xref: /linux/arch/x86/events/amd/core.c (revision ab93e0dd72c37d378dd936f031ffb83ff2bd87ce)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/perf_event.h>
3 #include <linux/jump_label.h>
4 #include <linux/export.h>
5 #include <linux/types.h>
6 #include <linux/init.h>
7 #include <linux/slab.h>
8 #include <linux/delay.h>
9 #include <linux/jiffies.h>
10 #include <asm/apicdef.h>
11 #include <asm/apic.h>
12 #include <asm/msr.h>
13 #include <asm/nmi.h>
14 
15 #include "../perf_event.h"
16 
17 static DEFINE_PER_CPU(unsigned long, perf_nmi_tstamp);
18 static unsigned long perf_nmi_window;
19 
20 /* AMD Event 0xFFF: Merge.  Used with Large Increment per Cycle events */
21 #define AMD_MERGE_EVENT ((0xFULL << 32) | 0xFFULL)
22 #define AMD_MERGE_EVENT_ENABLE (AMD_MERGE_EVENT | ARCH_PERFMON_EVENTSEL_ENABLE)
23 
24 /* PMC Enable and Overflow bits for PerfCntrGlobal* registers */
25 static u64 amd_pmu_global_cntr_mask __read_mostly;
26 
27 static __initconst const u64 amd_hw_cache_event_ids
28 				[PERF_COUNT_HW_CACHE_MAX]
29 				[PERF_COUNT_HW_CACHE_OP_MAX]
30 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
31 {
32  [ C(L1D) ] = {
33 	[ C(OP_READ) ] = {
34 		[ C(RESULT_ACCESS) ] = 0x0040, /* Data Cache Accesses        */
35 		[ C(RESULT_MISS)   ] = 0x0141, /* Data Cache Misses          */
36 	},
37 	[ C(OP_WRITE) ] = {
38 		[ C(RESULT_ACCESS) ] = 0,
39 		[ C(RESULT_MISS)   ] = 0,
40 	},
41 	[ C(OP_PREFETCH) ] = {
42 		[ C(RESULT_ACCESS) ] = 0x0267, /* Data Prefetcher :attempts  */
43 		[ C(RESULT_MISS)   ] = 0x0167, /* Data Prefetcher :cancelled */
44 	},
45  },
46  [ C(L1I ) ] = {
47 	[ C(OP_READ) ] = {
48 		[ C(RESULT_ACCESS) ] = 0x0080, /* Instruction cache fetches  */
49 		[ C(RESULT_MISS)   ] = 0x0081, /* Instruction cache misses   */
50 	},
51 	[ C(OP_WRITE) ] = {
52 		[ C(RESULT_ACCESS) ] = -1,
53 		[ C(RESULT_MISS)   ] = -1,
54 	},
55 	[ C(OP_PREFETCH) ] = {
56 		[ C(RESULT_ACCESS) ] = 0x014B, /* Prefetch Instructions :Load */
57 		[ C(RESULT_MISS)   ] = 0,
58 	},
59  },
60  [ C(LL  ) ] = {
61 	[ C(OP_READ) ] = {
62 		[ C(RESULT_ACCESS) ] = 0x037D, /* Requests to L2 Cache :IC+DC */
63 		[ C(RESULT_MISS)   ] = 0x037E, /* L2 Cache Misses : IC+DC     */
64 	},
65 	[ C(OP_WRITE) ] = {
66 		[ C(RESULT_ACCESS) ] = 0x017F, /* L2 Fill/Writeback           */
67 		[ C(RESULT_MISS)   ] = 0,
68 	},
69 	[ C(OP_PREFETCH) ] = {
70 		[ C(RESULT_ACCESS) ] = 0,
71 		[ C(RESULT_MISS)   ] = 0,
72 	},
73  },
74  [ C(DTLB) ] = {
75 	[ C(OP_READ) ] = {
76 		[ C(RESULT_ACCESS) ] = 0x0040, /* Data Cache Accesses        */
77 		[ C(RESULT_MISS)   ] = 0x0746, /* L1_DTLB_AND_L2_DLTB_MISS.ALL */
78 	},
79 	[ C(OP_WRITE) ] = {
80 		[ C(RESULT_ACCESS) ] = 0,
81 		[ C(RESULT_MISS)   ] = 0,
82 	},
83 	[ C(OP_PREFETCH) ] = {
84 		[ C(RESULT_ACCESS) ] = 0,
85 		[ C(RESULT_MISS)   ] = 0,
86 	},
87  },
88  [ C(ITLB) ] = {
89 	[ C(OP_READ) ] = {
90 		[ C(RESULT_ACCESS) ] = 0x0080, /* Instruction fecthes        */
91 		[ C(RESULT_MISS)   ] = 0x0385, /* L1_ITLB_AND_L2_ITLB_MISS.ALL */
92 	},
93 	[ C(OP_WRITE) ] = {
94 		[ C(RESULT_ACCESS) ] = -1,
95 		[ C(RESULT_MISS)   ] = -1,
96 	},
97 	[ C(OP_PREFETCH) ] = {
98 		[ C(RESULT_ACCESS) ] = -1,
99 		[ C(RESULT_MISS)   ] = -1,
100 	},
101  },
102  [ C(BPU ) ] = {
103 	[ C(OP_READ) ] = {
104 		[ C(RESULT_ACCESS) ] = 0x00c2, /* Retired Branch Instr.      */
105 		[ C(RESULT_MISS)   ] = 0x00c3, /* Retired Mispredicted BI    */
106 	},
107 	[ C(OP_WRITE) ] = {
108 		[ C(RESULT_ACCESS) ] = -1,
109 		[ C(RESULT_MISS)   ] = -1,
110 	},
111 	[ C(OP_PREFETCH) ] = {
112 		[ C(RESULT_ACCESS) ] = -1,
113 		[ C(RESULT_MISS)   ] = -1,
114 	},
115  },
116  [ C(NODE) ] = {
117 	[ C(OP_READ) ] = {
118 		[ C(RESULT_ACCESS) ] = 0xb8e9, /* CPU Request to Memory, l+r */
119 		[ C(RESULT_MISS)   ] = 0x98e9, /* CPU Request to Memory, r   */
120 	},
121 	[ C(OP_WRITE) ] = {
122 		[ C(RESULT_ACCESS) ] = -1,
123 		[ C(RESULT_MISS)   ] = -1,
124 	},
125 	[ C(OP_PREFETCH) ] = {
126 		[ C(RESULT_ACCESS) ] = -1,
127 		[ C(RESULT_MISS)   ] = -1,
128 	},
129  },
130 };
131 
132 static __initconst const u64 amd_hw_cache_event_ids_f17h
133 				[PERF_COUNT_HW_CACHE_MAX]
134 				[PERF_COUNT_HW_CACHE_OP_MAX]
135 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
136 [C(L1D)] = {
137 	[C(OP_READ)] = {
138 		[C(RESULT_ACCESS)] = 0x0040, /* Data Cache Accesses */
139 		[C(RESULT_MISS)]   = 0xc860, /* L2$ access from DC Miss */
140 	},
141 	[C(OP_WRITE)] = {
142 		[C(RESULT_ACCESS)] = 0,
143 		[C(RESULT_MISS)]   = 0,
144 	},
145 	[C(OP_PREFETCH)] = {
146 		[C(RESULT_ACCESS)] = 0xff5a, /* h/w prefetch DC Fills */
147 		[C(RESULT_MISS)]   = 0,
148 	},
149 },
150 [C(L1I)] = {
151 	[C(OP_READ)] = {
152 		[C(RESULT_ACCESS)] = 0x0080, /* Instruction cache fetches  */
153 		[C(RESULT_MISS)]   = 0x0081, /* Instruction cache misses   */
154 	},
155 	[C(OP_WRITE)] = {
156 		[C(RESULT_ACCESS)] = -1,
157 		[C(RESULT_MISS)]   = -1,
158 	},
159 	[C(OP_PREFETCH)] = {
160 		[C(RESULT_ACCESS)] = 0,
161 		[C(RESULT_MISS)]   = 0,
162 	},
163 },
164 [C(LL)] = {
165 	[C(OP_READ)] = {
166 		[C(RESULT_ACCESS)] = 0,
167 		[C(RESULT_MISS)]   = 0,
168 	},
169 	[C(OP_WRITE)] = {
170 		[C(RESULT_ACCESS)] = 0,
171 		[C(RESULT_MISS)]   = 0,
172 	},
173 	[C(OP_PREFETCH)] = {
174 		[C(RESULT_ACCESS)] = 0,
175 		[C(RESULT_MISS)]   = 0,
176 	},
177 },
178 [C(DTLB)] = {
179 	[C(OP_READ)] = {
180 		[C(RESULT_ACCESS)] = 0xff45, /* All L2 DTLB accesses */
181 		[C(RESULT_MISS)]   = 0xf045, /* L2 DTLB misses (PT walks) */
182 	},
183 	[C(OP_WRITE)] = {
184 		[C(RESULT_ACCESS)] = 0,
185 		[C(RESULT_MISS)]   = 0,
186 	},
187 	[C(OP_PREFETCH)] = {
188 		[C(RESULT_ACCESS)] = 0,
189 		[C(RESULT_MISS)]   = 0,
190 	},
191 },
192 [C(ITLB)] = {
193 	[C(OP_READ)] = {
194 		[C(RESULT_ACCESS)] = 0x0084, /* L1 ITLB misses, L2 ITLB hits */
195 		[C(RESULT_MISS)]   = 0xff85, /* L1 ITLB misses, L2 misses */
196 	},
197 	[C(OP_WRITE)] = {
198 		[C(RESULT_ACCESS)] = -1,
199 		[C(RESULT_MISS)]   = -1,
200 	},
201 	[C(OP_PREFETCH)] = {
202 		[C(RESULT_ACCESS)] = -1,
203 		[C(RESULT_MISS)]   = -1,
204 	},
205 },
206 [C(BPU)] = {
207 	[C(OP_READ)] = {
208 		[C(RESULT_ACCESS)] = 0x00c2, /* Retired Branch Instr.      */
209 		[C(RESULT_MISS)]   = 0x00c3, /* Retired Mispredicted BI    */
210 	},
211 	[C(OP_WRITE)] = {
212 		[C(RESULT_ACCESS)] = -1,
213 		[C(RESULT_MISS)]   = -1,
214 	},
215 	[C(OP_PREFETCH)] = {
216 		[C(RESULT_ACCESS)] = -1,
217 		[C(RESULT_MISS)]   = -1,
218 	},
219 },
220 [C(NODE)] = {
221 	[C(OP_READ)] = {
222 		[C(RESULT_ACCESS)] = 0,
223 		[C(RESULT_MISS)]   = 0,
224 	},
225 	[C(OP_WRITE)] = {
226 		[C(RESULT_ACCESS)] = -1,
227 		[C(RESULT_MISS)]   = -1,
228 	},
229 	[C(OP_PREFETCH)] = {
230 		[C(RESULT_ACCESS)] = -1,
231 		[C(RESULT_MISS)]   = -1,
232 	},
233 },
234 };
235 
236 /*
237  * AMD Performance Monitor K7 and later, up to and including Family 16h:
238  */
239 static const u64 amd_perfmon_event_map[PERF_COUNT_HW_MAX] =
240 {
241 	[PERF_COUNT_HW_CPU_CYCLES]		= 0x0076,
242 	[PERF_COUNT_HW_INSTRUCTIONS]		= 0x00c0,
243 	[PERF_COUNT_HW_CACHE_REFERENCES]	= 0x077d,
244 	[PERF_COUNT_HW_CACHE_MISSES]		= 0x077e,
245 	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS]	= 0x00c2,
246 	[PERF_COUNT_HW_BRANCH_MISSES]		= 0x00c3,
247 	[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND]	= 0x00d0, /* "Decoder empty" event */
248 	[PERF_COUNT_HW_STALLED_CYCLES_BACKEND]	= 0x00d1, /* "Dispatch stalls" event */
249 };
250 
251 /*
252  * AMD Performance Monitor Family 17h and later:
253  */
254 static const u64 amd_zen1_perfmon_event_map[PERF_COUNT_HW_MAX] =
255 {
256 	[PERF_COUNT_HW_CPU_CYCLES]		= 0x0076,
257 	[PERF_COUNT_HW_INSTRUCTIONS]		= 0x00c0,
258 	[PERF_COUNT_HW_CACHE_REFERENCES]	= 0xff60,
259 	[PERF_COUNT_HW_CACHE_MISSES]		= 0x0964,
260 	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS]	= 0x00c2,
261 	[PERF_COUNT_HW_BRANCH_MISSES]		= 0x00c3,
262 	[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND]	= 0x0287,
263 	[PERF_COUNT_HW_STALLED_CYCLES_BACKEND]	= 0x0187,
264 };
265 
266 static const u64 amd_zen2_perfmon_event_map[PERF_COUNT_HW_MAX] =
267 {
268 	[PERF_COUNT_HW_CPU_CYCLES]		= 0x0076,
269 	[PERF_COUNT_HW_INSTRUCTIONS]		= 0x00c0,
270 	[PERF_COUNT_HW_CACHE_REFERENCES]	= 0xff60,
271 	[PERF_COUNT_HW_CACHE_MISSES]		= 0x0964,
272 	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS]	= 0x00c2,
273 	[PERF_COUNT_HW_BRANCH_MISSES]		= 0x00c3,
274 	[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND]	= 0x00a9,
275 };
276 
277 static const u64 amd_zen4_perfmon_event_map[PERF_COUNT_HW_MAX] =
278 {
279 	[PERF_COUNT_HW_CPU_CYCLES]		= 0x0076,
280 	[PERF_COUNT_HW_INSTRUCTIONS]		= 0x00c0,
281 	[PERF_COUNT_HW_CACHE_REFERENCES]	= 0xff60,
282 	[PERF_COUNT_HW_CACHE_MISSES]		= 0x0964,
283 	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS]	= 0x00c2,
284 	[PERF_COUNT_HW_BRANCH_MISSES]		= 0x00c3,
285 	[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND]	= 0x00a9,
286 	[PERF_COUNT_HW_REF_CPU_CYCLES]		= 0x100000120,
287 };
288 
amd_pmu_event_map(int hw_event)289 static u64 amd_pmu_event_map(int hw_event)
290 {
291 	if (cpu_feature_enabled(X86_FEATURE_ZEN4) || boot_cpu_data.x86 >= 0x1a)
292 		return amd_zen4_perfmon_event_map[hw_event];
293 
294 	if (cpu_feature_enabled(X86_FEATURE_ZEN2) || boot_cpu_data.x86 >= 0x19)
295 		return amd_zen2_perfmon_event_map[hw_event];
296 
297 	if (cpu_feature_enabled(X86_FEATURE_ZEN1))
298 		return amd_zen1_perfmon_event_map[hw_event];
299 
300 	return amd_perfmon_event_map[hw_event];
301 }
302 
303 /*
304  * Previously calculated offsets
305  */
306 static unsigned int event_offsets[X86_PMC_IDX_MAX] __read_mostly;
307 static unsigned int count_offsets[X86_PMC_IDX_MAX] __read_mostly;
308 
309 /*
310  * Legacy CPUs:
311  *   4 counters starting at 0xc0010000 each offset by 1
312  *
313  * CPUs with core performance counter extensions:
314  *   6 counters starting at 0xc0010200 each offset by 2
315  */
amd_pmu_addr_offset(int index,bool eventsel)316 static inline int amd_pmu_addr_offset(int index, bool eventsel)
317 {
318 	int offset;
319 
320 	if (!index)
321 		return index;
322 
323 	if (eventsel)
324 		offset = event_offsets[index];
325 	else
326 		offset = count_offsets[index];
327 
328 	if (offset)
329 		return offset;
330 
331 	if (!boot_cpu_has(X86_FEATURE_PERFCTR_CORE))
332 		offset = index;
333 	else
334 		offset = index << 1;
335 
336 	if (eventsel)
337 		event_offsets[index] = offset;
338 	else
339 		count_offsets[index] = offset;
340 
341 	return offset;
342 }
343 
344 /*
345  * AMD64 events are detected based on their event codes.
346  */
amd_get_event_code(struct hw_perf_event * hwc)347 static inline unsigned int amd_get_event_code(struct hw_perf_event *hwc)
348 {
349 	return ((hwc->config >> 24) & 0x0f00) | (hwc->config & 0x00ff);
350 }
351 
amd_is_pair_event_code(struct hw_perf_event * hwc)352 static inline bool amd_is_pair_event_code(struct hw_perf_event *hwc)
353 {
354 	if (!(x86_pmu.flags & PMU_FL_PAIR))
355 		return false;
356 
357 	switch (amd_get_event_code(hwc)) {
358 	case 0x003:	return true;	/* Retired SSE/AVX FLOPs */
359 	default:	return false;
360 	}
361 }
362 
363 DEFINE_STATIC_CALL_RET0(amd_pmu_branch_hw_config, *x86_pmu.hw_config);
364 
amd_core_hw_config(struct perf_event * event)365 static int amd_core_hw_config(struct perf_event *event)
366 {
367 	if (event->attr.exclude_host && event->attr.exclude_guest)
368 		/*
369 		 * When HO == GO == 1 the hardware treats that as GO == HO == 0
370 		 * and will count in both modes. We don't want to count in that
371 		 * case so we emulate no-counting by setting US = OS = 0.
372 		 */
373 		event->hw.config &= ~(ARCH_PERFMON_EVENTSEL_USR |
374 				      ARCH_PERFMON_EVENTSEL_OS);
375 	else if (event->attr.exclude_host)
376 		event->hw.config |= AMD64_EVENTSEL_GUESTONLY;
377 	else if (event->attr.exclude_guest)
378 		event->hw.config |= AMD64_EVENTSEL_HOSTONLY;
379 
380 	if ((x86_pmu.flags & PMU_FL_PAIR) && amd_is_pair_event_code(&event->hw))
381 		event->hw.flags |= PERF_X86_EVENT_PAIR;
382 
383 	if (has_branch_stack(event))
384 		return static_call(amd_pmu_branch_hw_config)(event);
385 
386 	return 0;
387 }
388 
amd_is_nb_event(struct hw_perf_event * hwc)389 static inline int amd_is_nb_event(struct hw_perf_event *hwc)
390 {
391 	return (hwc->config & 0xe0) == 0xe0;
392 }
393 
amd_has_nb(struct cpu_hw_events * cpuc)394 static inline int amd_has_nb(struct cpu_hw_events *cpuc)
395 {
396 	struct amd_nb *nb = cpuc->amd_nb;
397 
398 	return nb && nb->nb_id != -1;
399 }
400 
amd_pmu_hw_config(struct perf_event * event)401 static int amd_pmu_hw_config(struct perf_event *event)
402 {
403 	int ret;
404 
405 	/* pass precise event sampling to ibs: */
406 	if (event->attr.precise_ip && get_ibs_caps())
407 		return forward_event_to_ibs(event);
408 
409 	if (has_branch_stack(event) && !x86_pmu.lbr_nr)
410 		return -EOPNOTSUPP;
411 
412 	ret = x86_pmu_hw_config(event);
413 	if (ret)
414 		return ret;
415 
416 	if (event->attr.type == PERF_TYPE_RAW)
417 		event->hw.config |= event->attr.config & AMD64_RAW_EVENT_MASK;
418 
419 	return amd_core_hw_config(event);
420 }
421 
__amd_put_nb_event_constraints(struct cpu_hw_events * cpuc,struct perf_event * event)422 static void __amd_put_nb_event_constraints(struct cpu_hw_events *cpuc,
423 					   struct perf_event *event)
424 {
425 	struct amd_nb *nb = cpuc->amd_nb;
426 	int i;
427 
428 	/*
429 	 * need to scan whole list because event may not have
430 	 * been assigned during scheduling
431 	 *
432 	 * no race condition possible because event can only
433 	 * be removed on one CPU at a time AND PMU is disabled
434 	 * when we come here
435 	 */
436 	for_each_set_bit(i, x86_pmu.cntr_mask, X86_PMC_IDX_MAX) {
437 		struct perf_event *tmp = event;
438 
439 		if (try_cmpxchg(nb->owners + i, &tmp, NULL))
440 			break;
441 	}
442 }
443 
444  /*
445   * AMD64 NorthBridge events need special treatment because
446   * counter access needs to be synchronized across all cores
447   * of a package. Refer to BKDG section 3.12
448   *
449   * NB events are events measuring L3 cache, Hypertransport
450   * traffic. They are identified by an event code >= 0xe00.
451   * They measure events on the NorthBride which is shared
452   * by all cores on a package. NB events are counted on a
453   * shared set of counters. When a NB event is programmed
454   * in a counter, the data actually comes from a shared
455   * counter. Thus, access to those counters needs to be
456   * synchronized.
457   *
458   * We implement the synchronization such that no two cores
459   * can be measuring NB events using the same counters. Thus,
460   * we maintain a per-NB allocation table. The available slot
461   * is propagated using the event_constraint structure.
462   *
463   * We provide only one choice for each NB event based on
464   * the fact that only NB events have restrictions. Consequently,
465   * if a counter is available, there is a guarantee the NB event
466   * will be assigned to it. If no slot is available, an empty
467   * constraint is returned and scheduling will eventually fail
468   * for this event.
469   *
470   * Note that all cores attached the same NB compete for the same
471   * counters to host NB events, this is why we use atomic ops. Some
472   * multi-chip CPUs may have more than one NB.
473   *
474   * Given that resources are allocated (cmpxchg), they must be
475   * eventually freed for others to use. This is accomplished by
476   * calling __amd_put_nb_event_constraints()
477   *
478   * Non NB events are not impacted by this restriction.
479   */
480 static struct event_constraint *
__amd_get_nb_event_constraints(struct cpu_hw_events * cpuc,struct perf_event * event,struct event_constraint * c)481 __amd_get_nb_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
482 			       struct event_constraint *c)
483 {
484 	struct hw_perf_event *hwc = &event->hw;
485 	struct amd_nb *nb = cpuc->amd_nb;
486 	struct perf_event *old;
487 	int idx, new = -1;
488 
489 	if (!c)
490 		c = &unconstrained;
491 
492 	if (cpuc->is_fake)
493 		return c;
494 
495 	/*
496 	 * detect if already present, if so reuse
497 	 *
498 	 * cannot merge with actual allocation
499 	 * because of possible holes
500 	 *
501 	 * event can already be present yet not assigned (in hwc->idx)
502 	 * because of successive calls to x86_schedule_events() from
503 	 * hw_perf_group_sched_in() without hw_perf_enable()
504 	 */
505 	for_each_set_bit(idx, c->idxmsk, x86_pmu_max_num_counters(NULL)) {
506 		if (new == -1 || hwc->idx == idx)
507 			/* assign free slot, prefer hwc->idx */
508 			old = cmpxchg(nb->owners + idx, NULL, event);
509 		else if (nb->owners[idx] == event)
510 			/* event already present */
511 			old = event;
512 		else
513 			continue;
514 
515 		if (old && old != event)
516 			continue;
517 
518 		/* reassign to this slot */
519 		if (new != -1)
520 			cmpxchg(nb->owners + new, event, NULL);
521 		new = idx;
522 
523 		/* already present, reuse */
524 		if (old == event)
525 			break;
526 	}
527 
528 	if (new == -1)
529 		return &emptyconstraint;
530 
531 	return &nb->event_constraints[new];
532 }
533 
amd_alloc_nb(int cpu)534 static struct amd_nb *amd_alloc_nb(int cpu)
535 {
536 	struct amd_nb *nb;
537 	int i;
538 
539 	nb = kzalloc_node(sizeof(struct amd_nb), GFP_KERNEL, cpu_to_node(cpu));
540 	if (!nb)
541 		return NULL;
542 
543 	nb->nb_id = -1;
544 
545 	/*
546 	 * initialize all possible NB constraints
547 	 */
548 	for_each_set_bit(i, x86_pmu.cntr_mask, X86_PMC_IDX_MAX) {
549 		__set_bit(i, nb->event_constraints[i].idxmsk);
550 		nb->event_constraints[i].weight = 1;
551 	}
552 	return nb;
553 }
554 
555 typedef void (amd_pmu_branch_reset_t)(void);
556 DEFINE_STATIC_CALL_NULL(amd_pmu_branch_reset, amd_pmu_branch_reset_t);
557 
amd_pmu_cpu_reset(int cpu)558 static void amd_pmu_cpu_reset(int cpu)
559 {
560 	if (x86_pmu.lbr_nr)
561 		static_call(amd_pmu_branch_reset)();
562 
563 	if (x86_pmu.version < 2)
564 		return;
565 
566 	/* Clear enable bits i.e. PerfCntrGlobalCtl.PerfCntrEn */
567 	wrmsrq(MSR_AMD64_PERF_CNTR_GLOBAL_CTL, 0);
568 
569 	/*
570 	 * Clear freeze and overflow bits i.e. PerfCntrGLobalStatus.LbrFreeze
571 	 * and PerfCntrGLobalStatus.PerfCntrOvfl
572 	 */
573 	wrmsrq(MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR,
574 	       GLOBAL_STATUS_LBRS_FROZEN | amd_pmu_global_cntr_mask);
575 }
576 
amd_pmu_cpu_prepare(int cpu)577 static int amd_pmu_cpu_prepare(int cpu)
578 {
579 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
580 
581 	cpuc->lbr_sel = kzalloc_node(sizeof(struct er_account), GFP_KERNEL,
582 				     cpu_to_node(cpu));
583 	if (!cpuc->lbr_sel)
584 		return -ENOMEM;
585 
586 	WARN_ON_ONCE(cpuc->amd_nb);
587 
588 	if (!x86_pmu.amd_nb_constraints)
589 		return 0;
590 
591 	cpuc->amd_nb = amd_alloc_nb(cpu);
592 	if (cpuc->amd_nb)
593 		return 0;
594 
595 	kfree(cpuc->lbr_sel);
596 	cpuc->lbr_sel = NULL;
597 
598 	return -ENOMEM;
599 }
600 
amd_pmu_cpu_starting(int cpu)601 static void amd_pmu_cpu_starting(int cpu)
602 {
603 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
604 	void **onln = &cpuc->kfree_on_online[X86_PERF_KFREE_SHARED];
605 	struct amd_nb *nb;
606 	int i, nb_id;
607 
608 	cpuc->perf_ctr_virt_mask = AMD64_EVENTSEL_HOSTONLY;
609 	amd_pmu_cpu_reset(cpu);
610 
611 	if (!x86_pmu.amd_nb_constraints)
612 		return;
613 
614 	nb_id = topology_amd_node_id(cpu);
615 	WARN_ON_ONCE(nb_id == BAD_APICID);
616 
617 	for_each_online_cpu(i) {
618 		nb = per_cpu(cpu_hw_events, i).amd_nb;
619 		if (WARN_ON_ONCE(!nb))
620 			continue;
621 
622 		if (nb->nb_id == nb_id) {
623 			*onln = cpuc->amd_nb;
624 			cpuc->amd_nb = nb;
625 			break;
626 		}
627 	}
628 
629 	cpuc->amd_nb->nb_id = nb_id;
630 	cpuc->amd_nb->refcnt++;
631 }
632 
amd_pmu_cpu_dead(int cpu)633 static void amd_pmu_cpu_dead(int cpu)
634 {
635 	struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
636 
637 	kfree(cpuhw->lbr_sel);
638 	cpuhw->lbr_sel = NULL;
639 
640 	if (!x86_pmu.amd_nb_constraints)
641 		return;
642 
643 	if (cpuhw->amd_nb) {
644 		struct amd_nb *nb = cpuhw->amd_nb;
645 
646 		if (nb->nb_id == -1 || --nb->refcnt == 0)
647 			kfree(nb);
648 
649 		cpuhw->amd_nb = NULL;
650 	}
651 }
652 
amd_pmu_set_global_ctl(u64 ctl)653 static __always_inline void amd_pmu_set_global_ctl(u64 ctl)
654 {
655 	wrmsrq(MSR_AMD64_PERF_CNTR_GLOBAL_CTL, ctl);
656 }
657 
amd_pmu_get_global_status(void)658 static inline u64 amd_pmu_get_global_status(void)
659 {
660 	u64 status;
661 
662 	/* PerfCntrGlobalStatus is read-only */
663 	rdmsrq(MSR_AMD64_PERF_CNTR_GLOBAL_STATUS, status);
664 
665 	return status;
666 }
667 
amd_pmu_ack_global_status(u64 status)668 static inline void amd_pmu_ack_global_status(u64 status)
669 {
670 	/*
671 	 * PerfCntrGlobalStatus is read-only but an overflow acknowledgment
672 	 * mechanism exists; writing 1 to a bit in PerfCntrGlobalStatusClr
673 	 * clears the same bit in PerfCntrGlobalStatus
674 	 */
675 
676 	wrmsrq(MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR, status);
677 }
678 
amd_pmu_test_overflow_topbit(int idx)679 static bool amd_pmu_test_overflow_topbit(int idx)
680 {
681 	u64 counter;
682 
683 	rdmsrq(x86_pmu_event_addr(idx), counter);
684 
685 	return !(counter & BIT_ULL(x86_pmu.cntval_bits - 1));
686 }
687 
amd_pmu_test_overflow_status(int idx)688 static bool amd_pmu_test_overflow_status(int idx)
689 {
690 	return amd_pmu_get_global_status() & BIT_ULL(idx);
691 }
692 
693 DEFINE_STATIC_CALL(amd_pmu_test_overflow, amd_pmu_test_overflow_topbit);
694 
695 /*
696  * When a PMC counter overflows, an NMI is used to process the event and
697  * reset the counter. NMI latency can result in the counter being updated
698  * before the NMI can run, which can result in what appear to be spurious
699  * NMIs. This function is intended to wait for the NMI to run and reset
700  * the counter to avoid possible unhandled NMI messages.
701  */
702 #define OVERFLOW_WAIT_COUNT	50
703 
amd_pmu_wait_on_overflow(int idx)704 static void amd_pmu_wait_on_overflow(int idx)
705 {
706 	unsigned int i;
707 
708 	/*
709 	 * Wait for the counter to be reset if it has overflowed. This loop
710 	 * should exit very, very quickly, but just in case, don't wait
711 	 * forever...
712 	 */
713 	for (i = 0; i < OVERFLOW_WAIT_COUNT; i++) {
714 		if (!static_call(amd_pmu_test_overflow)(idx))
715 			break;
716 
717 		/* Might be in IRQ context, so can't sleep */
718 		udelay(1);
719 	}
720 }
721 
amd_pmu_check_overflow(void)722 static void amd_pmu_check_overflow(void)
723 {
724 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
725 	int idx;
726 
727 	/*
728 	 * This shouldn't be called from NMI context, but add a safeguard here
729 	 * to return, since if we're in NMI context we can't wait for an NMI
730 	 * to reset an overflowed counter value.
731 	 */
732 	if (in_nmi())
733 		return;
734 
735 	/*
736 	 * Check each counter for overflow and wait for it to be reset by the
737 	 * NMI if it has overflowed. This relies on the fact that all active
738 	 * counters are always enabled when this function is called and
739 	 * ARCH_PERFMON_EVENTSEL_INT is always set.
740 	 */
741 	for_each_set_bit(idx, x86_pmu.cntr_mask, X86_PMC_IDX_MAX) {
742 		if (!test_bit(idx, cpuc->active_mask))
743 			continue;
744 
745 		amd_pmu_wait_on_overflow(idx);
746 	}
747 }
748 
amd_pmu_enable_event(struct perf_event * event)749 static void amd_pmu_enable_event(struct perf_event *event)
750 {
751 	x86_pmu_enable_event(event);
752 }
753 
amd_pmu_enable_all(int added)754 static void amd_pmu_enable_all(int added)
755 {
756 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
757 	int idx;
758 
759 	amd_brs_enable_all();
760 
761 	for_each_set_bit(idx, x86_pmu.cntr_mask, X86_PMC_IDX_MAX) {
762 		/* only activate events which are marked as active */
763 		if (!test_bit(idx, cpuc->active_mask))
764 			continue;
765 
766 		amd_pmu_enable_event(cpuc->events[idx]);
767 	}
768 }
769 
amd_pmu_v2_enable_event(struct perf_event * event)770 static void amd_pmu_v2_enable_event(struct perf_event *event)
771 {
772 	struct hw_perf_event *hwc = &event->hw;
773 
774 	/*
775 	 * Testing cpu_hw_events.enabled should be skipped in this case unlike
776 	 * in x86_pmu_enable_event().
777 	 *
778 	 * Since cpu_hw_events.enabled is set only after returning from
779 	 * x86_pmu_start(), the PMCs must be programmed and kept ready.
780 	 * Counting starts only after x86_pmu_enable_all() is called.
781 	 */
782 	__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
783 }
784 
amd_pmu_core_enable_all(void)785 static __always_inline void amd_pmu_core_enable_all(void)
786 {
787 	amd_pmu_set_global_ctl(amd_pmu_global_cntr_mask);
788 }
789 
amd_pmu_v2_enable_all(int added)790 static void amd_pmu_v2_enable_all(int added)
791 {
792 	amd_pmu_lbr_enable_all();
793 	amd_pmu_core_enable_all();
794 }
795 
amd_pmu_disable_event(struct perf_event * event)796 static void amd_pmu_disable_event(struct perf_event *event)
797 {
798 	x86_pmu_disable_event(event);
799 
800 	/*
801 	 * This can be called from NMI context (via x86_pmu_stop). The counter
802 	 * may have overflowed, but either way, we'll never see it get reset
803 	 * by the NMI if we're already in the NMI. And the NMI latency support
804 	 * below will take care of any pending NMI that might have been
805 	 * generated by the overflow.
806 	 */
807 	if (in_nmi())
808 		return;
809 
810 	amd_pmu_wait_on_overflow(event->hw.idx);
811 }
812 
amd_pmu_disable_all(void)813 static void amd_pmu_disable_all(void)
814 {
815 	amd_brs_disable_all();
816 	x86_pmu_disable_all();
817 	amd_pmu_check_overflow();
818 }
819 
amd_pmu_core_disable_all(void)820 static __always_inline void amd_pmu_core_disable_all(void)
821 {
822 	amd_pmu_set_global_ctl(0);
823 }
824 
amd_pmu_v2_disable_all(void)825 static void amd_pmu_v2_disable_all(void)
826 {
827 	amd_pmu_core_disable_all();
828 	amd_pmu_lbr_disable_all();
829 	amd_pmu_check_overflow();
830 }
831 
832 DEFINE_STATIC_CALL_NULL(amd_pmu_branch_add, *x86_pmu.add);
833 
amd_pmu_add_event(struct perf_event * event)834 static void amd_pmu_add_event(struct perf_event *event)
835 {
836 	if (needs_branch_stack(event))
837 		static_call(amd_pmu_branch_add)(event);
838 }
839 
840 DEFINE_STATIC_CALL_NULL(amd_pmu_branch_del, *x86_pmu.del);
841 
amd_pmu_del_event(struct perf_event * event)842 static void amd_pmu_del_event(struct perf_event *event)
843 {
844 	if (needs_branch_stack(event))
845 		static_call(amd_pmu_branch_del)(event);
846 }
847 
848 /*
849  * Because of NMI latency, if multiple PMC counters are active or other sources
850  * of NMIs are received, the perf NMI handler can handle one or more overflowed
851  * PMC counters outside of the NMI associated with the PMC overflow. If the NMI
852  * doesn't arrive at the LAPIC in time to become a pending NMI, then the kernel
853  * back-to-back NMI support won't be active. This PMC handler needs to take into
854  * account that this can occur, otherwise this could result in unknown NMI
855  * messages being issued. Examples of this is PMC overflow while in the NMI
856  * handler when multiple PMCs are active or PMC overflow while handling some
857  * other source of an NMI.
858  *
859  * Attempt to mitigate this by creating an NMI window in which un-handled NMIs
860  * received during this window will be claimed. This prevents extending the
861  * window past when it is possible that latent NMIs should be received. The
862  * per-CPU perf_nmi_tstamp will be set to the window end time whenever perf has
863  * handled a counter. When an un-handled NMI is received, it will be claimed
864  * only if arriving within that window.
865  */
amd_pmu_adjust_nmi_window(int handled)866 static inline int amd_pmu_adjust_nmi_window(int handled)
867 {
868 	/*
869 	 * If a counter was handled, record a timestamp such that un-handled
870 	 * NMIs will be claimed if arriving within that window.
871 	 */
872 	if (handled) {
873 		this_cpu_write(perf_nmi_tstamp, jiffies + perf_nmi_window);
874 
875 		return handled;
876 	}
877 
878 	if (time_after(jiffies, this_cpu_read(perf_nmi_tstamp)))
879 		return NMI_DONE;
880 
881 	return NMI_HANDLED;
882 }
883 
amd_pmu_handle_irq(struct pt_regs * regs)884 static int amd_pmu_handle_irq(struct pt_regs *regs)
885 {
886 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
887 	int handled;
888 	int pmu_enabled;
889 
890 	/*
891 	 * Save the PMU state.
892 	 * It needs to be restored when leaving the handler.
893 	 */
894 	pmu_enabled = cpuc->enabled;
895 	cpuc->enabled = 0;
896 
897 	amd_brs_disable_all();
898 
899 	/* Drain BRS is in use (could be inactive) */
900 	if (cpuc->lbr_users)
901 		amd_brs_drain();
902 
903 	/* Process any counter overflows */
904 	handled = x86_pmu_handle_irq(regs);
905 
906 	cpuc->enabled = pmu_enabled;
907 	if (pmu_enabled)
908 		amd_brs_enable_all();
909 
910 	return amd_pmu_adjust_nmi_window(handled);
911 }
912 
913 /*
914  * AMD-specific callback invoked through perf_snapshot_branch_stack static
915  * call, defined in include/linux/perf_event.h. See its definition for API
916  * details. It's up to caller to provide enough space in *entries* to fit all
917  * LBR records, otherwise returned result will be truncated to *cnt* entries.
918  */
amd_pmu_v2_snapshot_branch_stack(struct perf_branch_entry * entries,unsigned int cnt)919 static int amd_pmu_v2_snapshot_branch_stack(struct perf_branch_entry *entries, unsigned int cnt)
920 {
921 	struct cpu_hw_events *cpuc;
922 	unsigned long flags;
923 
924 	/*
925 	 * The sequence of steps to freeze LBR should be completely inlined
926 	 * and contain no branches to minimize contamination of LBR snapshot
927 	 */
928 	local_irq_save(flags);
929 	amd_pmu_core_disable_all();
930 	__amd_pmu_lbr_disable();
931 
932 	cpuc = this_cpu_ptr(&cpu_hw_events);
933 
934 	amd_pmu_lbr_read();
935 	cnt = min(cnt, x86_pmu.lbr_nr);
936 	memcpy(entries, cpuc->lbr_entries, sizeof(struct perf_branch_entry) * cnt);
937 
938 	amd_pmu_v2_enable_all(0);
939 	local_irq_restore(flags);
940 
941 	return cnt;
942 }
943 
amd_pmu_v2_handle_irq(struct pt_regs * regs)944 static int amd_pmu_v2_handle_irq(struct pt_regs *regs)
945 {
946 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
947 	static atomic64_t status_warned = ATOMIC64_INIT(0);
948 	u64 reserved, status, mask, new_bits, prev_bits;
949 	struct perf_sample_data data;
950 	struct hw_perf_event *hwc;
951 	struct perf_event *event;
952 	int handled = 0, idx;
953 	bool pmu_enabled;
954 
955 	/*
956 	 * Save the PMU state as it needs to be restored when leaving the
957 	 * handler
958 	 */
959 	pmu_enabled = cpuc->enabled;
960 	cpuc->enabled = 0;
961 
962 	/* Stop counting but do not disable LBR */
963 	amd_pmu_core_disable_all();
964 
965 	status = amd_pmu_get_global_status();
966 
967 	/* Check if any overflows are pending */
968 	if (!status)
969 		goto done;
970 
971 	/* Read branch records */
972 	if (x86_pmu.lbr_nr) {
973 		amd_pmu_lbr_read();
974 		status &= ~GLOBAL_STATUS_LBRS_FROZEN;
975 	}
976 
977 	reserved = status & ~amd_pmu_global_cntr_mask;
978 	if (reserved)
979 		pr_warn_once("Reserved PerfCntrGlobalStatus bits are set (0x%llx), please consider updating microcode\n",
980 			     reserved);
981 
982 	/* Clear any reserved bits set by buggy microcode */
983 	status &= amd_pmu_global_cntr_mask;
984 
985 	for_each_set_bit(idx, x86_pmu.cntr_mask, X86_PMC_IDX_MAX) {
986 		if (!test_bit(idx, cpuc->active_mask))
987 			continue;
988 
989 		event = cpuc->events[idx];
990 		hwc = &event->hw;
991 		x86_perf_event_update(event);
992 		mask = BIT_ULL(idx);
993 
994 		if (!(status & mask))
995 			continue;
996 
997 		/* Event overflow */
998 		handled++;
999 		status &= ~mask;
1000 		perf_sample_data_init(&data, 0, hwc->last_period);
1001 
1002 		if (!x86_perf_event_set_period(event))
1003 			continue;
1004 
1005 		perf_sample_save_brstack(&data, event, &cpuc->lbr_stack, NULL);
1006 
1007 		perf_event_overflow(event, &data, regs);
1008 	}
1009 
1010 	/*
1011 	 * It should never be the case that some overflows are not handled as
1012 	 * the corresponding PMCs are expected to be inactive according to the
1013 	 * active_mask
1014 	 */
1015 	if (status > 0) {
1016 		prev_bits = atomic64_fetch_or(status, &status_warned);
1017 		// A new bit was set for the very first time.
1018 		new_bits = status & ~prev_bits;
1019 		WARN(new_bits, "New overflows for inactive PMCs: %llx\n", new_bits);
1020 	}
1021 
1022 	/* Clear overflow and freeze bits */
1023 	amd_pmu_ack_global_status(~status);
1024 
1025 	/*
1026 	 * Unmasking the LVTPC is not required as the Mask (M) bit of the LVT
1027 	 * PMI entry is not set by the local APIC when a PMC overflow occurs
1028 	 */
1029 	inc_irq_stat(apic_perf_irqs);
1030 
1031 done:
1032 	cpuc->enabled = pmu_enabled;
1033 
1034 	/* Resume counting only if PMU is active */
1035 	if (pmu_enabled)
1036 		amd_pmu_core_enable_all();
1037 
1038 	return amd_pmu_adjust_nmi_window(handled);
1039 }
1040 
1041 static struct event_constraint *
amd_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)1042 amd_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
1043 			  struct perf_event *event)
1044 {
1045 	/*
1046 	 * if not NB event or no NB, then no constraints
1047 	 */
1048 	if (!(amd_has_nb(cpuc) && amd_is_nb_event(&event->hw)))
1049 		return &unconstrained;
1050 
1051 	return __amd_get_nb_event_constraints(cpuc, event, NULL);
1052 }
1053 
amd_put_event_constraints(struct cpu_hw_events * cpuc,struct perf_event * event)1054 static void amd_put_event_constraints(struct cpu_hw_events *cpuc,
1055 				      struct perf_event *event)
1056 {
1057 	if (amd_has_nb(cpuc) && amd_is_nb_event(&event->hw))
1058 		__amd_put_nb_event_constraints(cpuc, event);
1059 }
1060 
1061 PMU_FORMAT_ATTR(event,	"config:0-7,32-35");
1062 PMU_FORMAT_ATTR(umask,	"config:8-15"	);
1063 PMU_FORMAT_ATTR(edge,	"config:18"	);
1064 PMU_FORMAT_ATTR(inv,	"config:23"	);
1065 PMU_FORMAT_ATTR(cmask,	"config:24-31"	);
1066 
1067 static struct attribute *amd_format_attr[] = {
1068 	&format_attr_event.attr,
1069 	&format_attr_umask.attr,
1070 	&format_attr_edge.attr,
1071 	&format_attr_inv.attr,
1072 	&format_attr_cmask.attr,
1073 	NULL,
1074 };
1075 
1076 /* AMD Family 15h */
1077 
1078 #define AMD_EVENT_TYPE_MASK	0x000000F0ULL
1079 
1080 #define AMD_EVENT_FP		0x00000000ULL ... 0x00000010ULL
1081 #define AMD_EVENT_LS		0x00000020ULL ... 0x00000030ULL
1082 #define AMD_EVENT_DC		0x00000040ULL ... 0x00000050ULL
1083 #define AMD_EVENT_CU		0x00000060ULL ... 0x00000070ULL
1084 #define AMD_EVENT_IC_DE		0x00000080ULL ... 0x00000090ULL
1085 #define AMD_EVENT_EX_LS		0x000000C0ULL
1086 #define AMD_EVENT_DE		0x000000D0ULL
1087 #define AMD_EVENT_NB		0x000000E0ULL ... 0x000000F0ULL
1088 
1089 /*
1090  * AMD family 15h event code/PMC mappings:
1091  *
1092  * type = event_code & 0x0F0:
1093  *
1094  * 0x000	FP	PERF_CTL[5:3]
1095  * 0x010	FP	PERF_CTL[5:3]
1096  * 0x020	LS	PERF_CTL[5:0]
1097  * 0x030	LS	PERF_CTL[5:0]
1098  * 0x040	DC	PERF_CTL[5:0]
1099  * 0x050	DC	PERF_CTL[5:0]
1100  * 0x060	CU	PERF_CTL[2:0]
1101  * 0x070	CU	PERF_CTL[2:0]
1102  * 0x080	IC/DE	PERF_CTL[2:0]
1103  * 0x090	IC/DE	PERF_CTL[2:0]
1104  * 0x0A0	---
1105  * 0x0B0	---
1106  * 0x0C0	EX/LS	PERF_CTL[5:0]
1107  * 0x0D0	DE	PERF_CTL[2:0]
1108  * 0x0E0	NB	NB_PERF_CTL[3:0]
1109  * 0x0F0	NB	NB_PERF_CTL[3:0]
1110  *
1111  * Exceptions:
1112  *
1113  * 0x000	FP	PERF_CTL[3], PERF_CTL[5:3] (*)
1114  * 0x003	FP	PERF_CTL[3]
1115  * 0x004	FP	PERF_CTL[3], PERF_CTL[5:3] (*)
1116  * 0x00B	FP	PERF_CTL[3]
1117  * 0x00D	FP	PERF_CTL[3]
1118  * 0x023	DE	PERF_CTL[2:0]
1119  * 0x02D	LS	PERF_CTL[3]
1120  * 0x02E	LS	PERF_CTL[3,0]
1121  * 0x031	LS	PERF_CTL[2:0] (**)
1122  * 0x043	CU	PERF_CTL[2:0]
1123  * 0x045	CU	PERF_CTL[2:0]
1124  * 0x046	CU	PERF_CTL[2:0]
1125  * 0x054	CU	PERF_CTL[2:0]
1126  * 0x055	CU	PERF_CTL[2:0]
1127  * 0x08F	IC	PERF_CTL[0]
1128  * 0x187	DE	PERF_CTL[0]
1129  * 0x188	DE	PERF_CTL[0]
1130  * 0x0DB	EX	PERF_CTL[5:0]
1131  * 0x0DC	LS	PERF_CTL[5:0]
1132  * 0x0DD	LS	PERF_CTL[5:0]
1133  * 0x0DE	LS	PERF_CTL[5:0]
1134  * 0x0DF	LS	PERF_CTL[5:0]
1135  * 0x1C0	EX	PERF_CTL[5:3]
1136  * 0x1D6	EX	PERF_CTL[5:0]
1137  * 0x1D8	EX	PERF_CTL[5:0]
1138  *
1139  * (*)  depending on the umask all FPU counters may be used
1140  * (**) only one unitmask enabled at a time
1141  */
1142 
1143 static struct event_constraint amd_f15_PMC0  = EVENT_CONSTRAINT(0, 0x01, 0);
1144 static struct event_constraint amd_f15_PMC20 = EVENT_CONSTRAINT(0, 0x07, 0);
1145 static struct event_constraint amd_f15_PMC3  = EVENT_CONSTRAINT(0, 0x08, 0);
1146 static struct event_constraint amd_f15_PMC30 = EVENT_CONSTRAINT_OVERLAP(0, 0x09, 0);
1147 static struct event_constraint amd_f15_PMC50 = EVENT_CONSTRAINT(0, 0x3F, 0);
1148 static struct event_constraint amd_f15_PMC53 = EVENT_CONSTRAINT(0, 0x38, 0);
1149 
1150 static struct event_constraint *
amd_get_event_constraints_f15h(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)1151 amd_get_event_constraints_f15h(struct cpu_hw_events *cpuc, int idx,
1152 			       struct perf_event *event)
1153 {
1154 	struct hw_perf_event *hwc = &event->hw;
1155 	unsigned int event_code = amd_get_event_code(hwc);
1156 
1157 	switch (event_code & AMD_EVENT_TYPE_MASK) {
1158 	case AMD_EVENT_FP:
1159 		switch (event_code) {
1160 		case 0x000:
1161 			if (!(hwc->config & 0x0000F000ULL))
1162 				break;
1163 			if (!(hwc->config & 0x00000F00ULL))
1164 				break;
1165 			return &amd_f15_PMC3;
1166 		case 0x004:
1167 			if (hweight_long(hwc->config & ARCH_PERFMON_EVENTSEL_UMASK) <= 1)
1168 				break;
1169 			return &amd_f15_PMC3;
1170 		case 0x003:
1171 		case 0x00B:
1172 		case 0x00D:
1173 			return &amd_f15_PMC3;
1174 		}
1175 		return &amd_f15_PMC53;
1176 	case AMD_EVENT_LS:
1177 	case AMD_EVENT_DC:
1178 	case AMD_EVENT_EX_LS:
1179 		switch (event_code) {
1180 		case 0x023:
1181 		case 0x043:
1182 		case 0x045:
1183 		case 0x046:
1184 		case 0x054:
1185 		case 0x055:
1186 			return &amd_f15_PMC20;
1187 		case 0x02D:
1188 			return &amd_f15_PMC3;
1189 		case 0x02E:
1190 			return &amd_f15_PMC30;
1191 		case 0x031:
1192 			if (hweight_long(hwc->config & ARCH_PERFMON_EVENTSEL_UMASK) <= 1)
1193 				return &amd_f15_PMC20;
1194 			return &emptyconstraint;
1195 		case 0x1C0:
1196 			return &amd_f15_PMC53;
1197 		default:
1198 			return &amd_f15_PMC50;
1199 		}
1200 	case AMD_EVENT_CU:
1201 	case AMD_EVENT_IC_DE:
1202 	case AMD_EVENT_DE:
1203 		switch (event_code) {
1204 		case 0x08F:
1205 		case 0x187:
1206 		case 0x188:
1207 			return &amd_f15_PMC0;
1208 		case 0x0DB ... 0x0DF:
1209 		case 0x1D6:
1210 		case 0x1D8:
1211 			return &amd_f15_PMC50;
1212 		default:
1213 			return &amd_f15_PMC20;
1214 		}
1215 	case AMD_EVENT_NB:
1216 		/* moved to uncore.c */
1217 		return &emptyconstraint;
1218 	default:
1219 		return &emptyconstraint;
1220 	}
1221 }
1222 
1223 static struct event_constraint pair_constraint;
1224 
1225 static struct event_constraint *
amd_get_event_constraints_f17h(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)1226 amd_get_event_constraints_f17h(struct cpu_hw_events *cpuc, int idx,
1227 			       struct perf_event *event)
1228 {
1229 	struct hw_perf_event *hwc = &event->hw;
1230 
1231 	if (amd_is_pair_event_code(hwc))
1232 		return &pair_constraint;
1233 
1234 	return &unconstrained;
1235 }
1236 
amd_put_event_constraints_f17h(struct cpu_hw_events * cpuc,struct perf_event * event)1237 static void amd_put_event_constraints_f17h(struct cpu_hw_events *cpuc,
1238 					   struct perf_event *event)
1239 {
1240 	struct hw_perf_event *hwc = &event->hw;
1241 
1242 	if (is_counter_pair(hwc))
1243 		--cpuc->n_pair;
1244 }
1245 
1246 /*
1247  * Because of the way BRS operates with an inactive and active phases, and
1248  * the link to one counter, it is not possible to have two events using BRS
1249  * scheduled at the same time. There would be an issue with enforcing the
1250  * period of each one and given that the BRS saturates, it would not be possible
1251  * to guarantee correlated content for all events. Therefore, in situations
1252  * where multiple events want to use BRS, the kernel enforces mutual exclusion.
1253  * Exclusion is enforced by choosing only one counter for events using BRS.
1254  * The event scheduling logic will then automatically multiplex the
1255  * events and ensure that at most one event is actively using BRS.
1256  *
1257  * The BRS counter could be any counter, but there is no constraint on Fam19h,
1258  * therefore all counters are equal and thus we pick the first one: PMC0
1259  */
1260 static struct event_constraint amd_fam19h_brs_cntr0_constraint =
1261 	EVENT_CONSTRAINT(0, 0x1, AMD64_RAW_EVENT_MASK);
1262 
1263 static struct event_constraint amd_fam19h_brs_pair_cntr0_constraint =
1264 	__EVENT_CONSTRAINT(0, 0x1, AMD64_RAW_EVENT_MASK, 1, 0, PERF_X86_EVENT_PAIR);
1265 
1266 static struct event_constraint *
amd_get_event_constraints_f19h(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)1267 amd_get_event_constraints_f19h(struct cpu_hw_events *cpuc, int idx,
1268 			  struct perf_event *event)
1269 {
1270 	struct hw_perf_event *hwc = &event->hw;
1271 	bool has_brs = has_amd_brs(hwc);
1272 
1273 	/*
1274 	 * In case BRS is used with an event requiring a counter pair,
1275 	 * the kernel allows it but only on counter 0 & 1 to enforce
1276 	 * multiplexing requiring to protect BRS in case of multiple
1277 	 * BRS users
1278 	 */
1279 	if (amd_is_pair_event_code(hwc)) {
1280 		return has_brs ? &amd_fam19h_brs_pair_cntr0_constraint
1281 			       : &pair_constraint;
1282 	}
1283 
1284 	if (has_brs)
1285 		return &amd_fam19h_brs_cntr0_constraint;
1286 
1287 	return &unconstrained;
1288 }
1289 
1290 
amd_event_sysfs_show(char * page,u64 config)1291 static ssize_t amd_event_sysfs_show(char *page, u64 config)
1292 {
1293 	u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT) |
1294 		    (config & AMD64_EVENTSEL_EVENT) >> 24;
1295 
1296 	return x86_event_sysfs_show(page, config, event);
1297 }
1298 
amd_pmu_limit_period(struct perf_event * event,s64 * left)1299 static void amd_pmu_limit_period(struct perf_event *event, s64 *left)
1300 {
1301 	/*
1302 	 * Decrease period by the depth of the BRS feature to get the last N
1303 	 * taken branches and approximate the desired period
1304 	 */
1305 	if (has_branch_stack(event) && *left > x86_pmu.lbr_nr)
1306 		*left -= x86_pmu.lbr_nr;
1307 }
1308 
1309 static __initconst const struct x86_pmu amd_pmu = {
1310 	.name			= "AMD",
1311 	.handle_irq		= amd_pmu_handle_irq,
1312 	.disable_all		= amd_pmu_disable_all,
1313 	.enable_all		= amd_pmu_enable_all,
1314 	.enable			= amd_pmu_enable_event,
1315 	.disable		= amd_pmu_disable_event,
1316 	.hw_config		= amd_pmu_hw_config,
1317 	.schedule_events	= x86_schedule_events,
1318 	.eventsel		= MSR_K7_EVNTSEL0,
1319 	.perfctr		= MSR_K7_PERFCTR0,
1320 	.addr_offset            = amd_pmu_addr_offset,
1321 	.event_map		= amd_pmu_event_map,
1322 	.max_events		= ARRAY_SIZE(amd_perfmon_event_map),
1323 	.cntr_mask64		= GENMASK_ULL(AMD64_NUM_COUNTERS - 1, 0),
1324 	.add			= amd_pmu_add_event,
1325 	.del			= amd_pmu_del_event,
1326 	.cntval_bits		= 48,
1327 	.cntval_mask		= (1ULL << 48) - 1,
1328 	.apic			= 1,
1329 	/* use highest bit to detect overflow */
1330 	.max_period		= (1ULL << 47) - 1,
1331 	.get_event_constraints	= amd_get_event_constraints,
1332 	.put_event_constraints	= amd_put_event_constraints,
1333 
1334 	.format_attrs		= amd_format_attr,
1335 	.events_sysfs_show	= amd_event_sysfs_show,
1336 
1337 	.cpu_prepare		= amd_pmu_cpu_prepare,
1338 	.cpu_starting		= amd_pmu_cpu_starting,
1339 	.cpu_dead		= amd_pmu_cpu_dead,
1340 
1341 	.amd_nb_constraints	= 1,
1342 };
1343 
branches_show(struct device * cdev,struct device_attribute * attr,char * buf)1344 static ssize_t branches_show(struct device *cdev,
1345 			      struct device_attribute *attr,
1346 			      char *buf)
1347 {
1348 	return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu.lbr_nr);
1349 }
1350 
1351 static DEVICE_ATTR_RO(branches);
1352 
1353 static struct attribute *amd_pmu_branches_attrs[] = {
1354 	&dev_attr_branches.attr,
1355 	NULL,
1356 };
1357 
1358 static umode_t
amd_branches_is_visible(struct kobject * kobj,struct attribute * attr,int i)1359 amd_branches_is_visible(struct kobject *kobj, struct attribute *attr, int i)
1360 {
1361 	return x86_pmu.lbr_nr ? attr->mode : 0;
1362 }
1363 
1364 static struct attribute_group group_caps_amd_branches = {
1365 	.name  = "caps",
1366 	.attrs = amd_pmu_branches_attrs,
1367 	.is_visible = amd_branches_is_visible,
1368 };
1369 
1370 #ifdef CONFIG_PERF_EVENTS_AMD_BRS
1371 
1372 EVENT_ATTR_STR(branch-brs, amd_branch_brs,
1373 	       "event=" __stringify(AMD_FAM19H_BRS_EVENT)"\n");
1374 
1375 static struct attribute *amd_brs_events_attrs[] = {
1376 	EVENT_PTR(amd_branch_brs),
1377 	NULL,
1378 };
1379 
1380 static umode_t
amd_brs_is_visible(struct kobject * kobj,struct attribute * attr,int i)1381 amd_brs_is_visible(struct kobject *kobj, struct attribute *attr, int i)
1382 {
1383 	return static_cpu_has(X86_FEATURE_BRS) && x86_pmu.lbr_nr ?
1384 	       attr->mode : 0;
1385 }
1386 
1387 static struct attribute_group group_events_amd_brs = {
1388 	.name       = "events",
1389 	.attrs      = amd_brs_events_attrs,
1390 	.is_visible = amd_brs_is_visible,
1391 };
1392 
1393 #endif	/* CONFIG_PERF_EVENTS_AMD_BRS */
1394 
1395 static const struct attribute_group *amd_attr_update[] = {
1396 	&group_caps_amd_branches,
1397 #ifdef CONFIG_PERF_EVENTS_AMD_BRS
1398 	&group_events_amd_brs,
1399 #endif
1400 	NULL,
1401 };
1402 
amd_core_pmu_init(void)1403 static int __init amd_core_pmu_init(void)
1404 {
1405 	union cpuid_0x80000022_ebx ebx;
1406 	u64 even_ctr_mask = 0ULL;
1407 	int i;
1408 
1409 	if (!boot_cpu_has(X86_FEATURE_PERFCTR_CORE))
1410 		return 0;
1411 
1412 	/* Avoid calculating the value each time in the NMI handler */
1413 	perf_nmi_window = msecs_to_jiffies(100);
1414 
1415 	/*
1416 	 * If core performance counter extensions exists, we must use
1417 	 * MSR_F15H_PERF_CTL/MSR_F15H_PERF_CTR msrs. See also
1418 	 * amd_pmu_addr_offset().
1419 	 */
1420 	x86_pmu.eventsel	= MSR_F15H_PERF_CTL;
1421 	x86_pmu.perfctr		= MSR_F15H_PERF_CTR;
1422 	x86_pmu.cntr_mask64	= GENMASK_ULL(AMD64_NUM_COUNTERS_CORE - 1, 0);
1423 
1424 	/* Check for Performance Monitoring v2 support */
1425 	if (boot_cpu_has(X86_FEATURE_PERFMON_V2)) {
1426 		ebx.full = cpuid_ebx(EXT_PERFMON_DEBUG_FEATURES);
1427 
1428 		/* Update PMU version for later usage */
1429 		x86_pmu.version = 2;
1430 
1431 		/* Find the number of available Core PMCs */
1432 		x86_pmu.cntr_mask64 = GENMASK_ULL(ebx.split.num_core_pmc - 1, 0);
1433 
1434 		amd_pmu_global_cntr_mask = x86_pmu.cntr_mask64;
1435 
1436 		/* Update PMC handling functions */
1437 		x86_pmu.enable_all = amd_pmu_v2_enable_all;
1438 		x86_pmu.disable_all = amd_pmu_v2_disable_all;
1439 		x86_pmu.enable = amd_pmu_v2_enable_event;
1440 		x86_pmu.handle_irq = amd_pmu_v2_handle_irq;
1441 		static_call_update(amd_pmu_test_overflow, amd_pmu_test_overflow_status);
1442 	}
1443 
1444 	/*
1445 	 * AMD Core perfctr has separate MSRs for the NB events, see
1446 	 * the amd/uncore.c driver.
1447 	 */
1448 	x86_pmu.amd_nb_constraints = 0;
1449 
1450 	if (boot_cpu_data.x86 == 0x15) {
1451 		pr_cont("Fam15h ");
1452 		x86_pmu.get_event_constraints = amd_get_event_constraints_f15h;
1453 	}
1454 	if (boot_cpu_data.x86 >= 0x17) {
1455 		pr_cont("Fam17h+ ");
1456 		/*
1457 		 * Family 17h and compatibles have constraints for Large
1458 		 * Increment per Cycle events: they may only be assigned an
1459 		 * even numbered counter that has a consecutive adjacent odd
1460 		 * numbered counter following it.
1461 		 */
1462 		for (i = 0; i < x86_pmu_max_num_counters(NULL) - 1; i += 2)
1463 			even_ctr_mask |= BIT_ULL(i);
1464 
1465 		pair_constraint = (struct event_constraint)
1466 				    __EVENT_CONSTRAINT(0, even_ctr_mask, 0,
1467 				    x86_pmu_max_num_counters(NULL) / 2, 0,
1468 				    PERF_X86_EVENT_PAIR);
1469 
1470 		x86_pmu.get_event_constraints = amd_get_event_constraints_f17h;
1471 		x86_pmu.put_event_constraints = amd_put_event_constraints_f17h;
1472 		x86_pmu.perf_ctr_pair_en = AMD_MERGE_EVENT_ENABLE;
1473 		x86_pmu.flags |= PMU_FL_PAIR;
1474 	}
1475 
1476 	/* LBR and BRS are mutually exclusive features */
1477 	if (!amd_pmu_lbr_init()) {
1478 		/* LBR requires flushing on context switch */
1479 		x86_pmu.sched_task = amd_pmu_lbr_sched_task;
1480 		static_call_update(amd_pmu_branch_hw_config, amd_pmu_lbr_hw_config);
1481 		static_call_update(amd_pmu_branch_reset, amd_pmu_lbr_reset);
1482 		static_call_update(amd_pmu_branch_add, amd_pmu_lbr_add);
1483 		static_call_update(amd_pmu_branch_del, amd_pmu_lbr_del);
1484 
1485 		/* Only support branch_stack snapshot on perfmon v2 */
1486 		if (x86_pmu.handle_irq == amd_pmu_v2_handle_irq)
1487 			static_call_update(perf_snapshot_branch_stack, amd_pmu_v2_snapshot_branch_stack);
1488 	} else if (!amd_brs_init()) {
1489 		/*
1490 		 * BRS requires special event constraints and flushing on ctxsw.
1491 		 */
1492 		x86_pmu.get_event_constraints = amd_get_event_constraints_f19h;
1493 		x86_pmu.sched_task = amd_pmu_brs_sched_task;
1494 		x86_pmu.limit_period = amd_pmu_limit_period;
1495 
1496 		static_call_update(amd_pmu_branch_hw_config, amd_brs_hw_config);
1497 		static_call_update(amd_pmu_branch_reset, amd_brs_reset);
1498 		static_call_update(amd_pmu_branch_add, amd_pmu_brs_add);
1499 		static_call_update(amd_pmu_branch_del, amd_pmu_brs_del);
1500 
1501 		/*
1502 		 * put_event_constraints callback same as Fam17h, set above
1503 		 */
1504 
1505 		/* branch sampling must be stopped when entering low power */
1506 		amd_brs_lopwr_init();
1507 	}
1508 
1509 	x86_pmu.attr_update = amd_attr_update;
1510 
1511 	pr_cont("core perfctr, ");
1512 	return 0;
1513 }
1514 
amd_pmu_init(void)1515 __init int amd_pmu_init(void)
1516 {
1517 	int ret;
1518 
1519 	/* Performance-monitoring supported from K7 and later: */
1520 	if (boot_cpu_data.x86 < 6)
1521 		return -ENODEV;
1522 
1523 	x86_pmu = amd_pmu;
1524 
1525 	ret = amd_core_pmu_init();
1526 	if (ret)
1527 		return ret;
1528 
1529 	if (num_possible_cpus() == 1) {
1530 		/*
1531 		 * No point in allocating data structures to serialize
1532 		 * against other CPUs, when there is only the one CPU.
1533 		 */
1534 		x86_pmu.amd_nb_constraints = 0;
1535 	}
1536 
1537 	if (boot_cpu_data.x86 >= 0x17)
1538 		memcpy(hw_cache_event_ids, amd_hw_cache_event_ids_f17h, sizeof(hw_cache_event_ids));
1539 	else
1540 		memcpy(hw_cache_event_ids, amd_hw_cache_event_ids, sizeof(hw_cache_event_ids));
1541 
1542 	return 0;
1543 }
1544 
amd_pmu_reload_virt(void)1545 static inline void amd_pmu_reload_virt(void)
1546 {
1547 	if (x86_pmu.version >= 2) {
1548 		/*
1549 		 * Clear global enable bits, reprogram the PERF_CTL
1550 		 * registers with updated perf_ctr_virt_mask and then
1551 		 * set global enable bits once again
1552 		 */
1553 		amd_pmu_v2_disable_all();
1554 		amd_pmu_enable_all(0);
1555 		amd_pmu_v2_enable_all(0);
1556 		return;
1557 	}
1558 
1559 	amd_pmu_disable_all();
1560 	amd_pmu_enable_all(0);
1561 }
1562 
amd_pmu_enable_virt(void)1563 void amd_pmu_enable_virt(void)
1564 {
1565 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1566 
1567 	cpuc->perf_ctr_virt_mask = 0;
1568 
1569 	/* Reload all events */
1570 	amd_pmu_reload_virt();
1571 }
1572 EXPORT_SYMBOL_GPL(amd_pmu_enable_virt);
1573 
amd_pmu_disable_virt(void)1574 void amd_pmu_disable_virt(void)
1575 {
1576 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1577 
1578 	/*
1579 	 * We only mask out the Host-only bit so that host-only counting works
1580 	 * when SVM is disabled. If someone sets up a guest-only counter when
1581 	 * SVM is disabled the Guest-only bits still gets set and the counter
1582 	 * will not count anything.
1583 	 */
1584 	cpuc->perf_ctr_virt_mask = AMD64_EVENTSEL_HOSTONLY;
1585 
1586 	/* Reload all events */
1587 	amd_pmu_reload_virt();
1588 }
1589 EXPORT_SYMBOL_GPL(amd_pmu_disable_virt);
1590