xref: /linux/drivers/crypto/aspeed/aspeed-hace-hash.c (revision 44a8c96edd0ee9320a1ad87afc7b10f38e55d5ec)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (c) 2021 Aspeed Technology Inc.
4  */
5 
6 #include "aspeed-hace.h"
7 #include <crypto/engine.h>
8 #include <crypto/internal/hash.h>
9 #include <crypto/scatterwalk.h>
10 #include <crypto/sha1.h>
11 #include <crypto/sha2.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/err.h>
14 #include <linux/io.h>
15 #include <linux/kernel.h>
16 #include <linux/scatterlist.h>
17 #include <linux/string.h>
18 
19 #ifdef CONFIG_CRYPTO_DEV_ASPEED_DEBUG
20 #define AHASH_DBG(h, fmt, ...)	\
21 	dev_info((h)->dev, "%s() " fmt, __func__, ##__VA_ARGS__)
22 #else
23 #define AHASH_DBG(h, fmt, ...)	\
24 	dev_dbg((h)->dev, "%s() " fmt, __func__, ##__VA_ARGS__)
25 #endif
26 
27 /* Initialization Vectors for SHA-family */
28 static const __be32 sha1_iv[8] = {
29 	cpu_to_be32(SHA1_H0), cpu_to_be32(SHA1_H1),
30 	cpu_to_be32(SHA1_H2), cpu_to_be32(SHA1_H3),
31 	cpu_to_be32(SHA1_H4), 0, 0, 0
32 };
33 
34 static const __be32 sha224_iv[8] = {
35 	cpu_to_be32(SHA224_H0), cpu_to_be32(SHA224_H1),
36 	cpu_to_be32(SHA224_H2), cpu_to_be32(SHA224_H3),
37 	cpu_to_be32(SHA224_H4), cpu_to_be32(SHA224_H5),
38 	cpu_to_be32(SHA224_H6), cpu_to_be32(SHA224_H7),
39 };
40 
41 static const __be32 sha256_iv[8] = {
42 	cpu_to_be32(SHA256_H0), cpu_to_be32(SHA256_H1),
43 	cpu_to_be32(SHA256_H2), cpu_to_be32(SHA256_H3),
44 	cpu_to_be32(SHA256_H4), cpu_to_be32(SHA256_H5),
45 	cpu_to_be32(SHA256_H6), cpu_to_be32(SHA256_H7),
46 };
47 
48 static const __be64 sha384_iv[8] = {
49 	cpu_to_be64(SHA384_H0), cpu_to_be64(SHA384_H1),
50 	cpu_to_be64(SHA384_H2), cpu_to_be64(SHA384_H3),
51 	cpu_to_be64(SHA384_H4), cpu_to_be64(SHA384_H5),
52 	cpu_to_be64(SHA384_H6), cpu_to_be64(SHA384_H7)
53 };
54 
55 static const __be64 sha512_iv[8] = {
56 	cpu_to_be64(SHA512_H0), cpu_to_be64(SHA512_H1),
57 	cpu_to_be64(SHA512_H2), cpu_to_be64(SHA512_H3),
58 	cpu_to_be64(SHA512_H4), cpu_to_be64(SHA512_H5),
59 	cpu_to_be64(SHA512_H6), cpu_to_be64(SHA512_H7)
60 };
61 
62 static int aspeed_sham_init(struct ahash_request *req);
63 static int aspeed_ahash_req_update(struct aspeed_hace_dev *hace_dev);
64 
aspeed_sham_export(struct ahash_request * req,void * out)65 static int aspeed_sham_export(struct ahash_request *req, void *out)
66 {
67 	struct aspeed_sham_reqctx *rctx = ahash_request_ctx(req);
68 	union {
69 		u8 *u8;
70 		u64 *u64;
71 	} p = { .u8 = out };
72 
73 	memcpy(out, rctx->digest, rctx->ivsize);
74 	p.u8 += rctx->ivsize;
75 	put_unaligned(rctx->digcnt[0], p.u64++);
76 	if (rctx->ivsize == 64)
77 		put_unaligned(rctx->digcnt[1], p.u64);
78 	return 0;
79 }
80 
aspeed_sham_import(struct ahash_request * req,const void * in)81 static int aspeed_sham_import(struct ahash_request *req, const void *in)
82 {
83 	struct aspeed_sham_reqctx *rctx = ahash_request_ctx(req);
84 	union {
85 		const u8 *u8;
86 		const u64 *u64;
87 	} p = { .u8 = in };
88 	int err;
89 
90 	err = aspeed_sham_init(req);
91 	if (err)
92 		return err;
93 
94 	memcpy(rctx->digest, in, rctx->ivsize);
95 	p.u8 += rctx->ivsize;
96 	rctx->digcnt[0] = get_unaligned(p.u64++);
97 	if (rctx->ivsize == 64)
98 		rctx->digcnt[1] = get_unaligned(p.u64);
99 	return 0;
100 }
101 
102 /* The purpose of this padding is to ensure that the padded message is a
103  * multiple of 512 bits (SHA1/SHA224/SHA256) or 1024 bits (SHA384/SHA512).
104  * The bit "1" is appended at the end of the message followed by
105  * "padlen-1" zero bits. Then a 64 bits block (SHA1/SHA224/SHA256) or
106  * 128 bits block (SHA384/SHA512) equals to the message length in bits
107  * is appended.
108  *
109  * For SHA1/SHA224/SHA256, padlen is calculated as followed:
110  *  - if message length < 56 bytes then padlen = 56 - message length
111  *  - else padlen = 64 + 56 - message length
112  *
113  * For SHA384/SHA512, padlen is calculated as followed:
114  *  - if message length < 112 bytes then padlen = 112 - message length
115  *  - else padlen = 128 + 112 - message length
116  */
aspeed_ahash_fill_padding(struct aspeed_hace_dev * hace_dev,struct aspeed_sham_reqctx * rctx,u8 * buf)117 static int aspeed_ahash_fill_padding(struct aspeed_hace_dev *hace_dev,
118 				     struct aspeed_sham_reqctx *rctx, u8 *buf)
119 {
120 	unsigned int index, padlen, bitslen;
121 	__be64 bits[2];
122 
123 	AHASH_DBG(hace_dev, "rctx flags:0x%x\n", (u32)rctx->flags);
124 
125 	switch (rctx->flags & SHA_FLAGS_MASK) {
126 	case SHA_FLAGS_SHA1:
127 	case SHA_FLAGS_SHA224:
128 	case SHA_FLAGS_SHA256:
129 		bits[0] = cpu_to_be64(rctx->digcnt[0] << 3);
130 		index = rctx->digcnt[0] & 0x3f;
131 		padlen = (index < 56) ? (56 - index) : ((64 + 56) - index);
132 		bitslen = 8;
133 		break;
134 	default:
135 		bits[1] = cpu_to_be64(rctx->digcnt[0] << 3);
136 		bits[0] = cpu_to_be64(rctx->digcnt[1] << 3 |
137 				      rctx->digcnt[0] >> 61);
138 		index = rctx->digcnt[0] & 0x7f;
139 		padlen = (index < 112) ? (112 - index) : ((128 + 112) - index);
140 		bitslen = 16;
141 		break;
142 	}
143 	buf[0] = 0x80;
144 	memset(buf + 1, 0, padlen - 1);
145 	memcpy(buf + padlen, bits, bitslen);
146 	return padlen + bitslen;
147 }
148 
aspeed_ahash_update_counter(struct aspeed_sham_reqctx * rctx,unsigned int len)149 static void aspeed_ahash_update_counter(struct aspeed_sham_reqctx *rctx,
150 					unsigned int len)
151 {
152 	rctx->offset += len;
153 	rctx->digcnt[0] += len;
154 	if (rctx->digcnt[0] < len)
155 		rctx->digcnt[1]++;
156 }
157 
158 /*
159  * Prepare DMA buffer before hardware engine
160  * processing.
161  */
aspeed_ahash_dma_prepare(struct aspeed_hace_dev * hace_dev)162 static int aspeed_ahash_dma_prepare(struct aspeed_hace_dev *hace_dev)
163 {
164 	struct aspeed_engine_hash *hash_engine = &hace_dev->hash_engine;
165 	struct ahash_request *req = hash_engine->req;
166 	struct aspeed_sham_reqctx *rctx = ahash_request_ctx(req);
167 	unsigned int length, remain;
168 	bool final = false;
169 
170 	length = rctx->total - rctx->offset;
171 	remain = length - round_down(length, rctx->block_size);
172 
173 	AHASH_DBG(hace_dev, "length:0x%x, remain:0x%x\n", length, remain);
174 
175 	if (length > ASPEED_HASH_SRC_DMA_BUF_LEN)
176 		length = ASPEED_HASH_SRC_DMA_BUF_LEN;
177 	else if (rctx->flags & SHA_FLAGS_FINUP) {
178 		if (round_up(length, rctx->block_size) + rctx->block_size >
179 		    ASPEED_CRYPTO_SRC_DMA_BUF_LEN)
180 			length = round_down(length - 1, rctx->block_size);
181 		else
182 			final = true;
183 	} else
184 		length -= remain;
185 	scatterwalk_map_and_copy(hash_engine->ahash_src_addr, rctx->src_sg,
186 				 rctx->offset, length, 0);
187 	aspeed_ahash_update_counter(rctx, length);
188 	if (final)
189 		length += aspeed_ahash_fill_padding(
190 			hace_dev, rctx, hash_engine->ahash_src_addr + length);
191 
192 	rctx->digest_dma_addr = dma_map_single(hace_dev->dev, rctx->digest,
193 					       SHA512_DIGEST_SIZE,
194 					       DMA_BIDIRECTIONAL);
195 	if (dma_mapping_error(hace_dev->dev, rctx->digest_dma_addr)) {
196 		dev_warn(hace_dev->dev, "dma_map() rctx digest error\n");
197 		return -ENOMEM;
198 	}
199 
200 	hash_engine->src_length = length;
201 	hash_engine->src_dma = hash_engine->ahash_src_dma_addr;
202 	hash_engine->digest_dma = rctx->digest_dma_addr;
203 
204 	return 0;
205 }
206 
207 /*
208  * Prepare DMA buffer as SG list buffer before
209  * hardware engine processing.
210  */
aspeed_ahash_dma_prepare_sg(struct aspeed_hace_dev * hace_dev)211 static int aspeed_ahash_dma_prepare_sg(struct aspeed_hace_dev *hace_dev)
212 {
213 	struct aspeed_engine_hash *hash_engine = &hace_dev->hash_engine;
214 	struct ahash_request *req = hash_engine->req;
215 	struct aspeed_sham_reqctx *rctx = ahash_request_ctx(req);
216 	bool final = rctx->flags & SHA_FLAGS_FINUP;
217 	int remain, sg_len, i, max_sg_nents;
218 	unsigned int length, offset, total;
219 	struct aspeed_sg_list *src_list;
220 	struct scatterlist *s;
221 	int rc = 0;
222 
223 	offset = rctx->offset;
224 	length = rctx->total - offset;
225 	remain = final ? 0 : length - round_down(length, rctx->block_size);
226 	length -= remain;
227 
228 	AHASH_DBG(hace_dev, "%s:0x%x, %s:0x%x, %s:0x%x\n",
229 		  "rctx total", rctx->total,
230 		  "length", length, "remain", remain);
231 
232 	sg_len = dma_map_sg(hace_dev->dev, rctx->src_sg, rctx->src_nents,
233 			    DMA_TO_DEVICE);
234 	if (!sg_len) {
235 		dev_warn(hace_dev->dev, "dma_map_sg() src error\n");
236 		rc = -ENOMEM;
237 		goto end;
238 	}
239 
240 	max_sg_nents = ASPEED_HASH_SRC_DMA_BUF_LEN / sizeof(*src_list) - final;
241 	sg_len = min(sg_len, max_sg_nents);
242 	src_list = (struct aspeed_sg_list *)hash_engine->ahash_src_addr;
243 	rctx->digest_dma_addr = dma_map_single(hace_dev->dev, rctx->digest,
244 					       SHA512_DIGEST_SIZE,
245 					       DMA_BIDIRECTIONAL);
246 	if (dma_mapping_error(hace_dev->dev, rctx->digest_dma_addr)) {
247 		dev_warn(hace_dev->dev, "dma_map() rctx digest error\n");
248 		rc = -ENOMEM;
249 		goto free_src_sg;
250 	}
251 
252 	total = 0;
253 	for_each_sg(rctx->src_sg, s, sg_len, i) {
254 		u32 phy_addr = sg_dma_address(s);
255 		u32 len = sg_dma_len(s);
256 
257 		if (len <= offset) {
258 			offset -= len;
259 			continue;
260 		}
261 
262 		len -= offset;
263 		phy_addr += offset;
264 		offset = 0;
265 
266 		if (length > len)
267 			length -= len;
268 		else {
269 			/* Last sg list */
270 			len = length;
271 			length = 0;
272 		}
273 
274 		total += len;
275 		src_list[i].phy_addr = cpu_to_le32(phy_addr);
276 		src_list[i].len = cpu_to_le32(len);
277 	}
278 
279 	if (length != 0) {
280 		total = round_down(total, rctx->block_size);
281 		final = false;
282 	}
283 
284 	aspeed_ahash_update_counter(rctx, total);
285 	if (final) {
286 		int len = aspeed_ahash_fill_padding(hace_dev, rctx,
287 						    rctx->buffer);
288 
289 		total += len;
290 		rctx->buffer_dma_addr = dma_map_single(hace_dev->dev,
291 						       rctx->buffer,
292 						       sizeof(rctx->buffer),
293 						       DMA_TO_DEVICE);
294 		if (dma_mapping_error(hace_dev->dev, rctx->buffer_dma_addr)) {
295 			dev_warn(hace_dev->dev, "dma_map() rctx buffer error\n");
296 			rc = -ENOMEM;
297 			goto free_rctx_digest;
298 		}
299 
300 		src_list[i].phy_addr = cpu_to_le32(rctx->buffer_dma_addr);
301 		src_list[i].len = cpu_to_le32(len);
302 		i++;
303 	}
304 	src_list[i - 1].len |= cpu_to_le32(HASH_SG_LAST_LIST);
305 
306 	hash_engine->src_length = total;
307 	hash_engine->src_dma = hash_engine->ahash_src_dma_addr;
308 	hash_engine->digest_dma = rctx->digest_dma_addr;
309 
310 	return 0;
311 
312 free_rctx_digest:
313 	dma_unmap_single(hace_dev->dev, rctx->digest_dma_addr,
314 			 SHA512_DIGEST_SIZE, DMA_BIDIRECTIONAL);
315 free_src_sg:
316 	dma_unmap_sg(hace_dev->dev, rctx->src_sg, rctx->src_nents,
317 		     DMA_TO_DEVICE);
318 end:
319 	return rc;
320 }
321 
aspeed_ahash_complete(struct aspeed_hace_dev * hace_dev)322 static int aspeed_ahash_complete(struct aspeed_hace_dev *hace_dev)
323 {
324 	struct aspeed_engine_hash *hash_engine = &hace_dev->hash_engine;
325 	struct ahash_request *req = hash_engine->req;
326 	struct aspeed_sham_reqctx *rctx = ahash_request_ctx(req);
327 
328 	AHASH_DBG(hace_dev, "\n");
329 
330 	dma_unmap_single(hace_dev->dev, rctx->digest_dma_addr,
331 			 SHA512_DIGEST_SIZE, DMA_BIDIRECTIONAL);
332 
333 	if (rctx->total - rctx->offset >= rctx->block_size ||
334 	    (rctx->total != rctx->offset && rctx->flags & SHA_FLAGS_FINUP))
335 		return aspeed_ahash_req_update(hace_dev);
336 
337 	hash_engine->flags &= ~CRYPTO_FLAGS_BUSY;
338 
339 	if (rctx->flags & SHA_FLAGS_FINUP)
340 		memcpy(req->result, rctx->digest, rctx->digsize);
341 
342 	crypto_finalize_hash_request(hace_dev->crypt_engine_hash, req,
343 				     rctx->total - rctx->offset);
344 
345 	return 0;
346 }
347 
348 /*
349  * Trigger hardware engines to do the math.
350  */
aspeed_hace_ahash_trigger(struct aspeed_hace_dev * hace_dev,aspeed_hace_fn_t resume)351 static int aspeed_hace_ahash_trigger(struct aspeed_hace_dev *hace_dev,
352 				     aspeed_hace_fn_t resume)
353 {
354 	struct aspeed_engine_hash *hash_engine = &hace_dev->hash_engine;
355 	struct ahash_request *req = hash_engine->req;
356 	struct aspeed_sham_reqctx *rctx = ahash_request_ctx(req);
357 
358 	AHASH_DBG(hace_dev, "src_dma:%pad, digest_dma:%pad, length:%zu\n",
359 		  &hash_engine->src_dma, &hash_engine->digest_dma,
360 		  hash_engine->src_length);
361 
362 	rctx->cmd |= HASH_CMD_INT_ENABLE;
363 	hash_engine->resume = resume;
364 
365 	ast_hace_write(hace_dev, hash_engine->src_dma, ASPEED_HACE_HASH_SRC);
366 	ast_hace_write(hace_dev, hash_engine->digest_dma,
367 		       ASPEED_HACE_HASH_DIGEST_BUFF);
368 	ast_hace_write(hace_dev, hash_engine->digest_dma,
369 		       ASPEED_HACE_HASH_KEY_BUFF);
370 	ast_hace_write(hace_dev, hash_engine->src_length,
371 		       ASPEED_HACE_HASH_DATA_LEN);
372 
373 	/* Memory barrier to ensure all data setup before engine starts */
374 	mb();
375 
376 	ast_hace_write(hace_dev, rctx->cmd, ASPEED_HACE_HASH_CMD);
377 
378 	return -EINPROGRESS;
379 }
380 
aspeed_ahash_update_resume_sg(struct aspeed_hace_dev * hace_dev)381 static int aspeed_ahash_update_resume_sg(struct aspeed_hace_dev *hace_dev)
382 {
383 	struct aspeed_engine_hash *hash_engine = &hace_dev->hash_engine;
384 	struct ahash_request *req = hash_engine->req;
385 	struct aspeed_sham_reqctx *rctx = ahash_request_ctx(req);
386 
387 	AHASH_DBG(hace_dev, "\n");
388 
389 	dma_unmap_sg(hace_dev->dev, rctx->src_sg, rctx->src_nents,
390 		     DMA_TO_DEVICE);
391 
392 	if (rctx->flags & SHA_FLAGS_FINUP && rctx->total == rctx->offset)
393 		dma_unmap_single(hace_dev->dev, rctx->buffer_dma_addr,
394 				 sizeof(rctx->buffer), DMA_TO_DEVICE);
395 
396 	rctx->cmd &= ~HASH_CMD_HASH_SRC_SG_CTRL;
397 
398 	return aspeed_ahash_complete(hace_dev);
399 }
400 
aspeed_ahash_req_update(struct aspeed_hace_dev * hace_dev)401 static int aspeed_ahash_req_update(struct aspeed_hace_dev *hace_dev)
402 {
403 	struct aspeed_engine_hash *hash_engine = &hace_dev->hash_engine;
404 	struct ahash_request *req = hash_engine->req;
405 	struct aspeed_sham_reqctx *rctx = ahash_request_ctx(req);
406 	aspeed_hace_fn_t resume;
407 	int ret;
408 
409 	AHASH_DBG(hace_dev, "\n");
410 
411 	if (hace_dev->version == AST2600_VERSION) {
412 		rctx->cmd |= HASH_CMD_HASH_SRC_SG_CTRL;
413 		resume = aspeed_ahash_update_resume_sg;
414 
415 	} else {
416 		resume = aspeed_ahash_complete;
417 	}
418 
419 	ret = hash_engine->dma_prepare(hace_dev);
420 	if (ret)
421 		return ret;
422 
423 	return aspeed_hace_ahash_trigger(hace_dev, resume);
424 }
425 
aspeed_hace_hash_handle_queue(struct aspeed_hace_dev * hace_dev,struct ahash_request * req)426 static int aspeed_hace_hash_handle_queue(struct aspeed_hace_dev *hace_dev,
427 				  struct ahash_request *req)
428 {
429 	return crypto_transfer_hash_request_to_engine(
430 			hace_dev->crypt_engine_hash, req);
431 }
432 
aspeed_ahash_fallback(struct ahash_request * req)433 static noinline int aspeed_ahash_fallback(struct ahash_request *req)
434 {
435 	struct aspeed_sham_reqctx *rctx = ahash_request_ctx(req);
436 	HASH_FBREQ_ON_STACK(fbreq, req);
437 	u8 *state = rctx->buffer;
438 	struct scatterlist sg[2];
439 	struct scatterlist *ssg;
440 	int ret;
441 
442 	ssg = scatterwalk_ffwd(sg, req->src, rctx->offset);
443 	ahash_request_set_crypt(fbreq, ssg, req->result,
444 				rctx->total - rctx->offset);
445 
446 	ret = aspeed_sham_export(req, state) ?:
447 	      crypto_ahash_import_core(fbreq, state);
448 
449 	if (rctx->flags & SHA_FLAGS_FINUP)
450 		ret = ret ?: crypto_ahash_finup(fbreq);
451 	else
452 		ret = ret ?: crypto_ahash_update(fbreq) ?:
453 			     crypto_ahash_export_core(fbreq, state) ?:
454 			     aspeed_sham_import(req, state);
455 	HASH_REQUEST_ZERO(fbreq);
456 	return ret;
457 }
458 
aspeed_ahash_do_request(struct crypto_engine * engine,void * areq)459 static int aspeed_ahash_do_request(struct crypto_engine *engine, void *areq)
460 {
461 	struct ahash_request *req = ahash_request_cast(areq);
462 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
463 	struct aspeed_sham_ctx *tctx = crypto_ahash_ctx(tfm);
464 	struct aspeed_hace_dev *hace_dev = tctx->hace_dev;
465 	struct aspeed_engine_hash *hash_engine;
466 	int ret;
467 
468 	hash_engine = &hace_dev->hash_engine;
469 	hash_engine->flags |= CRYPTO_FLAGS_BUSY;
470 
471 	ret = aspeed_ahash_req_update(hace_dev);
472 	if (ret != -EINPROGRESS)
473 		return aspeed_ahash_fallback(req);
474 
475 	return 0;
476 }
477 
aspeed_ahash_prepare_request(struct crypto_engine * engine,void * areq)478 static void aspeed_ahash_prepare_request(struct crypto_engine *engine,
479 					 void *areq)
480 {
481 	struct ahash_request *req = ahash_request_cast(areq);
482 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
483 	struct aspeed_sham_ctx *tctx = crypto_ahash_ctx(tfm);
484 	struct aspeed_hace_dev *hace_dev = tctx->hace_dev;
485 	struct aspeed_engine_hash *hash_engine;
486 
487 	hash_engine = &hace_dev->hash_engine;
488 	hash_engine->req = req;
489 
490 	if (hace_dev->version == AST2600_VERSION)
491 		hash_engine->dma_prepare = aspeed_ahash_dma_prepare_sg;
492 	else
493 		hash_engine->dma_prepare = aspeed_ahash_dma_prepare;
494 }
495 
aspeed_ahash_do_one(struct crypto_engine * engine,void * areq)496 static int aspeed_ahash_do_one(struct crypto_engine *engine, void *areq)
497 {
498 	aspeed_ahash_prepare_request(engine, areq);
499 	return aspeed_ahash_do_request(engine, areq);
500 }
501 
aspeed_sham_update(struct ahash_request * req)502 static int aspeed_sham_update(struct ahash_request *req)
503 {
504 	struct aspeed_sham_reqctx *rctx = ahash_request_ctx(req);
505 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
506 	struct aspeed_sham_ctx *tctx = crypto_ahash_ctx(tfm);
507 	struct aspeed_hace_dev *hace_dev = tctx->hace_dev;
508 
509 	AHASH_DBG(hace_dev, "req->nbytes: %d\n", req->nbytes);
510 
511 	rctx->total = req->nbytes;
512 	rctx->src_sg = req->src;
513 	rctx->offset = 0;
514 	rctx->src_nents = sg_nents_for_len(req->src, req->nbytes);
515 
516 	return aspeed_hace_hash_handle_queue(hace_dev, req);
517 }
518 
aspeed_sham_finup(struct ahash_request * req)519 static int aspeed_sham_finup(struct ahash_request *req)
520 {
521 	struct aspeed_sham_reqctx *rctx = ahash_request_ctx(req);
522 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
523 	struct aspeed_sham_ctx *tctx = crypto_ahash_ctx(tfm);
524 	struct aspeed_hace_dev *hace_dev = tctx->hace_dev;
525 
526 	AHASH_DBG(hace_dev, "req->nbytes: %d\n", req->nbytes);
527 
528 	rctx->flags |= SHA_FLAGS_FINUP;
529 
530 	return aspeed_sham_update(req);
531 }
532 
aspeed_sham_init(struct ahash_request * req)533 static int aspeed_sham_init(struct ahash_request *req)
534 {
535 	struct aspeed_sham_reqctx *rctx = ahash_request_ctx(req);
536 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
537 	struct aspeed_sham_ctx *tctx = crypto_ahash_ctx(tfm);
538 	struct aspeed_hace_dev *hace_dev = tctx->hace_dev;
539 
540 	AHASH_DBG(hace_dev, "%s: digest size:%d\n",
541 		  crypto_tfm_alg_name(&tfm->base),
542 		  crypto_ahash_digestsize(tfm));
543 
544 	rctx->cmd = HASH_CMD_ACC_MODE;
545 	rctx->flags = 0;
546 
547 	switch (crypto_ahash_digestsize(tfm)) {
548 	case SHA1_DIGEST_SIZE:
549 		rctx->cmd |= HASH_CMD_SHA1 | HASH_CMD_SHA_SWAP;
550 		rctx->flags |= SHA_FLAGS_SHA1;
551 		rctx->digsize = SHA1_DIGEST_SIZE;
552 		rctx->block_size = SHA1_BLOCK_SIZE;
553 		rctx->ivsize = 32;
554 		memcpy(rctx->digest, sha1_iv, rctx->ivsize);
555 		break;
556 	case SHA224_DIGEST_SIZE:
557 		rctx->cmd |= HASH_CMD_SHA224 | HASH_CMD_SHA_SWAP;
558 		rctx->flags |= SHA_FLAGS_SHA224;
559 		rctx->digsize = SHA224_DIGEST_SIZE;
560 		rctx->block_size = SHA224_BLOCK_SIZE;
561 		rctx->ivsize = 32;
562 		memcpy(rctx->digest, sha224_iv, rctx->ivsize);
563 		break;
564 	case SHA256_DIGEST_SIZE:
565 		rctx->cmd |= HASH_CMD_SHA256 | HASH_CMD_SHA_SWAP;
566 		rctx->flags |= SHA_FLAGS_SHA256;
567 		rctx->digsize = SHA256_DIGEST_SIZE;
568 		rctx->block_size = SHA256_BLOCK_SIZE;
569 		rctx->ivsize = 32;
570 		memcpy(rctx->digest, sha256_iv, rctx->ivsize);
571 		break;
572 	case SHA384_DIGEST_SIZE:
573 		rctx->cmd |= HASH_CMD_SHA512_SER | HASH_CMD_SHA384 |
574 			     HASH_CMD_SHA_SWAP;
575 		rctx->flags |= SHA_FLAGS_SHA384;
576 		rctx->digsize = SHA384_DIGEST_SIZE;
577 		rctx->block_size = SHA384_BLOCK_SIZE;
578 		rctx->ivsize = 64;
579 		memcpy(rctx->digest, sha384_iv, rctx->ivsize);
580 		break;
581 	case SHA512_DIGEST_SIZE:
582 		rctx->cmd |= HASH_CMD_SHA512_SER | HASH_CMD_SHA512 |
583 			     HASH_CMD_SHA_SWAP;
584 		rctx->flags |= SHA_FLAGS_SHA512;
585 		rctx->digsize = SHA512_DIGEST_SIZE;
586 		rctx->block_size = SHA512_BLOCK_SIZE;
587 		rctx->ivsize = 64;
588 		memcpy(rctx->digest, sha512_iv, rctx->ivsize);
589 		break;
590 	default:
591 		dev_warn(tctx->hace_dev->dev, "digest size %d not support\n",
592 			 crypto_ahash_digestsize(tfm));
593 		return -EINVAL;
594 	}
595 
596 	rctx->total = 0;
597 	rctx->digcnt[0] = 0;
598 	rctx->digcnt[1] = 0;
599 
600 	return 0;
601 }
602 
aspeed_sham_digest(struct ahash_request * req)603 static int aspeed_sham_digest(struct ahash_request *req)
604 {
605 	return aspeed_sham_init(req) ? : aspeed_sham_finup(req);
606 }
607 
aspeed_sham_cra_init(struct crypto_ahash * tfm)608 static int aspeed_sham_cra_init(struct crypto_ahash *tfm)
609 {
610 	struct ahash_alg *alg = crypto_ahash_alg(tfm);
611 	struct aspeed_sham_ctx *tctx = crypto_ahash_ctx(tfm);
612 	struct aspeed_hace_alg *ast_alg;
613 
614 	ast_alg = container_of(alg, struct aspeed_hace_alg, alg.ahash.base);
615 	tctx->hace_dev = ast_alg->hace_dev;
616 
617 	return 0;
618 }
619 
620 static struct aspeed_hace_alg aspeed_ahash_algs[] = {
621 	{
622 		.alg.ahash.base = {
623 			.init	= aspeed_sham_init,
624 			.update	= aspeed_sham_update,
625 			.finup	= aspeed_sham_finup,
626 			.digest	= aspeed_sham_digest,
627 			.export	= aspeed_sham_export,
628 			.import	= aspeed_sham_import,
629 			.init_tfm = aspeed_sham_cra_init,
630 			.halg = {
631 				.digestsize = SHA1_DIGEST_SIZE,
632 				.statesize = sizeof(struct aspeed_sham_reqctx),
633 				.base = {
634 					.cra_name		= "sha1",
635 					.cra_driver_name	= "aspeed-sha1",
636 					.cra_priority		= 300,
637 					.cra_flags		= CRYPTO_ALG_TYPE_AHASH |
638 								  CRYPTO_ALG_ASYNC |
639 								  CRYPTO_AHASH_ALG_BLOCK_ONLY |
640 								  CRYPTO_ALG_KERN_DRIVER_ONLY,
641 					.cra_blocksize		= SHA1_BLOCK_SIZE,
642 					.cra_ctxsize		= sizeof(struct aspeed_sham_ctx),
643 					.cra_reqsize		= sizeof(struct aspeed_sham_reqctx),
644 					.cra_alignmask		= 0,
645 					.cra_module		= THIS_MODULE,
646 				}
647 			}
648 		},
649 		.alg.ahash.op = {
650 			.do_one_request = aspeed_ahash_do_one,
651 		},
652 	},
653 	{
654 		.alg.ahash.base = {
655 			.init	= aspeed_sham_init,
656 			.update	= aspeed_sham_update,
657 			.finup	= aspeed_sham_finup,
658 			.digest	= aspeed_sham_digest,
659 			.export	= aspeed_sham_export,
660 			.import	= aspeed_sham_import,
661 			.init_tfm = aspeed_sham_cra_init,
662 			.halg = {
663 				.digestsize = SHA256_DIGEST_SIZE,
664 				.statesize = sizeof(struct aspeed_sham_reqctx),
665 				.base = {
666 					.cra_name		= "sha256",
667 					.cra_driver_name	= "aspeed-sha256",
668 					.cra_priority		= 300,
669 					.cra_flags		= CRYPTO_ALG_TYPE_AHASH |
670 								  CRYPTO_ALG_ASYNC |
671 								  CRYPTO_AHASH_ALG_BLOCK_ONLY |
672 								  CRYPTO_ALG_KERN_DRIVER_ONLY,
673 					.cra_blocksize		= SHA256_BLOCK_SIZE,
674 					.cra_ctxsize		= sizeof(struct aspeed_sham_ctx),
675 					.cra_reqsize		= sizeof(struct aspeed_sham_reqctx),
676 					.cra_alignmask		= 0,
677 					.cra_module		= THIS_MODULE,
678 				}
679 			}
680 		},
681 		.alg.ahash.op = {
682 			.do_one_request = aspeed_ahash_do_one,
683 		},
684 	},
685 	{
686 		.alg.ahash.base = {
687 			.init	= aspeed_sham_init,
688 			.update	= aspeed_sham_update,
689 			.finup	= aspeed_sham_finup,
690 			.digest	= aspeed_sham_digest,
691 			.export	= aspeed_sham_export,
692 			.import	= aspeed_sham_import,
693 			.init_tfm = aspeed_sham_cra_init,
694 			.halg = {
695 				.digestsize = SHA224_DIGEST_SIZE,
696 				.statesize = sizeof(struct aspeed_sham_reqctx),
697 				.base = {
698 					.cra_name		= "sha224",
699 					.cra_driver_name	= "aspeed-sha224",
700 					.cra_priority		= 300,
701 					.cra_flags		= CRYPTO_ALG_TYPE_AHASH |
702 								  CRYPTO_ALG_ASYNC |
703 								  CRYPTO_AHASH_ALG_BLOCK_ONLY |
704 								  CRYPTO_ALG_KERN_DRIVER_ONLY,
705 					.cra_blocksize		= SHA224_BLOCK_SIZE,
706 					.cra_ctxsize		= sizeof(struct aspeed_sham_ctx),
707 					.cra_reqsize		= sizeof(struct aspeed_sham_reqctx),
708 					.cra_alignmask		= 0,
709 					.cra_module		= THIS_MODULE,
710 				}
711 			}
712 		},
713 		.alg.ahash.op = {
714 			.do_one_request = aspeed_ahash_do_one,
715 		},
716 	},
717 };
718 
719 static struct aspeed_hace_alg aspeed_ahash_algs_g6[] = {
720 	{
721 		.alg.ahash.base = {
722 			.init	= aspeed_sham_init,
723 			.update	= aspeed_sham_update,
724 			.finup	= aspeed_sham_finup,
725 			.digest	= aspeed_sham_digest,
726 			.export	= aspeed_sham_export,
727 			.import	= aspeed_sham_import,
728 			.init_tfm = aspeed_sham_cra_init,
729 			.halg = {
730 				.digestsize = SHA384_DIGEST_SIZE,
731 				.statesize = sizeof(struct aspeed_sham_reqctx),
732 				.base = {
733 					.cra_name		= "sha384",
734 					.cra_driver_name	= "aspeed-sha384",
735 					.cra_priority		= 300,
736 					.cra_flags		= CRYPTO_ALG_TYPE_AHASH |
737 								  CRYPTO_ALG_ASYNC |
738 								  CRYPTO_AHASH_ALG_BLOCK_ONLY |
739 								  CRYPTO_ALG_KERN_DRIVER_ONLY,
740 					.cra_blocksize		= SHA384_BLOCK_SIZE,
741 					.cra_ctxsize		= sizeof(struct aspeed_sham_ctx),
742 					.cra_reqsize		= sizeof(struct aspeed_sham_reqctx),
743 					.cra_alignmask		= 0,
744 					.cra_module		= THIS_MODULE,
745 				}
746 			}
747 		},
748 		.alg.ahash.op = {
749 			.do_one_request = aspeed_ahash_do_one,
750 		},
751 	},
752 	{
753 		.alg.ahash.base = {
754 			.init	= aspeed_sham_init,
755 			.update	= aspeed_sham_update,
756 			.finup	= aspeed_sham_finup,
757 			.digest	= aspeed_sham_digest,
758 			.export	= aspeed_sham_export,
759 			.import	= aspeed_sham_import,
760 			.init_tfm = aspeed_sham_cra_init,
761 			.halg = {
762 				.digestsize = SHA512_DIGEST_SIZE,
763 				.statesize = sizeof(struct aspeed_sham_reqctx),
764 				.base = {
765 					.cra_name		= "sha512",
766 					.cra_driver_name	= "aspeed-sha512",
767 					.cra_priority		= 300,
768 					.cra_flags		= CRYPTO_ALG_TYPE_AHASH |
769 								  CRYPTO_ALG_ASYNC |
770 								  CRYPTO_AHASH_ALG_BLOCK_ONLY |
771 								  CRYPTO_ALG_KERN_DRIVER_ONLY,
772 					.cra_blocksize		= SHA512_BLOCK_SIZE,
773 					.cra_ctxsize		= sizeof(struct aspeed_sham_ctx),
774 					.cra_reqsize		= sizeof(struct aspeed_sham_reqctx),
775 					.cra_alignmask		= 0,
776 					.cra_module		= THIS_MODULE,
777 				}
778 			}
779 		},
780 		.alg.ahash.op = {
781 			.do_one_request = aspeed_ahash_do_one,
782 		},
783 	},
784 };
785 
aspeed_unregister_hace_hash_algs(struct aspeed_hace_dev * hace_dev)786 void aspeed_unregister_hace_hash_algs(struct aspeed_hace_dev *hace_dev)
787 {
788 	int i;
789 
790 	for (i = 0; i < ARRAY_SIZE(aspeed_ahash_algs); i++)
791 		crypto_engine_unregister_ahash(&aspeed_ahash_algs[i].alg.ahash);
792 
793 	if (hace_dev->version != AST2600_VERSION)
794 		return;
795 
796 	for (i = 0; i < ARRAY_SIZE(aspeed_ahash_algs_g6); i++)
797 		crypto_engine_unregister_ahash(&aspeed_ahash_algs_g6[i].alg.ahash);
798 }
799 
aspeed_register_hace_hash_algs(struct aspeed_hace_dev * hace_dev)800 void aspeed_register_hace_hash_algs(struct aspeed_hace_dev *hace_dev)
801 {
802 	int rc, i;
803 
804 	AHASH_DBG(hace_dev, "\n");
805 
806 	for (i = 0; i < ARRAY_SIZE(aspeed_ahash_algs); i++) {
807 		aspeed_ahash_algs[i].hace_dev = hace_dev;
808 		rc = crypto_engine_register_ahash(&aspeed_ahash_algs[i].alg.ahash);
809 		if (rc) {
810 			AHASH_DBG(hace_dev, "Failed to register %s\n",
811 				  aspeed_ahash_algs[i].alg.ahash.base.halg.base.cra_name);
812 		}
813 	}
814 
815 	if (hace_dev->version != AST2600_VERSION)
816 		return;
817 
818 	for (i = 0; i < ARRAY_SIZE(aspeed_ahash_algs_g6); i++) {
819 		aspeed_ahash_algs_g6[i].hace_dev = hace_dev;
820 		rc = crypto_engine_register_ahash(&aspeed_ahash_algs_g6[i].alg.ahash);
821 		if (rc) {
822 			AHASH_DBG(hace_dev, "Failed to register %s\n",
823 				  aspeed_ahash_algs_g6[i].alg.ahash.base.halg.base.cra_name);
824 		}
825 	}
826 }
827