xref: /linux/fs/proc/task_mmu.c (revision 91325f31afc1026de28665cf1a7b6e157fa4d39d)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/pagewalk.h>
3 #include <linux/mm_inline.h>
4 #include <linux/hugetlb.h>
5 #include <linux/huge_mm.h>
6 #include <linux/mount.h>
7 #include <linux/ksm.h>
8 #include <linux/seq_file.h>
9 #include <linux/highmem.h>
10 #include <linux/ptrace.h>
11 #include <linux/slab.h>
12 #include <linux/pagemap.h>
13 #include <linux/mempolicy.h>
14 #include <linux/rmap.h>
15 #include <linux/swap.h>
16 #include <linux/sched/mm.h>
17 #include <linux/swapops.h>
18 #include <linux/mmu_notifier.h>
19 #include <linux/page_idle.h>
20 #include <linux/shmem_fs.h>
21 #include <linux/uaccess.h>
22 #include <linux/pkeys.h>
23 #include <linux/minmax.h>
24 #include <linux/overflow.h>
25 #include <linux/buildid.h>
26 
27 #include <asm/elf.h>
28 #include <asm/tlb.h>
29 #include <asm/tlbflush.h>
30 #include "internal.h"
31 
32 #define SENTINEL_VMA_END	-1
33 #define SENTINEL_VMA_GATE	-2
34 
35 #define SEQ_PUT_DEC(str, val) \
36 		seq_put_decimal_ull_width(m, str, (val) << (PAGE_SHIFT-10), 8)
task_mem(struct seq_file * m,struct mm_struct * mm)37 void task_mem(struct seq_file *m, struct mm_struct *mm)
38 {
39 	unsigned long text, lib, swap, anon, file, shmem;
40 	unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
41 
42 	anon = get_mm_counter_sum(mm, MM_ANONPAGES);
43 	file = get_mm_counter_sum(mm, MM_FILEPAGES);
44 	shmem = get_mm_counter_sum(mm, MM_SHMEMPAGES);
45 
46 	/*
47 	 * Note: to minimize their overhead, mm maintains hiwater_vm and
48 	 * hiwater_rss only when about to *lower* total_vm or rss.  Any
49 	 * collector of these hiwater stats must therefore get total_vm
50 	 * and rss too, which will usually be the higher.  Barriers? not
51 	 * worth the effort, such snapshots can always be inconsistent.
52 	 */
53 	hiwater_vm = total_vm = mm->total_vm;
54 	if (hiwater_vm < mm->hiwater_vm)
55 		hiwater_vm = mm->hiwater_vm;
56 	hiwater_rss = total_rss = anon + file + shmem;
57 	if (hiwater_rss < mm->hiwater_rss)
58 		hiwater_rss = mm->hiwater_rss;
59 
60 	/* split executable areas between text and lib */
61 	text = PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK);
62 	text = min(text, mm->exec_vm << PAGE_SHIFT);
63 	lib = (mm->exec_vm << PAGE_SHIFT) - text;
64 
65 	swap = get_mm_counter_sum(mm, MM_SWAPENTS);
66 	SEQ_PUT_DEC("VmPeak:\t", hiwater_vm);
67 	SEQ_PUT_DEC(" kB\nVmSize:\t", total_vm);
68 	SEQ_PUT_DEC(" kB\nVmLck:\t", mm->locked_vm);
69 	SEQ_PUT_DEC(" kB\nVmPin:\t", atomic64_read(&mm->pinned_vm));
70 	SEQ_PUT_DEC(" kB\nVmHWM:\t", hiwater_rss);
71 	SEQ_PUT_DEC(" kB\nVmRSS:\t", total_rss);
72 	SEQ_PUT_DEC(" kB\nRssAnon:\t", anon);
73 	SEQ_PUT_DEC(" kB\nRssFile:\t", file);
74 	SEQ_PUT_DEC(" kB\nRssShmem:\t", shmem);
75 	SEQ_PUT_DEC(" kB\nVmData:\t", mm->data_vm);
76 	SEQ_PUT_DEC(" kB\nVmStk:\t", mm->stack_vm);
77 	seq_put_decimal_ull_width(m,
78 		    " kB\nVmExe:\t", text >> 10, 8);
79 	seq_put_decimal_ull_width(m,
80 		    " kB\nVmLib:\t", lib >> 10, 8);
81 	seq_put_decimal_ull_width(m,
82 		    " kB\nVmPTE:\t", mm_pgtables_bytes(mm) >> 10, 8);
83 	SEQ_PUT_DEC(" kB\nVmSwap:\t", swap);
84 	seq_puts(m, " kB\n");
85 	hugetlb_report_usage(m, mm);
86 }
87 #undef SEQ_PUT_DEC
88 
task_vsize(struct mm_struct * mm)89 unsigned long task_vsize(struct mm_struct *mm)
90 {
91 	return PAGE_SIZE * mm->total_vm;
92 }
93 
task_statm(struct mm_struct * mm,unsigned long * shared,unsigned long * text,unsigned long * data,unsigned long * resident)94 unsigned long task_statm(struct mm_struct *mm,
95 			 unsigned long *shared, unsigned long *text,
96 			 unsigned long *data, unsigned long *resident)
97 {
98 	*shared = get_mm_counter_sum(mm, MM_FILEPAGES) +
99 			get_mm_counter_sum(mm, MM_SHMEMPAGES);
100 	*text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
101 								>> PAGE_SHIFT;
102 	*data = mm->data_vm + mm->stack_vm;
103 	*resident = *shared + get_mm_counter_sum(mm, MM_ANONPAGES);
104 	return mm->total_vm;
105 }
106 
107 #ifdef CONFIG_NUMA
108 /*
109  * Save get_task_policy() for show_numa_map().
110  */
hold_task_mempolicy(struct proc_maps_private * priv)111 static void hold_task_mempolicy(struct proc_maps_private *priv)
112 {
113 	struct task_struct *task = priv->task;
114 
115 	task_lock(task);
116 	priv->task_mempolicy = get_task_policy(task);
117 	mpol_get(priv->task_mempolicy);
118 	task_unlock(task);
119 }
release_task_mempolicy(struct proc_maps_private * priv)120 static void release_task_mempolicy(struct proc_maps_private *priv)
121 {
122 	mpol_put(priv->task_mempolicy);
123 }
124 #else
hold_task_mempolicy(struct proc_maps_private * priv)125 static void hold_task_mempolicy(struct proc_maps_private *priv)
126 {
127 }
release_task_mempolicy(struct proc_maps_private * priv)128 static void release_task_mempolicy(struct proc_maps_private *priv)
129 {
130 }
131 #endif
132 
133 #ifdef CONFIG_PER_VMA_LOCK
134 
unlock_vma(struct proc_maps_private * priv)135 static void unlock_vma(struct proc_maps_private *priv)
136 {
137 	if (priv->locked_vma) {
138 		vma_end_read(priv->locked_vma);
139 		priv->locked_vma = NULL;
140 	}
141 }
142 
143 static const struct seq_operations proc_pid_maps_op;
144 
lock_vma_range(struct seq_file * m,struct proc_maps_private * priv)145 static inline bool lock_vma_range(struct seq_file *m,
146 				  struct proc_maps_private *priv)
147 {
148 	/*
149 	 * smaps and numa_maps perform page table walk, therefore require
150 	 * mmap_lock but maps can be read with locking just the vma and
151 	 * walking the vma tree under rcu read protection.
152 	 */
153 	if (m->op != &proc_pid_maps_op) {
154 		if (mmap_read_lock_killable(priv->mm))
155 			return false;
156 
157 		priv->mmap_locked = true;
158 	} else {
159 		rcu_read_lock();
160 		priv->locked_vma = NULL;
161 		priv->mmap_locked = false;
162 	}
163 
164 	return true;
165 }
166 
unlock_vma_range(struct proc_maps_private * priv)167 static inline void unlock_vma_range(struct proc_maps_private *priv)
168 {
169 	if (priv->mmap_locked) {
170 		mmap_read_unlock(priv->mm);
171 	} else {
172 		unlock_vma(priv);
173 		rcu_read_unlock();
174 	}
175 }
176 
get_next_vma(struct proc_maps_private * priv,loff_t last_pos)177 static struct vm_area_struct *get_next_vma(struct proc_maps_private *priv,
178 					   loff_t last_pos)
179 {
180 	struct vm_area_struct *vma;
181 
182 	if (priv->mmap_locked)
183 		return vma_next(&priv->iter);
184 
185 	unlock_vma(priv);
186 	vma = lock_next_vma(priv->mm, &priv->iter, last_pos);
187 	if (!IS_ERR_OR_NULL(vma))
188 		priv->locked_vma = vma;
189 
190 	return vma;
191 }
192 
fallback_to_mmap_lock(struct proc_maps_private * priv,loff_t pos)193 static inline bool fallback_to_mmap_lock(struct proc_maps_private *priv,
194 					 loff_t pos)
195 {
196 	if (priv->mmap_locked)
197 		return false;
198 
199 	rcu_read_unlock();
200 	mmap_read_lock(priv->mm);
201 	/* Reinitialize the iterator after taking mmap_lock */
202 	vma_iter_set(&priv->iter, pos);
203 	priv->mmap_locked = true;
204 
205 	return true;
206 }
207 
208 #else /* CONFIG_PER_VMA_LOCK */
209 
lock_vma_range(struct seq_file * m,struct proc_maps_private * priv)210 static inline bool lock_vma_range(struct seq_file *m,
211 				  struct proc_maps_private *priv)
212 {
213 	return mmap_read_lock_killable(priv->mm) == 0;
214 }
215 
unlock_vma_range(struct proc_maps_private * priv)216 static inline void unlock_vma_range(struct proc_maps_private *priv)
217 {
218 	mmap_read_unlock(priv->mm);
219 }
220 
get_next_vma(struct proc_maps_private * priv,loff_t last_pos)221 static struct vm_area_struct *get_next_vma(struct proc_maps_private *priv,
222 					   loff_t last_pos)
223 {
224 	return vma_next(&priv->iter);
225 }
226 
fallback_to_mmap_lock(struct proc_maps_private * priv,loff_t pos)227 static inline bool fallback_to_mmap_lock(struct proc_maps_private *priv,
228 					 loff_t pos)
229 {
230 	return false;
231 }
232 
233 #endif /* CONFIG_PER_VMA_LOCK */
234 
proc_get_vma(struct seq_file * m,loff_t * ppos)235 static struct vm_area_struct *proc_get_vma(struct seq_file *m, loff_t *ppos)
236 {
237 	struct proc_maps_private *priv = m->private;
238 	struct vm_area_struct *vma;
239 
240 retry:
241 	vma = get_next_vma(priv, *ppos);
242 	/* EINTR of EAGAIN is possible */
243 	if (IS_ERR(vma)) {
244 		if (PTR_ERR(vma) == -EAGAIN && fallback_to_mmap_lock(priv, *ppos))
245 			goto retry;
246 
247 		return vma;
248 	}
249 
250 	/* Store previous position to be able to restart if needed */
251 	priv->last_pos = *ppos;
252 	if (vma) {
253 		/*
254 		 * Track the end of the reported vma to ensure position changes
255 		 * even if previous vma was merged with the next vma and we
256 		 * found the extended vma with the same vm_start.
257 		 */
258 		*ppos = vma->vm_end;
259 	} else {
260 		*ppos = SENTINEL_VMA_GATE;
261 		vma = get_gate_vma(priv->mm);
262 	}
263 
264 	return vma;
265 }
266 
m_start(struct seq_file * m,loff_t * ppos)267 static void *m_start(struct seq_file *m, loff_t *ppos)
268 {
269 	struct proc_maps_private *priv = m->private;
270 	loff_t last_addr = *ppos;
271 	struct mm_struct *mm;
272 
273 	/* See m_next(). Zero at the start or after lseek. */
274 	if (last_addr == SENTINEL_VMA_END)
275 		return NULL;
276 
277 	priv->task = get_proc_task(priv->inode);
278 	if (!priv->task)
279 		return ERR_PTR(-ESRCH);
280 
281 	mm = priv->mm;
282 	if (!mm || !mmget_not_zero(mm)) {
283 		put_task_struct(priv->task);
284 		priv->task = NULL;
285 		return NULL;
286 	}
287 
288 	if (!lock_vma_range(m, priv)) {
289 		mmput(mm);
290 		put_task_struct(priv->task);
291 		priv->task = NULL;
292 		return ERR_PTR(-EINTR);
293 	}
294 
295 	/*
296 	 * Reset current position if last_addr was set before
297 	 * and it's not a sentinel.
298 	 */
299 	if (last_addr > 0)
300 		*ppos = last_addr = priv->last_pos;
301 	vma_iter_init(&priv->iter, mm, (unsigned long)last_addr);
302 	hold_task_mempolicy(priv);
303 	if (last_addr == SENTINEL_VMA_GATE)
304 		return get_gate_vma(mm);
305 
306 	return proc_get_vma(m, ppos);
307 }
308 
m_next(struct seq_file * m,void * v,loff_t * ppos)309 static void *m_next(struct seq_file *m, void *v, loff_t *ppos)
310 {
311 	if (*ppos == SENTINEL_VMA_GATE) {
312 		*ppos = SENTINEL_VMA_END;
313 		return NULL;
314 	}
315 	return proc_get_vma(m, ppos);
316 }
317 
m_stop(struct seq_file * m,void * v)318 static void m_stop(struct seq_file *m, void *v)
319 {
320 	struct proc_maps_private *priv = m->private;
321 	struct mm_struct *mm = priv->mm;
322 
323 	if (!priv->task)
324 		return;
325 
326 	release_task_mempolicy(priv);
327 	unlock_vma_range(priv);
328 	mmput(mm);
329 	put_task_struct(priv->task);
330 	priv->task = NULL;
331 }
332 
proc_maps_open(struct inode * inode,struct file * file,const struct seq_operations * ops,int psize)333 static int proc_maps_open(struct inode *inode, struct file *file,
334 			const struct seq_operations *ops, int psize)
335 {
336 	struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
337 
338 	if (!priv)
339 		return -ENOMEM;
340 
341 	priv->inode = inode;
342 	priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
343 	if (IS_ERR(priv->mm)) {
344 		int err = PTR_ERR(priv->mm);
345 
346 		seq_release_private(inode, file);
347 		return err;
348 	}
349 
350 	return 0;
351 }
352 
proc_map_release(struct inode * inode,struct file * file)353 static int proc_map_release(struct inode *inode, struct file *file)
354 {
355 	struct seq_file *seq = file->private_data;
356 	struct proc_maps_private *priv = seq->private;
357 
358 	if (priv->mm)
359 		mmdrop(priv->mm);
360 
361 	return seq_release_private(inode, file);
362 }
363 
do_maps_open(struct inode * inode,struct file * file,const struct seq_operations * ops)364 static int do_maps_open(struct inode *inode, struct file *file,
365 			const struct seq_operations *ops)
366 {
367 	return proc_maps_open(inode, file, ops,
368 				sizeof(struct proc_maps_private));
369 }
370 
get_vma_name(struct vm_area_struct * vma,const struct path ** path,const char ** name,const char ** name_fmt)371 static void get_vma_name(struct vm_area_struct *vma,
372 			 const struct path **path,
373 			 const char **name,
374 			 const char **name_fmt)
375 {
376 	struct anon_vma_name *anon_name = vma->vm_mm ? anon_vma_name(vma) : NULL;
377 
378 	*name = NULL;
379 	*path = NULL;
380 	*name_fmt = NULL;
381 
382 	/*
383 	 * Print the dentry name for named mappings, and a
384 	 * special [heap] marker for the heap:
385 	 */
386 	if (vma->vm_file) {
387 		/*
388 		 * If user named this anon shared memory via
389 		 * prctl(PR_SET_VMA ..., use the provided name.
390 		 */
391 		if (anon_name) {
392 			*name_fmt = "[anon_shmem:%s]";
393 			*name = anon_name->name;
394 		} else {
395 			*path = file_user_path(vma->vm_file);
396 		}
397 		return;
398 	}
399 
400 	if (vma->vm_ops && vma->vm_ops->name) {
401 		*name = vma->vm_ops->name(vma);
402 		if (*name)
403 			return;
404 	}
405 
406 	*name = arch_vma_name(vma);
407 	if (*name)
408 		return;
409 
410 	if (!vma->vm_mm) {
411 		*name = "[vdso]";
412 		return;
413 	}
414 
415 	if (vma_is_initial_heap(vma)) {
416 		*name = "[heap]";
417 		return;
418 	}
419 
420 	if (vma_is_initial_stack(vma)) {
421 		*name = "[stack]";
422 		return;
423 	}
424 
425 	if (anon_name) {
426 		*name_fmt = "[anon:%s]";
427 		*name = anon_name->name;
428 		return;
429 	}
430 }
431 
show_vma_header_prefix(struct seq_file * m,unsigned long start,unsigned long end,vm_flags_t flags,unsigned long long pgoff,dev_t dev,unsigned long ino)432 static void show_vma_header_prefix(struct seq_file *m,
433 				   unsigned long start, unsigned long end,
434 				   vm_flags_t flags, unsigned long long pgoff,
435 				   dev_t dev, unsigned long ino)
436 {
437 	seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
438 	seq_put_hex_ll(m, NULL, start, 8);
439 	seq_put_hex_ll(m, "-", end, 8);
440 	seq_putc(m, ' ');
441 	seq_putc(m, flags & VM_READ ? 'r' : '-');
442 	seq_putc(m, flags & VM_WRITE ? 'w' : '-');
443 	seq_putc(m, flags & VM_EXEC ? 'x' : '-');
444 	seq_putc(m, flags & VM_MAYSHARE ? 's' : 'p');
445 	seq_put_hex_ll(m, " ", pgoff, 8);
446 	seq_put_hex_ll(m, " ", MAJOR(dev), 2);
447 	seq_put_hex_ll(m, ":", MINOR(dev), 2);
448 	seq_put_decimal_ull(m, " ", ino);
449 	seq_putc(m, ' ');
450 }
451 
452 static void
show_map_vma(struct seq_file * m,struct vm_area_struct * vma)453 show_map_vma(struct seq_file *m, struct vm_area_struct *vma)
454 {
455 	const struct path *path;
456 	const char *name_fmt, *name;
457 	vm_flags_t flags = vma->vm_flags;
458 	unsigned long ino = 0;
459 	unsigned long long pgoff = 0;
460 	unsigned long start, end;
461 	dev_t dev = 0;
462 
463 	if (vma->vm_file) {
464 		const struct inode *inode = file_user_inode(vma->vm_file);
465 
466 		dev = inode->i_sb->s_dev;
467 		ino = inode->i_ino;
468 		pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
469 	}
470 
471 	start = vma->vm_start;
472 	end = vma->vm_end;
473 	show_vma_header_prefix(m, start, end, flags, pgoff, dev, ino);
474 
475 	get_vma_name(vma, &path, &name, &name_fmt);
476 	if (path) {
477 		seq_pad(m, ' ');
478 		seq_path(m, path, "\n");
479 	} else if (name_fmt) {
480 		seq_pad(m, ' ');
481 		seq_printf(m, name_fmt, name);
482 	} else if (name) {
483 		seq_pad(m, ' ');
484 		seq_puts(m, name);
485 	}
486 	seq_putc(m, '\n');
487 }
488 
show_map(struct seq_file * m,void * v)489 static int show_map(struct seq_file *m, void *v)
490 {
491 	show_map_vma(m, v);
492 	return 0;
493 }
494 
495 static const struct seq_operations proc_pid_maps_op = {
496 	.start	= m_start,
497 	.next	= m_next,
498 	.stop	= m_stop,
499 	.show	= show_map
500 };
501 
pid_maps_open(struct inode * inode,struct file * file)502 static int pid_maps_open(struct inode *inode, struct file *file)
503 {
504 	return do_maps_open(inode, file, &proc_pid_maps_op);
505 }
506 
507 #define PROCMAP_QUERY_VMA_FLAGS (				\
508 		PROCMAP_QUERY_VMA_READABLE |			\
509 		PROCMAP_QUERY_VMA_WRITABLE |			\
510 		PROCMAP_QUERY_VMA_EXECUTABLE |			\
511 		PROCMAP_QUERY_VMA_SHARED			\
512 )
513 
514 #define PROCMAP_QUERY_VALID_FLAGS_MASK (			\
515 		PROCMAP_QUERY_COVERING_OR_NEXT_VMA |		\
516 		PROCMAP_QUERY_FILE_BACKED_VMA |			\
517 		PROCMAP_QUERY_VMA_FLAGS				\
518 )
519 
query_vma_setup(struct mm_struct * mm)520 static int query_vma_setup(struct mm_struct *mm)
521 {
522 	return mmap_read_lock_killable(mm);
523 }
524 
query_vma_teardown(struct mm_struct * mm,struct vm_area_struct * vma)525 static void query_vma_teardown(struct mm_struct *mm, struct vm_area_struct *vma)
526 {
527 	mmap_read_unlock(mm);
528 }
529 
query_vma_find_by_addr(struct mm_struct * mm,unsigned long addr)530 static struct vm_area_struct *query_vma_find_by_addr(struct mm_struct *mm, unsigned long addr)
531 {
532 	return find_vma(mm, addr);
533 }
534 
query_matching_vma(struct mm_struct * mm,unsigned long addr,u32 flags)535 static struct vm_area_struct *query_matching_vma(struct mm_struct *mm,
536 						 unsigned long addr, u32 flags)
537 {
538 	struct vm_area_struct *vma;
539 
540 next_vma:
541 	vma = query_vma_find_by_addr(mm, addr);
542 	if (!vma)
543 		goto no_vma;
544 
545 	/* user requested only file-backed VMA, keep iterating */
546 	if ((flags & PROCMAP_QUERY_FILE_BACKED_VMA) && !vma->vm_file)
547 		goto skip_vma;
548 
549 	/* VMA permissions should satisfy query flags */
550 	if (flags & PROCMAP_QUERY_VMA_FLAGS) {
551 		u32 perm = 0;
552 
553 		if (flags & PROCMAP_QUERY_VMA_READABLE)
554 			perm |= VM_READ;
555 		if (flags & PROCMAP_QUERY_VMA_WRITABLE)
556 			perm |= VM_WRITE;
557 		if (flags & PROCMAP_QUERY_VMA_EXECUTABLE)
558 			perm |= VM_EXEC;
559 		if (flags & PROCMAP_QUERY_VMA_SHARED)
560 			perm |= VM_MAYSHARE;
561 
562 		if ((vma->vm_flags & perm) != perm)
563 			goto skip_vma;
564 	}
565 
566 	/* found covering VMA or user is OK with the matching next VMA */
567 	if ((flags & PROCMAP_QUERY_COVERING_OR_NEXT_VMA) || vma->vm_start <= addr)
568 		return vma;
569 
570 skip_vma:
571 	/*
572 	 * If the user needs closest matching VMA, keep iterating.
573 	 */
574 	addr = vma->vm_end;
575 	if (flags & PROCMAP_QUERY_COVERING_OR_NEXT_VMA)
576 		goto next_vma;
577 
578 no_vma:
579 	return ERR_PTR(-ENOENT);
580 }
581 
do_procmap_query(struct proc_maps_private * priv,void __user * uarg)582 static int do_procmap_query(struct proc_maps_private *priv, void __user *uarg)
583 {
584 	struct procmap_query karg;
585 	struct vm_area_struct *vma;
586 	struct mm_struct *mm;
587 	const char *name = NULL;
588 	char build_id_buf[BUILD_ID_SIZE_MAX], *name_buf = NULL;
589 	__u64 usize;
590 	int err;
591 
592 	if (copy_from_user(&usize, (void __user *)uarg, sizeof(usize)))
593 		return -EFAULT;
594 	/* argument struct can never be that large, reject abuse */
595 	if (usize > PAGE_SIZE)
596 		return -E2BIG;
597 	/* argument struct should have at least query_flags and query_addr fields */
598 	if (usize < offsetofend(struct procmap_query, query_addr))
599 		return -EINVAL;
600 	err = copy_struct_from_user(&karg, sizeof(karg), uarg, usize);
601 	if (err)
602 		return err;
603 
604 	/* reject unknown flags */
605 	if (karg.query_flags & ~PROCMAP_QUERY_VALID_FLAGS_MASK)
606 		return -EINVAL;
607 	/* either both buffer address and size are set, or both should be zero */
608 	if (!!karg.vma_name_size != !!karg.vma_name_addr)
609 		return -EINVAL;
610 	if (!!karg.build_id_size != !!karg.build_id_addr)
611 		return -EINVAL;
612 
613 	mm = priv->mm;
614 	if (!mm || !mmget_not_zero(mm))
615 		return -ESRCH;
616 
617 	err = query_vma_setup(mm);
618 	if (err) {
619 		mmput(mm);
620 		return err;
621 	}
622 
623 	vma = query_matching_vma(mm, karg.query_addr, karg.query_flags);
624 	if (IS_ERR(vma)) {
625 		err = PTR_ERR(vma);
626 		vma = NULL;
627 		goto out;
628 	}
629 
630 	karg.vma_start = vma->vm_start;
631 	karg.vma_end = vma->vm_end;
632 
633 	karg.vma_flags = 0;
634 	if (vma->vm_flags & VM_READ)
635 		karg.vma_flags |= PROCMAP_QUERY_VMA_READABLE;
636 	if (vma->vm_flags & VM_WRITE)
637 		karg.vma_flags |= PROCMAP_QUERY_VMA_WRITABLE;
638 	if (vma->vm_flags & VM_EXEC)
639 		karg.vma_flags |= PROCMAP_QUERY_VMA_EXECUTABLE;
640 	if (vma->vm_flags & VM_MAYSHARE)
641 		karg.vma_flags |= PROCMAP_QUERY_VMA_SHARED;
642 
643 	karg.vma_page_size = vma_kernel_pagesize(vma);
644 
645 	if (vma->vm_file) {
646 		const struct inode *inode = file_user_inode(vma->vm_file);
647 
648 		karg.vma_offset = ((__u64)vma->vm_pgoff) << PAGE_SHIFT;
649 		karg.dev_major = MAJOR(inode->i_sb->s_dev);
650 		karg.dev_minor = MINOR(inode->i_sb->s_dev);
651 		karg.inode = inode->i_ino;
652 	} else {
653 		karg.vma_offset = 0;
654 		karg.dev_major = 0;
655 		karg.dev_minor = 0;
656 		karg.inode = 0;
657 	}
658 
659 	if (karg.build_id_size) {
660 		__u32 build_id_sz;
661 
662 		err = build_id_parse(vma, build_id_buf, &build_id_sz);
663 		if (err) {
664 			karg.build_id_size = 0;
665 		} else {
666 			if (karg.build_id_size < build_id_sz) {
667 				err = -ENAMETOOLONG;
668 				goto out;
669 			}
670 			karg.build_id_size = build_id_sz;
671 		}
672 	}
673 
674 	if (karg.vma_name_size) {
675 		size_t name_buf_sz = min_t(size_t, PATH_MAX, karg.vma_name_size);
676 		const struct path *path;
677 		const char *name_fmt;
678 		size_t name_sz = 0;
679 
680 		get_vma_name(vma, &path, &name, &name_fmt);
681 
682 		if (path || name_fmt || name) {
683 			name_buf = kmalloc(name_buf_sz, GFP_KERNEL);
684 			if (!name_buf) {
685 				err = -ENOMEM;
686 				goto out;
687 			}
688 		}
689 		if (path) {
690 			name = d_path(path, name_buf, name_buf_sz);
691 			if (IS_ERR(name)) {
692 				err = PTR_ERR(name);
693 				goto out;
694 			}
695 			name_sz = name_buf + name_buf_sz - name;
696 		} else if (name || name_fmt) {
697 			name_sz = 1 + snprintf(name_buf, name_buf_sz, name_fmt ?: "%s", name);
698 			name = name_buf;
699 		}
700 		if (name_sz > name_buf_sz) {
701 			err = -ENAMETOOLONG;
702 			goto out;
703 		}
704 		karg.vma_name_size = name_sz;
705 	}
706 
707 	/* unlock vma or mmap_lock, and put mm_struct before copying data to user */
708 	query_vma_teardown(mm, vma);
709 	mmput(mm);
710 
711 	if (karg.vma_name_size && copy_to_user(u64_to_user_ptr(karg.vma_name_addr),
712 					       name, karg.vma_name_size)) {
713 		kfree(name_buf);
714 		return -EFAULT;
715 	}
716 	kfree(name_buf);
717 
718 	if (karg.build_id_size && copy_to_user(u64_to_user_ptr(karg.build_id_addr),
719 					       build_id_buf, karg.build_id_size))
720 		return -EFAULT;
721 
722 	if (copy_to_user(uarg, &karg, min_t(size_t, sizeof(karg), usize)))
723 		return -EFAULT;
724 
725 	return 0;
726 
727 out:
728 	query_vma_teardown(mm, vma);
729 	mmput(mm);
730 	kfree(name_buf);
731 	return err;
732 }
733 
procfs_procmap_ioctl(struct file * file,unsigned int cmd,unsigned long arg)734 static long procfs_procmap_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
735 {
736 	struct seq_file *seq = file->private_data;
737 	struct proc_maps_private *priv = seq->private;
738 
739 	switch (cmd) {
740 	case PROCMAP_QUERY:
741 		return do_procmap_query(priv, (void __user *)arg);
742 	default:
743 		return -ENOIOCTLCMD;
744 	}
745 }
746 
747 const struct file_operations proc_pid_maps_operations = {
748 	.open		= pid_maps_open,
749 	.read		= seq_read,
750 	.llseek		= seq_lseek,
751 	.release	= proc_map_release,
752 	.unlocked_ioctl = procfs_procmap_ioctl,
753 	.compat_ioctl	= compat_ptr_ioctl,
754 };
755 
756 /*
757  * Proportional Set Size(PSS): my share of RSS.
758  *
759  * PSS of a process is the count of pages it has in memory, where each
760  * page is divided by the number of processes sharing it.  So if a
761  * process has 1000 pages all to itself, and 1000 shared with one other
762  * process, its PSS will be 1500.
763  *
764  * To keep (accumulated) division errors low, we adopt a 64bit
765  * fixed-point pss counter to minimize division errors. So (pss >>
766  * PSS_SHIFT) would be the real byte count.
767  *
768  * A shift of 12 before division means (assuming 4K page size):
769  * 	- 1M 3-user-pages add up to 8KB errors;
770  * 	- supports mapcount up to 2^24, or 16M;
771  * 	- supports PSS up to 2^52 bytes, or 4PB.
772  */
773 #define PSS_SHIFT 12
774 
775 #ifdef CONFIG_PROC_PAGE_MONITOR
776 struct mem_size_stats {
777 	unsigned long resident;
778 	unsigned long shared_clean;
779 	unsigned long shared_dirty;
780 	unsigned long private_clean;
781 	unsigned long private_dirty;
782 	unsigned long referenced;
783 	unsigned long anonymous;
784 	unsigned long lazyfree;
785 	unsigned long anonymous_thp;
786 	unsigned long shmem_thp;
787 	unsigned long file_thp;
788 	unsigned long swap;
789 	unsigned long shared_hugetlb;
790 	unsigned long private_hugetlb;
791 	unsigned long ksm;
792 	u64 pss;
793 	u64 pss_anon;
794 	u64 pss_file;
795 	u64 pss_shmem;
796 	u64 pss_dirty;
797 	u64 pss_locked;
798 	u64 swap_pss;
799 };
800 
smaps_page_accumulate(struct mem_size_stats * mss,struct folio * folio,unsigned long size,unsigned long pss,bool dirty,bool locked,bool private)801 static void smaps_page_accumulate(struct mem_size_stats *mss,
802 		struct folio *folio, unsigned long size, unsigned long pss,
803 		bool dirty, bool locked, bool private)
804 {
805 	mss->pss += pss;
806 
807 	if (folio_test_anon(folio))
808 		mss->pss_anon += pss;
809 	else if (folio_test_swapbacked(folio))
810 		mss->pss_shmem += pss;
811 	else
812 		mss->pss_file += pss;
813 
814 	if (locked)
815 		mss->pss_locked += pss;
816 
817 	if (dirty || folio_test_dirty(folio)) {
818 		mss->pss_dirty += pss;
819 		if (private)
820 			mss->private_dirty += size;
821 		else
822 			mss->shared_dirty += size;
823 	} else {
824 		if (private)
825 			mss->private_clean += size;
826 		else
827 			mss->shared_clean += size;
828 	}
829 }
830 
smaps_account(struct mem_size_stats * mss,struct page * page,bool compound,bool young,bool dirty,bool locked,bool present)831 static void smaps_account(struct mem_size_stats *mss, struct page *page,
832 		bool compound, bool young, bool dirty, bool locked,
833 		bool present)
834 {
835 	struct folio *folio = page_folio(page);
836 	int i, nr = compound ? compound_nr(page) : 1;
837 	unsigned long size = nr * PAGE_SIZE;
838 	bool exclusive;
839 	int mapcount;
840 
841 	/*
842 	 * First accumulate quantities that depend only on |size| and the type
843 	 * of the compound page.
844 	 */
845 	if (folio_test_anon(folio)) {
846 		mss->anonymous += size;
847 		if (!folio_test_swapbacked(folio) && !dirty &&
848 		    !folio_test_dirty(folio))
849 			mss->lazyfree += size;
850 	}
851 
852 	if (folio_test_ksm(folio))
853 		mss->ksm += size;
854 
855 	mss->resident += size;
856 	/* Accumulate the size in pages that have been accessed. */
857 	if (young || folio_test_young(folio) || folio_test_referenced(folio))
858 		mss->referenced += size;
859 
860 	/*
861 	 * Then accumulate quantities that may depend on sharing, or that may
862 	 * differ page-by-page.
863 	 *
864 	 * refcount == 1 for present entries guarantees that the folio is mapped
865 	 * exactly once. For large folios this implies that exactly one
866 	 * PTE/PMD/... maps (a part of) this folio.
867 	 *
868 	 * Treat all non-present entries (where relying on the mapcount and
869 	 * refcount doesn't make sense) as "maybe shared, but not sure how
870 	 * often". We treat device private entries as being fake-present.
871 	 *
872 	 * Note that it would not be safe to read the mapcount especially for
873 	 * pages referenced by migration entries, even with the PTL held.
874 	 */
875 	if (folio_ref_count(folio) == 1 || !present) {
876 		smaps_page_accumulate(mss, folio, size, size << PSS_SHIFT,
877 				      dirty, locked, present);
878 		return;
879 	}
880 
881 	if (IS_ENABLED(CONFIG_NO_PAGE_MAPCOUNT)) {
882 		mapcount = folio_average_page_mapcount(folio);
883 		exclusive = !folio_maybe_mapped_shared(folio);
884 	}
885 
886 	/*
887 	 * We obtain a snapshot of the mapcount. Without holding the folio lock
888 	 * this snapshot can be slightly wrong as we cannot always read the
889 	 * mapcount atomically.
890 	 */
891 	for (i = 0; i < nr; i++, page++) {
892 		unsigned long pss = PAGE_SIZE << PSS_SHIFT;
893 
894 		if (IS_ENABLED(CONFIG_PAGE_MAPCOUNT)) {
895 			mapcount = folio_precise_page_mapcount(folio, page);
896 			exclusive = mapcount < 2;
897 		}
898 
899 		if (mapcount >= 2)
900 			pss /= mapcount;
901 		smaps_page_accumulate(mss, folio, PAGE_SIZE, pss,
902 				dirty, locked, exclusive);
903 	}
904 }
905 
906 #ifdef CONFIG_SHMEM
smaps_pte_hole(unsigned long addr,unsigned long end,__always_unused int depth,struct mm_walk * walk)907 static int smaps_pte_hole(unsigned long addr, unsigned long end,
908 			  __always_unused int depth, struct mm_walk *walk)
909 {
910 	struct mem_size_stats *mss = walk->private;
911 	struct vm_area_struct *vma = walk->vma;
912 
913 	mss->swap += shmem_partial_swap_usage(walk->vma->vm_file->f_mapping,
914 					      linear_page_index(vma, addr),
915 					      linear_page_index(vma, end));
916 
917 	return 0;
918 }
919 #else
920 #define smaps_pte_hole		NULL
921 #endif /* CONFIG_SHMEM */
922 
smaps_pte_hole_lookup(unsigned long addr,struct mm_walk * walk)923 static void smaps_pte_hole_lookup(unsigned long addr, struct mm_walk *walk)
924 {
925 #ifdef CONFIG_SHMEM
926 	if (walk->ops->pte_hole) {
927 		/* depth is not used */
928 		smaps_pte_hole(addr, addr + PAGE_SIZE, 0, walk);
929 	}
930 #endif
931 }
932 
smaps_pte_entry(pte_t * pte,unsigned long addr,struct mm_walk * walk)933 static void smaps_pte_entry(pte_t *pte, unsigned long addr,
934 		struct mm_walk *walk)
935 {
936 	struct mem_size_stats *mss = walk->private;
937 	struct vm_area_struct *vma = walk->vma;
938 	bool locked = !!(vma->vm_flags & VM_LOCKED);
939 	struct page *page = NULL;
940 	bool present = false, young = false, dirty = false;
941 	pte_t ptent = ptep_get(pte);
942 
943 	if (pte_present(ptent)) {
944 		page = vm_normal_page(vma, addr, ptent);
945 		young = pte_young(ptent);
946 		dirty = pte_dirty(ptent);
947 		present = true;
948 	} else if (is_swap_pte(ptent)) {
949 		swp_entry_t swpent = pte_to_swp_entry(ptent);
950 
951 		if (!non_swap_entry(swpent)) {
952 			int mapcount;
953 
954 			mss->swap += PAGE_SIZE;
955 			mapcount = swp_swapcount(swpent);
956 			if (mapcount >= 2) {
957 				u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
958 
959 				do_div(pss_delta, mapcount);
960 				mss->swap_pss += pss_delta;
961 			} else {
962 				mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
963 			}
964 		} else if (is_pfn_swap_entry(swpent)) {
965 			if (is_device_private_entry(swpent))
966 				present = true;
967 			page = pfn_swap_entry_to_page(swpent);
968 		}
969 	} else {
970 		smaps_pte_hole_lookup(addr, walk);
971 		return;
972 	}
973 
974 	if (!page)
975 		return;
976 
977 	smaps_account(mss, page, false, young, dirty, locked, present);
978 }
979 
980 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
smaps_pmd_entry(pmd_t * pmd,unsigned long addr,struct mm_walk * walk)981 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
982 		struct mm_walk *walk)
983 {
984 	struct mem_size_stats *mss = walk->private;
985 	struct vm_area_struct *vma = walk->vma;
986 	bool locked = !!(vma->vm_flags & VM_LOCKED);
987 	struct page *page = NULL;
988 	bool present = false;
989 	struct folio *folio;
990 
991 	if (pmd_present(*pmd)) {
992 		page = vm_normal_page_pmd(vma, addr, *pmd);
993 		present = true;
994 	} else if (unlikely(thp_migration_supported() && is_swap_pmd(*pmd))) {
995 		swp_entry_t entry = pmd_to_swp_entry(*pmd);
996 
997 		if (is_pfn_swap_entry(entry))
998 			page = pfn_swap_entry_to_page(entry);
999 	}
1000 	if (IS_ERR_OR_NULL(page))
1001 		return;
1002 	folio = page_folio(page);
1003 	if (folio_test_anon(folio))
1004 		mss->anonymous_thp += HPAGE_PMD_SIZE;
1005 	else if (folio_test_swapbacked(folio))
1006 		mss->shmem_thp += HPAGE_PMD_SIZE;
1007 	else if (folio_is_zone_device(folio))
1008 		/* pass */;
1009 	else
1010 		mss->file_thp += HPAGE_PMD_SIZE;
1011 
1012 	smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd),
1013 		      locked, present);
1014 }
1015 #else
smaps_pmd_entry(pmd_t * pmd,unsigned long addr,struct mm_walk * walk)1016 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
1017 		struct mm_walk *walk)
1018 {
1019 }
1020 #endif
1021 
smaps_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)1022 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
1023 			   struct mm_walk *walk)
1024 {
1025 	struct vm_area_struct *vma = walk->vma;
1026 	pte_t *pte;
1027 	spinlock_t *ptl;
1028 
1029 	ptl = pmd_trans_huge_lock(pmd, vma);
1030 	if (ptl) {
1031 		smaps_pmd_entry(pmd, addr, walk);
1032 		spin_unlock(ptl);
1033 		goto out;
1034 	}
1035 
1036 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1037 	if (!pte) {
1038 		walk->action = ACTION_AGAIN;
1039 		return 0;
1040 	}
1041 	for (; addr != end; pte++, addr += PAGE_SIZE)
1042 		smaps_pte_entry(pte, addr, walk);
1043 	pte_unmap_unlock(pte - 1, ptl);
1044 out:
1045 	cond_resched();
1046 	return 0;
1047 }
1048 
show_smap_vma_flags(struct seq_file * m,struct vm_area_struct * vma)1049 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
1050 {
1051 	/*
1052 	 * Don't forget to update Documentation/ on changes.
1053 	 *
1054 	 * The length of the second argument of mnemonics[]
1055 	 * needs to be 3 instead of previously set 2
1056 	 * (i.e. from [BITS_PER_LONG][2] to [BITS_PER_LONG][3])
1057 	 * to avoid spurious
1058 	 * -Werror=unterminated-string-initialization warning
1059 	 *  with GCC 15
1060 	 */
1061 	static const char mnemonics[BITS_PER_LONG][3] = {
1062 		/*
1063 		 * In case if we meet a flag we don't know about.
1064 		 */
1065 		[0 ... (BITS_PER_LONG-1)] = "??",
1066 
1067 		[ilog2(VM_READ)]	= "rd",
1068 		[ilog2(VM_WRITE)]	= "wr",
1069 		[ilog2(VM_EXEC)]	= "ex",
1070 		[ilog2(VM_SHARED)]	= "sh",
1071 		[ilog2(VM_MAYREAD)]	= "mr",
1072 		[ilog2(VM_MAYWRITE)]	= "mw",
1073 		[ilog2(VM_MAYEXEC)]	= "me",
1074 		[ilog2(VM_MAYSHARE)]	= "ms",
1075 		[ilog2(VM_GROWSDOWN)]	= "gd",
1076 		[ilog2(VM_PFNMAP)]	= "pf",
1077 		[ilog2(VM_LOCKED)]	= "lo",
1078 		[ilog2(VM_IO)]		= "io",
1079 		[ilog2(VM_SEQ_READ)]	= "sr",
1080 		[ilog2(VM_RAND_READ)]	= "rr",
1081 		[ilog2(VM_DONTCOPY)]	= "dc",
1082 		[ilog2(VM_DONTEXPAND)]	= "de",
1083 		[ilog2(VM_LOCKONFAULT)]	= "lf",
1084 		[ilog2(VM_ACCOUNT)]	= "ac",
1085 		[ilog2(VM_NORESERVE)]	= "nr",
1086 		[ilog2(VM_HUGETLB)]	= "ht",
1087 		[ilog2(VM_SYNC)]	= "sf",
1088 		[ilog2(VM_ARCH_1)]	= "ar",
1089 		[ilog2(VM_WIPEONFORK)]	= "wf",
1090 		[ilog2(VM_DONTDUMP)]	= "dd",
1091 #ifdef CONFIG_ARM64_BTI
1092 		[ilog2(VM_ARM64_BTI)]	= "bt",
1093 #endif
1094 #ifdef CONFIG_MEM_SOFT_DIRTY
1095 		[ilog2(VM_SOFTDIRTY)]	= "sd",
1096 #endif
1097 		[ilog2(VM_MIXEDMAP)]	= "mm",
1098 		[ilog2(VM_HUGEPAGE)]	= "hg",
1099 		[ilog2(VM_NOHUGEPAGE)]	= "nh",
1100 		[ilog2(VM_MERGEABLE)]	= "mg",
1101 		[ilog2(VM_UFFD_MISSING)]= "um",
1102 		[ilog2(VM_UFFD_WP)]	= "uw",
1103 #ifdef CONFIG_ARM64_MTE
1104 		[ilog2(VM_MTE)]		= "mt",
1105 		[ilog2(VM_MTE_ALLOWED)]	= "",
1106 #endif
1107 #ifdef CONFIG_ARCH_HAS_PKEYS
1108 		/* These come out via ProtectionKey: */
1109 		[ilog2(VM_PKEY_BIT0)]	= "",
1110 		[ilog2(VM_PKEY_BIT1)]	= "",
1111 		[ilog2(VM_PKEY_BIT2)]	= "",
1112 #if VM_PKEY_BIT3
1113 		[ilog2(VM_PKEY_BIT3)]	= "",
1114 #endif
1115 #if VM_PKEY_BIT4
1116 		[ilog2(VM_PKEY_BIT4)]	= "",
1117 #endif
1118 #endif /* CONFIG_ARCH_HAS_PKEYS */
1119 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
1120 		[ilog2(VM_UFFD_MINOR)]	= "ui",
1121 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
1122 #ifdef CONFIG_ARCH_HAS_USER_SHADOW_STACK
1123 		[ilog2(VM_SHADOW_STACK)] = "ss",
1124 #endif
1125 #if defined(CONFIG_64BIT) || defined(CONFIG_PPC32)
1126 		[ilog2(VM_DROPPABLE)] = "dp",
1127 #endif
1128 #ifdef CONFIG_64BIT
1129 		[ilog2(VM_SEALED)] = "sl",
1130 #endif
1131 	};
1132 	size_t i;
1133 
1134 	seq_puts(m, "VmFlags: ");
1135 	for (i = 0; i < BITS_PER_LONG; i++) {
1136 		if (!mnemonics[i][0])
1137 			continue;
1138 		if (vma->vm_flags & (1UL << i))
1139 			seq_printf(m, "%s ", mnemonics[i]);
1140 	}
1141 	seq_putc(m, '\n');
1142 }
1143 
1144 #ifdef CONFIG_HUGETLB_PAGE
smaps_hugetlb_range(pte_t * pte,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)1145 static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
1146 				 unsigned long addr, unsigned long end,
1147 				 struct mm_walk *walk)
1148 {
1149 	struct mem_size_stats *mss = walk->private;
1150 	struct vm_area_struct *vma = walk->vma;
1151 	struct folio *folio = NULL;
1152 	bool present = false;
1153 	spinlock_t *ptl;
1154 	pte_t ptent;
1155 
1156 	ptl = huge_pte_lock(hstate_vma(vma), walk->mm, pte);
1157 	ptent = huge_ptep_get(walk->mm, addr, pte);
1158 	if (pte_present(ptent)) {
1159 		folio = page_folio(pte_page(ptent));
1160 		present = true;
1161 	} else if (is_swap_pte(ptent)) {
1162 		swp_entry_t swpent = pte_to_swp_entry(ptent);
1163 
1164 		if (is_pfn_swap_entry(swpent))
1165 			folio = pfn_swap_entry_folio(swpent);
1166 	}
1167 
1168 	if (folio) {
1169 		/* We treat non-present entries as "maybe shared". */
1170 		if (!present || folio_maybe_mapped_shared(folio) ||
1171 		    hugetlb_pmd_shared(pte))
1172 			mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
1173 		else
1174 			mss->private_hugetlb += huge_page_size(hstate_vma(vma));
1175 	}
1176 	spin_unlock(ptl);
1177 	return 0;
1178 }
1179 #else
1180 #define smaps_hugetlb_range	NULL
1181 #endif /* HUGETLB_PAGE */
1182 
1183 static const struct mm_walk_ops smaps_walk_ops = {
1184 	.pmd_entry		= smaps_pte_range,
1185 	.hugetlb_entry		= smaps_hugetlb_range,
1186 	.walk_lock		= PGWALK_RDLOCK,
1187 };
1188 
1189 static const struct mm_walk_ops smaps_shmem_walk_ops = {
1190 	.pmd_entry		= smaps_pte_range,
1191 	.hugetlb_entry		= smaps_hugetlb_range,
1192 	.pte_hole		= smaps_pte_hole,
1193 	.walk_lock		= PGWALK_RDLOCK,
1194 };
1195 
1196 /*
1197  * Gather mem stats from @vma with the indicated beginning
1198  * address @start, and keep them in @mss.
1199  *
1200  * Use vm_start of @vma as the beginning address if @start is 0.
1201  */
smap_gather_stats(struct vm_area_struct * vma,struct mem_size_stats * mss,unsigned long start)1202 static void smap_gather_stats(struct vm_area_struct *vma,
1203 		struct mem_size_stats *mss, unsigned long start)
1204 {
1205 	const struct mm_walk_ops *ops = &smaps_walk_ops;
1206 
1207 	/* Invalid start */
1208 	if (start >= vma->vm_end)
1209 		return;
1210 
1211 	if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
1212 		/*
1213 		 * For shared or readonly shmem mappings we know that all
1214 		 * swapped out pages belong to the shmem object, and we can
1215 		 * obtain the swap value much more efficiently. For private
1216 		 * writable mappings, we might have COW pages that are
1217 		 * not affected by the parent swapped out pages of the shmem
1218 		 * object, so we have to distinguish them during the page walk.
1219 		 * Unless we know that the shmem object (or the part mapped by
1220 		 * our VMA) has no swapped out pages at all.
1221 		 */
1222 		unsigned long shmem_swapped = shmem_swap_usage(vma);
1223 
1224 		if (!start && (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
1225 					!(vma->vm_flags & VM_WRITE))) {
1226 			mss->swap += shmem_swapped;
1227 		} else {
1228 			ops = &smaps_shmem_walk_ops;
1229 		}
1230 	}
1231 
1232 	/* mmap_lock is held in m_start */
1233 	if (!start)
1234 		walk_page_vma(vma, ops, mss);
1235 	else
1236 		walk_page_range(vma->vm_mm, start, vma->vm_end, ops, mss);
1237 }
1238 
1239 #define SEQ_PUT_DEC(str, val) \
1240 		seq_put_decimal_ull_width(m, str, (val) >> 10, 8)
1241 
1242 /* Show the contents common for smaps and smaps_rollup */
__show_smap(struct seq_file * m,const struct mem_size_stats * mss,bool rollup_mode)1243 static void __show_smap(struct seq_file *m, const struct mem_size_stats *mss,
1244 	bool rollup_mode)
1245 {
1246 	SEQ_PUT_DEC("Rss:            ", mss->resident);
1247 	SEQ_PUT_DEC(" kB\nPss:            ", mss->pss >> PSS_SHIFT);
1248 	SEQ_PUT_DEC(" kB\nPss_Dirty:      ", mss->pss_dirty >> PSS_SHIFT);
1249 	if (rollup_mode) {
1250 		/*
1251 		 * These are meaningful only for smaps_rollup, otherwise two of
1252 		 * them are zero, and the other one is the same as Pss.
1253 		 */
1254 		SEQ_PUT_DEC(" kB\nPss_Anon:       ",
1255 			mss->pss_anon >> PSS_SHIFT);
1256 		SEQ_PUT_DEC(" kB\nPss_File:       ",
1257 			mss->pss_file >> PSS_SHIFT);
1258 		SEQ_PUT_DEC(" kB\nPss_Shmem:      ",
1259 			mss->pss_shmem >> PSS_SHIFT);
1260 	}
1261 	SEQ_PUT_DEC(" kB\nShared_Clean:   ", mss->shared_clean);
1262 	SEQ_PUT_DEC(" kB\nShared_Dirty:   ", mss->shared_dirty);
1263 	SEQ_PUT_DEC(" kB\nPrivate_Clean:  ", mss->private_clean);
1264 	SEQ_PUT_DEC(" kB\nPrivate_Dirty:  ", mss->private_dirty);
1265 	SEQ_PUT_DEC(" kB\nReferenced:     ", mss->referenced);
1266 	SEQ_PUT_DEC(" kB\nAnonymous:      ", mss->anonymous);
1267 	SEQ_PUT_DEC(" kB\nKSM:            ", mss->ksm);
1268 	SEQ_PUT_DEC(" kB\nLazyFree:       ", mss->lazyfree);
1269 	SEQ_PUT_DEC(" kB\nAnonHugePages:  ", mss->anonymous_thp);
1270 	SEQ_PUT_DEC(" kB\nShmemPmdMapped: ", mss->shmem_thp);
1271 	SEQ_PUT_DEC(" kB\nFilePmdMapped:  ", mss->file_thp);
1272 	SEQ_PUT_DEC(" kB\nShared_Hugetlb: ", mss->shared_hugetlb);
1273 	seq_put_decimal_ull_width(m, " kB\nPrivate_Hugetlb: ",
1274 				  mss->private_hugetlb >> 10, 7);
1275 	SEQ_PUT_DEC(" kB\nSwap:           ", mss->swap);
1276 	SEQ_PUT_DEC(" kB\nSwapPss:        ",
1277 					mss->swap_pss >> PSS_SHIFT);
1278 	SEQ_PUT_DEC(" kB\nLocked:         ",
1279 					mss->pss_locked >> PSS_SHIFT);
1280 	seq_puts(m, " kB\n");
1281 }
1282 
show_smap(struct seq_file * m,void * v)1283 static int show_smap(struct seq_file *m, void *v)
1284 {
1285 	struct vm_area_struct *vma = v;
1286 	struct mem_size_stats mss = {};
1287 
1288 	smap_gather_stats(vma, &mss, 0);
1289 
1290 	show_map_vma(m, vma);
1291 
1292 	SEQ_PUT_DEC("Size:           ", vma->vm_end - vma->vm_start);
1293 	SEQ_PUT_DEC(" kB\nKernelPageSize: ", vma_kernel_pagesize(vma));
1294 	SEQ_PUT_DEC(" kB\nMMUPageSize:    ", vma_mmu_pagesize(vma));
1295 	seq_puts(m, " kB\n");
1296 
1297 	__show_smap(m, &mss, false);
1298 
1299 	seq_printf(m, "THPeligible:    %8u\n",
1300 		   !!thp_vma_allowable_orders(vma, vma->vm_flags,
1301 			   TVA_SMAPS | TVA_ENFORCE_SYSFS, THP_ORDERS_ALL));
1302 
1303 	if (arch_pkeys_enabled())
1304 		seq_printf(m, "ProtectionKey:  %8u\n", vma_pkey(vma));
1305 	show_smap_vma_flags(m, vma);
1306 
1307 	return 0;
1308 }
1309 
show_smaps_rollup(struct seq_file * m,void * v)1310 static int show_smaps_rollup(struct seq_file *m, void *v)
1311 {
1312 	struct proc_maps_private *priv = m->private;
1313 	struct mem_size_stats mss = {};
1314 	struct mm_struct *mm = priv->mm;
1315 	struct vm_area_struct *vma;
1316 	unsigned long vma_start = 0, last_vma_end = 0;
1317 	int ret = 0;
1318 	VMA_ITERATOR(vmi, mm, 0);
1319 
1320 	priv->task = get_proc_task(priv->inode);
1321 	if (!priv->task)
1322 		return -ESRCH;
1323 
1324 	if (!mm || !mmget_not_zero(mm)) {
1325 		ret = -ESRCH;
1326 		goto out_put_task;
1327 	}
1328 
1329 	ret = mmap_read_lock_killable(mm);
1330 	if (ret)
1331 		goto out_put_mm;
1332 
1333 	hold_task_mempolicy(priv);
1334 	vma = vma_next(&vmi);
1335 
1336 	if (unlikely(!vma))
1337 		goto empty_set;
1338 
1339 	vma_start = vma->vm_start;
1340 	do {
1341 		smap_gather_stats(vma, &mss, 0);
1342 		last_vma_end = vma->vm_end;
1343 
1344 		/*
1345 		 * Release mmap_lock temporarily if someone wants to
1346 		 * access it for write request.
1347 		 */
1348 		if (mmap_lock_is_contended(mm)) {
1349 			vma_iter_invalidate(&vmi);
1350 			mmap_read_unlock(mm);
1351 			ret = mmap_read_lock_killable(mm);
1352 			if (ret) {
1353 				release_task_mempolicy(priv);
1354 				goto out_put_mm;
1355 			}
1356 
1357 			/*
1358 			 * After dropping the lock, there are four cases to
1359 			 * consider. See the following example for explanation.
1360 			 *
1361 			 *   +------+------+-----------+
1362 			 *   | VMA1 | VMA2 | VMA3      |
1363 			 *   +------+------+-----------+
1364 			 *   |      |      |           |
1365 			 *  4k     8k     16k         400k
1366 			 *
1367 			 * Suppose we drop the lock after reading VMA2 due to
1368 			 * contention, then we get:
1369 			 *
1370 			 *	last_vma_end = 16k
1371 			 *
1372 			 * 1) VMA2 is freed, but VMA3 exists:
1373 			 *
1374 			 *    vma_next(vmi) will return VMA3.
1375 			 *    In this case, just continue from VMA3.
1376 			 *
1377 			 * 2) VMA2 still exists:
1378 			 *
1379 			 *    vma_next(vmi) will return VMA3.
1380 			 *    In this case, just continue from VMA3.
1381 			 *
1382 			 * 3) No more VMAs can be found:
1383 			 *
1384 			 *    vma_next(vmi) will return NULL.
1385 			 *    No more things to do, just break.
1386 			 *
1387 			 * 4) (last_vma_end - 1) is the middle of a vma (VMA'):
1388 			 *
1389 			 *    vma_next(vmi) will return VMA' whose range
1390 			 *    contains last_vma_end.
1391 			 *    Iterate VMA' from last_vma_end.
1392 			 */
1393 			vma = vma_next(&vmi);
1394 			/* Case 3 above */
1395 			if (!vma)
1396 				break;
1397 
1398 			/* Case 1 and 2 above */
1399 			if (vma->vm_start >= last_vma_end) {
1400 				smap_gather_stats(vma, &mss, 0);
1401 				last_vma_end = vma->vm_end;
1402 				continue;
1403 			}
1404 
1405 			/* Case 4 above */
1406 			if (vma->vm_end > last_vma_end) {
1407 				smap_gather_stats(vma, &mss, last_vma_end);
1408 				last_vma_end = vma->vm_end;
1409 			}
1410 		}
1411 	} for_each_vma(vmi, vma);
1412 
1413 empty_set:
1414 	show_vma_header_prefix(m, vma_start, last_vma_end, 0, 0, 0, 0);
1415 	seq_pad(m, ' ');
1416 	seq_puts(m, "[rollup]\n");
1417 
1418 	__show_smap(m, &mss, true);
1419 
1420 	release_task_mempolicy(priv);
1421 	mmap_read_unlock(mm);
1422 
1423 out_put_mm:
1424 	mmput(mm);
1425 out_put_task:
1426 	put_task_struct(priv->task);
1427 	priv->task = NULL;
1428 
1429 	return ret;
1430 }
1431 #undef SEQ_PUT_DEC
1432 
1433 static const struct seq_operations proc_pid_smaps_op = {
1434 	.start	= m_start,
1435 	.next	= m_next,
1436 	.stop	= m_stop,
1437 	.show	= show_smap
1438 };
1439 
pid_smaps_open(struct inode * inode,struct file * file)1440 static int pid_smaps_open(struct inode *inode, struct file *file)
1441 {
1442 	return do_maps_open(inode, file, &proc_pid_smaps_op);
1443 }
1444 
smaps_rollup_open(struct inode * inode,struct file * file)1445 static int smaps_rollup_open(struct inode *inode, struct file *file)
1446 {
1447 	int ret;
1448 	struct proc_maps_private *priv;
1449 
1450 	priv = kzalloc(sizeof(*priv), GFP_KERNEL_ACCOUNT);
1451 	if (!priv)
1452 		return -ENOMEM;
1453 
1454 	ret = single_open(file, show_smaps_rollup, priv);
1455 	if (ret)
1456 		goto out_free;
1457 
1458 	priv->inode = inode;
1459 	priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
1460 	if (IS_ERR_OR_NULL(priv->mm)) {
1461 		ret = priv->mm ? PTR_ERR(priv->mm) : -ESRCH;
1462 
1463 		single_release(inode, file);
1464 		goto out_free;
1465 	}
1466 
1467 	return 0;
1468 
1469 out_free:
1470 	kfree(priv);
1471 	return ret;
1472 }
1473 
smaps_rollup_release(struct inode * inode,struct file * file)1474 static int smaps_rollup_release(struct inode *inode, struct file *file)
1475 {
1476 	struct seq_file *seq = file->private_data;
1477 	struct proc_maps_private *priv = seq->private;
1478 
1479 	if (priv->mm)
1480 		mmdrop(priv->mm);
1481 
1482 	kfree(priv);
1483 	return single_release(inode, file);
1484 }
1485 
1486 const struct file_operations proc_pid_smaps_operations = {
1487 	.open		= pid_smaps_open,
1488 	.read		= seq_read,
1489 	.llseek		= seq_lseek,
1490 	.release	= proc_map_release,
1491 };
1492 
1493 const struct file_operations proc_pid_smaps_rollup_operations = {
1494 	.open		= smaps_rollup_open,
1495 	.read		= seq_read,
1496 	.llseek		= seq_lseek,
1497 	.release	= smaps_rollup_release,
1498 };
1499 
1500 enum clear_refs_types {
1501 	CLEAR_REFS_ALL = 1,
1502 	CLEAR_REFS_ANON,
1503 	CLEAR_REFS_MAPPED,
1504 	CLEAR_REFS_SOFT_DIRTY,
1505 	CLEAR_REFS_MM_HIWATER_RSS,
1506 	CLEAR_REFS_LAST,
1507 };
1508 
1509 struct clear_refs_private {
1510 	enum clear_refs_types type;
1511 };
1512 
1513 #ifdef CONFIG_MEM_SOFT_DIRTY
1514 
pte_is_pinned(struct vm_area_struct * vma,unsigned long addr,pte_t pte)1515 static inline bool pte_is_pinned(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1516 {
1517 	struct folio *folio;
1518 
1519 	if (!pte_write(pte))
1520 		return false;
1521 	if (!is_cow_mapping(vma->vm_flags))
1522 		return false;
1523 	if (likely(!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags)))
1524 		return false;
1525 	folio = vm_normal_folio(vma, addr, pte);
1526 	if (!folio)
1527 		return false;
1528 	return folio_maybe_dma_pinned(folio);
1529 }
1530 
clear_soft_dirty(struct vm_area_struct * vma,unsigned long addr,pte_t * pte)1531 static inline void clear_soft_dirty(struct vm_area_struct *vma,
1532 		unsigned long addr, pte_t *pte)
1533 {
1534 	/*
1535 	 * The soft-dirty tracker uses #PF-s to catch writes
1536 	 * to pages, so write-protect the pte as well. See the
1537 	 * Documentation/admin-guide/mm/soft-dirty.rst for full description
1538 	 * of how soft-dirty works.
1539 	 */
1540 	pte_t ptent = ptep_get(pte);
1541 
1542 	if (pte_present(ptent)) {
1543 		pte_t old_pte;
1544 
1545 		if (pte_is_pinned(vma, addr, ptent))
1546 			return;
1547 		old_pte = ptep_modify_prot_start(vma, addr, pte);
1548 		ptent = pte_wrprotect(old_pte);
1549 		ptent = pte_clear_soft_dirty(ptent);
1550 		ptep_modify_prot_commit(vma, addr, pte, old_pte, ptent);
1551 	} else if (is_swap_pte(ptent)) {
1552 		ptent = pte_swp_clear_soft_dirty(ptent);
1553 		set_pte_at(vma->vm_mm, addr, pte, ptent);
1554 	}
1555 }
1556 #else
clear_soft_dirty(struct vm_area_struct * vma,unsigned long addr,pte_t * pte)1557 static inline void clear_soft_dirty(struct vm_area_struct *vma,
1558 		unsigned long addr, pte_t *pte)
1559 {
1560 }
1561 #endif
1562 
1563 #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
clear_soft_dirty_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)1564 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1565 		unsigned long addr, pmd_t *pmdp)
1566 {
1567 	pmd_t old, pmd = *pmdp;
1568 
1569 	if (pmd_present(pmd)) {
1570 		/* See comment in change_huge_pmd() */
1571 		old = pmdp_invalidate(vma, addr, pmdp);
1572 		if (pmd_dirty(old))
1573 			pmd = pmd_mkdirty(pmd);
1574 		if (pmd_young(old))
1575 			pmd = pmd_mkyoung(pmd);
1576 
1577 		pmd = pmd_wrprotect(pmd);
1578 		pmd = pmd_clear_soft_dirty(pmd);
1579 
1580 		set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1581 	} else if (is_migration_entry(pmd_to_swp_entry(pmd))) {
1582 		pmd = pmd_swp_clear_soft_dirty(pmd);
1583 		set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1584 	}
1585 }
1586 #else
clear_soft_dirty_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)1587 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1588 		unsigned long addr, pmd_t *pmdp)
1589 {
1590 }
1591 #endif
1592 
clear_refs_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)1593 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
1594 				unsigned long end, struct mm_walk *walk)
1595 {
1596 	struct clear_refs_private *cp = walk->private;
1597 	struct vm_area_struct *vma = walk->vma;
1598 	pte_t *pte, ptent;
1599 	spinlock_t *ptl;
1600 	struct folio *folio;
1601 
1602 	ptl = pmd_trans_huge_lock(pmd, vma);
1603 	if (ptl) {
1604 		if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1605 			clear_soft_dirty_pmd(vma, addr, pmd);
1606 			goto out;
1607 		}
1608 
1609 		if (!pmd_present(*pmd))
1610 			goto out;
1611 
1612 		folio = pmd_folio(*pmd);
1613 
1614 		/* Clear accessed and referenced bits. */
1615 		pmdp_test_and_clear_young(vma, addr, pmd);
1616 		folio_test_clear_young(folio);
1617 		folio_clear_referenced(folio);
1618 out:
1619 		spin_unlock(ptl);
1620 		return 0;
1621 	}
1622 
1623 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1624 	if (!pte) {
1625 		walk->action = ACTION_AGAIN;
1626 		return 0;
1627 	}
1628 	for (; addr != end; pte++, addr += PAGE_SIZE) {
1629 		ptent = ptep_get(pte);
1630 
1631 		if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1632 			clear_soft_dirty(vma, addr, pte);
1633 			continue;
1634 		}
1635 
1636 		if (!pte_present(ptent))
1637 			continue;
1638 
1639 		folio = vm_normal_folio(vma, addr, ptent);
1640 		if (!folio)
1641 			continue;
1642 
1643 		/* Clear accessed and referenced bits. */
1644 		ptep_test_and_clear_young(vma, addr, pte);
1645 		folio_test_clear_young(folio);
1646 		folio_clear_referenced(folio);
1647 	}
1648 	pte_unmap_unlock(pte - 1, ptl);
1649 	cond_resched();
1650 	return 0;
1651 }
1652 
clear_refs_test_walk(unsigned long start,unsigned long end,struct mm_walk * walk)1653 static int clear_refs_test_walk(unsigned long start, unsigned long end,
1654 				struct mm_walk *walk)
1655 {
1656 	struct clear_refs_private *cp = walk->private;
1657 	struct vm_area_struct *vma = walk->vma;
1658 
1659 	if (vma->vm_flags & VM_PFNMAP)
1660 		return 1;
1661 
1662 	/*
1663 	 * Writing 1 to /proc/pid/clear_refs affects all pages.
1664 	 * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
1665 	 * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
1666 	 * Writing 4 to /proc/pid/clear_refs affects all pages.
1667 	 */
1668 	if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
1669 		return 1;
1670 	if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
1671 		return 1;
1672 	return 0;
1673 }
1674 
1675 static const struct mm_walk_ops clear_refs_walk_ops = {
1676 	.pmd_entry		= clear_refs_pte_range,
1677 	.test_walk		= clear_refs_test_walk,
1678 	.walk_lock		= PGWALK_WRLOCK,
1679 };
1680 
clear_refs_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1681 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
1682 				size_t count, loff_t *ppos)
1683 {
1684 	struct task_struct *task;
1685 	char buffer[PROC_NUMBUF] = {};
1686 	struct mm_struct *mm;
1687 	struct vm_area_struct *vma;
1688 	enum clear_refs_types type;
1689 	int itype;
1690 	int rv;
1691 
1692 	if (count > sizeof(buffer) - 1)
1693 		count = sizeof(buffer) - 1;
1694 	if (copy_from_user(buffer, buf, count))
1695 		return -EFAULT;
1696 	rv = kstrtoint(strstrip(buffer), 10, &itype);
1697 	if (rv < 0)
1698 		return rv;
1699 	type = (enum clear_refs_types)itype;
1700 	if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
1701 		return -EINVAL;
1702 
1703 	task = get_proc_task(file_inode(file));
1704 	if (!task)
1705 		return -ESRCH;
1706 	mm = get_task_mm(task);
1707 	if (mm) {
1708 		VMA_ITERATOR(vmi, mm, 0);
1709 		struct mmu_notifier_range range;
1710 		struct clear_refs_private cp = {
1711 			.type = type,
1712 		};
1713 
1714 		if (mmap_write_lock_killable(mm)) {
1715 			count = -EINTR;
1716 			goto out_mm;
1717 		}
1718 		if (type == CLEAR_REFS_MM_HIWATER_RSS) {
1719 			/*
1720 			 * Writing 5 to /proc/pid/clear_refs resets the peak
1721 			 * resident set size to this mm's current rss value.
1722 			 */
1723 			reset_mm_hiwater_rss(mm);
1724 			goto out_unlock;
1725 		}
1726 
1727 		if (type == CLEAR_REFS_SOFT_DIRTY) {
1728 			for_each_vma(vmi, vma) {
1729 				if (!(vma->vm_flags & VM_SOFTDIRTY))
1730 					continue;
1731 				vm_flags_clear(vma, VM_SOFTDIRTY);
1732 				vma_set_page_prot(vma);
1733 			}
1734 
1735 			inc_tlb_flush_pending(mm);
1736 			mmu_notifier_range_init(&range, MMU_NOTIFY_SOFT_DIRTY,
1737 						0, mm, 0, -1UL);
1738 			mmu_notifier_invalidate_range_start(&range);
1739 		}
1740 		walk_page_range(mm, 0, -1, &clear_refs_walk_ops, &cp);
1741 		if (type == CLEAR_REFS_SOFT_DIRTY) {
1742 			mmu_notifier_invalidate_range_end(&range);
1743 			flush_tlb_mm(mm);
1744 			dec_tlb_flush_pending(mm);
1745 		}
1746 out_unlock:
1747 		mmap_write_unlock(mm);
1748 out_mm:
1749 		mmput(mm);
1750 	}
1751 	put_task_struct(task);
1752 
1753 	return count;
1754 }
1755 
1756 const struct file_operations proc_clear_refs_operations = {
1757 	.write		= clear_refs_write,
1758 	.llseek		= noop_llseek,
1759 };
1760 
1761 typedef struct {
1762 	u64 pme;
1763 } pagemap_entry_t;
1764 
1765 struct pagemapread {
1766 	int pos, len;		/* units: PM_ENTRY_BYTES, not bytes */
1767 	pagemap_entry_t *buffer;
1768 	bool show_pfn;
1769 };
1770 
1771 #define PAGEMAP_WALK_SIZE	(PMD_SIZE)
1772 #define PAGEMAP_WALK_MASK	(PMD_MASK)
1773 
1774 #define PM_ENTRY_BYTES		sizeof(pagemap_entry_t)
1775 #define PM_PFRAME_BITS		55
1776 #define PM_PFRAME_MASK		GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1777 #define PM_SOFT_DIRTY		BIT_ULL(55)
1778 #define PM_MMAP_EXCLUSIVE	BIT_ULL(56)
1779 #define PM_UFFD_WP		BIT_ULL(57)
1780 #define PM_GUARD_REGION		BIT_ULL(58)
1781 #define PM_FILE			BIT_ULL(61)
1782 #define PM_SWAP			BIT_ULL(62)
1783 #define PM_PRESENT		BIT_ULL(63)
1784 
1785 #define PM_END_OF_BUFFER    1
1786 
make_pme(u64 frame,u64 flags)1787 static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1788 {
1789 	return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1790 }
1791 
add_to_pagemap(pagemap_entry_t * pme,struct pagemapread * pm)1792 static int add_to_pagemap(pagemap_entry_t *pme, struct pagemapread *pm)
1793 {
1794 	pm->buffer[pm->pos++] = *pme;
1795 	if (pm->pos >= pm->len)
1796 		return PM_END_OF_BUFFER;
1797 	return 0;
1798 }
1799 
__folio_page_mapped_exclusively(struct folio * folio,struct page * page)1800 static bool __folio_page_mapped_exclusively(struct folio *folio, struct page *page)
1801 {
1802 	if (IS_ENABLED(CONFIG_PAGE_MAPCOUNT))
1803 		return folio_precise_page_mapcount(folio, page) == 1;
1804 	return !folio_maybe_mapped_shared(folio);
1805 }
1806 
pagemap_pte_hole(unsigned long start,unsigned long end,__always_unused int depth,struct mm_walk * walk)1807 static int pagemap_pte_hole(unsigned long start, unsigned long end,
1808 			    __always_unused int depth, struct mm_walk *walk)
1809 {
1810 	struct pagemapread *pm = walk->private;
1811 	unsigned long addr = start;
1812 	int err = 0;
1813 
1814 	while (addr < end) {
1815 		struct vm_area_struct *vma = find_vma(walk->mm, addr);
1816 		pagemap_entry_t pme = make_pme(0, 0);
1817 		/* End of address space hole, which we mark as non-present. */
1818 		unsigned long hole_end;
1819 
1820 		if (vma)
1821 			hole_end = min(end, vma->vm_start);
1822 		else
1823 			hole_end = end;
1824 
1825 		for (; addr < hole_end; addr += PAGE_SIZE) {
1826 			err = add_to_pagemap(&pme, pm);
1827 			if (err)
1828 				goto out;
1829 		}
1830 
1831 		if (!vma)
1832 			break;
1833 
1834 		/* Addresses in the VMA. */
1835 		if (vma->vm_flags & VM_SOFTDIRTY)
1836 			pme = make_pme(0, PM_SOFT_DIRTY);
1837 		for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1838 			err = add_to_pagemap(&pme, pm);
1839 			if (err)
1840 				goto out;
1841 		}
1842 	}
1843 out:
1844 	return err;
1845 }
1846 
pte_to_pagemap_entry(struct pagemapread * pm,struct vm_area_struct * vma,unsigned long addr,pte_t pte)1847 static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1848 		struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1849 {
1850 	u64 frame = 0, flags = 0;
1851 	struct page *page = NULL;
1852 	struct folio *folio;
1853 
1854 	if (pte_present(pte)) {
1855 		if (pm->show_pfn)
1856 			frame = pte_pfn(pte);
1857 		flags |= PM_PRESENT;
1858 		page = vm_normal_page(vma, addr, pte);
1859 		if (pte_soft_dirty(pte))
1860 			flags |= PM_SOFT_DIRTY;
1861 		if (pte_uffd_wp(pte))
1862 			flags |= PM_UFFD_WP;
1863 	} else if (is_swap_pte(pte)) {
1864 		swp_entry_t entry;
1865 		if (pte_swp_soft_dirty(pte))
1866 			flags |= PM_SOFT_DIRTY;
1867 		if (pte_swp_uffd_wp(pte))
1868 			flags |= PM_UFFD_WP;
1869 		entry = pte_to_swp_entry(pte);
1870 		if (pm->show_pfn) {
1871 			pgoff_t offset;
1872 			/*
1873 			 * For PFN swap offsets, keeping the offset field
1874 			 * to be PFN only to be compatible with old smaps.
1875 			 */
1876 			if (is_pfn_swap_entry(entry))
1877 				offset = swp_offset_pfn(entry);
1878 			else
1879 				offset = swp_offset(entry);
1880 			frame = swp_type(entry) |
1881 			    (offset << MAX_SWAPFILES_SHIFT);
1882 		}
1883 		flags |= PM_SWAP;
1884 		if (is_pfn_swap_entry(entry))
1885 			page = pfn_swap_entry_to_page(entry);
1886 		if (pte_marker_entry_uffd_wp(entry))
1887 			flags |= PM_UFFD_WP;
1888 		if (is_guard_swp_entry(entry))
1889 			flags |=  PM_GUARD_REGION;
1890 	}
1891 
1892 	if (page) {
1893 		folio = page_folio(page);
1894 		if (!folio_test_anon(folio))
1895 			flags |= PM_FILE;
1896 		if ((flags & PM_PRESENT) &&
1897 		    __folio_page_mapped_exclusively(folio, page))
1898 			flags |= PM_MMAP_EXCLUSIVE;
1899 	}
1900 	if (vma->vm_flags & VM_SOFTDIRTY)
1901 		flags |= PM_SOFT_DIRTY;
1902 
1903 	return make_pme(frame, flags);
1904 }
1905 
pagemap_pmd_range(pmd_t * pmdp,unsigned long addr,unsigned long end,struct mm_walk * walk)1906 static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1907 			     struct mm_walk *walk)
1908 {
1909 	struct vm_area_struct *vma = walk->vma;
1910 	struct pagemapread *pm = walk->private;
1911 	spinlock_t *ptl;
1912 	pte_t *pte, *orig_pte;
1913 	int err = 0;
1914 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1915 
1916 	ptl = pmd_trans_huge_lock(pmdp, vma);
1917 	if (ptl) {
1918 		unsigned int idx = (addr & ~PMD_MASK) >> PAGE_SHIFT;
1919 		u64 flags = 0, frame = 0;
1920 		pmd_t pmd = *pmdp;
1921 		struct page *page = NULL;
1922 		struct folio *folio = NULL;
1923 
1924 		if (vma->vm_flags & VM_SOFTDIRTY)
1925 			flags |= PM_SOFT_DIRTY;
1926 
1927 		if (pmd_present(pmd)) {
1928 			page = pmd_page(pmd);
1929 
1930 			flags |= PM_PRESENT;
1931 			if (pmd_soft_dirty(pmd))
1932 				flags |= PM_SOFT_DIRTY;
1933 			if (pmd_uffd_wp(pmd))
1934 				flags |= PM_UFFD_WP;
1935 			if (pm->show_pfn)
1936 				frame = pmd_pfn(pmd) + idx;
1937 		}
1938 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1939 		else if (is_swap_pmd(pmd)) {
1940 			swp_entry_t entry = pmd_to_swp_entry(pmd);
1941 			unsigned long offset;
1942 
1943 			if (pm->show_pfn) {
1944 				if (is_pfn_swap_entry(entry))
1945 					offset = swp_offset_pfn(entry) + idx;
1946 				else
1947 					offset = swp_offset(entry) + idx;
1948 				frame = swp_type(entry) |
1949 					(offset << MAX_SWAPFILES_SHIFT);
1950 			}
1951 			flags |= PM_SWAP;
1952 			if (pmd_swp_soft_dirty(pmd))
1953 				flags |= PM_SOFT_DIRTY;
1954 			if (pmd_swp_uffd_wp(pmd))
1955 				flags |= PM_UFFD_WP;
1956 			VM_BUG_ON(!is_pmd_migration_entry(pmd));
1957 			page = pfn_swap_entry_to_page(entry);
1958 		}
1959 #endif
1960 
1961 		if (page) {
1962 			folio = page_folio(page);
1963 			if (!folio_test_anon(folio))
1964 				flags |= PM_FILE;
1965 		}
1966 
1967 		for (; addr != end; addr += PAGE_SIZE, idx++) {
1968 			u64 cur_flags = flags;
1969 			pagemap_entry_t pme;
1970 
1971 			if (folio && (flags & PM_PRESENT) &&
1972 			    __folio_page_mapped_exclusively(folio, page))
1973 				cur_flags |= PM_MMAP_EXCLUSIVE;
1974 
1975 			pme = make_pme(frame, cur_flags);
1976 			err = add_to_pagemap(&pme, pm);
1977 			if (err)
1978 				break;
1979 			if (pm->show_pfn) {
1980 				if (flags & PM_PRESENT)
1981 					frame++;
1982 				else if (flags & PM_SWAP)
1983 					frame += (1 << MAX_SWAPFILES_SHIFT);
1984 			}
1985 		}
1986 		spin_unlock(ptl);
1987 		return err;
1988 	}
1989 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1990 
1991 	/*
1992 	 * We can assume that @vma always points to a valid one and @end never
1993 	 * goes beyond vma->vm_end.
1994 	 */
1995 	orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1996 	if (!pte) {
1997 		walk->action = ACTION_AGAIN;
1998 		return err;
1999 	}
2000 	for (; addr < end; pte++, addr += PAGE_SIZE) {
2001 		pagemap_entry_t pme;
2002 
2003 		pme = pte_to_pagemap_entry(pm, vma, addr, ptep_get(pte));
2004 		err = add_to_pagemap(&pme, pm);
2005 		if (err)
2006 			break;
2007 	}
2008 	pte_unmap_unlock(orig_pte, ptl);
2009 
2010 	cond_resched();
2011 
2012 	return err;
2013 }
2014 
2015 #ifdef CONFIG_HUGETLB_PAGE
2016 /* This function walks within one hugetlb entry in the single call */
pagemap_hugetlb_range(pte_t * ptep,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)2017 static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
2018 				 unsigned long addr, unsigned long end,
2019 				 struct mm_walk *walk)
2020 {
2021 	struct pagemapread *pm = walk->private;
2022 	struct vm_area_struct *vma = walk->vma;
2023 	u64 flags = 0, frame = 0;
2024 	spinlock_t *ptl;
2025 	int err = 0;
2026 	pte_t pte;
2027 
2028 	if (vma->vm_flags & VM_SOFTDIRTY)
2029 		flags |= PM_SOFT_DIRTY;
2030 
2031 	ptl = huge_pte_lock(hstate_vma(vma), walk->mm, ptep);
2032 	pte = huge_ptep_get(walk->mm, addr, ptep);
2033 	if (pte_present(pte)) {
2034 		struct folio *folio = page_folio(pte_page(pte));
2035 
2036 		if (!folio_test_anon(folio))
2037 			flags |= PM_FILE;
2038 
2039 		if (!folio_maybe_mapped_shared(folio) &&
2040 		    !hugetlb_pmd_shared(ptep))
2041 			flags |= PM_MMAP_EXCLUSIVE;
2042 
2043 		if (huge_pte_uffd_wp(pte))
2044 			flags |= PM_UFFD_WP;
2045 
2046 		flags |= PM_PRESENT;
2047 		if (pm->show_pfn)
2048 			frame = pte_pfn(pte) +
2049 				((addr & ~hmask) >> PAGE_SHIFT);
2050 	} else if (pte_swp_uffd_wp_any(pte)) {
2051 		flags |= PM_UFFD_WP;
2052 	}
2053 
2054 	for (; addr != end; addr += PAGE_SIZE) {
2055 		pagemap_entry_t pme = make_pme(frame, flags);
2056 
2057 		err = add_to_pagemap(&pme, pm);
2058 		if (err)
2059 			break;
2060 		if (pm->show_pfn && (flags & PM_PRESENT))
2061 			frame++;
2062 	}
2063 
2064 	spin_unlock(ptl);
2065 	cond_resched();
2066 
2067 	return err;
2068 }
2069 #else
2070 #define pagemap_hugetlb_range	NULL
2071 #endif /* HUGETLB_PAGE */
2072 
2073 static const struct mm_walk_ops pagemap_ops = {
2074 	.pmd_entry	= pagemap_pmd_range,
2075 	.pte_hole	= pagemap_pte_hole,
2076 	.hugetlb_entry	= pagemap_hugetlb_range,
2077 	.walk_lock	= PGWALK_RDLOCK,
2078 };
2079 
2080 /*
2081  * /proc/pid/pagemap - an array mapping virtual pages to pfns
2082  *
2083  * For each page in the address space, this file contains one 64-bit entry
2084  * consisting of the following:
2085  *
2086  * Bits 0-54  page frame number (PFN) if present
2087  * Bits 0-4   swap type if swapped
2088  * Bits 5-54  swap offset if swapped
2089  * Bit  55    pte is soft-dirty (see Documentation/admin-guide/mm/soft-dirty.rst)
2090  * Bit  56    page exclusively mapped
2091  * Bit  57    pte is uffd-wp write-protected
2092  * Bit  58    pte is a guard region
2093  * Bits 59-60 zero
2094  * Bit  61    page is file-page or shared-anon
2095  * Bit  62    page swapped
2096  * Bit  63    page present
2097  *
2098  * If the page is not present but in swap, then the PFN contains an
2099  * encoding of the swap file number and the page's offset into the
2100  * swap. Unmapped pages return a null PFN. This allows determining
2101  * precisely which pages are mapped (or in swap) and comparing mapped
2102  * pages between processes.
2103  *
2104  * Efficient users of this interface will use /proc/pid/maps to
2105  * determine which areas of memory are actually mapped and llseek to
2106  * skip over unmapped regions.
2107  */
pagemap_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)2108 static ssize_t pagemap_read(struct file *file, char __user *buf,
2109 			    size_t count, loff_t *ppos)
2110 {
2111 	struct mm_struct *mm = file->private_data;
2112 	struct pagemapread pm;
2113 	unsigned long src;
2114 	unsigned long svpfn;
2115 	unsigned long start_vaddr;
2116 	unsigned long end_vaddr;
2117 	int ret = 0, copied = 0;
2118 
2119 	if (!mm || !mmget_not_zero(mm))
2120 		goto out;
2121 
2122 	ret = -EINVAL;
2123 	/* file position must be aligned */
2124 	if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
2125 		goto out_mm;
2126 
2127 	ret = 0;
2128 	if (!count)
2129 		goto out_mm;
2130 
2131 	/* do not disclose physical addresses: attack vector */
2132 	pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
2133 
2134 	pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
2135 	pm.buffer = kmalloc_array(pm.len, PM_ENTRY_BYTES, GFP_KERNEL);
2136 	ret = -ENOMEM;
2137 	if (!pm.buffer)
2138 		goto out_mm;
2139 
2140 	src = *ppos;
2141 	svpfn = src / PM_ENTRY_BYTES;
2142 	end_vaddr = mm->task_size;
2143 
2144 	/* watch out for wraparound */
2145 	start_vaddr = end_vaddr;
2146 	if (svpfn <= (ULONG_MAX >> PAGE_SHIFT)) {
2147 		unsigned long end;
2148 
2149 		ret = mmap_read_lock_killable(mm);
2150 		if (ret)
2151 			goto out_free;
2152 		start_vaddr = untagged_addr_remote(mm, svpfn << PAGE_SHIFT);
2153 		mmap_read_unlock(mm);
2154 
2155 		end = start_vaddr + ((count / PM_ENTRY_BYTES) << PAGE_SHIFT);
2156 		if (end >= start_vaddr && end < mm->task_size)
2157 			end_vaddr = end;
2158 	}
2159 
2160 	/* Ensure the address is inside the task */
2161 	if (start_vaddr > mm->task_size)
2162 		start_vaddr = end_vaddr;
2163 
2164 	ret = 0;
2165 	while (count && (start_vaddr < end_vaddr)) {
2166 		int len;
2167 		unsigned long end;
2168 
2169 		pm.pos = 0;
2170 		end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
2171 		/* overflow ? */
2172 		if (end < start_vaddr || end > end_vaddr)
2173 			end = end_vaddr;
2174 		ret = mmap_read_lock_killable(mm);
2175 		if (ret)
2176 			goto out_free;
2177 		ret = walk_page_range(mm, start_vaddr, end, &pagemap_ops, &pm);
2178 		mmap_read_unlock(mm);
2179 		start_vaddr = end;
2180 
2181 		len = min(count, PM_ENTRY_BYTES * pm.pos);
2182 		if (copy_to_user(buf, pm.buffer, len)) {
2183 			ret = -EFAULT;
2184 			goto out_free;
2185 		}
2186 		copied += len;
2187 		buf += len;
2188 		count -= len;
2189 	}
2190 	*ppos += copied;
2191 	if (!ret || ret == PM_END_OF_BUFFER)
2192 		ret = copied;
2193 
2194 out_free:
2195 	kfree(pm.buffer);
2196 out_mm:
2197 	mmput(mm);
2198 out:
2199 	return ret;
2200 }
2201 
pagemap_open(struct inode * inode,struct file * file)2202 static int pagemap_open(struct inode *inode, struct file *file)
2203 {
2204 	struct mm_struct *mm;
2205 
2206 	mm = proc_mem_open(inode, PTRACE_MODE_READ);
2207 	if (IS_ERR_OR_NULL(mm))
2208 		return mm ? PTR_ERR(mm) : -ESRCH;
2209 	file->private_data = mm;
2210 	return 0;
2211 }
2212 
pagemap_release(struct inode * inode,struct file * file)2213 static int pagemap_release(struct inode *inode, struct file *file)
2214 {
2215 	struct mm_struct *mm = file->private_data;
2216 
2217 	if (mm)
2218 		mmdrop(mm);
2219 	return 0;
2220 }
2221 
2222 #define PM_SCAN_CATEGORIES	(PAGE_IS_WPALLOWED | PAGE_IS_WRITTEN |	\
2223 				 PAGE_IS_FILE |	PAGE_IS_PRESENT |	\
2224 				 PAGE_IS_SWAPPED | PAGE_IS_PFNZERO |	\
2225 				 PAGE_IS_HUGE | PAGE_IS_SOFT_DIRTY |	\
2226 				 PAGE_IS_GUARD)
2227 #define PM_SCAN_FLAGS		(PM_SCAN_WP_MATCHING | PM_SCAN_CHECK_WPASYNC)
2228 
2229 struct pagemap_scan_private {
2230 	struct pm_scan_arg arg;
2231 	unsigned long masks_of_interest, cur_vma_category;
2232 	struct page_region *vec_buf;
2233 	unsigned long vec_buf_len, vec_buf_index, found_pages;
2234 	struct page_region __user *vec_out;
2235 };
2236 
pagemap_page_category(struct pagemap_scan_private * p,struct vm_area_struct * vma,unsigned long addr,pte_t pte)2237 static unsigned long pagemap_page_category(struct pagemap_scan_private *p,
2238 					   struct vm_area_struct *vma,
2239 					   unsigned long addr, pte_t pte)
2240 {
2241 	unsigned long categories = 0;
2242 
2243 	if (pte_present(pte)) {
2244 		struct page *page;
2245 
2246 		categories |= PAGE_IS_PRESENT;
2247 		if (!pte_uffd_wp(pte))
2248 			categories |= PAGE_IS_WRITTEN;
2249 
2250 		if (p->masks_of_interest & PAGE_IS_FILE) {
2251 			page = vm_normal_page(vma, addr, pte);
2252 			if (page && !PageAnon(page))
2253 				categories |= PAGE_IS_FILE;
2254 		}
2255 
2256 		if (is_zero_pfn(pte_pfn(pte)))
2257 			categories |= PAGE_IS_PFNZERO;
2258 		if (pte_soft_dirty(pte))
2259 			categories |= PAGE_IS_SOFT_DIRTY;
2260 	} else if (is_swap_pte(pte)) {
2261 		swp_entry_t swp;
2262 
2263 		categories |= PAGE_IS_SWAPPED;
2264 		if (!pte_swp_uffd_wp_any(pte))
2265 			categories |= PAGE_IS_WRITTEN;
2266 
2267 		swp = pte_to_swp_entry(pte);
2268 		if (is_guard_swp_entry(swp))
2269 			categories |= PAGE_IS_GUARD;
2270 		else if ((p->masks_of_interest & PAGE_IS_FILE) &&
2271 			 is_pfn_swap_entry(swp) &&
2272 			 !folio_test_anon(pfn_swap_entry_folio(swp)))
2273 			categories |= PAGE_IS_FILE;
2274 
2275 		if (pte_swp_soft_dirty(pte))
2276 			categories |= PAGE_IS_SOFT_DIRTY;
2277 	}
2278 
2279 	return categories;
2280 }
2281 
make_uffd_wp_pte(struct vm_area_struct * vma,unsigned long addr,pte_t * pte,pte_t ptent)2282 static void make_uffd_wp_pte(struct vm_area_struct *vma,
2283 			     unsigned long addr, pte_t *pte, pte_t ptent)
2284 {
2285 	if (pte_present(ptent)) {
2286 		pte_t old_pte;
2287 
2288 		old_pte = ptep_modify_prot_start(vma, addr, pte);
2289 		ptent = pte_mkuffd_wp(old_pte);
2290 		ptep_modify_prot_commit(vma, addr, pte, old_pte, ptent);
2291 	} else if (is_swap_pte(ptent)) {
2292 		ptent = pte_swp_mkuffd_wp(ptent);
2293 		set_pte_at(vma->vm_mm, addr, pte, ptent);
2294 	} else {
2295 		set_pte_at(vma->vm_mm, addr, pte,
2296 			   make_pte_marker(PTE_MARKER_UFFD_WP));
2297 	}
2298 }
2299 
2300 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pagemap_thp_category(struct pagemap_scan_private * p,struct vm_area_struct * vma,unsigned long addr,pmd_t pmd)2301 static unsigned long pagemap_thp_category(struct pagemap_scan_private *p,
2302 					  struct vm_area_struct *vma,
2303 					  unsigned long addr, pmd_t pmd)
2304 {
2305 	unsigned long categories = PAGE_IS_HUGE;
2306 
2307 	if (pmd_present(pmd)) {
2308 		struct page *page;
2309 
2310 		categories |= PAGE_IS_PRESENT;
2311 		if (!pmd_uffd_wp(pmd))
2312 			categories |= PAGE_IS_WRITTEN;
2313 
2314 		if (p->masks_of_interest & PAGE_IS_FILE) {
2315 			page = vm_normal_page_pmd(vma, addr, pmd);
2316 			if (page && !PageAnon(page))
2317 				categories |= PAGE_IS_FILE;
2318 		}
2319 
2320 		if (is_huge_zero_pmd(pmd))
2321 			categories |= PAGE_IS_PFNZERO;
2322 		if (pmd_soft_dirty(pmd))
2323 			categories |= PAGE_IS_SOFT_DIRTY;
2324 	} else if (is_swap_pmd(pmd)) {
2325 		swp_entry_t swp;
2326 
2327 		categories |= PAGE_IS_SWAPPED;
2328 		if (!pmd_swp_uffd_wp(pmd))
2329 			categories |= PAGE_IS_WRITTEN;
2330 		if (pmd_swp_soft_dirty(pmd))
2331 			categories |= PAGE_IS_SOFT_DIRTY;
2332 
2333 		if (p->masks_of_interest & PAGE_IS_FILE) {
2334 			swp = pmd_to_swp_entry(pmd);
2335 			if (is_pfn_swap_entry(swp) &&
2336 			    !folio_test_anon(pfn_swap_entry_folio(swp)))
2337 				categories |= PAGE_IS_FILE;
2338 		}
2339 	}
2340 
2341 	return categories;
2342 }
2343 
make_uffd_wp_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)2344 static void make_uffd_wp_pmd(struct vm_area_struct *vma,
2345 			     unsigned long addr, pmd_t *pmdp)
2346 {
2347 	pmd_t old, pmd = *pmdp;
2348 
2349 	if (pmd_present(pmd)) {
2350 		old = pmdp_invalidate_ad(vma, addr, pmdp);
2351 		pmd = pmd_mkuffd_wp(old);
2352 		set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
2353 	} else if (is_migration_entry(pmd_to_swp_entry(pmd))) {
2354 		pmd = pmd_swp_mkuffd_wp(pmd);
2355 		set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
2356 	}
2357 }
2358 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2359 
2360 #ifdef CONFIG_HUGETLB_PAGE
pagemap_hugetlb_category(pte_t pte)2361 static unsigned long pagemap_hugetlb_category(pte_t pte)
2362 {
2363 	unsigned long categories = PAGE_IS_HUGE;
2364 
2365 	/*
2366 	 * According to pagemap_hugetlb_range(), file-backed HugeTLB
2367 	 * page cannot be swapped. So PAGE_IS_FILE is not checked for
2368 	 * swapped pages.
2369 	 */
2370 	if (pte_present(pte)) {
2371 		categories |= PAGE_IS_PRESENT;
2372 		if (!huge_pte_uffd_wp(pte))
2373 			categories |= PAGE_IS_WRITTEN;
2374 		if (!PageAnon(pte_page(pte)))
2375 			categories |= PAGE_IS_FILE;
2376 		if (is_zero_pfn(pte_pfn(pte)))
2377 			categories |= PAGE_IS_PFNZERO;
2378 		if (pte_soft_dirty(pte))
2379 			categories |= PAGE_IS_SOFT_DIRTY;
2380 	} else if (is_swap_pte(pte)) {
2381 		categories |= PAGE_IS_SWAPPED;
2382 		if (!pte_swp_uffd_wp_any(pte))
2383 			categories |= PAGE_IS_WRITTEN;
2384 		if (pte_swp_soft_dirty(pte))
2385 			categories |= PAGE_IS_SOFT_DIRTY;
2386 	}
2387 
2388 	return categories;
2389 }
2390 
make_uffd_wp_huge_pte(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,pte_t ptent)2391 static void make_uffd_wp_huge_pte(struct vm_area_struct *vma,
2392 				  unsigned long addr, pte_t *ptep,
2393 				  pte_t ptent)
2394 {
2395 	unsigned long psize;
2396 
2397 	if (is_hugetlb_entry_hwpoisoned(ptent) || is_pte_marker(ptent))
2398 		return;
2399 
2400 	psize = huge_page_size(hstate_vma(vma));
2401 
2402 	if (is_hugetlb_entry_migration(ptent))
2403 		set_huge_pte_at(vma->vm_mm, addr, ptep,
2404 				pte_swp_mkuffd_wp(ptent), psize);
2405 	else if (!huge_pte_none(ptent))
2406 		huge_ptep_modify_prot_commit(vma, addr, ptep, ptent,
2407 					     huge_pte_mkuffd_wp(ptent));
2408 	else
2409 		set_huge_pte_at(vma->vm_mm, addr, ptep,
2410 				make_pte_marker(PTE_MARKER_UFFD_WP), psize);
2411 }
2412 #endif /* CONFIG_HUGETLB_PAGE */
2413 
2414 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
pagemap_scan_backout_range(struct pagemap_scan_private * p,unsigned long addr,unsigned long end)2415 static void pagemap_scan_backout_range(struct pagemap_scan_private *p,
2416 				       unsigned long addr, unsigned long end)
2417 {
2418 	struct page_region *cur_buf = &p->vec_buf[p->vec_buf_index];
2419 
2420 	if (cur_buf->start != addr)
2421 		cur_buf->end = addr;
2422 	else
2423 		cur_buf->start = cur_buf->end = 0;
2424 
2425 	p->found_pages -= (end - addr) / PAGE_SIZE;
2426 }
2427 #endif
2428 
pagemap_scan_is_interesting_page(unsigned long categories,const struct pagemap_scan_private * p)2429 static bool pagemap_scan_is_interesting_page(unsigned long categories,
2430 					     const struct pagemap_scan_private *p)
2431 {
2432 	categories ^= p->arg.category_inverted;
2433 	if ((categories & p->arg.category_mask) != p->arg.category_mask)
2434 		return false;
2435 	if (p->arg.category_anyof_mask && !(categories & p->arg.category_anyof_mask))
2436 		return false;
2437 
2438 	return true;
2439 }
2440 
pagemap_scan_is_interesting_vma(unsigned long categories,const struct pagemap_scan_private * p)2441 static bool pagemap_scan_is_interesting_vma(unsigned long categories,
2442 					    const struct pagemap_scan_private *p)
2443 {
2444 	unsigned long required = p->arg.category_mask & PAGE_IS_WPALLOWED;
2445 
2446 	categories ^= p->arg.category_inverted;
2447 	if ((categories & required) != required)
2448 		return false;
2449 
2450 	return true;
2451 }
2452 
pagemap_scan_test_walk(unsigned long start,unsigned long end,struct mm_walk * walk)2453 static int pagemap_scan_test_walk(unsigned long start, unsigned long end,
2454 				  struct mm_walk *walk)
2455 {
2456 	struct pagemap_scan_private *p = walk->private;
2457 	struct vm_area_struct *vma = walk->vma;
2458 	unsigned long vma_category = 0;
2459 	bool wp_allowed = userfaultfd_wp_async(vma) &&
2460 	    userfaultfd_wp_use_markers(vma);
2461 
2462 	if (!wp_allowed) {
2463 		/* User requested explicit failure over wp-async capability */
2464 		if (p->arg.flags & PM_SCAN_CHECK_WPASYNC)
2465 			return -EPERM;
2466 		/*
2467 		 * User requires wr-protect, and allows silently skipping
2468 		 * unsupported vmas.
2469 		 */
2470 		if (p->arg.flags & PM_SCAN_WP_MATCHING)
2471 			return 1;
2472 		/*
2473 		 * Then the request doesn't involve wr-protects at all,
2474 		 * fall through to the rest checks, and allow vma walk.
2475 		 */
2476 	}
2477 
2478 	if (vma->vm_flags & VM_PFNMAP)
2479 		return 1;
2480 
2481 	if (wp_allowed)
2482 		vma_category |= PAGE_IS_WPALLOWED;
2483 
2484 	if (vma->vm_flags & VM_SOFTDIRTY)
2485 		vma_category |= PAGE_IS_SOFT_DIRTY;
2486 
2487 	if (!pagemap_scan_is_interesting_vma(vma_category, p))
2488 		return 1;
2489 
2490 	p->cur_vma_category = vma_category;
2491 
2492 	return 0;
2493 }
2494 
pagemap_scan_push_range(unsigned long categories,struct pagemap_scan_private * p,unsigned long addr,unsigned long end)2495 static bool pagemap_scan_push_range(unsigned long categories,
2496 				    struct pagemap_scan_private *p,
2497 				    unsigned long addr, unsigned long end)
2498 {
2499 	struct page_region *cur_buf = &p->vec_buf[p->vec_buf_index];
2500 
2501 	/*
2502 	 * When there is no output buffer provided at all, the sentinel values
2503 	 * won't match here. There is no other way for `cur_buf->end` to be
2504 	 * non-zero other than it being non-empty.
2505 	 */
2506 	if (addr == cur_buf->end && categories == cur_buf->categories) {
2507 		cur_buf->end = end;
2508 		return true;
2509 	}
2510 
2511 	if (cur_buf->end) {
2512 		if (p->vec_buf_index >= p->vec_buf_len - 1)
2513 			return false;
2514 
2515 		cur_buf = &p->vec_buf[++p->vec_buf_index];
2516 	}
2517 
2518 	cur_buf->start = addr;
2519 	cur_buf->end = end;
2520 	cur_buf->categories = categories;
2521 
2522 	return true;
2523 }
2524 
pagemap_scan_output(unsigned long categories,struct pagemap_scan_private * p,unsigned long addr,unsigned long * end)2525 static int pagemap_scan_output(unsigned long categories,
2526 			       struct pagemap_scan_private *p,
2527 			       unsigned long addr, unsigned long *end)
2528 {
2529 	unsigned long n_pages, total_pages;
2530 	int ret = 0;
2531 
2532 	if (!p->vec_buf)
2533 		return 0;
2534 
2535 	categories &= p->arg.return_mask;
2536 
2537 	n_pages = (*end - addr) / PAGE_SIZE;
2538 	if (check_add_overflow(p->found_pages, n_pages, &total_pages) ||
2539 	    total_pages > p->arg.max_pages) {
2540 		size_t n_too_much = total_pages - p->arg.max_pages;
2541 		*end -= n_too_much * PAGE_SIZE;
2542 		n_pages -= n_too_much;
2543 		ret = -ENOSPC;
2544 	}
2545 
2546 	if (!pagemap_scan_push_range(categories, p, addr, *end)) {
2547 		*end = addr;
2548 		n_pages = 0;
2549 		ret = -ENOSPC;
2550 	}
2551 
2552 	p->found_pages += n_pages;
2553 	if (ret)
2554 		p->arg.walk_end = *end;
2555 
2556 	return ret;
2557 }
2558 
pagemap_scan_thp_entry(pmd_t * pmd,unsigned long start,unsigned long end,struct mm_walk * walk)2559 static int pagemap_scan_thp_entry(pmd_t *pmd, unsigned long start,
2560 				  unsigned long end, struct mm_walk *walk)
2561 {
2562 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2563 	struct pagemap_scan_private *p = walk->private;
2564 	struct vm_area_struct *vma = walk->vma;
2565 	unsigned long categories;
2566 	spinlock_t *ptl;
2567 	int ret = 0;
2568 
2569 	ptl = pmd_trans_huge_lock(pmd, vma);
2570 	if (!ptl)
2571 		return -ENOENT;
2572 
2573 	categories = p->cur_vma_category |
2574 		     pagemap_thp_category(p, vma, start, *pmd);
2575 
2576 	if (!pagemap_scan_is_interesting_page(categories, p))
2577 		goto out_unlock;
2578 
2579 	ret = pagemap_scan_output(categories, p, start, &end);
2580 	if (start == end)
2581 		goto out_unlock;
2582 
2583 	if (~p->arg.flags & PM_SCAN_WP_MATCHING)
2584 		goto out_unlock;
2585 	if (~categories & PAGE_IS_WRITTEN)
2586 		goto out_unlock;
2587 
2588 	/*
2589 	 * Break huge page into small pages if the WP operation
2590 	 * needs to be performed on a portion of the huge page.
2591 	 */
2592 	if (end != start + HPAGE_SIZE) {
2593 		spin_unlock(ptl);
2594 		split_huge_pmd(vma, pmd, start);
2595 		pagemap_scan_backout_range(p, start, end);
2596 		/* Report as if there was no THP */
2597 		return -ENOENT;
2598 	}
2599 
2600 	make_uffd_wp_pmd(vma, start, pmd);
2601 	flush_tlb_range(vma, start, end);
2602 out_unlock:
2603 	spin_unlock(ptl);
2604 	return ret;
2605 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
2606 	return -ENOENT;
2607 #endif
2608 }
2609 
pagemap_scan_pmd_entry(pmd_t * pmd,unsigned long start,unsigned long end,struct mm_walk * walk)2610 static int pagemap_scan_pmd_entry(pmd_t *pmd, unsigned long start,
2611 				  unsigned long end, struct mm_walk *walk)
2612 {
2613 	struct pagemap_scan_private *p = walk->private;
2614 	struct vm_area_struct *vma = walk->vma;
2615 	unsigned long addr, flush_end = 0;
2616 	pte_t *pte, *start_pte;
2617 	spinlock_t *ptl;
2618 	int ret;
2619 
2620 	ret = pagemap_scan_thp_entry(pmd, start, end, walk);
2621 	if (ret != -ENOENT)
2622 		return ret;
2623 
2624 	ret = 0;
2625 	start_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, start, &ptl);
2626 	if (!pte) {
2627 		walk->action = ACTION_AGAIN;
2628 		return 0;
2629 	}
2630 
2631 	arch_enter_lazy_mmu_mode();
2632 
2633 	if ((p->arg.flags & PM_SCAN_WP_MATCHING) && !p->vec_out) {
2634 		/* Fast path for performing exclusive WP */
2635 		for (addr = start; addr != end; pte++, addr += PAGE_SIZE) {
2636 			pte_t ptent = ptep_get(pte);
2637 
2638 			if ((pte_present(ptent) && pte_uffd_wp(ptent)) ||
2639 			    pte_swp_uffd_wp_any(ptent))
2640 				continue;
2641 			make_uffd_wp_pte(vma, addr, pte, ptent);
2642 			if (!flush_end)
2643 				start = addr;
2644 			flush_end = addr + PAGE_SIZE;
2645 		}
2646 		goto flush_and_return;
2647 	}
2648 
2649 	if (!p->arg.category_anyof_mask && !p->arg.category_inverted &&
2650 	    p->arg.category_mask == PAGE_IS_WRITTEN &&
2651 	    p->arg.return_mask == PAGE_IS_WRITTEN) {
2652 		for (addr = start; addr < end; pte++, addr += PAGE_SIZE) {
2653 			unsigned long next = addr + PAGE_SIZE;
2654 			pte_t ptent = ptep_get(pte);
2655 
2656 			if ((pte_present(ptent) && pte_uffd_wp(ptent)) ||
2657 			    pte_swp_uffd_wp_any(ptent))
2658 				continue;
2659 			ret = pagemap_scan_output(p->cur_vma_category | PAGE_IS_WRITTEN,
2660 						  p, addr, &next);
2661 			if (next == addr)
2662 				break;
2663 			if (~p->arg.flags & PM_SCAN_WP_MATCHING)
2664 				continue;
2665 			make_uffd_wp_pte(vma, addr, pte, ptent);
2666 			if (!flush_end)
2667 				start = addr;
2668 			flush_end = next;
2669 		}
2670 		goto flush_and_return;
2671 	}
2672 
2673 	for (addr = start; addr != end; pte++, addr += PAGE_SIZE) {
2674 		pte_t ptent = ptep_get(pte);
2675 		unsigned long categories = p->cur_vma_category |
2676 					   pagemap_page_category(p, vma, addr, ptent);
2677 		unsigned long next = addr + PAGE_SIZE;
2678 
2679 		if (!pagemap_scan_is_interesting_page(categories, p))
2680 			continue;
2681 
2682 		ret = pagemap_scan_output(categories, p, addr, &next);
2683 		if (next == addr)
2684 			break;
2685 
2686 		if (~p->arg.flags & PM_SCAN_WP_MATCHING)
2687 			continue;
2688 		if (~categories & PAGE_IS_WRITTEN)
2689 			continue;
2690 
2691 		make_uffd_wp_pte(vma, addr, pte, ptent);
2692 		if (!flush_end)
2693 			start = addr;
2694 		flush_end = next;
2695 	}
2696 
2697 flush_and_return:
2698 	if (flush_end)
2699 		flush_tlb_range(vma, start, addr);
2700 
2701 	arch_leave_lazy_mmu_mode();
2702 	pte_unmap_unlock(start_pte, ptl);
2703 
2704 	cond_resched();
2705 	return ret;
2706 }
2707 
2708 #ifdef CONFIG_HUGETLB_PAGE
pagemap_scan_hugetlb_entry(pte_t * ptep,unsigned long hmask,unsigned long start,unsigned long end,struct mm_walk * walk)2709 static int pagemap_scan_hugetlb_entry(pte_t *ptep, unsigned long hmask,
2710 				      unsigned long start, unsigned long end,
2711 				      struct mm_walk *walk)
2712 {
2713 	struct pagemap_scan_private *p = walk->private;
2714 	struct vm_area_struct *vma = walk->vma;
2715 	unsigned long categories;
2716 	spinlock_t *ptl;
2717 	int ret = 0;
2718 	pte_t pte;
2719 
2720 	if (~p->arg.flags & PM_SCAN_WP_MATCHING) {
2721 		/* Go the short route when not write-protecting pages. */
2722 
2723 		pte = huge_ptep_get(walk->mm, start, ptep);
2724 		categories = p->cur_vma_category | pagemap_hugetlb_category(pte);
2725 
2726 		if (!pagemap_scan_is_interesting_page(categories, p))
2727 			return 0;
2728 
2729 		return pagemap_scan_output(categories, p, start, &end);
2730 	}
2731 
2732 	i_mmap_lock_write(vma->vm_file->f_mapping);
2733 	ptl = huge_pte_lock(hstate_vma(vma), vma->vm_mm, ptep);
2734 
2735 	pte = huge_ptep_get(walk->mm, start, ptep);
2736 	categories = p->cur_vma_category | pagemap_hugetlb_category(pte);
2737 
2738 	if (!pagemap_scan_is_interesting_page(categories, p))
2739 		goto out_unlock;
2740 
2741 	ret = pagemap_scan_output(categories, p, start, &end);
2742 	if (start == end)
2743 		goto out_unlock;
2744 
2745 	if (~categories & PAGE_IS_WRITTEN)
2746 		goto out_unlock;
2747 
2748 	if (end != start + HPAGE_SIZE) {
2749 		/* Partial HugeTLB page WP isn't possible. */
2750 		pagemap_scan_backout_range(p, start, end);
2751 		p->arg.walk_end = start;
2752 		ret = 0;
2753 		goto out_unlock;
2754 	}
2755 
2756 	make_uffd_wp_huge_pte(vma, start, ptep, pte);
2757 	flush_hugetlb_tlb_range(vma, start, end);
2758 
2759 out_unlock:
2760 	spin_unlock(ptl);
2761 	i_mmap_unlock_write(vma->vm_file->f_mapping);
2762 
2763 	return ret;
2764 }
2765 #else
2766 #define pagemap_scan_hugetlb_entry NULL
2767 #endif
2768 
pagemap_scan_pte_hole(unsigned long addr,unsigned long end,int depth,struct mm_walk * walk)2769 static int pagemap_scan_pte_hole(unsigned long addr, unsigned long end,
2770 				 int depth, struct mm_walk *walk)
2771 {
2772 	struct pagemap_scan_private *p = walk->private;
2773 	struct vm_area_struct *vma = walk->vma;
2774 	int ret, err;
2775 
2776 	if (!vma || !pagemap_scan_is_interesting_page(p->cur_vma_category, p))
2777 		return 0;
2778 
2779 	ret = pagemap_scan_output(p->cur_vma_category, p, addr, &end);
2780 	if (addr == end)
2781 		return ret;
2782 
2783 	if (~p->arg.flags & PM_SCAN_WP_MATCHING)
2784 		return ret;
2785 
2786 	err = uffd_wp_range(vma, addr, end - addr, true);
2787 	if (err < 0)
2788 		ret = err;
2789 
2790 	return ret;
2791 }
2792 
2793 static const struct mm_walk_ops pagemap_scan_ops = {
2794 	.test_walk = pagemap_scan_test_walk,
2795 	.pmd_entry = pagemap_scan_pmd_entry,
2796 	.pte_hole = pagemap_scan_pte_hole,
2797 	.hugetlb_entry = pagemap_scan_hugetlb_entry,
2798 };
2799 
pagemap_scan_get_args(struct pm_scan_arg * arg,unsigned long uarg)2800 static int pagemap_scan_get_args(struct pm_scan_arg *arg,
2801 				 unsigned long uarg)
2802 {
2803 	if (copy_from_user(arg, (void __user *)uarg, sizeof(*arg)))
2804 		return -EFAULT;
2805 
2806 	if (arg->size != sizeof(struct pm_scan_arg))
2807 		return -EINVAL;
2808 
2809 	/* Validate requested features */
2810 	if (arg->flags & ~PM_SCAN_FLAGS)
2811 		return -EINVAL;
2812 	if ((arg->category_inverted | arg->category_mask |
2813 	     arg->category_anyof_mask | arg->return_mask) & ~PM_SCAN_CATEGORIES)
2814 		return -EINVAL;
2815 
2816 	arg->start = untagged_addr((unsigned long)arg->start);
2817 	arg->end = untagged_addr((unsigned long)arg->end);
2818 	arg->vec = untagged_addr((unsigned long)arg->vec);
2819 
2820 	/* Validate memory pointers */
2821 	if (!IS_ALIGNED(arg->start, PAGE_SIZE))
2822 		return -EINVAL;
2823 	if (!access_ok((void __user *)(long)arg->start, arg->end - arg->start))
2824 		return -EFAULT;
2825 	if (!arg->vec && arg->vec_len)
2826 		return -EINVAL;
2827 	if (UINT_MAX == SIZE_MAX && arg->vec_len > SIZE_MAX)
2828 		return -EINVAL;
2829 	if (arg->vec && !access_ok((void __user *)(long)arg->vec,
2830 				   size_mul(arg->vec_len, sizeof(struct page_region))))
2831 		return -EFAULT;
2832 
2833 	/* Fixup default values */
2834 	arg->end = ALIGN(arg->end, PAGE_SIZE);
2835 	arg->walk_end = 0;
2836 	if (!arg->max_pages)
2837 		arg->max_pages = ULONG_MAX;
2838 
2839 	return 0;
2840 }
2841 
pagemap_scan_writeback_args(struct pm_scan_arg * arg,unsigned long uargl)2842 static int pagemap_scan_writeback_args(struct pm_scan_arg *arg,
2843 				       unsigned long uargl)
2844 {
2845 	struct pm_scan_arg __user *uarg	= (void __user *)uargl;
2846 
2847 	if (copy_to_user(&uarg->walk_end, &arg->walk_end, sizeof(arg->walk_end)))
2848 		return -EFAULT;
2849 
2850 	return 0;
2851 }
2852 
pagemap_scan_init_bounce_buffer(struct pagemap_scan_private * p)2853 static int pagemap_scan_init_bounce_buffer(struct pagemap_scan_private *p)
2854 {
2855 	if (!p->arg.vec_len)
2856 		return 0;
2857 
2858 	p->vec_buf_len = min_t(size_t, PAGEMAP_WALK_SIZE >> PAGE_SHIFT,
2859 			       p->arg.vec_len);
2860 	p->vec_buf = kmalloc_array(p->vec_buf_len, sizeof(*p->vec_buf),
2861 				   GFP_KERNEL);
2862 	if (!p->vec_buf)
2863 		return -ENOMEM;
2864 
2865 	p->vec_buf->start = p->vec_buf->end = 0;
2866 	p->vec_out = (struct page_region __user *)(long)p->arg.vec;
2867 
2868 	return 0;
2869 }
2870 
pagemap_scan_flush_buffer(struct pagemap_scan_private * p)2871 static long pagemap_scan_flush_buffer(struct pagemap_scan_private *p)
2872 {
2873 	const struct page_region *buf = p->vec_buf;
2874 	long n = p->vec_buf_index;
2875 
2876 	if (!p->vec_buf)
2877 		return 0;
2878 
2879 	if (buf[n].end != buf[n].start)
2880 		n++;
2881 
2882 	if (!n)
2883 		return 0;
2884 
2885 	if (copy_to_user(p->vec_out, buf, n * sizeof(*buf)))
2886 		return -EFAULT;
2887 
2888 	p->arg.vec_len -= n;
2889 	p->vec_out += n;
2890 
2891 	p->vec_buf_index = 0;
2892 	p->vec_buf_len = min_t(size_t, p->vec_buf_len, p->arg.vec_len);
2893 	p->vec_buf->start = p->vec_buf->end = 0;
2894 
2895 	return n;
2896 }
2897 
do_pagemap_scan(struct mm_struct * mm,unsigned long uarg)2898 static long do_pagemap_scan(struct mm_struct *mm, unsigned long uarg)
2899 {
2900 	struct pagemap_scan_private p = {0};
2901 	unsigned long walk_start;
2902 	size_t n_ranges_out = 0;
2903 	int ret;
2904 
2905 	ret = pagemap_scan_get_args(&p.arg, uarg);
2906 	if (ret)
2907 		return ret;
2908 
2909 	p.masks_of_interest = p.arg.category_mask | p.arg.category_anyof_mask |
2910 			      p.arg.return_mask;
2911 	ret = pagemap_scan_init_bounce_buffer(&p);
2912 	if (ret)
2913 		return ret;
2914 
2915 	for (walk_start = p.arg.start; walk_start < p.arg.end;
2916 			walk_start = p.arg.walk_end) {
2917 		struct mmu_notifier_range range;
2918 		long n_out;
2919 
2920 		if (fatal_signal_pending(current)) {
2921 			ret = -EINTR;
2922 			break;
2923 		}
2924 
2925 		ret = mmap_read_lock_killable(mm);
2926 		if (ret)
2927 			break;
2928 
2929 		/* Protection change for the range is going to happen. */
2930 		if (p.arg.flags & PM_SCAN_WP_MATCHING) {
2931 			mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA, 0,
2932 						mm, walk_start, p.arg.end);
2933 			mmu_notifier_invalidate_range_start(&range);
2934 		}
2935 
2936 		ret = walk_page_range(mm, walk_start, p.arg.end,
2937 				      &pagemap_scan_ops, &p);
2938 
2939 		if (p.arg.flags & PM_SCAN_WP_MATCHING)
2940 			mmu_notifier_invalidate_range_end(&range);
2941 
2942 		mmap_read_unlock(mm);
2943 
2944 		n_out = pagemap_scan_flush_buffer(&p);
2945 		if (n_out < 0)
2946 			ret = n_out;
2947 		else
2948 			n_ranges_out += n_out;
2949 
2950 		if (ret != -ENOSPC)
2951 			break;
2952 
2953 		if (p.arg.vec_len == 0 || p.found_pages == p.arg.max_pages)
2954 			break;
2955 	}
2956 
2957 	/* ENOSPC signifies early stop (buffer full) from the walk. */
2958 	if (!ret || ret == -ENOSPC)
2959 		ret = n_ranges_out;
2960 
2961 	/* The walk_end isn't set when ret is zero */
2962 	if (!p.arg.walk_end)
2963 		p.arg.walk_end = p.arg.end;
2964 	if (pagemap_scan_writeback_args(&p.arg, uarg))
2965 		ret = -EFAULT;
2966 
2967 	kfree(p.vec_buf);
2968 	return ret;
2969 }
2970 
do_pagemap_cmd(struct file * file,unsigned int cmd,unsigned long arg)2971 static long do_pagemap_cmd(struct file *file, unsigned int cmd,
2972 			   unsigned long arg)
2973 {
2974 	struct mm_struct *mm = file->private_data;
2975 
2976 	switch (cmd) {
2977 	case PAGEMAP_SCAN:
2978 		return do_pagemap_scan(mm, arg);
2979 
2980 	default:
2981 		return -EINVAL;
2982 	}
2983 }
2984 
2985 const struct file_operations proc_pagemap_operations = {
2986 	.llseek		= mem_lseek, /* borrow this */
2987 	.read		= pagemap_read,
2988 	.open		= pagemap_open,
2989 	.release	= pagemap_release,
2990 	.unlocked_ioctl = do_pagemap_cmd,
2991 	.compat_ioctl	= do_pagemap_cmd,
2992 };
2993 #endif /* CONFIG_PROC_PAGE_MONITOR */
2994 
2995 #ifdef CONFIG_NUMA
2996 
2997 struct numa_maps {
2998 	unsigned long pages;
2999 	unsigned long anon;
3000 	unsigned long active;
3001 	unsigned long writeback;
3002 	unsigned long mapcount_max;
3003 	unsigned long dirty;
3004 	unsigned long swapcache;
3005 	unsigned long node[MAX_NUMNODES];
3006 };
3007 
3008 struct numa_maps_private {
3009 	struct proc_maps_private proc_maps;
3010 	struct numa_maps md;
3011 };
3012 
gather_stats(struct page * page,struct numa_maps * md,int pte_dirty,unsigned long nr_pages)3013 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
3014 			unsigned long nr_pages)
3015 {
3016 	struct folio *folio = page_folio(page);
3017 	int count;
3018 
3019 	if (IS_ENABLED(CONFIG_PAGE_MAPCOUNT))
3020 		count = folio_precise_page_mapcount(folio, page);
3021 	else
3022 		count = folio_average_page_mapcount(folio);
3023 
3024 	md->pages += nr_pages;
3025 	if (pte_dirty || folio_test_dirty(folio))
3026 		md->dirty += nr_pages;
3027 
3028 	if (folio_test_swapcache(folio))
3029 		md->swapcache += nr_pages;
3030 
3031 	if (folio_test_active(folio) || folio_test_unevictable(folio))
3032 		md->active += nr_pages;
3033 
3034 	if (folio_test_writeback(folio))
3035 		md->writeback += nr_pages;
3036 
3037 	if (folio_test_anon(folio))
3038 		md->anon += nr_pages;
3039 
3040 	if (count > md->mapcount_max)
3041 		md->mapcount_max = count;
3042 
3043 	md->node[folio_nid(folio)] += nr_pages;
3044 }
3045 
can_gather_numa_stats(pte_t pte,struct vm_area_struct * vma,unsigned long addr)3046 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
3047 		unsigned long addr)
3048 {
3049 	struct page *page;
3050 	int nid;
3051 
3052 	if (!pte_present(pte))
3053 		return NULL;
3054 
3055 	page = vm_normal_page(vma, addr, pte);
3056 	if (!page || is_zone_device_page(page))
3057 		return NULL;
3058 
3059 	if (PageReserved(page))
3060 		return NULL;
3061 
3062 	nid = page_to_nid(page);
3063 	if (!node_isset(nid, node_states[N_MEMORY]))
3064 		return NULL;
3065 
3066 	return page;
3067 }
3068 
3069 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
can_gather_numa_stats_pmd(pmd_t pmd,struct vm_area_struct * vma,unsigned long addr)3070 static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
3071 					      struct vm_area_struct *vma,
3072 					      unsigned long addr)
3073 {
3074 	struct page *page;
3075 	int nid;
3076 
3077 	if (!pmd_present(pmd))
3078 		return NULL;
3079 
3080 	page = vm_normal_page_pmd(vma, addr, pmd);
3081 	if (!page)
3082 		return NULL;
3083 
3084 	if (PageReserved(page))
3085 		return NULL;
3086 
3087 	nid = page_to_nid(page);
3088 	if (!node_isset(nid, node_states[N_MEMORY]))
3089 		return NULL;
3090 
3091 	return page;
3092 }
3093 #endif
3094 
gather_pte_stats(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)3095 static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
3096 		unsigned long end, struct mm_walk *walk)
3097 {
3098 	struct numa_maps *md = walk->private;
3099 	struct vm_area_struct *vma = walk->vma;
3100 	spinlock_t *ptl;
3101 	pte_t *orig_pte;
3102 	pte_t *pte;
3103 
3104 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3105 	ptl = pmd_trans_huge_lock(pmd, vma);
3106 	if (ptl) {
3107 		struct page *page;
3108 
3109 		page = can_gather_numa_stats_pmd(*pmd, vma, addr);
3110 		if (page)
3111 			gather_stats(page, md, pmd_dirty(*pmd),
3112 				     HPAGE_PMD_SIZE/PAGE_SIZE);
3113 		spin_unlock(ptl);
3114 		return 0;
3115 	}
3116 #endif
3117 	orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
3118 	if (!pte) {
3119 		walk->action = ACTION_AGAIN;
3120 		return 0;
3121 	}
3122 	do {
3123 		pte_t ptent = ptep_get(pte);
3124 		struct page *page = can_gather_numa_stats(ptent, vma, addr);
3125 		if (!page)
3126 			continue;
3127 		gather_stats(page, md, pte_dirty(ptent), 1);
3128 
3129 	} while (pte++, addr += PAGE_SIZE, addr != end);
3130 	pte_unmap_unlock(orig_pte, ptl);
3131 	cond_resched();
3132 	return 0;
3133 }
3134 #ifdef CONFIG_HUGETLB_PAGE
gather_hugetlb_stats(pte_t * pte,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)3135 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
3136 		unsigned long addr, unsigned long end, struct mm_walk *walk)
3137 {
3138 	pte_t huge_pte;
3139 	struct numa_maps *md;
3140 	struct page *page;
3141 	spinlock_t *ptl;
3142 
3143 	ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
3144 	huge_pte = huge_ptep_get(walk->mm, addr, pte);
3145 	if (!pte_present(huge_pte))
3146 		goto out;
3147 
3148 	page = pte_page(huge_pte);
3149 
3150 	md = walk->private;
3151 	gather_stats(page, md, pte_dirty(huge_pte), 1);
3152 out:
3153 	spin_unlock(ptl);
3154 	return 0;
3155 }
3156 
3157 #else
gather_hugetlb_stats(pte_t * pte,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)3158 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
3159 		unsigned long addr, unsigned long end, struct mm_walk *walk)
3160 {
3161 	return 0;
3162 }
3163 #endif
3164 
3165 static const struct mm_walk_ops show_numa_ops = {
3166 	.hugetlb_entry = gather_hugetlb_stats,
3167 	.pmd_entry = gather_pte_stats,
3168 	.walk_lock = PGWALK_RDLOCK,
3169 };
3170 
3171 /*
3172  * Display pages allocated per node and memory policy via /proc.
3173  */
show_numa_map(struct seq_file * m,void * v)3174 static int show_numa_map(struct seq_file *m, void *v)
3175 {
3176 	struct numa_maps_private *numa_priv = m->private;
3177 	struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
3178 	struct vm_area_struct *vma = v;
3179 	struct numa_maps *md = &numa_priv->md;
3180 	struct file *file = vma->vm_file;
3181 	struct mm_struct *mm = vma->vm_mm;
3182 	char buffer[64];
3183 	struct mempolicy *pol;
3184 	pgoff_t ilx;
3185 	int nid;
3186 
3187 	if (!mm)
3188 		return 0;
3189 
3190 	/* Ensure we start with an empty set of numa_maps statistics. */
3191 	memset(md, 0, sizeof(*md));
3192 
3193 	pol = __get_vma_policy(vma, vma->vm_start, &ilx);
3194 	if (pol) {
3195 		mpol_to_str(buffer, sizeof(buffer), pol);
3196 		mpol_cond_put(pol);
3197 	} else {
3198 		mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
3199 	}
3200 
3201 	seq_printf(m, "%08lx %s", vma->vm_start, buffer);
3202 
3203 	if (file) {
3204 		seq_puts(m, " file=");
3205 		seq_path(m, file_user_path(file), "\n\t= ");
3206 	} else if (vma_is_initial_heap(vma)) {
3207 		seq_puts(m, " heap");
3208 	} else if (vma_is_initial_stack(vma)) {
3209 		seq_puts(m, " stack");
3210 	}
3211 
3212 	if (is_vm_hugetlb_page(vma))
3213 		seq_puts(m, " huge");
3214 
3215 	/* mmap_lock is held by m_start */
3216 	walk_page_vma(vma, &show_numa_ops, md);
3217 
3218 	if (!md->pages)
3219 		goto out;
3220 
3221 	if (md->anon)
3222 		seq_printf(m, " anon=%lu", md->anon);
3223 
3224 	if (md->dirty)
3225 		seq_printf(m, " dirty=%lu", md->dirty);
3226 
3227 	if (md->pages != md->anon && md->pages != md->dirty)
3228 		seq_printf(m, " mapped=%lu", md->pages);
3229 
3230 	if (md->mapcount_max > 1)
3231 		seq_printf(m, " mapmax=%lu", md->mapcount_max);
3232 
3233 	if (md->swapcache)
3234 		seq_printf(m, " swapcache=%lu", md->swapcache);
3235 
3236 	if (md->active < md->pages && !is_vm_hugetlb_page(vma))
3237 		seq_printf(m, " active=%lu", md->active);
3238 
3239 	if (md->writeback)
3240 		seq_printf(m, " writeback=%lu", md->writeback);
3241 
3242 	for_each_node_state(nid, N_MEMORY)
3243 		if (md->node[nid])
3244 			seq_printf(m, " N%d=%lu", nid, md->node[nid]);
3245 
3246 	seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
3247 out:
3248 	seq_putc(m, '\n');
3249 	return 0;
3250 }
3251 
3252 static const struct seq_operations proc_pid_numa_maps_op = {
3253 	.start  = m_start,
3254 	.next   = m_next,
3255 	.stop   = m_stop,
3256 	.show   = show_numa_map,
3257 };
3258 
pid_numa_maps_open(struct inode * inode,struct file * file)3259 static int pid_numa_maps_open(struct inode *inode, struct file *file)
3260 {
3261 	return proc_maps_open(inode, file, &proc_pid_numa_maps_op,
3262 				sizeof(struct numa_maps_private));
3263 }
3264 
3265 const struct file_operations proc_pid_numa_maps_operations = {
3266 	.open		= pid_numa_maps_open,
3267 	.read		= seq_read,
3268 	.llseek		= seq_lseek,
3269 	.release	= proc_map_release,
3270 };
3271 
3272 #endif /* CONFIG_NUMA */
3273