xref: /qemu/hw/i386/intel_iommu.c (revision 21596064081e8d0c0153f68714981c7f0e040973)
1 /*
2  * QEMU emulation of an Intel IOMMU (VT-d)
3  *   (DMA Remapping device)
4  *
5  * Copyright (C) 2013 Knut Omang, Oracle <knut.omang@oracle.com>
6  * Copyright (C) 2014 Le Tan, <tamlokveer@gmail.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12 
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17 
18  * You should have received a copy of the GNU General Public License along
19  * with this program; if not, see <http://www.gnu.org/licenses/>.
20  */
21 
22 #include "qemu/osdep.h"
23 #include "qemu/error-report.h"
24 #include "qemu/main-loop.h"
25 #include "qapi/error.h"
26 #include "hw/sysbus.h"
27 #include "intel_iommu_internal.h"
28 #include "hw/pci/pci.h"
29 #include "hw/pci/pci_bus.h"
30 #include "hw/qdev-properties.h"
31 #include "hw/i386/pc.h"
32 #include "hw/i386/apic-msidef.h"
33 #include "hw/i386/x86-iommu.h"
34 #include "hw/pci-host/q35.h"
35 #include "system/kvm.h"
36 #include "system/dma.h"
37 #include "system/system.h"
38 #include "hw/i386/apic_internal.h"
39 #include "kvm/kvm_i386.h"
40 #include "migration/vmstate.h"
41 #include "trace.h"
42 
43 /* context entry operations */
44 #define VTD_CE_GET_RID2PASID(ce) \
45     ((ce)->val[1] & VTD_SM_CONTEXT_ENTRY_RID2PASID_MASK)
46 #define VTD_CE_GET_PASID_DIR_TABLE(ce) \
47     ((ce)->val[0] & VTD_PASID_DIR_BASE_ADDR_MASK)
48 
49 /* pe operations */
50 #define VTD_PE_GET_TYPE(pe) ((pe)->val[0] & VTD_SM_PASID_ENTRY_PGTT)
51 #define VTD_PE_GET_FL_LEVEL(pe) \
52     (4 + (((pe)->val[2] >> 2) & VTD_SM_PASID_ENTRY_FLPM))
53 #define VTD_PE_GET_SL_LEVEL(pe) \
54     (2 + (((pe)->val[0] >> 2) & VTD_SM_PASID_ENTRY_AW))
55 
56 /*
57  * PCI bus number (or SID) is not reliable since the device is usaully
58  * initialized before guest can configure the PCI bridge
59  * (SECONDARY_BUS_NUMBER).
60  */
61 struct vtd_as_key {
62     PCIBus *bus;
63     uint8_t devfn;
64     uint32_t pasid;
65 };
66 
67 /* bus/devfn is PCI device's real BDF not the aliased one */
68 struct vtd_hiod_key {
69     PCIBus *bus;
70     uint8_t devfn;
71 };
72 
73 struct vtd_as_raw_key {
74     uint16_t sid;
75     uint32_t pasid;
76 };
77 
78 struct vtd_iotlb_key {
79     uint64_t gfn;
80     uint32_t pasid;
81     uint16_t sid;
82     uint8_t level;
83 };
84 
85 static void vtd_address_space_refresh_all(IntelIOMMUState *s);
86 static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n);
87 
vtd_panic_require_caching_mode(void)88 static void vtd_panic_require_caching_mode(void)
89 {
90     error_report("We need to set caching-mode=on for intel-iommu to enable "
91                  "device assignment with IOMMU protection.");
92     exit(1);
93 }
94 
vtd_define_quad(IntelIOMMUState * s,hwaddr addr,uint64_t val,uint64_t wmask,uint64_t w1cmask)95 static void vtd_define_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val,
96                             uint64_t wmask, uint64_t w1cmask)
97 {
98     stq_le_p(&s->csr[addr], val);
99     stq_le_p(&s->wmask[addr], wmask);
100     stq_le_p(&s->w1cmask[addr], w1cmask);
101 }
102 
vtd_define_quad_wo(IntelIOMMUState * s,hwaddr addr,uint64_t mask)103 static void vtd_define_quad_wo(IntelIOMMUState *s, hwaddr addr, uint64_t mask)
104 {
105     stq_le_p(&s->womask[addr], mask);
106 }
107 
vtd_define_long(IntelIOMMUState * s,hwaddr addr,uint32_t val,uint32_t wmask,uint32_t w1cmask)108 static void vtd_define_long(IntelIOMMUState *s, hwaddr addr, uint32_t val,
109                             uint32_t wmask, uint32_t w1cmask)
110 {
111     stl_le_p(&s->csr[addr], val);
112     stl_le_p(&s->wmask[addr], wmask);
113     stl_le_p(&s->w1cmask[addr], w1cmask);
114 }
115 
vtd_define_long_wo(IntelIOMMUState * s,hwaddr addr,uint32_t mask)116 static void vtd_define_long_wo(IntelIOMMUState *s, hwaddr addr, uint32_t mask)
117 {
118     stl_le_p(&s->womask[addr], mask);
119 }
120 
121 /* "External" get/set operations */
vtd_set_quad(IntelIOMMUState * s,hwaddr addr,uint64_t val)122 static void vtd_set_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val)
123 {
124     uint64_t oldval = ldq_le_p(&s->csr[addr]);
125     uint64_t wmask = ldq_le_p(&s->wmask[addr]);
126     uint64_t w1cmask = ldq_le_p(&s->w1cmask[addr]);
127     stq_le_p(&s->csr[addr],
128              ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
129 }
130 
vtd_set_long(IntelIOMMUState * s,hwaddr addr,uint32_t val)131 static void vtd_set_long(IntelIOMMUState *s, hwaddr addr, uint32_t val)
132 {
133     uint32_t oldval = ldl_le_p(&s->csr[addr]);
134     uint32_t wmask = ldl_le_p(&s->wmask[addr]);
135     uint32_t w1cmask = ldl_le_p(&s->w1cmask[addr]);
136     stl_le_p(&s->csr[addr],
137              ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
138 }
139 
vtd_get_quad(IntelIOMMUState * s,hwaddr addr)140 static uint64_t vtd_get_quad(IntelIOMMUState *s, hwaddr addr)
141 {
142     uint64_t val = ldq_le_p(&s->csr[addr]);
143     uint64_t womask = ldq_le_p(&s->womask[addr]);
144     return val & ~womask;
145 }
146 
vtd_get_long(IntelIOMMUState * s,hwaddr addr)147 static uint32_t vtd_get_long(IntelIOMMUState *s, hwaddr addr)
148 {
149     uint32_t val = ldl_le_p(&s->csr[addr]);
150     uint32_t womask = ldl_le_p(&s->womask[addr]);
151     return val & ~womask;
152 }
153 
154 /* "Internal" get/set operations */
vtd_get_quad_raw(IntelIOMMUState * s,hwaddr addr)155 static uint64_t vtd_get_quad_raw(IntelIOMMUState *s, hwaddr addr)
156 {
157     return ldq_le_p(&s->csr[addr]);
158 }
159 
vtd_get_long_raw(IntelIOMMUState * s,hwaddr addr)160 static uint32_t vtd_get_long_raw(IntelIOMMUState *s, hwaddr addr)
161 {
162     return ldl_le_p(&s->csr[addr]);
163 }
164 
vtd_set_quad_raw(IntelIOMMUState * s,hwaddr addr,uint64_t val)165 static void vtd_set_quad_raw(IntelIOMMUState *s, hwaddr addr, uint64_t val)
166 {
167     stq_le_p(&s->csr[addr], val);
168 }
169 
vtd_set_clear_mask_long(IntelIOMMUState * s,hwaddr addr,uint32_t clear,uint32_t mask)170 static uint32_t vtd_set_clear_mask_long(IntelIOMMUState *s, hwaddr addr,
171                                         uint32_t clear, uint32_t mask)
172 {
173     uint32_t new_val = (ldl_le_p(&s->csr[addr]) & ~clear) | mask;
174     stl_le_p(&s->csr[addr], new_val);
175     return new_val;
176 }
177 
vtd_set_clear_mask_quad(IntelIOMMUState * s,hwaddr addr,uint64_t clear,uint64_t mask)178 static uint64_t vtd_set_clear_mask_quad(IntelIOMMUState *s, hwaddr addr,
179                                         uint64_t clear, uint64_t mask)
180 {
181     uint64_t new_val = (ldq_le_p(&s->csr[addr]) & ~clear) | mask;
182     stq_le_p(&s->csr[addr], new_val);
183     return new_val;
184 }
185 
vtd_iommu_lock(IntelIOMMUState * s)186 static inline void vtd_iommu_lock(IntelIOMMUState *s)
187 {
188     qemu_mutex_lock(&s->iommu_lock);
189 }
190 
vtd_iommu_unlock(IntelIOMMUState * s)191 static inline void vtd_iommu_unlock(IntelIOMMUState *s)
192 {
193     qemu_mutex_unlock(&s->iommu_lock);
194 }
195 
vtd_update_scalable_state(IntelIOMMUState * s)196 static void vtd_update_scalable_state(IntelIOMMUState *s)
197 {
198     uint64_t val = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
199 
200     if (s->scalable_mode) {
201         s->root_scalable = val & VTD_RTADDR_SMT;
202     }
203 }
204 
vtd_update_iq_dw(IntelIOMMUState * s)205 static void vtd_update_iq_dw(IntelIOMMUState *s)
206 {
207     uint64_t val = vtd_get_quad_raw(s, DMAR_IQA_REG);
208 
209     if (s->ecap & VTD_ECAP_SMTS &&
210         val & VTD_IQA_DW_MASK) {
211         s->iq_dw = true;
212     } else {
213         s->iq_dw = false;
214     }
215 }
216 
217 /* Whether the address space needs to notify new mappings */
vtd_as_has_map_notifier(VTDAddressSpace * as)218 static inline gboolean vtd_as_has_map_notifier(VTDAddressSpace *as)
219 {
220     return as->notifier_flags & IOMMU_NOTIFIER_MAP;
221 }
222 
223 /* GHashTable functions */
vtd_iotlb_equal(gconstpointer v1,gconstpointer v2)224 static gboolean vtd_iotlb_equal(gconstpointer v1, gconstpointer v2)
225 {
226     const struct vtd_iotlb_key *key1 = v1;
227     const struct vtd_iotlb_key *key2 = v2;
228 
229     return key1->sid == key2->sid &&
230            key1->pasid == key2->pasid &&
231            key1->level == key2->level &&
232            key1->gfn == key2->gfn;
233 }
234 
vtd_iotlb_hash(gconstpointer v)235 static guint vtd_iotlb_hash(gconstpointer v)
236 {
237     const struct vtd_iotlb_key *key = v;
238     uint64_t hash64 = key->gfn | ((uint64_t)(key->sid) << VTD_IOTLB_SID_SHIFT) |
239         (uint64_t)(key->level - 1) << VTD_IOTLB_LVL_SHIFT |
240         (uint64_t)(key->pasid) << VTD_IOTLB_PASID_SHIFT;
241 
242     return (guint)((hash64 >> 32) ^ (hash64 & 0xffffffffU));
243 }
244 
vtd_as_equal(gconstpointer v1,gconstpointer v2)245 static gboolean vtd_as_equal(gconstpointer v1, gconstpointer v2)
246 {
247     const struct vtd_as_key *key1 = v1;
248     const struct vtd_as_key *key2 = v2;
249 
250     return (key1->bus == key2->bus) && (key1->devfn == key2->devfn) &&
251            (key1->pasid == key2->pasid);
252 }
253 
254 /*
255  * Note that we use pointer to PCIBus as the key, so hashing/shifting
256  * based on the pointer value is intended. Note that we deal with
257  * collisions through vtd_as_equal().
258  */
vtd_as_hash(gconstpointer v)259 static guint vtd_as_hash(gconstpointer v)
260 {
261     const struct vtd_as_key *key = v;
262     guint value = (guint)(uintptr_t)key->bus;
263 
264     return (guint)(value << 8 | key->devfn);
265 }
266 
267 /* Same implementation as vtd_as_hash() */
vtd_hiod_hash(gconstpointer v)268 static guint vtd_hiod_hash(gconstpointer v)
269 {
270     return vtd_as_hash(v);
271 }
272 
vtd_hiod_equal(gconstpointer v1,gconstpointer v2)273 static gboolean vtd_hiod_equal(gconstpointer v1, gconstpointer v2)
274 {
275     const struct vtd_hiod_key *key1 = v1;
276     const struct vtd_hiod_key *key2 = v2;
277 
278     return (key1->bus == key2->bus) && (key1->devfn == key2->devfn);
279 }
280 
vtd_hiod_destroy(gpointer v)281 static void vtd_hiod_destroy(gpointer v)
282 {
283     object_unref(v);
284 }
285 
vtd_hash_remove_by_domain(gpointer key,gpointer value,gpointer user_data)286 static gboolean vtd_hash_remove_by_domain(gpointer key, gpointer value,
287                                           gpointer user_data)
288 {
289     VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
290     uint16_t domain_id = *(uint16_t *)user_data;
291     return entry->domain_id == domain_id;
292 }
293 
294 /* The shift of an addr for a certain level of paging structure */
vtd_pt_level_shift(uint32_t level)295 static inline uint32_t vtd_pt_level_shift(uint32_t level)
296 {
297     assert(level != 0);
298     return VTD_PAGE_SHIFT_4K + (level - 1) * VTD_LEVEL_BITS;
299 }
300 
vtd_pt_level_page_mask(uint32_t level)301 static inline uint64_t vtd_pt_level_page_mask(uint32_t level)
302 {
303     return ~((1ULL << vtd_pt_level_shift(level)) - 1);
304 }
305 
vtd_hash_remove_by_page(gpointer key,gpointer value,gpointer user_data)306 static gboolean vtd_hash_remove_by_page(gpointer key, gpointer value,
307                                         gpointer user_data)
308 {
309     VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
310     VTDIOTLBPageInvInfo *info = (VTDIOTLBPageInvInfo *)user_data;
311     uint64_t gfn = (info->addr >> VTD_PAGE_SHIFT_4K) & info->mask;
312     uint64_t gfn_tlb = (info->addr & entry->mask) >> VTD_PAGE_SHIFT_4K;
313 
314     if (entry->domain_id != info->domain_id) {
315         return false;
316     }
317 
318     /*
319      * According to spec, IOTLB entries caching first-stage (PGTT=001b) or
320      * nested (PGTT=011b) mapping associated with specified domain-id are
321      * invalidated. Nested isn't supported yet, so only need to check 001b.
322      */
323     if (entry->pgtt == VTD_SM_PASID_ENTRY_FLT) {
324         return true;
325     }
326 
327     return (entry->gfn & info->mask) == gfn || entry->gfn == gfn_tlb;
328 }
329 
vtd_hash_remove_by_page_piotlb(gpointer key,gpointer value,gpointer user_data)330 static gboolean vtd_hash_remove_by_page_piotlb(gpointer key, gpointer value,
331                                                gpointer user_data)
332 {
333     VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
334     VTDIOTLBPageInvInfo *info = (VTDIOTLBPageInvInfo *)user_data;
335     uint64_t gfn = (info->addr >> VTD_PAGE_SHIFT_4K) & info->mask;
336     uint64_t gfn_tlb = (info->addr & entry->mask) >> VTD_PAGE_SHIFT_4K;
337 
338     /*
339      * According to spec, PASID-based-IOTLB Invalidation in page granularity
340      * doesn't invalidate IOTLB entries caching second-stage (PGTT=010b)
341      * or pass-through (PGTT=100b) mappings. Nested isn't supported yet,
342      * so only need to check first-stage (PGTT=001b) mappings.
343      */
344     if (entry->pgtt != VTD_SM_PASID_ENTRY_FLT) {
345         return false;
346     }
347 
348     return entry->domain_id == info->domain_id && entry->pasid == info->pasid &&
349            ((entry->gfn & info->mask) == gfn || entry->gfn == gfn_tlb);
350 }
351 
352 /* Reset all the gen of VTDAddressSpace to zero and set the gen of
353  * IntelIOMMUState to 1.  Must be called with IOMMU lock held.
354  */
vtd_reset_context_cache_locked(IntelIOMMUState * s)355 static void vtd_reset_context_cache_locked(IntelIOMMUState *s)
356 {
357     VTDAddressSpace *vtd_as;
358     GHashTableIter as_it;
359 
360     trace_vtd_context_cache_reset();
361 
362     g_hash_table_iter_init(&as_it, s->vtd_address_spaces);
363 
364     while (g_hash_table_iter_next(&as_it, NULL, (void **)&vtd_as)) {
365         vtd_as->context_cache_entry.context_cache_gen = 0;
366     }
367     s->context_cache_gen = 1;
368 }
369 
370 /* Must be called with IOMMU lock held. */
vtd_reset_iotlb_locked(IntelIOMMUState * s)371 static void vtd_reset_iotlb_locked(IntelIOMMUState *s)
372 {
373     assert(s->iotlb);
374     g_hash_table_remove_all(s->iotlb);
375 }
376 
vtd_reset_iotlb(IntelIOMMUState * s)377 static void vtd_reset_iotlb(IntelIOMMUState *s)
378 {
379     vtd_iommu_lock(s);
380     vtd_reset_iotlb_locked(s);
381     vtd_iommu_unlock(s);
382 }
383 
vtd_reset_caches(IntelIOMMUState * s)384 static void vtd_reset_caches(IntelIOMMUState *s)
385 {
386     vtd_iommu_lock(s);
387     vtd_reset_iotlb_locked(s);
388     vtd_reset_context_cache_locked(s);
389     vtd_iommu_unlock(s);
390 }
391 
vtd_get_iotlb_gfn(hwaddr addr,uint32_t level)392 static uint64_t vtd_get_iotlb_gfn(hwaddr addr, uint32_t level)
393 {
394     return (addr & vtd_pt_level_page_mask(level)) >> VTD_PAGE_SHIFT_4K;
395 }
396 
397 /* Must be called with IOMMU lock held */
vtd_lookup_iotlb(IntelIOMMUState * s,uint16_t source_id,uint32_t pasid,hwaddr addr)398 static VTDIOTLBEntry *vtd_lookup_iotlb(IntelIOMMUState *s, uint16_t source_id,
399                                        uint32_t pasid, hwaddr addr)
400 {
401     struct vtd_iotlb_key key;
402     VTDIOTLBEntry *entry;
403     unsigned level;
404 
405     for (level = VTD_PT_LEVEL; level < VTD_PML4_LEVEL; level++) {
406         key.gfn = vtd_get_iotlb_gfn(addr, level);
407         key.level = level;
408         key.sid = source_id;
409         key.pasid = pasid;
410         entry = g_hash_table_lookup(s->iotlb, &key);
411         if (entry) {
412             goto out;
413         }
414     }
415 
416 out:
417     return entry;
418 }
419 
420 /* Must be with IOMMU lock held */
vtd_update_iotlb(IntelIOMMUState * s,uint16_t source_id,uint16_t domain_id,hwaddr addr,uint64_t pte,uint8_t access_flags,uint32_t level,uint32_t pasid,uint8_t pgtt)421 static void vtd_update_iotlb(IntelIOMMUState *s, uint16_t source_id,
422                              uint16_t domain_id, hwaddr addr, uint64_t pte,
423                              uint8_t access_flags, uint32_t level,
424                              uint32_t pasid, uint8_t pgtt)
425 {
426     VTDIOTLBEntry *entry = g_malloc(sizeof(*entry));
427     struct vtd_iotlb_key *key = g_malloc(sizeof(*key));
428     uint64_t gfn = vtd_get_iotlb_gfn(addr, level);
429 
430     trace_vtd_iotlb_page_update(source_id, addr, pte, domain_id);
431     if (g_hash_table_size(s->iotlb) >= VTD_IOTLB_MAX_SIZE) {
432         trace_vtd_iotlb_reset("iotlb exceeds size limit");
433         vtd_reset_iotlb_locked(s);
434     }
435 
436     entry->gfn = gfn;
437     entry->domain_id = domain_id;
438     entry->pte = pte;
439     entry->access_flags = access_flags;
440     entry->mask = vtd_pt_level_page_mask(level);
441     entry->pasid = pasid;
442     entry->pgtt = pgtt;
443 
444     key->gfn = gfn;
445     key->sid = source_id;
446     key->level = level;
447     key->pasid = pasid;
448 
449     g_hash_table_replace(s->iotlb, key, entry);
450 }
451 
452 /* Given the reg addr of both the message data and address, generate an
453  * interrupt via MSI.
454  */
vtd_generate_interrupt(IntelIOMMUState * s,hwaddr mesg_addr_reg,hwaddr mesg_data_reg)455 static void vtd_generate_interrupt(IntelIOMMUState *s, hwaddr mesg_addr_reg,
456                                    hwaddr mesg_data_reg)
457 {
458     MSIMessage msi;
459 
460     assert(mesg_data_reg < DMAR_REG_SIZE);
461     assert(mesg_addr_reg < DMAR_REG_SIZE);
462 
463     msi.address = vtd_get_long_raw(s, mesg_addr_reg);
464     msi.data = vtd_get_long_raw(s, mesg_data_reg);
465 
466     trace_vtd_irq_generate(msi.address, msi.data);
467 
468     apic_get_class(NULL)->send_msi(&msi);
469 }
470 
471 /* Generate a fault event to software via MSI if conditions are met.
472  * Notice that the value of FSTS_REG being passed to it should be the one
473  * before any update.
474  */
vtd_generate_fault_event(IntelIOMMUState * s,uint32_t pre_fsts)475 static void vtd_generate_fault_event(IntelIOMMUState *s, uint32_t pre_fsts)
476 {
477     if (pre_fsts & VTD_FSTS_PPF || pre_fsts & VTD_FSTS_PFO ||
478         pre_fsts & VTD_FSTS_IQE) {
479         error_report_once("There are previous interrupt conditions "
480                           "to be serviced by software, fault event "
481                           "is not generated");
482         return;
483     }
484     vtd_set_clear_mask_long(s, DMAR_FECTL_REG, 0, VTD_FECTL_IP);
485     if (vtd_get_long_raw(s, DMAR_FECTL_REG) & VTD_FECTL_IM) {
486         error_report_once("Interrupt Mask set, irq is not generated");
487     } else {
488         vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
489         vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
490     }
491 }
492 
493 /* Check if the Fault (F) field of the Fault Recording Register referenced by
494  * @index is Set.
495  */
vtd_is_frcd_set(IntelIOMMUState * s,uint16_t index)496 static bool vtd_is_frcd_set(IntelIOMMUState *s, uint16_t index)
497 {
498     /* Each reg is 128-bit */
499     hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
500     addr += 8; /* Access the high 64-bit half */
501 
502     assert(index < DMAR_FRCD_REG_NR);
503 
504     return vtd_get_quad_raw(s, addr) & VTD_FRCD_F;
505 }
506 
507 /* Update the PPF field of Fault Status Register.
508  * Should be called whenever change the F field of any fault recording
509  * registers.
510  */
vtd_update_fsts_ppf(IntelIOMMUState * s)511 static void vtd_update_fsts_ppf(IntelIOMMUState *s)
512 {
513     uint32_t i;
514     uint32_t ppf_mask = 0;
515 
516     for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
517         if (vtd_is_frcd_set(s, i)) {
518             ppf_mask = VTD_FSTS_PPF;
519             break;
520         }
521     }
522     vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_PPF, ppf_mask);
523     trace_vtd_fsts_ppf(!!ppf_mask);
524 }
525 
vtd_set_frcd_and_update_ppf(IntelIOMMUState * s,uint16_t index)526 static void vtd_set_frcd_and_update_ppf(IntelIOMMUState *s, uint16_t index)
527 {
528     /* Each reg is 128-bit */
529     hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
530     addr += 8; /* Access the high 64-bit half */
531 
532     assert(index < DMAR_FRCD_REG_NR);
533 
534     vtd_set_clear_mask_quad(s, addr, 0, VTD_FRCD_F);
535     vtd_update_fsts_ppf(s);
536 }
537 
538 /* Must not update F field now, should be done later */
vtd_record_frcd(IntelIOMMUState * s,uint16_t index,uint64_t hi,uint64_t lo)539 static void vtd_record_frcd(IntelIOMMUState *s, uint16_t index,
540                             uint64_t hi, uint64_t lo)
541 {
542     hwaddr frcd_reg_addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
543 
544     assert(index < DMAR_FRCD_REG_NR);
545 
546     vtd_set_quad_raw(s, frcd_reg_addr, lo);
547     vtd_set_quad_raw(s, frcd_reg_addr + 8, hi);
548 
549     trace_vtd_frr_new(index, hi, lo);
550 }
551 
552 /* Try to collapse multiple pending faults from the same requester */
vtd_try_collapse_fault(IntelIOMMUState * s,uint16_t source_id)553 static bool vtd_try_collapse_fault(IntelIOMMUState *s, uint16_t source_id)
554 {
555     uint32_t i;
556     uint64_t frcd_reg;
557     hwaddr addr = DMAR_FRCD_REG_OFFSET + 8; /* The high 64-bit half */
558 
559     for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
560         frcd_reg = vtd_get_quad_raw(s, addr);
561         if ((frcd_reg & VTD_FRCD_F) &&
562             ((frcd_reg & VTD_FRCD_SID_MASK) == source_id)) {
563             return true;
564         }
565         addr += 16; /* 128-bit for each */
566     }
567     return false;
568 }
569 
570 /* Log and report an DMAR (address translation) fault to software */
vtd_report_frcd_fault(IntelIOMMUState * s,uint64_t source_id,uint64_t hi,uint64_t lo)571 static void vtd_report_frcd_fault(IntelIOMMUState *s, uint64_t source_id,
572                                   uint64_t hi, uint64_t lo)
573 {
574     uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
575 
576     if (fsts_reg & VTD_FSTS_PFO) {
577         error_report_once("New fault is not recorded due to "
578                           "Primary Fault Overflow");
579         return;
580     }
581 
582     if (vtd_try_collapse_fault(s, source_id)) {
583         error_report_once("New fault is not recorded due to "
584                           "compression of faults");
585         return;
586     }
587 
588     if (vtd_is_frcd_set(s, s->next_frcd_reg)) {
589         error_report_once("Next Fault Recording Reg is used, "
590                           "new fault is not recorded, set PFO field");
591         vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_PFO);
592         return;
593     }
594 
595     vtd_record_frcd(s, s->next_frcd_reg, hi, lo);
596 
597     if (fsts_reg & VTD_FSTS_PPF) {
598         error_report_once("There are pending faults already, "
599                           "fault event is not generated");
600         vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg);
601         s->next_frcd_reg++;
602         if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
603             s->next_frcd_reg = 0;
604         }
605     } else {
606         vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_FRI_MASK,
607                                 VTD_FSTS_FRI(s->next_frcd_reg));
608         vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg); /* Will set PPF */
609         s->next_frcd_reg++;
610         if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
611             s->next_frcd_reg = 0;
612         }
613         /* This case actually cause the PPF to be Set.
614          * So generate fault event (interrupt).
615          */
616          vtd_generate_fault_event(s, fsts_reg);
617     }
618 }
619 
620 /* Log and report an DMAR (address translation) fault to software */
vtd_report_dmar_fault(IntelIOMMUState * s,uint16_t source_id,hwaddr addr,VTDFaultReason fault,bool is_write,bool is_pasid,uint32_t pasid)621 static void vtd_report_dmar_fault(IntelIOMMUState *s, uint16_t source_id,
622                                   hwaddr addr, VTDFaultReason fault,
623                                   bool is_write, bool is_pasid,
624                                   uint32_t pasid)
625 {
626     uint64_t hi, lo;
627 
628     assert(fault < VTD_FR_MAX);
629 
630     trace_vtd_dmar_fault(source_id, fault, addr, is_write);
631 
632     lo = VTD_FRCD_FI(addr);
633     hi = VTD_FRCD_SID(source_id) | VTD_FRCD_FR(fault) |
634          VTD_FRCD_PV(pasid) | VTD_FRCD_PP(is_pasid);
635     if (!is_write) {
636         hi |= VTD_FRCD_T;
637     }
638 
639     vtd_report_frcd_fault(s, source_id, hi, lo);
640 }
641 
642 
vtd_report_ir_fault(IntelIOMMUState * s,uint64_t source_id,VTDFaultReason fault,uint16_t index)643 static void vtd_report_ir_fault(IntelIOMMUState *s, uint64_t source_id,
644                                 VTDFaultReason fault, uint16_t index)
645 {
646     uint64_t hi, lo;
647 
648     lo = VTD_FRCD_IR_IDX(index);
649     hi = VTD_FRCD_SID(source_id) | VTD_FRCD_FR(fault);
650 
651     vtd_report_frcd_fault(s, source_id, hi, lo);
652 }
653 
654 /* Handle Invalidation Queue Errors of queued invalidation interface error
655  * conditions.
656  */
vtd_handle_inv_queue_error(IntelIOMMUState * s)657 static void vtd_handle_inv_queue_error(IntelIOMMUState *s)
658 {
659     uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
660 
661     vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_IQE);
662     vtd_generate_fault_event(s, fsts_reg);
663 }
664 
665 /* Set the IWC field and try to generate an invalidation completion interrupt */
vtd_generate_completion_event(IntelIOMMUState * s)666 static void vtd_generate_completion_event(IntelIOMMUState *s)
667 {
668     if (vtd_get_long_raw(s, DMAR_ICS_REG) & VTD_ICS_IWC) {
669         trace_vtd_inv_desc_wait_irq("One pending, skip current");
670         return;
671     }
672     vtd_set_clear_mask_long(s, DMAR_ICS_REG, 0, VTD_ICS_IWC);
673     vtd_set_clear_mask_long(s, DMAR_IECTL_REG, 0, VTD_IECTL_IP);
674     if (vtd_get_long_raw(s, DMAR_IECTL_REG) & VTD_IECTL_IM) {
675         trace_vtd_inv_desc_wait_irq("IM in IECTL_REG is set, "
676                                     "new event not generated");
677         return;
678     } else {
679         /* Generate the interrupt event */
680         trace_vtd_inv_desc_wait_irq("Generating complete event");
681         vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
682         vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
683     }
684 }
685 
vtd_root_entry_present(IntelIOMMUState * s,VTDRootEntry * re,uint8_t devfn)686 static inline bool vtd_root_entry_present(IntelIOMMUState *s,
687                                           VTDRootEntry *re,
688                                           uint8_t devfn)
689 {
690     if (s->root_scalable && devfn > UINT8_MAX / 2) {
691         return re->hi & VTD_ROOT_ENTRY_P;
692     }
693 
694     return re->lo & VTD_ROOT_ENTRY_P;
695 }
696 
vtd_get_root_entry(IntelIOMMUState * s,uint8_t index,VTDRootEntry * re)697 static int vtd_get_root_entry(IntelIOMMUState *s, uint8_t index,
698                               VTDRootEntry *re)
699 {
700     dma_addr_t addr;
701 
702     addr = s->root + index * sizeof(*re);
703     if (dma_memory_read(&address_space_memory, addr,
704                         re, sizeof(*re), MEMTXATTRS_UNSPECIFIED)) {
705         re->lo = 0;
706         return -VTD_FR_ROOT_TABLE_INV;
707     }
708     re->lo = le64_to_cpu(re->lo);
709     re->hi = le64_to_cpu(re->hi);
710     return 0;
711 }
712 
vtd_ce_present(VTDContextEntry * context)713 static inline bool vtd_ce_present(VTDContextEntry *context)
714 {
715     return context->lo & VTD_CONTEXT_ENTRY_P;
716 }
717 
vtd_get_context_entry_from_root(IntelIOMMUState * s,VTDRootEntry * re,uint8_t index,VTDContextEntry * ce)718 static int vtd_get_context_entry_from_root(IntelIOMMUState *s,
719                                            VTDRootEntry *re,
720                                            uint8_t index,
721                                            VTDContextEntry *ce)
722 {
723     dma_addr_t addr, ce_size;
724 
725     /* we have checked that root entry is present */
726     ce_size = s->root_scalable ? VTD_CTX_ENTRY_SCALABLE_SIZE :
727               VTD_CTX_ENTRY_LEGACY_SIZE;
728 
729     if (s->root_scalable && index > UINT8_MAX / 2) {
730         index = index & (~VTD_DEVFN_CHECK_MASK);
731         addr = re->hi & VTD_ROOT_ENTRY_CTP;
732     } else {
733         addr = re->lo & VTD_ROOT_ENTRY_CTP;
734     }
735 
736     addr = addr + index * ce_size;
737     if (dma_memory_read(&address_space_memory, addr,
738                         ce, ce_size, MEMTXATTRS_UNSPECIFIED)) {
739         return -VTD_FR_CONTEXT_TABLE_INV;
740     }
741 
742     ce->lo = le64_to_cpu(ce->lo);
743     ce->hi = le64_to_cpu(ce->hi);
744     if (ce_size == VTD_CTX_ENTRY_SCALABLE_SIZE) {
745         ce->val[2] = le64_to_cpu(ce->val[2]);
746         ce->val[3] = le64_to_cpu(ce->val[3]);
747     }
748     return 0;
749 }
750 
vtd_ce_get_slpt_base(VTDContextEntry * ce)751 static inline dma_addr_t vtd_ce_get_slpt_base(VTDContextEntry *ce)
752 {
753     return ce->lo & VTD_CONTEXT_ENTRY_SLPTPTR;
754 }
755 
vtd_get_pte_addr(uint64_t pte,uint8_t aw)756 static inline uint64_t vtd_get_pte_addr(uint64_t pte, uint8_t aw)
757 {
758     return pte & VTD_PT_BASE_ADDR_MASK(aw);
759 }
760 
761 /* Whether the pte indicates the address of the page frame */
vtd_is_last_pte(uint64_t pte,uint32_t level)762 static inline bool vtd_is_last_pte(uint64_t pte, uint32_t level)
763 {
764     return level == VTD_PT_LEVEL || (pte & VTD_PT_PAGE_SIZE_MASK);
765 }
766 
767 /* Get the content of a pte located in @base_addr[@index] */
vtd_get_pte(dma_addr_t base_addr,uint32_t index)768 static uint64_t vtd_get_pte(dma_addr_t base_addr, uint32_t index)
769 {
770     uint64_t pte;
771 
772     assert(index < VTD_PT_ENTRY_NR);
773 
774     if (dma_memory_read(&address_space_memory,
775                         base_addr + index * sizeof(pte),
776                         &pte, sizeof(pte), MEMTXATTRS_UNSPECIFIED)) {
777         pte = (uint64_t)-1;
778         return pte;
779     }
780     pte = le64_to_cpu(pte);
781     return pte;
782 }
783 
784 /* Given an iova and the level of paging structure, return the offset
785  * of current level.
786  */
vtd_iova_level_offset(uint64_t iova,uint32_t level)787 static inline uint32_t vtd_iova_level_offset(uint64_t iova, uint32_t level)
788 {
789     return (iova >> vtd_pt_level_shift(level)) &
790             ((1ULL << VTD_LEVEL_BITS) - 1);
791 }
792 
793 /* Check Capability Register to see if the @level of page-table is supported */
vtd_is_sl_level_supported(IntelIOMMUState * s,uint32_t level)794 static inline bool vtd_is_sl_level_supported(IntelIOMMUState *s, uint32_t level)
795 {
796     return VTD_CAP_SAGAW_MASK & s->cap &
797            (1ULL << (level - 2 + VTD_CAP_SAGAW_SHIFT));
798 }
799 
vtd_is_fl_level_supported(IntelIOMMUState * s,uint32_t level)800 static inline bool vtd_is_fl_level_supported(IntelIOMMUState *s, uint32_t level)
801 {
802     return level == VTD_PML4_LEVEL;
803 }
804 
805 /* Return true if check passed, otherwise false */
vtd_pe_type_check(IntelIOMMUState * s,VTDPASIDEntry * pe)806 static inline bool vtd_pe_type_check(IntelIOMMUState *s, VTDPASIDEntry *pe)
807 {
808     switch (VTD_PE_GET_TYPE(pe)) {
809     case VTD_SM_PASID_ENTRY_FLT:
810         return !!(s->ecap & VTD_ECAP_FLTS);
811     case VTD_SM_PASID_ENTRY_SLT:
812         return !!(s->ecap & VTD_ECAP_SLTS);
813     case VTD_SM_PASID_ENTRY_NESTED:
814         /* Not support NESTED page table type yet */
815         return false;
816     case VTD_SM_PASID_ENTRY_PT:
817         return !!(s->ecap & VTD_ECAP_PT);
818     default:
819         /* Unknown type */
820         return false;
821     }
822 }
823 
vtd_pdire_present(VTDPASIDDirEntry * pdire)824 static inline bool vtd_pdire_present(VTDPASIDDirEntry *pdire)
825 {
826     return pdire->val & 1;
827 }
828 
829 /**
830  * Caller of this function should check present bit if wants
831  * to use pdir entry for further usage except for fpd bit check.
832  */
vtd_get_pdire_from_pdir_table(dma_addr_t pasid_dir_base,uint32_t pasid,VTDPASIDDirEntry * pdire)833 static int vtd_get_pdire_from_pdir_table(dma_addr_t pasid_dir_base,
834                                          uint32_t pasid,
835                                          VTDPASIDDirEntry *pdire)
836 {
837     uint32_t index;
838     dma_addr_t addr, entry_size;
839 
840     index = VTD_PASID_DIR_INDEX(pasid);
841     entry_size = VTD_PASID_DIR_ENTRY_SIZE;
842     addr = pasid_dir_base + index * entry_size;
843     if (dma_memory_read(&address_space_memory, addr,
844                         pdire, entry_size, MEMTXATTRS_UNSPECIFIED)) {
845         return -VTD_FR_PASID_DIR_ACCESS_ERR;
846     }
847 
848     pdire->val = le64_to_cpu(pdire->val);
849 
850     return 0;
851 }
852 
vtd_pe_present(VTDPASIDEntry * pe)853 static inline bool vtd_pe_present(VTDPASIDEntry *pe)
854 {
855     return pe->val[0] & VTD_PASID_ENTRY_P;
856 }
857 
vtd_get_pe_in_pasid_leaf_table(IntelIOMMUState * s,uint32_t pasid,dma_addr_t addr,VTDPASIDEntry * pe)858 static int vtd_get_pe_in_pasid_leaf_table(IntelIOMMUState *s,
859                                           uint32_t pasid,
860                                           dma_addr_t addr,
861                                           VTDPASIDEntry *pe)
862 {
863     uint8_t pgtt;
864     uint32_t index;
865     dma_addr_t entry_size;
866 
867     index = VTD_PASID_TABLE_INDEX(pasid);
868     entry_size = VTD_PASID_ENTRY_SIZE;
869     addr = addr + index * entry_size;
870     if (dma_memory_read(&address_space_memory, addr,
871                         pe, entry_size, MEMTXATTRS_UNSPECIFIED)) {
872         return -VTD_FR_PASID_TABLE_ACCESS_ERR;
873     }
874     for (size_t i = 0; i < ARRAY_SIZE(pe->val); i++) {
875         pe->val[i] = le64_to_cpu(pe->val[i]);
876     }
877 
878     /* Do translation type check */
879     if (!vtd_pe_type_check(s, pe)) {
880         return -VTD_FR_PASID_TABLE_ENTRY_INV;
881     }
882 
883     pgtt = VTD_PE_GET_TYPE(pe);
884     if (pgtt == VTD_SM_PASID_ENTRY_SLT &&
885         !vtd_is_sl_level_supported(s, VTD_PE_GET_SL_LEVEL(pe))) {
886             return -VTD_FR_PASID_TABLE_ENTRY_INV;
887     }
888 
889     if (pgtt == VTD_SM_PASID_ENTRY_FLT &&
890         !vtd_is_fl_level_supported(s, VTD_PE_GET_FL_LEVEL(pe))) {
891             return -VTD_FR_PASID_TABLE_ENTRY_INV;
892     }
893 
894     return 0;
895 }
896 
897 /**
898  * Caller of this function should check present bit if wants
899  * to use pasid entry for further usage except for fpd bit check.
900  */
vtd_get_pe_from_pdire(IntelIOMMUState * s,uint32_t pasid,VTDPASIDDirEntry * pdire,VTDPASIDEntry * pe)901 static int vtd_get_pe_from_pdire(IntelIOMMUState *s,
902                                  uint32_t pasid,
903                                  VTDPASIDDirEntry *pdire,
904                                  VTDPASIDEntry *pe)
905 {
906     dma_addr_t addr = pdire->val & VTD_PASID_TABLE_BASE_ADDR_MASK;
907 
908     return vtd_get_pe_in_pasid_leaf_table(s, pasid, addr, pe);
909 }
910 
911 /**
912  * This function gets a pasid entry from a specified pasid
913  * table (includes dir and leaf table) with a specified pasid.
914  * Sanity check should be done to ensure return a present
915  * pasid entry to caller.
916  */
vtd_get_pe_from_pasid_table(IntelIOMMUState * s,dma_addr_t pasid_dir_base,uint32_t pasid,VTDPASIDEntry * pe)917 static int vtd_get_pe_from_pasid_table(IntelIOMMUState *s,
918                                        dma_addr_t pasid_dir_base,
919                                        uint32_t pasid,
920                                        VTDPASIDEntry *pe)
921 {
922     int ret;
923     VTDPASIDDirEntry pdire;
924 
925     ret = vtd_get_pdire_from_pdir_table(pasid_dir_base,
926                                         pasid, &pdire);
927     if (ret) {
928         return ret;
929     }
930 
931     if (!vtd_pdire_present(&pdire)) {
932         return -VTD_FR_PASID_DIR_ENTRY_P;
933     }
934 
935     ret = vtd_get_pe_from_pdire(s, pasid, &pdire, pe);
936     if (ret) {
937         return ret;
938     }
939 
940     if (!vtd_pe_present(pe)) {
941         return -VTD_FR_PASID_ENTRY_P;
942     }
943 
944     return 0;
945 }
946 
vtd_ce_get_rid2pasid_entry(IntelIOMMUState * s,VTDContextEntry * ce,VTDPASIDEntry * pe,uint32_t pasid)947 static int vtd_ce_get_rid2pasid_entry(IntelIOMMUState *s,
948                                       VTDContextEntry *ce,
949                                       VTDPASIDEntry *pe,
950                                       uint32_t pasid)
951 {
952     dma_addr_t pasid_dir_base;
953     int ret = 0;
954 
955     if (pasid == PCI_NO_PASID) {
956         pasid = VTD_CE_GET_RID2PASID(ce);
957     }
958     pasid_dir_base = VTD_CE_GET_PASID_DIR_TABLE(ce);
959     ret = vtd_get_pe_from_pasid_table(s, pasid_dir_base, pasid, pe);
960 
961     return ret;
962 }
963 
vtd_ce_get_pasid_fpd(IntelIOMMUState * s,VTDContextEntry * ce,bool * pe_fpd_set,uint32_t pasid)964 static int vtd_ce_get_pasid_fpd(IntelIOMMUState *s,
965                                 VTDContextEntry *ce,
966                                 bool *pe_fpd_set,
967                                 uint32_t pasid)
968 {
969     int ret;
970     dma_addr_t pasid_dir_base;
971     VTDPASIDDirEntry pdire;
972     VTDPASIDEntry pe;
973 
974     if (pasid == PCI_NO_PASID) {
975         pasid = VTD_CE_GET_RID2PASID(ce);
976     }
977     pasid_dir_base = VTD_CE_GET_PASID_DIR_TABLE(ce);
978 
979     /*
980      * No present bit check since fpd is meaningful even
981      * if the present bit is clear.
982      */
983     ret = vtd_get_pdire_from_pdir_table(pasid_dir_base, pasid, &pdire);
984     if (ret) {
985         return ret;
986     }
987 
988     if (pdire.val & VTD_PASID_DIR_FPD) {
989         *pe_fpd_set = true;
990         return 0;
991     }
992 
993     if (!vtd_pdire_present(&pdire)) {
994         return -VTD_FR_PASID_DIR_ENTRY_P;
995     }
996 
997     /*
998      * No present bit check since fpd is meaningful even
999      * if the present bit is clear.
1000      */
1001     ret = vtd_get_pe_from_pdire(s, pasid, &pdire, &pe);
1002     if (ret) {
1003         return ret;
1004     }
1005 
1006     if (pe.val[0] & VTD_PASID_ENTRY_FPD) {
1007         *pe_fpd_set = true;
1008     }
1009 
1010     return 0;
1011 }
1012 
1013 /* Get the page-table level that hardware should use for the second-level
1014  * page-table walk from the Address Width field of context-entry.
1015  */
vtd_ce_get_level(VTDContextEntry * ce)1016 static inline uint32_t vtd_ce_get_level(VTDContextEntry *ce)
1017 {
1018     return 2 + (ce->hi & VTD_CONTEXT_ENTRY_AW);
1019 }
1020 
vtd_get_iova_level(IntelIOMMUState * s,VTDContextEntry * ce,uint32_t pasid)1021 static uint32_t vtd_get_iova_level(IntelIOMMUState *s,
1022                                    VTDContextEntry *ce,
1023                                    uint32_t pasid)
1024 {
1025     VTDPASIDEntry pe;
1026 
1027     if (s->root_scalable) {
1028         vtd_ce_get_rid2pasid_entry(s, ce, &pe, pasid);
1029         if (s->flts) {
1030             return VTD_PE_GET_FL_LEVEL(&pe);
1031         } else {
1032             return VTD_PE_GET_SL_LEVEL(&pe);
1033         }
1034     }
1035 
1036     return vtd_ce_get_level(ce);
1037 }
1038 
vtd_ce_get_agaw(VTDContextEntry * ce)1039 static inline uint32_t vtd_ce_get_agaw(VTDContextEntry *ce)
1040 {
1041     return 30 + (ce->hi & VTD_CONTEXT_ENTRY_AW) * 9;
1042 }
1043 
vtd_get_iova_agaw(IntelIOMMUState * s,VTDContextEntry * ce,uint32_t pasid)1044 static uint32_t vtd_get_iova_agaw(IntelIOMMUState *s,
1045                                   VTDContextEntry *ce,
1046                                   uint32_t pasid)
1047 {
1048     VTDPASIDEntry pe;
1049 
1050     if (s->root_scalable) {
1051         vtd_ce_get_rid2pasid_entry(s, ce, &pe, pasid);
1052         return 30 + ((pe.val[0] >> 2) & VTD_SM_PASID_ENTRY_AW) * 9;
1053     }
1054 
1055     return vtd_ce_get_agaw(ce);
1056 }
1057 
vtd_ce_get_type(VTDContextEntry * ce)1058 static inline uint32_t vtd_ce_get_type(VTDContextEntry *ce)
1059 {
1060     return ce->lo & VTD_CONTEXT_ENTRY_TT;
1061 }
1062 
1063 /* Only for Legacy Mode. Return true if check passed, otherwise false */
vtd_ce_type_check(X86IOMMUState * x86_iommu,VTDContextEntry * ce)1064 static inline bool vtd_ce_type_check(X86IOMMUState *x86_iommu,
1065                                      VTDContextEntry *ce)
1066 {
1067     switch (vtd_ce_get_type(ce)) {
1068     case VTD_CONTEXT_TT_MULTI_LEVEL:
1069         /* Always supported */
1070         break;
1071     case VTD_CONTEXT_TT_DEV_IOTLB:
1072         if (!x86_iommu->dt_supported) {
1073             error_report_once("%s: DT specified but not supported", __func__);
1074             return false;
1075         }
1076         break;
1077     case VTD_CONTEXT_TT_PASS_THROUGH:
1078         if (!x86_iommu->pt_supported) {
1079             error_report_once("%s: PT specified but not supported", __func__);
1080             return false;
1081         }
1082         break;
1083     default:
1084         /* Unknown type */
1085         error_report_once("%s: unknown ce type: %"PRIu32, __func__,
1086                           vtd_ce_get_type(ce));
1087         return false;
1088     }
1089     return true;
1090 }
1091 
vtd_iova_limit(IntelIOMMUState * s,VTDContextEntry * ce,uint8_t aw,uint32_t pasid)1092 static inline uint64_t vtd_iova_limit(IntelIOMMUState *s,
1093                                       VTDContextEntry *ce, uint8_t aw,
1094                                       uint32_t pasid)
1095 {
1096     uint32_t ce_agaw = vtd_get_iova_agaw(s, ce, pasid);
1097     return 1ULL << MIN(ce_agaw, aw);
1098 }
1099 
1100 /* Return true if IOVA passes range check, otherwise false. */
vtd_iova_sl_range_check(IntelIOMMUState * s,uint64_t iova,VTDContextEntry * ce,uint8_t aw,uint32_t pasid)1101 static inline bool vtd_iova_sl_range_check(IntelIOMMUState *s,
1102                                            uint64_t iova, VTDContextEntry *ce,
1103                                            uint8_t aw, uint32_t pasid)
1104 {
1105     /*
1106      * Check if @iova is above 2^X-1, where X is the minimum of MGAW
1107      * in CAP_REG and AW in context-entry.
1108      */
1109     return !(iova & ~(vtd_iova_limit(s, ce, aw, pasid) - 1));
1110 }
1111 
vtd_get_iova_pgtbl_base(IntelIOMMUState * s,VTDContextEntry * ce,uint32_t pasid)1112 static dma_addr_t vtd_get_iova_pgtbl_base(IntelIOMMUState *s,
1113                                           VTDContextEntry *ce,
1114                                           uint32_t pasid)
1115 {
1116     VTDPASIDEntry pe;
1117 
1118     if (s->root_scalable) {
1119         vtd_ce_get_rid2pasid_entry(s, ce, &pe, pasid);
1120         if (s->flts) {
1121             return pe.val[2] & VTD_SM_PASID_ENTRY_FLPTPTR;
1122         } else {
1123             return pe.val[0] & VTD_SM_PASID_ENTRY_SLPTPTR;
1124         }
1125     }
1126 
1127     return vtd_ce_get_slpt_base(ce);
1128 }
1129 
1130 /*
1131  * Rsvd field masks for spte:
1132  *     vtd_spte_rsvd 4k pages
1133  *     vtd_spte_rsvd_large large pages
1134  *
1135  * We support only 3-level and 4-level page tables (see vtd_init() which
1136  * sets only VTD_CAP_SAGAW_39bit and maybe VTD_CAP_SAGAW_48bit bits in s->cap).
1137  */
1138 #define VTD_SPTE_RSVD_LEN 5
1139 static uint64_t vtd_spte_rsvd[VTD_SPTE_RSVD_LEN];
1140 static uint64_t vtd_spte_rsvd_large[VTD_SPTE_RSVD_LEN];
1141 
vtd_slpte_nonzero_rsvd(uint64_t slpte,uint32_t level)1142 static bool vtd_slpte_nonzero_rsvd(uint64_t slpte, uint32_t level)
1143 {
1144     uint64_t rsvd_mask;
1145 
1146     /*
1147      * We should have caught a guest-mis-programmed level earlier,
1148      * via vtd_is_sl_level_supported.
1149      */
1150     assert(level < VTD_SPTE_RSVD_LEN);
1151     /*
1152      * Zero level doesn't exist. The smallest level is VTD_PT_LEVEL=1 and
1153      * checked by vtd_is_last_pte().
1154      */
1155     assert(level);
1156 
1157     if ((level == VTD_PD_LEVEL || level == VTD_PDP_LEVEL) &&
1158         (slpte & VTD_PT_PAGE_SIZE_MASK)) {
1159         /* large page */
1160         rsvd_mask = vtd_spte_rsvd_large[level];
1161     } else {
1162         rsvd_mask = vtd_spte_rsvd[level];
1163     }
1164 
1165     return slpte & rsvd_mask;
1166 }
1167 
1168 /* Given the @iova, get relevant @slptep. @slpte_level will be the last level
1169  * of the translation, can be used for deciding the size of large page.
1170  */
vtd_iova_to_slpte(IntelIOMMUState * s,VTDContextEntry * ce,uint64_t iova,bool is_write,uint64_t * slptep,uint32_t * slpte_level,bool * reads,bool * writes,uint8_t aw_bits,uint32_t pasid)1171 static int vtd_iova_to_slpte(IntelIOMMUState *s, VTDContextEntry *ce,
1172                              uint64_t iova, bool is_write,
1173                              uint64_t *slptep, uint32_t *slpte_level,
1174                              bool *reads, bool *writes, uint8_t aw_bits,
1175                              uint32_t pasid)
1176 {
1177     dma_addr_t addr = vtd_get_iova_pgtbl_base(s, ce, pasid);
1178     uint32_t level = vtd_get_iova_level(s, ce, pasid);
1179     uint32_t offset;
1180     uint64_t slpte;
1181     uint64_t access_right_check;
1182 
1183     if (!vtd_iova_sl_range_check(s, iova, ce, aw_bits, pasid)) {
1184         error_report_once("%s: detected IOVA overflow (iova=0x%" PRIx64 ","
1185                           "pasid=0x%" PRIx32 ")", __func__, iova, pasid);
1186         return -VTD_FR_ADDR_BEYOND_MGAW;
1187     }
1188 
1189     /* FIXME: what is the Atomics request here? */
1190     access_right_check = is_write ? VTD_SL_W : VTD_SL_R;
1191 
1192     while (true) {
1193         offset = vtd_iova_level_offset(iova, level);
1194         slpte = vtd_get_pte(addr, offset);
1195 
1196         if (slpte == (uint64_t)-1) {
1197             error_report_once("%s: detected read error on DMAR slpte "
1198                               "(iova=0x%" PRIx64 ", pasid=0x%" PRIx32 ")",
1199                               __func__, iova, pasid);
1200             if (level == vtd_get_iova_level(s, ce, pasid)) {
1201                 /* Invalid programming of context-entry */
1202                 return -VTD_FR_CONTEXT_ENTRY_INV;
1203             } else {
1204                 return -VTD_FR_PAGING_ENTRY_INV;
1205             }
1206         }
1207         *reads = (*reads) && (slpte & VTD_SL_R);
1208         *writes = (*writes) && (slpte & VTD_SL_W);
1209         if (!(slpte & access_right_check)) {
1210             error_report_once("%s: detected slpte permission error "
1211                               "(iova=0x%" PRIx64 ", level=0x%" PRIx32 ", "
1212                               "slpte=0x%" PRIx64 ", write=%d, pasid=0x%"
1213                               PRIx32 ")", __func__, iova, level,
1214                               slpte, is_write, pasid);
1215             return is_write ? -VTD_FR_WRITE : -VTD_FR_READ;
1216         }
1217         if (vtd_slpte_nonzero_rsvd(slpte, level)) {
1218             error_report_once("%s: detected splte reserve non-zero "
1219                               "iova=0x%" PRIx64 ", level=0x%" PRIx32
1220                               "slpte=0x%" PRIx64 ", pasid=0x%" PRIX32 ")",
1221                               __func__, iova, level, slpte, pasid);
1222             return -VTD_FR_PAGING_ENTRY_RSVD;
1223         }
1224 
1225         if (vtd_is_last_pte(slpte, level)) {
1226             *slptep = slpte;
1227             *slpte_level = level;
1228             break;
1229         }
1230         addr = vtd_get_pte_addr(slpte, aw_bits);
1231         level--;
1232     }
1233 
1234     return 0;
1235 }
1236 
1237 typedef int (*vtd_page_walk_hook)(const IOMMUTLBEvent *event, void *private);
1238 
1239 /**
1240  * Constant information used during page walking
1241  *
1242  * @hook_fn: hook func to be called when detected page
1243  * @private: private data to be passed into hook func
1244  * @notify_unmap: whether we should notify invalid entries
1245  * @as: VT-d address space of the device
1246  * @aw: maximum address width
1247  * @domain: domain ID of the page walk
1248  */
1249 typedef struct {
1250     VTDAddressSpace *as;
1251     vtd_page_walk_hook hook_fn;
1252     void *private;
1253     bool notify_unmap;
1254     uint8_t aw;
1255     uint16_t domain_id;
1256 } vtd_page_walk_info;
1257 
vtd_page_walk_one(IOMMUTLBEvent * event,vtd_page_walk_info * info)1258 static int vtd_page_walk_one(IOMMUTLBEvent *event, vtd_page_walk_info *info)
1259 {
1260     VTDAddressSpace *as = info->as;
1261     vtd_page_walk_hook hook_fn = info->hook_fn;
1262     void *private = info->private;
1263     IOMMUTLBEntry *entry = &event->entry;
1264     DMAMap target = {
1265         .iova = entry->iova,
1266         .size = entry->addr_mask,
1267         .translated_addr = entry->translated_addr,
1268         .perm = entry->perm,
1269     };
1270     const DMAMap *mapped = iova_tree_find(as->iova_tree, &target);
1271 
1272     if (event->type == IOMMU_NOTIFIER_UNMAP && !info->notify_unmap) {
1273         trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask);
1274         return 0;
1275     }
1276 
1277     assert(hook_fn);
1278 
1279     /* Update local IOVA mapped ranges */
1280     if (event->type == IOMMU_NOTIFIER_MAP) {
1281         if (mapped) {
1282             /* If it's exactly the same translation, skip */
1283             if (!memcmp(mapped, &target, sizeof(target))) {
1284                 trace_vtd_page_walk_one_skip_map(entry->iova, entry->addr_mask,
1285                                                  entry->translated_addr);
1286                 return 0;
1287             } else {
1288                 /*
1289                  * Translation changed.  Normally this should not
1290                  * happen, but it can happen when with buggy guest
1291                  * OSes.  Note that there will be a small window that
1292                  * we don't have map at all.  But that's the best
1293                  * effort we can do.  The ideal way to emulate this is
1294                  * atomically modify the PTE to follow what has
1295                  * changed, but we can't.  One example is that vfio
1296                  * driver only has VFIO_IOMMU_[UN]MAP_DMA but no
1297                  * interface to modify a mapping (meanwhile it seems
1298                  * meaningless to even provide one).  Anyway, let's
1299                  * mark this as a TODO in case one day we'll have
1300                  * a better solution.
1301                  */
1302                 IOMMUAccessFlags cache_perm = entry->perm;
1303                 int ret;
1304 
1305                 /* Emulate an UNMAP */
1306                 event->type = IOMMU_NOTIFIER_UNMAP;
1307                 entry->perm = IOMMU_NONE;
1308                 trace_vtd_page_walk_one(info->domain_id,
1309                                         entry->iova,
1310                                         entry->translated_addr,
1311                                         entry->addr_mask,
1312                                         entry->perm);
1313                 ret = hook_fn(event, private);
1314                 if (ret) {
1315                     return ret;
1316                 }
1317                 /* Drop any existing mapping */
1318                 iova_tree_remove(as->iova_tree, target);
1319                 /* Recover the correct type */
1320                 event->type = IOMMU_NOTIFIER_MAP;
1321                 entry->perm = cache_perm;
1322             }
1323         }
1324         iova_tree_insert(as->iova_tree, &target);
1325     } else {
1326         if (!mapped) {
1327             /* Skip since we didn't map this range at all */
1328             trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask);
1329             return 0;
1330         }
1331         iova_tree_remove(as->iova_tree, target);
1332     }
1333 
1334     trace_vtd_page_walk_one(info->domain_id, entry->iova,
1335                             entry->translated_addr, entry->addr_mask,
1336                             entry->perm);
1337     return hook_fn(event, private);
1338 }
1339 
1340 /**
1341  * vtd_page_walk_level - walk over specific level for IOVA range
1342  *
1343  * @addr: base GPA addr to start the walk
1344  * @start: IOVA range start address
1345  * @end: IOVA range end address (start <= addr < end)
1346  * @read: whether parent level has read permission
1347  * @write: whether parent level has write permission
1348  * @info: constant information for the page walk
1349  */
vtd_page_walk_level(dma_addr_t addr,uint64_t start,uint64_t end,uint32_t level,bool read,bool write,vtd_page_walk_info * info)1350 static int vtd_page_walk_level(dma_addr_t addr, uint64_t start,
1351                                uint64_t end, uint32_t level, bool read,
1352                                bool write, vtd_page_walk_info *info)
1353 {
1354     bool read_cur, write_cur, entry_valid;
1355     uint32_t offset;
1356     uint64_t slpte;
1357     uint64_t subpage_size, subpage_mask;
1358     IOMMUTLBEvent event;
1359     uint64_t iova = start;
1360     uint64_t iova_next;
1361     int ret = 0;
1362 
1363     trace_vtd_page_walk_level(addr, level, start, end);
1364 
1365     subpage_size = 1ULL << vtd_pt_level_shift(level);
1366     subpage_mask = vtd_pt_level_page_mask(level);
1367 
1368     while (iova < end) {
1369         iova_next = (iova & subpage_mask) + subpage_size;
1370 
1371         offset = vtd_iova_level_offset(iova, level);
1372         slpte = vtd_get_pte(addr, offset);
1373 
1374         if (slpte == (uint64_t)-1) {
1375             trace_vtd_page_walk_skip_read(iova, iova_next);
1376             goto next;
1377         }
1378 
1379         if (vtd_slpte_nonzero_rsvd(slpte, level)) {
1380             trace_vtd_page_walk_skip_reserve(iova, iova_next);
1381             goto next;
1382         }
1383 
1384         /* Permissions are stacked with parents' */
1385         read_cur = read && (slpte & VTD_SL_R);
1386         write_cur = write && (slpte & VTD_SL_W);
1387 
1388         /*
1389          * As long as we have either read/write permission, this is a
1390          * valid entry. The rule works for both page entries and page
1391          * table entries.
1392          */
1393         entry_valid = read_cur | write_cur;
1394 
1395         if (!vtd_is_last_pte(slpte, level) && entry_valid) {
1396             /*
1397              * This is a valid PDE (or even bigger than PDE).  We need
1398              * to walk one further level.
1399              */
1400             ret = vtd_page_walk_level(vtd_get_pte_addr(slpte, info->aw),
1401                                       iova, MIN(iova_next, end), level - 1,
1402                                       read_cur, write_cur, info);
1403         } else {
1404             /*
1405              * This means we are either:
1406              *
1407              * (1) the real page entry (either 4K page, or huge page)
1408              * (2) the whole range is invalid
1409              *
1410              * In either case, we send an IOTLB notification down.
1411              */
1412             event.entry.target_as = &address_space_memory;
1413             event.entry.iova = iova & subpage_mask;
1414             event.entry.perm = IOMMU_ACCESS_FLAG(read_cur, write_cur);
1415             event.entry.addr_mask = ~subpage_mask;
1416             /* NOTE: this is only meaningful if entry_valid == true */
1417             event.entry.translated_addr = vtd_get_pte_addr(slpte, info->aw);
1418             event.type = event.entry.perm ? IOMMU_NOTIFIER_MAP :
1419                                             IOMMU_NOTIFIER_UNMAP;
1420             ret = vtd_page_walk_one(&event, info);
1421         }
1422 
1423         if (ret < 0) {
1424             return ret;
1425         }
1426 
1427 next:
1428         iova = iova_next;
1429     }
1430 
1431     return 0;
1432 }
1433 
1434 /**
1435  * vtd_page_walk - walk specific IOVA range, and call the hook
1436  *
1437  * @s: intel iommu state
1438  * @ce: context entry to walk upon
1439  * @start: IOVA address to start the walk
1440  * @end: IOVA range end address (start <= addr < end)
1441  * @info: page walking information struct
1442  */
vtd_page_walk(IntelIOMMUState * s,VTDContextEntry * ce,uint64_t start,uint64_t end,vtd_page_walk_info * info,uint32_t pasid)1443 static int vtd_page_walk(IntelIOMMUState *s, VTDContextEntry *ce,
1444                          uint64_t start, uint64_t end,
1445                          vtd_page_walk_info *info,
1446                          uint32_t pasid)
1447 {
1448     dma_addr_t addr = vtd_get_iova_pgtbl_base(s, ce, pasid);
1449     uint32_t level = vtd_get_iova_level(s, ce, pasid);
1450 
1451     if (!vtd_iova_sl_range_check(s, start, ce, info->aw, pasid)) {
1452         return -VTD_FR_ADDR_BEYOND_MGAW;
1453     }
1454 
1455     if (!vtd_iova_sl_range_check(s, end, ce, info->aw, pasid)) {
1456         /* Fix end so that it reaches the maximum */
1457         end = vtd_iova_limit(s, ce, info->aw, pasid);
1458     }
1459 
1460     return vtd_page_walk_level(addr, start, end, level, true, true, info);
1461 }
1462 
vtd_root_entry_rsvd_bits_check(IntelIOMMUState * s,VTDRootEntry * re)1463 static int vtd_root_entry_rsvd_bits_check(IntelIOMMUState *s,
1464                                           VTDRootEntry *re)
1465 {
1466     /* Legacy Mode reserved bits check */
1467     if (!s->root_scalable &&
1468         (re->hi || (re->lo & VTD_ROOT_ENTRY_RSVD(s->aw_bits))))
1469         goto rsvd_err;
1470 
1471     /* Scalable Mode reserved bits check */
1472     if (s->root_scalable &&
1473         ((re->lo & VTD_ROOT_ENTRY_RSVD(s->aw_bits)) ||
1474          (re->hi & VTD_ROOT_ENTRY_RSVD(s->aw_bits))))
1475         goto rsvd_err;
1476 
1477     return 0;
1478 
1479 rsvd_err:
1480     error_report_once("%s: invalid root entry: hi=0x%"PRIx64
1481                       ", lo=0x%"PRIx64,
1482                       __func__, re->hi, re->lo);
1483     return -VTD_FR_ROOT_ENTRY_RSVD;
1484 }
1485 
vtd_context_entry_rsvd_bits_check(IntelIOMMUState * s,VTDContextEntry * ce)1486 static inline int vtd_context_entry_rsvd_bits_check(IntelIOMMUState *s,
1487                                                     VTDContextEntry *ce)
1488 {
1489     if (!s->root_scalable &&
1490         (ce->hi & VTD_CONTEXT_ENTRY_RSVD_HI ||
1491          ce->lo & VTD_CONTEXT_ENTRY_RSVD_LO(s->aw_bits))) {
1492         error_report_once("%s: invalid context entry: hi=%"PRIx64
1493                           ", lo=%"PRIx64" (reserved nonzero)",
1494                           __func__, ce->hi, ce->lo);
1495         return -VTD_FR_CONTEXT_ENTRY_RSVD;
1496     }
1497 
1498     if (s->root_scalable &&
1499         (ce->val[0] & VTD_SM_CONTEXT_ENTRY_RSVD_VAL0(s->aw_bits) ||
1500          ce->val[1] & VTD_SM_CONTEXT_ENTRY_RSVD_VAL1 ||
1501          ce->val[2] ||
1502          ce->val[3])) {
1503         error_report_once("%s: invalid context entry: val[3]=%"PRIx64
1504                           ", val[2]=%"PRIx64
1505                           ", val[1]=%"PRIx64
1506                           ", val[0]=%"PRIx64" (reserved nonzero)",
1507                           __func__, ce->val[3], ce->val[2],
1508                           ce->val[1], ce->val[0]);
1509         return -VTD_FR_CONTEXT_ENTRY_RSVD;
1510     }
1511 
1512     return 0;
1513 }
1514 
vtd_ce_rid2pasid_check(IntelIOMMUState * s,VTDContextEntry * ce)1515 static int vtd_ce_rid2pasid_check(IntelIOMMUState *s,
1516                                   VTDContextEntry *ce)
1517 {
1518     VTDPASIDEntry pe;
1519 
1520     /*
1521      * Make sure in Scalable Mode, a present context entry
1522      * has valid rid2pasid setting, which includes valid
1523      * rid2pasid field and corresponding pasid entry setting
1524      */
1525     return vtd_ce_get_rid2pasid_entry(s, ce, &pe, PCI_NO_PASID);
1526 }
1527 
1528 /* Map a device to its corresponding domain (context-entry) */
vtd_dev_to_context_entry(IntelIOMMUState * s,uint8_t bus_num,uint8_t devfn,VTDContextEntry * ce)1529 static int vtd_dev_to_context_entry(IntelIOMMUState *s, uint8_t bus_num,
1530                                     uint8_t devfn, VTDContextEntry *ce)
1531 {
1532     VTDRootEntry re;
1533     int ret_fr;
1534     X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
1535 
1536     ret_fr = vtd_get_root_entry(s, bus_num, &re);
1537     if (ret_fr) {
1538         return ret_fr;
1539     }
1540 
1541     if (!vtd_root_entry_present(s, &re, devfn)) {
1542         /* Not error - it's okay we don't have root entry. */
1543         trace_vtd_re_not_present(bus_num);
1544         return -VTD_FR_ROOT_ENTRY_P;
1545     }
1546 
1547     ret_fr = vtd_root_entry_rsvd_bits_check(s, &re);
1548     if (ret_fr) {
1549         return ret_fr;
1550     }
1551 
1552     ret_fr = vtd_get_context_entry_from_root(s, &re, devfn, ce);
1553     if (ret_fr) {
1554         return ret_fr;
1555     }
1556 
1557     if (!vtd_ce_present(ce)) {
1558         /* Not error - it's okay we don't have context entry. */
1559         trace_vtd_ce_not_present(bus_num, devfn);
1560         return -VTD_FR_CONTEXT_ENTRY_P;
1561     }
1562 
1563     ret_fr = vtd_context_entry_rsvd_bits_check(s, ce);
1564     if (ret_fr) {
1565         return ret_fr;
1566     }
1567 
1568     /* Check if the programming of context-entry is valid */
1569     if (!s->root_scalable &&
1570         !vtd_is_sl_level_supported(s, vtd_ce_get_level(ce))) {
1571         error_report_once("%s: invalid context entry: hi=%"PRIx64
1572                           ", lo=%"PRIx64" (level %d not supported)",
1573                           __func__, ce->hi, ce->lo,
1574                           vtd_ce_get_level(ce));
1575         return -VTD_FR_CONTEXT_ENTRY_INV;
1576     }
1577 
1578     if (!s->root_scalable) {
1579         /* Do translation type check */
1580         if (!vtd_ce_type_check(x86_iommu, ce)) {
1581             /* Errors dumped in vtd_ce_type_check() */
1582             return -VTD_FR_CONTEXT_ENTRY_INV;
1583         }
1584     } else {
1585         /*
1586          * Check if the programming of context-entry.rid2pasid
1587          * and corresponding pasid setting is valid, and thus
1588          * avoids to check pasid entry fetching result in future
1589          * helper function calling.
1590          */
1591         ret_fr = vtd_ce_rid2pasid_check(s, ce);
1592         if (ret_fr) {
1593             return ret_fr;
1594         }
1595     }
1596 
1597     return 0;
1598 }
1599 
vtd_sync_shadow_page_hook(const IOMMUTLBEvent * event,void * private)1600 static int vtd_sync_shadow_page_hook(const IOMMUTLBEvent *event,
1601                                      void *private)
1602 {
1603     memory_region_notify_iommu(private, 0, *event);
1604     return 0;
1605 }
1606 
vtd_get_domain_id(IntelIOMMUState * s,VTDContextEntry * ce,uint32_t pasid)1607 static uint16_t vtd_get_domain_id(IntelIOMMUState *s,
1608                                   VTDContextEntry *ce,
1609                                   uint32_t pasid)
1610 {
1611     VTDPASIDEntry pe;
1612 
1613     if (s->root_scalable) {
1614         vtd_ce_get_rid2pasid_entry(s, ce, &pe, pasid);
1615         return VTD_SM_PASID_ENTRY_DID(pe.val[1]);
1616     }
1617 
1618     return VTD_CONTEXT_ENTRY_DID(ce->hi);
1619 }
1620 
vtd_sync_shadow_page_table_range(VTDAddressSpace * vtd_as,VTDContextEntry * ce,hwaddr addr,hwaddr size)1621 static int vtd_sync_shadow_page_table_range(VTDAddressSpace *vtd_as,
1622                                             VTDContextEntry *ce,
1623                                             hwaddr addr, hwaddr size)
1624 {
1625     IntelIOMMUState *s = vtd_as->iommu_state;
1626     vtd_page_walk_info info = {
1627         .hook_fn = vtd_sync_shadow_page_hook,
1628         .private = (void *)&vtd_as->iommu,
1629         .notify_unmap = true,
1630         .aw = s->aw_bits,
1631         .as = vtd_as,
1632         .domain_id = vtd_get_domain_id(s, ce, vtd_as->pasid),
1633     };
1634 
1635     return vtd_page_walk(s, ce, addr, addr + size, &info, vtd_as->pasid);
1636 }
1637 
vtd_address_space_sync(VTDAddressSpace * vtd_as)1638 static int vtd_address_space_sync(VTDAddressSpace *vtd_as)
1639 {
1640     int ret;
1641     VTDContextEntry ce;
1642     IOMMUNotifier *n;
1643 
1644     /* If no MAP notifier registered, we simply invalidate all the cache */
1645     if (!vtd_as_has_map_notifier(vtd_as)) {
1646         IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
1647             memory_region_unmap_iommu_notifier_range(n);
1648         }
1649         return 0;
1650     }
1651 
1652     ret = vtd_dev_to_context_entry(vtd_as->iommu_state,
1653                                    pci_bus_num(vtd_as->bus),
1654                                    vtd_as->devfn, &ce);
1655     if (ret) {
1656         if (ret == -VTD_FR_CONTEXT_ENTRY_P) {
1657             /*
1658              * It's a valid scenario to have a context entry that is
1659              * not present.  For example, when a device is removed
1660              * from an existing domain then the context entry will be
1661              * zeroed by the guest before it was put into another
1662              * domain.  When this happens, instead of synchronizing
1663              * the shadow pages we should invalidate all existing
1664              * mappings and notify the backends.
1665              */
1666             IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
1667                 vtd_address_space_unmap(vtd_as, n);
1668             }
1669             ret = 0;
1670         }
1671         return ret;
1672     }
1673 
1674     return vtd_sync_shadow_page_table_range(vtd_as, &ce, 0, UINT64_MAX);
1675 }
1676 
1677 /*
1678  * Check if specific device is configured to bypass address
1679  * translation for DMA requests. In Scalable Mode, bypass
1680  * 1st-level translation or 2nd-level translation, it depends
1681  * on PGTT setting.
1682  */
vtd_dev_pt_enabled(IntelIOMMUState * s,VTDContextEntry * ce,uint32_t pasid)1683 static bool vtd_dev_pt_enabled(IntelIOMMUState *s, VTDContextEntry *ce,
1684                                uint32_t pasid)
1685 {
1686     VTDPASIDEntry pe;
1687     int ret;
1688 
1689     if (s->root_scalable) {
1690         ret = vtd_ce_get_rid2pasid_entry(s, ce, &pe, pasid);
1691         if (ret) {
1692             /*
1693              * This error is guest triggerable. We should assumt PT
1694              * not enabled for safety.
1695              */
1696             return false;
1697         }
1698         return (VTD_PE_GET_TYPE(&pe) == VTD_SM_PASID_ENTRY_PT);
1699     }
1700 
1701     return (vtd_ce_get_type(ce) == VTD_CONTEXT_TT_PASS_THROUGH);
1702 
1703 }
1704 
vtd_as_pt_enabled(VTDAddressSpace * as)1705 static bool vtd_as_pt_enabled(VTDAddressSpace *as)
1706 {
1707     IntelIOMMUState *s;
1708     VTDContextEntry ce;
1709 
1710     assert(as);
1711 
1712     s = as->iommu_state;
1713     if (vtd_dev_to_context_entry(s, pci_bus_num(as->bus), as->devfn,
1714                                  &ce)) {
1715         /*
1716          * Possibly failed to parse the context entry for some reason
1717          * (e.g., during init, or any guest configuration errors on
1718          * context entries). We should assume PT not enabled for
1719          * safety.
1720          */
1721         return false;
1722     }
1723 
1724     return vtd_dev_pt_enabled(s, &ce, as->pasid);
1725 }
1726 
1727 /* Return whether the device is using IOMMU translation. */
vtd_switch_address_space(VTDAddressSpace * as)1728 static bool vtd_switch_address_space(VTDAddressSpace *as)
1729 {
1730     bool use_iommu, pt;
1731 
1732     assert(as);
1733 
1734     use_iommu = as->iommu_state->dmar_enabled && !vtd_as_pt_enabled(as);
1735     pt = as->iommu_state->dmar_enabled && vtd_as_pt_enabled(as);
1736 
1737     trace_vtd_switch_address_space(pci_bus_num(as->bus),
1738                                    VTD_PCI_SLOT(as->devfn),
1739                                    VTD_PCI_FUNC(as->devfn),
1740                                    use_iommu);
1741 
1742     /*
1743      * It's possible that we reach here without BQL, e.g., when called
1744      * from vtd_pt_enable_fast_path(). However the memory APIs need
1745      * it. We'd better make sure we have had it already, or, take it.
1746      */
1747     BQL_LOCK_GUARD();
1748 
1749     /* Turn off first then on the other */
1750     if (use_iommu) {
1751         memory_region_set_enabled(&as->nodmar, false);
1752         memory_region_set_enabled(MEMORY_REGION(&as->iommu), true);
1753         /*
1754          * vt-d spec v3.4 3.14:
1755          *
1756          * """
1757          * Requests-with-PASID with input address in range 0xFEEx_xxxx
1758          * are translated normally like any other request-with-PASID
1759          * through DMA-remapping hardware.
1760          * """
1761          *
1762          * Need to disable ir for as with PASID.
1763          */
1764         if (as->pasid != PCI_NO_PASID) {
1765             memory_region_set_enabled(&as->iommu_ir, false);
1766         } else {
1767             memory_region_set_enabled(&as->iommu_ir, true);
1768         }
1769     } else {
1770         memory_region_set_enabled(MEMORY_REGION(&as->iommu), false);
1771         memory_region_set_enabled(&as->nodmar, true);
1772     }
1773 
1774     /*
1775      * vtd-spec v3.4 3.14:
1776      *
1777      * """
1778      * Requests-with-PASID with input address in range 0xFEEx_xxxx are
1779      * translated normally like any other request-with-PASID through
1780      * DMA-remapping hardware. However, if such a request is processed
1781      * using pass-through translation, it will be blocked as described
1782      * in the paragraph below.
1783      *
1784      * Software must not program paging-structure entries to remap any
1785      * address to the interrupt address range. Untranslated requests
1786      * and translation requests that result in an address in the
1787      * interrupt range will be blocked with condition code LGN.4 or
1788      * SGN.8.
1789      * """
1790      *
1791      * We enable per as memory region (iommu_ir_fault) for catching
1792      * the translation for interrupt range through PASID + PT.
1793      */
1794     if (pt && as->pasid != PCI_NO_PASID) {
1795         memory_region_set_enabled(&as->iommu_ir_fault, true);
1796     } else {
1797         memory_region_set_enabled(&as->iommu_ir_fault, false);
1798     }
1799 
1800     return use_iommu;
1801 }
1802 
vtd_switch_address_space_all(IntelIOMMUState * s)1803 static void vtd_switch_address_space_all(IntelIOMMUState *s)
1804 {
1805     VTDAddressSpace *vtd_as;
1806     GHashTableIter iter;
1807 
1808     g_hash_table_iter_init(&iter, s->vtd_address_spaces);
1809     while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_as)) {
1810         vtd_switch_address_space(vtd_as);
1811     }
1812 }
1813 
1814 static const bool vtd_qualified_faults[] = {
1815     [VTD_FR_RESERVED] = false,
1816     [VTD_FR_ROOT_ENTRY_P] = false,
1817     [VTD_FR_CONTEXT_ENTRY_P] = true,
1818     [VTD_FR_CONTEXT_ENTRY_INV] = true,
1819     [VTD_FR_ADDR_BEYOND_MGAW] = true,
1820     [VTD_FR_WRITE] = true,
1821     [VTD_FR_READ] = true,
1822     [VTD_FR_PAGING_ENTRY_INV] = true,
1823     [VTD_FR_ROOT_TABLE_INV] = false,
1824     [VTD_FR_CONTEXT_TABLE_INV] = false,
1825     [VTD_FR_INTERRUPT_ADDR] = true,
1826     [VTD_FR_ROOT_ENTRY_RSVD] = false,
1827     [VTD_FR_PAGING_ENTRY_RSVD] = true,
1828     [VTD_FR_CONTEXT_ENTRY_TT] = true,
1829     [VTD_FR_PASID_DIR_ACCESS_ERR] = false,
1830     [VTD_FR_PASID_DIR_ENTRY_P] = true,
1831     [VTD_FR_PASID_TABLE_ACCESS_ERR] = false,
1832     [VTD_FR_PASID_ENTRY_P] = true,
1833     [VTD_FR_PASID_TABLE_ENTRY_INV] = true,
1834     [VTD_FR_FS_PAGING_ENTRY_INV] = true,
1835     [VTD_FR_FS_PAGING_ENTRY_P] = true,
1836     [VTD_FR_FS_PAGING_ENTRY_RSVD] = true,
1837     [VTD_FR_PASID_ENTRY_FSPTPTR_INV] = true,
1838     [VTD_FR_FS_NON_CANONICAL] = true,
1839     [VTD_FR_FS_PAGING_ENTRY_US] = true,
1840     [VTD_FR_SM_WRITE] = true,
1841     [VTD_FR_SM_INTERRUPT_ADDR] = true,
1842     [VTD_FR_FS_BIT_UPDATE_FAILED] = true,
1843     [VTD_FR_MAX] = false,
1844 };
1845 
1846 /* To see if a fault condition is "qualified", which is reported to software
1847  * only if the FPD field in the context-entry used to process the faulting
1848  * request is 0.
1849  */
vtd_is_qualified_fault(VTDFaultReason fault)1850 static inline bool vtd_is_qualified_fault(VTDFaultReason fault)
1851 {
1852     return vtd_qualified_faults[fault];
1853 }
1854 
vtd_is_interrupt_addr(hwaddr addr)1855 static inline bool vtd_is_interrupt_addr(hwaddr addr)
1856 {
1857     return VTD_INTERRUPT_ADDR_FIRST <= addr && addr <= VTD_INTERRUPT_ADDR_LAST;
1858 }
1859 
vtd_find_as_by_sid_and_pasid(gpointer key,gpointer value,gpointer user_data)1860 static gboolean vtd_find_as_by_sid_and_pasid(gpointer key, gpointer value,
1861                                              gpointer user_data)
1862 {
1863     struct vtd_as_key *as_key = (struct vtd_as_key *)key;
1864     struct vtd_as_raw_key *target = (struct vtd_as_raw_key *)user_data;
1865     uint16_t sid = PCI_BUILD_BDF(pci_bus_num(as_key->bus), as_key->devfn);
1866 
1867     return (as_key->pasid == target->pasid) && (sid == target->sid);
1868 }
1869 
vtd_get_as_by_sid_and_pasid(IntelIOMMUState * s,uint16_t sid,uint32_t pasid)1870 static VTDAddressSpace *vtd_get_as_by_sid_and_pasid(IntelIOMMUState *s,
1871                                                     uint16_t sid,
1872                                                     uint32_t pasid)
1873 {
1874     struct vtd_as_raw_key key = {
1875         .sid = sid,
1876         .pasid = pasid
1877     };
1878 
1879     return g_hash_table_find(s->vtd_address_spaces,
1880                              vtd_find_as_by_sid_and_pasid, &key);
1881 }
1882 
vtd_get_as_by_sid(IntelIOMMUState * s,uint16_t sid)1883 static VTDAddressSpace *vtd_get_as_by_sid(IntelIOMMUState *s, uint16_t sid)
1884 {
1885     return vtd_get_as_by_sid_and_pasid(s, sid, PCI_NO_PASID);
1886 }
1887 
vtd_pt_enable_fast_path(IntelIOMMUState * s,uint16_t source_id)1888 static void vtd_pt_enable_fast_path(IntelIOMMUState *s, uint16_t source_id)
1889 {
1890     VTDAddressSpace *vtd_as;
1891     bool success = false;
1892 
1893     vtd_as = vtd_get_as_by_sid(s, source_id);
1894     if (!vtd_as) {
1895         goto out;
1896     }
1897 
1898     if (vtd_switch_address_space(vtd_as) == false) {
1899         /* We switched off IOMMU region successfully. */
1900         success = true;
1901     }
1902 
1903 out:
1904     trace_vtd_pt_enable_fast_path(source_id, success);
1905 }
1906 
1907 /*
1908  * Rsvd field masks for fpte:
1909  *     vtd_fpte_rsvd 4k pages
1910  *     vtd_fpte_rsvd_large large pages
1911  *
1912  * We support only 4-level page tables.
1913  */
1914 #define VTD_FPTE_RSVD_LEN 5
1915 static uint64_t vtd_fpte_rsvd[VTD_FPTE_RSVD_LEN];
1916 static uint64_t vtd_fpte_rsvd_large[VTD_FPTE_RSVD_LEN];
1917 
vtd_flpte_nonzero_rsvd(uint64_t flpte,uint32_t level)1918 static bool vtd_flpte_nonzero_rsvd(uint64_t flpte, uint32_t level)
1919 {
1920     uint64_t rsvd_mask;
1921 
1922     /*
1923      * We should have caught a guest-mis-programmed level earlier,
1924      * via vtd_is_fl_level_supported.
1925      */
1926     assert(level < VTD_FPTE_RSVD_LEN);
1927     /*
1928      * Zero level doesn't exist. The smallest level is VTD_PT_LEVEL=1 and
1929      * checked by vtd_is_last_pte().
1930      */
1931     assert(level);
1932 
1933     if ((level == VTD_PD_LEVEL || level == VTD_PDP_LEVEL) &&
1934         (flpte & VTD_PT_PAGE_SIZE_MASK)) {
1935         /* large page */
1936         rsvd_mask = vtd_fpte_rsvd_large[level];
1937     } else {
1938         rsvd_mask = vtd_fpte_rsvd[level];
1939     }
1940 
1941     return flpte & rsvd_mask;
1942 }
1943 
vtd_flpte_present(uint64_t flpte)1944 static inline bool vtd_flpte_present(uint64_t flpte)
1945 {
1946     return !!(flpte & VTD_FL_P);
1947 }
1948 
1949 /* Return true if IOVA is canonical, otherwise false. */
vtd_iova_fl_check_canonical(IntelIOMMUState * s,uint64_t iova,VTDContextEntry * ce,uint32_t pasid)1950 static bool vtd_iova_fl_check_canonical(IntelIOMMUState *s, uint64_t iova,
1951                                         VTDContextEntry *ce, uint32_t pasid)
1952 {
1953     uint64_t iova_limit = vtd_iova_limit(s, ce, s->aw_bits, pasid);
1954     uint64_t upper_bits_mask = ~(iova_limit - 1);
1955     uint64_t upper_bits = iova & upper_bits_mask;
1956     bool msb = ((iova & (iova_limit >> 1)) != 0);
1957 
1958     if (msb) {
1959         return upper_bits == upper_bits_mask;
1960     } else {
1961         return !upper_bits;
1962     }
1963 }
1964 
vtd_set_flag_in_pte(dma_addr_t base_addr,uint32_t index,uint64_t pte,uint64_t flag)1965 static MemTxResult vtd_set_flag_in_pte(dma_addr_t base_addr, uint32_t index,
1966                                        uint64_t pte, uint64_t flag)
1967 {
1968     if (pte & flag) {
1969         return MEMTX_OK;
1970     }
1971     pte |= flag;
1972     pte = cpu_to_le64(pte);
1973     return dma_memory_write(&address_space_memory,
1974                             base_addr + index * sizeof(pte),
1975                             &pte, sizeof(pte),
1976                             MEMTXATTRS_UNSPECIFIED);
1977 }
1978 
1979 /*
1980  * Given the @iova, get relevant @flptep. @flpte_level will be the last level
1981  * of the translation, can be used for deciding the size of large page.
1982  */
vtd_iova_to_flpte(IntelIOMMUState * s,VTDContextEntry * ce,uint64_t iova,bool is_write,uint64_t * flptep,uint32_t * flpte_level,bool * reads,bool * writes,uint8_t aw_bits,uint32_t pasid)1983 static int vtd_iova_to_flpte(IntelIOMMUState *s, VTDContextEntry *ce,
1984                              uint64_t iova, bool is_write,
1985                              uint64_t *flptep, uint32_t *flpte_level,
1986                              bool *reads, bool *writes, uint8_t aw_bits,
1987                              uint32_t pasid)
1988 {
1989     dma_addr_t addr = vtd_get_iova_pgtbl_base(s, ce, pasid);
1990     uint32_t level = vtd_get_iova_level(s, ce, pasid);
1991     uint32_t offset;
1992     uint64_t flpte, flag_ad = VTD_FL_A;
1993 
1994     if (!vtd_iova_fl_check_canonical(s, iova, ce, pasid)) {
1995         error_report_once("%s: detected non canonical IOVA (iova=0x%" PRIx64 ","
1996                           "pasid=0x%" PRIx32 ")", __func__, iova, pasid);
1997         return -VTD_FR_FS_NON_CANONICAL;
1998     }
1999 
2000     while (true) {
2001         offset = vtd_iova_level_offset(iova, level);
2002         flpte = vtd_get_pte(addr, offset);
2003 
2004         if (flpte == (uint64_t)-1) {
2005             if (level == vtd_get_iova_level(s, ce, pasid)) {
2006                 /* Invalid programming of pasid-entry */
2007                 return -VTD_FR_PASID_ENTRY_FSPTPTR_INV;
2008             } else {
2009                 return -VTD_FR_FS_PAGING_ENTRY_INV;
2010             }
2011         }
2012 
2013         if (!vtd_flpte_present(flpte)) {
2014             *reads = false;
2015             *writes = false;
2016             return -VTD_FR_FS_PAGING_ENTRY_P;
2017         }
2018 
2019         /* No emulated device supports supervisor privilege request yet */
2020         if (!(flpte & VTD_FL_US)) {
2021             *reads = false;
2022             *writes = false;
2023             return -VTD_FR_FS_PAGING_ENTRY_US;
2024         }
2025 
2026         *reads = true;
2027         *writes = (*writes) && (flpte & VTD_FL_RW);
2028         if (is_write && !(flpte & VTD_FL_RW)) {
2029             return -VTD_FR_SM_WRITE;
2030         }
2031         if (vtd_flpte_nonzero_rsvd(flpte, level)) {
2032             error_report_once("%s: detected flpte reserved non-zero "
2033                               "iova=0x%" PRIx64 ", level=0x%" PRIx32
2034                               "flpte=0x%" PRIx64 ", pasid=0x%" PRIX32 ")",
2035                               __func__, iova, level, flpte, pasid);
2036             return -VTD_FR_FS_PAGING_ENTRY_RSVD;
2037         }
2038 
2039         if (vtd_is_last_pte(flpte, level) && is_write) {
2040             flag_ad |= VTD_FL_D;
2041         }
2042 
2043         if (vtd_set_flag_in_pte(addr, offset, flpte, flag_ad) != MEMTX_OK) {
2044             return -VTD_FR_FS_BIT_UPDATE_FAILED;
2045         }
2046 
2047         if (vtd_is_last_pte(flpte, level)) {
2048             *flptep = flpte;
2049             *flpte_level = level;
2050             return 0;
2051         }
2052 
2053         addr = vtd_get_pte_addr(flpte, aw_bits);
2054         level--;
2055     }
2056 }
2057 
vtd_report_fault(IntelIOMMUState * s,int err,bool is_fpd_set,uint16_t source_id,hwaddr addr,bool is_write,bool is_pasid,uint32_t pasid)2058 static void vtd_report_fault(IntelIOMMUState *s,
2059                              int err, bool is_fpd_set,
2060                              uint16_t source_id,
2061                              hwaddr addr,
2062                              bool is_write,
2063                              bool is_pasid,
2064                              uint32_t pasid)
2065 {
2066     if (is_fpd_set && vtd_is_qualified_fault(err)) {
2067         trace_vtd_fault_disabled();
2068     } else {
2069         vtd_report_dmar_fault(s, source_id, addr, err, is_write,
2070                               is_pasid, pasid);
2071     }
2072 }
2073 
2074 /* Map dev to context-entry then do a paging-structures walk to do a iommu
2075  * translation.
2076  *
2077  * Called from RCU critical section.
2078  *
2079  * @bus_num: The bus number
2080  * @devfn: The devfn, which is the  combined of device and function number
2081  * @is_write: The access is a write operation
2082  * @entry: IOMMUTLBEntry that contain the addr to be translated and result
2083  *
2084  * Returns true if translation is successful, otherwise false.
2085  */
vtd_do_iommu_translate(VTDAddressSpace * vtd_as,PCIBus * bus,uint8_t devfn,hwaddr addr,bool is_write,IOMMUTLBEntry * entry)2086 static bool vtd_do_iommu_translate(VTDAddressSpace *vtd_as, PCIBus *bus,
2087                                    uint8_t devfn, hwaddr addr, bool is_write,
2088                                    IOMMUTLBEntry *entry)
2089 {
2090     IntelIOMMUState *s = vtd_as->iommu_state;
2091     VTDContextEntry ce;
2092     uint8_t bus_num = pci_bus_num(bus);
2093     VTDContextCacheEntry *cc_entry;
2094     uint64_t pte, page_mask;
2095     uint32_t level, pasid = vtd_as->pasid;
2096     uint16_t source_id = PCI_BUILD_BDF(bus_num, devfn);
2097     int ret_fr;
2098     bool is_fpd_set = false;
2099     bool reads = true;
2100     bool writes = true;
2101     uint8_t access_flags, pgtt;
2102     bool rid2pasid = (pasid == PCI_NO_PASID) && s->root_scalable;
2103     VTDIOTLBEntry *iotlb_entry;
2104     uint64_t xlat, size;
2105 
2106     /*
2107      * We have standalone memory region for interrupt addresses, we
2108      * should never receive translation requests in this region.
2109      */
2110     assert(!vtd_is_interrupt_addr(addr));
2111 
2112     vtd_iommu_lock(s);
2113 
2114     cc_entry = &vtd_as->context_cache_entry;
2115 
2116     /* Try to fetch pte from IOTLB, we don't need RID2PASID logic */
2117     if (!rid2pasid) {
2118         iotlb_entry = vtd_lookup_iotlb(s, source_id, pasid, addr);
2119         if (iotlb_entry) {
2120             trace_vtd_iotlb_page_hit(source_id, addr, iotlb_entry->pte,
2121                                      iotlb_entry->domain_id);
2122             pte = iotlb_entry->pte;
2123             access_flags = iotlb_entry->access_flags;
2124             page_mask = iotlb_entry->mask;
2125             goto out;
2126         }
2127     }
2128 
2129     /* Try to fetch context-entry from cache first */
2130     if (cc_entry->context_cache_gen == s->context_cache_gen) {
2131         trace_vtd_iotlb_cc_hit(bus_num, devfn, cc_entry->context_entry.hi,
2132                                cc_entry->context_entry.lo,
2133                                cc_entry->context_cache_gen);
2134         ce = cc_entry->context_entry;
2135         is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
2136         if (!is_fpd_set && s->root_scalable) {
2137             ret_fr = vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set, pasid);
2138             if (ret_fr) {
2139                 vtd_report_fault(s, -ret_fr, is_fpd_set,
2140                                  source_id, addr, is_write,
2141                                  false, 0);
2142                 goto error;
2143             }
2144         }
2145     } else {
2146         ret_fr = vtd_dev_to_context_entry(s, bus_num, devfn, &ce);
2147         is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
2148         if (!ret_fr && !is_fpd_set && s->root_scalable) {
2149             ret_fr = vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set, pasid);
2150         }
2151         if (ret_fr) {
2152             vtd_report_fault(s, -ret_fr, is_fpd_set,
2153                              source_id, addr, is_write,
2154                              false, 0);
2155             goto error;
2156         }
2157         /* Update context-cache */
2158         trace_vtd_iotlb_cc_update(bus_num, devfn, ce.hi, ce.lo,
2159                                   cc_entry->context_cache_gen,
2160                                   s->context_cache_gen);
2161         cc_entry->context_entry = ce;
2162         cc_entry->context_cache_gen = s->context_cache_gen;
2163     }
2164 
2165     if (rid2pasid) {
2166         pasid = VTD_CE_GET_RID2PASID(&ce);
2167     }
2168 
2169     /*
2170      * We don't need to translate for pass-through context entries.
2171      * Also, let's ignore IOTLB caching as well for PT devices.
2172      */
2173     if (vtd_dev_pt_enabled(s, &ce, pasid)) {
2174         entry->iova = addr & VTD_PAGE_MASK_4K;
2175         entry->translated_addr = entry->iova;
2176         entry->addr_mask = ~VTD_PAGE_MASK_4K;
2177         entry->perm = IOMMU_RW;
2178         trace_vtd_translate_pt(source_id, entry->iova);
2179 
2180         /*
2181          * When this happens, it means firstly caching-mode is not
2182          * enabled, and this is the first passthrough translation for
2183          * the device. Let's enable the fast path for passthrough.
2184          *
2185          * When passthrough is disabled again for the device, we can
2186          * capture it via the context entry invalidation, then the
2187          * IOMMU region can be swapped back.
2188          */
2189         vtd_pt_enable_fast_path(s, source_id);
2190         vtd_iommu_unlock(s);
2191         return true;
2192     }
2193 
2194     /* Try to fetch pte from IOTLB for RID2PASID slow path */
2195     if (rid2pasid) {
2196         iotlb_entry = vtd_lookup_iotlb(s, source_id, pasid, addr);
2197         if (iotlb_entry) {
2198             trace_vtd_iotlb_page_hit(source_id, addr, iotlb_entry->pte,
2199                                      iotlb_entry->domain_id);
2200             pte = iotlb_entry->pte;
2201             access_flags = iotlb_entry->access_flags;
2202             page_mask = iotlb_entry->mask;
2203             goto out;
2204         }
2205     }
2206 
2207     if (s->flts && s->root_scalable) {
2208         ret_fr = vtd_iova_to_flpte(s, &ce, addr, is_write, &pte, &level,
2209                                    &reads, &writes, s->aw_bits, pasid);
2210         pgtt = VTD_SM_PASID_ENTRY_FLT;
2211     } else {
2212         ret_fr = vtd_iova_to_slpte(s, &ce, addr, is_write, &pte, &level,
2213                                    &reads, &writes, s->aw_bits, pasid);
2214         pgtt = VTD_SM_PASID_ENTRY_SLT;
2215     }
2216     if (!ret_fr) {
2217         xlat = vtd_get_pte_addr(pte, s->aw_bits);
2218         size = ~vtd_pt_level_page_mask(level) + 1;
2219 
2220         /*
2221          * Per VT-d spec 4.1 section 3.15: Untranslated requests and translation
2222          * requests that result in an address in the interrupt range will be
2223          * blocked with condition code LGN.4 or SGN.8.
2224          */
2225         if ((xlat <= VTD_INTERRUPT_ADDR_LAST &&
2226              xlat + size - 1 >= VTD_INTERRUPT_ADDR_FIRST)) {
2227             error_report_once("%s: xlat address is in interrupt range "
2228                               "(iova=0x%" PRIx64 ", level=0x%" PRIx32 ", "
2229                               "pte=0x%" PRIx64 ", write=%d, "
2230                               "xlat=0x%" PRIx64 ", size=0x%" PRIx64 ", "
2231                               "pasid=0x%" PRIx32 ")",
2232                               __func__, addr, level, pte, is_write,
2233                               xlat, size, pasid);
2234             ret_fr = s->scalable_mode ? -VTD_FR_SM_INTERRUPT_ADDR :
2235                                         -VTD_FR_INTERRUPT_ADDR;
2236         }
2237     }
2238 
2239     if (ret_fr) {
2240         vtd_report_fault(s, -ret_fr, is_fpd_set, source_id,
2241                          addr, is_write, pasid != PCI_NO_PASID, pasid);
2242         goto error;
2243     }
2244 
2245     page_mask = vtd_pt_level_page_mask(level);
2246     access_flags = IOMMU_ACCESS_FLAG(reads, writes);
2247     vtd_update_iotlb(s, source_id, vtd_get_domain_id(s, &ce, pasid),
2248                      addr, pte, access_flags, level, pasid, pgtt);
2249 out:
2250     vtd_iommu_unlock(s);
2251     entry->iova = addr & page_mask;
2252     entry->translated_addr = vtd_get_pte_addr(pte, s->aw_bits) & page_mask;
2253     entry->addr_mask = ~page_mask;
2254     entry->perm = access_flags;
2255     return true;
2256 
2257 error:
2258     vtd_iommu_unlock(s);
2259     entry->iova = 0;
2260     entry->translated_addr = 0;
2261     entry->addr_mask = 0;
2262     entry->perm = IOMMU_NONE;
2263     return false;
2264 }
2265 
vtd_root_table_setup(IntelIOMMUState * s)2266 static void vtd_root_table_setup(IntelIOMMUState *s)
2267 {
2268     s->root = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
2269     s->root &= VTD_RTADDR_ADDR_MASK(s->aw_bits);
2270 
2271     vtd_update_scalable_state(s);
2272 
2273     trace_vtd_reg_dmar_root(s->root, s->root_scalable);
2274 }
2275 
vtd_iec_notify_all(IntelIOMMUState * s,bool global,uint32_t index,uint32_t mask)2276 static void vtd_iec_notify_all(IntelIOMMUState *s, bool global,
2277                                uint32_t index, uint32_t mask)
2278 {
2279     x86_iommu_iec_notify_all(X86_IOMMU_DEVICE(s), global, index, mask);
2280 }
2281 
vtd_interrupt_remap_table_setup(IntelIOMMUState * s)2282 static void vtd_interrupt_remap_table_setup(IntelIOMMUState *s)
2283 {
2284     uint64_t value = 0;
2285     value = vtd_get_quad_raw(s, DMAR_IRTA_REG);
2286     s->intr_size = 1UL << ((value & VTD_IRTA_SIZE_MASK) + 1);
2287     s->intr_root = value & VTD_IRTA_ADDR_MASK(s->aw_bits);
2288     s->intr_eime = value & VTD_IRTA_EIME;
2289 
2290     /* Notify global invalidation */
2291     vtd_iec_notify_all(s, true, 0, 0);
2292 
2293     trace_vtd_reg_ir_root(s->intr_root, s->intr_size);
2294 }
2295 
vtd_iommu_replay_all(IntelIOMMUState * s)2296 static void vtd_iommu_replay_all(IntelIOMMUState *s)
2297 {
2298     VTDAddressSpace *vtd_as;
2299 
2300     QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
2301         vtd_address_space_sync(vtd_as);
2302     }
2303 }
2304 
vtd_context_global_invalidate(IntelIOMMUState * s)2305 static void vtd_context_global_invalidate(IntelIOMMUState *s)
2306 {
2307     trace_vtd_inv_desc_cc_global();
2308     /* Protects context cache */
2309     vtd_iommu_lock(s);
2310     s->context_cache_gen++;
2311     if (s->context_cache_gen == VTD_CONTEXT_CACHE_GEN_MAX) {
2312         vtd_reset_context_cache_locked(s);
2313     }
2314     vtd_iommu_unlock(s);
2315     vtd_address_space_refresh_all(s);
2316     /*
2317      * From VT-d spec 6.5.2.1, a global context entry invalidation
2318      * should be followed by a IOTLB global invalidation, so we should
2319      * be safe even without this. Hoewever, let's replay the region as
2320      * well to be safer, and go back here when we need finer tunes for
2321      * VT-d emulation codes.
2322      */
2323     vtd_iommu_replay_all(s);
2324 }
2325 
2326 /* Do a context-cache device-selective invalidation.
2327  * @func_mask: FM field after shifting
2328  */
vtd_context_device_invalidate(IntelIOMMUState * s,uint16_t source_id,uint16_t func_mask)2329 static void vtd_context_device_invalidate(IntelIOMMUState *s,
2330                                           uint16_t source_id,
2331                                           uint16_t func_mask)
2332 {
2333     GHashTableIter as_it;
2334     uint16_t mask;
2335     VTDAddressSpace *vtd_as;
2336     uint8_t bus_n, devfn;
2337 
2338     trace_vtd_inv_desc_cc_devices(source_id, func_mask);
2339 
2340     switch (func_mask & 3) {
2341     case 0:
2342         mask = 0;   /* No bits in the SID field masked */
2343         break;
2344     case 1:
2345         mask = 4;   /* Mask bit 2 in the SID field */
2346         break;
2347     case 2:
2348         mask = 6;   /* Mask bit 2:1 in the SID field */
2349         break;
2350     case 3:
2351         mask = 7;   /* Mask bit 2:0 in the SID field */
2352         break;
2353     default:
2354         g_assert_not_reached();
2355     }
2356     mask = ~mask;
2357 
2358     bus_n = VTD_SID_TO_BUS(source_id);
2359     devfn = VTD_SID_TO_DEVFN(source_id);
2360 
2361     g_hash_table_iter_init(&as_it, s->vtd_address_spaces);
2362     while (g_hash_table_iter_next(&as_it, NULL, (void **)&vtd_as)) {
2363         if ((pci_bus_num(vtd_as->bus) == bus_n) &&
2364             (vtd_as->devfn & mask) == (devfn & mask)) {
2365             trace_vtd_inv_desc_cc_device(bus_n, VTD_PCI_SLOT(vtd_as->devfn),
2366                                          VTD_PCI_FUNC(vtd_as->devfn));
2367             vtd_iommu_lock(s);
2368             vtd_as->context_cache_entry.context_cache_gen = 0;
2369             vtd_iommu_unlock(s);
2370             /*
2371              * Do switch address space when needed, in case if the
2372              * device passthrough bit is switched.
2373              */
2374             vtd_switch_address_space(vtd_as);
2375             /*
2376              * So a device is moving out of (or moving into) a
2377              * domain, resync the shadow page table.
2378              * This won't bring bad even if we have no such
2379              * notifier registered - the IOMMU notification
2380              * framework will skip MAP notifications if that
2381              * happened.
2382              */
2383             vtd_address_space_sync(vtd_as);
2384         }
2385     }
2386 }
2387 
2388 /* Context-cache invalidation
2389  * Returns the Context Actual Invalidation Granularity.
2390  * @val: the content of the CCMD_REG
2391  */
vtd_context_cache_invalidate(IntelIOMMUState * s,uint64_t val)2392 static uint64_t vtd_context_cache_invalidate(IntelIOMMUState *s, uint64_t val)
2393 {
2394     uint64_t caig;
2395     uint64_t type = val & VTD_CCMD_CIRG_MASK;
2396 
2397     switch (type) {
2398     case VTD_CCMD_DOMAIN_INVL:
2399         /* Fall through */
2400     case VTD_CCMD_GLOBAL_INVL:
2401         caig = VTD_CCMD_GLOBAL_INVL_A;
2402         vtd_context_global_invalidate(s);
2403         break;
2404 
2405     case VTD_CCMD_DEVICE_INVL:
2406         caig = VTD_CCMD_DEVICE_INVL_A;
2407         vtd_context_device_invalidate(s, VTD_CCMD_SID(val), VTD_CCMD_FM(val));
2408         break;
2409 
2410     default:
2411         error_report_once("%s: invalid context: 0x%" PRIx64,
2412                           __func__, val);
2413         caig = 0;
2414     }
2415     return caig;
2416 }
2417 
vtd_iotlb_global_invalidate(IntelIOMMUState * s)2418 static void vtd_iotlb_global_invalidate(IntelIOMMUState *s)
2419 {
2420     trace_vtd_inv_desc_iotlb_global();
2421     vtd_reset_iotlb(s);
2422     vtd_iommu_replay_all(s);
2423 }
2424 
vtd_iotlb_domain_invalidate(IntelIOMMUState * s,uint16_t domain_id)2425 static void vtd_iotlb_domain_invalidate(IntelIOMMUState *s, uint16_t domain_id)
2426 {
2427     VTDContextEntry ce;
2428     VTDAddressSpace *vtd_as;
2429 
2430     trace_vtd_inv_desc_iotlb_domain(domain_id);
2431 
2432     vtd_iommu_lock(s);
2433     g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_domain,
2434                                 &domain_id);
2435     vtd_iommu_unlock(s);
2436 
2437     QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
2438         if (!vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
2439                                       vtd_as->devfn, &ce) &&
2440             domain_id == vtd_get_domain_id(s, &ce, vtd_as->pasid)) {
2441             vtd_address_space_sync(vtd_as);
2442         }
2443     }
2444 }
2445 
2446 /*
2447  * There is no pasid field in iotlb invalidation descriptor, so PCI_NO_PASID
2448  * is passed as parameter. Piotlb invalidation supports pasid, pasid in its
2449  * descriptor is passed which should not be PCI_NO_PASID.
2450  */
vtd_iotlb_page_invalidate_notify(IntelIOMMUState * s,uint16_t domain_id,hwaddr addr,uint8_t am,uint32_t pasid)2451 static void vtd_iotlb_page_invalidate_notify(IntelIOMMUState *s,
2452                                              uint16_t domain_id, hwaddr addr,
2453                                              uint8_t am, uint32_t pasid)
2454 {
2455     VTDAddressSpace *vtd_as;
2456     VTDContextEntry ce;
2457     int ret;
2458     hwaddr size = (1 << am) * VTD_PAGE_SIZE;
2459 
2460     QLIST_FOREACH(vtd_as, &(s->vtd_as_with_notifiers), next) {
2461         ret = vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
2462                                        vtd_as->devfn, &ce);
2463         if (!ret && domain_id == vtd_get_domain_id(s, &ce, vtd_as->pasid)) {
2464             uint32_t rid2pasid = PCI_NO_PASID;
2465 
2466             if (s->root_scalable) {
2467                 rid2pasid = VTD_CE_GET_RID2PASID(&ce);
2468             }
2469 
2470             /*
2471              * In legacy mode, vtd_as->pasid == pasid is always true.
2472              * In scalable mode, for vtd address space backing a PCI
2473              * device without pasid, needs to compare pasid with
2474              * rid2pasid of this device.
2475              */
2476             if (!(vtd_as->pasid == pasid ||
2477                   (vtd_as->pasid == PCI_NO_PASID && pasid == rid2pasid))) {
2478                 continue;
2479             }
2480 
2481             if (vtd_as_has_map_notifier(vtd_as)) {
2482                 /*
2483                  * When stage-1 translation is off, as long as we have MAP
2484                  * notifications registered in any of our IOMMU notifiers,
2485                  * we need to sync the shadow page table. Otherwise VFIO
2486                  * device attaches to nested page table instead of shadow
2487                  * page table, so no need to sync.
2488                  */
2489                 if (!s->flts || !s->root_scalable) {
2490                     vtd_sync_shadow_page_table_range(vtd_as, &ce, addr, size);
2491                 }
2492             } else {
2493                 /*
2494                  * For UNMAP-only notifiers, we don't need to walk the
2495                  * page tables.  We just deliver the PSI down to
2496                  * invalidate caches.
2497                  */
2498                 const IOMMUTLBEvent event = {
2499                     .type = IOMMU_NOTIFIER_UNMAP,
2500                     .entry = {
2501                         .target_as = &address_space_memory,
2502                         .iova = addr,
2503                         .translated_addr = 0,
2504                         .addr_mask = size - 1,
2505                         .perm = IOMMU_NONE,
2506                     },
2507                 };
2508                 memory_region_notify_iommu(&vtd_as->iommu, 0, event);
2509             }
2510         }
2511     }
2512 }
2513 
vtd_iotlb_page_invalidate(IntelIOMMUState * s,uint16_t domain_id,hwaddr addr,uint8_t am)2514 static void vtd_iotlb_page_invalidate(IntelIOMMUState *s, uint16_t domain_id,
2515                                       hwaddr addr, uint8_t am)
2516 {
2517     VTDIOTLBPageInvInfo info;
2518 
2519     trace_vtd_inv_desc_iotlb_pages(domain_id, addr, am);
2520 
2521     assert(am <= VTD_MAMV);
2522     info.domain_id = domain_id;
2523     info.addr = addr;
2524     info.mask = ~((1 << am) - 1);
2525     vtd_iommu_lock(s);
2526     g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_page, &info);
2527     vtd_iommu_unlock(s);
2528     vtd_iotlb_page_invalidate_notify(s, domain_id, addr, am, PCI_NO_PASID);
2529 }
2530 
2531 /* Flush IOTLB
2532  * Returns the IOTLB Actual Invalidation Granularity.
2533  * @val: the content of the IOTLB_REG
2534  */
vtd_iotlb_flush(IntelIOMMUState * s,uint64_t val)2535 static uint64_t vtd_iotlb_flush(IntelIOMMUState *s, uint64_t val)
2536 {
2537     uint64_t iaig;
2538     uint64_t type = val & VTD_TLB_FLUSH_GRANU_MASK;
2539     uint16_t domain_id;
2540     hwaddr addr;
2541     uint8_t am;
2542 
2543     switch (type) {
2544     case VTD_TLB_GLOBAL_FLUSH:
2545         iaig = VTD_TLB_GLOBAL_FLUSH_A;
2546         vtd_iotlb_global_invalidate(s);
2547         break;
2548 
2549     case VTD_TLB_DSI_FLUSH:
2550         domain_id = VTD_TLB_DID(val);
2551         iaig = VTD_TLB_DSI_FLUSH_A;
2552         vtd_iotlb_domain_invalidate(s, domain_id);
2553         break;
2554 
2555     case VTD_TLB_PSI_FLUSH:
2556         domain_id = VTD_TLB_DID(val);
2557         addr = vtd_get_quad_raw(s, DMAR_IVA_REG);
2558         am = VTD_IVA_AM(addr);
2559         addr = VTD_IVA_ADDR(addr);
2560         if (am > VTD_MAMV) {
2561             error_report_once("%s: address mask overflow: 0x%" PRIx64,
2562                               __func__, vtd_get_quad_raw(s, DMAR_IVA_REG));
2563             iaig = 0;
2564             break;
2565         }
2566         iaig = VTD_TLB_PSI_FLUSH_A;
2567         vtd_iotlb_page_invalidate(s, domain_id, addr, am);
2568         break;
2569 
2570     default:
2571         error_report_once("%s: invalid granularity: 0x%" PRIx64,
2572                           __func__, val);
2573         iaig = 0;
2574     }
2575     return iaig;
2576 }
2577 
2578 static void vtd_fetch_inv_desc(IntelIOMMUState *s);
2579 
vtd_queued_inv_disable_check(IntelIOMMUState * s)2580 static inline bool vtd_queued_inv_disable_check(IntelIOMMUState *s)
2581 {
2582     return s->qi_enabled && (s->iq_tail == s->iq_head) &&
2583            (s->iq_last_desc_type == VTD_INV_DESC_WAIT);
2584 }
2585 
vtd_handle_gcmd_qie(IntelIOMMUState * s,bool en)2586 static void vtd_handle_gcmd_qie(IntelIOMMUState *s, bool en)
2587 {
2588     uint64_t iqa_val = vtd_get_quad_raw(s, DMAR_IQA_REG);
2589 
2590     trace_vtd_inv_qi_enable(en);
2591 
2592     if (en) {
2593         s->iq = iqa_val & VTD_IQA_IQA_MASK(s->aw_bits);
2594         /* 2^(x+8) entries */
2595         s->iq_size = 1UL << ((iqa_val & VTD_IQA_QS) + 8 - (s->iq_dw ? 1 : 0));
2596         s->qi_enabled = true;
2597         trace_vtd_inv_qi_setup(s->iq, s->iq_size);
2598         /* Ok - report back to driver */
2599         vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_QIES);
2600 
2601         if (s->iq_tail != 0) {
2602             /*
2603              * This is a spec violation but Windows guests are known to set up
2604              * Queued Invalidation this way so we allow the write and process
2605              * Invalidation Descriptors right away.
2606              */
2607             trace_vtd_warn_invalid_qi_tail(s->iq_tail);
2608             if (!(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
2609                 vtd_fetch_inv_desc(s);
2610             }
2611         }
2612     } else {
2613         if (vtd_queued_inv_disable_check(s)) {
2614             /* disable Queued Invalidation */
2615             vtd_set_quad_raw(s, DMAR_IQH_REG, 0);
2616             s->iq_head = 0;
2617             s->qi_enabled = false;
2618             /* Ok - report back to driver */
2619             vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_QIES, 0);
2620         } else {
2621             error_report_once("%s: detected improper state when disable QI "
2622                               "(head=0x%x, tail=0x%x, last_type=%d)",
2623                               __func__,
2624                               s->iq_head, s->iq_tail, s->iq_last_desc_type);
2625         }
2626     }
2627 }
2628 
2629 /* Set Root Table Pointer */
vtd_handle_gcmd_srtp(IntelIOMMUState * s)2630 static void vtd_handle_gcmd_srtp(IntelIOMMUState *s)
2631 {
2632     vtd_root_table_setup(s);
2633     /* Ok - report back to driver */
2634     vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_RTPS);
2635     vtd_reset_caches(s);
2636     vtd_address_space_refresh_all(s);
2637 }
2638 
2639 /* Set Interrupt Remap Table Pointer */
vtd_handle_gcmd_sirtp(IntelIOMMUState * s)2640 static void vtd_handle_gcmd_sirtp(IntelIOMMUState *s)
2641 {
2642     vtd_interrupt_remap_table_setup(s);
2643     /* Ok - report back to driver */
2644     vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRTPS);
2645 }
2646 
2647 /* Handle Translation Enable/Disable */
vtd_handle_gcmd_te(IntelIOMMUState * s,bool en)2648 static void vtd_handle_gcmd_te(IntelIOMMUState *s, bool en)
2649 {
2650     if (s->dmar_enabled == en) {
2651         return;
2652     }
2653 
2654     trace_vtd_dmar_enable(en);
2655 
2656     if (en) {
2657         s->dmar_enabled = true;
2658         /* Ok - report back to driver */
2659         vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_TES);
2660     } else {
2661         s->dmar_enabled = false;
2662 
2663         /* Clear the index of Fault Recording Register */
2664         s->next_frcd_reg = 0;
2665         /* Ok - report back to driver */
2666         vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_TES, 0);
2667     }
2668 
2669     vtd_reset_caches(s);
2670     vtd_address_space_refresh_all(s);
2671 }
2672 
2673 /* Handle Interrupt Remap Enable/Disable */
vtd_handle_gcmd_ire(IntelIOMMUState * s,bool en)2674 static void vtd_handle_gcmd_ire(IntelIOMMUState *s, bool en)
2675 {
2676     trace_vtd_ir_enable(en);
2677 
2678     if (en) {
2679         s->intr_enabled = true;
2680         /* Ok - report back to driver */
2681         vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRES);
2682     } else {
2683         s->intr_enabled = false;
2684         /* Ok - report back to driver */
2685         vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_IRES, 0);
2686     }
2687 }
2688 
2689 /* Handle write to Global Command Register */
vtd_handle_gcmd_write(IntelIOMMUState * s)2690 static void vtd_handle_gcmd_write(IntelIOMMUState *s)
2691 {
2692     X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
2693     uint32_t status = vtd_get_long_raw(s, DMAR_GSTS_REG);
2694     uint32_t val = vtd_get_long_raw(s, DMAR_GCMD_REG);
2695     uint32_t changed = status ^ val;
2696 
2697     trace_vtd_reg_write_gcmd(status, val);
2698     if ((changed & VTD_GCMD_TE) && s->dma_translation) {
2699         /* Translation enable/disable */
2700         vtd_handle_gcmd_te(s, val & VTD_GCMD_TE);
2701     }
2702     if (val & VTD_GCMD_SRTP) {
2703         /* Set/update the root-table pointer */
2704         vtd_handle_gcmd_srtp(s);
2705     }
2706     if (changed & VTD_GCMD_QIE) {
2707         /* Queued Invalidation Enable */
2708         vtd_handle_gcmd_qie(s, val & VTD_GCMD_QIE);
2709     }
2710     if (val & VTD_GCMD_SIRTP) {
2711         /* Set/update the interrupt remapping root-table pointer */
2712         vtd_handle_gcmd_sirtp(s);
2713     }
2714     if ((changed & VTD_GCMD_IRE) &&
2715         x86_iommu_ir_supported(x86_iommu)) {
2716         /* Interrupt remap enable/disable */
2717         vtd_handle_gcmd_ire(s, val & VTD_GCMD_IRE);
2718     }
2719 }
2720 
2721 /* Handle write to Context Command Register */
vtd_handle_ccmd_write(IntelIOMMUState * s)2722 static void vtd_handle_ccmd_write(IntelIOMMUState *s)
2723 {
2724     uint64_t ret;
2725     uint64_t val = vtd_get_quad_raw(s, DMAR_CCMD_REG);
2726 
2727     /* Context-cache invalidation request */
2728     if (val & VTD_CCMD_ICC) {
2729         if (s->qi_enabled) {
2730             error_report_once("Queued Invalidation enabled, "
2731                               "should not use register-based invalidation");
2732             return;
2733         }
2734         ret = vtd_context_cache_invalidate(s, val);
2735         /* Invalidation completed. Change something to show */
2736         vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_ICC, 0ULL);
2737         ret = vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_CAIG_MASK,
2738                                       ret);
2739     }
2740 }
2741 
2742 /* Handle write to IOTLB Invalidation Register */
vtd_handle_iotlb_write(IntelIOMMUState * s)2743 static void vtd_handle_iotlb_write(IntelIOMMUState *s)
2744 {
2745     uint64_t ret;
2746     uint64_t val = vtd_get_quad_raw(s, DMAR_IOTLB_REG);
2747 
2748     /* IOTLB invalidation request */
2749     if (val & VTD_TLB_IVT) {
2750         if (s->qi_enabled) {
2751             error_report_once("Queued Invalidation enabled, "
2752                               "should not use register-based invalidation");
2753             return;
2754         }
2755         ret = vtd_iotlb_flush(s, val);
2756         /* Invalidation completed. Change something to show */
2757         vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG, VTD_TLB_IVT, 0ULL);
2758         ret = vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG,
2759                                       VTD_TLB_FLUSH_GRANU_MASK_A, ret);
2760     }
2761 }
2762 
2763 /* Fetch an Invalidation Descriptor from the Invalidation Queue */
vtd_get_inv_desc(IntelIOMMUState * s,VTDInvDesc * inv_desc)2764 static bool vtd_get_inv_desc(IntelIOMMUState *s,
2765                              VTDInvDesc *inv_desc)
2766 {
2767     dma_addr_t base_addr = s->iq;
2768     uint32_t offset = s->iq_head;
2769     uint32_t dw = s->iq_dw ? 32 : 16;
2770     dma_addr_t addr = base_addr + offset * dw;
2771 
2772     if (dma_memory_read(&address_space_memory, addr,
2773                         inv_desc, dw, MEMTXATTRS_UNSPECIFIED)) {
2774         error_report_once("Read INV DESC failed.");
2775         return false;
2776     }
2777     inv_desc->lo = le64_to_cpu(inv_desc->lo);
2778     inv_desc->hi = le64_to_cpu(inv_desc->hi);
2779     if (dw == 32) {
2780         inv_desc->val[2] = le64_to_cpu(inv_desc->val[2]);
2781         inv_desc->val[3] = le64_to_cpu(inv_desc->val[3]);
2782     }
2783     return true;
2784 }
2785 
vtd_inv_desc_reserved_check(IntelIOMMUState * s,VTDInvDesc * inv_desc,uint64_t mask[4],bool dw,const char * func_name,const char * desc_type)2786 static bool vtd_inv_desc_reserved_check(IntelIOMMUState *s,
2787                                         VTDInvDesc *inv_desc,
2788                                         uint64_t mask[4], bool dw,
2789                                         const char *func_name,
2790                                         const char *desc_type)
2791 {
2792     if (s->iq_dw) {
2793         if (inv_desc->val[0] & mask[0] || inv_desc->val[1] & mask[1] ||
2794             inv_desc->val[2] & mask[2] || inv_desc->val[3] & mask[3]) {
2795             error_report("%s: invalid %s desc val[3]: 0x%"PRIx64
2796                          " val[2]: 0x%"PRIx64" val[1]=0x%"PRIx64
2797                          " val[0]=0x%"PRIx64" (reserved nonzero)",
2798                          func_name, desc_type, inv_desc->val[3],
2799                          inv_desc->val[2], inv_desc->val[1],
2800                          inv_desc->val[0]);
2801             return false;
2802         }
2803     } else {
2804         if (dw) {
2805             error_report("%s: 256-bit %s desc in 128-bit invalidation queue",
2806                          func_name, desc_type);
2807             return false;
2808         }
2809 
2810         if (inv_desc->lo & mask[0] || inv_desc->hi & mask[1]) {
2811             error_report("%s: invalid %s desc: hi=%"PRIx64", lo=%"PRIx64
2812                          " (reserved nonzero)", func_name, desc_type,
2813                          inv_desc->hi, inv_desc->lo);
2814             return false;
2815         }
2816     }
2817 
2818     return true;
2819 }
2820 
vtd_process_wait_desc(IntelIOMMUState * s,VTDInvDesc * inv_desc)2821 static bool vtd_process_wait_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
2822 {
2823     uint64_t mask[4] = {VTD_INV_DESC_WAIT_RSVD_LO, VTD_INV_DESC_WAIT_RSVD_HI,
2824                         VTD_INV_DESC_ALL_ONE, VTD_INV_DESC_ALL_ONE};
2825 
2826     if (!vtd_inv_desc_reserved_check(s, inv_desc, mask, false,
2827                                      __func__, "wait")) {
2828         return false;
2829     }
2830 
2831     if (inv_desc->lo & VTD_INV_DESC_WAIT_SW) {
2832         /* Status Write */
2833         uint32_t status_data = (uint32_t)(inv_desc->lo >>
2834                                VTD_INV_DESC_WAIT_DATA_SHIFT);
2835 
2836         assert(!(inv_desc->lo & VTD_INV_DESC_WAIT_IF));
2837 
2838         /* FIXME: need to be masked with HAW? */
2839         dma_addr_t status_addr = inv_desc->hi;
2840         trace_vtd_inv_desc_wait_sw(status_addr, status_data);
2841         status_data = cpu_to_le32(status_data);
2842         if (dma_memory_write(&address_space_memory, status_addr,
2843                              &status_data, sizeof(status_data),
2844                              MEMTXATTRS_UNSPECIFIED)) {
2845             trace_vtd_inv_desc_wait_write_fail(inv_desc->hi, inv_desc->lo);
2846             return false;
2847         }
2848     } else if (inv_desc->lo & VTD_INV_DESC_WAIT_IF) {
2849         /* Interrupt flag */
2850         vtd_generate_completion_event(s);
2851     } else {
2852         error_report_once("%s: invalid wait desc: hi=%"PRIx64", lo=%"PRIx64
2853                           " (unknown type)", __func__, inv_desc->hi,
2854                           inv_desc->lo);
2855         return false;
2856     }
2857     return true;
2858 }
2859 
vtd_process_context_cache_desc(IntelIOMMUState * s,VTDInvDesc * inv_desc)2860 static bool vtd_process_context_cache_desc(IntelIOMMUState *s,
2861                                            VTDInvDesc *inv_desc)
2862 {
2863     uint16_t sid, fmask;
2864     uint64_t mask[4] = {VTD_INV_DESC_CC_RSVD, VTD_INV_DESC_ALL_ONE,
2865                         VTD_INV_DESC_ALL_ONE, VTD_INV_DESC_ALL_ONE};
2866 
2867     if (!vtd_inv_desc_reserved_check(s, inv_desc, mask, false,
2868                                      __func__, "cc inv")) {
2869         return false;
2870     }
2871 
2872     switch (inv_desc->lo & VTD_INV_DESC_CC_G) {
2873     case VTD_INV_DESC_CC_DOMAIN:
2874         trace_vtd_inv_desc_cc_domain(
2875             (uint16_t)VTD_INV_DESC_CC_DID(inv_desc->lo));
2876         /* Fall through */
2877     case VTD_INV_DESC_CC_GLOBAL:
2878         vtd_context_global_invalidate(s);
2879         break;
2880 
2881     case VTD_INV_DESC_CC_DEVICE:
2882         sid = VTD_INV_DESC_CC_SID(inv_desc->lo);
2883         fmask = VTD_INV_DESC_CC_FM(inv_desc->lo);
2884         vtd_context_device_invalidate(s, sid, fmask);
2885         break;
2886 
2887     default:
2888         error_report_once("%s: invalid cc inv desc: hi=%"PRIx64", lo=%"PRIx64
2889                           " (invalid type)", __func__, inv_desc->hi,
2890                           inv_desc->lo);
2891         return false;
2892     }
2893     return true;
2894 }
2895 
vtd_process_iotlb_desc(IntelIOMMUState * s,VTDInvDesc * inv_desc)2896 static bool vtd_process_iotlb_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
2897 {
2898     uint16_t domain_id;
2899     uint8_t am;
2900     hwaddr addr;
2901     uint64_t mask[4] = {VTD_INV_DESC_IOTLB_RSVD_LO, VTD_INV_DESC_IOTLB_RSVD_HI,
2902                         VTD_INV_DESC_ALL_ONE, VTD_INV_DESC_ALL_ONE};
2903 
2904     if (!vtd_inv_desc_reserved_check(s, inv_desc, mask, false,
2905                                      __func__, "iotlb inv")) {
2906         return false;
2907     }
2908 
2909     switch (inv_desc->lo & VTD_INV_DESC_IOTLB_G) {
2910     case VTD_INV_DESC_IOTLB_GLOBAL:
2911         vtd_iotlb_global_invalidate(s);
2912         break;
2913 
2914     case VTD_INV_DESC_IOTLB_DOMAIN:
2915         domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
2916         vtd_iotlb_domain_invalidate(s, domain_id);
2917         break;
2918 
2919     case VTD_INV_DESC_IOTLB_PAGE:
2920         domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
2921         addr = VTD_INV_DESC_IOTLB_ADDR(inv_desc->hi);
2922         am = VTD_INV_DESC_IOTLB_AM(inv_desc->hi);
2923         if (am > VTD_MAMV) {
2924             error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
2925                               ", lo=0x%"PRIx64" (am=%u > VTD_MAMV=%u)",
2926                               __func__, inv_desc->hi, inv_desc->lo,
2927                               am, (unsigned)VTD_MAMV);
2928             return false;
2929         }
2930         vtd_iotlb_page_invalidate(s, domain_id, addr, am);
2931         break;
2932 
2933     default:
2934         error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
2935                           ", lo=0x%"PRIx64" (type mismatch: 0x%llx)",
2936                           __func__, inv_desc->hi, inv_desc->lo,
2937                           inv_desc->lo & VTD_INV_DESC_IOTLB_G);
2938         return false;
2939     }
2940     return true;
2941 }
2942 
vtd_hash_remove_by_pasid(gpointer key,gpointer value,gpointer user_data)2943 static gboolean vtd_hash_remove_by_pasid(gpointer key, gpointer value,
2944                                          gpointer user_data)
2945 {
2946     VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
2947     VTDIOTLBPageInvInfo *info = (VTDIOTLBPageInvInfo *)user_data;
2948 
2949     return ((entry->domain_id == info->domain_id) &&
2950             (entry->pasid == info->pasid));
2951 }
2952 
vtd_piotlb_pasid_invalidate(IntelIOMMUState * s,uint16_t domain_id,uint32_t pasid)2953 static void vtd_piotlb_pasid_invalidate(IntelIOMMUState *s,
2954                                         uint16_t domain_id, uint32_t pasid)
2955 {
2956     VTDIOTLBPageInvInfo info;
2957     VTDAddressSpace *vtd_as;
2958     VTDContextEntry ce;
2959 
2960     info.domain_id = domain_id;
2961     info.pasid = pasid;
2962 
2963     vtd_iommu_lock(s);
2964     g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_pasid,
2965                                 &info);
2966     vtd_iommu_unlock(s);
2967 
2968     QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
2969         if (!vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
2970                                       vtd_as->devfn, &ce) &&
2971             domain_id == vtd_get_domain_id(s, &ce, vtd_as->pasid)) {
2972             uint32_t rid2pasid = VTD_CE_GET_RID2PASID(&ce);
2973 
2974             if ((vtd_as->pasid != PCI_NO_PASID || pasid != rid2pasid) &&
2975                 vtd_as->pasid != pasid) {
2976                 continue;
2977             }
2978 
2979             if (!s->flts || !vtd_as_has_map_notifier(vtd_as)) {
2980                 vtd_address_space_sync(vtd_as);
2981             }
2982         }
2983     }
2984 }
2985 
vtd_piotlb_page_invalidate(IntelIOMMUState * s,uint16_t domain_id,uint32_t pasid,hwaddr addr,uint8_t am)2986 static void vtd_piotlb_page_invalidate(IntelIOMMUState *s, uint16_t domain_id,
2987                                        uint32_t pasid, hwaddr addr, uint8_t am)
2988 {
2989     VTDIOTLBPageInvInfo info;
2990 
2991     info.domain_id = domain_id;
2992     info.pasid = pasid;
2993     info.addr = addr;
2994     info.mask = ~((1 << am) - 1);
2995 
2996     vtd_iommu_lock(s);
2997     g_hash_table_foreach_remove(s->iotlb,
2998                                 vtd_hash_remove_by_page_piotlb, &info);
2999     vtd_iommu_unlock(s);
3000 
3001     vtd_iotlb_page_invalidate_notify(s, domain_id, addr, am, pasid);
3002 }
3003 
vtd_process_piotlb_desc(IntelIOMMUState * s,VTDInvDesc * inv_desc)3004 static bool vtd_process_piotlb_desc(IntelIOMMUState *s,
3005                                     VTDInvDesc *inv_desc)
3006 {
3007     uint16_t domain_id;
3008     uint32_t pasid;
3009     hwaddr addr;
3010     uint8_t am;
3011     uint64_t mask[4] = {VTD_INV_DESC_PIOTLB_RSVD_VAL0,
3012                         VTD_INV_DESC_PIOTLB_RSVD_VAL1,
3013                         VTD_INV_DESC_ALL_ONE, VTD_INV_DESC_ALL_ONE};
3014 
3015     if (!vtd_inv_desc_reserved_check(s, inv_desc, mask, true,
3016                                      __func__, "piotlb inv")) {
3017         return false;
3018     }
3019 
3020     domain_id = VTD_INV_DESC_PIOTLB_DID(inv_desc->val[0]);
3021     pasid = VTD_INV_DESC_PIOTLB_PASID(inv_desc->val[0]);
3022     switch (inv_desc->val[0] & VTD_INV_DESC_PIOTLB_G) {
3023     case VTD_INV_DESC_PIOTLB_ALL_IN_PASID:
3024         vtd_piotlb_pasid_invalidate(s, domain_id, pasid);
3025         break;
3026 
3027     case VTD_INV_DESC_PIOTLB_PSI_IN_PASID:
3028         am = VTD_INV_DESC_PIOTLB_AM(inv_desc->val[1]);
3029         addr = (hwaddr) VTD_INV_DESC_PIOTLB_ADDR(inv_desc->val[1]);
3030         vtd_piotlb_page_invalidate(s, domain_id, pasid, addr, am);
3031         break;
3032 
3033     default:
3034         error_report_once("%s: invalid piotlb inv desc: hi=0x%"PRIx64
3035                           ", lo=0x%"PRIx64" (type mismatch: 0x%llx)",
3036                           __func__, inv_desc->val[1], inv_desc->val[0],
3037                           inv_desc->val[0] & VTD_INV_DESC_IOTLB_G);
3038         return false;
3039     }
3040     return true;
3041 }
3042 
vtd_process_inv_iec_desc(IntelIOMMUState * s,VTDInvDesc * inv_desc)3043 static bool vtd_process_inv_iec_desc(IntelIOMMUState *s,
3044                                      VTDInvDesc *inv_desc)
3045 {
3046     uint64_t mask[4] = {VTD_INV_DESC_IEC_RSVD, VTD_INV_DESC_ALL_ONE,
3047                         VTD_INV_DESC_ALL_ONE, VTD_INV_DESC_ALL_ONE};
3048 
3049     if (!vtd_inv_desc_reserved_check(s, inv_desc, mask, false,
3050                                      __func__, "iec inv")) {
3051         return false;
3052     }
3053 
3054     trace_vtd_inv_desc_iec(inv_desc->iec.granularity,
3055                            inv_desc->iec.index,
3056                            inv_desc->iec.index_mask);
3057 
3058     vtd_iec_notify_all(s, !inv_desc->iec.granularity,
3059                        inv_desc->iec.index,
3060                        inv_desc->iec.index_mask);
3061     return true;
3062 }
3063 
do_invalidate_device_tlb(VTDAddressSpace * vtd_dev_as,bool size,hwaddr addr)3064 static void do_invalidate_device_tlb(VTDAddressSpace *vtd_dev_as,
3065                                      bool size, hwaddr addr)
3066 {
3067     /*
3068      * According to ATS spec table 2.4:
3069      * S = 0, bits 15:12 = xxxx     range size: 4K
3070      * S = 1, bits 15:12 = xxx0     range size: 8K
3071      * S = 1, bits 15:12 = xx01     range size: 16K
3072      * S = 1, bits 15:12 = x011     range size: 32K
3073      * S = 1, bits 15:12 = 0111     range size: 64K
3074      * ...
3075      */
3076 
3077     IOMMUTLBEvent event;
3078     uint64_t sz;
3079 
3080     if (size) {
3081         sz = (VTD_PAGE_SIZE * 2) << cto64(addr >> VTD_PAGE_SHIFT);
3082         addr &= ~(sz - 1);
3083     } else {
3084         sz = VTD_PAGE_SIZE;
3085     }
3086 
3087     event.type = IOMMU_NOTIFIER_DEVIOTLB_UNMAP;
3088     event.entry.target_as = &vtd_dev_as->as;
3089     event.entry.addr_mask = sz - 1;
3090     event.entry.iova = addr;
3091     event.entry.perm = IOMMU_NONE;
3092     event.entry.translated_addr = 0;
3093     memory_region_notify_iommu(&vtd_dev_as->iommu, 0, event);
3094 }
3095 
vtd_process_device_piotlb_desc(IntelIOMMUState * s,VTDInvDesc * inv_desc)3096 static bool vtd_process_device_piotlb_desc(IntelIOMMUState *s,
3097                                            VTDInvDesc *inv_desc)
3098 {
3099     uint16_t sid;
3100     VTDAddressSpace *vtd_dev_as;
3101     bool size;
3102     bool global;
3103     hwaddr addr;
3104     uint32_t pasid;
3105     uint64_t mask[4] = {VTD_INV_DESC_PASID_DEVICE_IOTLB_RSVD_VAL0,
3106                         VTD_INV_DESC_PASID_DEVICE_IOTLB_RSVD_VAL1,
3107                         VTD_INV_DESC_ALL_ONE, VTD_INV_DESC_ALL_ONE};
3108 
3109     if (!vtd_inv_desc_reserved_check(s, inv_desc, mask, true,
3110                                      __func__, "device piotlb inv")) {
3111         return false;
3112     }
3113 
3114     global = VTD_INV_DESC_PASID_DEVICE_IOTLB_GLOBAL(inv_desc->hi);
3115     size = VTD_INV_DESC_PASID_DEVICE_IOTLB_SIZE(inv_desc->hi);
3116     addr = VTD_INV_DESC_PASID_DEVICE_IOTLB_ADDR(inv_desc->hi);
3117     sid = VTD_INV_DESC_PASID_DEVICE_IOTLB_SID(inv_desc->lo);
3118     if (global) {
3119         QLIST_FOREACH(vtd_dev_as, &s->vtd_as_with_notifiers, next) {
3120             if ((vtd_dev_as->pasid != PCI_NO_PASID) &&
3121                 (PCI_BUILD_BDF(pci_bus_num(vtd_dev_as->bus),
3122                                            vtd_dev_as->devfn) == sid)) {
3123                 do_invalidate_device_tlb(vtd_dev_as, size, addr);
3124             }
3125         }
3126     } else {
3127         pasid = VTD_INV_DESC_PASID_DEVICE_IOTLB_PASID(inv_desc->lo);
3128         vtd_dev_as = vtd_get_as_by_sid_and_pasid(s, sid, pasid);
3129         if (!vtd_dev_as) {
3130             return true;
3131         }
3132 
3133         do_invalidate_device_tlb(vtd_dev_as, size, addr);
3134     }
3135 
3136     return true;
3137 }
3138 
vtd_process_device_iotlb_desc(IntelIOMMUState * s,VTDInvDesc * inv_desc)3139 static bool vtd_process_device_iotlb_desc(IntelIOMMUState *s,
3140                                           VTDInvDesc *inv_desc)
3141 {
3142     VTDAddressSpace *vtd_dev_as;
3143     hwaddr addr;
3144     uint16_t sid;
3145     bool size;
3146     uint64_t mask[4] = {VTD_INV_DESC_DEVICE_IOTLB_RSVD_LO,
3147                         VTD_INV_DESC_DEVICE_IOTLB_RSVD_HI,
3148                         VTD_INV_DESC_ALL_ONE, VTD_INV_DESC_ALL_ONE};
3149 
3150     if (!vtd_inv_desc_reserved_check(s, inv_desc, mask, false,
3151                                      __func__, "dev-iotlb inv")) {
3152         return false;
3153     }
3154 
3155     addr = VTD_INV_DESC_DEVICE_IOTLB_ADDR(inv_desc->hi);
3156     sid = VTD_INV_DESC_DEVICE_IOTLB_SID(inv_desc->lo);
3157     size = VTD_INV_DESC_DEVICE_IOTLB_SIZE(inv_desc->hi);
3158 
3159     /*
3160      * Using sid is OK since the guest should have finished the
3161      * initialization of both the bus and device.
3162      */
3163     vtd_dev_as = vtd_get_as_by_sid(s, sid);
3164     if (!vtd_dev_as) {
3165         goto done;
3166     }
3167 
3168     do_invalidate_device_tlb(vtd_dev_as, size, addr);
3169 
3170 done:
3171     return true;
3172 }
3173 
vtd_process_inv_desc(IntelIOMMUState * s)3174 static bool vtd_process_inv_desc(IntelIOMMUState *s)
3175 {
3176     VTDInvDesc inv_desc;
3177     uint8_t desc_type;
3178 
3179     trace_vtd_inv_qi_head(s->iq_head);
3180     if (!vtd_get_inv_desc(s, &inv_desc)) {
3181         s->iq_last_desc_type = VTD_INV_DESC_NONE;
3182         return false;
3183     }
3184 
3185     desc_type = VTD_INV_DESC_TYPE(inv_desc.lo);
3186     /* FIXME: should update at first or at last? */
3187     s->iq_last_desc_type = desc_type;
3188 
3189     switch (desc_type) {
3190     case VTD_INV_DESC_CC:
3191         trace_vtd_inv_desc("context-cache", inv_desc.hi, inv_desc.lo);
3192         if (!vtd_process_context_cache_desc(s, &inv_desc)) {
3193             return false;
3194         }
3195         break;
3196 
3197     case VTD_INV_DESC_IOTLB:
3198         trace_vtd_inv_desc("iotlb", inv_desc.hi, inv_desc.lo);
3199         if (!vtd_process_iotlb_desc(s, &inv_desc)) {
3200             return false;
3201         }
3202         break;
3203 
3204     case VTD_INV_DESC_PIOTLB:
3205         trace_vtd_inv_desc("p-iotlb", inv_desc.val[1], inv_desc.val[0]);
3206         if (!vtd_process_piotlb_desc(s, &inv_desc)) {
3207             return false;
3208         }
3209         break;
3210 
3211     case VTD_INV_DESC_WAIT:
3212         trace_vtd_inv_desc("wait", inv_desc.hi, inv_desc.lo);
3213         if (!vtd_process_wait_desc(s, &inv_desc)) {
3214             return false;
3215         }
3216         break;
3217 
3218     case VTD_INV_DESC_IEC:
3219         trace_vtd_inv_desc("iec", inv_desc.hi, inv_desc.lo);
3220         if (!vtd_process_inv_iec_desc(s, &inv_desc)) {
3221             return false;
3222         }
3223         break;
3224 
3225     case VTD_INV_DESC_DEV_PIOTLB:
3226         trace_vtd_inv_desc("device-piotlb", inv_desc.hi, inv_desc.lo);
3227         if (!vtd_process_device_piotlb_desc(s, &inv_desc)) {
3228             return false;
3229         }
3230         break;
3231 
3232     case VTD_INV_DESC_DEVICE:
3233         trace_vtd_inv_desc("device", inv_desc.hi, inv_desc.lo);
3234         if (!vtd_process_device_iotlb_desc(s, &inv_desc)) {
3235             return false;
3236         }
3237         break;
3238 
3239     /*
3240      * TODO: the entity of below two cases will be implemented in future series.
3241      * To make guest (which integrates scalable mode support patch set in
3242      * iommu driver) work, just return true is enough so far.
3243      */
3244     case VTD_INV_DESC_PC:
3245         if (s->scalable_mode) {
3246             break;
3247         }
3248     /* fallthrough */
3249     default:
3250         error_report_once("%s: invalid inv desc: hi=%"PRIx64", lo=%"PRIx64
3251                           " (unknown type)", __func__, inv_desc.hi,
3252                           inv_desc.lo);
3253         return false;
3254     }
3255     s->iq_head++;
3256     if (s->iq_head == s->iq_size) {
3257         s->iq_head = 0;
3258     }
3259     return true;
3260 }
3261 
3262 /* Try to fetch and process more Invalidation Descriptors */
vtd_fetch_inv_desc(IntelIOMMUState * s)3263 static void vtd_fetch_inv_desc(IntelIOMMUState *s)
3264 {
3265     int qi_shift;
3266 
3267     /* Refer to 10.4.23 of VT-d spec 3.0 */
3268     qi_shift = s->iq_dw ? VTD_IQH_QH_SHIFT_5 : VTD_IQH_QH_SHIFT_4;
3269 
3270     trace_vtd_inv_qi_fetch();
3271 
3272     if (s->iq_tail >= s->iq_size) {
3273         /* Detects an invalid Tail pointer */
3274         error_report_once("%s: detected invalid QI tail "
3275                           "(tail=0x%x, size=0x%x)",
3276                           __func__, s->iq_tail, s->iq_size);
3277         vtd_handle_inv_queue_error(s);
3278         return;
3279     }
3280     while (s->iq_head != s->iq_tail) {
3281         if (!vtd_process_inv_desc(s)) {
3282             /* Invalidation Queue Errors */
3283             vtd_handle_inv_queue_error(s);
3284             break;
3285         }
3286         /* Must update the IQH_REG in time */
3287         vtd_set_quad_raw(s, DMAR_IQH_REG,
3288                          (((uint64_t)(s->iq_head)) << qi_shift) &
3289                          VTD_IQH_QH_MASK);
3290     }
3291 }
3292 
3293 /* Handle write to Invalidation Queue Tail Register */
vtd_handle_iqt_write(IntelIOMMUState * s)3294 static void vtd_handle_iqt_write(IntelIOMMUState *s)
3295 {
3296     uint64_t val = vtd_get_quad_raw(s, DMAR_IQT_REG);
3297 
3298     if (s->iq_dw && (val & VTD_IQT_QT_256_RSV_BIT)) {
3299         error_report_once("%s: RSV bit is set: val=0x%"PRIx64,
3300                           __func__, val);
3301         vtd_handle_inv_queue_error(s);
3302         return;
3303     }
3304     s->iq_tail = VTD_IQT_QT(s->iq_dw, val);
3305     trace_vtd_inv_qi_tail(s->iq_tail);
3306 
3307     if (s->qi_enabled && !(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
3308         /* Process Invalidation Queue here */
3309         vtd_fetch_inv_desc(s);
3310     }
3311 }
3312 
vtd_handle_fsts_write(IntelIOMMUState * s)3313 static void vtd_handle_fsts_write(IntelIOMMUState *s)
3314 {
3315     uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
3316     uint32_t fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
3317     uint32_t status_fields = VTD_FSTS_PFO | VTD_FSTS_PPF | VTD_FSTS_IQE;
3318 
3319     if ((fectl_reg & VTD_FECTL_IP) && !(fsts_reg & status_fields)) {
3320         vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
3321         trace_vtd_fsts_clear_ip();
3322     }
3323     /* FIXME: when IQE is Clear, should we try to fetch some Invalidation
3324      * Descriptors if there are any when Queued Invalidation is enabled?
3325      */
3326 }
3327 
vtd_handle_fectl_write(IntelIOMMUState * s)3328 static void vtd_handle_fectl_write(IntelIOMMUState *s)
3329 {
3330     uint32_t fectl_reg;
3331     /* FIXME: when software clears the IM field, check the IP field. But do we
3332      * need to compare the old value and the new value to conclude that
3333      * software clears the IM field? Or just check if the IM field is zero?
3334      */
3335     fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
3336 
3337     trace_vtd_reg_write_fectl(fectl_reg);
3338 
3339     if ((fectl_reg & VTD_FECTL_IP) && !(fectl_reg & VTD_FECTL_IM)) {
3340         vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
3341         vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
3342     }
3343 }
3344 
vtd_handle_ics_write(IntelIOMMUState * s)3345 static void vtd_handle_ics_write(IntelIOMMUState *s)
3346 {
3347     uint32_t ics_reg = vtd_get_long_raw(s, DMAR_ICS_REG);
3348     uint32_t iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
3349 
3350     if ((iectl_reg & VTD_IECTL_IP) && !(ics_reg & VTD_ICS_IWC)) {
3351         trace_vtd_reg_ics_clear_ip();
3352         vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
3353     }
3354 }
3355 
vtd_handle_iectl_write(IntelIOMMUState * s)3356 static void vtd_handle_iectl_write(IntelIOMMUState *s)
3357 {
3358     uint32_t iectl_reg;
3359     /* FIXME: when software clears the IM field, check the IP field. But do we
3360      * need to compare the old value and the new value to conclude that
3361      * software clears the IM field? Or just check if the IM field is zero?
3362      */
3363     iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
3364 
3365     trace_vtd_reg_write_iectl(iectl_reg);
3366 
3367     if ((iectl_reg & VTD_IECTL_IP) && !(iectl_reg & VTD_IECTL_IM)) {
3368         vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
3369         vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
3370     }
3371 }
3372 
vtd_mem_read(void * opaque,hwaddr addr,unsigned size)3373 static uint64_t vtd_mem_read(void *opaque, hwaddr addr, unsigned size)
3374 {
3375     IntelIOMMUState *s = opaque;
3376     uint64_t val;
3377 
3378     trace_vtd_reg_read(addr, size);
3379 
3380     if (addr + size > DMAR_REG_SIZE) {
3381         error_report_once("%s: MMIO over range: addr=0x%" PRIx64
3382                           " size=0x%x", __func__, addr, size);
3383         return (uint64_t)-1;
3384     }
3385 
3386     switch (addr) {
3387     /* Root Table Address Register, 64-bit */
3388     case DMAR_RTADDR_REG:
3389         val = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
3390         if (size == 4) {
3391             val = val & ((1ULL << 32) - 1);
3392         }
3393         break;
3394 
3395     case DMAR_RTADDR_REG_HI:
3396         assert(size == 4);
3397         val = vtd_get_quad_raw(s, DMAR_RTADDR_REG) >> 32;
3398         break;
3399 
3400     /* Invalidation Queue Address Register, 64-bit */
3401     case DMAR_IQA_REG:
3402         val = s->iq |
3403               (vtd_get_quad(s, DMAR_IQA_REG) &
3404               (VTD_IQA_QS | VTD_IQA_DW_MASK));
3405         if (size == 4) {
3406             val = val & ((1ULL << 32) - 1);
3407         }
3408         break;
3409 
3410     case DMAR_IQA_REG_HI:
3411         assert(size == 4);
3412         val = s->iq >> 32;
3413         break;
3414 
3415     default:
3416         if (size == 4) {
3417             val = vtd_get_long(s, addr);
3418         } else {
3419             val = vtd_get_quad(s, addr);
3420         }
3421     }
3422 
3423     return val;
3424 }
3425 
vtd_mem_write(void * opaque,hwaddr addr,uint64_t val,unsigned size)3426 static void vtd_mem_write(void *opaque, hwaddr addr,
3427                           uint64_t val, unsigned size)
3428 {
3429     IntelIOMMUState *s = opaque;
3430 
3431     trace_vtd_reg_write(addr, size, val);
3432 
3433     if (addr + size > DMAR_REG_SIZE) {
3434         error_report_once("%s: MMIO over range: addr=0x%" PRIx64
3435                           " size=0x%x", __func__, addr, size);
3436         return;
3437     }
3438 
3439     switch (addr) {
3440     /* Global Command Register, 32-bit */
3441     case DMAR_GCMD_REG:
3442         vtd_set_long(s, addr, val);
3443         vtd_handle_gcmd_write(s);
3444         break;
3445 
3446     /* Context Command Register, 64-bit */
3447     case DMAR_CCMD_REG:
3448         if (size == 4) {
3449             vtd_set_long(s, addr, val);
3450         } else {
3451             vtd_set_quad(s, addr, val);
3452             vtd_handle_ccmd_write(s);
3453         }
3454         break;
3455 
3456     case DMAR_CCMD_REG_HI:
3457         assert(size == 4);
3458         vtd_set_long(s, addr, val);
3459         vtd_handle_ccmd_write(s);
3460         break;
3461 
3462     /* IOTLB Invalidation Register, 64-bit */
3463     case DMAR_IOTLB_REG:
3464         if (size == 4) {
3465             vtd_set_long(s, addr, val);
3466         } else {
3467             vtd_set_quad(s, addr, val);
3468             vtd_handle_iotlb_write(s);
3469         }
3470         break;
3471 
3472     case DMAR_IOTLB_REG_HI:
3473         assert(size == 4);
3474         vtd_set_long(s, addr, val);
3475         vtd_handle_iotlb_write(s);
3476         break;
3477 
3478     /* Invalidate Address Register, 64-bit */
3479     case DMAR_IVA_REG:
3480         if (size == 4) {
3481             vtd_set_long(s, addr, val);
3482         } else {
3483             vtd_set_quad(s, addr, val);
3484         }
3485         break;
3486 
3487     case DMAR_IVA_REG_HI:
3488         assert(size == 4);
3489         vtd_set_long(s, addr, val);
3490         break;
3491 
3492     /* Fault Status Register, 32-bit */
3493     case DMAR_FSTS_REG:
3494         assert(size == 4);
3495         vtd_set_long(s, addr, val);
3496         vtd_handle_fsts_write(s);
3497         break;
3498 
3499     /* Fault Event Control Register, 32-bit */
3500     case DMAR_FECTL_REG:
3501         assert(size == 4);
3502         vtd_set_long(s, addr, val);
3503         vtd_handle_fectl_write(s);
3504         break;
3505 
3506     /* Fault Event Data Register, 32-bit */
3507     case DMAR_FEDATA_REG:
3508         assert(size == 4);
3509         vtd_set_long(s, addr, val);
3510         break;
3511 
3512     /* Fault Event Address Register, 32-bit */
3513     case DMAR_FEADDR_REG:
3514         if (size == 4) {
3515             vtd_set_long(s, addr, val);
3516         } else {
3517             /*
3518              * While the register is 32-bit only, some guests (Xen...) write to
3519              * it with 64-bit.
3520              */
3521             vtd_set_quad(s, addr, val);
3522         }
3523         break;
3524 
3525     /* Fault Event Upper Address Register, 32-bit */
3526     case DMAR_FEUADDR_REG:
3527         assert(size == 4);
3528         vtd_set_long(s, addr, val);
3529         break;
3530 
3531     /* Protected Memory Enable Register, 32-bit */
3532     case DMAR_PMEN_REG:
3533         assert(size == 4);
3534         vtd_set_long(s, addr, val);
3535         break;
3536 
3537     /* Root Table Address Register, 64-bit */
3538     case DMAR_RTADDR_REG:
3539         if (size == 4) {
3540             vtd_set_long(s, addr, val);
3541         } else {
3542             vtd_set_quad(s, addr, val);
3543         }
3544         break;
3545 
3546     case DMAR_RTADDR_REG_HI:
3547         assert(size == 4);
3548         vtd_set_long(s, addr, val);
3549         break;
3550 
3551     /* Invalidation Queue Tail Register, 64-bit */
3552     case DMAR_IQT_REG:
3553         if (size == 4) {
3554             vtd_set_long(s, addr, val);
3555         } else {
3556             vtd_set_quad(s, addr, val);
3557         }
3558         vtd_handle_iqt_write(s);
3559         break;
3560 
3561     case DMAR_IQT_REG_HI:
3562         assert(size == 4);
3563         vtd_set_long(s, addr, val);
3564         /* 19:63 of IQT_REG is RsvdZ, do nothing here */
3565         break;
3566 
3567     /* Invalidation Queue Address Register, 64-bit */
3568     case DMAR_IQA_REG:
3569         if (size == 4) {
3570             vtd_set_long(s, addr, val);
3571         } else {
3572             vtd_set_quad(s, addr, val);
3573         }
3574         vtd_update_iq_dw(s);
3575         break;
3576 
3577     case DMAR_IQA_REG_HI:
3578         assert(size == 4);
3579         vtd_set_long(s, addr, val);
3580         break;
3581 
3582     /* Invalidation Completion Status Register, 32-bit */
3583     case DMAR_ICS_REG:
3584         assert(size == 4);
3585         vtd_set_long(s, addr, val);
3586         vtd_handle_ics_write(s);
3587         break;
3588 
3589     /* Invalidation Event Control Register, 32-bit */
3590     case DMAR_IECTL_REG:
3591         assert(size == 4);
3592         vtd_set_long(s, addr, val);
3593         vtd_handle_iectl_write(s);
3594         break;
3595 
3596     /* Invalidation Event Data Register, 32-bit */
3597     case DMAR_IEDATA_REG:
3598         assert(size == 4);
3599         vtd_set_long(s, addr, val);
3600         break;
3601 
3602     /* Invalidation Event Address Register, 32-bit */
3603     case DMAR_IEADDR_REG:
3604         assert(size == 4);
3605         vtd_set_long(s, addr, val);
3606         break;
3607 
3608     /* Invalidation Event Upper Address Register, 32-bit */
3609     case DMAR_IEUADDR_REG:
3610         assert(size == 4);
3611         vtd_set_long(s, addr, val);
3612         break;
3613 
3614     /* Fault Recording Registers, 128-bit */
3615     case DMAR_FRCD_REG_0_0:
3616         if (size == 4) {
3617             vtd_set_long(s, addr, val);
3618         } else {
3619             vtd_set_quad(s, addr, val);
3620         }
3621         break;
3622 
3623     case DMAR_FRCD_REG_0_1:
3624         assert(size == 4);
3625         vtd_set_long(s, addr, val);
3626         break;
3627 
3628     case DMAR_FRCD_REG_0_2:
3629         if (size == 4) {
3630             vtd_set_long(s, addr, val);
3631         } else {
3632             vtd_set_quad(s, addr, val);
3633             /* May clear bit 127 (Fault), update PPF */
3634             vtd_update_fsts_ppf(s);
3635         }
3636         break;
3637 
3638     case DMAR_FRCD_REG_0_3:
3639         assert(size == 4);
3640         vtd_set_long(s, addr, val);
3641         /* May clear bit 127 (Fault), update PPF */
3642         vtd_update_fsts_ppf(s);
3643         break;
3644 
3645     case DMAR_IRTA_REG:
3646         if (size == 4) {
3647             vtd_set_long(s, addr, val);
3648         } else {
3649             vtd_set_quad(s, addr, val);
3650         }
3651         break;
3652 
3653     case DMAR_IRTA_REG_HI:
3654         assert(size == 4);
3655         vtd_set_long(s, addr, val);
3656         break;
3657 
3658     default:
3659         if (size == 4) {
3660             vtd_set_long(s, addr, val);
3661         } else {
3662             vtd_set_quad(s, addr, val);
3663         }
3664     }
3665 }
3666 
vtd_iommu_translate(IOMMUMemoryRegion * iommu,hwaddr addr,IOMMUAccessFlags flag,int iommu_idx)3667 static IOMMUTLBEntry vtd_iommu_translate(IOMMUMemoryRegion *iommu, hwaddr addr,
3668                                          IOMMUAccessFlags flag, int iommu_idx)
3669 {
3670     VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
3671     IntelIOMMUState *s = vtd_as->iommu_state;
3672     IOMMUTLBEntry iotlb = {
3673         /* We'll fill in the rest later. */
3674         .target_as = &address_space_memory,
3675     };
3676     bool success;
3677 
3678     if (likely(s->dmar_enabled)) {
3679         success = vtd_do_iommu_translate(vtd_as, vtd_as->bus, vtd_as->devfn,
3680                                          addr, flag & IOMMU_WO, &iotlb);
3681     } else {
3682         /* DMAR disabled, passthrough, use 4k-page*/
3683         iotlb.iova = addr & VTD_PAGE_MASK_4K;
3684         iotlb.translated_addr = addr & VTD_PAGE_MASK_4K;
3685         iotlb.addr_mask = ~VTD_PAGE_MASK_4K;
3686         iotlb.perm = IOMMU_RW;
3687         success = true;
3688     }
3689 
3690     if (likely(success)) {
3691         trace_vtd_dmar_translate(pci_bus_num(vtd_as->bus),
3692                                  VTD_PCI_SLOT(vtd_as->devfn),
3693                                  VTD_PCI_FUNC(vtd_as->devfn),
3694                                  iotlb.iova, iotlb.translated_addr,
3695                                  iotlb.addr_mask);
3696     } else {
3697         error_report_once("%s: detected translation failure "
3698                           "(dev=%02x:%02x:%02x, iova=0x%" PRIx64 ")",
3699                           __func__, pci_bus_num(vtd_as->bus),
3700                           VTD_PCI_SLOT(vtd_as->devfn),
3701                           VTD_PCI_FUNC(vtd_as->devfn),
3702                           addr);
3703     }
3704 
3705     return iotlb;
3706 }
3707 
vtd_iommu_notify_flag_changed(IOMMUMemoryRegion * iommu,IOMMUNotifierFlag old,IOMMUNotifierFlag new,Error ** errp)3708 static int vtd_iommu_notify_flag_changed(IOMMUMemoryRegion *iommu,
3709                                          IOMMUNotifierFlag old,
3710                                          IOMMUNotifierFlag new,
3711                                          Error **errp)
3712 {
3713     VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
3714     IntelIOMMUState *s = vtd_as->iommu_state;
3715     X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
3716 
3717     /* TODO: add support for VFIO and vhost users */
3718     if (s->snoop_control) {
3719         error_setg_errno(errp, ENOTSUP,
3720                          "Snoop Control with vhost or VFIO is not supported");
3721         return -ENOTSUP;
3722     }
3723     if (!s->caching_mode && (new & IOMMU_NOTIFIER_MAP)) {
3724         error_setg_errno(errp, ENOTSUP,
3725                          "device %02x.%02x.%x requires caching mode",
3726                          pci_bus_num(vtd_as->bus), PCI_SLOT(vtd_as->devfn),
3727                          PCI_FUNC(vtd_as->devfn));
3728         return -ENOTSUP;
3729     }
3730     if (!x86_iommu->dt_supported && (new & IOMMU_NOTIFIER_DEVIOTLB_UNMAP)) {
3731         error_setg_errno(errp, ENOTSUP,
3732                          "device %02x.%02x.%x requires device IOTLB mode",
3733                          pci_bus_num(vtd_as->bus), PCI_SLOT(vtd_as->devfn),
3734                          PCI_FUNC(vtd_as->devfn));
3735         return -ENOTSUP;
3736     }
3737 
3738     /* Update per-address-space notifier flags */
3739     vtd_as->notifier_flags = new;
3740 
3741     if (old == IOMMU_NOTIFIER_NONE) {
3742         QLIST_INSERT_HEAD(&s->vtd_as_with_notifiers, vtd_as, next);
3743     } else if (new == IOMMU_NOTIFIER_NONE) {
3744         QLIST_REMOVE(vtd_as, next);
3745     }
3746     return 0;
3747 }
3748 
vtd_post_load(void * opaque,int version_id)3749 static int vtd_post_load(void *opaque, int version_id)
3750 {
3751     IntelIOMMUState *iommu = opaque;
3752 
3753     /*
3754      * We don't need to migrate the root_scalable because we can
3755      * simply do the calculation after the loading is complete.  We
3756      * can actually do similar things with root, dmar_enabled, etc.
3757      * however since we've had them already so we'd better keep them
3758      * for compatibility of migration.
3759      */
3760     vtd_update_scalable_state(iommu);
3761 
3762     vtd_update_iq_dw(iommu);
3763 
3764     /*
3765      * Memory regions are dynamically turned on/off depending on
3766      * context entry configurations from the guest. After migration,
3767      * we need to make sure the memory regions are still correct.
3768      */
3769     vtd_switch_address_space_all(iommu);
3770 
3771     return 0;
3772 }
3773 
3774 static const VMStateDescription vtd_vmstate = {
3775     .name = "iommu-intel",
3776     .version_id = 1,
3777     .minimum_version_id = 1,
3778     .priority = MIG_PRI_IOMMU,
3779     .post_load = vtd_post_load,
3780     .fields = (const VMStateField[]) {
3781         VMSTATE_UINT64(root, IntelIOMMUState),
3782         VMSTATE_UINT64(intr_root, IntelIOMMUState),
3783         VMSTATE_UINT64(iq, IntelIOMMUState),
3784         VMSTATE_UINT32(intr_size, IntelIOMMUState),
3785         VMSTATE_UINT16(iq_head, IntelIOMMUState),
3786         VMSTATE_UINT16(iq_tail, IntelIOMMUState),
3787         VMSTATE_UINT16(iq_size, IntelIOMMUState),
3788         VMSTATE_UINT16(next_frcd_reg, IntelIOMMUState),
3789         VMSTATE_UINT8_ARRAY(csr, IntelIOMMUState, DMAR_REG_SIZE),
3790         VMSTATE_UINT8(iq_last_desc_type, IntelIOMMUState),
3791         VMSTATE_UNUSED(1),      /* bool root_extended is obsolete by VT-d */
3792         VMSTATE_BOOL(dmar_enabled, IntelIOMMUState),
3793         VMSTATE_BOOL(qi_enabled, IntelIOMMUState),
3794         VMSTATE_BOOL(intr_enabled, IntelIOMMUState),
3795         VMSTATE_BOOL(intr_eime, IntelIOMMUState),
3796         VMSTATE_END_OF_LIST()
3797     }
3798 };
3799 
3800 static const MemoryRegionOps vtd_mem_ops = {
3801     .read = vtd_mem_read,
3802     .write = vtd_mem_write,
3803     .endianness = DEVICE_LITTLE_ENDIAN,
3804     .impl = {
3805         .min_access_size = 4,
3806         .max_access_size = 8,
3807     },
3808     .valid = {
3809         .min_access_size = 4,
3810         .max_access_size = 8,
3811     },
3812 };
3813 
3814 static const Property vtd_properties[] = {
3815     DEFINE_PROP_UINT32("version", IntelIOMMUState, version, 0),
3816     DEFINE_PROP_ON_OFF_AUTO("eim", IntelIOMMUState, intr_eim,
3817                             ON_OFF_AUTO_AUTO),
3818     DEFINE_PROP_BOOL("x-buggy-eim", IntelIOMMUState, buggy_eim, false),
3819     DEFINE_PROP_UINT8("aw-bits", IntelIOMMUState, aw_bits,
3820                       VTD_HOST_ADDRESS_WIDTH),
3821     DEFINE_PROP_BOOL("caching-mode", IntelIOMMUState, caching_mode, FALSE),
3822     DEFINE_PROP_BOOL("x-scalable-mode", IntelIOMMUState, scalable_mode, FALSE),
3823     DEFINE_PROP_BOOL("x-flts", IntelIOMMUState, flts, FALSE),
3824     DEFINE_PROP_BOOL("snoop-control", IntelIOMMUState, snoop_control, false),
3825     DEFINE_PROP_BOOL("x-pasid-mode", IntelIOMMUState, pasid, false),
3826     DEFINE_PROP_BOOL("dma-drain", IntelIOMMUState, dma_drain, true),
3827     DEFINE_PROP_BOOL("dma-translation", IntelIOMMUState, dma_translation, true),
3828     DEFINE_PROP_BOOL("stale-tm", IntelIOMMUState, stale_tm, false),
3829     DEFINE_PROP_BOOL("fs1gp", IntelIOMMUState, fs1gp, true),
3830 };
3831 
3832 /* Read IRTE entry with specific index */
vtd_irte_get(IntelIOMMUState * iommu,uint16_t index,VTD_IR_TableEntry * entry,uint16_t sid,bool do_fault)3833 static bool vtd_irte_get(IntelIOMMUState *iommu, uint16_t index,
3834                          VTD_IR_TableEntry *entry, uint16_t sid,
3835                          bool do_fault)
3836 {
3837     static const uint16_t vtd_svt_mask[VTD_SQ_MAX] = \
3838         {0xffff, 0xfffb, 0xfff9, 0xfff8};
3839     dma_addr_t addr = 0x00;
3840     uint16_t mask, source_id;
3841     uint8_t bus, bus_max, bus_min;
3842 
3843     if (index >= iommu->intr_size) {
3844         error_report_once("%s: index too large: ind=0x%x",
3845                           __func__, index);
3846         if (do_fault) {
3847             vtd_report_ir_fault(iommu, sid, VTD_FR_IR_INDEX_OVER, index);
3848         }
3849         return false;
3850     }
3851 
3852     addr = iommu->intr_root + index * sizeof(*entry);
3853     if (dma_memory_read(&address_space_memory, addr,
3854                         entry, sizeof(*entry), MEMTXATTRS_UNSPECIFIED)) {
3855         error_report_once("%s: read failed: ind=0x%x addr=0x%" PRIx64,
3856                           __func__, index, addr);
3857         if (do_fault) {
3858             vtd_report_ir_fault(iommu, sid, VTD_FR_IR_ROOT_INVAL, index);
3859         }
3860         return false;
3861     }
3862 
3863     entry->data[0] = le64_to_cpu(entry->data[0]);
3864     entry->data[1] = le64_to_cpu(entry->data[1]);
3865 
3866     trace_vtd_ir_irte_get(index, entry->data[1], entry->data[0]);
3867 
3868     /*
3869      * The remaining potential fault conditions are "qualified" by the
3870      * Fault Processing Disable bit in the IRTE. Even "not present".
3871      * So just clear the do_fault flag if PFD is set, which will
3872      * prevent faults being raised.
3873      */
3874     if (entry->irte.fault_disable) {
3875         do_fault = false;
3876     }
3877 
3878     if (!entry->irte.present) {
3879         error_report_once("%s: detected non-present IRTE "
3880                           "(index=%u, high=0x%" PRIx64 ", low=0x%" PRIx64 ")",
3881                           __func__, index, entry->data[1], entry->data[0]);
3882         if (do_fault) {
3883             vtd_report_ir_fault(iommu, sid, VTD_FR_IR_ENTRY_P, index);
3884         }
3885         return false;
3886     }
3887 
3888     if (entry->irte.__reserved_0 || entry->irte.__reserved_1 ||
3889         entry->irte.__reserved_2) {
3890         error_report_once("%s: detected non-zero reserved IRTE "
3891                           "(index=%u, high=0x%" PRIx64 ", low=0x%" PRIx64 ")",
3892                           __func__, index, entry->data[1], entry->data[0]);
3893         if (do_fault) {
3894             vtd_report_ir_fault(iommu, sid, VTD_FR_IR_IRTE_RSVD, index);
3895         }
3896         return false;
3897     }
3898 
3899     if (sid != X86_IOMMU_SID_INVALID) {
3900         /* Validate IRTE SID */
3901         source_id = entry->irte.source_id;
3902         switch (entry->irte.sid_vtype) {
3903         case VTD_SVT_NONE:
3904             break;
3905 
3906         case VTD_SVT_ALL:
3907             mask = vtd_svt_mask[entry->irte.sid_q];
3908             if ((source_id & mask) != (sid & mask)) {
3909                 error_report_once("%s: invalid IRTE SID "
3910                                   "(index=%u, sid=%u, source_id=%u)",
3911                                   __func__, index, sid, source_id);
3912                 if (do_fault) {
3913                     vtd_report_ir_fault(iommu, sid, VTD_FR_IR_SID_ERR, index);
3914                 }
3915                 return false;
3916             }
3917             break;
3918 
3919         case VTD_SVT_BUS:
3920             bus_max = source_id >> 8;
3921             bus_min = source_id & 0xff;
3922             bus = sid >> 8;
3923             if (bus > bus_max || bus < bus_min) {
3924                 error_report_once("%s: invalid SVT_BUS "
3925                                   "(index=%u, bus=%u, min=%u, max=%u)",
3926                                   __func__, index, bus, bus_min, bus_max);
3927                 if (do_fault) {
3928                     vtd_report_ir_fault(iommu, sid, VTD_FR_IR_SID_ERR, index);
3929                 }
3930                 return false;
3931             }
3932             break;
3933 
3934         default:
3935             error_report_once("%s: detected invalid IRTE SVT "
3936                               "(index=%u, type=%d)", __func__,
3937                               index, entry->irte.sid_vtype);
3938             /* Take this as verification failure. */
3939             if (do_fault) {
3940                 vtd_report_ir_fault(iommu, sid, VTD_FR_IR_SID_ERR, index);
3941             }
3942             return false;
3943         }
3944     }
3945 
3946     return true;
3947 }
3948 
3949 /* Fetch IRQ information of specific IR index */
vtd_remap_irq_get(IntelIOMMUState * iommu,uint16_t index,X86IOMMUIrq * irq,uint16_t sid,bool do_fault)3950 static bool vtd_remap_irq_get(IntelIOMMUState *iommu, uint16_t index,
3951                               X86IOMMUIrq *irq, uint16_t sid, bool do_fault)
3952 {
3953     VTD_IR_TableEntry irte = {};
3954 
3955     if (!vtd_irte_get(iommu, index, &irte, sid, do_fault)) {
3956         return false;
3957     }
3958 
3959     irq->trigger_mode = irte.irte.trigger_mode;
3960     irq->vector = irte.irte.vector;
3961     irq->delivery_mode = irte.irte.delivery_mode;
3962     irq->dest = irte.irte.dest_id;
3963     if (!iommu->intr_eime) {
3964 #define  VTD_IR_APIC_DEST_MASK         (0xff00ULL)
3965 #define  VTD_IR_APIC_DEST_SHIFT        (8)
3966         irq->dest = (irq->dest & VTD_IR_APIC_DEST_MASK) >>
3967             VTD_IR_APIC_DEST_SHIFT;
3968     }
3969     irq->dest_mode = irte.irte.dest_mode;
3970     irq->redir_hint = irte.irte.redir_hint;
3971 
3972     trace_vtd_ir_remap(index, irq->trigger_mode, irq->vector,
3973                        irq->delivery_mode, irq->dest, irq->dest_mode);
3974 
3975     return true;
3976 }
3977 
3978 /* Interrupt remapping for MSI/MSI-X entry */
vtd_interrupt_remap_msi(IntelIOMMUState * iommu,MSIMessage * origin,MSIMessage * translated,uint16_t sid,bool do_fault)3979 static int vtd_interrupt_remap_msi(IntelIOMMUState *iommu,
3980                                    MSIMessage *origin,
3981                                    MSIMessage *translated,
3982                                    uint16_t sid, bool do_fault)
3983 {
3984     VTD_IR_MSIAddress addr;
3985     uint16_t index;
3986     X86IOMMUIrq irq = {};
3987 
3988     assert(origin && translated);
3989 
3990     trace_vtd_ir_remap_msi_req(origin->address, origin->data);
3991 
3992     if (!iommu || !iommu->intr_enabled) {
3993         memcpy(translated, origin, sizeof(*origin));
3994         goto out;
3995     }
3996 
3997     if (origin->address & VTD_MSI_ADDR_HI_MASK) {
3998         error_report_once("%s: MSI address high 32 bits non-zero detected: "
3999                           "address=0x%" PRIx64, __func__, origin->address);
4000         if (do_fault) {
4001             vtd_report_ir_fault(iommu, sid, VTD_FR_IR_REQ_RSVD, 0);
4002         }
4003         return -EINVAL;
4004     }
4005 
4006     addr.data = origin->address & VTD_MSI_ADDR_LO_MASK;
4007     if (addr.addr.__head != 0xfee) {
4008         error_report_once("%s: MSI address low 32 bit invalid: 0x%" PRIx32,
4009                           __func__, addr.data);
4010         if (do_fault) {
4011             vtd_report_ir_fault(iommu, sid, VTD_FR_IR_REQ_RSVD, 0);
4012         }
4013         return -EINVAL;
4014     }
4015 
4016     /* This is compatible mode. */
4017     if (addr.addr.int_mode != VTD_IR_INT_FORMAT_REMAP) {
4018         memcpy(translated, origin, sizeof(*origin));
4019         goto out;
4020     }
4021 
4022     index = addr.addr.index_h << 15 | addr.addr.index_l;
4023 
4024 #define  VTD_IR_MSI_DATA_SUBHANDLE       (0x0000ffff)
4025 #define  VTD_IR_MSI_DATA_RESERVED        (0xffff0000)
4026 
4027     if (addr.addr.sub_valid) {
4028         /* See VT-d spec 5.1.2.2 and 5.1.3 on subhandle */
4029         index += origin->data & VTD_IR_MSI_DATA_SUBHANDLE;
4030     }
4031 
4032     if (!vtd_remap_irq_get(iommu, index, &irq, sid, do_fault)) {
4033         return -EINVAL;
4034     }
4035 
4036     if (addr.addr.sub_valid) {
4037         trace_vtd_ir_remap_type("MSI");
4038         if (origin->data & VTD_IR_MSI_DATA_RESERVED) {
4039             error_report_once("%s: invalid IR MSI "
4040                               "(sid=%u, address=0x%" PRIx64
4041                               ", data=0x%" PRIx32 ")",
4042                               __func__, sid, origin->address, origin->data);
4043             if (do_fault) {
4044                 vtd_report_ir_fault(iommu, sid, VTD_FR_IR_REQ_RSVD, 0);
4045             }
4046             return -EINVAL;
4047         }
4048     } else {
4049         uint8_t vector = origin->data & 0xff;
4050         uint8_t trigger_mode = (origin->data >> MSI_DATA_TRIGGER_SHIFT) & 0x1;
4051 
4052         trace_vtd_ir_remap_type("IOAPIC");
4053         /* IOAPIC entry vector should be aligned with IRTE vector
4054          * (see vt-d spec 5.1.5.1). */
4055         if (vector != irq.vector) {
4056             trace_vtd_warn_ir_vector(sid, index, vector, irq.vector);
4057         }
4058 
4059         /* The Trigger Mode field must match the Trigger Mode in the IRTE.
4060          * (see vt-d spec 5.1.5.1). */
4061         if (trigger_mode != irq.trigger_mode) {
4062             trace_vtd_warn_ir_trigger(sid, index, trigger_mode,
4063                                       irq.trigger_mode);
4064         }
4065     }
4066 
4067     /*
4068      * We'd better keep the last two bits, assuming that guest OS
4069      * might modify it. Keep it does not hurt after all.
4070      */
4071     irq.msi_addr_last_bits = addr.addr.__not_care;
4072 
4073     /* Translate X86IOMMUIrq to MSI message */
4074     x86_iommu_irq_to_msi_message(&irq, translated);
4075 
4076 out:
4077     trace_vtd_ir_remap_msi(origin->address, origin->data,
4078                            translated->address, translated->data);
4079     return 0;
4080 }
4081 
vtd_int_remap(X86IOMMUState * iommu,MSIMessage * src,MSIMessage * dst,uint16_t sid)4082 static int vtd_int_remap(X86IOMMUState *iommu, MSIMessage *src,
4083                          MSIMessage *dst, uint16_t sid)
4084 {
4085     return vtd_interrupt_remap_msi(INTEL_IOMMU_DEVICE(iommu),
4086                                    src, dst, sid, false);
4087 }
4088 
vtd_mem_ir_read(void * opaque,hwaddr addr,uint64_t * data,unsigned size,MemTxAttrs attrs)4089 static MemTxResult vtd_mem_ir_read(void *opaque, hwaddr addr,
4090                                    uint64_t *data, unsigned size,
4091                                    MemTxAttrs attrs)
4092 {
4093     return MEMTX_OK;
4094 }
4095 
vtd_mem_ir_write(void * opaque,hwaddr addr,uint64_t value,unsigned size,MemTxAttrs attrs)4096 static MemTxResult vtd_mem_ir_write(void *opaque, hwaddr addr,
4097                                     uint64_t value, unsigned size,
4098                                     MemTxAttrs attrs)
4099 {
4100     int ret = 0;
4101     MSIMessage from = {}, to = {};
4102     uint16_t sid = X86_IOMMU_SID_INVALID;
4103 
4104     from.address = (uint64_t) addr + VTD_INTERRUPT_ADDR_FIRST;
4105     from.data = (uint32_t) value;
4106 
4107     if (!attrs.unspecified) {
4108         /* We have explicit Source ID */
4109         sid = attrs.requester_id;
4110     }
4111 
4112     ret = vtd_interrupt_remap_msi(opaque, &from, &to, sid, true);
4113     if (ret) {
4114         /* Drop this interrupt */
4115         return MEMTX_ERROR;
4116     }
4117 
4118     apic_get_class(NULL)->send_msi(&to);
4119 
4120     return MEMTX_OK;
4121 }
4122 
4123 static const MemoryRegionOps vtd_mem_ir_ops = {
4124     .read_with_attrs = vtd_mem_ir_read,
4125     .write_with_attrs = vtd_mem_ir_write,
4126     .endianness = DEVICE_LITTLE_ENDIAN,
4127     .impl = {
4128         .min_access_size = 4,
4129         .max_access_size = 4,
4130     },
4131     .valid = {
4132         .min_access_size = 4,
4133         .max_access_size = 4,
4134     },
4135 };
4136 
vtd_report_ir_illegal_access(VTDAddressSpace * vtd_as,hwaddr addr,bool is_write)4137 static void vtd_report_ir_illegal_access(VTDAddressSpace *vtd_as,
4138                                          hwaddr addr, bool is_write)
4139 {
4140     IntelIOMMUState *s = vtd_as->iommu_state;
4141     uint8_t bus_n = pci_bus_num(vtd_as->bus);
4142     uint16_t sid = PCI_BUILD_BDF(bus_n, vtd_as->devfn);
4143     bool is_fpd_set = false;
4144     VTDContextEntry ce;
4145 
4146     assert(vtd_as->pasid != PCI_NO_PASID);
4147 
4148     /* Try out best to fetch FPD, we can't do anything more */
4149     if (vtd_dev_to_context_entry(s, bus_n, vtd_as->devfn, &ce) == 0) {
4150         is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
4151         if (!is_fpd_set && s->root_scalable) {
4152             vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set, vtd_as->pasid);
4153         }
4154     }
4155 
4156     vtd_report_fault(s, VTD_FR_SM_INTERRUPT_ADDR,
4157                      is_fpd_set, sid, addr, is_write,
4158                      true, vtd_as->pasid);
4159 }
4160 
vtd_mem_ir_fault_read(void * opaque,hwaddr addr,uint64_t * data,unsigned size,MemTxAttrs attrs)4161 static MemTxResult vtd_mem_ir_fault_read(void *opaque, hwaddr addr,
4162                                          uint64_t *data, unsigned size,
4163                                          MemTxAttrs attrs)
4164 {
4165     vtd_report_ir_illegal_access(opaque, addr, false);
4166 
4167     return MEMTX_ERROR;
4168 }
4169 
vtd_mem_ir_fault_write(void * opaque,hwaddr addr,uint64_t value,unsigned size,MemTxAttrs attrs)4170 static MemTxResult vtd_mem_ir_fault_write(void *opaque, hwaddr addr,
4171                                           uint64_t value, unsigned size,
4172                                           MemTxAttrs attrs)
4173 {
4174     vtd_report_ir_illegal_access(opaque, addr, true);
4175 
4176     return MEMTX_ERROR;
4177 }
4178 
4179 static const MemoryRegionOps vtd_mem_ir_fault_ops = {
4180     .read_with_attrs = vtd_mem_ir_fault_read,
4181     .write_with_attrs = vtd_mem_ir_fault_write,
4182     .endianness = DEVICE_LITTLE_ENDIAN,
4183     .impl = {
4184         .min_access_size = 1,
4185         .max_access_size = 8,
4186     },
4187     .valid = {
4188         .min_access_size = 1,
4189         .max_access_size = 8,
4190     },
4191 };
4192 
vtd_find_add_as(IntelIOMMUState * s,PCIBus * bus,int devfn,unsigned int pasid)4193 VTDAddressSpace *vtd_find_add_as(IntelIOMMUState *s, PCIBus *bus,
4194                                  int devfn, unsigned int pasid)
4195 {
4196     /*
4197      * We can't simply use sid here since the bus number might not be
4198      * initialized by the guest.
4199      */
4200     struct vtd_as_key key = {
4201         .bus = bus,
4202         .devfn = devfn,
4203         .pasid = pasid,
4204     };
4205     VTDAddressSpace *vtd_dev_as;
4206     char name[128];
4207 
4208     vtd_iommu_lock(s);
4209     vtd_dev_as = g_hash_table_lookup(s->vtd_address_spaces, &key);
4210     vtd_iommu_unlock(s);
4211 
4212     if (!vtd_dev_as) {
4213         struct vtd_as_key *new_key;
4214         /* Slow path */
4215 
4216         /*
4217          * memory_region_add_subregion_overlap requires the bql,
4218          * make sure we own it.
4219          */
4220         BQL_LOCK_GUARD();
4221         vtd_iommu_lock(s);
4222 
4223         /* Check again as we released the lock for a moment */
4224         vtd_dev_as = g_hash_table_lookup(s->vtd_address_spaces, &key);
4225         if (vtd_dev_as) {
4226             vtd_iommu_unlock(s);
4227             return vtd_dev_as;
4228         }
4229 
4230         /* Still nothing, allocate a new address space */
4231         new_key = g_malloc(sizeof(*new_key));
4232 
4233         new_key->bus = bus;
4234         new_key->devfn = devfn;
4235         new_key->pasid = pasid;
4236 
4237         if (pasid == PCI_NO_PASID) {
4238             snprintf(name, sizeof(name), "vtd-%02x.%x", PCI_SLOT(devfn),
4239                      PCI_FUNC(devfn));
4240         } else {
4241             snprintf(name, sizeof(name), "vtd-%02x.%x-pasid-%x", PCI_SLOT(devfn),
4242                      PCI_FUNC(devfn), pasid);
4243         }
4244 
4245         vtd_dev_as = g_new0(VTDAddressSpace, 1);
4246 
4247         vtd_dev_as->bus = bus;
4248         vtd_dev_as->devfn = (uint8_t)devfn;
4249         vtd_dev_as->pasid = pasid;
4250         vtd_dev_as->iommu_state = s;
4251         vtd_dev_as->context_cache_entry.context_cache_gen = 0;
4252         vtd_dev_as->iova_tree = iova_tree_new();
4253 
4254         memory_region_init(&vtd_dev_as->root, OBJECT(s), name, UINT64_MAX);
4255         address_space_init(&vtd_dev_as->as, &vtd_dev_as->root, "vtd-root");
4256 
4257         /*
4258          * Build the DMAR-disabled container with aliases to the
4259          * shared MRs.  Note that aliasing to a shared memory region
4260          * could help the memory API to detect same FlatViews so we
4261          * can have devices to share the same FlatView when DMAR is
4262          * disabled (either by not providing "intel_iommu=on" or with
4263          * "iommu=pt").  It will greatly reduce the total number of
4264          * FlatViews of the system hence VM runs faster.
4265          */
4266         memory_region_init_alias(&vtd_dev_as->nodmar, OBJECT(s),
4267                                  "vtd-nodmar", &s->mr_nodmar, 0,
4268                                  memory_region_size(&s->mr_nodmar));
4269 
4270         /*
4271          * Build the per-device DMAR-enabled container.
4272          *
4273          * TODO: currently we have per-device IOMMU memory region only
4274          * because we have per-device IOMMU notifiers for devices.  If
4275          * one day we can abstract the IOMMU notifiers out of the
4276          * memory regions then we can also share the same memory
4277          * region here just like what we've done above with the nodmar
4278          * region.
4279          */
4280         strcat(name, "-dmar");
4281         memory_region_init_iommu(&vtd_dev_as->iommu, sizeof(vtd_dev_as->iommu),
4282                                  TYPE_INTEL_IOMMU_MEMORY_REGION, OBJECT(s),
4283                                  name, UINT64_MAX);
4284         memory_region_init_alias(&vtd_dev_as->iommu_ir, OBJECT(s), "vtd-ir",
4285                                  &s->mr_ir, 0, memory_region_size(&s->mr_ir));
4286         memory_region_add_subregion_overlap(MEMORY_REGION(&vtd_dev_as->iommu),
4287                                             VTD_INTERRUPT_ADDR_FIRST,
4288                                             &vtd_dev_as->iommu_ir, 1);
4289 
4290         /*
4291          * This region is used for catching fault to access interrupt
4292          * range via passthrough + PASID. See also
4293          * vtd_switch_address_space(). We can't use alias since we
4294          * need to know the sid which is valid for MSI who uses
4295          * bus_master_as (see msi_send_message()).
4296          */
4297         memory_region_init_io(&vtd_dev_as->iommu_ir_fault, OBJECT(s),
4298                               &vtd_mem_ir_fault_ops, vtd_dev_as, "vtd-no-ir",
4299                               VTD_INTERRUPT_ADDR_SIZE);
4300         /*
4301          * Hook to root since when PT is enabled vtd_dev_as->iommu
4302          * will be disabled.
4303          */
4304         memory_region_add_subregion_overlap(MEMORY_REGION(&vtd_dev_as->root),
4305                                             VTD_INTERRUPT_ADDR_FIRST,
4306                                             &vtd_dev_as->iommu_ir_fault, 2);
4307 
4308         /*
4309          * Hook both the containers under the root container, we
4310          * switch between DMAR & noDMAR by enable/disable
4311          * corresponding sub-containers
4312          */
4313         memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
4314                                             MEMORY_REGION(&vtd_dev_as->iommu),
4315                                             0);
4316         memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
4317                                             &vtd_dev_as->nodmar, 0);
4318 
4319         vtd_switch_address_space(vtd_dev_as);
4320 
4321         g_hash_table_insert(s->vtd_address_spaces, new_key, vtd_dev_as);
4322 
4323         vtd_iommu_unlock(s);
4324     }
4325     return vtd_dev_as;
4326 }
4327 
vtd_check_hiod(IntelIOMMUState * s,HostIOMMUDevice * hiod,Error ** errp)4328 static bool vtd_check_hiod(IntelIOMMUState *s, HostIOMMUDevice *hiod,
4329                            Error **errp)
4330 {
4331     HostIOMMUDeviceClass *hiodc = HOST_IOMMU_DEVICE_GET_CLASS(hiod);
4332     int ret;
4333 
4334     if (!hiodc->get_cap) {
4335         error_setg(errp, ".get_cap() not implemented");
4336         return false;
4337     }
4338 
4339     /* Common checks */
4340     ret = hiodc->get_cap(hiod, HOST_IOMMU_DEVICE_CAP_AW_BITS, errp);
4341     if (ret < 0) {
4342         return false;
4343     }
4344     if (s->aw_bits > ret) {
4345         error_setg(errp, "aw-bits %d > host aw-bits %d", s->aw_bits, ret);
4346         return false;
4347     }
4348 
4349     if (!s->flts) {
4350         /* All checks requested by VTD stage-2 translation pass */
4351         return true;
4352     }
4353 
4354     error_setg(errp, "host device is uncompatible with stage-1 translation");
4355     return false;
4356 }
4357 
vtd_dev_set_iommu_device(PCIBus * bus,void * opaque,int devfn,HostIOMMUDevice * hiod,Error ** errp)4358 static bool vtd_dev_set_iommu_device(PCIBus *bus, void *opaque, int devfn,
4359                                      HostIOMMUDevice *hiod, Error **errp)
4360 {
4361     IntelIOMMUState *s = opaque;
4362     struct vtd_as_key key = {
4363         .bus = bus,
4364         .devfn = devfn,
4365     };
4366     struct vtd_as_key *new_key;
4367 
4368     assert(hiod);
4369 
4370     vtd_iommu_lock(s);
4371 
4372     if (g_hash_table_lookup(s->vtd_host_iommu_dev, &key)) {
4373         error_setg(errp, "Host IOMMU device already exist");
4374         vtd_iommu_unlock(s);
4375         return false;
4376     }
4377 
4378     if (!vtd_check_hiod(s, hiod, errp)) {
4379         vtd_iommu_unlock(s);
4380         return false;
4381     }
4382 
4383     new_key = g_malloc(sizeof(*new_key));
4384     new_key->bus = bus;
4385     new_key->devfn = devfn;
4386 
4387     object_ref(hiod);
4388     g_hash_table_insert(s->vtd_host_iommu_dev, new_key, hiod);
4389 
4390     vtd_iommu_unlock(s);
4391 
4392     return true;
4393 }
4394 
vtd_dev_unset_iommu_device(PCIBus * bus,void * opaque,int devfn)4395 static void vtd_dev_unset_iommu_device(PCIBus *bus, void *opaque, int devfn)
4396 {
4397     IntelIOMMUState *s = opaque;
4398     struct vtd_as_key key = {
4399         .bus = bus,
4400         .devfn = devfn,
4401     };
4402 
4403     vtd_iommu_lock(s);
4404 
4405     if (!g_hash_table_lookup(s->vtd_host_iommu_dev, &key)) {
4406         vtd_iommu_unlock(s);
4407         return;
4408     }
4409 
4410     g_hash_table_remove(s->vtd_host_iommu_dev, &key);
4411 
4412     vtd_iommu_unlock(s);
4413 }
4414 
4415 /* Unmap the whole range in the notifier's scope. */
vtd_address_space_unmap(VTDAddressSpace * as,IOMMUNotifier * n)4416 static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n)
4417 {
4418     hwaddr total, remain;
4419     hwaddr start = n->start;
4420     hwaddr end = n->end;
4421     IntelIOMMUState *s = as->iommu_state;
4422     DMAMap map;
4423 
4424     /*
4425      * Note: all the codes in this function has a assumption that IOVA
4426      * bits are no more than VTD_MGAW bits (which is restricted by
4427      * VT-d spec), otherwise we need to consider overflow of 64 bits.
4428      */
4429 
4430     if (end > VTD_ADDRESS_SIZE(s->aw_bits) - 1) {
4431         /*
4432          * Don't need to unmap regions that is bigger than the whole
4433          * VT-d supported address space size
4434          */
4435         end = VTD_ADDRESS_SIZE(s->aw_bits) - 1;
4436     }
4437 
4438     assert(start <= end);
4439     total = remain = end - start + 1;
4440 
4441     while (remain >= VTD_PAGE_SIZE) {
4442         IOMMUTLBEvent event;
4443         uint64_t mask = dma_aligned_pow2_mask(start, end, s->aw_bits);
4444         uint64_t size = mask + 1;
4445 
4446         assert(size);
4447 
4448         event.type = IOMMU_NOTIFIER_UNMAP;
4449         event.entry.iova = start;
4450         event.entry.addr_mask = mask;
4451         event.entry.target_as = &address_space_memory;
4452         event.entry.perm = IOMMU_NONE;
4453         /* This field is meaningless for unmap */
4454         event.entry.translated_addr = 0;
4455 
4456         memory_region_notify_iommu_one(n, &event);
4457 
4458         start += size;
4459         remain -= size;
4460     }
4461 
4462     assert(!remain);
4463 
4464     trace_vtd_as_unmap_whole(pci_bus_num(as->bus),
4465                              VTD_PCI_SLOT(as->devfn),
4466                              VTD_PCI_FUNC(as->devfn),
4467                              n->start, total);
4468 
4469     map.iova = n->start;
4470     map.size = total - 1; /* Inclusive */
4471     iova_tree_remove(as->iova_tree, map);
4472 }
4473 
vtd_address_space_unmap_all(IntelIOMMUState * s)4474 static void vtd_address_space_unmap_all(IntelIOMMUState *s)
4475 {
4476     VTDAddressSpace *vtd_as;
4477     IOMMUNotifier *n;
4478 
4479     QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
4480         IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
4481             vtd_address_space_unmap(vtd_as, n);
4482         }
4483     }
4484 }
4485 
vtd_address_space_refresh_all(IntelIOMMUState * s)4486 static void vtd_address_space_refresh_all(IntelIOMMUState *s)
4487 {
4488     vtd_address_space_unmap_all(s);
4489     vtd_switch_address_space_all(s);
4490 }
4491 
vtd_replay_hook(const IOMMUTLBEvent * event,void * private)4492 static int vtd_replay_hook(const IOMMUTLBEvent *event, void *private)
4493 {
4494     memory_region_notify_iommu_one(private, event);
4495     return 0;
4496 }
4497 
vtd_iommu_replay(IOMMUMemoryRegion * iommu_mr,IOMMUNotifier * n)4498 static void vtd_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n)
4499 {
4500     VTDAddressSpace *vtd_as = container_of(iommu_mr, VTDAddressSpace, iommu);
4501     IntelIOMMUState *s = vtd_as->iommu_state;
4502     uint8_t bus_n = pci_bus_num(vtd_as->bus);
4503     VTDContextEntry ce;
4504     DMAMap map = { .iova = 0, .size = HWADDR_MAX };
4505 
4506     /* replay is protected by BQL, page walk will re-setup it safely */
4507     iova_tree_remove(vtd_as->iova_tree, map);
4508 
4509     if (vtd_dev_to_context_entry(s, bus_n, vtd_as->devfn, &ce) == 0) {
4510         trace_vtd_replay_ce_valid(s->root_scalable ? "scalable mode" :
4511                                   "legacy mode",
4512                                   bus_n, PCI_SLOT(vtd_as->devfn),
4513                                   PCI_FUNC(vtd_as->devfn),
4514                                   vtd_get_domain_id(s, &ce, vtd_as->pasid),
4515                                   ce.hi, ce.lo);
4516         if (n->notifier_flags & IOMMU_NOTIFIER_MAP) {
4517             /* This is required only for MAP typed notifiers */
4518             vtd_page_walk_info info = {
4519                 .hook_fn = vtd_replay_hook,
4520                 .private = (void *)n,
4521                 .notify_unmap = false,
4522                 .aw = s->aw_bits,
4523                 .as = vtd_as,
4524                 .domain_id = vtd_get_domain_id(s, &ce, vtd_as->pasid),
4525             };
4526 
4527             vtd_page_walk(s, &ce, 0, ~0ULL, &info, vtd_as->pasid);
4528         }
4529     } else {
4530         trace_vtd_replay_ce_invalid(bus_n, PCI_SLOT(vtd_as->devfn),
4531                                     PCI_FUNC(vtd_as->devfn));
4532     }
4533 }
4534 
vtd_cap_init(IntelIOMMUState * s)4535 static void vtd_cap_init(IntelIOMMUState *s)
4536 {
4537     X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
4538 
4539     s->cap = VTD_CAP_FRO | VTD_CAP_NFR | VTD_CAP_ND |
4540              VTD_CAP_MAMV | VTD_CAP_PSI | VTD_CAP_SLLPS |
4541              VTD_CAP_MGAW(s->aw_bits);
4542     if (s->dma_drain) {
4543         s->cap |= VTD_CAP_DRAIN;
4544     }
4545     if (s->dma_translation) {
4546             if (s->aw_bits >= VTD_HOST_AW_39BIT) {
4547                     s->cap |= VTD_CAP_SAGAW_39bit;
4548             }
4549             if (s->aw_bits >= VTD_HOST_AW_48BIT) {
4550                     s->cap |= VTD_CAP_SAGAW_48bit;
4551             }
4552     }
4553     s->ecap = VTD_ECAP_QI | VTD_ECAP_IRO;
4554 
4555     if (x86_iommu_ir_supported(x86_iommu)) {
4556         s->ecap |= VTD_ECAP_IR | VTD_ECAP_MHMV;
4557         if (s->intr_eim == ON_OFF_AUTO_ON) {
4558             s->ecap |= VTD_ECAP_EIM;
4559         }
4560         assert(s->intr_eim != ON_OFF_AUTO_AUTO);
4561     }
4562 
4563     if (x86_iommu->dt_supported) {
4564         s->ecap |= VTD_ECAP_DT;
4565     }
4566 
4567     if (x86_iommu->pt_supported) {
4568         s->ecap |= VTD_ECAP_PT;
4569     }
4570 
4571     if (s->caching_mode) {
4572         s->cap |= VTD_CAP_CM;
4573     }
4574 
4575     /* TODO: read cap/ecap from host to decide which cap to be exposed. */
4576     if (s->flts) {
4577         s->ecap |= VTD_ECAP_SMTS | VTD_ECAP_FLTS;
4578         if (s->fs1gp) {
4579             s->cap |= VTD_CAP_FS1GP;
4580         }
4581     } else if (s->scalable_mode) {
4582         s->ecap |= VTD_ECAP_SMTS | VTD_ECAP_SRS | VTD_ECAP_SLTS;
4583     }
4584 
4585     if (s->snoop_control) {
4586         s->ecap |= VTD_ECAP_SC;
4587     }
4588 
4589     if (s->pasid) {
4590         s->ecap |= VTD_ECAP_PASID;
4591     }
4592 }
4593 
4594 /*
4595  * Do the initialization. It will also be called when reset, so pay
4596  * attention when adding new initialization stuff.
4597  */
vtd_init(IntelIOMMUState * s)4598 static void vtd_init(IntelIOMMUState *s)
4599 {
4600     X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
4601 
4602     memset(s->csr, 0, DMAR_REG_SIZE);
4603     memset(s->wmask, 0, DMAR_REG_SIZE);
4604     memset(s->w1cmask, 0, DMAR_REG_SIZE);
4605     memset(s->womask, 0, DMAR_REG_SIZE);
4606 
4607     s->root = 0;
4608     s->root_scalable = false;
4609     s->dmar_enabled = false;
4610     s->intr_enabled = false;
4611     s->iq_head = 0;
4612     s->iq_tail = 0;
4613     s->iq = 0;
4614     s->iq_size = 0;
4615     s->qi_enabled = false;
4616     s->iq_last_desc_type = VTD_INV_DESC_NONE;
4617     s->iq_dw = false;
4618     s->next_frcd_reg = 0;
4619 
4620     vtd_cap_init(s);
4621 
4622     /*
4623      * Rsvd field masks for spte
4624      */
4625     vtd_spte_rsvd[0] = ~0ULL;
4626     vtd_spte_rsvd[1] = VTD_SPTE_PAGE_L1_RSVD_MASK(s->aw_bits,
4627                                         x86_iommu->dt_supported && s->stale_tm);
4628     vtd_spte_rsvd[2] = VTD_SPTE_PAGE_L2_RSVD_MASK(s->aw_bits);
4629     vtd_spte_rsvd[3] = VTD_SPTE_PAGE_L3_RSVD_MASK(s->aw_bits);
4630     vtd_spte_rsvd[4] = VTD_SPTE_PAGE_L4_RSVD_MASK(s->aw_bits);
4631 
4632     vtd_spte_rsvd_large[2] = VTD_SPTE_LPAGE_L2_RSVD_MASK(s->aw_bits,
4633                                         x86_iommu->dt_supported && s->stale_tm);
4634     vtd_spte_rsvd_large[3] = VTD_SPTE_LPAGE_L3_RSVD_MASK(s->aw_bits,
4635                                         x86_iommu->dt_supported && s->stale_tm);
4636 
4637     /*
4638      * Rsvd field masks for fpte
4639      */
4640     vtd_fpte_rsvd[0] = ~0ULL;
4641     vtd_fpte_rsvd[1] = VTD_FPTE_PAGE_L1_RSVD_MASK(s->aw_bits);
4642     vtd_fpte_rsvd[2] = VTD_FPTE_PAGE_L2_RSVD_MASK(s->aw_bits);
4643     vtd_fpte_rsvd[3] = VTD_FPTE_PAGE_L3_RSVD_MASK(s->aw_bits);
4644     vtd_fpte_rsvd[4] = VTD_FPTE_PAGE_L4_RSVD_MASK(s->aw_bits);
4645 
4646     vtd_fpte_rsvd_large[2] = VTD_FPTE_LPAGE_L2_RSVD_MASK(s->aw_bits);
4647     vtd_fpte_rsvd_large[3] = VTD_FPTE_LPAGE_L3_RSVD_MASK(s->aw_bits);
4648 
4649     if (s->scalable_mode || s->snoop_control) {
4650         vtd_spte_rsvd[1] &= ~VTD_SPTE_SNP;
4651         vtd_spte_rsvd_large[2] &= ~VTD_SPTE_SNP;
4652         vtd_spte_rsvd_large[3] &= ~VTD_SPTE_SNP;
4653     }
4654 
4655     vtd_reset_caches(s);
4656 
4657     /* Define registers with default values and bit semantics */
4658     vtd_define_long(s, DMAR_VER_REG, 0x10UL, 0, 0);
4659     vtd_define_quad(s, DMAR_CAP_REG, s->cap, 0, 0);
4660     vtd_define_quad(s, DMAR_ECAP_REG, s->ecap, 0, 0);
4661     vtd_define_long(s, DMAR_GCMD_REG, 0, 0xff800000UL, 0);
4662     vtd_define_long_wo(s, DMAR_GCMD_REG, 0xff800000UL);
4663     vtd_define_long(s, DMAR_GSTS_REG, 0, 0, 0);
4664     vtd_define_quad(s, DMAR_RTADDR_REG, 0, 0xfffffffffffffc00ULL, 0);
4665     vtd_define_quad(s, DMAR_CCMD_REG, 0, 0xe0000003ffffffffULL, 0);
4666     vtd_define_quad_wo(s, DMAR_CCMD_REG, 0x3ffff0000ULL);
4667 
4668     /* Advanced Fault Logging not supported */
4669     vtd_define_long(s, DMAR_FSTS_REG, 0, 0, 0x11UL);
4670     vtd_define_long(s, DMAR_FECTL_REG, 0x80000000UL, 0x80000000UL, 0);
4671     vtd_define_long(s, DMAR_FEDATA_REG, 0, 0x0000ffffUL, 0);
4672     vtd_define_long(s, DMAR_FEADDR_REG, 0, 0xfffffffcUL, 0);
4673 
4674     /* Treated as RsvdZ when EIM in ECAP_REG is not supported
4675      * vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0xffffffffUL, 0);
4676      */
4677     vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0, 0);
4678 
4679     /* Treated as RO for implementations that PLMR and PHMR fields reported
4680      * as Clear in the CAP_REG.
4681      * vtd_define_long(s, DMAR_PMEN_REG, 0, 0x80000000UL, 0);
4682      */
4683     vtd_define_long(s, DMAR_PMEN_REG, 0, 0, 0);
4684 
4685     vtd_define_quad(s, DMAR_IQH_REG, 0, 0, 0);
4686     vtd_define_quad(s, DMAR_IQT_REG, 0, 0x7fff0ULL, 0);
4687     vtd_define_quad(s, DMAR_IQA_REG, 0, 0xfffffffffffff807ULL, 0);
4688     vtd_define_long(s, DMAR_ICS_REG, 0, 0, 0x1UL);
4689     vtd_define_long(s, DMAR_IECTL_REG, 0x80000000UL, 0x80000000UL, 0);
4690     vtd_define_long(s, DMAR_IEDATA_REG, 0, 0xffffffffUL, 0);
4691     vtd_define_long(s, DMAR_IEADDR_REG, 0, 0xfffffffcUL, 0);
4692     /* Treadted as RsvdZ when EIM in ECAP_REG is not supported */
4693     vtd_define_long(s, DMAR_IEUADDR_REG, 0, 0, 0);
4694 
4695     /* IOTLB registers */
4696     vtd_define_quad(s, DMAR_IOTLB_REG, 0, 0Xb003ffff00000000ULL, 0);
4697     vtd_define_quad(s, DMAR_IVA_REG, 0, 0xfffffffffffff07fULL, 0);
4698     vtd_define_quad_wo(s, DMAR_IVA_REG, 0xfffffffffffff07fULL);
4699 
4700     /* Fault Recording Registers, 128-bit */
4701     vtd_define_quad(s, DMAR_FRCD_REG_0_0, 0, 0, 0);
4702     vtd_define_quad(s, DMAR_FRCD_REG_0_2, 0, 0, 0x8000000000000000ULL);
4703 
4704     /*
4705      * Interrupt remapping registers.
4706      */
4707     vtd_define_quad(s, DMAR_IRTA_REG, 0, 0xfffffffffffff80fULL, 0);
4708 }
4709 
4710 /* Should not reset address_spaces when reset because devices will still use
4711  * the address space they got at first (won't ask the bus again).
4712  */
vtd_reset_exit(Object * obj,ResetType type)4713 static void vtd_reset_exit(Object *obj, ResetType type)
4714 {
4715     IntelIOMMUState *s = INTEL_IOMMU_DEVICE(obj);
4716 
4717     trace_vtd_reset_exit();
4718     vtd_init(s);
4719     vtd_address_space_refresh_all(s);
4720 }
4721 
vtd_host_dma_iommu(PCIBus * bus,void * opaque,int devfn)4722 static AddressSpace *vtd_host_dma_iommu(PCIBus *bus, void *opaque, int devfn)
4723 {
4724     IntelIOMMUState *s = opaque;
4725     VTDAddressSpace *vtd_as;
4726 
4727     assert(0 <= devfn && devfn < PCI_DEVFN_MAX);
4728 
4729     vtd_as = vtd_find_add_as(s, bus, devfn, PCI_NO_PASID);
4730     return &vtd_as->as;
4731 }
4732 
4733 static PCIIOMMUOps vtd_iommu_ops = {
4734     .get_address_space = vtd_host_dma_iommu,
4735     .set_iommu_device = vtd_dev_set_iommu_device,
4736     .unset_iommu_device = vtd_dev_unset_iommu_device,
4737 };
4738 
vtd_decide_config(IntelIOMMUState * s,Error ** errp)4739 static bool vtd_decide_config(IntelIOMMUState *s, Error **errp)
4740 {
4741     X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
4742 
4743     if (s->intr_eim == ON_OFF_AUTO_ON && !x86_iommu_ir_supported(x86_iommu)) {
4744         error_setg(errp, "eim=on cannot be selected without intremap=on");
4745         return false;
4746     }
4747 
4748     if (s->intr_eim == ON_OFF_AUTO_AUTO) {
4749         s->intr_eim = (kvm_irqchip_in_kernel() || s->buggy_eim)
4750                       && x86_iommu_ir_supported(x86_iommu) ?
4751                                               ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
4752     }
4753     if (s->intr_eim == ON_OFF_AUTO_ON && !s->buggy_eim) {
4754         if (kvm_irqchip_is_split() && !kvm_enable_x2apic()) {
4755             error_setg(errp, "eim=on requires support on the KVM side"
4756                              "(X2APIC_API, first shipped in v4.7)");
4757             return false;
4758         }
4759     }
4760 
4761     if (!s->scalable_mode && s->flts) {
4762         error_setg(errp, "x-flts is only available in scalable mode");
4763         return false;
4764     }
4765 
4766     if (!s->flts && s->aw_bits != VTD_HOST_AW_39BIT &&
4767         s->aw_bits != VTD_HOST_AW_48BIT) {
4768         error_setg(errp, "%s: supported values for aw-bits are: %d, %d",
4769                    s->scalable_mode ? "Scalable mode(flts=off)" : "Legacy mode",
4770                    VTD_HOST_AW_39BIT, VTD_HOST_AW_48BIT);
4771         return false;
4772     }
4773 
4774     if (s->flts && s->aw_bits != VTD_HOST_AW_48BIT) {
4775         error_setg(errp,
4776                    "Scalable mode(flts=on): supported value for aw-bits is: %d",
4777                    VTD_HOST_AW_48BIT);
4778         return false;
4779     }
4780 
4781     if (s->scalable_mode && !s->dma_drain) {
4782         error_setg(errp, "Need to set dma_drain for scalable mode");
4783         return false;
4784     }
4785 
4786     if (s->pasid && !s->scalable_mode) {
4787         error_setg(errp, "Need to set scalable mode for PASID");
4788         return false;
4789     }
4790 
4791     return true;
4792 }
4793 
vtd_machine_done_notify_one(Object * child,void * unused)4794 static int vtd_machine_done_notify_one(Object *child, void *unused)
4795 {
4796     IntelIOMMUState *iommu = INTEL_IOMMU_DEVICE(x86_iommu_get_default());
4797 
4798     /*
4799      * We hard-coded here because vfio-pci is the only special case
4800      * here.  Let's be more elegant in the future when we can, but so
4801      * far there seems to be no better way.
4802      */
4803     if (object_dynamic_cast(child, "vfio-pci") && !iommu->caching_mode) {
4804         vtd_panic_require_caching_mode();
4805     }
4806 
4807     return 0;
4808 }
4809 
vtd_machine_done_hook(Notifier * notifier,void * unused)4810 static void vtd_machine_done_hook(Notifier *notifier, void *unused)
4811 {
4812     object_child_foreach_recursive(object_get_root(),
4813                                    vtd_machine_done_notify_one, NULL);
4814 }
4815 
4816 static Notifier vtd_machine_done_notify = {
4817     .notify = vtd_machine_done_hook,
4818 };
4819 
vtd_realize(DeviceState * dev,Error ** errp)4820 static void vtd_realize(DeviceState *dev, Error **errp)
4821 {
4822     MachineState *ms = MACHINE(qdev_get_machine());
4823     PCMachineState *pcms = PC_MACHINE(ms);
4824     X86MachineState *x86ms = X86_MACHINE(ms);
4825     PCIBus *bus = pcms->pcibus;
4826     IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
4827     X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
4828 
4829     if (s->pasid && x86_iommu->dt_supported) {
4830         /*
4831          * PASID-based-Device-TLB Invalidate Descriptor is not
4832          * implemented and it requires support from vhost layer which
4833          * needs to be implemented in the future.
4834          */
4835         error_setg(errp, "PASID based device IOTLB is not supported");
4836         return;
4837     }
4838 
4839     if (!vtd_decide_config(s, errp)) {
4840         return;
4841     }
4842 
4843     QLIST_INIT(&s->vtd_as_with_notifiers);
4844     qemu_mutex_init(&s->iommu_lock);
4845     memory_region_init_io(&s->csrmem, OBJECT(s), &vtd_mem_ops, s,
4846                           "intel_iommu", DMAR_REG_SIZE);
4847     memory_region_add_subregion(get_system_memory(),
4848                                 Q35_HOST_BRIDGE_IOMMU_ADDR, &s->csrmem);
4849 
4850     /* Create the shared memory regions by all devices */
4851     memory_region_init(&s->mr_nodmar, OBJECT(s), "vtd-nodmar",
4852                        UINT64_MAX);
4853     memory_region_init_io(&s->mr_ir, OBJECT(s), &vtd_mem_ir_ops,
4854                           s, "vtd-ir", VTD_INTERRUPT_ADDR_SIZE);
4855     memory_region_init_alias(&s->mr_sys_alias, OBJECT(s),
4856                              "vtd-sys-alias", get_system_memory(), 0,
4857                              memory_region_size(get_system_memory()));
4858     memory_region_add_subregion_overlap(&s->mr_nodmar, 0,
4859                                         &s->mr_sys_alias, 0);
4860     memory_region_add_subregion_overlap(&s->mr_nodmar,
4861                                         VTD_INTERRUPT_ADDR_FIRST,
4862                                         &s->mr_ir, 1);
4863     /* No corresponding destroy */
4864     s->iotlb = g_hash_table_new_full(vtd_iotlb_hash, vtd_iotlb_equal,
4865                                      g_free, g_free);
4866     s->vtd_address_spaces = g_hash_table_new_full(vtd_as_hash, vtd_as_equal,
4867                                       g_free, g_free);
4868     s->vtd_host_iommu_dev = g_hash_table_new_full(vtd_hiod_hash, vtd_hiod_equal,
4869                                                   g_free, vtd_hiod_destroy);
4870     vtd_init(s);
4871     pci_setup_iommu(bus, &vtd_iommu_ops, dev);
4872     /* Pseudo address space under root PCI bus. */
4873     x86ms->ioapic_as = vtd_host_dma_iommu(bus, s, Q35_PSEUDO_DEVFN_IOAPIC);
4874     qemu_add_machine_init_done_notifier(&vtd_machine_done_notify);
4875 }
4876 
vtd_class_init(ObjectClass * klass,const void * data)4877 static void vtd_class_init(ObjectClass *klass, const void *data)
4878 {
4879     DeviceClass *dc = DEVICE_CLASS(klass);
4880     X86IOMMUClass *x86_class = X86_IOMMU_DEVICE_CLASS(klass);
4881     ResettableClass *rc = RESETTABLE_CLASS(klass);
4882 
4883     /*
4884      * Use 'exit' reset phase to make sure all DMA requests
4885      * have been quiesced during 'enter' or 'hold' phase
4886      */
4887     rc->phases.exit = vtd_reset_exit;
4888     dc->vmsd = &vtd_vmstate;
4889     device_class_set_props(dc, vtd_properties);
4890     dc->hotpluggable = false;
4891     x86_class->realize = vtd_realize;
4892     x86_class->int_remap = vtd_int_remap;
4893     set_bit(DEVICE_CATEGORY_MISC, dc->categories);
4894     dc->desc = "Intel IOMMU (VT-d) DMA Remapping device";
4895 }
4896 
4897 static const TypeInfo vtd_info = {
4898     .name          = TYPE_INTEL_IOMMU_DEVICE,
4899     .parent        = TYPE_X86_IOMMU_DEVICE,
4900     .instance_size = sizeof(IntelIOMMUState),
4901     .class_init    = vtd_class_init,
4902 };
4903 
vtd_iommu_memory_region_class_init(ObjectClass * klass,const void * data)4904 static void vtd_iommu_memory_region_class_init(ObjectClass *klass,
4905                                                const void *data)
4906 {
4907     IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_CLASS(klass);
4908 
4909     imrc->translate = vtd_iommu_translate;
4910     imrc->notify_flag_changed = vtd_iommu_notify_flag_changed;
4911     imrc->replay = vtd_iommu_replay;
4912 }
4913 
4914 static const TypeInfo vtd_iommu_memory_region_info = {
4915     .parent = TYPE_IOMMU_MEMORY_REGION,
4916     .name = TYPE_INTEL_IOMMU_MEMORY_REGION,
4917     .class_init = vtd_iommu_memory_region_class_init,
4918 };
4919 
vtd_register_types(void)4920 static void vtd_register_types(void)
4921 {
4922     type_register_static(&vtd_info);
4923     type_register_static(&vtd_iommu_memory_region_info);
4924 }
4925 
4926 type_init(vtd_register_types)
4927