1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3 * Copyright 2020 Advanced Micro Devices, Inc.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice shall be included in
13 * all copies or substantial portions of the Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21 * OTHER DEALINGS IN THE SOFTWARE.
22 *
23 * Authors: Christian König
24 */
25
26 /* Pooling of allocated pages is necessary because changing the caching
27 * attributes on x86 of the linear mapping requires a costly cross CPU TLB
28 * invalidate for those addresses.
29 *
30 * Additional to that allocations from the DMA coherent API are pooled as well
31 * cause they are rather slow compared to alloc_pages+map.
32 */
33
34 #include <linux/export.h>
35 #include <linux/module.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/debugfs.h>
38 #include <linux/highmem.h>
39 #include <linux/sched/mm.h>
40
41 #ifdef CONFIG_X86
42 #include <asm/set_memory.h>
43 #endif
44
45 #include <drm/ttm/ttm_backup.h>
46 #include <drm/ttm/ttm_pool.h>
47 #include <drm/ttm/ttm_tt.h>
48 #include <drm/ttm/ttm_bo.h>
49
50 #include "ttm_module.h"
51
52 #ifdef CONFIG_FAULT_INJECTION
53 #include <linux/fault-inject.h>
54 static DECLARE_FAULT_ATTR(backup_fault_inject);
55 #else
56 #define should_fail(...) false
57 #endif
58
59 /**
60 * struct ttm_pool_dma - Helper object for coherent DMA mappings
61 *
62 * @addr: original DMA address returned for the mapping
63 * @vaddr: original vaddr return for the mapping and order in the lower bits
64 */
65 struct ttm_pool_dma {
66 dma_addr_t addr;
67 unsigned long vaddr;
68 };
69
70 /**
71 * struct ttm_pool_alloc_state - Current state of the tt page allocation process
72 * @pages: Pointer to the next tt page pointer to populate.
73 * @caching_divide: Pointer to the first page pointer whose page has a staged but
74 * not committed caching transition from write-back to @tt_caching.
75 * @dma_addr: Pointer to the next tt dma_address entry to populate if any.
76 * @remaining_pages: Remaining pages to populate.
77 * @tt_caching: The requested cpu-caching for the pages allocated.
78 */
79 struct ttm_pool_alloc_state {
80 struct page **pages;
81 struct page **caching_divide;
82 dma_addr_t *dma_addr;
83 pgoff_t remaining_pages;
84 enum ttm_caching tt_caching;
85 };
86
87 /**
88 * struct ttm_pool_tt_restore - State representing restore from backup
89 * @pool: The pool used for page allocation while restoring.
90 * @snapshot_alloc: A snapshot of the most recent struct ttm_pool_alloc_state.
91 * @alloced_page: Pointer to the page most recently allocated from a pool or system.
92 * @first_dma: The dma address corresponding to @alloced_page if dma_mapping
93 * is requested.
94 * @alloced_pages: The number of allocated pages present in the struct ttm_tt
95 * page vector from this restore session.
96 * @restored_pages: The number of 4K pages restored for @alloced_page (which
97 * is typically a multi-order page).
98 * @page_caching: The struct ttm_tt requested caching
99 * @order: The order of @alloced_page.
100 *
101 * Recovery from backup might fail when we've recovered less than the
102 * full ttm_tt. In order not to loose any data (yet), keep information
103 * around that allows us to restart a failed ttm backup recovery.
104 */
105 struct ttm_pool_tt_restore {
106 struct ttm_pool *pool;
107 struct ttm_pool_alloc_state snapshot_alloc;
108 struct page *alloced_page;
109 dma_addr_t first_dma;
110 pgoff_t alloced_pages;
111 pgoff_t restored_pages;
112 enum ttm_caching page_caching;
113 unsigned int order;
114 };
115
116 static unsigned long page_pool_size;
117
118 MODULE_PARM_DESC(page_pool_size, "Number of pages in the WC/UC/DMA pool");
119 module_param(page_pool_size, ulong, 0644);
120
121 static atomic_long_t allocated_pages;
122
123 static struct ttm_pool_type global_write_combined[NR_PAGE_ORDERS];
124 static struct ttm_pool_type global_uncached[NR_PAGE_ORDERS];
125
126 static struct ttm_pool_type global_dma32_write_combined[NR_PAGE_ORDERS];
127 static struct ttm_pool_type global_dma32_uncached[NR_PAGE_ORDERS];
128
129 static spinlock_t shrinker_lock;
130 static struct list_head shrinker_list;
131 static struct shrinker *mm_shrinker;
132 static DECLARE_RWSEM(pool_shrink_rwsem);
133
134 /* Allocate pages of size 1 << order with the given gfp_flags */
ttm_pool_alloc_page(struct ttm_pool * pool,gfp_t gfp_flags,unsigned int order)135 static struct page *ttm_pool_alloc_page(struct ttm_pool *pool, gfp_t gfp_flags,
136 unsigned int order)
137 {
138 unsigned long attr = DMA_ATTR_FORCE_CONTIGUOUS;
139 struct ttm_pool_dma *dma;
140 struct page *p;
141 void *vaddr;
142
143 /* Don't set the __GFP_COMP flag for higher order allocations.
144 * Mapping pages directly into an userspace process and calling
145 * put_page() on a TTM allocated page is illegal.
146 */
147 if (order)
148 gfp_flags |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN |
149 __GFP_THISNODE;
150
151 if (!pool->use_dma_alloc) {
152 p = alloc_pages_node(pool->nid, gfp_flags, order);
153 if (p)
154 p->private = order;
155 return p;
156 }
157
158 dma = kmalloc(sizeof(*dma), GFP_KERNEL);
159 if (!dma)
160 return NULL;
161
162 if (order)
163 attr |= DMA_ATTR_NO_WARN;
164
165 vaddr = dma_alloc_attrs(pool->dev, (1ULL << order) * PAGE_SIZE,
166 &dma->addr, gfp_flags, attr);
167 if (!vaddr)
168 goto error_free;
169
170 /* TODO: This is an illegal abuse of the DMA API, but we need to rework
171 * TTM page fault handling and extend the DMA API to clean this up.
172 */
173 if (is_vmalloc_addr(vaddr))
174 p = vmalloc_to_page(vaddr);
175 else
176 p = virt_to_page(vaddr);
177
178 dma->vaddr = (unsigned long)vaddr | order;
179 p->private = (unsigned long)dma;
180 return p;
181
182 error_free:
183 kfree(dma);
184 return NULL;
185 }
186
187 /* Reset the caching and pages of size 1 << order */
ttm_pool_free_page(struct ttm_pool * pool,enum ttm_caching caching,unsigned int order,struct page * p)188 static void ttm_pool_free_page(struct ttm_pool *pool, enum ttm_caching caching,
189 unsigned int order, struct page *p)
190 {
191 unsigned long attr = DMA_ATTR_FORCE_CONTIGUOUS;
192 struct ttm_pool_dma *dma;
193 void *vaddr;
194
195 #ifdef CONFIG_X86
196 /* We don't care that set_pages_wb is inefficient here. This is only
197 * used when we have to shrink and CPU overhead is irrelevant then.
198 */
199 if (caching != ttm_cached && !PageHighMem(p))
200 set_pages_wb(p, 1 << order);
201 #endif
202
203 if (!pool || !pool->use_dma_alloc) {
204 __free_pages(p, order);
205 return;
206 }
207
208 if (order)
209 attr |= DMA_ATTR_NO_WARN;
210
211 dma = (void *)p->private;
212 vaddr = (void *)(dma->vaddr & PAGE_MASK);
213 dma_free_attrs(pool->dev, (1UL << order) * PAGE_SIZE, vaddr, dma->addr,
214 attr);
215 kfree(dma);
216 }
217
218 /* Apply any cpu-caching deferred during page allocation */
ttm_pool_apply_caching(struct ttm_pool_alloc_state * alloc)219 static int ttm_pool_apply_caching(struct ttm_pool_alloc_state *alloc)
220 {
221 #ifdef CONFIG_X86
222 unsigned int num_pages = alloc->pages - alloc->caching_divide;
223
224 if (!num_pages)
225 return 0;
226
227 switch (alloc->tt_caching) {
228 case ttm_cached:
229 break;
230 case ttm_write_combined:
231 return set_pages_array_wc(alloc->caching_divide, num_pages);
232 case ttm_uncached:
233 return set_pages_array_uc(alloc->caching_divide, num_pages);
234 }
235 #endif
236 alloc->caching_divide = alloc->pages;
237 return 0;
238 }
239
240 /* DMA Map pages of 1 << order size and return the resulting dma_address. */
ttm_pool_map(struct ttm_pool * pool,unsigned int order,struct page * p,dma_addr_t * dma_addr)241 static int ttm_pool_map(struct ttm_pool *pool, unsigned int order,
242 struct page *p, dma_addr_t *dma_addr)
243 {
244 dma_addr_t addr;
245
246 if (pool->use_dma_alloc) {
247 struct ttm_pool_dma *dma = (void *)p->private;
248
249 addr = dma->addr;
250 } else {
251 size_t size = (1ULL << order) * PAGE_SIZE;
252
253 addr = dma_map_page(pool->dev, p, 0, size, DMA_BIDIRECTIONAL);
254 if (dma_mapping_error(pool->dev, addr))
255 return -EFAULT;
256 }
257
258 *dma_addr = addr;
259
260 return 0;
261 }
262
263 /* Unmap pages of 1 << order size */
ttm_pool_unmap(struct ttm_pool * pool,dma_addr_t dma_addr,unsigned int num_pages)264 static void ttm_pool_unmap(struct ttm_pool *pool, dma_addr_t dma_addr,
265 unsigned int num_pages)
266 {
267 /* Unmapped while freeing the page */
268 if (pool->use_dma_alloc)
269 return;
270
271 dma_unmap_page(pool->dev, dma_addr, (long)num_pages << PAGE_SHIFT,
272 DMA_BIDIRECTIONAL);
273 }
274
275 /* Give pages into a specific pool_type */
ttm_pool_type_give(struct ttm_pool_type * pt,struct page * p)276 static void ttm_pool_type_give(struct ttm_pool_type *pt, struct page *p)
277 {
278 unsigned int i, num_pages = 1 << pt->order;
279
280 for (i = 0; i < num_pages; ++i) {
281 if (PageHighMem(p))
282 clear_highpage(p + i);
283 else
284 clear_page(page_address(p + i));
285 }
286
287 spin_lock(&pt->lock);
288 list_add(&p->lru, &pt->pages);
289 spin_unlock(&pt->lock);
290 atomic_long_add(1 << pt->order, &allocated_pages);
291 }
292
293 /* Take pages from a specific pool_type, return NULL when nothing available */
ttm_pool_type_take(struct ttm_pool_type * pt)294 static struct page *ttm_pool_type_take(struct ttm_pool_type *pt)
295 {
296 struct page *p;
297
298 spin_lock(&pt->lock);
299 p = list_first_entry_or_null(&pt->pages, typeof(*p), lru);
300 if (p) {
301 atomic_long_sub(1 << pt->order, &allocated_pages);
302 list_del(&p->lru);
303 }
304 spin_unlock(&pt->lock);
305
306 return p;
307 }
308
309 /* Initialize and add a pool type to the global shrinker list */
ttm_pool_type_init(struct ttm_pool_type * pt,struct ttm_pool * pool,enum ttm_caching caching,unsigned int order)310 static void ttm_pool_type_init(struct ttm_pool_type *pt, struct ttm_pool *pool,
311 enum ttm_caching caching, unsigned int order)
312 {
313 pt->pool = pool;
314 pt->caching = caching;
315 pt->order = order;
316 spin_lock_init(&pt->lock);
317 INIT_LIST_HEAD(&pt->pages);
318
319 spin_lock(&shrinker_lock);
320 list_add_tail(&pt->shrinker_list, &shrinker_list);
321 spin_unlock(&shrinker_lock);
322 }
323
324 /* Remove a pool_type from the global shrinker list and free all pages */
ttm_pool_type_fini(struct ttm_pool_type * pt)325 static void ttm_pool_type_fini(struct ttm_pool_type *pt)
326 {
327 struct page *p;
328
329 spin_lock(&shrinker_lock);
330 list_del(&pt->shrinker_list);
331 spin_unlock(&shrinker_lock);
332
333 while ((p = ttm_pool_type_take(pt)))
334 ttm_pool_free_page(pt->pool, pt->caching, pt->order, p);
335 }
336
337 /* Return the pool_type to use for the given caching and order */
ttm_pool_select_type(struct ttm_pool * pool,enum ttm_caching caching,unsigned int order)338 static struct ttm_pool_type *ttm_pool_select_type(struct ttm_pool *pool,
339 enum ttm_caching caching,
340 unsigned int order)
341 {
342 if (pool->use_dma_alloc)
343 return &pool->caching[caching].orders[order];
344
345 #ifdef CONFIG_X86
346 switch (caching) {
347 case ttm_write_combined:
348 if (pool->nid != NUMA_NO_NODE)
349 return &pool->caching[caching].orders[order];
350
351 if (pool->use_dma32)
352 return &global_dma32_write_combined[order];
353
354 return &global_write_combined[order];
355 case ttm_uncached:
356 if (pool->nid != NUMA_NO_NODE)
357 return &pool->caching[caching].orders[order];
358
359 if (pool->use_dma32)
360 return &global_dma32_uncached[order];
361
362 return &global_uncached[order];
363 default:
364 break;
365 }
366 #endif
367
368 return NULL;
369 }
370
371 /* Free pages using the global shrinker list */
ttm_pool_shrink(void)372 static unsigned int ttm_pool_shrink(void)
373 {
374 struct ttm_pool_type *pt;
375 unsigned int num_pages;
376 struct page *p;
377
378 down_read(&pool_shrink_rwsem);
379 spin_lock(&shrinker_lock);
380 pt = list_first_entry(&shrinker_list, typeof(*pt), shrinker_list);
381 list_move_tail(&pt->shrinker_list, &shrinker_list);
382 spin_unlock(&shrinker_lock);
383
384 p = ttm_pool_type_take(pt);
385 if (p) {
386 ttm_pool_free_page(pt->pool, pt->caching, pt->order, p);
387 num_pages = 1 << pt->order;
388 } else {
389 num_pages = 0;
390 }
391 up_read(&pool_shrink_rwsem);
392
393 return num_pages;
394 }
395
396 /* Return the allocation order based for a page */
ttm_pool_page_order(struct ttm_pool * pool,struct page * p)397 static unsigned int ttm_pool_page_order(struct ttm_pool *pool, struct page *p)
398 {
399 if (pool->use_dma_alloc) {
400 struct ttm_pool_dma *dma = (void *)p->private;
401
402 return dma->vaddr & ~PAGE_MASK;
403 }
404
405 return p->private;
406 }
407
408 /*
409 * Split larger pages so that we can free each PAGE_SIZE page as soon
410 * as it has been backed up, in order to avoid memory pressure during
411 * reclaim.
412 */
ttm_pool_split_for_swap(struct ttm_pool * pool,struct page * p)413 static void ttm_pool_split_for_swap(struct ttm_pool *pool, struct page *p)
414 {
415 unsigned int order = ttm_pool_page_order(pool, p);
416 pgoff_t nr;
417
418 if (!order)
419 return;
420
421 split_page(p, order);
422 nr = 1UL << order;
423 while (nr--)
424 (p++)->private = 0;
425 }
426
427 /**
428 * DOC: Partial backup and restoration of a struct ttm_tt.
429 *
430 * Swapout using ttm_backup_backup_page() and swapin using
431 * ttm_backup_copy_page() may fail.
432 * The former most likely due to lack of swap-space or memory, the latter due
433 * to lack of memory or because of signal interruption during waits.
434 *
435 * Backup failure is easily handled by using a ttm_tt pages vector that holds
436 * both backup handles and page pointers. This has to be taken into account when
437 * restoring such a ttm_tt from backup, and when freeing it while backed up.
438 * When restoring, for simplicity, new pages are actually allocated from the
439 * pool and the contents of any old pages are copied in and then the old pages
440 * are released.
441 *
442 * For restoration failures, the struct ttm_pool_tt_restore holds sufficient state
443 * to be able to resume an interrupted restore, and that structure is freed once
444 * the restoration is complete. If the struct ttm_tt is destroyed while there
445 * is a valid struct ttm_pool_tt_restore attached, that is also properly taken
446 * care of.
447 */
448
449 /* Is restore ongoing for the currently allocated page? */
ttm_pool_restore_valid(const struct ttm_pool_tt_restore * restore)450 static bool ttm_pool_restore_valid(const struct ttm_pool_tt_restore *restore)
451 {
452 return restore && restore->restored_pages < (1 << restore->order);
453 }
454
455 /* DMA unmap and free a multi-order page, either to the relevant pool or to system. */
ttm_pool_unmap_and_free(struct ttm_pool * pool,struct page * page,const dma_addr_t * dma_addr,enum ttm_caching caching)456 static pgoff_t ttm_pool_unmap_and_free(struct ttm_pool *pool, struct page *page,
457 const dma_addr_t *dma_addr, enum ttm_caching caching)
458 {
459 struct ttm_pool_type *pt = NULL;
460 unsigned int order;
461 pgoff_t nr;
462
463 if (pool) {
464 order = ttm_pool_page_order(pool, page);
465 nr = (1UL << order);
466 if (dma_addr)
467 ttm_pool_unmap(pool, *dma_addr, nr);
468
469 pt = ttm_pool_select_type(pool, caching, order);
470 } else {
471 order = page->private;
472 nr = (1UL << order);
473 }
474
475 if (pt)
476 ttm_pool_type_give(pt, page);
477 else
478 ttm_pool_free_page(pool, caching, order, page);
479
480 return nr;
481 }
482
483 /* Populate the page-array using the most recent allocated multi-order page. */
ttm_pool_allocated_page_commit(struct page * allocated,dma_addr_t first_dma,struct ttm_pool_alloc_state * alloc,pgoff_t nr)484 static void ttm_pool_allocated_page_commit(struct page *allocated,
485 dma_addr_t first_dma,
486 struct ttm_pool_alloc_state *alloc,
487 pgoff_t nr)
488 {
489 pgoff_t i;
490
491 for (i = 0; i < nr; ++i)
492 *alloc->pages++ = allocated++;
493
494 alloc->remaining_pages -= nr;
495
496 if (!alloc->dma_addr)
497 return;
498
499 for (i = 0; i < nr; ++i) {
500 *alloc->dma_addr++ = first_dma;
501 first_dma += PAGE_SIZE;
502 }
503 }
504
505 /*
506 * When restoring, restore backed-up content to the newly allocated page and
507 * if successful, populate the page-table and dma-address arrays.
508 */
ttm_pool_restore_commit(struct ttm_pool_tt_restore * restore,struct file * backup,const struct ttm_operation_ctx * ctx,struct ttm_pool_alloc_state * alloc)509 static int ttm_pool_restore_commit(struct ttm_pool_tt_restore *restore,
510 struct file *backup,
511 const struct ttm_operation_ctx *ctx,
512 struct ttm_pool_alloc_state *alloc)
513
514 {
515 pgoff_t i, nr = 1UL << restore->order;
516 struct page **first_page = alloc->pages;
517 struct page *p;
518 int ret = 0;
519
520 for (i = restore->restored_pages; i < nr; ++i) {
521 p = first_page[i];
522 if (ttm_backup_page_ptr_is_handle(p)) {
523 unsigned long handle = ttm_backup_page_ptr_to_handle(p);
524
525 if (IS_ENABLED(CONFIG_FAULT_INJECTION) && ctx->interruptible &&
526 should_fail(&backup_fault_inject, 1)) {
527 ret = -EINTR;
528 break;
529 }
530
531 if (handle == 0) {
532 restore->restored_pages++;
533 continue;
534 }
535
536 ret = ttm_backup_copy_page(backup, restore->alloced_page + i,
537 handle, ctx->interruptible);
538 if (ret)
539 break;
540
541 ttm_backup_drop(backup, handle);
542 } else if (p) {
543 /*
544 * We could probably avoid splitting the old page
545 * using clever logic, but ATM we don't care, as
546 * we prioritize releasing memory ASAP. Note that
547 * here, the old retained page is always write-back
548 * cached.
549 */
550 ttm_pool_split_for_swap(restore->pool, p);
551 copy_highpage(restore->alloced_page + i, p);
552 __free_pages(p, 0);
553 }
554
555 restore->restored_pages++;
556 first_page[i] = ttm_backup_handle_to_page_ptr(0);
557 }
558
559 if (ret) {
560 if (!restore->restored_pages) {
561 dma_addr_t *dma_addr = alloc->dma_addr ? &restore->first_dma : NULL;
562
563 ttm_pool_unmap_and_free(restore->pool, restore->alloced_page,
564 dma_addr, restore->page_caching);
565 restore->restored_pages = nr;
566 }
567 return ret;
568 }
569
570 ttm_pool_allocated_page_commit(restore->alloced_page, restore->first_dma,
571 alloc, nr);
572 if (restore->page_caching == alloc->tt_caching || PageHighMem(restore->alloced_page))
573 alloc->caching_divide = alloc->pages;
574 restore->snapshot_alloc = *alloc;
575 restore->alloced_pages += nr;
576
577 return 0;
578 }
579
580 /* If restoring, save information needed for ttm_pool_restore_commit(). */
581 static void
ttm_pool_page_allocated_restore(struct ttm_pool * pool,unsigned int order,struct page * p,enum ttm_caching page_caching,dma_addr_t first_dma,struct ttm_pool_tt_restore * restore,const struct ttm_pool_alloc_state * alloc)582 ttm_pool_page_allocated_restore(struct ttm_pool *pool, unsigned int order,
583 struct page *p,
584 enum ttm_caching page_caching,
585 dma_addr_t first_dma,
586 struct ttm_pool_tt_restore *restore,
587 const struct ttm_pool_alloc_state *alloc)
588 {
589 restore->pool = pool;
590 restore->order = order;
591 restore->restored_pages = 0;
592 restore->page_caching = page_caching;
593 restore->first_dma = first_dma;
594 restore->alloced_page = p;
595 restore->snapshot_alloc = *alloc;
596 }
597
598 /*
599 * Called when we got a page, either from a pool or newly allocated.
600 * if needed, dma map the page and populate the dma address array.
601 * Populate the page address array.
602 * If the caching is consistent, update any deferred caching. Otherwise
603 * stage this page for an upcoming deferred caching update.
604 */
ttm_pool_page_allocated(struct ttm_pool * pool,unsigned int order,struct page * p,enum ttm_caching page_caching,struct ttm_pool_alloc_state * alloc,struct ttm_pool_tt_restore * restore)605 static int ttm_pool_page_allocated(struct ttm_pool *pool, unsigned int order,
606 struct page *p, enum ttm_caching page_caching,
607 struct ttm_pool_alloc_state *alloc,
608 struct ttm_pool_tt_restore *restore)
609 {
610 bool caching_consistent;
611 dma_addr_t first_dma;
612 int r = 0;
613
614 caching_consistent = (page_caching == alloc->tt_caching) || PageHighMem(p);
615
616 if (caching_consistent) {
617 r = ttm_pool_apply_caching(alloc);
618 if (r)
619 return r;
620 }
621
622 if (alloc->dma_addr) {
623 r = ttm_pool_map(pool, order, p, &first_dma);
624 if (r)
625 return r;
626 }
627
628 if (restore) {
629 ttm_pool_page_allocated_restore(pool, order, p, page_caching,
630 first_dma, restore, alloc);
631 } else {
632 ttm_pool_allocated_page_commit(p, first_dma, alloc, 1UL << order);
633
634 if (caching_consistent)
635 alloc->caching_divide = alloc->pages;
636 }
637
638 return 0;
639 }
640
641 /**
642 * ttm_pool_free_range() - Free a range of TTM pages
643 * @pool: The pool used for allocating.
644 * @tt: The struct ttm_tt holding the page pointers.
645 * @caching: The page caching mode used by the range.
646 * @start_page: index for first page to free.
647 * @end_page: index for last page to free + 1.
648 *
649 * During allocation the ttm_tt page-vector may be populated with ranges of
650 * pages with different attributes if allocation hit an error without being
651 * able to completely fulfill the allocation. This function can be used
652 * to free these individual ranges.
653 */
ttm_pool_free_range(struct ttm_pool * pool,struct ttm_tt * tt,enum ttm_caching caching,pgoff_t start_page,pgoff_t end_page)654 static void ttm_pool_free_range(struct ttm_pool *pool, struct ttm_tt *tt,
655 enum ttm_caching caching,
656 pgoff_t start_page, pgoff_t end_page)
657 {
658 struct page **pages = &tt->pages[start_page];
659 struct file *backup = tt->backup;
660 pgoff_t i, nr;
661
662 for (i = start_page; i < end_page; i += nr, pages += nr) {
663 struct page *p = *pages;
664
665 nr = 1;
666 if (ttm_backup_page_ptr_is_handle(p)) {
667 unsigned long handle = ttm_backup_page_ptr_to_handle(p);
668
669 if (handle != 0)
670 ttm_backup_drop(backup, handle);
671 } else if (p) {
672 dma_addr_t *dma_addr = tt->dma_address ?
673 tt->dma_address + i : NULL;
674
675 nr = ttm_pool_unmap_and_free(pool, p, dma_addr, caching);
676 }
677 }
678 }
679
ttm_pool_alloc_state_init(const struct ttm_tt * tt,struct ttm_pool_alloc_state * alloc)680 static void ttm_pool_alloc_state_init(const struct ttm_tt *tt,
681 struct ttm_pool_alloc_state *alloc)
682 {
683 alloc->pages = tt->pages;
684 alloc->caching_divide = tt->pages;
685 alloc->dma_addr = tt->dma_address;
686 alloc->remaining_pages = tt->num_pages;
687 alloc->tt_caching = tt->caching;
688 }
689
690 /*
691 * Find a suitable allocation order based on highest desired order
692 * and number of remaining pages
693 */
ttm_pool_alloc_find_order(unsigned int highest,const struct ttm_pool_alloc_state * alloc)694 static unsigned int ttm_pool_alloc_find_order(unsigned int highest,
695 const struct ttm_pool_alloc_state *alloc)
696 {
697 return min_t(unsigned int, highest, __fls(alloc->remaining_pages));
698 }
699
__ttm_pool_alloc(struct ttm_pool * pool,struct ttm_tt * tt,const struct ttm_operation_ctx * ctx,struct ttm_pool_alloc_state * alloc,struct ttm_pool_tt_restore * restore)700 static int __ttm_pool_alloc(struct ttm_pool *pool, struct ttm_tt *tt,
701 const struct ttm_operation_ctx *ctx,
702 struct ttm_pool_alloc_state *alloc,
703 struct ttm_pool_tt_restore *restore)
704 {
705 enum ttm_caching page_caching;
706 gfp_t gfp_flags = GFP_USER;
707 pgoff_t caching_divide;
708 unsigned int order;
709 bool allow_pools;
710 struct page *p;
711 int r;
712
713 WARN_ON(!alloc->remaining_pages || ttm_tt_is_populated(tt));
714 WARN_ON(alloc->dma_addr && !pool->dev);
715
716 if (tt->page_flags & TTM_TT_FLAG_ZERO_ALLOC)
717 gfp_flags |= __GFP_ZERO;
718
719 if (ctx->gfp_retry_mayfail)
720 gfp_flags |= __GFP_RETRY_MAYFAIL;
721
722 if (pool->use_dma32)
723 gfp_flags |= GFP_DMA32;
724 else
725 gfp_flags |= GFP_HIGHUSER;
726
727 page_caching = tt->caching;
728 allow_pools = true;
729 for (order = ttm_pool_alloc_find_order(MAX_PAGE_ORDER, alloc);
730 alloc->remaining_pages;
731 order = ttm_pool_alloc_find_order(order, alloc)) {
732 struct ttm_pool_type *pt;
733
734 /* First, try to allocate a page from a pool if one exists. */
735 p = NULL;
736 pt = ttm_pool_select_type(pool, page_caching, order);
737 if (pt && allow_pools)
738 p = ttm_pool_type_take(pt);
739 /*
740 * If that fails or previously failed, allocate from system.
741 * Note that this also disallows additional pool allocations using
742 * write-back cached pools of the same order. Consider removing
743 * that behaviour.
744 */
745 if (!p) {
746 page_caching = ttm_cached;
747 allow_pools = false;
748 p = ttm_pool_alloc_page(pool, gfp_flags, order);
749 }
750 /* If that fails, lower the order if possible and retry. */
751 if (!p) {
752 if (order) {
753 --order;
754 page_caching = tt->caching;
755 allow_pools = true;
756 continue;
757 }
758 r = -ENOMEM;
759 goto error_free_all;
760 }
761 r = ttm_pool_page_allocated(pool, order, p, page_caching, alloc,
762 restore);
763 if (r)
764 goto error_free_page;
765
766 if (ttm_pool_restore_valid(restore)) {
767 r = ttm_pool_restore_commit(restore, tt->backup, ctx, alloc);
768 if (r)
769 goto error_free_all;
770 }
771 }
772
773 r = ttm_pool_apply_caching(alloc);
774 if (r)
775 goto error_free_all;
776
777 kfree(tt->restore);
778 tt->restore = NULL;
779
780 return 0;
781
782 error_free_page:
783 ttm_pool_free_page(pool, page_caching, order, p);
784
785 error_free_all:
786 if (tt->restore)
787 return r;
788
789 caching_divide = alloc->caching_divide - tt->pages;
790 ttm_pool_free_range(pool, tt, tt->caching, 0, caching_divide);
791 ttm_pool_free_range(pool, tt, ttm_cached, caching_divide,
792 tt->num_pages - alloc->remaining_pages);
793
794 return r;
795 }
796
797 /**
798 * ttm_pool_alloc - Fill a ttm_tt object
799 *
800 * @pool: ttm_pool to use
801 * @tt: ttm_tt object to fill
802 * @ctx: operation context
803 *
804 * Fill the ttm_tt object with pages and also make sure to DMA map them when
805 * necessary.
806 *
807 * Returns: 0 on successe, negative error code otherwise.
808 */
ttm_pool_alloc(struct ttm_pool * pool,struct ttm_tt * tt,struct ttm_operation_ctx * ctx)809 int ttm_pool_alloc(struct ttm_pool *pool, struct ttm_tt *tt,
810 struct ttm_operation_ctx *ctx)
811 {
812 struct ttm_pool_alloc_state alloc;
813
814 if (WARN_ON(ttm_tt_is_backed_up(tt)))
815 return -EINVAL;
816
817 ttm_pool_alloc_state_init(tt, &alloc);
818
819 return __ttm_pool_alloc(pool, tt, ctx, &alloc, NULL);
820 }
821 EXPORT_SYMBOL(ttm_pool_alloc);
822
823 /**
824 * ttm_pool_restore_and_alloc - Fill a ttm_tt, restoring previously backed-up
825 * content.
826 *
827 * @pool: ttm_pool to use
828 * @tt: ttm_tt object to fill
829 * @ctx: operation context
830 *
831 * Fill the ttm_tt object with pages and also make sure to DMA map them when
832 * necessary. Read in backed-up content.
833 *
834 * Returns: 0 on successe, negative error code otherwise.
835 */
ttm_pool_restore_and_alloc(struct ttm_pool * pool,struct ttm_tt * tt,const struct ttm_operation_ctx * ctx)836 int ttm_pool_restore_and_alloc(struct ttm_pool *pool, struct ttm_tt *tt,
837 const struct ttm_operation_ctx *ctx)
838 {
839 struct ttm_pool_alloc_state alloc;
840
841 if (WARN_ON(!ttm_tt_is_backed_up(tt)))
842 return -EINVAL;
843
844 if (!tt->restore) {
845 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
846
847 ttm_pool_alloc_state_init(tt, &alloc);
848 if (ctx->gfp_retry_mayfail)
849 gfp |= __GFP_RETRY_MAYFAIL;
850
851 tt->restore = kzalloc(sizeof(*tt->restore), gfp);
852 if (!tt->restore)
853 return -ENOMEM;
854
855 tt->restore->snapshot_alloc = alloc;
856 tt->restore->pool = pool;
857 tt->restore->restored_pages = 1;
858 } else {
859 struct ttm_pool_tt_restore *restore = tt->restore;
860 int ret;
861
862 alloc = restore->snapshot_alloc;
863 if (ttm_pool_restore_valid(tt->restore)) {
864 ret = ttm_pool_restore_commit(restore, tt->backup, ctx, &alloc);
865 if (ret)
866 return ret;
867 }
868 if (!alloc.remaining_pages)
869 return 0;
870 }
871
872 return __ttm_pool_alloc(pool, tt, ctx, &alloc, tt->restore);
873 }
874
875 /**
876 * ttm_pool_free - Free the backing pages from a ttm_tt object
877 *
878 * @pool: Pool to give pages back to.
879 * @tt: ttm_tt object to unpopulate
880 *
881 * Give the packing pages back to a pool or free them
882 */
ttm_pool_free(struct ttm_pool * pool,struct ttm_tt * tt)883 void ttm_pool_free(struct ttm_pool *pool, struct ttm_tt *tt)
884 {
885 ttm_pool_free_range(pool, tt, tt->caching, 0, tt->num_pages);
886
887 while (atomic_long_read(&allocated_pages) > page_pool_size)
888 ttm_pool_shrink();
889 }
890 EXPORT_SYMBOL(ttm_pool_free);
891
892 /**
893 * ttm_pool_drop_backed_up() - Release content of a swapped-out struct ttm_tt
894 * @tt: The struct ttm_tt.
895 *
896 * Release handles with associated content or any remaining pages of
897 * a backed-up struct ttm_tt.
898 */
ttm_pool_drop_backed_up(struct ttm_tt * tt)899 void ttm_pool_drop_backed_up(struct ttm_tt *tt)
900 {
901 struct ttm_pool_tt_restore *restore;
902 pgoff_t start_page = 0;
903
904 WARN_ON(!ttm_tt_is_backed_up(tt));
905
906 restore = tt->restore;
907
908 /*
909 * Unmap and free any uncommitted restore page.
910 * any tt page-array backup entries already read back has
911 * been cleared already
912 */
913 if (ttm_pool_restore_valid(restore)) {
914 dma_addr_t *dma_addr = tt->dma_address ? &restore->first_dma : NULL;
915
916 ttm_pool_unmap_and_free(restore->pool, restore->alloced_page,
917 dma_addr, restore->page_caching);
918 restore->restored_pages = 1UL << restore->order;
919 }
920
921 /*
922 * If a restore is ongoing, part of the tt pages may have a
923 * caching different than writeback.
924 */
925 if (restore) {
926 pgoff_t mid = restore->snapshot_alloc.caching_divide - tt->pages;
927
928 start_page = restore->alloced_pages;
929 WARN_ON(mid > start_page);
930 /* Pages that might be dma-mapped and non-cached */
931 ttm_pool_free_range(restore->pool, tt, tt->caching,
932 0, mid);
933 /* Pages that might be dma-mapped but cached */
934 ttm_pool_free_range(restore->pool, tt, ttm_cached,
935 mid, restore->alloced_pages);
936 kfree(restore);
937 tt->restore = NULL;
938 }
939
940 ttm_pool_free_range(NULL, tt, ttm_cached, start_page, tt->num_pages);
941 }
942
943 /**
944 * ttm_pool_backup() - Back up or purge a struct ttm_tt
945 * @pool: The pool used when allocating the struct ttm_tt.
946 * @tt: The struct ttm_tt.
947 * @flags: Flags to govern the backup behaviour.
948 *
949 * Back up or purge a struct ttm_tt. If @purge is true, then
950 * all pages will be freed directly to the system rather than to the pool
951 * they were allocated from, making the function behave similarly to
952 * ttm_pool_free(). If @purge is false the pages will be backed up instead,
953 * exchanged for handles.
954 * A subsequent call to ttm_pool_restore_and_alloc() will then read back the content and
955 * a subsequent call to ttm_pool_drop_backed_up() will drop it.
956 * If backup of a page fails for whatever reason, @ttm will still be
957 * partially backed up, retaining those pages for which backup fails.
958 * In that case, this function can be retried, possibly after freeing up
959 * memory resources.
960 *
961 * Return: Number of pages actually backed up or freed, or negative
962 * error code on error.
963 */
ttm_pool_backup(struct ttm_pool * pool,struct ttm_tt * tt,const struct ttm_backup_flags * flags)964 long ttm_pool_backup(struct ttm_pool *pool, struct ttm_tt *tt,
965 const struct ttm_backup_flags *flags)
966 {
967 struct file *backup = tt->backup;
968 struct page *page;
969 unsigned long handle;
970 gfp_t alloc_gfp;
971 gfp_t gfp;
972 int ret = 0;
973 pgoff_t shrunken = 0;
974 pgoff_t i, num_pages;
975
976 if (WARN_ON(ttm_tt_is_backed_up(tt)))
977 return -EINVAL;
978
979 if ((!ttm_backup_bytes_avail() && !flags->purge) ||
980 pool->use_dma_alloc || ttm_tt_is_backed_up(tt))
981 return -EBUSY;
982
983 #ifdef CONFIG_X86
984 /* Anything returned to the system needs to be cached. */
985 if (tt->caching != ttm_cached)
986 set_pages_array_wb(tt->pages, tt->num_pages);
987 #endif
988
989 if (tt->dma_address || flags->purge) {
990 for (i = 0; i < tt->num_pages; i += num_pages) {
991 unsigned int order;
992
993 page = tt->pages[i];
994 if (unlikely(!page)) {
995 num_pages = 1;
996 continue;
997 }
998
999 order = ttm_pool_page_order(pool, page);
1000 num_pages = 1UL << order;
1001 if (tt->dma_address)
1002 ttm_pool_unmap(pool, tt->dma_address[i],
1003 num_pages);
1004 if (flags->purge) {
1005 shrunken += num_pages;
1006 page->private = 0;
1007 __free_pages(page, order);
1008 memset(tt->pages + i, 0,
1009 num_pages * sizeof(*tt->pages));
1010 }
1011 }
1012 }
1013
1014 if (flags->purge)
1015 return shrunken;
1016
1017 if (pool->use_dma32)
1018 gfp = GFP_DMA32;
1019 else
1020 gfp = GFP_HIGHUSER;
1021
1022 alloc_gfp = GFP_KERNEL | __GFP_HIGH | __GFP_NOWARN | __GFP_RETRY_MAYFAIL;
1023
1024 num_pages = tt->num_pages;
1025
1026 /* Pretend doing fault injection by shrinking only half of the pages. */
1027 if (IS_ENABLED(CONFIG_FAULT_INJECTION) && should_fail(&backup_fault_inject, 1))
1028 num_pages = DIV_ROUND_UP(num_pages, 2);
1029
1030 for (i = 0; i < num_pages; ++i) {
1031 s64 shandle;
1032
1033 page = tt->pages[i];
1034 if (unlikely(!page))
1035 continue;
1036
1037 ttm_pool_split_for_swap(pool, page);
1038
1039 shandle = ttm_backup_backup_page(backup, page, flags->writeback, i,
1040 gfp, alloc_gfp);
1041 if (shandle < 0) {
1042 /* We allow partially shrunken tts */
1043 ret = shandle;
1044 break;
1045 }
1046 handle = shandle;
1047 tt->pages[i] = ttm_backup_handle_to_page_ptr(handle);
1048 put_page(page);
1049 shrunken++;
1050 }
1051
1052 return shrunken ? shrunken : ret;
1053 }
1054
1055 /**
1056 * ttm_pool_init - Initialize a pool
1057 *
1058 * @pool: the pool to initialize
1059 * @dev: device for DMA allocations and mappings
1060 * @nid: NUMA node to use for allocations
1061 * @use_dma_alloc: true if coherent DMA alloc should be used
1062 * @use_dma32: true if GFP_DMA32 should be used
1063 *
1064 * Initialize the pool and its pool types.
1065 */
ttm_pool_init(struct ttm_pool * pool,struct device * dev,int nid,bool use_dma_alloc,bool use_dma32)1066 void ttm_pool_init(struct ttm_pool *pool, struct device *dev,
1067 int nid, bool use_dma_alloc, bool use_dma32)
1068 {
1069 unsigned int i, j;
1070
1071 WARN_ON(!dev && use_dma_alloc);
1072
1073 pool->dev = dev;
1074 pool->nid = nid;
1075 pool->use_dma_alloc = use_dma_alloc;
1076 pool->use_dma32 = use_dma32;
1077
1078 for (i = 0; i < TTM_NUM_CACHING_TYPES; ++i) {
1079 for (j = 0; j < NR_PAGE_ORDERS; ++j) {
1080 struct ttm_pool_type *pt;
1081
1082 /* Initialize only pool types which are actually used */
1083 pt = ttm_pool_select_type(pool, i, j);
1084 if (pt != &pool->caching[i].orders[j])
1085 continue;
1086
1087 ttm_pool_type_init(pt, pool, i, j);
1088 }
1089 }
1090 }
1091 EXPORT_SYMBOL(ttm_pool_init);
1092
1093 /**
1094 * ttm_pool_synchronize_shrinkers - Wait for all running shrinkers to complete.
1095 *
1096 * This is useful to guarantee that all shrinker invocations have seen an
1097 * update, before freeing memory, similar to rcu.
1098 */
ttm_pool_synchronize_shrinkers(void)1099 static void ttm_pool_synchronize_shrinkers(void)
1100 {
1101 down_write(&pool_shrink_rwsem);
1102 up_write(&pool_shrink_rwsem);
1103 }
1104
1105 /**
1106 * ttm_pool_fini - Cleanup a pool
1107 *
1108 * @pool: the pool to clean up
1109 *
1110 * Free all pages in the pool and unregister the types from the global
1111 * shrinker.
1112 */
ttm_pool_fini(struct ttm_pool * pool)1113 void ttm_pool_fini(struct ttm_pool *pool)
1114 {
1115 unsigned int i, j;
1116
1117 for (i = 0; i < TTM_NUM_CACHING_TYPES; ++i) {
1118 for (j = 0; j < NR_PAGE_ORDERS; ++j) {
1119 struct ttm_pool_type *pt;
1120
1121 pt = ttm_pool_select_type(pool, i, j);
1122 if (pt != &pool->caching[i].orders[j])
1123 continue;
1124
1125 ttm_pool_type_fini(pt);
1126 }
1127 }
1128
1129 /* We removed the pool types from the LRU, but we need to also make sure
1130 * that no shrinker is concurrently freeing pages from the pool.
1131 */
1132 ttm_pool_synchronize_shrinkers();
1133 }
1134 EXPORT_SYMBOL(ttm_pool_fini);
1135
1136 /* Free average pool number of pages. */
1137 #define TTM_SHRINKER_BATCH ((1 << (MAX_PAGE_ORDER / 2)) * NR_PAGE_ORDERS)
1138
ttm_pool_shrinker_scan(struct shrinker * shrink,struct shrink_control * sc)1139 static unsigned long ttm_pool_shrinker_scan(struct shrinker *shrink,
1140 struct shrink_control *sc)
1141 {
1142 unsigned long num_freed = 0;
1143
1144 do
1145 num_freed += ttm_pool_shrink();
1146 while (num_freed < sc->nr_to_scan &&
1147 atomic_long_read(&allocated_pages));
1148
1149 sc->nr_scanned = num_freed;
1150
1151 return num_freed ?: SHRINK_STOP;
1152 }
1153
1154 /* Return the number of pages available or SHRINK_EMPTY if we have none */
ttm_pool_shrinker_count(struct shrinker * shrink,struct shrink_control * sc)1155 static unsigned long ttm_pool_shrinker_count(struct shrinker *shrink,
1156 struct shrink_control *sc)
1157 {
1158 unsigned long num_pages = atomic_long_read(&allocated_pages);
1159
1160 return num_pages ? num_pages : SHRINK_EMPTY;
1161 }
1162
1163 #ifdef CONFIG_DEBUG_FS
1164 /* Count the number of pages available in a pool_type */
ttm_pool_type_count(struct ttm_pool_type * pt)1165 static unsigned int ttm_pool_type_count(struct ttm_pool_type *pt)
1166 {
1167 unsigned int count = 0;
1168 struct page *p;
1169
1170 spin_lock(&pt->lock);
1171 /* Only used for debugfs, the overhead doesn't matter */
1172 list_for_each_entry(p, &pt->pages, lru)
1173 ++count;
1174 spin_unlock(&pt->lock);
1175
1176 return count;
1177 }
1178
1179 /* Print a nice header for the order */
ttm_pool_debugfs_header(struct seq_file * m)1180 static void ttm_pool_debugfs_header(struct seq_file *m)
1181 {
1182 unsigned int i;
1183
1184 seq_puts(m, "\t ");
1185 for (i = 0; i < NR_PAGE_ORDERS; ++i)
1186 seq_printf(m, " ---%2u---", i);
1187 seq_puts(m, "\n");
1188 }
1189
1190 /* Dump information about the different pool types */
ttm_pool_debugfs_orders(struct ttm_pool_type * pt,struct seq_file * m)1191 static void ttm_pool_debugfs_orders(struct ttm_pool_type *pt,
1192 struct seq_file *m)
1193 {
1194 unsigned int i;
1195
1196 for (i = 0; i < NR_PAGE_ORDERS; ++i)
1197 seq_printf(m, " %8u", ttm_pool_type_count(&pt[i]));
1198 seq_puts(m, "\n");
1199 }
1200
1201 /* Dump the total amount of allocated pages */
ttm_pool_debugfs_footer(struct seq_file * m)1202 static void ttm_pool_debugfs_footer(struct seq_file *m)
1203 {
1204 seq_printf(m, "\ntotal\t: %8lu of %8lu\n",
1205 atomic_long_read(&allocated_pages), page_pool_size);
1206 }
1207
1208 /* Dump the information for the global pools */
ttm_pool_debugfs_globals_show(struct seq_file * m,void * data)1209 static int ttm_pool_debugfs_globals_show(struct seq_file *m, void *data)
1210 {
1211 ttm_pool_debugfs_header(m);
1212
1213 spin_lock(&shrinker_lock);
1214 seq_puts(m, "wc\t:");
1215 ttm_pool_debugfs_orders(global_write_combined, m);
1216 seq_puts(m, "uc\t:");
1217 ttm_pool_debugfs_orders(global_uncached, m);
1218 seq_puts(m, "wc 32\t:");
1219 ttm_pool_debugfs_orders(global_dma32_write_combined, m);
1220 seq_puts(m, "uc 32\t:");
1221 ttm_pool_debugfs_orders(global_dma32_uncached, m);
1222 spin_unlock(&shrinker_lock);
1223
1224 ttm_pool_debugfs_footer(m);
1225
1226 return 0;
1227 }
1228 DEFINE_SHOW_ATTRIBUTE(ttm_pool_debugfs_globals);
1229
1230 /**
1231 * ttm_pool_debugfs - Debugfs dump function for a pool
1232 *
1233 * @pool: the pool to dump the information for
1234 * @m: seq_file to dump to
1235 *
1236 * Make a debugfs dump with the per pool and global information.
1237 */
ttm_pool_debugfs(struct ttm_pool * pool,struct seq_file * m)1238 int ttm_pool_debugfs(struct ttm_pool *pool, struct seq_file *m)
1239 {
1240 unsigned int i;
1241
1242 if (!pool->use_dma_alloc && pool->nid == NUMA_NO_NODE) {
1243 seq_puts(m, "unused\n");
1244 return 0;
1245 }
1246
1247 ttm_pool_debugfs_header(m);
1248
1249 spin_lock(&shrinker_lock);
1250 for (i = 0; i < TTM_NUM_CACHING_TYPES; ++i) {
1251 if (!ttm_pool_select_type(pool, i, 0))
1252 continue;
1253 if (pool->use_dma_alloc)
1254 seq_puts(m, "DMA ");
1255 else
1256 seq_printf(m, "N%d ", pool->nid);
1257 switch (i) {
1258 case ttm_cached:
1259 seq_puts(m, "\t:");
1260 break;
1261 case ttm_write_combined:
1262 seq_puts(m, "wc\t:");
1263 break;
1264 case ttm_uncached:
1265 seq_puts(m, "uc\t:");
1266 break;
1267 }
1268 ttm_pool_debugfs_orders(pool->caching[i].orders, m);
1269 }
1270 spin_unlock(&shrinker_lock);
1271
1272 ttm_pool_debugfs_footer(m);
1273 return 0;
1274 }
1275 EXPORT_SYMBOL(ttm_pool_debugfs);
1276
1277 /* Test the shrinker functions and dump the result */
ttm_pool_debugfs_shrink_show(struct seq_file * m,void * data)1278 static int ttm_pool_debugfs_shrink_show(struct seq_file *m, void *data)
1279 {
1280 struct shrink_control sc = {
1281 .gfp_mask = GFP_NOFS,
1282 .nr_to_scan = TTM_SHRINKER_BATCH,
1283 };
1284 unsigned long count;
1285
1286 fs_reclaim_acquire(GFP_KERNEL);
1287 count = ttm_pool_shrinker_count(mm_shrinker, &sc);
1288 seq_printf(m, "%lu/%lu\n", count,
1289 ttm_pool_shrinker_scan(mm_shrinker, &sc));
1290 fs_reclaim_release(GFP_KERNEL);
1291
1292 return 0;
1293 }
1294 DEFINE_SHOW_ATTRIBUTE(ttm_pool_debugfs_shrink);
1295
1296 #endif
1297
1298 /**
1299 * ttm_pool_mgr_init - Initialize globals
1300 *
1301 * @num_pages: default number of pages
1302 *
1303 * Initialize the global locks and lists for the MM shrinker.
1304 */
ttm_pool_mgr_init(unsigned long num_pages)1305 int ttm_pool_mgr_init(unsigned long num_pages)
1306 {
1307 unsigned int i;
1308
1309 if (!page_pool_size)
1310 page_pool_size = num_pages;
1311
1312 spin_lock_init(&shrinker_lock);
1313 INIT_LIST_HEAD(&shrinker_list);
1314
1315 for (i = 0; i < NR_PAGE_ORDERS; ++i) {
1316 ttm_pool_type_init(&global_write_combined[i], NULL,
1317 ttm_write_combined, i);
1318 ttm_pool_type_init(&global_uncached[i], NULL, ttm_uncached, i);
1319
1320 ttm_pool_type_init(&global_dma32_write_combined[i], NULL,
1321 ttm_write_combined, i);
1322 ttm_pool_type_init(&global_dma32_uncached[i], NULL,
1323 ttm_uncached, i);
1324 }
1325
1326 #ifdef CONFIG_DEBUG_FS
1327 debugfs_create_file("page_pool", 0444, ttm_debugfs_root, NULL,
1328 &ttm_pool_debugfs_globals_fops);
1329 debugfs_create_file("page_pool_shrink", 0400, ttm_debugfs_root, NULL,
1330 &ttm_pool_debugfs_shrink_fops);
1331 #ifdef CONFIG_FAULT_INJECTION
1332 fault_create_debugfs_attr("backup_fault_inject", ttm_debugfs_root,
1333 &backup_fault_inject);
1334 #endif
1335 #endif
1336
1337 mm_shrinker = shrinker_alloc(0, "drm-ttm_pool");
1338 if (!mm_shrinker)
1339 return -ENOMEM;
1340
1341 mm_shrinker->count_objects = ttm_pool_shrinker_count;
1342 mm_shrinker->scan_objects = ttm_pool_shrinker_scan;
1343 mm_shrinker->batch = TTM_SHRINKER_BATCH;
1344 mm_shrinker->seeks = 1;
1345
1346 shrinker_register(mm_shrinker);
1347
1348 return 0;
1349 }
1350
1351 /**
1352 * ttm_pool_mgr_fini - Finalize globals
1353 *
1354 * Cleanup the global pools and unregister the MM shrinker.
1355 */
ttm_pool_mgr_fini(void)1356 void ttm_pool_mgr_fini(void)
1357 {
1358 unsigned int i;
1359
1360 for (i = 0; i < NR_PAGE_ORDERS; ++i) {
1361 ttm_pool_type_fini(&global_write_combined[i]);
1362 ttm_pool_type_fini(&global_uncached[i]);
1363
1364 ttm_pool_type_fini(&global_dma32_write_combined[i]);
1365 ttm_pool_type_fini(&global_dma32_uncached[i]);
1366 }
1367
1368 shrinker_free(mm_shrinker);
1369 WARN_ON(!list_empty(&shrinker_list));
1370 }
1371