xref: /linux/drivers/gpu/drm/ttm/ttm_pool.c (revision 260f6f4fda93c8485c8037865c941b42b9cba5d2)
1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3  * Copyright 2020 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  *
23  * Authors: Christian König
24  */
25 
26 /* Pooling of allocated pages is necessary because changing the caching
27  * attributes on x86 of the linear mapping requires a costly cross CPU TLB
28  * invalidate for those addresses.
29  *
30  * Additional to that allocations from the DMA coherent API are pooled as well
31  * cause they are rather slow compared to alloc_pages+map.
32  */
33 
34 #include <linux/export.h>
35 #include <linux/module.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/debugfs.h>
38 #include <linux/highmem.h>
39 #include <linux/sched/mm.h>
40 
41 #ifdef CONFIG_X86
42 #include <asm/set_memory.h>
43 #endif
44 
45 #include <drm/ttm/ttm_backup.h>
46 #include <drm/ttm/ttm_pool.h>
47 #include <drm/ttm/ttm_tt.h>
48 #include <drm/ttm/ttm_bo.h>
49 
50 #include "ttm_module.h"
51 
52 #ifdef CONFIG_FAULT_INJECTION
53 #include <linux/fault-inject.h>
54 static DECLARE_FAULT_ATTR(backup_fault_inject);
55 #else
56 #define should_fail(...) false
57 #endif
58 
59 /**
60  * struct ttm_pool_dma - Helper object for coherent DMA mappings
61  *
62  * @addr: original DMA address returned for the mapping
63  * @vaddr: original vaddr return for the mapping and order in the lower bits
64  */
65 struct ttm_pool_dma {
66 	dma_addr_t addr;
67 	unsigned long vaddr;
68 };
69 
70 /**
71  * struct ttm_pool_alloc_state - Current state of the tt page allocation process
72  * @pages: Pointer to the next tt page pointer to populate.
73  * @caching_divide: Pointer to the first page pointer whose page has a staged but
74  * not committed caching transition from write-back to @tt_caching.
75  * @dma_addr: Pointer to the next tt dma_address entry to populate if any.
76  * @remaining_pages: Remaining pages to populate.
77  * @tt_caching: The requested cpu-caching for the pages allocated.
78  */
79 struct ttm_pool_alloc_state {
80 	struct page **pages;
81 	struct page **caching_divide;
82 	dma_addr_t *dma_addr;
83 	pgoff_t remaining_pages;
84 	enum ttm_caching tt_caching;
85 };
86 
87 /**
88  * struct ttm_pool_tt_restore - State representing restore from backup
89  * @pool: The pool used for page allocation while restoring.
90  * @snapshot_alloc: A snapshot of the most recent struct ttm_pool_alloc_state.
91  * @alloced_page: Pointer to the page most recently allocated from a pool or system.
92  * @first_dma: The dma address corresponding to @alloced_page if dma_mapping
93  * is requested.
94  * @alloced_pages: The number of allocated pages present in the struct ttm_tt
95  * page vector from this restore session.
96  * @restored_pages: The number of 4K pages restored for @alloced_page (which
97  * is typically a multi-order page).
98  * @page_caching: The struct ttm_tt requested caching
99  * @order: The order of @alloced_page.
100  *
101  * Recovery from backup might fail when we've recovered less than the
102  * full ttm_tt. In order not to loose any data (yet), keep information
103  * around that allows us to restart a failed ttm backup recovery.
104  */
105 struct ttm_pool_tt_restore {
106 	struct ttm_pool *pool;
107 	struct ttm_pool_alloc_state snapshot_alloc;
108 	struct page *alloced_page;
109 	dma_addr_t first_dma;
110 	pgoff_t alloced_pages;
111 	pgoff_t restored_pages;
112 	enum ttm_caching page_caching;
113 	unsigned int order;
114 };
115 
116 static unsigned long page_pool_size;
117 
118 MODULE_PARM_DESC(page_pool_size, "Number of pages in the WC/UC/DMA pool");
119 module_param(page_pool_size, ulong, 0644);
120 
121 static atomic_long_t allocated_pages;
122 
123 static struct ttm_pool_type global_write_combined[NR_PAGE_ORDERS];
124 static struct ttm_pool_type global_uncached[NR_PAGE_ORDERS];
125 
126 static struct ttm_pool_type global_dma32_write_combined[NR_PAGE_ORDERS];
127 static struct ttm_pool_type global_dma32_uncached[NR_PAGE_ORDERS];
128 
129 static spinlock_t shrinker_lock;
130 static struct list_head shrinker_list;
131 static struct shrinker *mm_shrinker;
132 static DECLARE_RWSEM(pool_shrink_rwsem);
133 
134 /* Allocate pages of size 1 << order with the given gfp_flags */
ttm_pool_alloc_page(struct ttm_pool * pool,gfp_t gfp_flags,unsigned int order)135 static struct page *ttm_pool_alloc_page(struct ttm_pool *pool, gfp_t gfp_flags,
136 					unsigned int order)
137 {
138 	unsigned long attr = DMA_ATTR_FORCE_CONTIGUOUS;
139 	struct ttm_pool_dma *dma;
140 	struct page *p;
141 	void *vaddr;
142 
143 	/* Don't set the __GFP_COMP flag for higher order allocations.
144 	 * Mapping pages directly into an userspace process and calling
145 	 * put_page() on a TTM allocated page is illegal.
146 	 */
147 	if (order)
148 		gfp_flags |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN |
149 			__GFP_THISNODE;
150 
151 	if (!pool->use_dma_alloc) {
152 		p = alloc_pages_node(pool->nid, gfp_flags, order);
153 		if (p)
154 			p->private = order;
155 		return p;
156 	}
157 
158 	dma = kmalloc(sizeof(*dma), GFP_KERNEL);
159 	if (!dma)
160 		return NULL;
161 
162 	if (order)
163 		attr |= DMA_ATTR_NO_WARN;
164 
165 	vaddr = dma_alloc_attrs(pool->dev, (1ULL << order) * PAGE_SIZE,
166 				&dma->addr, gfp_flags, attr);
167 	if (!vaddr)
168 		goto error_free;
169 
170 	/* TODO: This is an illegal abuse of the DMA API, but we need to rework
171 	 * TTM page fault handling and extend the DMA API to clean this up.
172 	 */
173 	if (is_vmalloc_addr(vaddr))
174 		p = vmalloc_to_page(vaddr);
175 	else
176 		p = virt_to_page(vaddr);
177 
178 	dma->vaddr = (unsigned long)vaddr | order;
179 	p->private = (unsigned long)dma;
180 	return p;
181 
182 error_free:
183 	kfree(dma);
184 	return NULL;
185 }
186 
187 /* Reset the caching and pages of size 1 << order */
ttm_pool_free_page(struct ttm_pool * pool,enum ttm_caching caching,unsigned int order,struct page * p)188 static void ttm_pool_free_page(struct ttm_pool *pool, enum ttm_caching caching,
189 			       unsigned int order, struct page *p)
190 {
191 	unsigned long attr = DMA_ATTR_FORCE_CONTIGUOUS;
192 	struct ttm_pool_dma *dma;
193 	void *vaddr;
194 
195 #ifdef CONFIG_X86
196 	/* We don't care that set_pages_wb is inefficient here. This is only
197 	 * used when we have to shrink and CPU overhead is irrelevant then.
198 	 */
199 	if (caching != ttm_cached && !PageHighMem(p))
200 		set_pages_wb(p, 1 << order);
201 #endif
202 
203 	if (!pool || !pool->use_dma_alloc) {
204 		__free_pages(p, order);
205 		return;
206 	}
207 
208 	if (order)
209 		attr |= DMA_ATTR_NO_WARN;
210 
211 	dma = (void *)p->private;
212 	vaddr = (void *)(dma->vaddr & PAGE_MASK);
213 	dma_free_attrs(pool->dev, (1UL << order) * PAGE_SIZE, vaddr, dma->addr,
214 		       attr);
215 	kfree(dma);
216 }
217 
218 /* Apply any cpu-caching deferred during page allocation */
ttm_pool_apply_caching(struct ttm_pool_alloc_state * alloc)219 static int ttm_pool_apply_caching(struct ttm_pool_alloc_state *alloc)
220 {
221 #ifdef CONFIG_X86
222 	unsigned int num_pages = alloc->pages - alloc->caching_divide;
223 
224 	if (!num_pages)
225 		return 0;
226 
227 	switch (alloc->tt_caching) {
228 	case ttm_cached:
229 		break;
230 	case ttm_write_combined:
231 		return set_pages_array_wc(alloc->caching_divide, num_pages);
232 	case ttm_uncached:
233 		return set_pages_array_uc(alloc->caching_divide, num_pages);
234 	}
235 #endif
236 	alloc->caching_divide = alloc->pages;
237 	return 0;
238 }
239 
240 /* DMA Map pages of 1 << order size and return the resulting dma_address. */
ttm_pool_map(struct ttm_pool * pool,unsigned int order,struct page * p,dma_addr_t * dma_addr)241 static int ttm_pool_map(struct ttm_pool *pool, unsigned int order,
242 			struct page *p, dma_addr_t *dma_addr)
243 {
244 	dma_addr_t addr;
245 
246 	if (pool->use_dma_alloc) {
247 		struct ttm_pool_dma *dma = (void *)p->private;
248 
249 		addr = dma->addr;
250 	} else {
251 		size_t size = (1ULL << order) * PAGE_SIZE;
252 
253 		addr = dma_map_page(pool->dev, p, 0, size, DMA_BIDIRECTIONAL);
254 		if (dma_mapping_error(pool->dev, addr))
255 			return -EFAULT;
256 	}
257 
258 	*dma_addr = addr;
259 
260 	return 0;
261 }
262 
263 /* Unmap pages of 1 << order size */
ttm_pool_unmap(struct ttm_pool * pool,dma_addr_t dma_addr,unsigned int num_pages)264 static void ttm_pool_unmap(struct ttm_pool *pool, dma_addr_t dma_addr,
265 			   unsigned int num_pages)
266 {
267 	/* Unmapped while freeing the page */
268 	if (pool->use_dma_alloc)
269 		return;
270 
271 	dma_unmap_page(pool->dev, dma_addr, (long)num_pages << PAGE_SHIFT,
272 		       DMA_BIDIRECTIONAL);
273 }
274 
275 /* Give pages into a specific pool_type */
ttm_pool_type_give(struct ttm_pool_type * pt,struct page * p)276 static void ttm_pool_type_give(struct ttm_pool_type *pt, struct page *p)
277 {
278 	unsigned int i, num_pages = 1 << pt->order;
279 
280 	for (i = 0; i < num_pages; ++i) {
281 		if (PageHighMem(p))
282 			clear_highpage(p + i);
283 		else
284 			clear_page(page_address(p + i));
285 	}
286 
287 	spin_lock(&pt->lock);
288 	list_add(&p->lru, &pt->pages);
289 	spin_unlock(&pt->lock);
290 	atomic_long_add(1 << pt->order, &allocated_pages);
291 }
292 
293 /* Take pages from a specific pool_type, return NULL when nothing available */
ttm_pool_type_take(struct ttm_pool_type * pt)294 static struct page *ttm_pool_type_take(struct ttm_pool_type *pt)
295 {
296 	struct page *p;
297 
298 	spin_lock(&pt->lock);
299 	p = list_first_entry_or_null(&pt->pages, typeof(*p), lru);
300 	if (p) {
301 		atomic_long_sub(1 << pt->order, &allocated_pages);
302 		list_del(&p->lru);
303 	}
304 	spin_unlock(&pt->lock);
305 
306 	return p;
307 }
308 
309 /* Initialize and add a pool type to the global shrinker list */
ttm_pool_type_init(struct ttm_pool_type * pt,struct ttm_pool * pool,enum ttm_caching caching,unsigned int order)310 static void ttm_pool_type_init(struct ttm_pool_type *pt, struct ttm_pool *pool,
311 			       enum ttm_caching caching, unsigned int order)
312 {
313 	pt->pool = pool;
314 	pt->caching = caching;
315 	pt->order = order;
316 	spin_lock_init(&pt->lock);
317 	INIT_LIST_HEAD(&pt->pages);
318 
319 	spin_lock(&shrinker_lock);
320 	list_add_tail(&pt->shrinker_list, &shrinker_list);
321 	spin_unlock(&shrinker_lock);
322 }
323 
324 /* Remove a pool_type from the global shrinker list and free all pages */
ttm_pool_type_fini(struct ttm_pool_type * pt)325 static void ttm_pool_type_fini(struct ttm_pool_type *pt)
326 {
327 	struct page *p;
328 
329 	spin_lock(&shrinker_lock);
330 	list_del(&pt->shrinker_list);
331 	spin_unlock(&shrinker_lock);
332 
333 	while ((p = ttm_pool_type_take(pt)))
334 		ttm_pool_free_page(pt->pool, pt->caching, pt->order, p);
335 }
336 
337 /* Return the pool_type to use for the given caching and order */
ttm_pool_select_type(struct ttm_pool * pool,enum ttm_caching caching,unsigned int order)338 static struct ttm_pool_type *ttm_pool_select_type(struct ttm_pool *pool,
339 						  enum ttm_caching caching,
340 						  unsigned int order)
341 {
342 	if (pool->use_dma_alloc)
343 		return &pool->caching[caching].orders[order];
344 
345 #ifdef CONFIG_X86
346 	switch (caching) {
347 	case ttm_write_combined:
348 		if (pool->nid != NUMA_NO_NODE)
349 			return &pool->caching[caching].orders[order];
350 
351 		if (pool->use_dma32)
352 			return &global_dma32_write_combined[order];
353 
354 		return &global_write_combined[order];
355 	case ttm_uncached:
356 		if (pool->nid != NUMA_NO_NODE)
357 			return &pool->caching[caching].orders[order];
358 
359 		if (pool->use_dma32)
360 			return &global_dma32_uncached[order];
361 
362 		return &global_uncached[order];
363 	default:
364 		break;
365 	}
366 #endif
367 
368 	return NULL;
369 }
370 
371 /* Free pages using the global shrinker list */
ttm_pool_shrink(void)372 static unsigned int ttm_pool_shrink(void)
373 {
374 	struct ttm_pool_type *pt;
375 	unsigned int num_pages;
376 	struct page *p;
377 
378 	down_read(&pool_shrink_rwsem);
379 	spin_lock(&shrinker_lock);
380 	pt = list_first_entry(&shrinker_list, typeof(*pt), shrinker_list);
381 	list_move_tail(&pt->shrinker_list, &shrinker_list);
382 	spin_unlock(&shrinker_lock);
383 
384 	p = ttm_pool_type_take(pt);
385 	if (p) {
386 		ttm_pool_free_page(pt->pool, pt->caching, pt->order, p);
387 		num_pages = 1 << pt->order;
388 	} else {
389 		num_pages = 0;
390 	}
391 	up_read(&pool_shrink_rwsem);
392 
393 	return num_pages;
394 }
395 
396 /* Return the allocation order based for a page */
ttm_pool_page_order(struct ttm_pool * pool,struct page * p)397 static unsigned int ttm_pool_page_order(struct ttm_pool *pool, struct page *p)
398 {
399 	if (pool->use_dma_alloc) {
400 		struct ttm_pool_dma *dma = (void *)p->private;
401 
402 		return dma->vaddr & ~PAGE_MASK;
403 	}
404 
405 	return p->private;
406 }
407 
408 /*
409  * Split larger pages so that we can free each PAGE_SIZE page as soon
410  * as it has been backed up, in order to avoid memory pressure during
411  * reclaim.
412  */
ttm_pool_split_for_swap(struct ttm_pool * pool,struct page * p)413 static void ttm_pool_split_for_swap(struct ttm_pool *pool, struct page *p)
414 {
415 	unsigned int order = ttm_pool_page_order(pool, p);
416 	pgoff_t nr;
417 
418 	if (!order)
419 		return;
420 
421 	split_page(p, order);
422 	nr = 1UL << order;
423 	while (nr--)
424 		(p++)->private = 0;
425 }
426 
427 /**
428  * DOC: Partial backup and restoration of a struct ttm_tt.
429  *
430  * Swapout using ttm_backup_backup_page() and swapin using
431  * ttm_backup_copy_page() may fail.
432  * The former most likely due to lack of swap-space or memory, the latter due
433  * to lack of memory or because of signal interruption during waits.
434  *
435  * Backup failure is easily handled by using a ttm_tt pages vector that holds
436  * both backup handles and page pointers. This has to be taken into account when
437  * restoring such a ttm_tt from backup, and when freeing it while backed up.
438  * When restoring, for simplicity, new pages are actually allocated from the
439  * pool and the contents of any old pages are copied in and then the old pages
440  * are released.
441  *
442  * For restoration failures, the struct ttm_pool_tt_restore holds sufficient state
443  * to be able to resume an interrupted restore, and that structure is freed once
444  * the restoration is complete. If the struct ttm_tt is destroyed while there
445  * is a valid struct ttm_pool_tt_restore attached, that is also properly taken
446  * care of.
447  */
448 
449 /* Is restore ongoing for the currently allocated page? */
ttm_pool_restore_valid(const struct ttm_pool_tt_restore * restore)450 static bool ttm_pool_restore_valid(const struct ttm_pool_tt_restore *restore)
451 {
452 	return restore && restore->restored_pages < (1 << restore->order);
453 }
454 
455 /* DMA unmap and free a multi-order page, either to the relevant pool or to system. */
ttm_pool_unmap_and_free(struct ttm_pool * pool,struct page * page,const dma_addr_t * dma_addr,enum ttm_caching caching)456 static pgoff_t ttm_pool_unmap_and_free(struct ttm_pool *pool, struct page *page,
457 				       const dma_addr_t *dma_addr, enum ttm_caching caching)
458 {
459 	struct ttm_pool_type *pt = NULL;
460 	unsigned int order;
461 	pgoff_t nr;
462 
463 	if (pool) {
464 		order = ttm_pool_page_order(pool, page);
465 		nr = (1UL << order);
466 		if (dma_addr)
467 			ttm_pool_unmap(pool, *dma_addr, nr);
468 
469 		pt = ttm_pool_select_type(pool, caching, order);
470 	} else {
471 		order = page->private;
472 		nr = (1UL << order);
473 	}
474 
475 	if (pt)
476 		ttm_pool_type_give(pt, page);
477 	else
478 		ttm_pool_free_page(pool, caching, order, page);
479 
480 	return nr;
481 }
482 
483 /* Populate the page-array using the most recent allocated multi-order page. */
ttm_pool_allocated_page_commit(struct page * allocated,dma_addr_t first_dma,struct ttm_pool_alloc_state * alloc,pgoff_t nr)484 static void ttm_pool_allocated_page_commit(struct page *allocated,
485 					   dma_addr_t first_dma,
486 					   struct ttm_pool_alloc_state *alloc,
487 					   pgoff_t nr)
488 {
489 	pgoff_t i;
490 
491 	for (i = 0; i < nr; ++i)
492 		*alloc->pages++ = allocated++;
493 
494 	alloc->remaining_pages -= nr;
495 
496 	if (!alloc->dma_addr)
497 		return;
498 
499 	for (i = 0; i < nr; ++i) {
500 		*alloc->dma_addr++ = first_dma;
501 		first_dma += PAGE_SIZE;
502 	}
503 }
504 
505 /*
506  * When restoring, restore backed-up content to the newly allocated page and
507  * if successful, populate the page-table and dma-address arrays.
508  */
ttm_pool_restore_commit(struct ttm_pool_tt_restore * restore,struct file * backup,const struct ttm_operation_ctx * ctx,struct ttm_pool_alloc_state * alloc)509 static int ttm_pool_restore_commit(struct ttm_pool_tt_restore *restore,
510 				   struct file *backup,
511 				   const struct ttm_operation_ctx *ctx,
512 				   struct ttm_pool_alloc_state *alloc)
513 
514 {
515 	pgoff_t i, nr = 1UL << restore->order;
516 	struct page **first_page = alloc->pages;
517 	struct page *p;
518 	int ret = 0;
519 
520 	for (i = restore->restored_pages; i < nr; ++i) {
521 		p = first_page[i];
522 		if (ttm_backup_page_ptr_is_handle(p)) {
523 			unsigned long handle = ttm_backup_page_ptr_to_handle(p);
524 
525 			if (IS_ENABLED(CONFIG_FAULT_INJECTION) && ctx->interruptible &&
526 			    should_fail(&backup_fault_inject, 1)) {
527 				ret = -EINTR;
528 				break;
529 			}
530 
531 			if (handle == 0) {
532 				restore->restored_pages++;
533 				continue;
534 			}
535 
536 			ret = ttm_backup_copy_page(backup, restore->alloced_page + i,
537 						   handle, ctx->interruptible);
538 			if (ret)
539 				break;
540 
541 			ttm_backup_drop(backup, handle);
542 		} else if (p) {
543 			/*
544 			 * We could probably avoid splitting the old page
545 			 * using clever logic, but ATM we don't care, as
546 			 * we prioritize releasing memory ASAP. Note that
547 			 * here, the old retained page is always write-back
548 			 * cached.
549 			 */
550 			ttm_pool_split_for_swap(restore->pool, p);
551 			copy_highpage(restore->alloced_page + i, p);
552 			__free_pages(p, 0);
553 		}
554 
555 		restore->restored_pages++;
556 		first_page[i] = ttm_backup_handle_to_page_ptr(0);
557 	}
558 
559 	if (ret) {
560 		if (!restore->restored_pages) {
561 			dma_addr_t *dma_addr = alloc->dma_addr ? &restore->first_dma : NULL;
562 
563 			ttm_pool_unmap_and_free(restore->pool, restore->alloced_page,
564 						dma_addr, restore->page_caching);
565 			restore->restored_pages = nr;
566 		}
567 		return ret;
568 	}
569 
570 	ttm_pool_allocated_page_commit(restore->alloced_page, restore->first_dma,
571 				       alloc, nr);
572 	if (restore->page_caching == alloc->tt_caching || PageHighMem(restore->alloced_page))
573 		alloc->caching_divide = alloc->pages;
574 	restore->snapshot_alloc = *alloc;
575 	restore->alloced_pages += nr;
576 
577 	return 0;
578 }
579 
580 /* If restoring, save information needed for ttm_pool_restore_commit(). */
581 static void
ttm_pool_page_allocated_restore(struct ttm_pool * pool,unsigned int order,struct page * p,enum ttm_caching page_caching,dma_addr_t first_dma,struct ttm_pool_tt_restore * restore,const struct ttm_pool_alloc_state * alloc)582 ttm_pool_page_allocated_restore(struct ttm_pool *pool, unsigned int order,
583 				struct page *p,
584 				enum ttm_caching page_caching,
585 				dma_addr_t first_dma,
586 				struct ttm_pool_tt_restore *restore,
587 				const struct ttm_pool_alloc_state *alloc)
588 {
589 	restore->pool = pool;
590 	restore->order = order;
591 	restore->restored_pages = 0;
592 	restore->page_caching = page_caching;
593 	restore->first_dma = first_dma;
594 	restore->alloced_page = p;
595 	restore->snapshot_alloc = *alloc;
596 }
597 
598 /*
599  * Called when we got a page, either from a pool or newly allocated.
600  * if needed, dma map the page and populate the dma address array.
601  * Populate the page address array.
602  * If the caching is consistent, update any deferred caching. Otherwise
603  * stage this page for an upcoming deferred caching update.
604  */
ttm_pool_page_allocated(struct ttm_pool * pool,unsigned int order,struct page * p,enum ttm_caching page_caching,struct ttm_pool_alloc_state * alloc,struct ttm_pool_tt_restore * restore)605 static int ttm_pool_page_allocated(struct ttm_pool *pool, unsigned int order,
606 				   struct page *p, enum ttm_caching page_caching,
607 				   struct ttm_pool_alloc_state *alloc,
608 				   struct ttm_pool_tt_restore *restore)
609 {
610 	bool caching_consistent;
611 	dma_addr_t first_dma;
612 	int r = 0;
613 
614 	caching_consistent = (page_caching == alloc->tt_caching) || PageHighMem(p);
615 
616 	if (caching_consistent) {
617 		r = ttm_pool_apply_caching(alloc);
618 		if (r)
619 			return r;
620 	}
621 
622 	if (alloc->dma_addr) {
623 		r = ttm_pool_map(pool, order, p, &first_dma);
624 		if (r)
625 			return r;
626 	}
627 
628 	if (restore) {
629 		ttm_pool_page_allocated_restore(pool, order, p, page_caching,
630 						first_dma, restore, alloc);
631 	} else {
632 		ttm_pool_allocated_page_commit(p, first_dma, alloc, 1UL << order);
633 
634 		if (caching_consistent)
635 			alloc->caching_divide = alloc->pages;
636 	}
637 
638 	return 0;
639 }
640 
641 /**
642  * ttm_pool_free_range() - Free a range of TTM pages
643  * @pool: The pool used for allocating.
644  * @tt: The struct ttm_tt holding the page pointers.
645  * @caching: The page caching mode used by the range.
646  * @start_page: index for first page to free.
647  * @end_page: index for last page to free + 1.
648  *
649  * During allocation the ttm_tt page-vector may be populated with ranges of
650  * pages with different attributes if allocation hit an error without being
651  * able to completely fulfill the allocation. This function can be used
652  * to free these individual ranges.
653  */
ttm_pool_free_range(struct ttm_pool * pool,struct ttm_tt * tt,enum ttm_caching caching,pgoff_t start_page,pgoff_t end_page)654 static void ttm_pool_free_range(struct ttm_pool *pool, struct ttm_tt *tt,
655 				enum ttm_caching caching,
656 				pgoff_t start_page, pgoff_t end_page)
657 {
658 	struct page **pages = &tt->pages[start_page];
659 	struct file *backup = tt->backup;
660 	pgoff_t i, nr;
661 
662 	for (i = start_page; i < end_page; i += nr, pages += nr) {
663 		struct page *p = *pages;
664 
665 		nr = 1;
666 		if (ttm_backup_page_ptr_is_handle(p)) {
667 			unsigned long handle = ttm_backup_page_ptr_to_handle(p);
668 
669 			if (handle != 0)
670 				ttm_backup_drop(backup, handle);
671 		} else if (p) {
672 			dma_addr_t *dma_addr = tt->dma_address ?
673 				tt->dma_address + i : NULL;
674 
675 			nr = ttm_pool_unmap_and_free(pool, p, dma_addr, caching);
676 		}
677 	}
678 }
679 
ttm_pool_alloc_state_init(const struct ttm_tt * tt,struct ttm_pool_alloc_state * alloc)680 static void ttm_pool_alloc_state_init(const struct ttm_tt *tt,
681 				      struct ttm_pool_alloc_state *alloc)
682 {
683 	alloc->pages = tt->pages;
684 	alloc->caching_divide = tt->pages;
685 	alloc->dma_addr = tt->dma_address;
686 	alloc->remaining_pages = tt->num_pages;
687 	alloc->tt_caching = tt->caching;
688 }
689 
690 /*
691  * Find a suitable allocation order based on highest desired order
692  * and number of remaining pages
693  */
ttm_pool_alloc_find_order(unsigned int highest,const struct ttm_pool_alloc_state * alloc)694 static unsigned int ttm_pool_alloc_find_order(unsigned int highest,
695 					      const struct ttm_pool_alloc_state *alloc)
696 {
697 	return min_t(unsigned int, highest, __fls(alloc->remaining_pages));
698 }
699 
__ttm_pool_alloc(struct ttm_pool * pool,struct ttm_tt * tt,const struct ttm_operation_ctx * ctx,struct ttm_pool_alloc_state * alloc,struct ttm_pool_tt_restore * restore)700 static int __ttm_pool_alloc(struct ttm_pool *pool, struct ttm_tt *tt,
701 			    const struct ttm_operation_ctx *ctx,
702 			    struct ttm_pool_alloc_state *alloc,
703 			    struct ttm_pool_tt_restore *restore)
704 {
705 	enum ttm_caching page_caching;
706 	gfp_t gfp_flags = GFP_USER;
707 	pgoff_t caching_divide;
708 	unsigned int order;
709 	bool allow_pools;
710 	struct page *p;
711 	int r;
712 
713 	WARN_ON(!alloc->remaining_pages || ttm_tt_is_populated(tt));
714 	WARN_ON(alloc->dma_addr && !pool->dev);
715 
716 	if (tt->page_flags & TTM_TT_FLAG_ZERO_ALLOC)
717 		gfp_flags |= __GFP_ZERO;
718 
719 	if (ctx->gfp_retry_mayfail)
720 		gfp_flags |= __GFP_RETRY_MAYFAIL;
721 
722 	if (pool->use_dma32)
723 		gfp_flags |= GFP_DMA32;
724 	else
725 		gfp_flags |= GFP_HIGHUSER;
726 
727 	page_caching = tt->caching;
728 	allow_pools = true;
729 	for (order = ttm_pool_alloc_find_order(MAX_PAGE_ORDER, alloc);
730 	     alloc->remaining_pages;
731 	     order = ttm_pool_alloc_find_order(order, alloc)) {
732 		struct ttm_pool_type *pt;
733 
734 		/* First, try to allocate a page from a pool if one exists. */
735 		p = NULL;
736 		pt = ttm_pool_select_type(pool, page_caching, order);
737 		if (pt && allow_pools)
738 			p = ttm_pool_type_take(pt);
739 		/*
740 		 * If that fails or previously failed, allocate from system.
741 		 * Note that this also disallows additional pool allocations using
742 		 * write-back cached pools of the same order. Consider removing
743 		 * that behaviour.
744 		 */
745 		if (!p) {
746 			page_caching = ttm_cached;
747 			allow_pools = false;
748 			p = ttm_pool_alloc_page(pool, gfp_flags, order);
749 		}
750 		/* If that fails, lower the order if possible and retry. */
751 		if (!p) {
752 			if (order) {
753 				--order;
754 				page_caching = tt->caching;
755 				allow_pools = true;
756 				continue;
757 			}
758 			r = -ENOMEM;
759 			goto error_free_all;
760 		}
761 		r = ttm_pool_page_allocated(pool, order, p, page_caching, alloc,
762 					    restore);
763 		if (r)
764 			goto error_free_page;
765 
766 		if (ttm_pool_restore_valid(restore)) {
767 			r = ttm_pool_restore_commit(restore, tt->backup, ctx, alloc);
768 			if (r)
769 				goto error_free_all;
770 		}
771 	}
772 
773 	r = ttm_pool_apply_caching(alloc);
774 	if (r)
775 		goto error_free_all;
776 
777 	kfree(tt->restore);
778 	tt->restore = NULL;
779 
780 	return 0;
781 
782 error_free_page:
783 	ttm_pool_free_page(pool, page_caching, order, p);
784 
785 error_free_all:
786 	if (tt->restore)
787 		return r;
788 
789 	caching_divide = alloc->caching_divide - tt->pages;
790 	ttm_pool_free_range(pool, tt, tt->caching, 0, caching_divide);
791 	ttm_pool_free_range(pool, tt, ttm_cached, caching_divide,
792 			    tt->num_pages - alloc->remaining_pages);
793 
794 	return r;
795 }
796 
797 /**
798  * ttm_pool_alloc - Fill a ttm_tt object
799  *
800  * @pool: ttm_pool to use
801  * @tt: ttm_tt object to fill
802  * @ctx: operation context
803  *
804  * Fill the ttm_tt object with pages and also make sure to DMA map them when
805  * necessary.
806  *
807  * Returns: 0 on successe, negative error code otherwise.
808  */
ttm_pool_alloc(struct ttm_pool * pool,struct ttm_tt * tt,struct ttm_operation_ctx * ctx)809 int ttm_pool_alloc(struct ttm_pool *pool, struct ttm_tt *tt,
810 		   struct ttm_operation_ctx *ctx)
811 {
812 	struct ttm_pool_alloc_state alloc;
813 
814 	if (WARN_ON(ttm_tt_is_backed_up(tt)))
815 		return -EINVAL;
816 
817 	ttm_pool_alloc_state_init(tt, &alloc);
818 
819 	return __ttm_pool_alloc(pool, tt, ctx, &alloc, NULL);
820 }
821 EXPORT_SYMBOL(ttm_pool_alloc);
822 
823 /**
824  * ttm_pool_restore_and_alloc - Fill a ttm_tt, restoring previously backed-up
825  * content.
826  *
827  * @pool: ttm_pool to use
828  * @tt: ttm_tt object to fill
829  * @ctx: operation context
830  *
831  * Fill the ttm_tt object with pages and also make sure to DMA map them when
832  * necessary. Read in backed-up content.
833  *
834  * Returns: 0 on successe, negative error code otherwise.
835  */
ttm_pool_restore_and_alloc(struct ttm_pool * pool,struct ttm_tt * tt,const struct ttm_operation_ctx * ctx)836 int ttm_pool_restore_and_alloc(struct ttm_pool *pool, struct ttm_tt *tt,
837 			       const struct ttm_operation_ctx *ctx)
838 {
839 	struct ttm_pool_alloc_state alloc;
840 
841 	if (WARN_ON(!ttm_tt_is_backed_up(tt)))
842 		return -EINVAL;
843 
844 	if (!tt->restore) {
845 		gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
846 
847 		ttm_pool_alloc_state_init(tt, &alloc);
848 		if (ctx->gfp_retry_mayfail)
849 			gfp |= __GFP_RETRY_MAYFAIL;
850 
851 		tt->restore = kzalloc(sizeof(*tt->restore), gfp);
852 		if (!tt->restore)
853 			return -ENOMEM;
854 
855 		tt->restore->snapshot_alloc = alloc;
856 		tt->restore->pool = pool;
857 		tt->restore->restored_pages = 1;
858 	} else {
859 		struct ttm_pool_tt_restore *restore = tt->restore;
860 		int ret;
861 
862 		alloc = restore->snapshot_alloc;
863 		if (ttm_pool_restore_valid(tt->restore)) {
864 			ret = ttm_pool_restore_commit(restore, tt->backup, ctx, &alloc);
865 			if (ret)
866 				return ret;
867 		}
868 		if (!alloc.remaining_pages)
869 			return 0;
870 	}
871 
872 	return __ttm_pool_alloc(pool, tt, ctx, &alloc, tt->restore);
873 }
874 
875 /**
876  * ttm_pool_free - Free the backing pages from a ttm_tt object
877  *
878  * @pool: Pool to give pages back to.
879  * @tt: ttm_tt object to unpopulate
880  *
881  * Give the packing pages back to a pool or free them
882  */
ttm_pool_free(struct ttm_pool * pool,struct ttm_tt * tt)883 void ttm_pool_free(struct ttm_pool *pool, struct ttm_tt *tt)
884 {
885 	ttm_pool_free_range(pool, tt, tt->caching, 0, tt->num_pages);
886 
887 	while (atomic_long_read(&allocated_pages) > page_pool_size)
888 		ttm_pool_shrink();
889 }
890 EXPORT_SYMBOL(ttm_pool_free);
891 
892 /**
893  * ttm_pool_drop_backed_up() - Release content of a swapped-out struct ttm_tt
894  * @tt: The struct ttm_tt.
895  *
896  * Release handles with associated content or any remaining pages of
897  * a backed-up struct ttm_tt.
898  */
ttm_pool_drop_backed_up(struct ttm_tt * tt)899 void ttm_pool_drop_backed_up(struct ttm_tt *tt)
900 {
901 	struct ttm_pool_tt_restore *restore;
902 	pgoff_t start_page = 0;
903 
904 	WARN_ON(!ttm_tt_is_backed_up(tt));
905 
906 	restore = tt->restore;
907 
908 	/*
909 	 * Unmap and free any uncommitted restore page.
910 	 * any tt page-array backup entries already read back has
911 	 * been cleared already
912 	 */
913 	if (ttm_pool_restore_valid(restore)) {
914 		dma_addr_t *dma_addr = tt->dma_address ? &restore->first_dma : NULL;
915 
916 		ttm_pool_unmap_and_free(restore->pool, restore->alloced_page,
917 					dma_addr, restore->page_caching);
918 		restore->restored_pages = 1UL << restore->order;
919 	}
920 
921 	/*
922 	 * If a restore is ongoing, part of the tt pages may have a
923 	 * caching different than writeback.
924 	 */
925 	if (restore) {
926 		pgoff_t mid = restore->snapshot_alloc.caching_divide - tt->pages;
927 
928 		start_page = restore->alloced_pages;
929 		WARN_ON(mid > start_page);
930 		/* Pages that might be dma-mapped and non-cached */
931 		ttm_pool_free_range(restore->pool, tt, tt->caching,
932 				    0, mid);
933 		/* Pages that might be dma-mapped but cached */
934 		ttm_pool_free_range(restore->pool, tt, ttm_cached,
935 				    mid, restore->alloced_pages);
936 		kfree(restore);
937 		tt->restore = NULL;
938 	}
939 
940 	ttm_pool_free_range(NULL, tt, ttm_cached, start_page, tt->num_pages);
941 }
942 
943 /**
944  * ttm_pool_backup() - Back up or purge a struct ttm_tt
945  * @pool: The pool used when allocating the struct ttm_tt.
946  * @tt: The struct ttm_tt.
947  * @flags: Flags to govern the backup behaviour.
948  *
949  * Back up or purge a struct ttm_tt. If @purge is true, then
950  * all pages will be freed directly to the system rather than to the pool
951  * they were allocated from, making the function behave similarly to
952  * ttm_pool_free(). If @purge is false the pages will be backed up instead,
953  * exchanged for handles.
954  * A subsequent call to ttm_pool_restore_and_alloc() will then read back the content and
955  * a subsequent call to ttm_pool_drop_backed_up() will drop it.
956  * If backup of a page fails for whatever reason, @ttm will still be
957  * partially backed up, retaining those pages for which backup fails.
958  * In that case, this function can be retried, possibly after freeing up
959  * memory resources.
960  *
961  * Return: Number of pages actually backed up or freed, or negative
962  * error code on error.
963  */
ttm_pool_backup(struct ttm_pool * pool,struct ttm_tt * tt,const struct ttm_backup_flags * flags)964 long ttm_pool_backup(struct ttm_pool *pool, struct ttm_tt *tt,
965 		     const struct ttm_backup_flags *flags)
966 {
967 	struct file *backup = tt->backup;
968 	struct page *page;
969 	unsigned long handle;
970 	gfp_t alloc_gfp;
971 	gfp_t gfp;
972 	int ret = 0;
973 	pgoff_t shrunken = 0;
974 	pgoff_t i, num_pages;
975 
976 	if (WARN_ON(ttm_tt_is_backed_up(tt)))
977 		return -EINVAL;
978 
979 	if ((!ttm_backup_bytes_avail() && !flags->purge) ||
980 	    pool->use_dma_alloc || ttm_tt_is_backed_up(tt))
981 		return -EBUSY;
982 
983 #ifdef CONFIG_X86
984 	/* Anything returned to the system needs to be cached. */
985 	if (tt->caching != ttm_cached)
986 		set_pages_array_wb(tt->pages, tt->num_pages);
987 #endif
988 
989 	if (tt->dma_address || flags->purge) {
990 		for (i = 0; i < tt->num_pages; i += num_pages) {
991 			unsigned int order;
992 
993 			page = tt->pages[i];
994 			if (unlikely(!page)) {
995 				num_pages = 1;
996 				continue;
997 			}
998 
999 			order = ttm_pool_page_order(pool, page);
1000 			num_pages = 1UL << order;
1001 			if (tt->dma_address)
1002 				ttm_pool_unmap(pool, tt->dma_address[i],
1003 					       num_pages);
1004 			if (flags->purge) {
1005 				shrunken += num_pages;
1006 				page->private = 0;
1007 				__free_pages(page, order);
1008 				memset(tt->pages + i, 0,
1009 				       num_pages * sizeof(*tt->pages));
1010 			}
1011 		}
1012 	}
1013 
1014 	if (flags->purge)
1015 		return shrunken;
1016 
1017 	if (pool->use_dma32)
1018 		gfp = GFP_DMA32;
1019 	else
1020 		gfp = GFP_HIGHUSER;
1021 
1022 	alloc_gfp = GFP_KERNEL | __GFP_HIGH | __GFP_NOWARN | __GFP_RETRY_MAYFAIL;
1023 
1024 	num_pages = tt->num_pages;
1025 
1026 	/* Pretend doing fault injection by shrinking only half of the pages. */
1027 	if (IS_ENABLED(CONFIG_FAULT_INJECTION) && should_fail(&backup_fault_inject, 1))
1028 		num_pages = DIV_ROUND_UP(num_pages, 2);
1029 
1030 	for (i = 0; i < num_pages; ++i) {
1031 		s64 shandle;
1032 
1033 		page = tt->pages[i];
1034 		if (unlikely(!page))
1035 			continue;
1036 
1037 		ttm_pool_split_for_swap(pool, page);
1038 
1039 		shandle = ttm_backup_backup_page(backup, page, flags->writeback, i,
1040 						 gfp, alloc_gfp);
1041 		if (shandle < 0) {
1042 			/* We allow partially shrunken tts */
1043 			ret = shandle;
1044 			break;
1045 		}
1046 		handle = shandle;
1047 		tt->pages[i] = ttm_backup_handle_to_page_ptr(handle);
1048 		put_page(page);
1049 		shrunken++;
1050 	}
1051 
1052 	return shrunken ? shrunken : ret;
1053 }
1054 
1055 /**
1056  * ttm_pool_init - Initialize a pool
1057  *
1058  * @pool: the pool to initialize
1059  * @dev: device for DMA allocations and mappings
1060  * @nid: NUMA node to use for allocations
1061  * @use_dma_alloc: true if coherent DMA alloc should be used
1062  * @use_dma32: true if GFP_DMA32 should be used
1063  *
1064  * Initialize the pool and its pool types.
1065  */
ttm_pool_init(struct ttm_pool * pool,struct device * dev,int nid,bool use_dma_alloc,bool use_dma32)1066 void ttm_pool_init(struct ttm_pool *pool, struct device *dev,
1067 		   int nid, bool use_dma_alloc, bool use_dma32)
1068 {
1069 	unsigned int i, j;
1070 
1071 	WARN_ON(!dev && use_dma_alloc);
1072 
1073 	pool->dev = dev;
1074 	pool->nid = nid;
1075 	pool->use_dma_alloc = use_dma_alloc;
1076 	pool->use_dma32 = use_dma32;
1077 
1078 	for (i = 0; i < TTM_NUM_CACHING_TYPES; ++i) {
1079 		for (j = 0; j < NR_PAGE_ORDERS; ++j) {
1080 			struct ttm_pool_type *pt;
1081 
1082 			/* Initialize only pool types which are actually used */
1083 			pt = ttm_pool_select_type(pool, i, j);
1084 			if (pt != &pool->caching[i].orders[j])
1085 				continue;
1086 
1087 			ttm_pool_type_init(pt, pool, i, j);
1088 		}
1089 	}
1090 }
1091 EXPORT_SYMBOL(ttm_pool_init);
1092 
1093 /**
1094  * ttm_pool_synchronize_shrinkers - Wait for all running shrinkers to complete.
1095  *
1096  * This is useful to guarantee that all shrinker invocations have seen an
1097  * update, before freeing memory, similar to rcu.
1098  */
ttm_pool_synchronize_shrinkers(void)1099 static void ttm_pool_synchronize_shrinkers(void)
1100 {
1101 	down_write(&pool_shrink_rwsem);
1102 	up_write(&pool_shrink_rwsem);
1103 }
1104 
1105 /**
1106  * ttm_pool_fini - Cleanup a pool
1107  *
1108  * @pool: the pool to clean up
1109  *
1110  * Free all pages in the pool and unregister the types from the global
1111  * shrinker.
1112  */
ttm_pool_fini(struct ttm_pool * pool)1113 void ttm_pool_fini(struct ttm_pool *pool)
1114 {
1115 	unsigned int i, j;
1116 
1117 	for (i = 0; i < TTM_NUM_CACHING_TYPES; ++i) {
1118 		for (j = 0; j < NR_PAGE_ORDERS; ++j) {
1119 			struct ttm_pool_type *pt;
1120 
1121 			pt = ttm_pool_select_type(pool, i, j);
1122 			if (pt != &pool->caching[i].orders[j])
1123 				continue;
1124 
1125 			ttm_pool_type_fini(pt);
1126 		}
1127 	}
1128 
1129 	/* We removed the pool types from the LRU, but we need to also make sure
1130 	 * that no shrinker is concurrently freeing pages from the pool.
1131 	 */
1132 	ttm_pool_synchronize_shrinkers();
1133 }
1134 EXPORT_SYMBOL(ttm_pool_fini);
1135 
1136 /* Free average pool number of pages.  */
1137 #define TTM_SHRINKER_BATCH ((1 << (MAX_PAGE_ORDER / 2)) * NR_PAGE_ORDERS)
1138 
ttm_pool_shrinker_scan(struct shrinker * shrink,struct shrink_control * sc)1139 static unsigned long ttm_pool_shrinker_scan(struct shrinker *shrink,
1140 					    struct shrink_control *sc)
1141 {
1142 	unsigned long num_freed = 0;
1143 
1144 	do
1145 		num_freed += ttm_pool_shrink();
1146 	while (num_freed < sc->nr_to_scan &&
1147 	       atomic_long_read(&allocated_pages));
1148 
1149 	sc->nr_scanned = num_freed;
1150 
1151 	return num_freed ?: SHRINK_STOP;
1152 }
1153 
1154 /* Return the number of pages available or SHRINK_EMPTY if we have none */
ttm_pool_shrinker_count(struct shrinker * shrink,struct shrink_control * sc)1155 static unsigned long ttm_pool_shrinker_count(struct shrinker *shrink,
1156 					     struct shrink_control *sc)
1157 {
1158 	unsigned long num_pages = atomic_long_read(&allocated_pages);
1159 
1160 	return num_pages ? num_pages : SHRINK_EMPTY;
1161 }
1162 
1163 #ifdef CONFIG_DEBUG_FS
1164 /* Count the number of pages available in a pool_type */
ttm_pool_type_count(struct ttm_pool_type * pt)1165 static unsigned int ttm_pool_type_count(struct ttm_pool_type *pt)
1166 {
1167 	unsigned int count = 0;
1168 	struct page *p;
1169 
1170 	spin_lock(&pt->lock);
1171 	/* Only used for debugfs, the overhead doesn't matter */
1172 	list_for_each_entry(p, &pt->pages, lru)
1173 		++count;
1174 	spin_unlock(&pt->lock);
1175 
1176 	return count;
1177 }
1178 
1179 /* Print a nice header for the order */
ttm_pool_debugfs_header(struct seq_file * m)1180 static void ttm_pool_debugfs_header(struct seq_file *m)
1181 {
1182 	unsigned int i;
1183 
1184 	seq_puts(m, "\t ");
1185 	for (i = 0; i < NR_PAGE_ORDERS; ++i)
1186 		seq_printf(m, " ---%2u---", i);
1187 	seq_puts(m, "\n");
1188 }
1189 
1190 /* Dump information about the different pool types */
ttm_pool_debugfs_orders(struct ttm_pool_type * pt,struct seq_file * m)1191 static void ttm_pool_debugfs_orders(struct ttm_pool_type *pt,
1192 				    struct seq_file *m)
1193 {
1194 	unsigned int i;
1195 
1196 	for (i = 0; i < NR_PAGE_ORDERS; ++i)
1197 		seq_printf(m, " %8u", ttm_pool_type_count(&pt[i]));
1198 	seq_puts(m, "\n");
1199 }
1200 
1201 /* Dump the total amount of allocated pages */
ttm_pool_debugfs_footer(struct seq_file * m)1202 static void ttm_pool_debugfs_footer(struct seq_file *m)
1203 {
1204 	seq_printf(m, "\ntotal\t: %8lu of %8lu\n",
1205 		   atomic_long_read(&allocated_pages), page_pool_size);
1206 }
1207 
1208 /* Dump the information for the global pools */
ttm_pool_debugfs_globals_show(struct seq_file * m,void * data)1209 static int ttm_pool_debugfs_globals_show(struct seq_file *m, void *data)
1210 {
1211 	ttm_pool_debugfs_header(m);
1212 
1213 	spin_lock(&shrinker_lock);
1214 	seq_puts(m, "wc\t:");
1215 	ttm_pool_debugfs_orders(global_write_combined, m);
1216 	seq_puts(m, "uc\t:");
1217 	ttm_pool_debugfs_orders(global_uncached, m);
1218 	seq_puts(m, "wc 32\t:");
1219 	ttm_pool_debugfs_orders(global_dma32_write_combined, m);
1220 	seq_puts(m, "uc 32\t:");
1221 	ttm_pool_debugfs_orders(global_dma32_uncached, m);
1222 	spin_unlock(&shrinker_lock);
1223 
1224 	ttm_pool_debugfs_footer(m);
1225 
1226 	return 0;
1227 }
1228 DEFINE_SHOW_ATTRIBUTE(ttm_pool_debugfs_globals);
1229 
1230 /**
1231  * ttm_pool_debugfs - Debugfs dump function for a pool
1232  *
1233  * @pool: the pool to dump the information for
1234  * @m: seq_file to dump to
1235  *
1236  * Make a debugfs dump with the per pool and global information.
1237  */
ttm_pool_debugfs(struct ttm_pool * pool,struct seq_file * m)1238 int ttm_pool_debugfs(struct ttm_pool *pool, struct seq_file *m)
1239 {
1240 	unsigned int i;
1241 
1242 	if (!pool->use_dma_alloc && pool->nid == NUMA_NO_NODE) {
1243 		seq_puts(m, "unused\n");
1244 		return 0;
1245 	}
1246 
1247 	ttm_pool_debugfs_header(m);
1248 
1249 	spin_lock(&shrinker_lock);
1250 	for (i = 0; i < TTM_NUM_CACHING_TYPES; ++i) {
1251 		if (!ttm_pool_select_type(pool, i, 0))
1252 			continue;
1253 		if (pool->use_dma_alloc)
1254 			seq_puts(m, "DMA ");
1255 		else
1256 			seq_printf(m, "N%d ", pool->nid);
1257 		switch (i) {
1258 		case ttm_cached:
1259 			seq_puts(m, "\t:");
1260 			break;
1261 		case ttm_write_combined:
1262 			seq_puts(m, "wc\t:");
1263 			break;
1264 		case ttm_uncached:
1265 			seq_puts(m, "uc\t:");
1266 			break;
1267 		}
1268 		ttm_pool_debugfs_orders(pool->caching[i].orders, m);
1269 	}
1270 	spin_unlock(&shrinker_lock);
1271 
1272 	ttm_pool_debugfs_footer(m);
1273 	return 0;
1274 }
1275 EXPORT_SYMBOL(ttm_pool_debugfs);
1276 
1277 /* Test the shrinker functions and dump the result */
ttm_pool_debugfs_shrink_show(struct seq_file * m,void * data)1278 static int ttm_pool_debugfs_shrink_show(struct seq_file *m, void *data)
1279 {
1280 	struct shrink_control sc = {
1281 		.gfp_mask = GFP_NOFS,
1282 		.nr_to_scan = TTM_SHRINKER_BATCH,
1283 	};
1284 	unsigned long count;
1285 
1286 	fs_reclaim_acquire(GFP_KERNEL);
1287 	count = ttm_pool_shrinker_count(mm_shrinker, &sc);
1288 	seq_printf(m, "%lu/%lu\n", count,
1289 		   ttm_pool_shrinker_scan(mm_shrinker, &sc));
1290 	fs_reclaim_release(GFP_KERNEL);
1291 
1292 	return 0;
1293 }
1294 DEFINE_SHOW_ATTRIBUTE(ttm_pool_debugfs_shrink);
1295 
1296 #endif
1297 
1298 /**
1299  * ttm_pool_mgr_init - Initialize globals
1300  *
1301  * @num_pages: default number of pages
1302  *
1303  * Initialize the global locks and lists for the MM shrinker.
1304  */
ttm_pool_mgr_init(unsigned long num_pages)1305 int ttm_pool_mgr_init(unsigned long num_pages)
1306 {
1307 	unsigned int i;
1308 
1309 	if (!page_pool_size)
1310 		page_pool_size = num_pages;
1311 
1312 	spin_lock_init(&shrinker_lock);
1313 	INIT_LIST_HEAD(&shrinker_list);
1314 
1315 	for (i = 0; i < NR_PAGE_ORDERS; ++i) {
1316 		ttm_pool_type_init(&global_write_combined[i], NULL,
1317 				   ttm_write_combined, i);
1318 		ttm_pool_type_init(&global_uncached[i], NULL, ttm_uncached, i);
1319 
1320 		ttm_pool_type_init(&global_dma32_write_combined[i], NULL,
1321 				   ttm_write_combined, i);
1322 		ttm_pool_type_init(&global_dma32_uncached[i], NULL,
1323 				   ttm_uncached, i);
1324 	}
1325 
1326 #ifdef CONFIG_DEBUG_FS
1327 	debugfs_create_file("page_pool", 0444, ttm_debugfs_root, NULL,
1328 			    &ttm_pool_debugfs_globals_fops);
1329 	debugfs_create_file("page_pool_shrink", 0400, ttm_debugfs_root, NULL,
1330 			    &ttm_pool_debugfs_shrink_fops);
1331 #ifdef CONFIG_FAULT_INJECTION
1332 	fault_create_debugfs_attr("backup_fault_inject", ttm_debugfs_root,
1333 				  &backup_fault_inject);
1334 #endif
1335 #endif
1336 
1337 	mm_shrinker = shrinker_alloc(0, "drm-ttm_pool");
1338 	if (!mm_shrinker)
1339 		return -ENOMEM;
1340 
1341 	mm_shrinker->count_objects = ttm_pool_shrinker_count;
1342 	mm_shrinker->scan_objects = ttm_pool_shrinker_scan;
1343 	mm_shrinker->batch = TTM_SHRINKER_BATCH;
1344 	mm_shrinker->seeks = 1;
1345 
1346 	shrinker_register(mm_shrinker);
1347 
1348 	return 0;
1349 }
1350 
1351 /**
1352  * ttm_pool_mgr_fini - Finalize globals
1353  *
1354  * Cleanup the global pools and unregister the MM shrinker.
1355  */
ttm_pool_mgr_fini(void)1356 void ttm_pool_mgr_fini(void)
1357 {
1358 	unsigned int i;
1359 
1360 	for (i = 0; i < NR_PAGE_ORDERS; ++i) {
1361 		ttm_pool_type_fini(&global_write_combined[i]);
1362 		ttm_pool_type_fini(&global_uncached[i]);
1363 
1364 		ttm_pool_type_fini(&global_dma32_write_combined[i]);
1365 		ttm_pool_type_fini(&global_dma32_uncached[i]);
1366 	}
1367 
1368 	shrinker_free(mm_shrinker);
1369 	WARN_ON(!list_empty(&shrinker_list));
1370 }
1371