1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * BPF Jit compiler for s390.
4 *
5 * Minimum build requirements:
6 *
7 * - HAVE_MARCH_Z196_FEATURES: laal, laalg
8 * - HAVE_MARCH_Z10_FEATURES: msfi, cgrj, clgrj
9 * - HAVE_MARCH_Z9_109_FEATURES: alfi, llilf, clfi, oilf, nilf
10 * - 64BIT
11 *
12 * Copyright IBM Corp. 2012,2015
13 *
14 * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
15 * Michael Holzheu <holzheu@linux.vnet.ibm.com>
16 */
17
18 #define KMSG_COMPONENT "bpf_jit"
19 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
20
21 #include <linux/netdevice.h>
22 #include <linux/filter.h>
23 #include <linux/init.h>
24 #include <linux/bpf.h>
25 #include <linux/mm.h>
26 #include <linux/kernel.h>
27 #include <asm/cacheflush.h>
28 #include <asm/extable.h>
29 #include <asm/dis.h>
30 #include <asm/facility.h>
31 #include <asm/nospec-branch.h>
32 #include <asm/set_memory.h>
33 #include <asm/text-patching.h>
34 #include <asm/unwind.h>
35
36 struct bpf_jit {
37 u32 seen; /* Flags to remember seen eBPF instructions */
38 u16 seen_regs; /* Mask to remember which registers are used */
39 u32 *addrs; /* Array with relative instruction addresses */
40 u8 *prg_buf; /* Start of program */
41 int size; /* Size of program and literal pool */
42 int size_prg; /* Size of program */
43 int prg; /* Current position in program */
44 int lit32_start; /* Start of 32-bit literal pool */
45 int lit32; /* Current position in 32-bit literal pool */
46 int lit64_start; /* Start of 64-bit literal pool */
47 int lit64; /* Current position in 64-bit literal pool */
48 int base_ip; /* Base address for literal pool */
49 int exit_ip; /* Address of exit */
50 int tail_call_start; /* Tail call start offset */
51 int excnt; /* Number of exception table entries */
52 int prologue_plt_ret; /* Return address for prologue hotpatch PLT */
53 int prologue_plt; /* Start of prologue hotpatch PLT */
54 int kern_arena; /* Pool offset of kernel arena address */
55 u64 user_arena; /* User arena address */
56 u32 frame_off; /* Offset of struct bpf_prog from %r15 */
57 };
58
59 #define SEEN_MEM BIT(0) /* use mem[] for temporary storage */
60 #define SEEN_LITERAL BIT(1) /* code uses literals */
61 #define SEEN_FUNC BIT(2) /* calls C functions */
62 #define SEEN_STACK (SEEN_FUNC | SEEN_MEM)
63
64 #define NVREGS 0xffc0 /* %r6-%r15 */
65
66 /*
67 * s390 registers
68 */
69 #define REG_W0 (MAX_BPF_JIT_REG + 0) /* Work register 1 (even) */
70 #define REG_W1 (MAX_BPF_JIT_REG + 1) /* Work register 2 (odd) */
71 #define REG_L (MAX_BPF_JIT_REG + 2) /* Literal pool register */
72 #define REG_15 (MAX_BPF_JIT_REG + 3) /* Register 15 */
73 #define REG_0 REG_W0 /* Register 0 */
74 #define REG_1 REG_W1 /* Register 1 */
75 #define REG_2 BPF_REG_1 /* Register 2 */
76 #define REG_3 BPF_REG_2 /* Register 3 */
77 #define REG_4 BPF_REG_3 /* Register 4 */
78 #define REG_7 BPF_REG_6 /* Register 7 */
79 #define REG_8 BPF_REG_7 /* Register 8 */
80 #define REG_14 BPF_REG_0 /* Register 14 */
81
82 /*
83 * Mapping of BPF registers to s390 registers
84 */
85 static const int reg2hex[] = {
86 /* Return code */
87 [BPF_REG_0] = 14,
88 /* Function parameters */
89 [BPF_REG_1] = 2,
90 [BPF_REG_2] = 3,
91 [BPF_REG_3] = 4,
92 [BPF_REG_4] = 5,
93 [BPF_REG_5] = 6,
94 /* Call saved registers */
95 [BPF_REG_6] = 7,
96 [BPF_REG_7] = 8,
97 [BPF_REG_8] = 9,
98 [BPF_REG_9] = 10,
99 /* BPF stack pointer */
100 [BPF_REG_FP] = 13,
101 /* Register for blinding */
102 [BPF_REG_AX] = 12,
103 /* Work registers for s390x backend */
104 [REG_W0] = 0,
105 [REG_W1] = 1,
106 [REG_L] = 11,
107 [REG_15] = 15,
108 };
109
reg(u32 dst_reg,u32 src_reg)110 static inline u32 reg(u32 dst_reg, u32 src_reg)
111 {
112 return reg2hex[dst_reg] << 4 | reg2hex[src_reg];
113 }
114
reg_high(u32 reg)115 static inline u32 reg_high(u32 reg)
116 {
117 return reg2hex[reg] << 4;
118 }
119
reg_set_seen(struct bpf_jit * jit,u32 b1)120 static inline void reg_set_seen(struct bpf_jit *jit, u32 b1)
121 {
122 u32 r1 = reg2hex[b1];
123
124 if (r1 >= 6 && r1 <= 15)
125 jit->seen_regs |= (1 << r1);
126 }
127
off_to_pcrel(struct bpf_jit * jit,u32 off)128 static s32 off_to_pcrel(struct bpf_jit *jit, u32 off)
129 {
130 return off - jit->prg;
131 }
132
ptr_to_pcrel(struct bpf_jit * jit,const void * ptr)133 static s64 ptr_to_pcrel(struct bpf_jit *jit, const void *ptr)
134 {
135 if (jit->prg_buf)
136 return (const u8 *)ptr - ((const u8 *)jit->prg_buf + jit->prg);
137 return 0;
138 }
139
140 #define REG_SET_SEEN(b1) \
141 ({ \
142 reg_set_seen(jit, b1); \
143 })
144
145 /*
146 * EMIT macros for code generation
147 */
148
149 #define _EMIT2(op) \
150 ({ \
151 if (jit->prg_buf) \
152 *(u16 *) (jit->prg_buf + jit->prg) = (op); \
153 jit->prg += 2; \
154 })
155
156 #define EMIT2(op, b1, b2) \
157 ({ \
158 _EMIT2((op) | reg(b1, b2)); \
159 REG_SET_SEEN(b1); \
160 REG_SET_SEEN(b2); \
161 })
162
163 #define _EMIT4(op) \
164 ({ \
165 if (jit->prg_buf) \
166 *(u32 *) (jit->prg_buf + jit->prg) = (op); \
167 jit->prg += 4; \
168 })
169
170 #define EMIT4(op, b1, b2) \
171 ({ \
172 _EMIT4((op) | reg(b1, b2)); \
173 REG_SET_SEEN(b1); \
174 REG_SET_SEEN(b2); \
175 })
176
177 #define EMIT4_RRF(op, b1, b2, b3) \
178 ({ \
179 _EMIT4((op) | reg_high(b3) << 8 | reg(b1, b2)); \
180 REG_SET_SEEN(b1); \
181 REG_SET_SEEN(b2); \
182 REG_SET_SEEN(b3); \
183 })
184
185 #define _EMIT4_DISP(op, disp) \
186 ({ \
187 unsigned int __disp = (disp) & 0xfff; \
188 _EMIT4((op) | __disp); \
189 })
190
191 #define EMIT4_DISP(op, b1, b2, disp) \
192 ({ \
193 _EMIT4_DISP((op) | reg_high(b1) << 16 | \
194 reg_high(b2) << 8, (disp)); \
195 REG_SET_SEEN(b1); \
196 REG_SET_SEEN(b2); \
197 })
198
199 #define EMIT4_IMM(op, b1, imm) \
200 ({ \
201 unsigned int __imm = (imm) & 0xffff; \
202 _EMIT4((op) | reg_high(b1) << 16 | __imm); \
203 REG_SET_SEEN(b1); \
204 })
205
206 #define EMIT4_PCREL(op, pcrel) \
207 ({ \
208 long __pcrel = ((pcrel) >> 1) & 0xffff; \
209 _EMIT4((op) | __pcrel); \
210 })
211
212 #define EMIT4_PCREL_RIC(op, mask, target) \
213 ({ \
214 int __rel = off_to_pcrel(jit, target) / 2; \
215 _EMIT4((op) | (mask) << 20 | (__rel & 0xffff)); \
216 })
217
218 #define _EMIT6(op1, op2) \
219 ({ \
220 if (jit->prg_buf) { \
221 *(u32 *) (jit->prg_buf + jit->prg) = (op1); \
222 *(u16 *) (jit->prg_buf + jit->prg + 4) = (op2); \
223 } \
224 jit->prg += 6; \
225 })
226
227 #define _EMIT6_DISP(op1, op2, disp) \
228 ({ \
229 unsigned int __disp = (disp) & 0xfff; \
230 _EMIT6((op1) | __disp, op2); \
231 })
232
233 #define _EMIT6_DISP_LH(op1, op2, disp) \
234 ({ \
235 u32 _disp = (u32) (disp); \
236 unsigned int __disp_h = _disp & 0xff000; \
237 unsigned int __disp_l = _disp & 0x00fff; \
238 _EMIT6((op1) | __disp_l, (op2) | __disp_h >> 4); \
239 })
240
241 #define EMIT6_DISP_LH(op1, op2, b1, b2, b3, disp) \
242 ({ \
243 _EMIT6_DISP_LH((op1) | reg(b1, b2) << 16 | \
244 reg_high(b3) << 8, op2, disp); \
245 REG_SET_SEEN(b1); \
246 REG_SET_SEEN(b2); \
247 REG_SET_SEEN(b3); \
248 })
249
250 #define EMIT6_PCREL_RIEB(op1, op2, b1, b2, mask, target) \
251 ({ \
252 unsigned int rel = off_to_pcrel(jit, target) / 2; \
253 _EMIT6((op1) | reg(b1, b2) << 16 | (rel & 0xffff), \
254 (op2) | (mask) << 12); \
255 REG_SET_SEEN(b1); \
256 REG_SET_SEEN(b2); \
257 })
258
259 #define EMIT6_PCREL_RIEC(op1, op2, b1, imm, mask, target) \
260 ({ \
261 unsigned int rel = off_to_pcrel(jit, target) / 2; \
262 _EMIT6((op1) | (reg_high(b1) | (mask)) << 16 | \
263 (rel & 0xffff), (op2) | ((imm) & 0xff) << 8); \
264 REG_SET_SEEN(b1); \
265 BUILD_BUG_ON(((unsigned long) (imm)) > 0xff); \
266 })
267
268 #define EMIT6_PCREL(op1, op2, b1, b2, i, off, mask) \
269 ({ \
270 int rel = off_to_pcrel(jit, addrs[(i) + (off) + 1]) / 2;\
271 _EMIT6((op1) | reg(b1, b2) << 16 | (rel & 0xffff), (op2) | (mask));\
272 REG_SET_SEEN(b1); \
273 REG_SET_SEEN(b2); \
274 })
275
emit6_pcrel_ril(struct bpf_jit * jit,u32 op,s64 pcrel)276 static void emit6_pcrel_ril(struct bpf_jit *jit, u32 op, s64 pcrel)
277 {
278 u32 pc32dbl = (s32)(pcrel / 2);
279
280 _EMIT6(op | pc32dbl >> 16, pc32dbl & 0xffff);
281 }
282
emit6_pcrel_rilb(struct bpf_jit * jit,u32 op,u8 b,s64 pcrel)283 static void emit6_pcrel_rilb(struct bpf_jit *jit, u32 op, u8 b, s64 pcrel)
284 {
285 emit6_pcrel_ril(jit, op | reg_high(b) << 16, pcrel);
286 REG_SET_SEEN(b);
287 }
288
289 #define EMIT6_PCREL_RILB(op, b, target) \
290 emit6_pcrel_rilb(jit, op, b, off_to_pcrel(jit, target))
291
292 #define EMIT6_PCREL_RILB_PTR(op, b, target_ptr) \
293 emit6_pcrel_rilb(jit, op, b, ptr_to_pcrel(jit, target_ptr))
294
emit6_pcrel_rilc(struct bpf_jit * jit,u32 op,u8 mask,s64 pcrel)295 static void emit6_pcrel_rilc(struct bpf_jit *jit, u32 op, u8 mask, s64 pcrel)
296 {
297 emit6_pcrel_ril(jit, op | mask << 20, pcrel);
298 }
299
300 #define EMIT6_PCREL_RILC(op, mask, target) \
301 emit6_pcrel_rilc(jit, op, mask, off_to_pcrel(jit, target))
302
303 #define EMIT6_PCREL_RILC_PTR(op, mask, target_ptr) \
304 emit6_pcrel_rilc(jit, op, mask, ptr_to_pcrel(jit, target_ptr))
305
306 #define _EMIT6_IMM(op, imm) \
307 ({ \
308 unsigned int __imm = (imm); \
309 _EMIT6((op) | (__imm >> 16), __imm & 0xffff); \
310 })
311
312 #define EMIT6_IMM(op, b1, imm) \
313 ({ \
314 _EMIT6_IMM((op) | reg_high(b1) << 16, imm); \
315 REG_SET_SEEN(b1); \
316 })
317
318 #define _EMIT_CONST_U32(val) \
319 ({ \
320 unsigned int ret; \
321 ret = jit->lit32; \
322 if (jit->prg_buf) \
323 *(u32 *)(jit->prg_buf + jit->lit32) = (u32)(val);\
324 jit->lit32 += 4; \
325 ret; \
326 })
327
328 #define EMIT_CONST_U32(val) \
329 ({ \
330 jit->seen |= SEEN_LITERAL; \
331 _EMIT_CONST_U32(val) - jit->base_ip; \
332 })
333
334 #define _EMIT_CONST_U64(val) \
335 ({ \
336 unsigned int ret; \
337 ret = jit->lit64; \
338 if (jit->prg_buf) \
339 *(u64 *)(jit->prg_buf + jit->lit64) = (u64)(val);\
340 jit->lit64 += 8; \
341 ret; \
342 })
343
344 #define EMIT_CONST_U64(val) \
345 ({ \
346 jit->seen |= SEEN_LITERAL; \
347 _EMIT_CONST_U64(val) - jit->base_ip; \
348 })
349
350 #define EMIT_ZERO(b1) \
351 ({ \
352 if (!fp->aux->verifier_zext) { \
353 /* llgfr %dst,%dst (zero extend to 64 bit) */ \
354 EMIT4(0xb9160000, b1, b1); \
355 REG_SET_SEEN(b1); \
356 } \
357 })
358
359 /*
360 * Return whether this is the first pass. The first pass is special, since we
361 * don't know any sizes yet, and thus must be conservative.
362 */
is_first_pass(struct bpf_jit * jit)363 static bool is_first_pass(struct bpf_jit *jit)
364 {
365 return jit->size == 0;
366 }
367
368 /*
369 * Return whether this is the code generation pass. The code generation pass is
370 * special, since we should change as little as possible.
371 */
is_codegen_pass(struct bpf_jit * jit)372 static bool is_codegen_pass(struct bpf_jit *jit)
373 {
374 return jit->prg_buf;
375 }
376
377 /*
378 * Return whether "rel" can be encoded as a short PC-relative offset
379 */
is_valid_rel(int rel)380 static bool is_valid_rel(int rel)
381 {
382 return rel >= -65536 && rel <= 65534;
383 }
384
385 /*
386 * Return whether "off" can be reached using a short PC-relative offset
387 */
can_use_rel(struct bpf_jit * jit,int off)388 static bool can_use_rel(struct bpf_jit *jit, int off)
389 {
390 return is_valid_rel(off - jit->prg);
391 }
392
393 /*
394 * Return whether given displacement can be encoded using
395 * Long-Displacement Facility
396 */
is_valid_ldisp(int disp)397 static bool is_valid_ldisp(int disp)
398 {
399 return disp >= -524288 && disp <= 524287;
400 }
401
402 /*
403 * Return whether the next 32-bit literal pool entry can be referenced using
404 * Long-Displacement Facility
405 */
can_use_ldisp_for_lit32(struct bpf_jit * jit)406 static bool can_use_ldisp_for_lit32(struct bpf_jit *jit)
407 {
408 return is_valid_ldisp(jit->lit32 - jit->base_ip);
409 }
410
411 /*
412 * Return whether the next 64-bit literal pool entry can be referenced using
413 * Long-Displacement Facility
414 */
can_use_ldisp_for_lit64(struct bpf_jit * jit)415 static bool can_use_ldisp_for_lit64(struct bpf_jit *jit)
416 {
417 return is_valid_ldisp(jit->lit64 - jit->base_ip);
418 }
419
420 /*
421 * Fill whole space with illegal instructions
422 */
jit_fill_hole(void * area,unsigned int size)423 static void jit_fill_hole(void *area, unsigned int size)
424 {
425 memset(area, 0, size);
426 }
427
428 /*
429 * Caller-allocated part of the frame.
430 * Thanks to packed stack, its otherwise unused initial part can be used for
431 * the BPF stack and for the next frame.
432 */
433 struct prog_frame {
434 u64 unused[8];
435 /* BPF stack starts here and grows towards 0 */
436 u32 tail_call_cnt;
437 u32 pad;
438 u64 r6[10]; /* r6 - r15 */
439 u64 backchain;
440 } __packed;
441
442 /*
443 * Save registers from "rs" (register start) to "re" (register end) on stack
444 */
save_regs(struct bpf_jit * jit,u32 rs,u32 re)445 static void save_regs(struct bpf_jit *jit, u32 rs, u32 re)
446 {
447 u32 off = offsetof(struct prog_frame, r6) + (rs - 6) * 8;
448
449 if (rs == re)
450 /* stg %rs,off(%r15) */
451 _EMIT6(0xe300f000 | rs << 20 | off, 0x0024);
452 else
453 /* stmg %rs,%re,off(%r15) */
454 _EMIT6_DISP(0xeb00f000 | rs << 20 | re << 16, 0x0024, off);
455 }
456
457 /*
458 * Restore registers from "rs" (register start) to "re" (register end) on stack
459 */
restore_regs(struct bpf_jit * jit,u32 rs,u32 re)460 static void restore_regs(struct bpf_jit *jit, u32 rs, u32 re)
461 {
462 u32 off = jit->frame_off + offsetof(struct prog_frame, r6) + (rs - 6) * 8;
463
464 if (rs == re)
465 /* lg %rs,off(%r15) */
466 _EMIT6(0xe300f000 | rs << 20 | off, 0x0004);
467 else
468 /* lmg %rs,%re,off(%r15) */
469 _EMIT6_DISP(0xeb00f000 | rs << 20 | re << 16, 0x0004, off);
470 }
471
472 /*
473 * Return first seen register (from start)
474 */
get_start(u16 seen_regs,int start)475 static int get_start(u16 seen_regs, int start)
476 {
477 int i;
478
479 for (i = start; i <= 15; i++) {
480 if (seen_regs & (1 << i))
481 return i;
482 }
483 return 0;
484 }
485
486 /*
487 * Return last seen register (from start) (gap >= 2)
488 */
get_end(u16 seen_regs,int start)489 static int get_end(u16 seen_regs, int start)
490 {
491 int i;
492
493 for (i = start; i < 15; i++) {
494 if (!(seen_regs & (3 << i)))
495 return i - 1;
496 }
497 return (seen_regs & (1 << 15)) ? 15 : 14;
498 }
499
500 #define REGS_SAVE 1
501 #define REGS_RESTORE 0
502 /*
503 * Save and restore clobbered registers (6-15) on stack.
504 * We save/restore registers in chunks with gap >= 2 registers.
505 */
save_restore_regs(struct bpf_jit * jit,int op,u16 extra_regs)506 static void save_restore_regs(struct bpf_jit *jit, int op, u16 extra_regs)
507 {
508 u16 seen_regs = jit->seen_regs | extra_regs;
509 const int last = 15, save_restore_size = 6;
510 int re = 6, rs;
511
512 if (is_first_pass(jit)) {
513 /*
514 * We don't know yet which registers are used. Reserve space
515 * conservatively.
516 */
517 jit->prg += (last - re + 1) * save_restore_size;
518 return;
519 }
520
521 do {
522 rs = get_start(seen_regs, re);
523 if (!rs)
524 break;
525 re = get_end(seen_regs, rs + 1);
526 if (op == REGS_SAVE)
527 save_regs(jit, rs, re);
528 else
529 restore_regs(jit, rs, re);
530 re++;
531 } while (re <= last);
532 }
533
bpf_skip(struct bpf_jit * jit,int size)534 static void bpf_skip(struct bpf_jit *jit, int size)
535 {
536 if (size >= 6 && !is_valid_rel(size)) {
537 /* brcl 0xf,size */
538 EMIT6_PCREL_RILC(0xc0040000, 0xf, size);
539 size -= 6;
540 } else if (size >= 4 && is_valid_rel(size)) {
541 /* brc 0xf,size */
542 EMIT4_PCREL(0xa7f40000, size);
543 size -= 4;
544 }
545 while (size >= 2) {
546 /* bcr 0,%0 */
547 _EMIT2(0x0700);
548 size -= 2;
549 }
550 }
551
552 /*
553 * PLT for hotpatchable calls. The calling convention is the same as for the
554 * ftrace hotpatch trampolines: %r0 is return address, %r1 is clobbered.
555 */
556 struct bpf_plt {
557 char code[16];
558 void *ret;
559 void *target;
560 } __packed;
561 extern const struct bpf_plt bpf_plt;
562 asm(
563 ".pushsection .rodata\n"
564 " .balign 8\n"
565 "bpf_plt:\n"
566 " lgrl %r0,bpf_plt_ret\n"
567 " lgrl %r1,bpf_plt_target\n"
568 " br %r1\n"
569 " .balign 8\n"
570 "bpf_plt_ret: .quad 0\n"
571 "bpf_plt_target: .quad 0\n"
572 " .popsection\n"
573 );
574
bpf_jit_plt(struct bpf_plt * plt,void * ret,void * target)575 static void bpf_jit_plt(struct bpf_plt *plt, void *ret, void *target)
576 {
577 memcpy(plt, &bpf_plt, sizeof(*plt));
578 plt->ret = ret;
579 /*
580 * (target == NULL) implies that the branch to this PLT entry was
581 * patched and became a no-op. However, some CPU could have jumped
582 * to this PLT entry before patching and may be still executing it.
583 *
584 * Since the intention in this case is to make the PLT entry a no-op,
585 * make the target point to the return label instead of NULL.
586 */
587 plt->target = target ?: ret;
588 }
589
590 /*
591 * Emit function prologue
592 *
593 * Save registers and create stack frame if necessary.
594 * Stack frame layout is described by struct prog_frame.
595 */
bpf_jit_prologue(struct bpf_jit * jit,struct bpf_prog * fp)596 static void bpf_jit_prologue(struct bpf_jit *jit, struct bpf_prog *fp)
597 {
598 BUILD_BUG_ON(sizeof(struct prog_frame) != STACK_FRAME_OVERHEAD);
599
600 /* No-op for hotpatching */
601 /* brcl 0,prologue_plt */
602 EMIT6_PCREL_RILC(0xc0040000, 0, jit->prologue_plt);
603 jit->prologue_plt_ret = jit->prg;
604
605 if (!bpf_is_subprog(fp)) {
606 /* Initialize the tail call counter in the main program. */
607 /* xc tail_call_cnt(4,%r15),tail_call_cnt(%r15) */
608 _EMIT6(0xd703f000 | offsetof(struct prog_frame, tail_call_cnt),
609 0xf000 | offsetof(struct prog_frame, tail_call_cnt));
610 } else {
611 /*
612 * Skip the tail call counter initialization in subprograms.
613 * Insert nops in order to have tail_call_start at a
614 * predictable offset.
615 */
616 bpf_skip(jit, 6);
617 }
618 /* Tail calls have to skip above initialization */
619 jit->tail_call_start = jit->prg;
620 if (fp->aux->exception_cb) {
621 /*
622 * Switch stack, the new address is in the 2nd parameter.
623 *
624 * Arrange the restoration of %r6-%r15 in the epilogue.
625 * Do not restore them now, the prog does not need them.
626 */
627 /* lgr %r15,%r3 */
628 EMIT4(0xb9040000, REG_15, REG_3);
629 jit->seen_regs |= NVREGS;
630 } else {
631 /* Save registers */
632 save_restore_regs(jit, REGS_SAVE,
633 fp->aux->exception_boundary ? NVREGS : 0);
634 }
635 /* Setup literal pool */
636 if (is_first_pass(jit) || (jit->seen & SEEN_LITERAL)) {
637 if (!is_first_pass(jit) &&
638 is_valid_ldisp(jit->size - (jit->prg + 2))) {
639 /* basr %l,0 */
640 EMIT2(0x0d00, REG_L, REG_0);
641 jit->base_ip = jit->prg;
642 } else {
643 /* larl %l,lit32_start */
644 EMIT6_PCREL_RILB(0xc0000000, REG_L, jit->lit32_start);
645 jit->base_ip = jit->lit32_start;
646 }
647 }
648 /* Setup stack and backchain */
649 if (is_first_pass(jit) || (jit->seen & SEEN_STACK)) {
650 /* lgr %w1,%r15 (backchain) */
651 EMIT4(0xb9040000, REG_W1, REG_15);
652 /* la %bfp,unused_end(%r15) (BPF frame pointer) */
653 EMIT4_DISP(0x41000000, BPF_REG_FP, REG_15,
654 offsetofend(struct prog_frame, unused));
655 /* aghi %r15,-frame_off */
656 EMIT4_IMM(0xa70b0000, REG_15, -jit->frame_off);
657 /* stg %w1,backchain(%r15) */
658 EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W1, REG_0,
659 REG_15,
660 offsetof(struct prog_frame, backchain));
661 }
662 }
663
664 /*
665 * Jump using a register either directly or via an expoline thunk
666 */
667 #define EMIT_JUMP_REG(reg) do { \
668 if (nospec_uses_trampoline()) \
669 /* brcl 0xf,__s390_indirect_jump_rN */ \
670 EMIT6_PCREL_RILC_PTR(0xc0040000, 0x0f, \
671 __s390_indirect_jump_r ## reg); \
672 else \
673 /* br %rN */ \
674 _EMIT2(0x07f0 | reg); \
675 } while (0)
676
677 /*
678 * Call r1 either directly or via __s390_indirect_jump_r1 thunk
679 */
call_r1(struct bpf_jit * jit)680 static void call_r1(struct bpf_jit *jit)
681 {
682 if (nospec_uses_trampoline())
683 /* brasl %r14,__s390_indirect_jump_r1 */
684 EMIT6_PCREL_RILB_PTR(0xc0050000, REG_14,
685 __s390_indirect_jump_r1);
686 else
687 /* basr %r14,%r1 */
688 EMIT2(0x0d00, REG_14, REG_1);
689 }
690
691 /*
692 * Function epilogue
693 */
bpf_jit_epilogue(struct bpf_jit * jit)694 static void bpf_jit_epilogue(struct bpf_jit *jit)
695 {
696 jit->exit_ip = jit->prg;
697 /* Load exit code: lgr %r2,%b0 */
698 EMIT4(0xb9040000, REG_2, BPF_REG_0);
699 /* Restore registers */
700 save_restore_regs(jit, REGS_RESTORE, 0);
701 EMIT_JUMP_REG(14);
702
703 jit->prg = ALIGN(jit->prg, 8);
704 jit->prologue_plt = jit->prg;
705 if (jit->prg_buf)
706 bpf_jit_plt((struct bpf_plt *)(jit->prg_buf + jit->prg),
707 jit->prg_buf + jit->prologue_plt_ret, NULL);
708 jit->prg += sizeof(struct bpf_plt);
709 }
710
ex_handler_bpf(const struct exception_table_entry * x,struct pt_regs * regs)711 bool ex_handler_bpf(const struct exception_table_entry *x, struct pt_regs *regs)
712 {
713 regs->psw.addr = extable_fixup(x);
714 if (x->data != -1)
715 regs->gprs[x->data] = 0;
716 return true;
717 }
718
719 /*
720 * A single BPF probe instruction
721 */
722 struct bpf_jit_probe {
723 int prg; /* JITed instruction offset */
724 int nop_prg; /* JITed nop offset */
725 int reg; /* Register to clear on exception */
726 int arena_reg; /* Register to use for arena addressing */
727 };
728
bpf_jit_probe_init(struct bpf_jit_probe * probe)729 static void bpf_jit_probe_init(struct bpf_jit_probe *probe)
730 {
731 probe->prg = -1;
732 probe->nop_prg = -1;
733 probe->reg = -1;
734 probe->arena_reg = REG_0;
735 }
736
737 /*
738 * Handlers of certain exceptions leave psw.addr pointing to the instruction
739 * directly after the failing one. Therefore, create two exception table
740 * entries and also add a nop in case two probing instructions come directly
741 * after each other.
742 */
bpf_jit_probe_emit_nop(struct bpf_jit * jit,struct bpf_jit_probe * probe)743 static void bpf_jit_probe_emit_nop(struct bpf_jit *jit,
744 struct bpf_jit_probe *probe)
745 {
746 if (probe->prg == -1 || probe->nop_prg != -1)
747 /* The probe is not armed or nop is already emitted. */
748 return;
749
750 probe->nop_prg = jit->prg;
751 /* bcr 0,%0 */
752 _EMIT2(0x0700);
753 }
754
bpf_jit_probe_load_pre(struct bpf_jit * jit,struct bpf_insn * insn,struct bpf_jit_probe * probe)755 static void bpf_jit_probe_load_pre(struct bpf_jit *jit, struct bpf_insn *insn,
756 struct bpf_jit_probe *probe)
757 {
758 if (BPF_MODE(insn->code) != BPF_PROBE_MEM &&
759 BPF_MODE(insn->code) != BPF_PROBE_MEMSX &&
760 BPF_MODE(insn->code) != BPF_PROBE_MEM32)
761 return;
762
763 if (BPF_MODE(insn->code) == BPF_PROBE_MEM32) {
764 /* lgrl %r1,kern_arena */
765 EMIT6_PCREL_RILB(0xc4080000, REG_W1, jit->kern_arena);
766 probe->arena_reg = REG_W1;
767 }
768 probe->prg = jit->prg;
769 probe->reg = reg2hex[insn->dst_reg];
770 }
771
bpf_jit_probe_store_pre(struct bpf_jit * jit,struct bpf_insn * insn,struct bpf_jit_probe * probe)772 static void bpf_jit_probe_store_pre(struct bpf_jit *jit, struct bpf_insn *insn,
773 struct bpf_jit_probe *probe)
774 {
775 if (BPF_MODE(insn->code) != BPF_PROBE_MEM32)
776 return;
777
778 /* lgrl %r1,kern_arena */
779 EMIT6_PCREL_RILB(0xc4080000, REG_W1, jit->kern_arena);
780 probe->arena_reg = REG_W1;
781 probe->prg = jit->prg;
782 }
783
bpf_jit_probe_atomic_pre(struct bpf_jit * jit,struct bpf_insn * insn,struct bpf_jit_probe * probe)784 static void bpf_jit_probe_atomic_pre(struct bpf_jit *jit,
785 struct bpf_insn *insn,
786 struct bpf_jit_probe *probe)
787 {
788 if (BPF_MODE(insn->code) != BPF_PROBE_ATOMIC)
789 return;
790
791 /* lgrl %r1,kern_arena */
792 EMIT6_PCREL_RILB(0xc4080000, REG_W1, jit->kern_arena);
793 /* agr %r1,%dst */
794 EMIT4(0xb9080000, REG_W1, insn->dst_reg);
795 probe->arena_reg = REG_W1;
796 probe->prg = jit->prg;
797 }
798
bpf_jit_probe_post(struct bpf_jit * jit,struct bpf_prog * fp,struct bpf_jit_probe * probe)799 static int bpf_jit_probe_post(struct bpf_jit *jit, struct bpf_prog *fp,
800 struct bpf_jit_probe *probe)
801 {
802 struct exception_table_entry *ex;
803 int i, prg;
804 s64 delta;
805 u8 *insn;
806
807 if (probe->prg == -1)
808 /* The probe is not armed. */
809 return 0;
810 bpf_jit_probe_emit_nop(jit, probe);
811 if (!fp->aux->extable)
812 /* Do nothing during early JIT passes. */
813 return 0;
814 insn = jit->prg_buf + probe->prg;
815 if (WARN_ON_ONCE(probe->prg + insn_length(*insn) != probe->nop_prg))
816 /* JIT bug - gap between probe and nop instructions. */
817 return -1;
818 for (i = 0; i < 2; i++) {
819 if (WARN_ON_ONCE(jit->excnt >= fp->aux->num_exentries))
820 /* Verifier bug - not enough entries. */
821 return -1;
822 ex = &fp->aux->extable[jit->excnt];
823 /* Add extable entries for probe and nop instructions. */
824 prg = i == 0 ? probe->prg : probe->nop_prg;
825 delta = jit->prg_buf + prg - (u8 *)&ex->insn;
826 if (WARN_ON_ONCE(delta < INT_MIN || delta > INT_MAX))
827 /* JIT bug - code and extable must be close. */
828 return -1;
829 ex->insn = delta;
830 /*
831 * Land on the current instruction. Note that the extable
832 * infrastructure ignores the fixup field; it is handled by
833 * ex_handler_bpf().
834 */
835 delta = jit->prg_buf + jit->prg - (u8 *)&ex->fixup;
836 if (WARN_ON_ONCE(delta < INT_MIN || delta > INT_MAX))
837 /* JIT bug - landing pad and extable must be close. */
838 return -1;
839 ex->fixup = delta;
840 ex->type = EX_TYPE_BPF;
841 ex->data = probe->reg;
842 jit->excnt++;
843 }
844 return 0;
845 }
846
847 /*
848 * Sign-extend the register if necessary
849 */
sign_extend(struct bpf_jit * jit,int r,u8 size,u8 flags)850 static int sign_extend(struct bpf_jit *jit, int r, u8 size, u8 flags)
851 {
852 if (!(flags & BTF_FMODEL_SIGNED_ARG))
853 return 0;
854
855 switch (size) {
856 case 1:
857 /* lgbr %r,%r */
858 EMIT4(0xb9060000, r, r);
859 return 0;
860 case 2:
861 /* lghr %r,%r */
862 EMIT4(0xb9070000, r, r);
863 return 0;
864 case 4:
865 /* lgfr %r,%r */
866 EMIT4(0xb9140000, r, r);
867 return 0;
868 case 8:
869 return 0;
870 default:
871 return -1;
872 }
873 }
874
875 /*
876 * Compile one eBPF instruction into s390x code
877 *
878 * NOTE: Use noinline because for gcov (-fprofile-arcs) gcc allocates a lot of
879 * stack space for the large switch statement.
880 */
bpf_jit_insn(struct bpf_jit * jit,struct bpf_prog * fp,int i,bool extra_pass)881 static noinline int bpf_jit_insn(struct bpf_jit *jit, struct bpf_prog *fp,
882 int i, bool extra_pass)
883 {
884 struct bpf_insn *insn = &fp->insnsi[i];
885 s32 branch_oc_off = insn->off;
886 u32 dst_reg = insn->dst_reg;
887 u32 src_reg = insn->src_reg;
888 struct bpf_jit_probe probe;
889 int last, insn_count = 1;
890 u32 *addrs = jit->addrs;
891 s32 imm = insn->imm;
892 s16 off = insn->off;
893 unsigned int mask;
894 int err;
895
896 bpf_jit_probe_init(&probe);
897
898 switch (insn->code) {
899 /*
900 * BPF_MOV
901 */
902 case BPF_ALU | BPF_MOV | BPF_X:
903 switch (insn->off) {
904 case 0: /* DST = (u32) SRC */
905 /* llgfr %dst,%src */
906 EMIT4(0xb9160000, dst_reg, src_reg);
907 if (insn_is_zext(&insn[1]))
908 insn_count = 2;
909 break;
910 case 8: /* DST = (u32)(s8) SRC */
911 /* lbr %dst,%src */
912 EMIT4(0xb9260000, dst_reg, src_reg);
913 /* llgfr %dst,%dst */
914 EMIT4(0xb9160000, dst_reg, dst_reg);
915 break;
916 case 16: /* DST = (u32)(s16) SRC */
917 /* lhr %dst,%src */
918 EMIT4(0xb9270000, dst_reg, src_reg);
919 /* llgfr %dst,%dst */
920 EMIT4(0xb9160000, dst_reg, dst_reg);
921 break;
922 }
923 break;
924 case BPF_ALU64 | BPF_MOV | BPF_X:
925 if (insn_is_cast_user(insn)) {
926 int patch_brc;
927
928 /* ltgr %dst,%src */
929 EMIT4(0xb9020000, dst_reg, src_reg);
930 /* brc 8,0f */
931 patch_brc = jit->prg;
932 EMIT4_PCREL_RIC(0xa7040000, 8, 0);
933 /* iihf %dst,user_arena>>32 */
934 EMIT6_IMM(0xc0080000, dst_reg, jit->user_arena >> 32);
935 /* 0: */
936 if (jit->prg_buf)
937 *(u16 *)(jit->prg_buf + patch_brc + 2) =
938 (jit->prg - patch_brc) >> 1;
939 break;
940 }
941 switch (insn->off) {
942 case 0: /* DST = SRC */
943 /* lgr %dst,%src */
944 EMIT4(0xb9040000, dst_reg, src_reg);
945 break;
946 case 8: /* DST = (s8) SRC */
947 /* lgbr %dst,%src */
948 EMIT4(0xb9060000, dst_reg, src_reg);
949 break;
950 case 16: /* DST = (s16) SRC */
951 /* lghr %dst,%src */
952 EMIT4(0xb9070000, dst_reg, src_reg);
953 break;
954 case 32: /* DST = (s32) SRC */
955 /* lgfr %dst,%src */
956 EMIT4(0xb9140000, dst_reg, src_reg);
957 break;
958 }
959 break;
960 case BPF_ALU | BPF_MOV | BPF_K: /* dst = (u32) imm */
961 /* llilf %dst,imm */
962 EMIT6_IMM(0xc00f0000, dst_reg, imm);
963 if (insn_is_zext(&insn[1]))
964 insn_count = 2;
965 break;
966 case BPF_ALU64 | BPF_MOV | BPF_K: /* dst = imm */
967 /* lgfi %dst,imm */
968 EMIT6_IMM(0xc0010000, dst_reg, imm);
969 break;
970 /*
971 * BPF_LD 64
972 */
973 case BPF_LD | BPF_IMM | BPF_DW: /* dst = (u64) imm */
974 {
975 /* 16 byte instruction that uses two 'struct bpf_insn' */
976 u64 imm64;
977
978 imm64 = (u64)(u32) insn[0].imm | ((u64)(u32) insn[1].imm) << 32;
979 /* lgrl %dst,imm */
980 EMIT6_PCREL_RILB(0xc4080000, dst_reg, _EMIT_CONST_U64(imm64));
981 insn_count = 2;
982 break;
983 }
984 /*
985 * BPF_ADD
986 */
987 case BPF_ALU | BPF_ADD | BPF_X: /* dst = (u32) dst + (u32) src */
988 /* ar %dst,%src */
989 EMIT2(0x1a00, dst_reg, src_reg);
990 EMIT_ZERO(dst_reg);
991 break;
992 case BPF_ALU64 | BPF_ADD | BPF_X: /* dst = dst + src */
993 /* agr %dst,%src */
994 EMIT4(0xb9080000, dst_reg, src_reg);
995 break;
996 case BPF_ALU | BPF_ADD | BPF_K: /* dst = (u32) dst + (u32) imm */
997 if (imm != 0) {
998 /* alfi %dst,imm */
999 EMIT6_IMM(0xc20b0000, dst_reg, imm);
1000 }
1001 EMIT_ZERO(dst_reg);
1002 break;
1003 case BPF_ALU64 | BPF_ADD | BPF_K: /* dst = dst + imm */
1004 if (!imm)
1005 break;
1006 /* agfi %dst,imm */
1007 EMIT6_IMM(0xc2080000, dst_reg, imm);
1008 break;
1009 /*
1010 * BPF_SUB
1011 */
1012 case BPF_ALU | BPF_SUB | BPF_X: /* dst = (u32) dst - (u32) src */
1013 /* sr %dst,%src */
1014 EMIT2(0x1b00, dst_reg, src_reg);
1015 EMIT_ZERO(dst_reg);
1016 break;
1017 case BPF_ALU64 | BPF_SUB | BPF_X: /* dst = dst - src */
1018 /* sgr %dst,%src */
1019 EMIT4(0xb9090000, dst_reg, src_reg);
1020 break;
1021 case BPF_ALU | BPF_SUB | BPF_K: /* dst = (u32) dst - (u32) imm */
1022 if (imm != 0) {
1023 /* alfi %dst,-imm */
1024 EMIT6_IMM(0xc20b0000, dst_reg, -imm);
1025 }
1026 EMIT_ZERO(dst_reg);
1027 break;
1028 case BPF_ALU64 | BPF_SUB | BPF_K: /* dst = dst - imm */
1029 if (!imm)
1030 break;
1031 if (imm == -0x80000000) {
1032 /* algfi %dst,0x80000000 */
1033 EMIT6_IMM(0xc20a0000, dst_reg, 0x80000000);
1034 } else {
1035 /* agfi %dst,-imm */
1036 EMIT6_IMM(0xc2080000, dst_reg, -imm);
1037 }
1038 break;
1039 /*
1040 * BPF_MUL
1041 */
1042 case BPF_ALU | BPF_MUL | BPF_X: /* dst = (u32) dst * (u32) src */
1043 /* msr %dst,%src */
1044 EMIT4(0xb2520000, dst_reg, src_reg);
1045 EMIT_ZERO(dst_reg);
1046 break;
1047 case BPF_ALU64 | BPF_MUL | BPF_X: /* dst = dst * src */
1048 /* msgr %dst,%src */
1049 EMIT4(0xb90c0000, dst_reg, src_reg);
1050 break;
1051 case BPF_ALU | BPF_MUL | BPF_K: /* dst = (u32) dst * (u32) imm */
1052 if (imm != 1) {
1053 /* msfi %r5,imm */
1054 EMIT6_IMM(0xc2010000, dst_reg, imm);
1055 }
1056 EMIT_ZERO(dst_reg);
1057 break;
1058 case BPF_ALU64 | BPF_MUL | BPF_K: /* dst = dst * imm */
1059 if (imm == 1)
1060 break;
1061 /* msgfi %dst,imm */
1062 EMIT6_IMM(0xc2000000, dst_reg, imm);
1063 break;
1064 /*
1065 * BPF_DIV / BPF_MOD
1066 */
1067 case BPF_ALU | BPF_DIV | BPF_X:
1068 case BPF_ALU | BPF_MOD | BPF_X:
1069 {
1070 int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
1071
1072 switch (off) {
1073 case 0: /* dst = (u32) dst {/,%} (u32) src */
1074 /* xr %w0,%w0 */
1075 EMIT2(0x1700, REG_W0, REG_W0);
1076 /* lr %w1,%dst */
1077 EMIT2(0x1800, REG_W1, dst_reg);
1078 /* dlr %w0,%src */
1079 EMIT4(0xb9970000, REG_W0, src_reg);
1080 break;
1081 case 1: /* dst = (u32) ((s32) dst {/,%} (s32) src) */
1082 /* lgfr %r1,%dst */
1083 EMIT4(0xb9140000, REG_W1, dst_reg);
1084 /* dsgfr %r0,%src */
1085 EMIT4(0xb91d0000, REG_W0, src_reg);
1086 break;
1087 }
1088 /* llgfr %dst,%rc */
1089 EMIT4(0xb9160000, dst_reg, rc_reg);
1090 if (insn_is_zext(&insn[1]))
1091 insn_count = 2;
1092 break;
1093 }
1094 case BPF_ALU64 | BPF_DIV | BPF_X:
1095 case BPF_ALU64 | BPF_MOD | BPF_X:
1096 {
1097 int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
1098
1099 switch (off) {
1100 case 0: /* dst = dst {/,%} src */
1101 /* lghi %w0,0 */
1102 EMIT4_IMM(0xa7090000, REG_W0, 0);
1103 /* lgr %w1,%dst */
1104 EMIT4(0xb9040000, REG_W1, dst_reg);
1105 /* dlgr %w0,%src */
1106 EMIT4(0xb9870000, REG_W0, src_reg);
1107 break;
1108 case 1: /* dst = (s64) dst {/,%} (s64) src */
1109 /* lgr %w1,%dst */
1110 EMIT4(0xb9040000, REG_W1, dst_reg);
1111 /* dsgr %w0,%src */
1112 EMIT4(0xb90d0000, REG_W0, src_reg);
1113 break;
1114 }
1115 /* lgr %dst,%rc */
1116 EMIT4(0xb9040000, dst_reg, rc_reg);
1117 break;
1118 }
1119 case BPF_ALU | BPF_DIV | BPF_K:
1120 case BPF_ALU | BPF_MOD | BPF_K:
1121 {
1122 int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
1123
1124 if (imm == 1) {
1125 if (BPF_OP(insn->code) == BPF_MOD)
1126 /* lghi %dst,0 */
1127 EMIT4_IMM(0xa7090000, dst_reg, 0);
1128 else
1129 EMIT_ZERO(dst_reg);
1130 break;
1131 }
1132 if (!is_first_pass(jit) && can_use_ldisp_for_lit32(jit)) {
1133 switch (off) {
1134 case 0: /* dst = (u32) dst {/,%} (u32) imm */
1135 /* xr %w0,%w0 */
1136 EMIT2(0x1700, REG_W0, REG_W0);
1137 /* lr %w1,%dst */
1138 EMIT2(0x1800, REG_W1, dst_reg);
1139 /* dl %w0,<d(imm)>(%l) */
1140 EMIT6_DISP_LH(0xe3000000, 0x0097, REG_W0, REG_0,
1141 REG_L, EMIT_CONST_U32(imm));
1142 break;
1143 case 1: /* dst = (s32) dst {/,%} (s32) imm */
1144 /* lgfr %r1,%dst */
1145 EMIT4(0xb9140000, REG_W1, dst_reg);
1146 /* dsgf %r0,<d(imm)>(%l) */
1147 EMIT6_DISP_LH(0xe3000000, 0x001d, REG_W0, REG_0,
1148 REG_L, EMIT_CONST_U32(imm));
1149 break;
1150 }
1151 } else {
1152 switch (off) {
1153 case 0: /* dst = (u32) dst {/,%} (u32) imm */
1154 /* xr %w0,%w0 */
1155 EMIT2(0x1700, REG_W0, REG_W0);
1156 /* lr %w1,%dst */
1157 EMIT2(0x1800, REG_W1, dst_reg);
1158 /* lrl %dst,imm */
1159 EMIT6_PCREL_RILB(0xc40d0000, dst_reg,
1160 _EMIT_CONST_U32(imm));
1161 jit->seen |= SEEN_LITERAL;
1162 /* dlr %w0,%dst */
1163 EMIT4(0xb9970000, REG_W0, dst_reg);
1164 break;
1165 case 1: /* dst = (s32) dst {/,%} (s32) imm */
1166 /* lgfr %w1,%dst */
1167 EMIT4(0xb9140000, REG_W1, dst_reg);
1168 /* lgfrl %dst,imm */
1169 EMIT6_PCREL_RILB(0xc40c0000, dst_reg,
1170 _EMIT_CONST_U32(imm));
1171 jit->seen |= SEEN_LITERAL;
1172 /* dsgr %w0,%dst */
1173 EMIT4(0xb90d0000, REG_W0, dst_reg);
1174 break;
1175 }
1176 }
1177 /* llgfr %dst,%rc */
1178 EMIT4(0xb9160000, dst_reg, rc_reg);
1179 if (insn_is_zext(&insn[1]))
1180 insn_count = 2;
1181 break;
1182 }
1183 case BPF_ALU64 | BPF_DIV | BPF_K:
1184 case BPF_ALU64 | BPF_MOD | BPF_K:
1185 {
1186 int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
1187
1188 if (imm == 1) {
1189 if (BPF_OP(insn->code) == BPF_MOD)
1190 /* lhgi %dst,0 */
1191 EMIT4_IMM(0xa7090000, dst_reg, 0);
1192 break;
1193 }
1194 if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
1195 switch (off) {
1196 case 0: /* dst = dst {/,%} imm */
1197 /* lghi %w0,0 */
1198 EMIT4_IMM(0xa7090000, REG_W0, 0);
1199 /* lgr %w1,%dst */
1200 EMIT4(0xb9040000, REG_W1, dst_reg);
1201 /* dlg %w0,<d(imm)>(%l) */
1202 EMIT6_DISP_LH(0xe3000000, 0x0087, REG_W0, REG_0,
1203 REG_L, EMIT_CONST_U64(imm));
1204 break;
1205 case 1: /* dst = (s64) dst {/,%} (s64) imm */
1206 /* lgr %w1,%dst */
1207 EMIT4(0xb9040000, REG_W1, dst_reg);
1208 /* dsg %w0,<d(imm)>(%l) */
1209 EMIT6_DISP_LH(0xe3000000, 0x000d, REG_W0, REG_0,
1210 REG_L, EMIT_CONST_U64(imm));
1211 break;
1212 }
1213 } else {
1214 switch (off) {
1215 case 0: /* dst = dst {/,%} imm */
1216 /* lghi %w0,0 */
1217 EMIT4_IMM(0xa7090000, REG_W0, 0);
1218 /* lgr %w1,%dst */
1219 EMIT4(0xb9040000, REG_W1, dst_reg);
1220 /* lgrl %dst,imm */
1221 EMIT6_PCREL_RILB(0xc4080000, dst_reg,
1222 _EMIT_CONST_U64(imm));
1223 jit->seen |= SEEN_LITERAL;
1224 /* dlgr %w0,%dst */
1225 EMIT4(0xb9870000, REG_W0, dst_reg);
1226 break;
1227 case 1: /* dst = (s64) dst {/,%} (s64) imm */
1228 /* lgr %w1,%dst */
1229 EMIT4(0xb9040000, REG_W1, dst_reg);
1230 /* lgrl %dst,imm */
1231 EMIT6_PCREL_RILB(0xc4080000, dst_reg,
1232 _EMIT_CONST_U64(imm));
1233 jit->seen |= SEEN_LITERAL;
1234 /* dsgr %w0,%dst */
1235 EMIT4(0xb90d0000, REG_W0, dst_reg);
1236 break;
1237 }
1238 }
1239 /* lgr %dst,%rc */
1240 EMIT4(0xb9040000, dst_reg, rc_reg);
1241 break;
1242 }
1243 /*
1244 * BPF_AND
1245 */
1246 case BPF_ALU | BPF_AND | BPF_X: /* dst = (u32) dst & (u32) src */
1247 /* nr %dst,%src */
1248 EMIT2(0x1400, dst_reg, src_reg);
1249 EMIT_ZERO(dst_reg);
1250 break;
1251 case BPF_ALU64 | BPF_AND | BPF_X: /* dst = dst & src */
1252 /* ngr %dst,%src */
1253 EMIT4(0xb9800000, dst_reg, src_reg);
1254 break;
1255 case BPF_ALU | BPF_AND | BPF_K: /* dst = (u32) dst & (u32) imm */
1256 /* nilf %dst,imm */
1257 EMIT6_IMM(0xc00b0000, dst_reg, imm);
1258 EMIT_ZERO(dst_reg);
1259 break;
1260 case BPF_ALU64 | BPF_AND | BPF_K: /* dst = dst & imm */
1261 if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
1262 /* ng %dst,<d(imm)>(%l) */
1263 EMIT6_DISP_LH(0xe3000000, 0x0080,
1264 dst_reg, REG_0, REG_L,
1265 EMIT_CONST_U64(imm));
1266 } else {
1267 /* lgrl %w0,imm */
1268 EMIT6_PCREL_RILB(0xc4080000, REG_W0,
1269 _EMIT_CONST_U64(imm));
1270 jit->seen |= SEEN_LITERAL;
1271 /* ngr %dst,%w0 */
1272 EMIT4(0xb9800000, dst_reg, REG_W0);
1273 }
1274 break;
1275 /*
1276 * BPF_OR
1277 */
1278 case BPF_ALU | BPF_OR | BPF_X: /* dst = (u32) dst | (u32) src */
1279 /* or %dst,%src */
1280 EMIT2(0x1600, dst_reg, src_reg);
1281 EMIT_ZERO(dst_reg);
1282 break;
1283 case BPF_ALU64 | BPF_OR | BPF_X: /* dst = dst | src */
1284 /* ogr %dst,%src */
1285 EMIT4(0xb9810000, dst_reg, src_reg);
1286 break;
1287 case BPF_ALU | BPF_OR | BPF_K: /* dst = (u32) dst | (u32) imm */
1288 /* oilf %dst,imm */
1289 EMIT6_IMM(0xc00d0000, dst_reg, imm);
1290 EMIT_ZERO(dst_reg);
1291 break;
1292 case BPF_ALU64 | BPF_OR | BPF_K: /* dst = dst | imm */
1293 if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
1294 /* og %dst,<d(imm)>(%l) */
1295 EMIT6_DISP_LH(0xe3000000, 0x0081,
1296 dst_reg, REG_0, REG_L,
1297 EMIT_CONST_U64(imm));
1298 } else {
1299 /* lgrl %w0,imm */
1300 EMIT6_PCREL_RILB(0xc4080000, REG_W0,
1301 _EMIT_CONST_U64(imm));
1302 jit->seen |= SEEN_LITERAL;
1303 /* ogr %dst,%w0 */
1304 EMIT4(0xb9810000, dst_reg, REG_W0);
1305 }
1306 break;
1307 /*
1308 * BPF_XOR
1309 */
1310 case BPF_ALU | BPF_XOR | BPF_X: /* dst = (u32) dst ^ (u32) src */
1311 /* xr %dst,%src */
1312 EMIT2(0x1700, dst_reg, src_reg);
1313 EMIT_ZERO(dst_reg);
1314 break;
1315 case BPF_ALU64 | BPF_XOR | BPF_X: /* dst = dst ^ src */
1316 /* xgr %dst,%src */
1317 EMIT4(0xb9820000, dst_reg, src_reg);
1318 break;
1319 case BPF_ALU | BPF_XOR | BPF_K: /* dst = (u32) dst ^ (u32) imm */
1320 if (imm != 0) {
1321 /* xilf %dst,imm */
1322 EMIT6_IMM(0xc0070000, dst_reg, imm);
1323 }
1324 EMIT_ZERO(dst_reg);
1325 break;
1326 case BPF_ALU64 | BPF_XOR | BPF_K: /* dst = dst ^ imm */
1327 if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
1328 /* xg %dst,<d(imm)>(%l) */
1329 EMIT6_DISP_LH(0xe3000000, 0x0082,
1330 dst_reg, REG_0, REG_L,
1331 EMIT_CONST_U64(imm));
1332 } else {
1333 /* lgrl %w0,imm */
1334 EMIT6_PCREL_RILB(0xc4080000, REG_W0,
1335 _EMIT_CONST_U64(imm));
1336 jit->seen |= SEEN_LITERAL;
1337 /* xgr %dst,%w0 */
1338 EMIT4(0xb9820000, dst_reg, REG_W0);
1339 }
1340 break;
1341 /*
1342 * BPF_LSH
1343 */
1344 case BPF_ALU | BPF_LSH | BPF_X: /* dst = (u32) dst << (u32) src */
1345 /* sll %dst,0(%src) */
1346 EMIT4_DISP(0x89000000, dst_reg, src_reg, 0);
1347 EMIT_ZERO(dst_reg);
1348 break;
1349 case BPF_ALU64 | BPF_LSH | BPF_X: /* dst = dst << src */
1350 /* sllg %dst,%dst,0(%src) */
1351 EMIT6_DISP_LH(0xeb000000, 0x000d, dst_reg, dst_reg, src_reg, 0);
1352 break;
1353 case BPF_ALU | BPF_LSH | BPF_K: /* dst = (u32) dst << (u32) imm */
1354 if (imm != 0) {
1355 /* sll %dst,imm(%r0) */
1356 EMIT4_DISP(0x89000000, dst_reg, REG_0, imm);
1357 }
1358 EMIT_ZERO(dst_reg);
1359 break;
1360 case BPF_ALU64 | BPF_LSH | BPF_K: /* dst = dst << imm */
1361 if (imm == 0)
1362 break;
1363 /* sllg %dst,%dst,imm(%r0) */
1364 EMIT6_DISP_LH(0xeb000000, 0x000d, dst_reg, dst_reg, REG_0, imm);
1365 break;
1366 /*
1367 * BPF_RSH
1368 */
1369 case BPF_ALU | BPF_RSH | BPF_X: /* dst = (u32) dst >> (u32) src */
1370 /* srl %dst,0(%src) */
1371 EMIT4_DISP(0x88000000, dst_reg, src_reg, 0);
1372 EMIT_ZERO(dst_reg);
1373 break;
1374 case BPF_ALU64 | BPF_RSH | BPF_X: /* dst = dst >> src */
1375 /* srlg %dst,%dst,0(%src) */
1376 EMIT6_DISP_LH(0xeb000000, 0x000c, dst_reg, dst_reg, src_reg, 0);
1377 break;
1378 case BPF_ALU | BPF_RSH | BPF_K: /* dst = (u32) dst >> (u32) imm */
1379 if (imm != 0) {
1380 /* srl %dst,imm(%r0) */
1381 EMIT4_DISP(0x88000000, dst_reg, REG_0, imm);
1382 }
1383 EMIT_ZERO(dst_reg);
1384 break;
1385 case BPF_ALU64 | BPF_RSH | BPF_K: /* dst = dst >> imm */
1386 if (imm == 0)
1387 break;
1388 /* srlg %dst,%dst,imm(%r0) */
1389 EMIT6_DISP_LH(0xeb000000, 0x000c, dst_reg, dst_reg, REG_0, imm);
1390 break;
1391 /*
1392 * BPF_ARSH
1393 */
1394 case BPF_ALU | BPF_ARSH | BPF_X: /* ((s32) dst) >>= src */
1395 /* sra %dst,%dst,0(%src) */
1396 EMIT4_DISP(0x8a000000, dst_reg, src_reg, 0);
1397 EMIT_ZERO(dst_reg);
1398 break;
1399 case BPF_ALU64 | BPF_ARSH | BPF_X: /* ((s64) dst) >>= src */
1400 /* srag %dst,%dst,0(%src) */
1401 EMIT6_DISP_LH(0xeb000000, 0x000a, dst_reg, dst_reg, src_reg, 0);
1402 break;
1403 case BPF_ALU | BPF_ARSH | BPF_K: /* ((s32) dst >> imm */
1404 if (imm != 0) {
1405 /* sra %dst,imm(%r0) */
1406 EMIT4_DISP(0x8a000000, dst_reg, REG_0, imm);
1407 }
1408 EMIT_ZERO(dst_reg);
1409 break;
1410 case BPF_ALU64 | BPF_ARSH | BPF_K: /* ((s64) dst) >>= imm */
1411 if (imm == 0)
1412 break;
1413 /* srag %dst,%dst,imm(%r0) */
1414 EMIT6_DISP_LH(0xeb000000, 0x000a, dst_reg, dst_reg, REG_0, imm);
1415 break;
1416 /*
1417 * BPF_NEG
1418 */
1419 case BPF_ALU | BPF_NEG: /* dst = (u32) -dst */
1420 /* lcr %dst,%dst */
1421 EMIT2(0x1300, dst_reg, dst_reg);
1422 EMIT_ZERO(dst_reg);
1423 break;
1424 case BPF_ALU64 | BPF_NEG: /* dst = -dst */
1425 /* lcgr %dst,%dst */
1426 EMIT4(0xb9030000, dst_reg, dst_reg);
1427 break;
1428 /*
1429 * BPF_FROM_BE/LE
1430 */
1431 case BPF_ALU | BPF_END | BPF_FROM_BE:
1432 /* s390 is big endian, therefore only clear high order bytes */
1433 switch (imm) {
1434 case 16: /* dst = (u16) cpu_to_be16(dst) */
1435 /* llghr %dst,%dst */
1436 EMIT4(0xb9850000, dst_reg, dst_reg);
1437 if (insn_is_zext(&insn[1]))
1438 insn_count = 2;
1439 break;
1440 case 32: /* dst = (u32) cpu_to_be32(dst) */
1441 if (!fp->aux->verifier_zext)
1442 /* llgfr %dst,%dst */
1443 EMIT4(0xb9160000, dst_reg, dst_reg);
1444 break;
1445 case 64: /* dst = (u64) cpu_to_be64(dst) */
1446 break;
1447 }
1448 break;
1449 case BPF_ALU | BPF_END | BPF_FROM_LE:
1450 case BPF_ALU64 | BPF_END | BPF_FROM_LE:
1451 switch (imm) {
1452 case 16: /* dst = (u16) cpu_to_le16(dst) */
1453 /* lrvr %dst,%dst */
1454 EMIT4(0xb91f0000, dst_reg, dst_reg);
1455 /* srl %dst,16(%r0) */
1456 EMIT4_DISP(0x88000000, dst_reg, REG_0, 16);
1457 /* llghr %dst,%dst */
1458 EMIT4(0xb9850000, dst_reg, dst_reg);
1459 if (insn_is_zext(&insn[1]))
1460 insn_count = 2;
1461 break;
1462 case 32: /* dst = (u32) cpu_to_le32(dst) */
1463 /* lrvr %dst,%dst */
1464 EMIT4(0xb91f0000, dst_reg, dst_reg);
1465 if (!fp->aux->verifier_zext)
1466 /* llgfr %dst,%dst */
1467 EMIT4(0xb9160000, dst_reg, dst_reg);
1468 break;
1469 case 64: /* dst = (u64) cpu_to_le64(dst) */
1470 /* lrvgr %dst,%dst */
1471 EMIT4(0xb90f0000, dst_reg, dst_reg);
1472 break;
1473 }
1474 break;
1475 /*
1476 * BPF_NOSPEC (speculation barrier)
1477 */
1478 case BPF_ST | BPF_NOSPEC:
1479 break;
1480 /*
1481 * BPF_ST(X)
1482 */
1483 case BPF_STX | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = src_reg */
1484 case BPF_STX | BPF_PROBE_MEM32 | BPF_B:
1485 bpf_jit_probe_store_pre(jit, insn, &probe);
1486 /* stcy %src,off(%dst,%arena) */
1487 EMIT6_DISP_LH(0xe3000000, 0x0072, src_reg, dst_reg,
1488 probe.arena_reg, off);
1489 err = bpf_jit_probe_post(jit, fp, &probe);
1490 if (err < 0)
1491 return err;
1492 jit->seen |= SEEN_MEM;
1493 break;
1494 case BPF_STX | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = src */
1495 case BPF_STX | BPF_PROBE_MEM32 | BPF_H:
1496 bpf_jit_probe_store_pre(jit, insn, &probe);
1497 /* sthy %src,off(%dst,%arena) */
1498 EMIT6_DISP_LH(0xe3000000, 0x0070, src_reg, dst_reg,
1499 probe.arena_reg, off);
1500 err = bpf_jit_probe_post(jit, fp, &probe);
1501 if (err < 0)
1502 return err;
1503 jit->seen |= SEEN_MEM;
1504 break;
1505 case BPF_STX | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = src */
1506 case BPF_STX | BPF_PROBE_MEM32 | BPF_W:
1507 bpf_jit_probe_store_pre(jit, insn, &probe);
1508 /* sty %src,off(%dst,%arena) */
1509 EMIT6_DISP_LH(0xe3000000, 0x0050, src_reg, dst_reg,
1510 probe.arena_reg, off);
1511 err = bpf_jit_probe_post(jit, fp, &probe);
1512 if (err < 0)
1513 return err;
1514 jit->seen |= SEEN_MEM;
1515 break;
1516 case BPF_STX | BPF_MEM | BPF_DW: /* (u64 *)(dst + off) = src */
1517 case BPF_STX | BPF_PROBE_MEM32 | BPF_DW:
1518 bpf_jit_probe_store_pre(jit, insn, &probe);
1519 /* stg %src,off(%dst,%arena) */
1520 EMIT6_DISP_LH(0xe3000000, 0x0024, src_reg, dst_reg,
1521 probe.arena_reg, off);
1522 err = bpf_jit_probe_post(jit, fp, &probe);
1523 if (err < 0)
1524 return err;
1525 jit->seen |= SEEN_MEM;
1526 break;
1527 case BPF_ST | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = imm */
1528 case BPF_ST | BPF_PROBE_MEM32 | BPF_B:
1529 /* lhi %w0,imm */
1530 EMIT4_IMM(0xa7080000, REG_W0, (u8) imm);
1531 bpf_jit_probe_store_pre(jit, insn, &probe);
1532 /* stcy %w0,off(%dst,%arena) */
1533 EMIT6_DISP_LH(0xe3000000, 0x0072, REG_W0, dst_reg,
1534 probe.arena_reg, off);
1535 err = bpf_jit_probe_post(jit, fp, &probe);
1536 if (err < 0)
1537 return err;
1538 jit->seen |= SEEN_MEM;
1539 break;
1540 case BPF_ST | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = imm */
1541 case BPF_ST | BPF_PROBE_MEM32 | BPF_H:
1542 /* lhi %w0,imm */
1543 EMIT4_IMM(0xa7080000, REG_W0, (u16) imm);
1544 bpf_jit_probe_store_pre(jit, insn, &probe);
1545 /* sthy %w0,off(%dst,%arena) */
1546 EMIT6_DISP_LH(0xe3000000, 0x0070, REG_W0, dst_reg,
1547 probe.arena_reg, off);
1548 err = bpf_jit_probe_post(jit, fp, &probe);
1549 if (err < 0)
1550 return err;
1551 jit->seen |= SEEN_MEM;
1552 break;
1553 case BPF_ST | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = imm */
1554 case BPF_ST | BPF_PROBE_MEM32 | BPF_W:
1555 /* llilf %w0,imm */
1556 EMIT6_IMM(0xc00f0000, REG_W0, (u32) imm);
1557 bpf_jit_probe_store_pre(jit, insn, &probe);
1558 /* sty %w0,off(%dst,%arena) */
1559 EMIT6_DISP_LH(0xe3000000, 0x0050, REG_W0, dst_reg,
1560 probe.arena_reg, off);
1561 err = bpf_jit_probe_post(jit, fp, &probe);
1562 if (err < 0)
1563 return err;
1564 jit->seen |= SEEN_MEM;
1565 break;
1566 case BPF_ST | BPF_MEM | BPF_DW: /* *(u64 *)(dst + off) = imm */
1567 case BPF_ST | BPF_PROBE_MEM32 | BPF_DW:
1568 /* lgfi %w0,imm */
1569 EMIT6_IMM(0xc0010000, REG_W0, imm);
1570 bpf_jit_probe_store_pre(jit, insn, &probe);
1571 /* stg %w0,off(%dst,%arena) */
1572 EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W0, dst_reg,
1573 probe.arena_reg, off);
1574 err = bpf_jit_probe_post(jit, fp, &probe);
1575 if (err < 0)
1576 return err;
1577 jit->seen |= SEEN_MEM;
1578 break;
1579 /*
1580 * BPF_ATOMIC
1581 */
1582 case BPF_STX | BPF_ATOMIC | BPF_DW:
1583 case BPF_STX | BPF_ATOMIC | BPF_W:
1584 case BPF_STX | BPF_PROBE_ATOMIC | BPF_DW:
1585 case BPF_STX | BPF_PROBE_ATOMIC | BPF_W:
1586 {
1587 bool is32 = BPF_SIZE(insn->code) == BPF_W;
1588
1589 /*
1590 * Unlike loads and stores, atomics have only a base register,
1591 * but no index register. For the non-arena case, simply use
1592 * %dst as a base. For the arena case, use the work register
1593 * %r1: first, load the arena base into it, and then add %dst
1594 * to it.
1595 */
1596 probe.arena_reg = dst_reg;
1597
1598 switch (insn->imm) {
1599 #define EMIT_ATOMIC(op32, op64) do { \
1600 bpf_jit_probe_atomic_pre(jit, insn, &probe); \
1601 /* {op32|op64} {%w0|%src},%src,off(%arena) */ \
1602 EMIT6_DISP_LH(0xeb000000, is32 ? (op32) : (op64), \
1603 (insn->imm & BPF_FETCH) ? src_reg : REG_W0, \
1604 src_reg, probe.arena_reg, off); \
1605 err = bpf_jit_probe_post(jit, fp, &probe); \
1606 if (err < 0) \
1607 return err; \
1608 if (insn->imm & BPF_FETCH) { \
1609 /* bcr 14,0 - see atomic_fetch_{add,and,or,xor}() */ \
1610 _EMIT2(0x07e0); \
1611 if (is32) \
1612 EMIT_ZERO(src_reg); \
1613 } \
1614 } while (0)
1615 case BPF_ADD:
1616 case BPF_ADD | BPF_FETCH:
1617 /* {laal|laalg} */
1618 EMIT_ATOMIC(0x00fa, 0x00ea);
1619 break;
1620 case BPF_AND:
1621 case BPF_AND | BPF_FETCH:
1622 /* {lan|lang} */
1623 EMIT_ATOMIC(0x00f4, 0x00e4);
1624 break;
1625 case BPF_OR:
1626 case BPF_OR | BPF_FETCH:
1627 /* {lao|laog} */
1628 EMIT_ATOMIC(0x00f6, 0x00e6);
1629 break;
1630 case BPF_XOR:
1631 case BPF_XOR | BPF_FETCH:
1632 /* {lax|laxg} */
1633 EMIT_ATOMIC(0x00f7, 0x00e7);
1634 break;
1635 #undef EMIT_ATOMIC
1636 case BPF_XCHG: {
1637 struct bpf_jit_probe load_probe = probe;
1638 int loop_start;
1639
1640 bpf_jit_probe_atomic_pre(jit, insn, &load_probe);
1641 /* {ly|lg} %w0,off(%arena) */
1642 EMIT6_DISP_LH(0xe3000000,
1643 is32 ? 0x0058 : 0x0004, REG_W0, REG_0,
1644 load_probe.arena_reg, off);
1645 bpf_jit_probe_emit_nop(jit, &load_probe);
1646 /* Reuse {ly|lg}'s arena_reg for {csy|csg}. */
1647 if (load_probe.prg != -1) {
1648 probe.prg = jit->prg;
1649 probe.arena_reg = load_probe.arena_reg;
1650 }
1651 loop_start = jit->prg;
1652 /* 0: {csy|csg} %w0,%src,off(%arena) */
1653 EMIT6_DISP_LH(0xeb000000, is32 ? 0x0014 : 0x0030,
1654 REG_W0, src_reg, probe.arena_reg, off);
1655 bpf_jit_probe_emit_nop(jit, &probe);
1656 /* brc 4,0b */
1657 EMIT4_PCREL_RIC(0xa7040000, 4, loop_start);
1658 /* {llgfr|lgr} %src,%w0 */
1659 EMIT4(is32 ? 0xb9160000 : 0xb9040000, src_reg, REG_W0);
1660 /* Both probes should land here on exception. */
1661 err = bpf_jit_probe_post(jit, fp, &load_probe);
1662 if (err < 0)
1663 return err;
1664 err = bpf_jit_probe_post(jit, fp, &probe);
1665 if (err < 0)
1666 return err;
1667 if (is32 && insn_is_zext(&insn[1]))
1668 insn_count = 2;
1669 break;
1670 }
1671 case BPF_CMPXCHG:
1672 bpf_jit_probe_atomic_pre(jit, insn, &probe);
1673 /* 0: {csy|csg} %b0,%src,off(%arena) */
1674 EMIT6_DISP_LH(0xeb000000, is32 ? 0x0014 : 0x0030,
1675 BPF_REG_0, src_reg,
1676 probe.arena_reg, off);
1677 err = bpf_jit_probe_post(jit, fp, &probe);
1678 if (err < 0)
1679 return err;
1680 break;
1681 default:
1682 pr_err("Unknown atomic operation %02x\n", insn->imm);
1683 return -1;
1684 }
1685
1686 jit->seen |= SEEN_MEM;
1687 break;
1688 }
1689 /*
1690 * BPF_LDX
1691 */
1692 case BPF_LDX | BPF_MEM | BPF_B: /* dst = *(u8 *)(ul) (src + off) */
1693 case BPF_LDX | BPF_PROBE_MEM | BPF_B:
1694 case BPF_LDX | BPF_PROBE_MEM32 | BPF_B:
1695 bpf_jit_probe_load_pre(jit, insn, &probe);
1696 /* llgc %dst,off(%src,%arena) */
1697 EMIT6_DISP_LH(0xe3000000, 0x0090, dst_reg, src_reg,
1698 probe.arena_reg, off);
1699 err = bpf_jit_probe_post(jit, fp, &probe);
1700 if (err < 0)
1701 return err;
1702 jit->seen |= SEEN_MEM;
1703 if (insn_is_zext(&insn[1]))
1704 insn_count = 2;
1705 break;
1706 case BPF_LDX | BPF_MEMSX | BPF_B: /* dst = *(s8 *)(ul) (src + off) */
1707 case BPF_LDX | BPF_PROBE_MEMSX | BPF_B:
1708 bpf_jit_probe_load_pre(jit, insn, &probe);
1709 /* lgb %dst,off(%src) */
1710 EMIT6_DISP_LH(0xe3000000, 0x0077, dst_reg, src_reg, REG_0, off);
1711 err = bpf_jit_probe_post(jit, fp, &probe);
1712 if (err < 0)
1713 return err;
1714 jit->seen |= SEEN_MEM;
1715 break;
1716 case BPF_LDX | BPF_MEM | BPF_H: /* dst = *(u16 *)(ul) (src + off) */
1717 case BPF_LDX | BPF_PROBE_MEM | BPF_H:
1718 case BPF_LDX | BPF_PROBE_MEM32 | BPF_H:
1719 bpf_jit_probe_load_pre(jit, insn, &probe);
1720 /* llgh %dst,off(%src,%arena) */
1721 EMIT6_DISP_LH(0xe3000000, 0x0091, dst_reg, src_reg,
1722 probe.arena_reg, off);
1723 err = bpf_jit_probe_post(jit, fp, &probe);
1724 if (err < 0)
1725 return err;
1726 jit->seen |= SEEN_MEM;
1727 if (insn_is_zext(&insn[1]))
1728 insn_count = 2;
1729 break;
1730 case BPF_LDX | BPF_MEMSX | BPF_H: /* dst = *(s16 *)(ul) (src + off) */
1731 case BPF_LDX | BPF_PROBE_MEMSX | BPF_H:
1732 bpf_jit_probe_load_pre(jit, insn, &probe);
1733 /* lgh %dst,off(%src) */
1734 EMIT6_DISP_LH(0xe3000000, 0x0015, dst_reg, src_reg, REG_0, off);
1735 err = bpf_jit_probe_post(jit, fp, &probe);
1736 if (err < 0)
1737 return err;
1738 jit->seen |= SEEN_MEM;
1739 break;
1740 case BPF_LDX | BPF_MEM | BPF_W: /* dst = *(u32 *)(ul) (src + off) */
1741 case BPF_LDX | BPF_PROBE_MEM | BPF_W:
1742 case BPF_LDX | BPF_PROBE_MEM32 | BPF_W:
1743 bpf_jit_probe_load_pre(jit, insn, &probe);
1744 /* llgf %dst,off(%src) */
1745 jit->seen |= SEEN_MEM;
1746 EMIT6_DISP_LH(0xe3000000, 0x0016, dst_reg, src_reg,
1747 probe.arena_reg, off);
1748 err = bpf_jit_probe_post(jit, fp, &probe);
1749 if (err < 0)
1750 return err;
1751 if (insn_is_zext(&insn[1]))
1752 insn_count = 2;
1753 break;
1754 case BPF_LDX | BPF_MEMSX | BPF_W: /* dst = *(s32 *)(ul) (src + off) */
1755 case BPF_LDX | BPF_PROBE_MEMSX | BPF_W:
1756 bpf_jit_probe_load_pre(jit, insn, &probe);
1757 /* lgf %dst,off(%src) */
1758 jit->seen |= SEEN_MEM;
1759 EMIT6_DISP_LH(0xe3000000, 0x0014, dst_reg, src_reg, REG_0, off);
1760 err = bpf_jit_probe_post(jit, fp, &probe);
1761 if (err < 0)
1762 return err;
1763 break;
1764 case BPF_LDX | BPF_MEM | BPF_DW: /* dst = *(u64 *)(ul) (src + off) */
1765 case BPF_LDX | BPF_PROBE_MEM | BPF_DW:
1766 case BPF_LDX | BPF_PROBE_MEM32 | BPF_DW:
1767 bpf_jit_probe_load_pre(jit, insn, &probe);
1768 /* lg %dst,off(%src,%arena) */
1769 jit->seen |= SEEN_MEM;
1770 EMIT6_DISP_LH(0xe3000000, 0x0004, dst_reg, src_reg,
1771 probe.arena_reg, off);
1772 err = bpf_jit_probe_post(jit, fp, &probe);
1773 if (err < 0)
1774 return err;
1775 break;
1776 /*
1777 * BPF_JMP / CALL
1778 */
1779 case BPF_JMP | BPF_CALL:
1780 {
1781 const struct btf_func_model *m;
1782 bool func_addr_fixed;
1783 int j, ret;
1784 u64 func;
1785
1786 ret = bpf_jit_get_func_addr(fp, insn, extra_pass,
1787 &func, &func_addr_fixed);
1788 if (ret < 0)
1789 return -1;
1790
1791 REG_SET_SEEN(BPF_REG_5);
1792 jit->seen |= SEEN_FUNC;
1793 /*
1794 * Copy the tail call counter to where the callee expects it.
1795 *
1796 * Note 1: The callee can increment the tail call counter, but
1797 * we do not load it back, since the x86 JIT does not do this
1798 * either.
1799 *
1800 * Note 2: We assume that the verifier does not let us call the
1801 * main program, which clears the tail call counter on entry.
1802 */
1803 /* mvc tail_call_cnt(4,%r15),frame_off+tail_call_cnt(%r15) */
1804 _EMIT6(0xd203f000 | offsetof(struct prog_frame, tail_call_cnt),
1805 0xf000 | (jit->frame_off +
1806 offsetof(struct prog_frame, tail_call_cnt)));
1807
1808 /* Sign-extend the kfunc arguments. */
1809 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
1810 m = bpf_jit_find_kfunc_model(fp, insn);
1811 if (!m)
1812 return -1;
1813
1814 for (j = 0; j < m->nr_args; j++) {
1815 if (sign_extend(jit, BPF_REG_1 + j,
1816 m->arg_size[j],
1817 m->arg_flags[j]))
1818 return -1;
1819 }
1820 }
1821
1822 /* lgrl %w1,func */
1823 EMIT6_PCREL_RILB(0xc4080000, REG_W1, _EMIT_CONST_U64(func));
1824 /* %r1() */
1825 call_r1(jit);
1826 /* lgr %b0,%r2: load return value into %b0 */
1827 EMIT4(0xb9040000, BPF_REG_0, REG_2);
1828 break;
1829 }
1830 case BPF_JMP | BPF_TAIL_CALL: {
1831 int patch_1_clrj, patch_2_clij, patch_3_brc;
1832
1833 /*
1834 * Implicit input:
1835 * B1: pointer to ctx
1836 * B2: pointer to bpf_array
1837 * B3: index in bpf_array
1838 *
1839 * if (index >= array->map.max_entries)
1840 * goto out;
1841 */
1842
1843 /* llgf %w1,map.max_entries(%b2) */
1844 EMIT6_DISP_LH(0xe3000000, 0x0016, REG_W1, REG_0, BPF_REG_2,
1845 offsetof(struct bpf_array, map.max_entries));
1846 /* if ((u32)%b3 >= (u32)%w1) goto out; */
1847 /* clrj %b3,%w1,0xa,out */
1848 patch_1_clrj = jit->prg;
1849 EMIT6_PCREL_RIEB(0xec000000, 0x0077, BPF_REG_3, REG_W1, 0xa,
1850 jit->prg);
1851
1852 /*
1853 * if (tail_call_cnt++ >= MAX_TAIL_CALL_CNT)
1854 * goto out;
1855 */
1856
1857 off = jit->frame_off +
1858 offsetof(struct prog_frame, tail_call_cnt);
1859 /* lhi %w0,1 */
1860 EMIT4_IMM(0xa7080000, REG_W0, 1);
1861 /* laal %w1,%w0,off(%r15) */
1862 EMIT6_DISP_LH(0xeb000000, 0x00fa, REG_W1, REG_W0, REG_15, off);
1863 /* clij %w1,MAX_TAIL_CALL_CNT-1,0x2,out */
1864 patch_2_clij = jit->prg;
1865 EMIT6_PCREL_RIEC(0xec000000, 0x007f, REG_W1, MAX_TAIL_CALL_CNT - 1,
1866 2, jit->prg);
1867
1868 /*
1869 * prog = array->ptrs[index];
1870 * if (prog == NULL)
1871 * goto out;
1872 */
1873
1874 /* llgfr %r1,%b3: %r1 = (u32) index */
1875 EMIT4(0xb9160000, REG_1, BPF_REG_3);
1876 /* sllg %r1,%r1,3: %r1 *= 8 */
1877 EMIT6_DISP_LH(0xeb000000, 0x000d, REG_1, REG_1, REG_0, 3);
1878 /* ltg %r1,prog(%b2,%r1) */
1879 EMIT6_DISP_LH(0xe3000000, 0x0002, REG_1, BPF_REG_2,
1880 REG_1, offsetof(struct bpf_array, ptrs));
1881 /* brc 0x8,out */
1882 patch_3_brc = jit->prg;
1883 EMIT4_PCREL_RIC(0xa7040000, 8, jit->prg);
1884
1885 /*
1886 * Restore registers before calling function
1887 */
1888 save_restore_regs(jit, REGS_RESTORE, 0);
1889
1890 /*
1891 * goto *(prog->bpf_func + tail_call_start);
1892 */
1893
1894 /* lg %r1,bpf_func(%r1) */
1895 EMIT6_DISP_LH(0xe3000000, 0x0004, REG_1, REG_1, REG_0,
1896 offsetof(struct bpf_prog, bpf_func));
1897 if (nospec_uses_trampoline()) {
1898 jit->seen |= SEEN_FUNC;
1899 /* aghi %r1,tail_call_start */
1900 EMIT4_IMM(0xa70b0000, REG_1, jit->tail_call_start);
1901 /* brcl 0xf,__s390_indirect_jump_r1 */
1902 EMIT6_PCREL_RILC_PTR(0xc0040000, 0xf,
1903 __s390_indirect_jump_r1);
1904 } else {
1905 /* bc 0xf,tail_call_start(%r1) */
1906 _EMIT4(0x47f01000 + jit->tail_call_start);
1907 }
1908 /* out: */
1909 if (jit->prg_buf) {
1910 *(u16 *)(jit->prg_buf + patch_1_clrj + 2) =
1911 (jit->prg - patch_1_clrj) >> 1;
1912 *(u16 *)(jit->prg_buf + patch_2_clij + 2) =
1913 (jit->prg - patch_2_clij) >> 1;
1914 *(u16 *)(jit->prg_buf + patch_3_brc + 2) =
1915 (jit->prg - patch_3_brc) >> 1;
1916 }
1917 break;
1918 }
1919 case BPF_JMP | BPF_EXIT: /* return b0 */
1920 last = (i == fp->len - 1) ? 1 : 0;
1921 if (last)
1922 break;
1923 if (!is_first_pass(jit) && can_use_rel(jit, jit->exit_ip))
1924 /* brc 0xf, <exit> */
1925 EMIT4_PCREL_RIC(0xa7040000, 0xf, jit->exit_ip);
1926 else
1927 /* brcl 0xf, <exit> */
1928 EMIT6_PCREL_RILC(0xc0040000, 0xf, jit->exit_ip);
1929 break;
1930 /*
1931 * Branch relative (number of skipped instructions) to offset on
1932 * condition.
1933 *
1934 * Condition code to mask mapping:
1935 *
1936 * CC | Description | Mask
1937 * ------------------------------
1938 * 0 | Operands equal | 8
1939 * 1 | First operand low | 4
1940 * 2 | First operand high | 2
1941 * 3 | Unused | 1
1942 *
1943 * For s390x relative branches: ip = ip + off_bytes
1944 * For BPF relative branches: insn = insn + off_insns + 1
1945 *
1946 * For example for s390x with offset 0 we jump to the branch
1947 * instruction itself (loop) and for BPF with offset 0 we
1948 * branch to the instruction behind the branch.
1949 */
1950 case BPF_JMP32 | BPF_JA: /* if (true) */
1951 branch_oc_off = imm;
1952 fallthrough;
1953 case BPF_JMP | BPF_JA: /* if (true) */
1954 mask = 0xf000; /* j */
1955 goto branch_oc;
1956 case BPF_JMP | BPF_JSGT | BPF_K: /* ((s64) dst > (s64) imm) */
1957 case BPF_JMP32 | BPF_JSGT | BPF_K: /* ((s32) dst > (s32) imm) */
1958 mask = 0x2000; /* jh */
1959 goto branch_ks;
1960 case BPF_JMP | BPF_JSLT | BPF_K: /* ((s64) dst < (s64) imm) */
1961 case BPF_JMP32 | BPF_JSLT | BPF_K: /* ((s32) dst < (s32) imm) */
1962 mask = 0x4000; /* jl */
1963 goto branch_ks;
1964 case BPF_JMP | BPF_JSGE | BPF_K: /* ((s64) dst >= (s64) imm) */
1965 case BPF_JMP32 | BPF_JSGE | BPF_K: /* ((s32) dst >= (s32) imm) */
1966 mask = 0xa000; /* jhe */
1967 goto branch_ks;
1968 case BPF_JMP | BPF_JSLE | BPF_K: /* ((s64) dst <= (s64) imm) */
1969 case BPF_JMP32 | BPF_JSLE | BPF_K: /* ((s32) dst <= (s32) imm) */
1970 mask = 0xc000; /* jle */
1971 goto branch_ks;
1972 case BPF_JMP | BPF_JGT | BPF_K: /* (dst_reg > imm) */
1973 case BPF_JMP32 | BPF_JGT | BPF_K: /* ((u32) dst_reg > (u32) imm) */
1974 mask = 0x2000; /* jh */
1975 goto branch_ku;
1976 case BPF_JMP | BPF_JLT | BPF_K: /* (dst_reg < imm) */
1977 case BPF_JMP32 | BPF_JLT | BPF_K: /* ((u32) dst_reg < (u32) imm) */
1978 mask = 0x4000; /* jl */
1979 goto branch_ku;
1980 case BPF_JMP | BPF_JGE | BPF_K: /* (dst_reg >= imm) */
1981 case BPF_JMP32 | BPF_JGE | BPF_K: /* ((u32) dst_reg >= (u32) imm) */
1982 mask = 0xa000; /* jhe */
1983 goto branch_ku;
1984 case BPF_JMP | BPF_JLE | BPF_K: /* (dst_reg <= imm) */
1985 case BPF_JMP32 | BPF_JLE | BPF_K: /* ((u32) dst_reg <= (u32) imm) */
1986 mask = 0xc000; /* jle */
1987 goto branch_ku;
1988 case BPF_JMP | BPF_JNE | BPF_K: /* (dst_reg != imm) */
1989 case BPF_JMP32 | BPF_JNE | BPF_K: /* ((u32) dst_reg != (u32) imm) */
1990 mask = 0x7000; /* jne */
1991 goto branch_ku;
1992 case BPF_JMP | BPF_JEQ | BPF_K: /* (dst_reg == imm) */
1993 case BPF_JMP32 | BPF_JEQ | BPF_K: /* ((u32) dst_reg == (u32) imm) */
1994 mask = 0x8000; /* je */
1995 goto branch_ku;
1996 case BPF_JMP | BPF_JSET | BPF_K: /* (dst_reg & imm) */
1997 case BPF_JMP32 | BPF_JSET | BPF_K: /* ((u32) dst_reg & (u32) imm) */
1998 mask = 0x7000; /* jnz */
1999 if (BPF_CLASS(insn->code) == BPF_JMP32) {
2000 /* llilf %w1,imm (load zero extend imm) */
2001 EMIT6_IMM(0xc00f0000, REG_W1, imm);
2002 /* nr %w1,%dst */
2003 EMIT2(0x1400, REG_W1, dst_reg);
2004 } else {
2005 /* lgfi %w1,imm (load sign extend imm) */
2006 EMIT6_IMM(0xc0010000, REG_W1, imm);
2007 /* ngr %w1,%dst */
2008 EMIT4(0xb9800000, REG_W1, dst_reg);
2009 }
2010 goto branch_oc;
2011
2012 case BPF_JMP | BPF_JSGT | BPF_X: /* ((s64) dst > (s64) src) */
2013 case BPF_JMP32 | BPF_JSGT | BPF_X: /* ((s32) dst > (s32) src) */
2014 mask = 0x2000; /* jh */
2015 goto branch_xs;
2016 case BPF_JMP | BPF_JSLT | BPF_X: /* ((s64) dst < (s64) src) */
2017 case BPF_JMP32 | BPF_JSLT | BPF_X: /* ((s32) dst < (s32) src) */
2018 mask = 0x4000; /* jl */
2019 goto branch_xs;
2020 case BPF_JMP | BPF_JSGE | BPF_X: /* ((s64) dst >= (s64) src) */
2021 case BPF_JMP32 | BPF_JSGE | BPF_X: /* ((s32) dst >= (s32) src) */
2022 mask = 0xa000; /* jhe */
2023 goto branch_xs;
2024 case BPF_JMP | BPF_JSLE | BPF_X: /* ((s64) dst <= (s64) src) */
2025 case BPF_JMP32 | BPF_JSLE | BPF_X: /* ((s32) dst <= (s32) src) */
2026 mask = 0xc000; /* jle */
2027 goto branch_xs;
2028 case BPF_JMP | BPF_JGT | BPF_X: /* (dst > src) */
2029 case BPF_JMP32 | BPF_JGT | BPF_X: /* ((u32) dst > (u32) src) */
2030 mask = 0x2000; /* jh */
2031 goto branch_xu;
2032 case BPF_JMP | BPF_JLT | BPF_X: /* (dst < src) */
2033 case BPF_JMP32 | BPF_JLT | BPF_X: /* ((u32) dst < (u32) src) */
2034 mask = 0x4000; /* jl */
2035 goto branch_xu;
2036 case BPF_JMP | BPF_JGE | BPF_X: /* (dst >= src) */
2037 case BPF_JMP32 | BPF_JGE | BPF_X: /* ((u32) dst >= (u32) src) */
2038 mask = 0xa000; /* jhe */
2039 goto branch_xu;
2040 case BPF_JMP | BPF_JLE | BPF_X: /* (dst <= src) */
2041 case BPF_JMP32 | BPF_JLE | BPF_X: /* ((u32) dst <= (u32) src) */
2042 mask = 0xc000; /* jle */
2043 goto branch_xu;
2044 case BPF_JMP | BPF_JNE | BPF_X: /* (dst != src) */
2045 case BPF_JMP32 | BPF_JNE | BPF_X: /* ((u32) dst != (u32) src) */
2046 mask = 0x7000; /* jne */
2047 goto branch_xu;
2048 case BPF_JMP | BPF_JEQ | BPF_X: /* (dst == src) */
2049 case BPF_JMP32 | BPF_JEQ | BPF_X: /* ((u32) dst == (u32) src) */
2050 mask = 0x8000; /* je */
2051 goto branch_xu;
2052 case BPF_JMP | BPF_JSET | BPF_X: /* (dst & src) */
2053 case BPF_JMP32 | BPF_JSET | BPF_X: /* ((u32) dst & (u32) src) */
2054 {
2055 bool is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
2056
2057 mask = 0x7000; /* jnz */
2058 /* nrk or ngrk %w1,%dst,%src */
2059 EMIT4_RRF((is_jmp32 ? 0xb9f40000 : 0xb9e40000),
2060 REG_W1, dst_reg, src_reg);
2061 goto branch_oc;
2062 branch_ks:
2063 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
2064 /* cfi or cgfi %dst,imm */
2065 EMIT6_IMM(is_jmp32 ? 0xc20d0000 : 0xc20c0000,
2066 dst_reg, imm);
2067 if (!is_first_pass(jit) &&
2068 can_use_rel(jit, addrs[i + off + 1])) {
2069 /* brc mask,off */
2070 EMIT4_PCREL_RIC(0xa7040000,
2071 mask >> 12, addrs[i + off + 1]);
2072 } else {
2073 /* brcl mask,off */
2074 EMIT6_PCREL_RILC(0xc0040000,
2075 mask >> 12, addrs[i + off + 1]);
2076 }
2077 break;
2078 branch_ku:
2079 /* lgfi %w1,imm (load sign extend imm) */
2080 src_reg = REG_1;
2081 EMIT6_IMM(0xc0010000, src_reg, imm);
2082 goto branch_xu;
2083 branch_xs:
2084 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
2085 if (!is_first_pass(jit) &&
2086 can_use_rel(jit, addrs[i + off + 1])) {
2087 /* crj or cgrj %dst,%src,mask,off */
2088 EMIT6_PCREL(0xec000000, (is_jmp32 ? 0x0076 : 0x0064),
2089 dst_reg, src_reg, i, off, mask);
2090 } else {
2091 /* cr or cgr %dst,%src */
2092 if (is_jmp32)
2093 EMIT2(0x1900, dst_reg, src_reg);
2094 else
2095 EMIT4(0xb9200000, dst_reg, src_reg);
2096 /* brcl mask,off */
2097 EMIT6_PCREL_RILC(0xc0040000,
2098 mask >> 12, addrs[i + off + 1]);
2099 }
2100 break;
2101 branch_xu:
2102 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
2103 if (!is_first_pass(jit) &&
2104 can_use_rel(jit, addrs[i + off + 1])) {
2105 /* clrj or clgrj %dst,%src,mask,off */
2106 EMIT6_PCREL(0xec000000, (is_jmp32 ? 0x0077 : 0x0065),
2107 dst_reg, src_reg, i, off, mask);
2108 } else {
2109 /* clr or clgr %dst,%src */
2110 if (is_jmp32)
2111 EMIT2(0x1500, dst_reg, src_reg);
2112 else
2113 EMIT4(0xb9210000, dst_reg, src_reg);
2114 /* brcl mask,off */
2115 EMIT6_PCREL_RILC(0xc0040000,
2116 mask >> 12, addrs[i + off + 1]);
2117 }
2118 break;
2119 branch_oc:
2120 if (!is_first_pass(jit) &&
2121 can_use_rel(jit, addrs[i + branch_oc_off + 1])) {
2122 /* brc mask,off */
2123 EMIT4_PCREL_RIC(0xa7040000,
2124 mask >> 12,
2125 addrs[i + branch_oc_off + 1]);
2126 } else {
2127 /* brcl mask,off */
2128 EMIT6_PCREL_RILC(0xc0040000,
2129 mask >> 12,
2130 addrs[i + branch_oc_off + 1]);
2131 }
2132 break;
2133 }
2134 default: /* too complex, give up */
2135 pr_err("Unknown opcode %02x\n", insn->code);
2136 return -1;
2137 }
2138
2139 return insn_count;
2140 }
2141
2142 /*
2143 * Return whether new i-th instruction address does not violate any invariant
2144 */
bpf_is_new_addr_sane(struct bpf_jit * jit,int i)2145 static bool bpf_is_new_addr_sane(struct bpf_jit *jit, int i)
2146 {
2147 /* On the first pass anything goes */
2148 if (is_first_pass(jit))
2149 return true;
2150
2151 /* The codegen pass must not change anything */
2152 if (is_codegen_pass(jit))
2153 return jit->addrs[i] == jit->prg;
2154
2155 /* Passes in between must not increase code size */
2156 return jit->addrs[i] >= jit->prg;
2157 }
2158
2159 /*
2160 * Update the address of i-th instruction
2161 */
bpf_set_addr(struct bpf_jit * jit,int i)2162 static int bpf_set_addr(struct bpf_jit *jit, int i)
2163 {
2164 int delta;
2165
2166 if (is_codegen_pass(jit)) {
2167 delta = jit->prg - jit->addrs[i];
2168 if (delta < 0)
2169 bpf_skip(jit, -delta);
2170 }
2171 if (WARN_ON_ONCE(!bpf_is_new_addr_sane(jit, i)))
2172 return -1;
2173 jit->addrs[i] = jit->prg;
2174 return 0;
2175 }
2176
2177 /*
2178 * Compile eBPF program into s390x code
2179 */
bpf_jit_prog(struct bpf_jit * jit,struct bpf_prog * fp,bool extra_pass)2180 static int bpf_jit_prog(struct bpf_jit *jit, struct bpf_prog *fp,
2181 bool extra_pass)
2182 {
2183 int i, insn_count, lit32_size, lit64_size;
2184 u64 kern_arena;
2185
2186 jit->lit32 = jit->lit32_start;
2187 jit->lit64 = jit->lit64_start;
2188 jit->prg = 0;
2189 jit->excnt = 0;
2190 if (is_first_pass(jit) || (jit->seen & SEEN_STACK))
2191 jit->frame_off = sizeof(struct prog_frame) -
2192 offsetofend(struct prog_frame, unused) +
2193 round_up(fp->aux->stack_depth, 8);
2194 else
2195 jit->frame_off = 0;
2196
2197 kern_arena = bpf_arena_get_kern_vm_start(fp->aux->arena);
2198 if (kern_arena)
2199 jit->kern_arena = _EMIT_CONST_U64(kern_arena);
2200 jit->user_arena = bpf_arena_get_user_vm_start(fp->aux->arena);
2201
2202 bpf_jit_prologue(jit, fp);
2203 if (bpf_set_addr(jit, 0) < 0)
2204 return -1;
2205 for (i = 0; i < fp->len; i += insn_count) {
2206 insn_count = bpf_jit_insn(jit, fp, i, extra_pass);
2207 if (insn_count < 0)
2208 return -1;
2209 /* Next instruction address */
2210 if (bpf_set_addr(jit, i + insn_count) < 0)
2211 return -1;
2212 }
2213 bpf_jit_epilogue(jit);
2214
2215 lit32_size = jit->lit32 - jit->lit32_start;
2216 lit64_size = jit->lit64 - jit->lit64_start;
2217 jit->lit32_start = jit->prg;
2218 if (lit32_size)
2219 jit->lit32_start = ALIGN(jit->lit32_start, 4);
2220 jit->lit64_start = jit->lit32_start + lit32_size;
2221 if (lit64_size)
2222 jit->lit64_start = ALIGN(jit->lit64_start, 8);
2223 jit->size = jit->lit64_start + lit64_size;
2224 jit->size_prg = jit->prg;
2225
2226 if (WARN_ON_ONCE(fp->aux->extable &&
2227 jit->excnt != fp->aux->num_exentries))
2228 /* Verifier bug - too many entries. */
2229 return -1;
2230
2231 return 0;
2232 }
2233
bpf_jit_needs_zext(void)2234 bool bpf_jit_needs_zext(void)
2235 {
2236 return true;
2237 }
2238
2239 struct s390_jit_data {
2240 struct bpf_binary_header *header;
2241 struct bpf_jit ctx;
2242 int pass;
2243 };
2244
bpf_jit_alloc(struct bpf_jit * jit,struct bpf_prog * fp)2245 static struct bpf_binary_header *bpf_jit_alloc(struct bpf_jit *jit,
2246 struct bpf_prog *fp)
2247 {
2248 struct bpf_binary_header *header;
2249 struct bpf_insn *insn;
2250 u32 extable_size;
2251 u32 code_size;
2252 int i;
2253
2254 for (i = 0; i < fp->len; i++) {
2255 insn = &fp->insnsi[i];
2256
2257 if (BPF_CLASS(insn->code) == BPF_STX &&
2258 BPF_MODE(insn->code) == BPF_PROBE_ATOMIC &&
2259 (BPF_SIZE(insn->code) == BPF_DW ||
2260 BPF_SIZE(insn->code) == BPF_W) &&
2261 insn->imm == BPF_XCHG)
2262 /*
2263 * bpf_jit_insn() emits a load and a compare-and-swap,
2264 * both of which need to be probed.
2265 */
2266 fp->aux->num_exentries += 1;
2267 }
2268 /* We need two entries per insn. */
2269 fp->aux->num_exentries *= 2;
2270
2271 code_size = roundup(jit->size,
2272 __alignof__(struct exception_table_entry));
2273 extable_size = fp->aux->num_exentries *
2274 sizeof(struct exception_table_entry);
2275 header = bpf_jit_binary_alloc(code_size + extable_size, &jit->prg_buf,
2276 8, jit_fill_hole);
2277 if (!header)
2278 return NULL;
2279 fp->aux->extable = (struct exception_table_entry *)
2280 (jit->prg_buf + code_size);
2281 return header;
2282 }
2283
2284 /*
2285 * Compile eBPF program "fp"
2286 */
bpf_int_jit_compile(struct bpf_prog * fp)2287 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *fp)
2288 {
2289 struct bpf_prog *tmp, *orig_fp = fp;
2290 struct bpf_binary_header *header;
2291 struct s390_jit_data *jit_data;
2292 bool tmp_blinded = false;
2293 bool extra_pass = false;
2294 struct bpf_jit jit;
2295 int pass;
2296
2297 if (!fp->jit_requested)
2298 return orig_fp;
2299
2300 tmp = bpf_jit_blind_constants(fp);
2301 /*
2302 * If blinding was requested and we failed during blinding,
2303 * we must fall back to the interpreter.
2304 */
2305 if (IS_ERR(tmp))
2306 return orig_fp;
2307 if (tmp != fp) {
2308 tmp_blinded = true;
2309 fp = tmp;
2310 }
2311
2312 jit_data = fp->aux->jit_data;
2313 if (!jit_data) {
2314 jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
2315 if (!jit_data) {
2316 fp = orig_fp;
2317 goto out;
2318 }
2319 fp->aux->jit_data = jit_data;
2320 }
2321 if (jit_data->ctx.addrs) {
2322 jit = jit_data->ctx;
2323 header = jit_data->header;
2324 extra_pass = true;
2325 pass = jit_data->pass + 1;
2326 goto skip_init_ctx;
2327 }
2328
2329 memset(&jit, 0, sizeof(jit));
2330 jit.addrs = kvcalloc(fp->len + 1, sizeof(*jit.addrs), GFP_KERNEL);
2331 if (jit.addrs == NULL) {
2332 fp = orig_fp;
2333 goto free_addrs;
2334 }
2335 /*
2336 * Three initial passes:
2337 * - 1/2: Determine clobbered registers
2338 * - 3: Calculate program size and addrs array
2339 */
2340 for (pass = 1; pass <= 3; pass++) {
2341 if (bpf_jit_prog(&jit, fp, extra_pass)) {
2342 fp = orig_fp;
2343 goto free_addrs;
2344 }
2345 }
2346 /*
2347 * Final pass: Allocate and generate program
2348 */
2349 header = bpf_jit_alloc(&jit, fp);
2350 if (!header) {
2351 fp = orig_fp;
2352 goto free_addrs;
2353 }
2354 skip_init_ctx:
2355 if (bpf_jit_prog(&jit, fp, extra_pass)) {
2356 bpf_jit_binary_free(header);
2357 fp = orig_fp;
2358 goto free_addrs;
2359 }
2360 if (bpf_jit_enable > 1) {
2361 bpf_jit_dump(fp->len, jit.size, pass, jit.prg_buf);
2362 print_fn_code(jit.prg_buf, jit.size_prg);
2363 }
2364 if (!fp->is_func || extra_pass) {
2365 if (bpf_jit_binary_lock_ro(header)) {
2366 bpf_jit_binary_free(header);
2367 fp = orig_fp;
2368 goto free_addrs;
2369 }
2370 } else {
2371 jit_data->header = header;
2372 jit_data->ctx = jit;
2373 jit_data->pass = pass;
2374 }
2375 fp->bpf_func = (void *) jit.prg_buf;
2376 fp->jited = 1;
2377 fp->jited_len = jit.size;
2378
2379 if (!fp->is_func || extra_pass) {
2380 bpf_prog_fill_jited_linfo(fp, jit.addrs + 1);
2381 free_addrs:
2382 kvfree(jit.addrs);
2383 kfree(jit_data);
2384 fp->aux->jit_data = NULL;
2385 }
2386 out:
2387 if (tmp_blinded)
2388 bpf_jit_prog_release_other(fp, fp == orig_fp ?
2389 tmp : orig_fp);
2390 return fp;
2391 }
2392
bpf_jit_supports_kfunc_call(void)2393 bool bpf_jit_supports_kfunc_call(void)
2394 {
2395 return true;
2396 }
2397
bpf_jit_supports_far_kfunc_call(void)2398 bool bpf_jit_supports_far_kfunc_call(void)
2399 {
2400 return true;
2401 }
2402
bpf_arch_text_poke(void * ip,enum bpf_text_poke_type t,void * old_addr,void * new_addr)2403 int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
2404 void *old_addr, void *new_addr)
2405 {
2406 struct bpf_plt expected_plt, current_plt, new_plt, *plt;
2407 struct {
2408 u16 opc;
2409 s32 disp;
2410 } __packed insn;
2411 char *ret;
2412 int err;
2413
2414 /* Verify the branch to be patched. */
2415 err = copy_from_kernel_nofault(&insn, ip, sizeof(insn));
2416 if (err < 0)
2417 return err;
2418 if (insn.opc != (0xc004 | (old_addr ? 0xf0 : 0)))
2419 return -EINVAL;
2420
2421 if (t == BPF_MOD_JUMP &&
2422 insn.disp == ((char *)new_addr - (char *)ip) >> 1) {
2423 /*
2424 * The branch already points to the destination,
2425 * there is no PLT.
2426 */
2427 } else {
2428 /* Verify the PLT. */
2429 plt = ip + (insn.disp << 1);
2430 err = copy_from_kernel_nofault(¤t_plt, plt,
2431 sizeof(current_plt));
2432 if (err < 0)
2433 return err;
2434 ret = (char *)ip + 6;
2435 bpf_jit_plt(&expected_plt, ret, old_addr);
2436 if (memcmp(¤t_plt, &expected_plt, sizeof(current_plt)))
2437 return -EINVAL;
2438 /* Adjust the call address. */
2439 bpf_jit_plt(&new_plt, ret, new_addr);
2440 s390_kernel_write(&plt->target, &new_plt.target,
2441 sizeof(void *));
2442 }
2443
2444 /* Adjust the mask of the branch. */
2445 insn.opc = 0xc004 | (new_addr ? 0xf0 : 0);
2446 s390_kernel_write((char *)ip + 1, (char *)&insn.opc + 1, 1);
2447
2448 /* Make the new code visible to the other CPUs. */
2449 text_poke_sync_lock();
2450
2451 return 0;
2452 }
2453
2454 struct bpf_tramp_jit {
2455 struct bpf_jit common;
2456 int orig_stack_args_off;/* Offset of arguments placed on stack by the
2457 * func_addr's original caller
2458 */
2459 int stack_size; /* Trampoline stack size */
2460 int backchain_off; /* Offset of backchain */
2461 int stack_args_off; /* Offset of stack arguments for calling
2462 * func_addr, has to be at the top
2463 */
2464 int reg_args_off; /* Offset of register arguments for calling
2465 * func_addr
2466 */
2467 int ip_off; /* For bpf_get_func_ip(), has to be at
2468 * (ctx - 16)
2469 */
2470 int arg_cnt_off; /* For bpf_get_func_arg_cnt(), has to be at
2471 * (ctx - 8)
2472 */
2473 int bpf_args_off; /* Offset of BPF_PROG context, which consists
2474 * of BPF arguments followed by return value
2475 */
2476 int retval_off; /* Offset of return value (see above) */
2477 int r7_r8_off; /* Offset of saved %r7 and %r8, which are used
2478 * for __bpf_prog_enter() return value and
2479 * func_addr respectively
2480 */
2481 int run_ctx_off; /* Offset of struct bpf_tramp_run_ctx */
2482 int tccnt_off; /* Offset of saved tailcall counter */
2483 int r14_off; /* Offset of saved %r14, has to be at the
2484 * bottom */
2485 int do_fexit; /* do_fexit: label */
2486 };
2487
load_imm64(struct bpf_jit * jit,int dst_reg,u64 val)2488 static void load_imm64(struct bpf_jit *jit, int dst_reg, u64 val)
2489 {
2490 /* llihf %dst_reg,val_hi */
2491 EMIT6_IMM(0xc00e0000, dst_reg, (val >> 32));
2492 /* oilf %rdst_reg,val_lo */
2493 EMIT6_IMM(0xc00d0000, dst_reg, val);
2494 }
2495
invoke_bpf_prog(struct bpf_tramp_jit * tjit,const struct btf_func_model * m,struct bpf_tramp_link * tlink,bool save_ret)2496 static int invoke_bpf_prog(struct bpf_tramp_jit *tjit,
2497 const struct btf_func_model *m,
2498 struct bpf_tramp_link *tlink, bool save_ret)
2499 {
2500 struct bpf_jit *jit = &tjit->common;
2501 int cookie_off = tjit->run_ctx_off +
2502 offsetof(struct bpf_tramp_run_ctx, bpf_cookie);
2503 struct bpf_prog *p = tlink->link.prog;
2504 int patch;
2505
2506 /*
2507 * run_ctx.cookie = tlink->cookie;
2508 */
2509
2510 /* %r0 = tlink->cookie */
2511 load_imm64(jit, REG_W0, tlink->cookie);
2512 /* stg %r0,cookie_off(%r15) */
2513 EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W0, REG_0, REG_15, cookie_off);
2514
2515 /*
2516 * if ((start = __bpf_prog_enter(p, &run_ctx)) == 0)
2517 * goto skip;
2518 */
2519
2520 /* %r1 = __bpf_prog_enter */
2521 load_imm64(jit, REG_1, (u64)bpf_trampoline_enter(p));
2522 /* %r2 = p */
2523 load_imm64(jit, REG_2, (u64)p);
2524 /* la %r3,run_ctx_off(%r15) */
2525 EMIT4_DISP(0x41000000, REG_3, REG_15, tjit->run_ctx_off);
2526 /* %r1() */
2527 call_r1(jit);
2528 /* ltgr %r7,%r2 */
2529 EMIT4(0xb9020000, REG_7, REG_2);
2530 /* brcl 8,skip */
2531 patch = jit->prg;
2532 EMIT6_PCREL_RILC(0xc0040000, 8, 0);
2533
2534 /*
2535 * retval = bpf_func(args, p->insnsi);
2536 */
2537
2538 /* %r1 = p->bpf_func */
2539 load_imm64(jit, REG_1, (u64)p->bpf_func);
2540 /* la %r2,bpf_args_off(%r15) */
2541 EMIT4_DISP(0x41000000, REG_2, REG_15, tjit->bpf_args_off);
2542 /* %r3 = p->insnsi */
2543 if (!p->jited)
2544 load_imm64(jit, REG_3, (u64)p->insnsi);
2545 /* %r1() */
2546 call_r1(jit);
2547 /* stg %r2,retval_off(%r15) */
2548 if (save_ret) {
2549 if (sign_extend(jit, REG_2, m->ret_size, m->ret_flags))
2550 return -1;
2551 EMIT6_DISP_LH(0xe3000000, 0x0024, REG_2, REG_0, REG_15,
2552 tjit->retval_off);
2553 }
2554
2555 /* skip: */
2556 if (jit->prg_buf)
2557 *(u32 *)&jit->prg_buf[patch + 2] = (jit->prg - patch) >> 1;
2558
2559 /*
2560 * __bpf_prog_exit(p, start, &run_ctx);
2561 */
2562
2563 /* %r1 = __bpf_prog_exit */
2564 load_imm64(jit, REG_1, (u64)bpf_trampoline_exit(p));
2565 /* %r2 = p */
2566 load_imm64(jit, REG_2, (u64)p);
2567 /* lgr %r3,%r7 */
2568 EMIT4(0xb9040000, REG_3, REG_7);
2569 /* la %r4,run_ctx_off(%r15) */
2570 EMIT4_DISP(0x41000000, REG_4, REG_15, tjit->run_ctx_off);
2571 /* %r1() */
2572 call_r1(jit);
2573
2574 return 0;
2575 }
2576
alloc_stack(struct bpf_tramp_jit * tjit,size_t size)2577 static int alloc_stack(struct bpf_tramp_jit *tjit, size_t size)
2578 {
2579 int stack_offset = tjit->stack_size;
2580
2581 tjit->stack_size += size;
2582 return stack_offset;
2583 }
2584
2585 /* ABI uses %r2 - %r6 for parameter passing. */
2586 #define MAX_NR_REG_ARGS 5
2587
2588 /* The "L" field of the "mvc" instruction is 8 bits. */
2589 #define MAX_MVC_SIZE 256
2590 #define MAX_NR_STACK_ARGS (MAX_MVC_SIZE / sizeof(u64))
2591
2592 /* -mfentry generates a 6-byte nop on s390x. */
2593 #define S390X_PATCH_SIZE 6
2594
__arch_prepare_bpf_trampoline(struct bpf_tramp_image * im,struct bpf_tramp_jit * tjit,const struct btf_func_model * m,u32 flags,struct bpf_tramp_links * tlinks,void * func_addr)2595 static int __arch_prepare_bpf_trampoline(struct bpf_tramp_image *im,
2596 struct bpf_tramp_jit *tjit,
2597 const struct btf_func_model *m,
2598 u32 flags,
2599 struct bpf_tramp_links *tlinks,
2600 void *func_addr)
2601 {
2602 struct bpf_tramp_links *fmod_ret = &tlinks[BPF_TRAMP_MODIFY_RETURN];
2603 struct bpf_tramp_links *fentry = &tlinks[BPF_TRAMP_FENTRY];
2604 struct bpf_tramp_links *fexit = &tlinks[BPF_TRAMP_FEXIT];
2605 int nr_bpf_args, nr_reg_args, nr_stack_args;
2606 struct bpf_jit *jit = &tjit->common;
2607 int arg, bpf_arg_off;
2608 int i, j;
2609
2610 /* Support as many stack arguments as "mvc" instruction can handle. */
2611 nr_reg_args = min_t(int, m->nr_args, MAX_NR_REG_ARGS);
2612 nr_stack_args = m->nr_args - nr_reg_args;
2613 if (nr_stack_args > MAX_NR_STACK_ARGS)
2614 return -ENOTSUPP;
2615
2616 /* Return to %r14 in the struct_ops case. */
2617 if (flags & BPF_TRAMP_F_INDIRECT)
2618 flags |= BPF_TRAMP_F_SKIP_FRAME;
2619
2620 /*
2621 * Compute how many arguments we need to pass to BPF programs.
2622 * BPF ABI mirrors that of x86_64: arguments that are 16 bytes or
2623 * smaller are packed into 1 or 2 registers; larger arguments are
2624 * passed via pointers.
2625 * In s390x ABI, arguments that are 8 bytes or smaller are packed into
2626 * a register; larger arguments are passed via pointers.
2627 * We need to deal with this difference.
2628 */
2629 nr_bpf_args = 0;
2630 for (i = 0; i < m->nr_args; i++) {
2631 if (m->arg_size[i] <= 8)
2632 nr_bpf_args += 1;
2633 else if (m->arg_size[i] <= 16)
2634 nr_bpf_args += 2;
2635 else
2636 return -ENOTSUPP;
2637 }
2638
2639 /*
2640 * Calculate the stack layout.
2641 */
2642
2643 /*
2644 * Allocate STACK_FRAME_OVERHEAD bytes for the callees. As the s390x
2645 * ABI requires, put our backchain at the end of the allocated memory.
2646 */
2647 tjit->stack_size = STACK_FRAME_OVERHEAD;
2648 tjit->backchain_off = tjit->stack_size - sizeof(u64);
2649 tjit->stack_args_off = alloc_stack(tjit, nr_stack_args * sizeof(u64));
2650 tjit->reg_args_off = alloc_stack(tjit, nr_reg_args * sizeof(u64));
2651 tjit->ip_off = alloc_stack(tjit, sizeof(u64));
2652 tjit->arg_cnt_off = alloc_stack(tjit, sizeof(u64));
2653 tjit->bpf_args_off = alloc_stack(tjit, nr_bpf_args * sizeof(u64));
2654 tjit->retval_off = alloc_stack(tjit, sizeof(u64));
2655 tjit->r7_r8_off = alloc_stack(tjit, 2 * sizeof(u64));
2656 tjit->run_ctx_off = alloc_stack(tjit,
2657 sizeof(struct bpf_tramp_run_ctx));
2658 tjit->tccnt_off = alloc_stack(tjit, sizeof(u64));
2659 tjit->r14_off = alloc_stack(tjit, sizeof(u64) * 2);
2660 /*
2661 * In accordance with the s390x ABI, the caller has allocated
2662 * STACK_FRAME_OVERHEAD bytes for us. 8 of them contain the caller's
2663 * backchain, and the rest we can use.
2664 */
2665 tjit->stack_size -= STACK_FRAME_OVERHEAD - sizeof(u64);
2666 tjit->orig_stack_args_off = tjit->stack_size + STACK_FRAME_OVERHEAD;
2667
2668 /* lgr %r1,%r15 */
2669 EMIT4(0xb9040000, REG_1, REG_15);
2670 /* aghi %r15,-stack_size */
2671 EMIT4_IMM(0xa70b0000, REG_15, -tjit->stack_size);
2672 /* stg %r1,backchain_off(%r15) */
2673 EMIT6_DISP_LH(0xe3000000, 0x0024, REG_1, REG_0, REG_15,
2674 tjit->backchain_off);
2675 /* mvc tccnt_off(4,%r15),stack_size+tail_call_cnt(%r15) */
2676 _EMIT6(0xd203f000 | tjit->tccnt_off,
2677 0xf000 | (tjit->stack_size +
2678 offsetof(struct prog_frame, tail_call_cnt)));
2679 /* stmg %r2,%rN,fwd_reg_args_off(%r15) */
2680 if (nr_reg_args)
2681 EMIT6_DISP_LH(0xeb000000, 0x0024, REG_2,
2682 REG_2 + (nr_reg_args - 1), REG_15,
2683 tjit->reg_args_off);
2684 for (i = 0, j = 0; i < m->nr_args; i++) {
2685 if (i < MAX_NR_REG_ARGS)
2686 arg = REG_2 + i;
2687 else
2688 arg = tjit->orig_stack_args_off +
2689 (i - MAX_NR_REG_ARGS) * sizeof(u64);
2690 bpf_arg_off = tjit->bpf_args_off + j * sizeof(u64);
2691 if (m->arg_size[i] <= 8) {
2692 if (i < MAX_NR_REG_ARGS)
2693 /* stg %arg,bpf_arg_off(%r15) */
2694 EMIT6_DISP_LH(0xe3000000, 0x0024, arg,
2695 REG_0, REG_15, bpf_arg_off);
2696 else
2697 /* mvc bpf_arg_off(8,%r15),arg(%r15) */
2698 _EMIT6(0xd207f000 | bpf_arg_off,
2699 0xf000 | arg);
2700 j += 1;
2701 } else {
2702 if (i < MAX_NR_REG_ARGS) {
2703 /* mvc bpf_arg_off(16,%r15),0(%arg) */
2704 _EMIT6(0xd20ff000 | bpf_arg_off,
2705 reg2hex[arg] << 12);
2706 } else {
2707 /* lg %r1,arg(%r15) */
2708 EMIT6_DISP_LH(0xe3000000, 0x0004, REG_1, REG_0,
2709 REG_15, arg);
2710 /* mvc bpf_arg_off(16,%r15),0(%r1) */
2711 _EMIT6(0xd20ff000 | bpf_arg_off, 0x1000);
2712 }
2713 j += 2;
2714 }
2715 }
2716 /* stmg %r7,%r8,r7_r8_off(%r15) */
2717 EMIT6_DISP_LH(0xeb000000, 0x0024, REG_7, REG_8, REG_15,
2718 tjit->r7_r8_off);
2719 /* stg %r14,r14_off(%r15) */
2720 EMIT6_DISP_LH(0xe3000000, 0x0024, REG_14, REG_0, REG_15, tjit->r14_off);
2721
2722 if (flags & BPF_TRAMP_F_ORIG_STACK) {
2723 /*
2724 * The ftrace trampoline puts the return address (which is the
2725 * address of the original function + S390X_PATCH_SIZE) into
2726 * %r0; see ftrace_shared_hotpatch_trampoline_br and
2727 * ftrace_init_nop() for details.
2728 */
2729
2730 /* lgr %r8,%r0 */
2731 EMIT4(0xb9040000, REG_8, REG_0);
2732 } else {
2733 /* %r8 = func_addr + S390X_PATCH_SIZE */
2734 load_imm64(jit, REG_8, (u64)func_addr + S390X_PATCH_SIZE);
2735 }
2736
2737 /*
2738 * ip = func_addr;
2739 * arg_cnt = m->nr_args;
2740 */
2741
2742 if (flags & BPF_TRAMP_F_IP_ARG) {
2743 /* %r0 = func_addr */
2744 load_imm64(jit, REG_0, (u64)func_addr);
2745 /* stg %r0,ip_off(%r15) */
2746 EMIT6_DISP_LH(0xe3000000, 0x0024, REG_0, REG_0, REG_15,
2747 tjit->ip_off);
2748 }
2749 /* lghi %r0,nr_bpf_args */
2750 EMIT4_IMM(0xa7090000, REG_0, nr_bpf_args);
2751 /* stg %r0,arg_cnt_off(%r15) */
2752 EMIT6_DISP_LH(0xe3000000, 0x0024, REG_0, REG_0, REG_15,
2753 tjit->arg_cnt_off);
2754
2755 if (flags & BPF_TRAMP_F_CALL_ORIG) {
2756 /*
2757 * __bpf_tramp_enter(im);
2758 */
2759
2760 /* %r1 = __bpf_tramp_enter */
2761 load_imm64(jit, REG_1, (u64)__bpf_tramp_enter);
2762 /* %r2 = im */
2763 load_imm64(jit, REG_2, (u64)im);
2764 /* %r1() */
2765 call_r1(jit);
2766 }
2767
2768 for (i = 0; i < fentry->nr_links; i++)
2769 if (invoke_bpf_prog(tjit, m, fentry->links[i],
2770 flags & BPF_TRAMP_F_RET_FENTRY_RET))
2771 return -EINVAL;
2772
2773 if (fmod_ret->nr_links) {
2774 /*
2775 * retval = 0;
2776 */
2777
2778 /* xc retval_off(8,%r15),retval_off(%r15) */
2779 _EMIT6(0xd707f000 | tjit->retval_off,
2780 0xf000 | tjit->retval_off);
2781
2782 for (i = 0; i < fmod_ret->nr_links; i++) {
2783 if (invoke_bpf_prog(tjit, m, fmod_ret->links[i], true))
2784 return -EINVAL;
2785
2786 /*
2787 * if (retval)
2788 * goto do_fexit;
2789 */
2790
2791 /* ltg %r0,retval_off(%r15) */
2792 EMIT6_DISP_LH(0xe3000000, 0x0002, REG_0, REG_0, REG_15,
2793 tjit->retval_off);
2794 /* brcl 7,do_fexit */
2795 EMIT6_PCREL_RILC(0xc0040000, 7, tjit->do_fexit);
2796 }
2797 }
2798
2799 if (flags & BPF_TRAMP_F_CALL_ORIG) {
2800 /*
2801 * retval = func_addr(args);
2802 */
2803
2804 /* lmg %r2,%rN,reg_args_off(%r15) */
2805 if (nr_reg_args)
2806 EMIT6_DISP_LH(0xeb000000, 0x0004, REG_2,
2807 REG_2 + (nr_reg_args - 1), REG_15,
2808 tjit->reg_args_off);
2809 /* mvc stack_args_off(N,%r15),orig_stack_args_off(%r15) */
2810 if (nr_stack_args)
2811 _EMIT6(0xd200f000 |
2812 (nr_stack_args * sizeof(u64) - 1) << 16 |
2813 tjit->stack_args_off,
2814 0xf000 | tjit->orig_stack_args_off);
2815 /* mvc tail_call_cnt(4,%r15),tccnt_off(%r15) */
2816 _EMIT6(0xd203f000 | offsetof(struct prog_frame, tail_call_cnt),
2817 0xf000 | tjit->tccnt_off);
2818 /* lgr %r1,%r8 */
2819 EMIT4(0xb9040000, REG_1, REG_8);
2820 /* %r1() */
2821 call_r1(jit);
2822 /* stg %r2,retval_off(%r15) */
2823 EMIT6_DISP_LH(0xe3000000, 0x0024, REG_2, REG_0, REG_15,
2824 tjit->retval_off);
2825
2826 im->ip_after_call = jit->prg_buf + jit->prg;
2827
2828 /*
2829 * The following nop will be patched by bpf_tramp_image_put().
2830 */
2831
2832 /* brcl 0,im->ip_epilogue */
2833 EMIT6_PCREL_RILC(0xc0040000, 0, (u64)im->ip_epilogue);
2834 }
2835
2836 /* do_fexit: */
2837 tjit->do_fexit = jit->prg;
2838 for (i = 0; i < fexit->nr_links; i++)
2839 if (invoke_bpf_prog(tjit, m, fexit->links[i], false))
2840 return -EINVAL;
2841
2842 if (flags & BPF_TRAMP_F_CALL_ORIG) {
2843 im->ip_epilogue = jit->prg_buf + jit->prg;
2844
2845 /*
2846 * __bpf_tramp_exit(im);
2847 */
2848
2849 /* %r1 = __bpf_tramp_exit */
2850 load_imm64(jit, REG_1, (u64)__bpf_tramp_exit);
2851 /* %r2 = im */
2852 load_imm64(jit, REG_2, (u64)im);
2853 /* %r1() */
2854 call_r1(jit);
2855 }
2856
2857 /* lmg %r2,%rN,reg_args_off(%r15) */
2858 if ((flags & BPF_TRAMP_F_RESTORE_REGS) && nr_reg_args)
2859 EMIT6_DISP_LH(0xeb000000, 0x0004, REG_2,
2860 REG_2 + (nr_reg_args - 1), REG_15,
2861 tjit->reg_args_off);
2862 /* lgr %r1,%r8 */
2863 if (!(flags & BPF_TRAMP_F_SKIP_FRAME))
2864 EMIT4(0xb9040000, REG_1, REG_8);
2865 /* lmg %r7,%r8,r7_r8_off(%r15) */
2866 EMIT6_DISP_LH(0xeb000000, 0x0004, REG_7, REG_8, REG_15,
2867 tjit->r7_r8_off);
2868 /* lg %r14,r14_off(%r15) */
2869 EMIT6_DISP_LH(0xe3000000, 0x0004, REG_14, REG_0, REG_15, tjit->r14_off);
2870 /* lg %r2,retval_off(%r15) */
2871 if (flags & (BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_RET_FENTRY_RET))
2872 EMIT6_DISP_LH(0xe3000000, 0x0004, REG_2, REG_0, REG_15,
2873 tjit->retval_off);
2874 /* mvc stack_size+tail_call_cnt(4,%r15),tccnt_off(%r15) */
2875 _EMIT6(0xd203f000 | (tjit->stack_size +
2876 offsetof(struct prog_frame, tail_call_cnt)),
2877 0xf000 | tjit->tccnt_off);
2878 /* aghi %r15,stack_size */
2879 EMIT4_IMM(0xa70b0000, REG_15, tjit->stack_size);
2880 if (flags & BPF_TRAMP_F_SKIP_FRAME)
2881 EMIT_JUMP_REG(14);
2882 else
2883 EMIT_JUMP_REG(1);
2884
2885 return 0;
2886 }
2887
arch_bpf_trampoline_size(const struct btf_func_model * m,u32 flags,struct bpf_tramp_links * tlinks,void * orig_call)2888 int arch_bpf_trampoline_size(const struct btf_func_model *m, u32 flags,
2889 struct bpf_tramp_links *tlinks, void *orig_call)
2890 {
2891 struct bpf_tramp_image im;
2892 struct bpf_tramp_jit tjit;
2893 int ret;
2894
2895 memset(&tjit, 0, sizeof(tjit));
2896
2897 ret = __arch_prepare_bpf_trampoline(&im, &tjit, m, flags,
2898 tlinks, orig_call);
2899
2900 return ret < 0 ? ret : tjit.common.prg;
2901 }
2902
arch_prepare_bpf_trampoline(struct bpf_tramp_image * im,void * image,void * image_end,const struct btf_func_model * m,u32 flags,struct bpf_tramp_links * tlinks,void * func_addr)2903 int arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *image,
2904 void *image_end, const struct btf_func_model *m,
2905 u32 flags, struct bpf_tramp_links *tlinks,
2906 void *func_addr)
2907 {
2908 struct bpf_tramp_jit tjit;
2909 int ret;
2910
2911 /* Compute offsets, check whether the code fits. */
2912 memset(&tjit, 0, sizeof(tjit));
2913 ret = __arch_prepare_bpf_trampoline(im, &tjit, m, flags,
2914 tlinks, func_addr);
2915
2916 if (ret < 0)
2917 return ret;
2918 if (tjit.common.prg > (char *)image_end - (char *)image)
2919 /*
2920 * Use the same error code as for exceeding
2921 * BPF_MAX_TRAMP_LINKS.
2922 */
2923 return -E2BIG;
2924
2925 tjit.common.prg = 0;
2926 tjit.common.prg_buf = image;
2927 ret = __arch_prepare_bpf_trampoline(im, &tjit, m, flags,
2928 tlinks, func_addr);
2929
2930 return ret < 0 ? ret : tjit.common.prg;
2931 }
2932
bpf_jit_supports_subprog_tailcalls(void)2933 bool bpf_jit_supports_subprog_tailcalls(void)
2934 {
2935 return true;
2936 }
2937
bpf_jit_supports_arena(void)2938 bool bpf_jit_supports_arena(void)
2939 {
2940 return true;
2941 }
2942
bpf_jit_supports_insn(struct bpf_insn * insn,bool in_arena)2943 bool bpf_jit_supports_insn(struct bpf_insn *insn, bool in_arena)
2944 {
2945 if (!in_arena)
2946 return true;
2947 switch (insn->code) {
2948 case BPF_STX | BPF_ATOMIC | BPF_B:
2949 case BPF_STX | BPF_ATOMIC | BPF_H:
2950 case BPF_STX | BPF_ATOMIC | BPF_W:
2951 case BPF_STX | BPF_ATOMIC | BPF_DW:
2952 if (bpf_atomic_is_load_store(insn))
2953 return false;
2954 }
2955 return true;
2956 }
2957
bpf_jit_supports_exceptions(void)2958 bool bpf_jit_supports_exceptions(void)
2959 {
2960 /*
2961 * Exceptions require unwinding support, which is always available,
2962 * because the kernel is always built with backchain.
2963 */
2964 return true;
2965 }
2966
arch_bpf_stack_walk(bool (* consume_fn)(void *,u64,u64,u64),void * cookie)2967 void arch_bpf_stack_walk(bool (*consume_fn)(void *, u64, u64, u64),
2968 void *cookie)
2969 {
2970 unsigned long addr, prev_addr = 0;
2971 struct unwind_state state;
2972
2973 unwind_for_each_frame(&state, NULL, NULL, 0) {
2974 addr = unwind_get_return_address(&state);
2975 if (!addr)
2976 break;
2977 /*
2978 * addr is a return address and state.sp is the value of %r15
2979 * at this address. exception_cb needs %r15 at entry to the
2980 * function containing addr, so take the next state.sp.
2981 *
2982 * There is no bp, and the exception_cb prog does not need one
2983 * to perform a quasi-longjmp. The common code requires a
2984 * non-zero bp, so pass sp there as well.
2985 */
2986 if (prev_addr && !consume_fn(cookie, prev_addr, state.sp,
2987 state.sp))
2988 break;
2989 prev_addr = addr;
2990 }
2991 }
2992