insn:	Instruction. Must be valid.
906  * @regs:	Register values as seen when entering kernel mode
907  * @regoff:	Operand offset, in pt_regs, used to resolve segment descriptor
908  * @base:	Obtained segment base
909  * @limit:	Obtained segment limit
910  *
911  * Obtain the base address and limit of the segment associated with the operand
912  * @regoff and, if any or allowed, override prefixes in @insn. This function is
913  * different from insn_get_seg_base() as the latter does not resolve the segment
914  * associated with the instruction operand. If a limit is not needed (e.g.,
915  * when running in long mode), @limit can be NULL.
916  *
917  * Returns:
918  *
919  * 0 on success. @base and @limit will contain the base address and of the
920  * resolved segment, respectively.
921  *
922  * -EINVAL on error.
923  */
get_seg_base_limit(struct insn * insn,struct pt_regs * regs,int regoff,unsigned long * base,unsigned long * limit)924 static int get_seg_base_limit(struct insn *insn, struct pt_regs *regs,
925 			      int regoff, unsigned long *base,
926 			      unsigned long *limit)
927 {
928 	int seg_reg_idx;
929 
930 	if (!base)
931 		return -EINVAL;
932 
933 	seg_reg_idx = resolve_seg_reg(insn, regs, regoff);
934 	if (seg_reg_idx < 0)
935 		return seg_reg_idx;
936 
937 	*base = insn_get_seg_base(regs, seg_reg_idx);
938 	if (*base == -1L)
939 		return -EINVAL;
940 
941 	if (!limit)
942 		return 0;
943 
944 	*limit = get_seg_limit(regs, seg_reg_idx);
945 	if (!(*limit))
946 		return -EINVAL;
947 
948 	return 0;
949 }
950 
951 /**
952  * get_eff_addr_reg() - Obtain effective address from register operand
953  * @insn:	Instruction. Must be valid.
954  * @regs:	Register values as seen when entering kernel mode
955  * @regoff:	Obtained operand offset, in pt_regs, with the effective address
956  * @eff_addr:	Obtained effective address
957  *
958  * Obtain the effective address stored in the register operand as indicated by
959  * the ModRM byte. This function is to be used only with register addressing
960  * (i.e.,  ModRM.mod is 3). The effective address is saved in @eff_addr. The
961  * register operand, as an offset from the base of pt_regs, is saved in @regoff;
962  * such offset can then be used to resolve the segment associated with the
963  * operand. This function can be used with any of the supported address sizes
964  * in x86.
965  *
966  * Returns:
967  *
968  * 0 on success. @eff_addr will have the effective address stored in the
969  * operand indicated by ModRM. @regoff will have such operand as an offset from
970  * the base of pt_regs.
971  *
972  * -EINVAL on error.
973  */
get_eff_addr_reg(struct insn * insn,struct pt_regs * regs,int * regoff,long * eff_addr)974 static int get_eff_addr_reg(struct insn *insn, struct pt_regs *regs,
975 			    int *regoff, long *eff_addr)
976 {
977 	int ret;
978 
979 	ret = insn_get_modrm(insn);
980 	if (ret)
981 		return ret;
982 
983 	if (X86_MODRM_MOD(insn->modrm.value) != 3)
984 		return -EINVAL;
985 
986 	*regoff = get_reg_offset(insn, regs, REG_TYPE_RM);
987 	if (*regoff < 0)
988 		return -EINVAL;
989 
990 	/* Ignore bytes that are outside the address size. */
991 	if (insn->addr_bytes == 2)
992 		*eff_addr = regs_get_register(regs, *regoff) & 0xffff;
993 	else if (insn->addr_bytes == 4)
994 		*eff_addr = regs_get_register(regs, *regoff) & 0xffffffff;
995 	else /* 64-bit address */
996 		*eff_addr = regs_get_register(regs, *regoff);
997 
998 	return 0;
999 }
1000 
1001 /**
1002  * get_eff_addr_modrm() - Obtain referenced effective address via ModRM
1003  * @insn:	Instruction. Must be valid.
1004  * @regs:	Register values as seen when entering kernel mode
1005  * @regoff:	Obtained operand offset, in pt_regs, associated with segment
1006  * @eff_addr:	Obtained effective address
1007  *
1008  * Obtain the effective address referenced by the ModRM byte of @insn. After
1009  * identifying the registers involved in the register-indirect memory reference,
1010  * its value is obtained from the operands in @regs. The computed address is
1011  * stored @eff_addr. Also, the register operand that indicates the associated
1012  * segment is stored in @regoff, this parameter can later be used to determine
1013  * such segment.
1014  *
1015  * Returns:
1016  *
1017  * 0 on success. @eff_addr will have the referenced effective address. @regoff
1018  * will have a register, as an offset from the base of pt_regs, that can be used
1019  * to resolve the associated segment.
1020  *
1021  * -EINVAL on error.
1022  */
get_eff_addr_modrm(struct insn * insn,struct pt_regs * regs,int * regoff,long * eff_addr)1023 static int get_eff_addr_modrm(struct insn *insn, struct pt_regs *regs,
1024 			      int *regoff, long *eff_addr)
1025 {
1026 	long tmp;
1027 	int ret;
1028 
1029 	if (insn->addr_bytes != 8 && insn->addr_bytes != 4)
1030 		return -EINVAL;
1031 
1032 	ret = insn_get_modrm(insn);
1033 	if (ret)
1034 		return ret;
1035 
1036 	if (X86_MODRM_MOD(insn->modrm.value) > 2)
1037 		return -EINVAL;
1038 
1039 	*regoff = get_reg_offset(insn, regs, REG_TYPE_RM);
1040 
1041 	/*
1042 	 * -EDOM means that we must ignore the address_offset. In such a case,
1043 	 * in 64-bit mode the effective address relative to the rIP of the
1044 	 * following instruction.
1045 	 */
1046 	if (*regoff == -EDOM) {
1047 		if (any_64bit_mode(regs))
1048 			tmp = regs->ip + insn->length;
1049 		else
1050 			tmp = 0;
1051 	} else if (*regoff < 0) {
1052 		return -EINVAL;
1053 	} else {
1054 		tmp = regs_get_register(regs, *regoff);
1055 	}
1056 
1057 	if (insn->addr_bytes == 4) {
1058 		int addr32 = (int)(tmp & 0xffffffff) + insn->displacement.value;
1059 
1060 		*eff_addr = addr32 & 0xffffffff;
1061 	} else {
1062 		*eff_addr = tmp + insn->displacement.value;
1063 	}
1064 
1065 	return 0;
1066 }
1067 
1068 /**
1069  * get_eff_addr_modrm_16() - Obtain referenced effective address via ModRM
1070  * @insn:	Instruction. Must be valid.
1071  * @regs:	Register values as seen when entering kernel mode
1072  * @regoff:	Obtained operand offset, in pt_regs, associated with segment
1073  * @eff_addr:	Obtained effective address
1074  *
1075  * Obtain the 16-bit effective address referenced by the ModRM byte of @insn.
1076  * After identifying the registers involved in the register-indirect memory
1077  * reference, its value is obtained from the operands in @regs. The computed
1078  * address is stored @eff_addr. Also, the register operand that indicates
1079  * the associated segment is stored in @regoff, this parameter can later be used
1080  * to determine such segment.
1081  *
1082  * Returns:
1083  *
1084  * 0 on success. @eff_addr will have the referenced effective address. @regoff
1085  * will have a register, as an offset from the base of pt_regs, that can be used
1086  * to resolve the associated segment.
1087  *
1088  * -EINVAL on error.
1089  */
get_eff_addr_modrm_16(struct insn * insn,struct pt_regs * regs,int * regoff,short * eff_addr)1090 static int get_eff_addr_modrm_16(struct insn *insn, struct pt_regs *regs,
1091 				 int *regoff, short *eff_addr)
1092 {
1093 	int addr_offset1, addr_offset2, ret;
1094 	short addr1 = 0, addr2 = 0, displacement;
1095 
1096 	if (insn->addr_bytes != 2)
1097 		return -EINVAL;
1098 
1099 	insn_get_modrm(insn);
1100 
1101 	if (!insn->modrm.nbytes)
1102 		return -EINVAL;
1103 
1104 	if (X86_MODRM_MOD(insn->modrm.value) > 2)
1105 		return -EINVAL;
1106 
1107 	ret = get_reg_offset_16(insn, regs, &addr_offset1, &addr_offset2);
1108 	if (ret < 0)
1109 		return -EINVAL;
1110 
1111 	/*
1112 	 * Don't fail on invalid offset values. They might be invalid because
1113 	 * they cannot be used for this particular value of ModRM. Instead, use
1114 	 * them in the computation only if they contain a valid value.
1115 	 */
1116 	if (addr_offset1 != -EDOM)
1117 		addr1 = regs_get_register(regs, addr_offset1) & 0xffff;
1118 
1119 	if (addr_offset2 != -EDOM)
1120 		addr2 = regs_get_register(regs, addr_offset2) & 0xffff;
1121 
1122 	displacement = insn->displacement.value & 0xffff;
1123 	*eff_addr = addr1 + addr2 + displacement;
1124 
1125 	/*
1126 	 * The first operand register could indicate to use of either SS or DS
1127 	 * registers to obtain the segment selector.  The second operand
1128 	 * register can only indicate the use of DS. Thus, the first operand
1129 	 * will be used to obtain the segment selector.
1130 	 */
1131 	*regoff = addr_offset1;
1132 
1133 	return 0;
1134 }
1135 
1136 /**
1137  * get_eff_addr_sib() - Obtain referenced effective address via SIB
1138  * @insn:	Instruction. Must be valid.
1139  * @regs:	Register values as seen when entering kernel mode
1140  * @base_offset: Obtained operand offset, in pt_regs, associated with segment
1141  * @eff_addr:	Obtained effective address
1142  *
1143  * Obtain the effective address referenced by the SIB byte of @insn. After
1144  * identifying the registers involved in the indexed, register-indirect memory
1145  * reference, its value is obtained from the operands in @regs. The computed
1146  * address is stored @eff_addr. Also, the register operand that indicates the
1147  * associated segment is stored in @base_offset; this parameter can later be
1148  * used to determine such segment.
1149  *
1150  * Returns:
1151  *
1152  * 0 on success. @eff_addr will have the referenced effective address.
1153  * @base_offset will have a register, as an offset from the base of pt_regs,
1154  * that can be used to resolve the associated segment.
1155  *
1156  * Negative value on error.
1157  */
get_eff_addr_sib(struct insn * insn,struct pt_regs * regs,int * base_offset,long * eff_addr)1158 static int get_eff_addr_sib(struct insn *insn, struct pt_regs *regs,
1159 			    int *base_offset, long *eff_addr)
1160 {
1161 	long base, indx;
1162 	int indx_offset;
1163 	int ret;
1164 
1165 	if (insn->addr_bytes != 8 && insn->addr_bytes != 4)
1166 		return -EINVAL;
1167 
1168 	ret = insn_get_modrm(insn);
1169 	if (ret)
1170 		return ret;
1171 
1172 	if (!insn->modrm.nbytes)
1173 		return -EINVAL;
1174 
1175 	if (X86_MODRM_MOD(insn->modrm.value) > 2)
1176 		return -EINVAL;
1177 
1178 	ret = insn_get_sib(insn);
1179 	if (ret)
1180 		return ret;
1181 
1182 	if (!insn->sib.nbytes)
1183 		return -EINVAL;
1184 
1185 	*base_offset = get_reg_offset(insn, regs, REG_TYPE_BASE);
1186 	indx_offset = get_reg_offset(insn, regs, REG_TYPE_INDEX);
1187 
1188 	/*
1189 	 * Negative values in the base and index offset means an error when
1190 	 * decoding the SIB byte. Except -EDOM, which means that the registers
1191 	 * should not be used in the address computation.
1192 	 */
1193 	if (*base_offset == -EDOM)
1194 		base = 0;
1195 	else if (*base_offset < 0)
1196 		return -EINVAL;
1197 	else
1198 		base = regs_get_register(regs, *base_offset);
1199 
1200 	if (indx_offset == -EDOM)
1201 		indx = 0;
1202 	else if (indx_offset < 0)
1203 		return -EINVAL;
1204 	else
1205 		indx = regs_get_register(regs, indx_offset);
1206 
1207 	if (insn->addr_bytes == 4) {
1208 		int addr32, base32, idx32;
1209 
1210 		base32 = base & 0xffffffff;
1211 		idx32 = indx & 0xffffffff;
1212 
1213 		addr32 = base32 + idx32 * (1 << X86_SIB_SCALE(insn->sib.value));
1214 		addr32 += insn->displacement.value;
1215 
1216 		*eff_addr = addr32 & 0xffffffff;
1217 	} else {
1218 		*eff_addr = base + indx * (1 << X86_SIB_SCALE(insn->sib.value));
1219 		*eff_addr += insn->displacement.value;
1220 	}
1221 
1222 	return 0;
1223 }
1224 
1225 /**
1226  * get_addr_ref_16() - Obtain the 16-bit address referred by instruction
1227  * @insn:	Instruction containing ModRM byte and displacement
1228  * @regs:	Register values as seen when entering kernel mode
1229  *
1230  * This function is to be used with 16-bit address encodings. Obtain the memory
1231  * address referred by the instruction's ModRM and displacement bytes. Also, the
1232  * segment used as base is determined by either any segment override prefixes in
1233  * @insn or the default segment of the registers involved in the address
1234  * computation. In protected mode, segment limits are enforced.
1235  *
1236  * Returns:
1237  *
1238  * Linear address referenced by the instruction operands on success.
1239  *
1240  * -1L on error.
1241  */
get_addr_ref_16(struct insn * insn,struct pt_regs * regs)1242 static void __user *get_addr_ref_16(struct insn *insn, struct pt_regs *regs)
1243 {
1244 	unsigned long linear_addr = -1L, seg_base, seg_limit;
1245 	int ret, regoff;
1246 	short eff_addr;
1247 	long tmp;
1248 
1249 	if (insn_get_displacement(insn))
1250 		goto out;
1251 
1252 	if (insn->addr_bytes != 2)
1253 		goto out;
1254 
1255 	if (X86_MODRM_MOD(insn->modrm.value) == 3) {
1256 		ret = get_eff_addr_reg(insn, regs, &regoff, &tmp);
1257 		if (ret)
1258 			goto out;
1259 
1260 		eff_addr = tmp;
1261 	} else {
1262 		ret = get_eff_addr_modrm_16(insn, regs, &regoff, &eff_addr);
1263 		if (ret)
1264 			goto out;
1265 	}
1266 
1267 	ret = get_seg_base_limit(insn, regs, regoff, &seg_base, &seg_limit);
1268 	if (ret)
1269 		goto out;
1270 
1271 	/*
1272 	 * Before computing the linear address, make sure the effective address
1273 	 * is within the limits of the segment. In virtual-8086 mode, segment
1274 	 * limits are not enforced. In such a case, the segment limit is -1L to
1275 	 * reflect this fact.
1276 	 */
1277 	if ((unsigned long)(eff_addr & 0xffff) > seg_limit)
1278 		goto out;
1279 
1280 	linear_addr = (unsigned long)(eff_addr & 0xffff) + seg_base;
1281 
1282 	/* Limit linear address to 20 bits */
1283 	if (v8086_mode(regs))
1284 		linear_addr &= 0xfffff;
1285 
1286 out:
1287 	return (void __user *)linear_addr;
1288 }
1289 
1290 /**
1291  * get_addr_ref_32() - Obtain a 32-bit linear address
1292  * @insn:	Instruction with ModRM, SIB bytes and displacement
1293  * @regs:	Register values as seen when entering kernel mode
1294  *
1295  * This function is to be used with 32-bit address encodings to obtain the
1296  * linear memory address referred by the instruction's ModRM, SIB,
1297  * displacement bytes and segment base address, as applicable. If in protected
1298  * mode, segment limits are enforced.
1299  *
1300  * Returns:
1301  *
1302  * Linear address referenced by instruction and registers on success.
1303  *
1304  * -1L on error.
1305  */
get_addr_ref_32(struct insn * insn,struct pt_regs * regs)1306 static void __user *get_addr_ref_32(struct insn *insn, struct pt_regs *regs)
1307 {
1308 	unsigned long linear_addr = -1L, seg_base, seg_limit;
1309 	int eff_addr, regoff;
1310 	long tmp;
1311 	int ret;
1312 
1313 	if (insn->addr_bytes != 4)
1314 		goto out;
1315 
1316 	if (X86_MODRM_MOD(insn->modrm.value) == 3) {
1317 		ret = get_eff_addr_reg(insn, regs, &regoff, &tmp);
1318 		if (ret)
1319 			goto out;
1320 
1321 		eff_addr = tmp;
1322 
1323 	} else {
1324 		if (insn->sib.nbytes) {
1325 			ret = get_eff_addr_sib(insn, regs, &regoff, &tmp);
1326 			if (ret)
1327 				goto out;
1328 
1329 			eff_addr = tmp;
1330 		} else {
1331 			ret = get_eff_addr_modrm(insn, regs, &regoff, &tmp);
1332 			if (ret)
1333 				goto out;
1334 
1335 			eff_addr = tmp;
1336 		}
1337 	}
1338 
1339 	ret = get_seg_base_limit(insn, regs, regoff, &seg_base, &seg_limit);
1340 	if (ret)
1341 		goto out;
1342 
1343 	/*
1344 	 * In protected mode, before computing the linear address, make sure
1345 	 * the effective address is within the limits of the segment.
1346 	 * 32-bit addresses can be used in long and virtual-8086 modes if an
1347 	 * address override prefix is used. In such cases, segment limits are
1348 	 * not enforced. When in virtual-8086 mode, the segment limit is -1L
1349 	 * to reflect this situation.
1350 	 *
1351 	 * After computed, the effective address is treated as an unsigned
1352 	 * quantity.
1353 	 */
1354 	if (!any_64bit_mode(regs) && ((unsigned int)eff_addr > seg_limit))
1355 		goto out;
1356 
1357 	/*
1358 	 * Even though 32-bit address encodings are allowed in virtual-8086
1359 	 * mode, the address range is still limited to [0x-0xffff].
1360 	 */
1361 	if (v8086_mode(regs) && (eff_addr & ~0xffff))
1362 		goto out;
1363 
1364 	/*
1365 	 * Data type long could be 64 bits in size. Ensure that our 32-bit
1366 	 * effective address is not sign-extended when computing the linear
1367 	 * address.
1368 	 */
1369 	linear_addr = (unsigned long)(eff_addr & 0xffffffff) + seg_base;
1370 
1371 	/* Limit linear address to 20 bits */
1372 	if (v8086_mode(regs))
1373 		linear_addr &= 0xfffff;
1374 
1375 out:
1376 	return (void __user *)linear_addr;
1377 }
1378 
1379 /**
1380  * get_addr_ref_64() - Obtain a 64-bit linear address
1381  * @insn:	Instruction struct with ModRM and SIB bytes and displacement
1382  * @regs:	Structure with register values as seen when entering kernel mode
1383  *
1384  * This function is to be used with 64-bit address encodings to obtain the
1385  * linear memory address referred by the instruction's ModRM, SIB,
1386  * displacement bytes and segment base address, as applicable.
1387  *
1388  * Returns:
1389  *
1390  * Linear address referenced by instruction and registers on success.
1391  *
1392  * -1L on error.
1393  */
1394 #ifndef CONFIG_X86_64
get_addr_ref_64(struct insn * insn,struct pt_regs * regs)1395 static void __user *get_addr_ref_64(struct insn *insn, struct pt_regs *regs)
1396 {
1397 	return (void __user *)-1L;
1398 }
1399 #else
get_addr_ref_64(struct insn * insn,struct pt_regs * regs)1400 static void __user *get_addr_ref_64(struct insn *insn, struct pt_regs *regs)
1401 {
1402 	unsigned long linear_addr = -1L, seg_base;
1403 	int regoff, ret;
1404 	long eff_addr;
1405 
1406 	if (insn->addr_bytes != 8)
1407 		goto out;
1408 
1409 	if (X86_MODRM_MOD(insn->modrm.value) == 3) {
1410 		ret = get_eff_addr_reg(insn, regs, &regoff, &eff_addr);
1411 		if (ret)
1412 			goto out;
1413 
1414 	} else {
1415 		if (insn->sib.nbytes) {
1416 			ret = get_eff_addr_sib(insn, regs, &regoff, &eff_addr);
1417 			if (ret)
1418 				goto out;
1419 		} else {
1420 			ret = get_eff_addr_modrm(insn, regs, &regoff, &eff_addr);
1421 			if (ret)
1422 				goto out;
1423 		}
1424 
1425 	}
1426 
1427 	ret = get_seg_base_limit(insn, regs, regoff, &seg_base, NULL);
1428 	if (ret)
1429 		goto out;
1430 
1431 	linear_addr = (unsigned long)eff_addr + seg_base;
1432 
1433 out:
1434 	return (void __user *)linear_addr;
1435 }
1436 #endif /* CONFIG_X86_64 */
1437 
1438 /**
1439  * insn_get_addr_ref() - Obtain the linear address referred by instruction
1440  * @insn:	Instruction structure containing ModRM byte and displacement
1441  * @regs:	Structure with register values as seen when entering kernel mode
1442  *
1443  * Obtain the linear address referred by the instruction's ModRM, SIB and
1444  * displacement bytes, and segment base, as applicable. In protected mode,
1445  * segment limits are enforced.
1446  *
1447  * Returns:
1448  *
1449  * Linear address referenced by instruction and registers on success.
1450  *
1451  * -1L on error.
1452  */
insn_get_addr_ref(struct insn * insn,struct pt_regs * regs)1453 void __user *insn_get_addr_ref(struct insn *insn, struct pt_regs *regs)
1454 {
1455 	if (!insn || !regs)
1456 		return (void __user *)-1L;
1457 
1458 	if (insn_get_opcode(insn))
1459 		return (void __user *)-1L;
1460 
1461 	switch (insn->addr_bytes) {
1462 	case 2:
1463 		return get_addr_ref_16(insn, regs);
1464 	case 4:
1465 		return get_addr_ref_32(insn, regs);
1466 	case 8:
1467 		return get_addr_ref_64(insn, regs);
1468 	default:
1469 		return (void __user *)-1L;
1470 	}
1471 }
1472 
insn_get_effective_ip(struct pt_regs * regs,unsigned long * ip)1473 int insn_get_effective_ip(struct pt_regs *regs, unsigned long *ip)
1474 {
1475 	unsigned long seg_base = 0;
1476 
1477 	/*
1478 	 * If not in user-space long mode, a custom code segment could be in
1479 	 * use. This is true in protected mode (if the process defined a local
1480 	 * descriptor table), or virtual-8086 mode. In most of the cases
1481 	 * seg_base will be zero as in USER_CS.
1482 	 */
1483 	if (!user_64bit_mode(regs)) {
1484 		seg_base = insn_get_seg_base(regs, INAT_SEG_REG_CS);
1485 		if (seg_base == -1L)
1486 			return -EINVAL;
1487 	}
1488 
1489 	*ip = seg_base + regs->ip;
1490 
1491 	return 0;
1492 }
1493 
1494 /**
1495  * insn_fetch_from_user() - Copy instruction bytes from user-space memory
1496  * @regs:	Structure with register values as seen when entering kernel mode
1497  * @buf:	Array to store the fetched instruction
1498  *
1499  * Gets the linear address of the instruction and copies the instruction bytes
1500  * to the buf.
1501  *
1502  * Returns:
1503  *
1504  * - number of instruction bytes copied.
1505  * - 0 if nothing was copied.
1506  * - -EINVAL if the linear address of the instruction could not be calculated
1507  */
insn_fetch_from_user(struct pt_regs * regs,unsigned char buf[MAX_INSN_SIZE])1508 int insn_fetch_from_user(struct pt_regs *regs, unsigned char buf[MAX_INSN_SIZE])
1509 {
1510 	unsigned long ip;
1511 	int not_copied;
1512 
1513 	if (insn_get_effective_ip(regs, &ip))
1514 		return -EINVAL;
1515 
1516 	not_copied = copy_from_user(buf, (void __user *)ip, MAX_INSN_SIZE);
1517 
1518 	return MAX_INSN_SIZE - not_copied;
1519 }
1520 
1521 /**
1522  * insn_fetch_from_user_inatomic() - Copy instruction bytes from user-space memory
1523  *                                   while in atomic code
1524  * @regs:	Structure with register values as seen when entering kernel mode
1525  * @buf:	Array to store the fetched instruction
1526  *
1527  * Gets the linear address of the instruction and copies the instruction bytes
1528  * to the buf. This function must be used in atomic context.
1529  *
1530  * Returns:
1531  *
1532  *  - number of instruction bytes copied.
1533  *  - 0 if nothing was copied.
1534  *  - -EINVAL if the linear address of the instruction could not be calculated.
1535  */
insn_fetch_from_user_inatomic(struct pt_regs * regs,unsigned char buf[MAX_INSN_SIZE])1536 int insn_fetch_from_user_inatomic(struct pt_regs *regs, unsigned char buf[MAX_INSN_SIZE])
1537 {
1538 	unsigned long ip;
1539 	int not_copied;
1540 
1541 	if (insn_get_effective_ip(regs, &ip))
1542 		return -EINVAL;
1543 
1544 	not_copied = __copy_from_user_inatomic(buf, (void __user *)ip, MAX_INSN_SIZE);
1545 
1546 	return MAX_INSN_SIZE - not_copied;
1547 }
1548 
1549 /**
1550  * insn_decode_from_regs() - Decode an instruction
1551  * @insn:	Structure to store decoded instruction
1552  * @regs:	Structure with register values as seen when entering kernel mode
1553  * @buf:	Buffer containing the instruction bytes
1554  * @buf_size:   Number of instruction bytes available in buf
1555  *
1556  * Decodes the instruction provided in buf and stores the decoding results in
1557  * insn. Also determines the correct address and operand sizes.
1558  *
1559  * Returns:
1560  *
1561  * True if instruction was decoded, False otherwise.
1562  */
insn_decode_from_regs(struct insn * insn,struct pt_regs * regs,unsigned char buf[MAX_INSN_SIZE],int buf_size)1563 bool insn_decode_from_regs(struct insn *insn, struct pt_regs *regs,
1564 			   unsigned char buf[MAX_INSN_SIZE], int buf_size)
1565 {
1566 	int seg_defs;
1567 
1568 	insn_init(insn, buf, buf_size, user_64bit_mode(regs));
1569 
1570 	/*
1571 	 * Override the default operand and address sizes with what is specified
1572 	 * in the code segment descriptor. The instruction decoder only sets
1573 	 * the address size it to either 4 or 8 address bytes and does nothing
1574 	 * for the operand bytes. This OK for most of the cases, but we could
1575 	 * have special cases where, for instance, a 16-bit code segment
1576 	 * descriptor is used.
1577 	 * If there is an address override prefix, the instruction decoder
1578 	 * correctly updates these values, even for 16-bit defaults.
1579 	 */
1580 	seg_defs = insn_get_code_seg_params(regs);
1581 	if (seg_defs == -EINVAL)
1582 		return false;
1583 
1584 	insn->addr_bytes = INSN_CODE_SEG_ADDR_SZ(seg_defs);
1585 	insn->opnd_bytes = INSN_CODE_SEG_OPND_SZ(seg_defs);
1586 
1587 	if (insn_get_length(insn))
1588 		return false;
1589 
1590 	if (buf_size < insn->length)
1591 		return false;
1592 
1593 	return true;
1594 }
1595 
1596 /**
1597  * insn_decode_mmio() - Decode a MMIO instruction
1598  * @insn:	Structure to store decoded instruction
1599  * @bytes:	Returns size of memory operand
1600  *
1601  * Decodes instruction that used for Memory-mapped I/O.
1602  *
1603  * Returns:
1604  *
1605  * Type of the instruction. Size of the memory operand is stored in
1606  * @bytes. If decode failed, INSN_MMIO_DECODE_FAILED returned.
1607  */
insn_decode_mmio(struct insn * insn,int * bytes)1608 enum insn_mmio_type insn_decode_mmio(struct insn *insn, int *bytes)
1609 {
1610 	enum insn_mmio_type type = INSN_MMIO_DECODE_FAILED;
1611 
1612 	*bytes = 0;
1613 
1614 	if (insn_get_opcode(insn))
1615 		return INSN_MMIO_DECODE_FAILED;
1616 
1617 	switch (insn->opcode.bytes[0]) {
1618 	case 0x88: /* MOV m8,r8 */
1619 		*bytes = 1;
1620 		fallthrough;
1621 	case 0x89: /* MOV m16/m32/m64, r16/m32/m64 */
1622 		if (!*bytes)
1623 			*bytes = insn->opnd_bytes;
1624 		type = INSN_MMIO_WRITE;
1625 		break;
1626 
1627 	case 0xc6: /* MOV m8, imm8 */
1628 		*bytes = 1;
1629 		fallthrough;
1630 	case 0xc7: /* MOV m16/m32/m64, imm16/imm32/imm64 */
1631 		if (!*bytes)
1632 			*bytes = insn->opnd_bytes;
1633 		type = INSN_MMIO_WRITE_IMM;
1634 		break;
1635 
1636 	case 0x8a: /* MOV r8, m8 */
1637 		*bytes = 1;
1638 		fallthrough;
1639 	case 0x8b: /* MOV r16/r32/r64, m16/m32/m64 */
1640 		if (!*bytes)
1641 			*bytes = insn->opnd_bytes;
1642 		type = INSN_MMIO_READ;
1643 		break;
1644 
1645 	case 0xa4: /* MOVS m8, m8 */
1646 		*bytes = 1;
1647 		fallthrough;
1648 	case 0xa5: /* MOVS m16/m32/m64, m16/m32/m64 */
1649 		if (!*bytes)
1650 			*bytes = insn->opnd_bytes;
1651 		type = INSN_MMIO_MOVS;
1652 		break;
1653 
1654 	case 0x0f: /* Two-byte instruction */
1655 		switch (insn->opcode.bytes[1]) {
1656 		case 0xb6: /* MOVZX r16/r32/r64, m8 */
1657 			*bytes = 1;
1658 			fallthrough;
1659 		case 0xb7: /* MOVZX r32/r64, m16 */
1660 			if (!*bytes)
1661 				*bytes = 2;
1662 			type = INSN_MMIO_READ_ZERO_EXTEND;
1663 			break;
1664 
1665 		case 0xbe: /* MOVSX r16/r32/r64, m8 */
1666 			*bytes = 1;
1667 			fallthrough;
1668 		case 0xbf: /* MOVSX r32/r64, m16 */
1669 			if (!*bytes)
1670 				*bytes = 2;
1671 			type = INSN_MMIO_READ_SIGN_EXTEND;
1672 			break;
1673 		}
1674 		break;
1675 	}
1676 
1677 	return type;
1678 }
1679