xref: /linux/arch/s390/net/bpf_jit_comp.c (revision ab93e0dd72c37d378dd936f031ffb83ff2bd87ce)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * BPF Jit compiler for s390.
4  *
5  * Minimum build requirements:
6  *
7  *  - HAVE_MARCH_Z196_FEATURES: laal, laalg
8  *  - HAVE_MARCH_Z10_FEATURES: msfi, cgrj, clgrj
9  *  - HAVE_MARCH_Z9_109_FEATURES: alfi, llilf, clfi, oilf, nilf
10  *  - 64BIT
11  *
12  * Copyright IBM Corp. 2012,2015
13  *
14  * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
15  *	      Michael Holzheu <holzheu@linux.vnet.ibm.com>
16  */
17 
18 #define KMSG_COMPONENT "bpf_jit"
19 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
20 
21 #include <linux/netdevice.h>
22 #include <linux/filter.h>
23 #include <linux/init.h>
24 #include <linux/bpf.h>
25 #include <linux/mm.h>
26 #include <linux/kernel.h>
27 #include <asm/cacheflush.h>
28 #include <asm/extable.h>
29 #include <asm/dis.h>
30 #include <asm/facility.h>
31 #include <asm/nospec-branch.h>
32 #include <asm/set_memory.h>
33 #include <asm/text-patching.h>
34 #include <asm/unwind.h>
35 
36 struct bpf_jit {
37 	u32 seen;		/* Flags to remember seen eBPF instructions */
38 	u16 seen_regs;		/* Mask to remember which registers are used */
39 	u32 *addrs;		/* Array with relative instruction addresses */
40 	u8 *prg_buf;		/* Start of program */
41 	int size;		/* Size of program and literal pool */
42 	int size_prg;		/* Size of program */
43 	int prg;		/* Current position in program */
44 	int lit32_start;	/* Start of 32-bit literal pool */
45 	int lit32;		/* Current position in 32-bit literal pool */
46 	int lit64_start;	/* Start of 64-bit literal pool */
47 	int lit64;		/* Current position in 64-bit literal pool */
48 	int base_ip;		/* Base address for literal pool */
49 	int exit_ip;		/* Address of exit */
50 	int tail_call_start;	/* Tail call start offset */
51 	int excnt;		/* Number of exception table entries */
52 	int prologue_plt_ret;	/* Return address for prologue hotpatch PLT */
53 	int prologue_plt;	/* Start of prologue hotpatch PLT */
54 	int kern_arena;		/* Pool offset of kernel arena address */
55 	u64 user_arena;		/* User arena address */
56 	u32 frame_off;		/* Offset of struct bpf_prog from %r15 */
57 };
58 
59 #define SEEN_MEM	BIT(0)		/* use mem[] for temporary storage */
60 #define SEEN_LITERAL	BIT(1)		/* code uses literals */
61 #define SEEN_FUNC	BIT(2)		/* calls C functions */
62 #define SEEN_STACK	(SEEN_FUNC | SEEN_MEM)
63 
64 #define NVREGS		0xffc0		/* %r6-%r15 */
65 
66 /*
67  * s390 registers
68  */
69 #define REG_W0		(MAX_BPF_JIT_REG + 0)	/* Work register 1 (even) */
70 #define REG_W1		(MAX_BPF_JIT_REG + 1)	/* Work register 2 (odd) */
71 #define REG_L		(MAX_BPF_JIT_REG + 2)	/* Literal pool register */
72 #define REG_15		(MAX_BPF_JIT_REG + 3)	/* Register 15 */
73 #define REG_0		REG_W0			/* Register 0 */
74 #define REG_1		REG_W1			/* Register 1 */
75 #define REG_2		BPF_REG_1		/* Register 2 */
76 #define REG_3		BPF_REG_2		/* Register 3 */
77 #define REG_4		BPF_REG_3		/* Register 4 */
78 #define REG_7		BPF_REG_6		/* Register 7 */
79 #define REG_8		BPF_REG_7		/* Register 8 */
80 #define REG_14		BPF_REG_0		/* Register 14 */
81 
82 /*
83  * Mapping of BPF registers to s390 registers
84  */
85 static const int reg2hex[] = {
86 	/* Return code */
87 	[BPF_REG_0]	= 14,
88 	/* Function parameters */
89 	[BPF_REG_1]	= 2,
90 	[BPF_REG_2]	= 3,
91 	[BPF_REG_3]	= 4,
92 	[BPF_REG_4]	= 5,
93 	[BPF_REG_5]	= 6,
94 	/* Call saved registers */
95 	[BPF_REG_6]	= 7,
96 	[BPF_REG_7]	= 8,
97 	[BPF_REG_8]	= 9,
98 	[BPF_REG_9]	= 10,
99 	/* BPF stack pointer */
100 	[BPF_REG_FP]	= 13,
101 	/* Register for blinding */
102 	[BPF_REG_AX]	= 12,
103 	/* Work registers for s390x backend */
104 	[REG_W0]	= 0,
105 	[REG_W1]	= 1,
106 	[REG_L]		= 11,
107 	[REG_15]	= 15,
108 };
109 
reg(u32 dst_reg,u32 src_reg)110 static inline u32 reg(u32 dst_reg, u32 src_reg)
111 {
112 	return reg2hex[dst_reg] << 4 | reg2hex[src_reg];
113 }
114 
reg_high(u32 reg)115 static inline u32 reg_high(u32 reg)
116 {
117 	return reg2hex[reg] << 4;
118 }
119 
reg_set_seen(struct bpf_jit * jit,u32 b1)120 static inline void reg_set_seen(struct bpf_jit *jit, u32 b1)
121 {
122 	u32 r1 = reg2hex[b1];
123 
124 	if (r1 >= 6 && r1 <= 15)
125 		jit->seen_regs |= (1 << r1);
126 }
127 
off_to_pcrel(struct bpf_jit * jit,u32 off)128 static s32 off_to_pcrel(struct bpf_jit *jit, u32 off)
129 {
130 	return off - jit->prg;
131 }
132 
ptr_to_pcrel(struct bpf_jit * jit,const void * ptr)133 static s64 ptr_to_pcrel(struct bpf_jit *jit, const void *ptr)
134 {
135 	if (jit->prg_buf)
136 		return (const u8 *)ptr - ((const u8 *)jit->prg_buf + jit->prg);
137 	return 0;
138 }
139 
140 #define REG_SET_SEEN(b1)					\
141 ({								\
142 	reg_set_seen(jit, b1);					\
143 })
144 
145 /*
146  * EMIT macros for code generation
147  */
148 
149 #define _EMIT2(op)						\
150 ({								\
151 	if (jit->prg_buf)					\
152 		*(u16 *) (jit->prg_buf + jit->prg) = (op);	\
153 	jit->prg += 2;						\
154 })
155 
156 #define EMIT2(op, b1, b2)					\
157 ({								\
158 	_EMIT2((op) | reg(b1, b2));				\
159 	REG_SET_SEEN(b1);					\
160 	REG_SET_SEEN(b2);					\
161 })
162 
163 #define _EMIT4(op)						\
164 ({								\
165 	if (jit->prg_buf)					\
166 		*(u32 *) (jit->prg_buf + jit->prg) = (op);	\
167 	jit->prg += 4;						\
168 })
169 
170 #define EMIT4(op, b1, b2)					\
171 ({								\
172 	_EMIT4((op) | reg(b1, b2));				\
173 	REG_SET_SEEN(b1);					\
174 	REG_SET_SEEN(b2);					\
175 })
176 
177 #define EMIT4_RRF(op, b1, b2, b3)				\
178 ({								\
179 	_EMIT4((op) | reg_high(b3) << 8 | reg(b1, b2));		\
180 	REG_SET_SEEN(b1);					\
181 	REG_SET_SEEN(b2);					\
182 	REG_SET_SEEN(b3);					\
183 })
184 
185 #define _EMIT4_DISP(op, disp)					\
186 ({								\
187 	unsigned int __disp = (disp) & 0xfff;			\
188 	_EMIT4((op) | __disp);					\
189 })
190 
191 #define EMIT4_DISP(op, b1, b2, disp)				\
192 ({								\
193 	_EMIT4_DISP((op) | reg_high(b1) << 16 |			\
194 		    reg_high(b2) << 8, (disp));			\
195 	REG_SET_SEEN(b1);					\
196 	REG_SET_SEEN(b2);					\
197 })
198 
199 #define EMIT4_IMM(op, b1, imm)					\
200 ({								\
201 	unsigned int __imm = (imm) & 0xffff;			\
202 	_EMIT4((op) | reg_high(b1) << 16 | __imm);		\
203 	REG_SET_SEEN(b1);					\
204 })
205 
206 #define EMIT4_PCREL(op, pcrel)					\
207 ({								\
208 	long __pcrel = ((pcrel) >> 1) & 0xffff;			\
209 	_EMIT4((op) | __pcrel);					\
210 })
211 
212 #define EMIT4_PCREL_RIC(op, mask, target)			\
213 ({								\
214 	int __rel = off_to_pcrel(jit, target) / 2;		\
215 	_EMIT4((op) | (mask) << 20 | (__rel & 0xffff));		\
216 })
217 
218 #define _EMIT6(op1, op2)					\
219 ({								\
220 	if (jit->prg_buf) {					\
221 		*(u32 *) (jit->prg_buf + jit->prg) = (op1);	\
222 		*(u16 *) (jit->prg_buf + jit->prg + 4) = (op2);	\
223 	}							\
224 	jit->prg += 6;						\
225 })
226 
227 #define _EMIT6_DISP(op1, op2, disp)				\
228 ({								\
229 	unsigned int __disp = (disp) & 0xfff;			\
230 	_EMIT6((op1) | __disp, op2);				\
231 })
232 
233 #define _EMIT6_DISP_LH(op1, op2, disp)				\
234 ({								\
235 	u32 _disp = (u32) (disp);				\
236 	unsigned int __disp_h = _disp & 0xff000;		\
237 	unsigned int __disp_l = _disp & 0x00fff;		\
238 	_EMIT6((op1) | __disp_l, (op2) | __disp_h >> 4);	\
239 })
240 
241 #define EMIT6_DISP_LH(op1, op2, b1, b2, b3, disp)		\
242 ({								\
243 	_EMIT6_DISP_LH((op1) | reg(b1, b2) << 16 |		\
244 		       reg_high(b3) << 8, op2, disp);		\
245 	REG_SET_SEEN(b1);					\
246 	REG_SET_SEEN(b2);					\
247 	REG_SET_SEEN(b3);					\
248 })
249 
250 #define EMIT6_PCREL_RIEB(op1, op2, b1, b2, mask, target)	\
251 ({								\
252 	unsigned int rel = off_to_pcrel(jit, target) / 2;	\
253 	_EMIT6((op1) | reg(b1, b2) << 16 | (rel & 0xffff),	\
254 	       (op2) | (mask) << 12);				\
255 	REG_SET_SEEN(b1);					\
256 	REG_SET_SEEN(b2);					\
257 })
258 
259 #define EMIT6_PCREL_RIEC(op1, op2, b1, imm, mask, target)	\
260 ({								\
261 	unsigned int rel = off_to_pcrel(jit, target) / 2;	\
262 	_EMIT6((op1) | (reg_high(b1) | (mask)) << 16 |		\
263 		(rel & 0xffff), (op2) | ((imm) & 0xff) << 8);	\
264 	REG_SET_SEEN(b1);					\
265 	BUILD_BUG_ON(((unsigned long) (imm)) > 0xff);		\
266 })
267 
268 #define EMIT6_PCREL(op1, op2, b1, b2, i, off, mask)		\
269 ({								\
270 	int rel = off_to_pcrel(jit, addrs[(i) + (off) + 1]) / 2;\
271 	_EMIT6((op1) | reg(b1, b2) << 16 | (rel & 0xffff), (op2) | (mask));\
272 	REG_SET_SEEN(b1);					\
273 	REG_SET_SEEN(b2);					\
274 })
275 
emit6_pcrel_ril(struct bpf_jit * jit,u32 op,s64 pcrel)276 static void emit6_pcrel_ril(struct bpf_jit *jit, u32 op, s64 pcrel)
277 {
278 	u32 pc32dbl = (s32)(pcrel / 2);
279 
280 	_EMIT6(op | pc32dbl >> 16, pc32dbl & 0xffff);
281 }
282 
emit6_pcrel_rilb(struct bpf_jit * jit,u32 op,u8 b,s64 pcrel)283 static void emit6_pcrel_rilb(struct bpf_jit *jit, u32 op, u8 b, s64 pcrel)
284 {
285 	emit6_pcrel_ril(jit, op | reg_high(b) << 16, pcrel);
286 	REG_SET_SEEN(b);
287 }
288 
289 #define EMIT6_PCREL_RILB(op, b, target)				\
290 	emit6_pcrel_rilb(jit, op, b, off_to_pcrel(jit, target))
291 
292 #define EMIT6_PCREL_RILB_PTR(op, b, target_ptr)			\
293 	emit6_pcrel_rilb(jit, op, b, ptr_to_pcrel(jit, target_ptr))
294 
emit6_pcrel_rilc(struct bpf_jit * jit,u32 op,u8 mask,s64 pcrel)295 static void emit6_pcrel_rilc(struct bpf_jit *jit, u32 op, u8 mask, s64 pcrel)
296 {
297 	emit6_pcrel_ril(jit, op | mask << 20, pcrel);
298 }
299 
300 #define EMIT6_PCREL_RILC(op, mask, target)			\
301 	emit6_pcrel_rilc(jit, op, mask, off_to_pcrel(jit, target))
302 
303 #define EMIT6_PCREL_RILC_PTR(op, mask, target_ptr)		\
304 	emit6_pcrel_rilc(jit, op, mask, ptr_to_pcrel(jit, target_ptr))
305 
306 #define _EMIT6_IMM(op, imm)					\
307 ({								\
308 	unsigned int __imm = (imm);				\
309 	_EMIT6((op) | (__imm >> 16), __imm & 0xffff);		\
310 })
311 
312 #define EMIT6_IMM(op, b1, imm)					\
313 ({								\
314 	_EMIT6_IMM((op) | reg_high(b1) << 16, imm);		\
315 	REG_SET_SEEN(b1);					\
316 })
317 
318 #define _EMIT_CONST_U32(val)					\
319 ({								\
320 	unsigned int ret;					\
321 	ret = jit->lit32;					\
322 	if (jit->prg_buf)					\
323 		*(u32 *)(jit->prg_buf + jit->lit32) = (u32)(val);\
324 	jit->lit32 += 4;					\
325 	ret;							\
326 })
327 
328 #define EMIT_CONST_U32(val)					\
329 ({								\
330 	jit->seen |= SEEN_LITERAL;				\
331 	_EMIT_CONST_U32(val) - jit->base_ip;			\
332 })
333 
334 #define _EMIT_CONST_U64(val)					\
335 ({								\
336 	unsigned int ret;					\
337 	ret = jit->lit64;					\
338 	if (jit->prg_buf)					\
339 		*(u64 *)(jit->prg_buf + jit->lit64) = (u64)(val);\
340 	jit->lit64 += 8;					\
341 	ret;							\
342 })
343 
344 #define EMIT_CONST_U64(val)					\
345 ({								\
346 	jit->seen |= SEEN_LITERAL;				\
347 	_EMIT_CONST_U64(val) - jit->base_ip;			\
348 })
349 
350 #define EMIT_ZERO(b1)						\
351 ({								\
352 	if (!fp->aux->verifier_zext) {				\
353 		/* llgfr %dst,%dst (zero extend to 64 bit) */	\
354 		EMIT4(0xb9160000, b1, b1);			\
355 		REG_SET_SEEN(b1);				\
356 	}							\
357 })
358 
359 /*
360  * Return whether this is the first pass. The first pass is special, since we
361  * don't know any sizes yet, and thus must be conservative.
362  */
is_first_pass(struct bpf_jit * jit)363 static bool is_first_pass(struct bpf_jit *jit)
364 {
365 	return jit->size == 0;
366 }
367 
368 /*
369  * Return whether this is the code generation pass. The code generation pass is
370  * special, since we should change as little as possible.
371  */
is_codegen_pass(struct bpf_jit * jit)372 static bool is_codegen_pass(struct bpf_jit *jit)
373 {
374 	return jit->prg_buf;
375 }
376 
377 /*
378  * Return whether "rel" can be encoded as a short PC-relative offset
379  */
is_valid_rel(int rel)380 static bool is_valid_rel(int rel)
381 {
382 	return rel >= -65536 && rel <= 65534;
383 }
384 
385 /*
386  * Return whether "off" can be reached using a short PC-relative offset
387  */
can_use_rel(struct bpf_jit * jit,int off)388 static bool can_use_rel(struct bpf_jit *jit, int off)
389 {
390 	return is_valid_rel(off - jit->prg);
391 }
392 
393 /*
394  * Return whether given displacement can be encoded using
395  * Long-Displacement Facility
396  */
is_valid_ldisp(int disp)397 static bool is_valid_ldisp(int disp)
398 {
399 	return disp >= -524288 && disp <= 524287;
400 }
401 
402 /*
403  * Return whether the next 32-bit literal pool entry can be referenced using
404  * Long-Displacement Facility
405  */
can_use_ldisp_for_lit32(struct bpf_jit * jit)406 static bool can_use_ldisp_for_lit32(struct bpf_jit *jit)
407 {
408 	return is_valid_ldisp(jit->lit32 - jit->base_ip);
409 }
410 
411 /*
412  * Return whether the next 64-bit literal pool entry can be referenced using
413  * Long-Displacement Facility
414  */
can_use_ldisp_for_lit64(struct bpf_jit * jit)415 static bool can_use_ldisp_for_lit64(struct bpf_jit *jit)
416 {
417 	return is_valid_ldisp(jit->lit64 - jit->base_ip);
418 }
419 
420 /*
421  * Fill whole space with illegal instructions
422  */
jit_fill_hole(void * area,unsigned int size)423 static void jit_fill_hole(void *area, unsigned int size)
424 {
425 	memset(area, 0, size);
426 }
427 
428 /*
429  * Caller-allocated part of the frame.
430  * Thanks to packed stack, its otherwise unused initial part can be used for
431  * the BPF stack and for the next frame.
432  */
433 struct prog_frame {
434 	u64 unused[8];
435 	/* BPF stack starts here and grows towards 0 */
436 	u32 tail_call_cnt;
437 	u32 pad;
438 	u64 r6[10];  /* r6 - r15 */
439 	u64 backchain;
440 } __packed;
441 
442 /*
443  * Save registers from "rs" (register start) to "re" (register end) on stack
444  */
save_regs(struct bpf_jit * jit,u32 rs,u32 re)445 static void save_regs(struct bpf_jit *jit, u32 rs, u32 re)
446 {
447 	u32 off = offsetof(struct prog_frame, r6) + (rs - 6) * 8;
448 
449 	if (rs == re)
450 		/* stg %rs,off(%r15) */
451 		_EMIT6(0xe300f000 | rs << 20 | off, 0x0024);
452 	else
453 		/* stmg %rs,%re,off(%r15) */
454 		_EMIT6_DISP(0xeb00f000 | rs << 20 | re << 16, 0x0024, off);
455 }
456 
457 /*
458  * Restore registers from "rs" (register start) to "re" (register end) on stack
459  */
restore_regs(struct bpf_jit * jit,u32 rs,u32 re)460 static void restore_regs(struct bpf_jit *jit, u32 rs, u32 re)
461 {
462 	u32 off = jit->frame_off + offsetof(struct prog_frame, r6) + (rs - 6) * 8;
463 
464 	if (rs == re)
465 		/* lg %rs,off(%r15) */
466 		_EMIT6(0xe300f000 | rs << 20 | off, 0x0004);
467 	else
468 		/* lmg %rs,%re,off(%r15) */
469 		_EMIT6_DISP(0xeb00f000 | rs << 20 | re << 16, 0x0004, off);
470 }
471 
472 /*
473  * Return first seen register (from start)
474  */
get_start(u16 seen_regs,int start)475 static int get_start(u16 seen_regs, int start)
476 {
477 	int i;
478 
479 	for (i = start; i <= 15; i++) {
480 		if (seen_regs & (1 << i))
481 			return i;
482 	}
483 	return 0;
484 }
485 
486 /*
487  * Return last seen register (from start) (gap >= 2)
488  */
get_end(u16 seen_regs,int start)489 static int get_end(u16 seen_regs, int start)
490 {
491 	int i;
492 
493 	for (i = start; i < 15; i++) {
494 		if (!(seen_regs & (3 << i)))
495 			return i - 1;
496 	}
497 	return (seen_regs & (1 << 15)) ? 15 : 14;
498 }
499 
500 #define REGS_SAVE	1
501 #define REGS_RESTORE	0
502 /*
503  * Save and restore clobbered registers (6-15) on stack.
504  * We save/restore registers in chunks with gap >= 2 registers.
505  */
save_restore_regs(struct bpf_jit * jit,int op,u16 extra_regs)506 static void save_restore_regs(struct bpf_jit *jit, int op, u16 extra_regs)
507 {
508 	u16 seen_regs = jit->seen_regs | extra_regs;
509 	const int last = 15, save_restore_size = 6;
510 	int re = 6, rs;
511 
512 	if (is_first_pass(jit)) {
513 		/*
514 		 * We don't know yet which registers are used. Reserve space
515 		 * conservatively.
516 		 */
517 		jit->prg += (last - re + 1) * save_restore_size;
518 		return;
519 	}
520 
521 	do {
522 		rs = get_start(seen_regs, re);
523 		if (!rs)
524 			break;
525 		re = get_end(seen_regs, rs + 1);
526 		if (op == REGS_SAVE)
527 			save_regs(jit, rs, re);
528 		else
529 			restore_regs(jit, rs, re);
530 		re++;
531 	} while (re <= last);
532 }
533 
bpf_skip(struct bpf_jit * jit,int size)534 static void bpf_skip(struct bpf_jit *jit, int size)
535 {
536 	if (size >= 6 && !is_valid_rel(size)) {
537 		/* brcl 0xf,size */
538 		EMIT6_PCREL_RILC(0xc0040000, 0xf, size);
539 		size -= 6;
540 	} else if (size >= 4 && is_valid_rel(size)) {
541 		/* brc 0xf,size */
542 		EMIT4_PCREL(0xa7f40000, size);
543 		size -= 4;
544 	}
545 	while (size >= 2) {
546 		/* bcr 0,%0 */
547 		_EMIT2(0x0700);
548 		size -= 2;
549 	}
550 }
551 
552 /*
553  * PLT for hotpatchable calls. The calling convention is the same as for the
554  * ftrace hotpatch trampolines: %r0 is return address, %r1 is clobbered.
555  */
556 struct bpf_plt {
557 	char code[16];
558 	void *ret;
559 	void *target;
560 } __packed;
561 extern const struct bpf_plt bpf_plt;
562 asm(
563 	".pushsection .rodata\n"
564 	"	.balign 8\n"
565 	"bpf_plt:\n"
566 	"	lgrl %r0,bpf_plt_ret\n"
567 	"	lgrl %r1,bpf_plt_target\n"
568 	"	br %r1\n"
569 	"	.balign 8\n"
570 	"bpf_plt_ret: .quad 0\n"
571 	"bpf_plt_target: .quad 0\n"
572 	"	.popsection\n"
573 );
574 
bpf_jit_plt(struct bpf_plt * plt,void * ret,void * target)575 static void bpf_jit_plt(struct bpf_plt *plt, void *ret, void *target)
576 {
577 	memcpy(plt, &bpf_plt, sizeof(*plt));
578 	plt->ret = ret;
579 	/*
580 	 * (target == NULL) implies that the branch to this PLT entry was
581 	 * patched and became a no-op. However, some CPU could have jumped
582 	 * to this PLT entry before patching and may be still executing it.
583 	 *
584 	 * Since the intention in this case is to make the PLT entry a no-op,
585 	 * make the target point to the return label instead of NULL.
586 	 */
587 	plt->target = target ?: ret;
588 }
589 
590 /*
591  * Emit function prologue
592  *
593  * Save registers and create stack frame if necessary.
594  * Stack frame layout is described by struct prog_frame.
595  */
bpf_jit_prologue(struct bpf_jit * jit,struct bpf_prog * fp)596 static void bpf_jit_prologue(struct bpf_jit *jit, struct bpf_prog *fp)
597 {
598 	BUILD_BUG_ON(sizeof(struct prog_frame) != STACK_FRAME_OVERHEAD);
599 
600 	/* No-op for hotpatching */
601 	/* brcl 0,prologue_plt */
602 	EMIT6_PCREL_RILC(0xc0040000, 0, jit->prologue_plt);
603 	jit->prologue_plt_ret = jit->prg;
604 
605 	if (!bpf_is_subprog(fp)) {
606 		/* Initialize the tail call counter in the main program. */
607 		/* xc tail_call_cnt(4,%r15),tail_call_cnt(%r15) */
608 		_EMIT6(0xd703f000 | offsetof(struct prog_frame, tail_call_cnt),
609 		       0xf000 | offsetof(struct prog_frame, tail_call_cnt));
610 	} else {
611 		/*
612 		 * Skip the tail call counter initialization in subprograms.
613 		 * Insert nops in order to have tail_call_start at a
614 		 * predictable offset.
615 		 */
616 		bpf_skip(jit, 6);
617 	}
618 	/* Tail calls have to skip above initialization */
619 	jit->tail_call_start = jit->prg;
620 	if (fp->aux->exception_cb) {
621 		/*
622 		 * Switch stack, the new address is in the 2nd parameter.
623 		 *
624 		 * Arrange the restoration of %r6-%r15 in the epilogue.
625 		 * Do not restore them now, the prog does not need them.
626 		 */
627 		/* lgr %r15,%r3 */
628 		EMIT4(0xb9040000, REG_15, REG_3);
629 		jit->seen_regs |= NVREGS;
630 	} else {
631 		/* Save registers */
632 		save_restore_regs(jit, REGS_SAVE,
633 				  fp->aux->exception_boundary ? NVREGS : 0);
634 	}
635 	/* Setup literal pool */
636 	if (is_first_pass(jit) || (jit->seen & SEEN_LITERAL)) {
637 		if (!is_first_pass(jit) &&
638 		    is_valid_ldisp(jit->size - (jit->prg + 2))) {
639 			/* basr %l,0 */
640 			EMIT2(0x0d00, REG_L, REG_0);
641 			jit->base_ip = jit->prg;
642 		} else {
643 			/* larl %l,lit32_start */
644 			EMIT6_PCREL_RILB(0xc0000000, REG_L, jit->lit32_start);
645 			jit->base_ip = jit->lit32_start;
646 		}
647 	}
648 	/* Setup stack and backchain */
649 	if (is_first_pass(jit) || (jit->seen & SEEN_STACK)) {
650 		/* lgr %w1,%r15 (backchain) */
651 		EMIT4(0xb9040000, REG_W1, REG_15);
652 		/* la %bfp,unused_end(%r15) (BPF frame pointer) */
653 		EMIT4_DISP(0x41000000, BPF_REG_FP, REG_15,
654 			   offsetofend(struct prog_frame, unused));
655 		/* aghi %r15,-frame_off */
656 		EMIT4_IMM(0xa70b0000, REG_15, -jit->frame_off);
657 		/* stg %w1,backchain(%r15) */
658 		EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W1, REG_0,
659 			      REG_15,
660 			      offsetof(struct prog_frame, backchain));
661 	}
662 }
663 
664 /*
665  * Jump using a register either directly or via an expoline thunk
666  */
667 #define EMIT_JUMP_REG(reg) do {						\
668 	if (nospec_uses_trampoline())					\
669 		/* brcl 0xf,__s390_indirect_jump_rN */			\
670 		EMIT6_PCREL_RILC_PTR(0xc0040000, 0x0f,			\
671 				     __s390_indirect_jump_r ## reg);	\
672 	else								\
673 		/* br %rN */						\
674 		_EMIT2(0x07f0 | reg);					\
675 } while (0)
676 
677 /*
678  * Call r1 either directly or via __s390_indirect_jump_r1 thunk
679  */
call_r1(struct bpf_jit * jit)680 static void call_r1(struct bpf_jit *jit)
681 {
682 	if (nospec_uses_trampoline())
683 		/* brasl %r14,__s390_indirect_jump_r1 */
684 		EMIT6_PCREL_RILB_PTR(0xc0050000, REG_14,
685 				     __s390_indirect_jump_r1);
686 	else
687 		/* basr %r14,%r1 */
688 		EMIT2(0x0d00, REG_14, REG_1);
689 }
690 
691 /*
692  * Function epilogue
693  */
bpf_jit_epilogue(struct bpf_jit * jit)694 static void bpf_jit_epilogue(struct bpf_jit *jit)
695 {
696 	jit->exit_ip = jit->prg;
697 	/* Load exit code: lgr %r2,%b0 */
698 	EMIT4(0xb9040000, REG_2, BPF_REG_0);
699 	/* Restore registers */
700 	save_restore_regs(jit, REGS_RESTORE, 0);
701 	EMIT_JUMP_REG(14);
702 
703 	jit->prg = ALIGN(jit->prg, 8);
704 	jit->prologue_plt = jit->prg;
705 	if (jit->prg_buf)
706 		bpf_jit_plt((struct bpf_plt *)(jit->prg_buf + jit->prg),
707 			    jit->prg_buf + jit->prologue_plt_ret, NULL);
708 	jit->prg += sizeof(struct bpf_plt);
709 }
710 
ex_handler_bpf(const struct exception_table_entry * x,struct pt_regs * regs)711 bool ex_handler_bpf(const struct exception_table_entry *x, struct pt_regs *regs)
712 {
713 	regs->psw.addr = extable_fixup(x);
714 	if (x->data != -1)
715 		regs->gprs[x->data] = 0;
716 	return true;
717 }
718 
719 /*
720  * A single BPF probe instruction
721  */
722 struct bpf_jit_probe {
723 	int prg;	/* JITed instruction offset */
724 	int nop_prg;	/* JITed nop offset */
725 	int reg;	/* Register to clear on exception */
726 	int arena_reg;	/* Register to use for arena addressing */
727 };
728 
bpf_jit_probe_init(struct bpf_jit_probe * probe)729 static void bpf_jit_probe_init(struct bpf_jit_probe *probe)
730 {
731 	probe->prg = -1;
732 	probe->nop_prg = -1;
733 	probe->reg = -1;
734 	probe->arena_reg = REG_0;
735 }
736 
737 /*
738  * Handlers of certain exceptions leave psw.addr pointing to the instruction
739  * directly after the failing one. Therefore, create two exception table
740  * entries and also add a nop in case two probing instructions come directly
741  * after each other.
742  */
bpf_jit_probe_emit_nop(struct bpf_jit * jit,struct bpf_jit_probe * probe)743 static void bpf_jit_probe_emit_nop(struct bpf_jit *jit,
744 				   struct bpf_jit_probe *probe)
745 {
746 	if (probe->prg == -1 || probe->nop_prg != -1)
747 		/* The probe is not armed or nop is already emitted. */
748 		return;
749 
750 	probe->nop_prg = jit->prg;
751 	/* bcr 0,%0 */
752 	_EMIT2(0x0700);
753 }
754 
bpf_jit_probe_load_pre(struct bpf_jit * jit,struct bpf_insn * insn,struct bpf_jit_probe * probe)755 static void bpf_jit_probe_load_pre(struct bpf_jit *jit, struct bpf_insn *insn,
756 				   struct bpf_jit_probe *probe)
757 {
758 	if (BPF_MODE(insn->code) != BPF_PROBE_MEM &&
759 	    BPF_MODE(insn->code) != BPF_PROBE_MEMSX &&
760 	    BPF_MODE(insn->code) != BPF_PROBE_MEM32)
761 		return;
762 
763 	if (BPF_MODE(insn->code) == BPF_PROBE_MEM32) {
764 		/* lgrl %r1,kern_arena */
765 		EMIT6_PCREL_RILB(0xc4080000, REG_W1, jit->kern_arena);
766 		probe->arena_reg = REG_W1;
767 	}
768 	probe->prg = jit->prg;
769 	probe->reg = reg2hex[insn->dst_reg];
770 }
771 
bpf_jit_probe_store_pre(struct bpf_jit * jit,struct bpf_insn * insn,struct bpf_jit_probe * probe)772 static void bpf_jit_probe_store_pre(struct bpf_jit *jit, struct bpf_insn *insn,
773 				    struct bpf_jit_probe *probe)
774 {
775 	if (BPF_MODE(insn->code) != BPF_PROBE_MEM32)
776 		return;
777 
778 	/* lgrl %r1,kern_arena */
779 	EMIT6_PCREL_RILB(0xc4080000, REG_W1, jit->kern_arena);
780 	probe->arena_reg = REG_W1;
781 	probe->prg = jit->prg;
782 }
783 
bpf_jit_probe_atomic_pre(struct bpf_jit * jit,struct bpf_insn * insn,struct bpf_jit_probe * probe)784 static void bpf_jit_probe_atomic_pre(struct bpf_jit *jit,
785 				     struct bpf_insn *insn,
786 				     struct bpf_jit_probe *probe)
787 {
788 	if (BPF_MODE(insn->code) != BPF_PROBE_ATOMIC)
789 		return;
790 
791 	/* lgrl %r1,kern_arena */
792 	EMIT6_PCREL_RILB(0xc4080000, REG_W1, jit->kern_arena);
793 	/* agr %r1,%dst */
794 	EMIT4(0xb9080000, REG_W1, insn->dst_reg);
795 	probe->arena_reg = REG_W1;
796 	probe->prg = jit->prg;
797 }
798 
bpf_jit_probe_post(struct bpf_jit * jit,struct bpf_prog * fp,struct bpf_jit_probe * probe)799 static int bpf_jit_probe_post(struct bpf_jit *jit, struct bpf_prog *fp,
800 			      struct bpf_jit_probe *probe)
801 {
802 	struct exception_table_entry *ex;
803 	int i, prg;
804 	s64 delta;
805 	u8 *insn;
806 
807 	if (probe->prg == -1)
808 		/* The probe is not armed. */
809 		return 0;
810 	bpf_jit_probe_emit_nop(jit, probe);
811 	if (!fp->aux->extable)
812 		/* Do nothing during early JIT passes. */
813 		return 0;
814 	insn = jit->prg_buf + probe->prg;
815 	if (WARN_ON_ONCE(probe->prg + insn_length(*insn) != probe->nop_prg))
816 		/* JIT bug - gap between probe and nop instructions. */
817 		return -1;
818 	for (i = 0; i < 2; i++) {
819 		if (WARN_ON_ONCE(jit->excnt >= fp->aux->num_exentries))
820 			/* Verifier bug - not enough entries. */
821 			return -1;
822 		ex = &fp->aux->extable[jit->excnt];
823 		/* Add extable entries for probe and nop instructions. */
824 		prg = i == 0 ? probe->prg : probe->nop_prg;
825 		delta = jit->prg_buf + prg - (u8 *)&ex->insn;
826 		if (WARN_ON_ONCE(delta < INT_MIN || delta > INT_MAX))
827 			/* JIT bug - code and extable must be close. */
828 			return -1;
829 		ex->insn = delta;
830 		/*
831 		 * Land on the current instruction. Note that the extable
832 		 * infrastructure ignores the fixup field; it is handled by
833 		 * ex_handler_bpf().
834 		 */
835 		delta = jit->prg_buf + jit->prg - (u8 *)&ex->fixup;
836 		if (WARN_ON_ONCE(delta < INT_MIN || delta > INT_MAX))
837 			/* JIT bug - landing pad and extable must be close. */
838 			return -1;
839 		ex->fixup = delta;
840 		ex->type = EX_TYPE_BPF;
841 		ex->data = probe->reg;
842 		jit->excnt++;
843 	}
844 	return 0;
845 }
846 
847 /*
848  * Sign-extend the register if necessary
849  */
sign_extend(struct bpf_jit * jit,int r,u8 size,u8 flags)850 static int sign_extend(struct bpf_jit *jit, int r, u8 size, u8 flags)
851 {
852 	if (!(flags & BTF_FMODEL_SIGNED_ARG))
853 		return 0;
854 
855 	switch (size) {
856 	case 1:
857 		/* lgbr %r,%r */
858 		EMIT4(0xb9060000, r, r);
859 		return 0;
860 	case 2:
861 		/* lghr %r,%r */
862 		EMIT4(0xb9070000, r, r);
863 		return 0;
864 	case 4:
865 		/* lgfr %r,%r */
866 		EMIT4(0xb9140000, r, r);
867 		return 0;
868 	case 8:
869 		return 0;
870 	default:
871 		return -1;
872 	}
873 }
874 
875 /*
876  * Compile one eBPF instruction into s390x code
877  *
878  * NOTE: Use noinline because for gcov (-fprofile-arcs) gcc allocates a lot of
879  * stack space for the large switch statement.
880  */
bpf_jit_insn(struct bpf_jit * jit,struct bpf_prog * fp,int i,bool extra_pass)881 static noinline int bpf_jit_insn(struct bpf_jit *jit, struct bpf_prog *fp,
882 				 int i, bool extra_pass)
883 {
884 	struct bpf_insn *insn = &fp->insnsi[i];
885 	s32 branch_oc_off = insn->off;
886 	u32 dst_reg = insn->dst_reg;
887 	u32 src_reg = insn->src_reg;
888 	struct bpf_jit_probe probe;
889 	int last, insn_count = 1;
890 	u32 *addrs = jit->addrs;
891 	s32 imm = insn->imm;
892 	s16 off = insn->off;
893 	unsigned int mask;
894 	int err;
895 
896 	bpf_jit_probe_init(&probe);
897 
898 	switch (insn->code) {
899 	/*
900 	 * BPF_MOV
901 	 */
902 	case BPF_ALU | BPF_MOV | BPF_X:
903 		switch (insn->off) {
904 		case 0: /* DST = (u32) SRC */
905 			/* llgfr %dst,%src */
906 			EMIT4(0xb9160000, dst_reg, src_reg);
907 			if (insn_is_zext(&insn[1]))
908 				insn_count = 2;
909 			break;
910 		case 8: /* DST = (u32)(s8) SRC */
911 			/* lbr %dst,%src */
912 			EMIT4(0xb9260000, dst_reg, src_reg);
913 			/* llgfr %dst,%dst */
914 			EMIT4(0xb9160000, dst_reg, dst_reg);
915 			break;
916 		case 16: /* DST = (u32)(s16) SRC */
917 			/* lhr %dst,%src */
918 			EMIT4(0xb9270000, dst_reg, src_reg);
919 			/* llgfr %dst,%dst */
920 			EMIT4(0xb9160000, dst_reg, dst_reg);
921 			break;
922 		}
923 		break;
924 	case BPF_ALU64 | BPF_MOV | BPF_X:
925 		if (insn_is_cast_user(insn)) {
926 			int patch_brc;
927 
928 			/* ltgr %dst,%src */
929 			EMIT4(0xb9020000, dst_reg, src_reg);
930 			/* brc 8,0f */
931 			patch_brc = jit->prg;
932 			EMIT4_PCREL_RIC(0xa7040000, 8, 0);
933 			/* iihf %dst,user_arena>>32 */
934 			EMIT6_IMM(0xc0080000, dst_reg, jit->user_arena >> 32);
935 			/* 0: */
936 			if (jit->prg_buf)
937 				*(u16 *)(jit->prg_buf + patch_brc + 2) =
938 					(jit->prg - patch_brc) >> 1;
939 			break;
940 		}
941 		switch (insn->off) {
942 		case 0: /* DST = SRC */
943 			/* lgr %dst,%src */
944 			EMIT4(0xb9040000, dst_reg, src_reg);
945 			break;
946 		case 8: /* DST = (s8) SRC */
947 			/* lgbr %dst,%src */
948 			EMIT4(0xb9060000, dst_reg, src_reg);
949 			break;
950 		case 16: /* DST = (s16) SRC */
951 			/* lghr %dst,%src */
952 			EMIT4(0xb9070000, dst_reg, src_reg);
953 			break;
954 		case 32: /* DST = (s32) SRC */
955 			/* lgfr %dst,%src */
956 			EMIT4(0xb9140000, dst_reg, src_reg);
957 			break;
958 		}
959 		break;
960 	case BPF_ALU | BPF_MOV | BPF_K: /* dst = (u32) imm */
961 		/* llilf %dst,imm */
962 		EMIT6_IMM(0xc00f0000, dst_reg, imm);
963 		if (insn_is_zext(&insn[1]))
964 			insn_count = 2;
965 		break;
966 	case BPF_ALU64 | BPF_MOV | BPF_K: /* dst = imm */
967 		/* lgfi %dst,imm */
968 		EMIT6_IMM(0xc0010000, dst_reg, imm);
969 		break;
970 	/*
971 	 * BPF_LD 64
972 	 */
973 	case BPF_LD | BPF_IMM | BPF_DW: /* dst = (u64) imm */
974 	{
975 		/* 16 byte instruction that uses two 'struct bpf_insn' */
976 		u64 imm64;
977 
978 		imm64 = (u64)(u32) insn[0].imm | ((u64)(u32) insn[1].imm) << 32;
979 		/* lgrl %dst,imm */
980 		EMIT6_PCREL_RILB(0xc4080000, dst_reg, _EMIT_CONST_U64(imm64));
981 		insn_count = 2;
982 		break;
983 	}
984 	/*
985 	 * BPF_ADD
986 	 */
987 	case BPF_ALU | BPF_ADD | BPF_X: /* dst = (u32) dst + (u32) src */
988 		/* ar %dst,%src */
989 		EMIT2(0x1a00, dst_reg, src_reg);
990 		EMIT_ZERO(dst_reg);
991 		break;
992 	case BPF_ALU64 | BPF_ADD | BPF_X: /* dst = dst + src */
993 		/* agr %dst,%src */
994 		EMIT4(0xb9080000, dst_reg, src_reg);
995 		break;
996 	case BPF_ALU | BPF_ADD | BPF_K: /* dst = (u32) dst + (u32) imm */
997 		if (imm != 0) {
998 			/* alfi %dst,imm */
999 			EMIT6_IMM(0xc20b0000, dst_reg, imm);
1000 		}
1001 		EMIT_ZERO(dst_reg);
1002 		break;
1003 	case BPF_ALU64 | BPF_ADD | BPF_K: /* dst = dst + imm */
1004 		if (!imm)
1005 			break;
1006 		/* agfi %dst,imm */
1007 		EMIT6_IMM(0xc2080000, dst_reg, imm);
1008 		break;
1009 	/*
1010 	 * BPF_SUB
1011 	 */
1012 	case BPF_ALU | BPF_SUB | BPF_X: /* dst = (u32) dst - (u32) src */
1013 		/* sr %dst,%src */
1014 		EMIT2(0x1b00, dst_reg, src_reg);
1015 		EMIT_ZERO(dst_reg);
1016 		break;
1017 	case BPF_ALU64 | BPF_SUB | BPF_X: /* dst = dst - src */
1018 		/* sgr %dst,%src */
1019 		EMIT4(0xb9090000, dst_reg, src_reg);
1020 		break;
1021 	case BPF_ALU | BPF_SUB | BPF_K: /* dst = (u32) dst - (u32) imm */
1022 		if (imm != 0) {
1023 			/* alfi %dst,-imm */
1024 			EMIT6_IMM(0xc20b0000, dst_reg, -imm);
1025 		}
1026 		EMIT_ZERO(dst_reg);
1027 		break;
1028 	case BPF_ALU64 | BPF_SUB | BPF_K: /* dst = dst - imm */
1029 		if (!imm)
1030 			break;
1031 		if (imm == -0x80000000) {
1032 			/* algfi %dst,0x80000000 */
1033 			EMIT6_IMM(0xc20a0000, dst_reg, 0x80000000);
1034 		} else {
1035 			/* agfi %dst,-imm */
1036 			EMIT6_IMM(0xc2080000, dst_reg, -imm);
1037 		}
1038 		break;
1039 	/*
1040 	 * BPF_MUL
1041 	 */
1042 	case BPF_ALU | BPF_MUL | BPF_X: /* dst = (u32) dst * (u32) src */
1043 		/* msr %dst,%src */
1044 		EMIT4(0xb2520000, dst_reg, src_reg);
1045 		EMIT_ZERO(dst_reg);
1046 		break;
1047 	case BPF_ALU64 | BPF_MUL | BPF_X: /* dst = dst * src */
1048 		/* msgr %dst,%src */
1049 		EMIT4(0xb90c0000, dst_reg, src_reg);
1050 		break;
1051 	case BPF_ALU | BPF_MUL | BPF_K: /* dst = (u32) dst * (u32) imm */
1052 		if (imm != 1) {
1053 			/* msfi %r5,imm */
1054 			EMIT6_IMM(0xc2010000, dst_reg, imm);
1055 		}
1056 		EMIT_ZERO(dst_reg);
1057 		break;
1058 	case BPF_ALU64 | BPF_MUL | BPF_K: /* dst = dst * imm */
1059 		if (imm == 1)
1060 			break;
1061 		/* msgfi %dst,imm */
1062 		EMIT6_IMM(0xc2000000, dst_reg, imm);
1063 		break;
1064 	/*
1065 	 * BPF_DIV / BPF_MOD
1066 	 */
1067 	case BPF_ALU | BPF_DIV | BPF_X:
1068 	case BPF_ALU | BPF_MOD | BPF_X:
1069 	{
1070 		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
1071 
1072 		switch (off) {
1073 		case 0: /* dst = (u32) dst {/,%} (u32) src */
1074 			/* xr %w0,%w0 */
1075 			EMIT2(0x1700, REG_W0, REG_W0);
1076 			/* lr %w1,%dst */
1077 			EMIT2(0x1800, REG_W1, dst_reg);
1078 			/* dlr %w0,%src */
1079 			EMIT4(0xb9970000, REG_W0, src_reg);
1080 			break;
1081 		case 1: /* dst = (u32) ((s32) dst {/,%} (s32) src) */
1082 			/* lgfr %r1,%dst */
1083 			EMIT4(0xb9140000, REG_W1, dst_reg);
1084 			/* dsgfr %r0,%src */
1085 			EMIT4(0xb91d0000, REG_W0, src_reg);
1086 			break;
1087 		}
1088 		/* llgfr %dst,%rc */
1089 		EMIT4(0xb9160000, dst_reg, rc_reg);
1090 		if (insn_is_zext(&insn[1]))
1091 			insn_count = 2;
1092 		break;
1093 	}
1094 	case BPF_ALU64 | BPF_DIV | BPF_X:
1095 	case BPF_ALU64 | BPF_MOD | BPF_X:
1096 	{
1097 		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
1098 
1099 		switch (off) {
1100 		case 0: /* dst = dst {/,%} src */
1101 			/* lghi %w0,0 */
1102 			EMIT4_IMM(0xa7090000, REG_W0, 0);
1103 			/* lgr %w1,%dst */
1104 			EMIT4(0xb9040000, REG_W1, dst_reg);
1105 			/* dlgr %w0,%src */
1106 			EMIT4(0xb9870000, REG_W0, src_reg);
1107 			break;
1108 		case 1: /* dst = (s64) dst {/,%} (s64) src */
1109 			/* lgr %w1,%dst */
1110 			EMIT4(0xb9040000, REG_W1, dst_reg);
1111 			/* dsgr %w0,%src */
1112 			EMIT4(0xb90d0000, REG_W0, src_reg);
1113 			break;
1114 		}
1115 		/* lgr %dst,%rc */
1116 		EMIT4(0xb9040000, dst_reg, rc_reg);
1117 		break;
1118 	}
1119 	case BPF_ALU | BPF_DIV | BPF_K:
1120 	case BPF_ALU | BPF_MOD | BPF_K:
1121 	{
1122 		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
1123 
1124 		if (imm == 1) {
1125 			if (BPF_OP(insn->code) == BPF_MOD)
1126 				/* lghi %dst,0 */
1127 				EMIT4_IMM(0xa7090000, dst_reg, 0);
1128 			else
1129 				EMIT_ZERO(dst_reg);
1130 			break;
1131 		}
1132 		if (!is_first_pass(jit) && can_use_ldisp_for_lit32(jit)) {
1133 			switch (off) {
1134 			case 0: /* dst = (u32) dst {/,%} (u32) imm */
1135 				/* xr %w0,%w0 */
1136 				EMIT2(0x1700, REG_W0, REG_W0);
1137 				/* lr %w1,%dst */
1138 				EMIT2(0x1800, REG_W1, dst_reg);
1139 				/* dl %w0,<d(imm)>(%l) */
1140 				EMIT6_DISP_LH(0xe3000000, 0x0097, REG_W0, REG_0,
1141 					      REG_L, EMIT_CONST_U32(imm));
1142 				break;
1143 			case 1: /* dst = (s32) dst {/,%} (s32) imm */
1144 				/* lgfr %r1,%dst */
1145 				EMIT4(0xb9140000, REG_W1, dst_reg);
1146 				/* dsgf %r0,<d(imm)>(%l) */
1147 				EMIT6_DISP_LH(0xe3000000, 0x001d, REG_W0, REG_0,
1148 					      REG_L, EMIT_CONST_U32(imm));
1149 				break;
1150 			}
1151 		} else {
1152 			switch (off) {
1153 			case 0: /* dst = (u32) dst {/,%} (u32) imm */
1154 				/* xr %w0,%w0 */
1155 				EMIT2(0x1700, REG_W0, REG_W0);
1156 				/* lr %w1,%dst */
1157 				EMIT2(0x1800, REG_W1, dst_reg);
1158 				/* lrl %dst,imm */
1159 				EMIT6_PCREL_RILB(0xc40d0000, dst_reg,
1160 						 _EMIT_CONST_U32(imm));
1161 				jit->seen |= SEEN_LITERAL;
1162 				/* dlr %w0,%dst */
1163 				EMIT4(0xb9970000, REG_W0, dst_reg);
1164 				break;
1165 			case 1: /* dst = (s32) dst {/,%} (s32) imm */
1166 				/* lgfr %w1,%dst */
1167 				EMIT4(0xb9140000, REG_W1, dst_reg);
1168 				/* lgfrl %dst,imm */
1169 				EMIT6_PCREL_RILB(0xc40c0000, dst_reg,
1170 						 _EMIT_CONST_U32(imm));
1171 				jit->seen |= SEEN_LITERAL;
1172 				/* dsgr %w0,%dst */
1173 				EMIT4(0xb90d0000, REG_W0, dst_reg);
1174 				break;
1175 			}
1176 		}
1177 		/* llgfr %dst,%rc */
1178 		EMIT4(0xb9160000, dst_reg, rc_reg);
1179 		if (insn_is_zext(&insn[1]))
1180 			insn_count = 2;
1181 		break;
1182 	}
1183 	case BPF_ALU64 | BPF_DIV | BPF_K:
1184 	case BPF_ALU64 | BPF_MOD | BPF_K:
1185 	{
1186 		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
1187 
1188 		if (imm == 1) {
1189 			if (BPF_OP(insn->code) == BPF_MOD)
1190 				/* lhgi %dst,0 */
1191 				EMIT4_IMM(0xa7090000, dst_reg, 0);
1192 			break;
1193 		}
1194 		if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
1195 			switch (off) {
1196 			case 0: /* dst = dst {/,%} imm */
1197 				/* lghi %w0,0 */
1198 				EMIT4_IMM(0xa7090000, REG_W0, 0);
1199 				/* lgr %w1,%dst */
1200 				EMIT4(0xb9040000, REG_W1, dst_reg);
1201 				/* dlg %w0,<d(imm)>(%l) */
1202 				EMIT6_DISP_LH(0xe3000000, 0x0087, REG_W0, REG_0,
1203 					      REG_L, EMIT_CONST_U64(imm));
1204 				break;
1205 			case 1: /* dst = (s64) dst {/,%} (s64) imm */
1206 				/* lgr %w1,%dst */
1207 				EMIT4(0xb9040000, REG_W1, dst_reg);
1208 				/* dsg %w0,<d(imm)>(%l) */
1209 				EMIT6_DISP_LH(0xe3000000, 0x000d, REG_W0, REG_0,
1210 					      REG_L, EMIT_CONST_U64(imm));
1211 				break;
1212 			}
1213 		} else {
1214 			switch (off) {
1215 			case 0: /* dst = dst {/,%} imm */
1216 				/* lghi %w0,0 */
1217 				EMIT4_IMM(0xa7090000, REG_W0, 0);
1218 				/* lgr %w1,%dst */
1219 				EMIT4(0xb9040000, REG_W1, dst_reg);
1220 				/* lgrl %dst,imm */
1221 				EMIT6_PCREL_RILB(0xc4080000, dst_reg,
1222 						 _EMIT_CONST_U64(imm));
1223 				jit->seen |= SEEN_LITERAL;
1224 				/* dlgr %w0,%dst */
1225 				EMIT4(0xb9870000, REG_W0, dst_reg);
1226 				break;
1227 			case 1: /* dst = (s64) dst {/,%} (s64) imm */
1228 				/* lgr %w1,%dst */
1229 				EMIT4(0xb9040000, REG_W1, dst_reg);
1230 				/* lgrl %dst,imm */
1231 				EMIT6_PCREL_RILB(0xc4080000, dst_reg,
1232 						 _EMIT_CONST_U64(imm));
1233 				jit->seen |= SEEN_LITERAL;
1234 				/* dsgr %w0,%dst */
1235 				EMIT4(0xb90d0000, REG_W0, dst_reg);
1236 				break;
1237 			}
1238 		}
1239 		/* lgr %dst,%rc */
1240 		EMIT4(0xb9040000, dst_reg, rc_reg);
1241 		break;
1242 	}
1243 	/*
1244 	 * BPF_AND
1245 	 */
1246 	case BPF_ALU | BPF_AND | BPF_X: /* dst = (u32) dst & (u32) src */
1247 		/* nr %dst,%src */
1248 		EMIT2(0x1400, dst_reg, src_reg);
1249 		EMIT_ZERO(dst_reg);
1250 		break;
1251 	case BPF_ALU64 | BPF_AND | BPF_X: /* dst = dst & src */
1252 		/* ngr %dst,%src */
1253 		EMIT4(0xb9800000, dst_reg, src_reg);
1254 		break;
1255 	case BPF_ALU | BPF_AND | BPF_K: /* dst = (u32) dst & (u32) imm */
1256 		/* nilf %dst,imm */
1257 		EMIT6_IMM(0xc00b0000, dst_reg, imm);
1258 		EMIT_ZERO(dst_reg);
1259 		break;
1260 	case BPF_ALU64 | BPF_AND | BPF_K: /* dst = dst & imm */
1261 		if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
1262 			/* ng %dst,<d(imm)>(%l) */
1263 			EMIT6_DISP_LH(0xe3000000, 0x0080,
1264 				      dst_reg, REG_0, REG_L,
1265 				      EMIT_CONST_U64(imm));
1266 		} else {
1267 			/* lgrl %w0,imm */
1268 			EMIT6_PCREL_RILB(0xc4080000, REG_W0,
1269 					 _EMIT_CONST_U64(imm));
1270 			jit->seen |= SEEN_LITERAL;
1271 			/* ngr %dst,%w0 */
1272 			EMIT4(0xb9800000, dst_reg, REG_W0);
1273 		}
1274 		break;
1275 	/*
1276 	 * BPF_OR
1277 	 */
1278 	case BPF_ALU | BPF_OR | BPF_X: /* dst = (u32) dst | (u32) src */
1279 		/* or %dst,%src */
1280 		EMIT2(0x1600, dst_reg, src_reg);
1281 		EMIT_ZERO(dst_reg);
1282 		break;
1283 	case BPF_ALU64 | BPF_OR | BPF_X: /* dst = dst | src */
1284 		/* ogr %dst,%src */
1285 		EMIT4(0xb9810000, dst_reg, src_reg);
1286 		break;
1287 	case BPF_ALU | BPF_OR | BPF_K: /* dst = (u32) dst | (u32) imm */
1288 		/* oilf %dst,imm */
1289 		EMIT6_IMM(0xc00d0000, dst_reg, imm);
1290 		EMIT_ZERO(dst_reg);
1291 		break;
1292 	case BPF_ALU64 | BPF_OR | BPF_K: /* dst = dst | imm */
1293 		if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
1294 			/* og %dst,<d(imm)>(%l) */
1295 			EMIT6_DISP_LH(0xe3000000, 0x0081,
1296 				      dst_reg, REG_0, REG_L,
1297 				      EMIT_CONST_U64(imm));
1298 		} else {
1299 			/* lgrl %w0,imm */
1300 			EMIT6_PCREL_RILB(0xc4080000, REG_W0,
1301 					 _EMIT_CONST_U64(imm));
1302 			jit->seen |= SEEN_LITERAL;
1303 			/* ogr %dst,%w0 */
1304 			EMIT4(0xb9810000, dst_reg, REG_W0);
1305 		}
1306 		break;
1307 	/*
1308 	 * BPF_XOR
1309 	 */
1310 	case BPF_ALU | BPF_XOR | BPF_X: /* dst = (u32) dst ^ (u32) src */
1311 		/* xr %dst,%src */
1312 		EMIT2(0x1700, dst_reg, src_reg);
1313 		EMIT_ZERO(dst_reg);
1314 		break;
1315 	case BPF_ALU64 | BPF_XOR | BPF_X: /* dst = dst ^ src */
1316 		/* xgr %dst,%src */
1317 		EMIT4(0xb9820000, dst_reg, src_reg);
1318 		break;
1319 	case BPF_ALU | BPF_XOR | BPF_K: /* dst = (u32) dst ^ (u32) imm */
1320 		if (imm != 0) {
1321 			/* xilf %dst,imm */
1322 			EMIT6_IMM(0xc0070000, dst_reg, imm);
1323 		}
1324 		EMIT_ZERO(dst_reg);
1325 		break;
1326 	case BPF_ALU64 | BPF_XOR | BPF_K: /* dst = dst ^ imm */
1327 		if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
1328 			/* xg %dst,<d(imm)>(%l) */
1329 			EMIT6_DISP_LH(0xe3000000, 0x0082,
1330 				      dst_reg, REG_0, REG_L,
1331 				      EMIT_CONST_U64(imm));
1332 		} else {
1333 			/* lgrl %w0,imm */
1334 			EMIT6_PCREL_RILB(0xc4080000, REG_W0,
1335 					 _EMIT_CONST_U64(imm));
1336 			jit->seen |= SEEN_LITERAL;
1337 			/* xgr %dst,%w0 */
1338 			EMIT4(0xb9820000, dst_reg, REG_W0);
1339 		}
1340 		break;
1341 	/*
1342 	 * BPF_LSH
1343 	 */
1344 	case BPF_ALU | BPF_LSH | BPF_X: /* dst = (u32) dst << (u32) src */
1345 		/* sll %dst,0(%src) */
1346 		EMIT4_DISP(0x89000000, dst_reg, src_reg, 0);
1347 		EMIT_ZERO(dst_reg);
1348 		break;
1349 	case BPF_ALU64 | BPF_LSH | BPF_X: /* dst = dst << src */
1350 		/* sllg %dst,%dst,0(%src) */
1351 		EMIT6_DISP_LH(0xeb000000, 0x000d, dst_reg, dst_reg, src_reg, 0);
1352 		break;
1353 	case BPF_ALU | BPF_LSH | BPF_K: /* dst = (u32) dst << (u32) imm */
1354 		if (imm != 0) {
1355 			/* sll %dst,imm(%r0) */
1356 			EMIT4_DISP(0x89000000, dst_reg, REG_0, imm);
1357 		}
1358 		EMIT_ZERO(dst_reg);
1359 		break;
1360 	case BPF_ALU64 | BPF_LSH | BPF_K: /* dst = dst << imm */
1361 		if (imm == 0)
1362 			break;
1363 		/* sllg %dst,%dst,imm(%r0) */
1364 		EMIT6_DISP_LH(0xeb000000, 0x000d, dst_reg, dst_reg, REG_0, imm);
1365 		break;
1366 	/*
1367 	 * BPF_RSH
1368 	 */
1369 	case BPF_ALU | BPF_RSH | BPF_X: /* dst = (u32) dst >> (u32) src */
1370 		/* srl %dst,0(%src) */
1371 		EMIT4_DISP(0x88000000, dst_reg, src_reg, 0);
1372 		EMIT_ZERO(dst_reg);
1373 		break;
1374 	case BPF_ALU64 | BPF_RSH | BPF_X: /* dst = dst >> src */
1375 		/* srlg %dst,%dst,0(%src) */
1376 		EMIT6_DISP_LH(0xeb000000, 0x000c, dst_reg, dst_reg, src_reg, 0);
1377 		break;
1378 	case BPF_ALU | BPF_RSH | BPF_K: /* dst = (u32) dst >> (u32) imm */
1379 		if (imm != 0) {
1380 			/* srl %dst,imm(%r0) */
1381 			EMIT4_DISP(0x88000000, dst_reg, REG_0, imm);
1382 		}
1383 		EMIT_ZERO(dst_reg);
1384 		break;
1385 	case BPF_ALU64 | BPF_RSH | BPF_K: /* dst = dst >> imm */
1386 		if (imm == 0)
1387 			break;
1388 		/* srlg %dst,%dst,imm(%r0) */
1389 		EMIT6_DISP_LH(0xeb000000, 0x000c, dst_reg, dst_reg, REG_0, imm);
1390 		break;
1391 	/*
1392 	 * BPF_ARSH
1393 	 */
1394 	case BPF_ALU | BPF_ARSH | BPF_X: /* ((s32) dst) >>= src */
1395 		/* sra %dst,%dst,0(%src) */
1396 		EMIT4_DISP(0x8a000000, dst_reg, src_reg, 0);
1397 		EMIT_ZERO(dst_reg);
1398 		break;
1399 	case BPF_ALU64 | BPF_ARSH | BPF_X: /* ((s64) dst) >>= src */
1400 		/* srag %dst,%dst,0(%src) */
1401 		EMIT6_DISP_LH(0xeb000000, 0x000a, dst_reg, dst_reg, src_reg, 0);
1402 		break;
1403 	case BPF_ALU | BPF_ARSH | BPF_K: /* ((s32) dst >> imm */
1404 		if (imm != 0) {
1405 			/* sra %dst,imm(%r0) */
1406 			EMIT4_DISP(0x8a000000, dst_reg, REG_0, imm);
1407 		}
1408 		EMIT_ZERO(dst_reg);
1409 		break;
1410 	case BPF_ALU64 | BPF_ARSH | BPF_K: /* ((s64) dst) >>= imm */
1411 		if (imm == 0)
1412 			break;
1413 		/* srag %dst,%dst,imm(%r0) */
1414 		EMIT6_DISP_LH(0xeb000000, 0x000a, dst_reg, dst_reg, REG_0, imm);
1415 		break;
1416 	/*
1417 	 * BPF_NEG
1418 	 */
1419 	case BPF_ALU | BPF_NEG: /* dst = (u32) -dst */
1420 		/* lcr %dst,%dst */
1421 		EMIT2(0x1300, dst_reg, dst_reg);
1422 		EMIT_ZERO(dst_reg);
1423 		break;
1424 	case BPF_ALU64 | BPF_NEG: /* dst = -dst */
1425 		/* lcgr %dst,%dst */
1426 		EMIT4(0xb9030000, dst_reg, dst_reg);
1427 		break;
1428 	/*
1429 	 * BPF_FROM_BE/LE
1430 	 */
1431 	case BPF_ALU | BPF_END | BPF_FROM_BE:
1432 		/* s390 is big endian, therefore only clear high order bytes */
1433 		switch (imm) {
1434 		case 16: /* dst = (u16) cpu_to_be16(dst) */
1435 			/* llghr %dst,%dst */
1436 			EMIT4(0xb9850000, dst_reg, dst_reg);
1437 			if (insn_is_zext(&insn[1]))
1438 				insn_count = 2;
1439 			break;
1440 		case 32: /* dst = (u32) cpu_to_be32(dst) */
1441 			if (!fp->aux->verifier_zext)
1442 				/* llgfr %dst,%dst */
1443 				EMIT4(0xb9160000, dst_reg, dst_reg);
1444 			break;
1445 		case 64: /* dst = (u64) cpu_to_be64(dst) */
1446 			break;
1447 		}
1448 		break;
1449 	case BPF_ALU | BPF_END | BPF_FROM_LE:
1450 	case BPF_ALU64 | BPF_END | BPF_FROM_LE:
1451 		switch (imm) {
1452 		case 16: /* dst = (u16) cpu_to_le16(dst) */
1453 			/* lrvr %dst,%dst */
1454 			EMIT4(0xb91f0000, dst_reg, dst_reg);
1455 			/* srl %dst,16(%r0) */
1456 			EMIT4_DISP(0x88000000, dst_reg, REG_0, 16);
1457 			/* llghr %dst,%dst */
1458 			EMIT4(0xb9850000, dst_reg, dst_reg);
1459 			if (insn_is_zext(&insn[1]))
1460 				insn_count = 2;
1461 			break;
1462 		case 32: /* dst = (u32) cpu_to_le32(dst) */
1463 			/* lrvr %dst,%dst */
1464 			EMIT4(0xb91f0000, dst_reg, dst_reg);
1465 			if (!fp->aux->verifier_zext)
1466 				/* llgfr %dst,%dst */
1467 				EMIT4(0xb9160000, dst_reg, dst_reg);
1468 			break;
1469 		case 64: /* dst = (u64) cpu_to_le64(dst) */
1470 			/* lrvgr %dst,%dst */
1471 			EMIT4(0xb90f0000, dst_reg, dst_reg);
1472 			break;
1473 		}
1474 		break;
1475 	/*
1476 	 * BPF_NOSPEC (speculation barrier)
1477 	 */
1478 	case BPF_ST | BPF_NOSPEC:
1479 		break;
1480 	/*
1481 	 * BPF_ST(X)
1482 	 */
1483 	case BPF_STX | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = src_reg */
1484 	case BPF_STX | BPF_PROBE_MEM32 | BPF_B:
1485 		bpf_jit_probe_store_pre(jit, insn, &probe);
1486 		/* stcy %src,off(%dst,%arena) */
1487 		EMIT6_DISP_LH(0xe3000000, 0x0072, src_reg, dst_reg,
1488 			      probe.arena_reg, off);
1489 		err = bpf_jit_probe_post(jit, fp, &probe);
1490 		if (err < 0)
1491 			return err;
1492 		jit->seen |= SEEN_MEM;
1493 		break;
1494 	case BPF_STX | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = src */
1495 	case BPF_STX | BPF_PROBE_MEM32 | BPF_H:
1496 		bpf_jit_probe_store_pre(jit, insn, &probe);
1497 		/* sthy %src,off(%dst,%arena) */
1498 		EMIT6_DISP_LH(0xe3000000, 0x0070, src_reg, dst_reg,
1499 			      probe.arena_reg, off);
1500 		err = bpf_jit_probe_post(jit, fp, &probe);
1501 		if (err < 0)
1502 			return err;
1503 		jit->seen |= SEEN_MEM;
1504 		break;
1505 	case BPF_STX | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = src */
1506 	case BPF_STX | BPF_PROBE_MEM32 | BPF_W:
1507 		bpf_jit_probe_store_pre(jit, insn, &probe);
1508 		/* sty %src,off(%dst,%arena) */
1509 		EMIT6_DISP_LH(0xe3000000, 0x0050, src_reg, dst_reg,
1510 			      probe.arena_reg, off);
1511 		err = bpf_jit_probe_post(jit, fp, &probe);
1512 		if (err < 0)
1513 			return err;
1514 		jit->seen |= SEEN_MEM;
1515 		break;
1516 	case BPF_STX | BPF_MEM | BPF_DW: /* (u64 *)(dst + off) = src */
1517 	case BPF_STX | BPF_PROBE_MEM32 | BPF_DW:
1518 		bpf_jit_probe_store_pre(jit, insn, &probe);
1519 		/* stg %src,off(%dst,%arena) */
1520 		EMIT6_DISP_LH(0xe3000000, 0x0024, src_reg, dst_reg,
1521 			      probe.arena_reg, off);
1522 		err = bpf_jit_probe_post(jit, fp, &probe);
1523 		if (err < 0)
1524 			return err;
1525 		jit->seen |= SEEN_MEM;
1526 		break;
1527 	case BPF_ST | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = imm */
1528 	case BPF_ST | BPF_PROBE_MEM32 | BPF_B:
1529 		/* lhi %w0,imm */
1530 		EMIT4_IMM(0xa7080000, REG_W0, (u8) imm);
1531 		bpf_jit_probe_store_pre(jit, insn, &probe);
1532 		/* stcy %w0,off(%dst,%arena) */
1533 		EMIT6_DISP_LH(0xe3000000, 0x0072, REG_W0, dst_reg,
1534 			      probe.arena_reg, off);
1535 		err = bpf_jit_probe_post(jit, fp, &probe);
1536 		if (err < 0)
1537 			return err;
1538 		jit->seen |= SEEN_MEM;
1539 		break;
1540 	case BPF_ST | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = imm */
1541 	case BPF_ST | BPF_PROBE_MEM32 | BPF_H:
1542 		/* lhi %w0,imm */
1543 		EMIT4_IMM(0xa7080000, REG_W0, (u16) imm);
1544 		bpf_jit_probe_store_pre(jit, insn, &probe);
1545 		/* sthy %w0,off(%dst,%arena) */
1546 		EMIT6_DISP_LH(0xe3000000, 0x0070, REG_W0, dst_reg,
1547 			      probe.arena_reg, off);
1548 		err = bpf_jit_probe_post(jit, fp, &probe);
1549 		if (err < 0)
1550 			return err;
1551 		jit->seen |= SEEN_MEM;
1552 		break;
1553 	case BPF_ST | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = imm */
1554 	case BPF_ST | BPF_PROBE_MEM32 | BPF_W:
1555 		/* llilf %w0,imm  */
1556 		EMIT6_IMM(0xc00f0000, REG_W0, (u32) imm);
1557 		bpf_jit_probe_store_pre(jit, insn, &probe);
1558 		/* sty %w0,off(%dst,%arena) */
1559 		EMIT6_DISP_LH(0xe3000000, 0x0050, REG_W0, dst_reg,
1560 			      probe.arena_reg, off);
1561 		err = bpf_jit_probe_post(jit, fp, &probe);
1562 		if (err < 0)
1563 			return err;
1564 		jit->seen |= SEEN_MEM;
1565 		break;
1566 	case BPF_ST | BPF_MEM | BPF_DW: /* *(u64 *)(dst + off) = imm */
1567 	case BPF_ST | BPF_PROBE_MEM32 | BPF_DW:
1568 		/* lgfi %w0,imm */
1569 		EMIT6_IMM(0xc0010000, REG_W0, imm);
1570 		bpf_jit_probe_store_pre(jit, insn, &probe);
1571 		/* stg %w0,off(%dst,%arena) */
1572 		EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W0, dst_reg,
1573 			      probe.arena_reg, off);
1574 		err = bpf_jit_probe_post(jit, fp, &probe);
1575 		if (err < 0)
1576 			return err;
1577 		jit->seen |= SEEN_MEM;
1578 		break;
1579 	/*
1580 	 * BPF_ATOMIC
1581 	 */
1582 	case BPF_STX | BPF_ATOMIC | BPF_DW:
1583 	case BPF_STX | BPF_ATOMIC | BPF_W:
1584 	case BPF_STX | BPF_PROBE_ATOMIC | BPF_DW:
1585 	case BPF_STX | BPF_PROBE_ATOMIC | BPF_W:
1586 	{
1587 		bool is32 = BPF_SIZE(insn->code) == BPF_W;
1588 
1589 		/*
1590 		 * Unlike loads and stores, atomics have only a base register,
1591 		 * but no index register. For the non-arena case, simply use
1592 		 * %dst as a base. For the arena case, use the work register
1593 		 * %r1: first, load the arena base into it, and then add %dst
1594 		 * to it.
1595 		 */
1596 		probe.arena_reg = dst_reg;
1597 
1598 		switch (insn->imm) {
1599 #define EMIT_ATOMIC(op32, op64) do {					\
1600 	bpf_jit_probe_atomic_pre(jit, insn, &probe);			\
1601 	/* {op32|op64} {%w0|%src},%src,off(%arena) */			\
1602 	EMIT6_DISP_LH(0xeb000000, is32 ? (op32) : (op64),		\
1603 		      (insn->imm & BPF_FETCH) ? src_reg : REG_W0,	\
1604 		      src_reg, probe.arena_reg, off);			\
1605 	err = bpf_jit_probe_post(jit, fp, &probe);			\
1606 	if (err < 0)							\
1607 		return err;						\
1608 	if (insn->imm & BPF_FETCH) {					\
1609 		/* bcr 14,0 - see atomic_fetch_{add,and,or,xor}() */	\
1610 		_EMIT2(0x07e0);						\
1611 		if (is32)                                               \
1612 			EMIT_ZERO(src_reg);				\
1613 	}								\
1614 } while (0)
1615 		case BPF_ADD:
1616 		case BPF_ADD | BPF_FETCH:
1617 			/* {laal|laalg} */
1618 			EMIT_ATOMIC(0x00fa, 0x00ea);
1619 			break;
1620 		case BPF_AND:
1621 		case BPF_AND | BPF_FETCH:
1622 			/* {lan|lang} */
1623 			EMIT_ATOMIC(0x00f4, 0x00e4);
1624 			break;
1625 		case BPF_OR:
1626 		case BPF_OR | BPF_FETCH:
1627 			/* {lao|laog} */
1628 			EMIT_ATOMIC(0x00f6, 0x00e6);
1629 			break;
1630 		case BPF_XOR:
1631 		case BPF_XOR | BPF_FETCH:
1632 			/* {lax|laxg} */
1633 			EMIT_ATOMIC(0x00f7, 0x00e7);
1634 			break;
1635 #undef EMIT_ATOMIC
1636 		case BPF_XCHG: {
1637 			struct bpf_jit_probe load_probe = probe;
1638 			int loop_start;
1639 
1640 			bpf_jit_probe_atomic_pre(jit, insn, &load_probe);
1641 			/* {ly|lg} %w0,off(%arena) */
1642 			EMIT6_DISP_LH(0xe3000000,
1643 				      is32 ? 0x0058 : 0x0004, REG_W0, REG_0,
1644 				      load_probe.arena_reg, off);
1645 			bpf_jit_probe_emit_nop(jit, &load_probe);
1646 			/* Reuse {ly|lg}'s arena_reg for {csy|csg}. */
1647 			if (load_probe.prg != -1) {
1648 				probe.prg = jit->prg;
1649 				probe.arena_reg = load_probe.arena_reg;
1650 			}
1651 			loop_start = jit->prg;
1652 			/* 0: {csy|csg} %w0,%src,off(%arena) */
1653 			EMIT6_DISP_LH(0xeb000000, is32 ? 0x0014 : 0x0030,
1654 				      REG_W0, src_reg, probe.arena_reg, off);
1655 			bpf_jit_probe_emit_nop(jit, &probe);
1656 			/* brc 4,0b */
1657 			EMIT4_PCREL_RIC(0xa7040000, 4, loop_start);
1658 			/* {llgfr|lgr} %src,%w0 */
1659 			EMIT4(is32 ? 0xb9160000 : 0xb9040000, src_reg, REG_W0);
1660 			/* Both probes should land here on exception. */
1661 			err = bpf_jit_probe_post(jit, fp, &load_probe);
1662 			if (err < 0)
1663 				return err;
1664 			err = bpf_jit_probe_post(jit, fp, &probe);
1665 			if (err < 0)
1666 				return err;
1667 			if (is32 && insn_is_zext(&insn[1]))
1668 				insn_count = 2;
1669 			break;
1670 		}
1671 		case BPF_CMPXCHG:
1672 			bpf_jit_probe_atomic_pre(jit, insn, &probe);
1673 			/* 0: {csy|csg} %b0,%src,off(%arena) */
1674 			EMIT6_DISP_LH(0xeb000000, is32 ? 0x0014 : 0x0030,
1675 				      BPF_REG_0, src_reg,
1676 				      probe.arena_reg, off);
1677 			err = bpf_jit_probe_post(jit, fp, &probe);
1678 			if (err < 0)
1679 				return err;
1680 			break;
1681 		default:
1682 			pr_err("Unknown atomic operation %02x\n", insn->imm);
1683 			return -1;
1684 		}
1685 
1686 		jit->seen |= SEEN_MEM;
1687 		break;
1688 	}
1689 	/*
1690 	 * BPF_LDX
1691 	 */
1692 	case BPF_LDX | BPF_MEM | BPF_B: /* dst = *(u8 *)(ul) (src + off) */
1693 	case BPF_LDX | BPF_PROBE_MEM | BPF_B:
1694 	case BPF_LDX | BPF_PROBE_MEM32 | BPF_B:
1695 		bpf_jit_probe_load_pre(jit, insn, &probe);
1696 		/* llgc %dst,off(%src,%arena) */
1697 		EMIT6_DISP_LH(0xe3000000, 0x0090, dst_reg, src_reg,
1698 			      probe.arena_reg, off);
1699 		err = bpf_jit_probe_post(jit, fp, &probe);
1700 		if (err < 0)
1701 			return err;
1702 		jit->seen |= SEEN_MEM;
1703 		if (insn_is_zext(&insn[1]))
1704 			insn_count = 2;
1705 		break;
1706 	case BPF_LDX | BPF_MEMSX | BPF_B: /* dst = *(s8 *)(ul) (src + off) */
1707 	case BPF_LDX | BPF_PROBE_MEMSX | BPF_B:
1708 		bpf_jit_probe_load_pre(jit, insn, &probe);
1709 		/* lgb %dst,off(%src) */
1710 		EMIT6_DISP_LH(0xe3000000, 0x0077, dst_reg, src_reg, REG_0, off);
1711 		err = bpf_jit_probe_post(jit, fp, &probe);
1712 		if (err < 0)
1713 			return err;
1714 		jit->seen |= SEEN_MEM;
1715 		break;
1716 	case BPF_LDX | BPF_MEM | BPF_H: /* dst = *(u16 *)(ul) (src + off) */
1717 	case BPF_LDX | BPF_PROBE_MEM | BPF_H:
1718 	case BPF_LDX | BPF_PROBE_MEM32 | BPF_H:
1719 		bpf_jit_probe_load_pre(jit, insn, &probe);
1720 		/* llgh %dst,off(%src,%arena) */
1721 		EMIT6_DISP_LH(0xe3000000, 0x0091, dst_reg, src_reg,
1722 			      probe.arena_reg, off);
1723 		err = bpf_jit_probe_post(jit, fp, &probe);
1724 		if (err < 0)
1725 			return err;
1726 		jit->seen |= SEEN_MEM;
1727 		if (insn_is_zext(&insn[1]))
1728 			insn_count = 2;
1729 		break;
1730 	case BPF_LDX | BPF_MEMSX | BPF_H: /* dst = *(s16 *)(ul) (src + off) */
1731 	case BPF_LDX | BPF_PROBE_MEMSX | BPF_H:
1732 		bpf_jit_probe_load_pre(jit, insn, &probe);
1733 		/* lgh %dst,off(%src) */
1734 		EMIT6_DISP_LH(0xe3000000, 0x0015, dst_reg, src_reg, REG_0, off);
1735 		err = bpf_jit_probe_post(jit, fp, &probe);
1736 		if (err < 0)
1737 			return err;
1738 		jit->seen |= SEEN_MEM;
1739 		break;
1740 	case BPF_LDX | BPF_MEM | BPF_W: /* dst = *(u32 *)(ul) (src + off) */
1741 	case BPF_LDX | BPF_PROBE_MEM | BPF_W:
1742 	case BPF_LDX | BPF_PROBE_MEM32 | BPF_W:
1743 		bpf_jit_probe_load_pre(jit, insn, &probe);
1744 		/* llgf %dst,off(%src) */
1745 		jit->seen |= SEEN_MEM;
1746 		EMIT6_DISP_LH(0xe3000000, 0x0016, dst_reg, src_reg,
1747 			      probe.arena_reg, off);
1748 		err = bpf_jit_probe_post(jit, fp, &probe);
1749 		if (err < 0)
1750 			return err;
1751 		if (insn_is_zext(&insn[1]))
1752 			insn_count = 2;
1753 		break;
1754 	case BPF_LDX | BPF_MEMSX | BPF_W: /* dst = *(s32 *)(ul) (src + off) */
1755 	case BPF_LDX | BPF_PROBE_MEMSX | BPF_W:
1756 		bpf_jit_probe_load_pre(jit, insn, &probe);
1757 		/* lgf %dst,off(%src) */
1758 		jit->seen |= SEEN_MEM;
1759 		EMIT6_DISP_LH(0xe3000000, 0x0014, dst_reg, src_reg, REG_0, off);
1760 		err = bpf_jit_probe_post(jit, fp, &probe);
1761 		if (err < 0)
1762 			return err;
1763 		break;
1764 	case BPF_LDX | BPF_MEM | BPF_DW: /* dst = *(u64 *)(ul) (src + off) */
1765 	case BPF_LDX | BPF_PROBE_MEM | BPF_DW:
1766 	case BPF_LDX | BPF_PROBE_MEM32 | BPF_DW:
1767 		bpf_jit_probe_load_pre(jit, insn, &probe);
1768 		/* lg %dst,off(%src,%arena) */
1769 		jit->seen |= SEEN_MEM;
1770 		EMIT6_DISP_LH(0xe3000000, 0x0004, dst_reg, src_reg,
1771 			      probe.arena_reg, off);
1772 		err = bpf_jit_probe_post(jit, fp, &probe);
1773 		if (err < 0)
1774 			return err;
1775 		break;
1776 	/*
1777 	 * BPF_JMP / CALL
1778 	 */
1779 	case BPF_JMP | BPF_CALL:
1780 	{
1781 		const struct btf_func_model *m;
1782 		bool func_addr_fixed;
1783 		int j, ret;
1784 		u64 func;
1785 
1786 		ret = bpf_jit_get_func_addr(fp, insn, extra_pass,
1787 					    &func, &func_addr_fixed);
1788 		if (ret < 0)
1789 			return -1;
1790 
1791 		REG_SET_SEEN(BPF_REG_5);
1792 		jit->seen |= SEEN_FUNC;
1793 		/*
1794 		 * Copy the tail call counter to where the callee expects it.
1795 		 *
1796 		 * Note 1: The callee can increment the tail call counter, but
1797 		 * we do not load it back, since the x86 JIT does not do this
1798 		 * either.
1799 		 *
1800 		 * Note 2: We assume that the verifier does not let us call the
1801 		 * main program, which clears the tail call counter on entry.
1802 		 */
1803 		/* mvc tail_call_cnt(4,%r15),frame_off+tail_call_cnt(%r15) */
1804 		_EMIT6(0xd203f000 | offsetof(struct prog_frame, tail_call_cnt),
1805 		       0xf000 | (jit->frame_off +
1806 				 offsetof(struct prog_frame, tail_call_cnt)));
1807 
1808 		/* Sign-extend the kfunc arguments. */
1809 		if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
1810 			m = bpf_jit_find_kfunc_model(fp, insn);
1811 			if (!m)
1812 				return -1;
1813 
1814 			for (j = 0; j < m->nr_args; j++) {
1815 				if (sign_extend(jit, BPF_REG_1 + j,
1816 						m->arg_size[j],
1817 						m->arg_flags[j]))
1818 					return -1;
1819 			}
1820 		}
1821 
1822 		/* lgrl %w1,func */
1823 		EMIT6_PCREL_RILB(0xc4080000, REG_W1, _EMIT_CONST_U64(func));
1824 		/* %r1() */
1825 		call_r1(jit);
1826 		/* lgr %b0,%r2: load return value into %b0 */
1827 		EMIT4(0xb9040000, BPF_REG_0, REG_2);
1828 		break;
1829 	}
1830 	case BPF_JMP | BPF_TAIL_CALL: {
1831 		int patch_1_clrj, patch_2_clij, patch_3_brc;
1832 
1833 		/*
1834 		 * Implicit input:
1835 		 *  B1: pointer to ctx
1836 		 *  B2: pointer to bpf_array
1837 		 *  B3: index in bpf_array
1838 		 *
1839 		 * if (index >= array->map.max_entries)
1840 		 *         goto out;
1841 		 */
1842 
1843 		/* llgf %w1,map.max_entries(%b2) */
1844 		EMIT6_DISP_LH(0xe3000000, 0x0016, REG_W1, REG_0, BPF_REG_2,
1845 			      offsetof(struct bpf_array, map.max_entries));
1846 		/* if ((u32)%b3 >= (u32)%w1) goto out; */
1847 		/* clrj %b3,%w1,0xa,out */
1848 		patch_1_clrj = jit->prg;
1849 		EMIT6_PCREL_RIEB(0xec000000, 0x0077, BPF_REG_3, REG_W1, 0xa,
1850 				 jit->prg);
1851 
1852 		/*
1853 		 * if (tail_call_cnt++ >= MAX_TAIL_CALL_CNT)
1854 		 *         goto out;
1855 		 */
1856 
1857 		off = jit->frame_off +
1858 		      offsetof(struct prog_frame, tail_call_cnt);
1859 		/* lhi %w0,1 */
1860 		EMIT4_IMM(0xa7080000, REG_W0, 1);
1861 		/* laal %w1,%w0,off(%r15) */
1862 		EMIT6_DISP_LH(0xeb000000, 0x00fa, REG_W1, REG_W0, REG_15, off);
1863 		/* clij %w1,MAX_TAIL_CALL_CNT-1,0x2,out */
1864 		patch_2_clij = jit->prg;
1865 		EMIT6_PCREL_RIEC(0xec000000, 0x007f, REG_W1, MAX_TAIL_CALL_CNT - 1,
1866 				 2, jit->prg);
1867 
1868 		/*
1869 		 * prog = array->ptrs[index];
1870 		 * if (prog == NULL)
1871 		 *         goto out;
1872 		 */
1873 
1874 		/* llgfr %r1,%b3: %r1 = (u32) index */
1875 		EMIT4(0xb9160000, REG_1, BPF_REG_3);
1876 		/* sllg %r1,%r1,3: %r1 *= 8 */
1877 		EMIT6_DISP_LH(0xeb000000, 0x000d, REG_1, REG_1, REG_0, 3);
1878 		/* ltg %r1,prog(%b2,%r1) */
1879 		EMIT6_DISP_LH(0xe3000000, 0x0002, REG_1, BPF_REG_2,
1880 			      REG_1, offsetof(struct bpf_array, ptrs));
1881 		/* brc 0x8,out */
1882 		patch_3_brc = jit->prg;
1883 		EMIT4_PCREL_RIC(0xa7040000, 8, jit->prg);
1884 
1885 		/*
1886 		 * Restore registers before calling function
1887 		 */
1888 		save_restore_regs(jit, REGS_RESTORE, 0);
1889 
1890 		/*
1891 		 * goto *(prog->bpf_func + tail_call_start);
1892 		 */
1893 
1894 		/* lg %r1,bpf_func(%r1) */
1895 		EMIT6_DISP_LH(0xe3000000, 0x0004, REG_1, REG_1, REG_0,
1896 			      offsetof(struct bpf_prog, bpf_func));
1897 		if (nospec_uses_trampoline()) {
1898 			jit->seen |= SEEN_FUNC;
1899 			/* aghi %r1,tail_call_start */
1900 			EMIT4_IMM(0xa70b0000, REG_1, jit->tail_call_start);
1901 			/* brcl 0xf,__s390_indirect_jump_r1 */
1902 			EMIT6_PCREL_RILC_PTR(0xc0040000, 0xf,
1903 					     __s390_indirect_jump_r1);
1904 		} else {
1905 			/* bc 0xf,tail_call_start(%r1) */
1906 			_EMIT4(0x47f01000 + jit->tail_call_start);
1907 		}
1908 		/* out: */
1909 		if (jit->prg_buf) {
1910 			*(u16 *)(jit->prg_buf + patch_1_clrj + 2) =
1911 				(jit->prg - patch_1_clrj) >> 1;
1912 			*(u16 *)(jit->prg_buf + patch_2_clij + 2) =
1913 				(jit->prg - patch_2_clij) >> 1;
1914 			*(u16 *)(jit->prg_buf + patch_3_brc + 2) =
1915 				(jit->prg - patch_3_brc) >> 1;
1916 		}
1917 		break;
1918 	}
1919 	case BPF_JMP | BPF_EXIT: /* return b0 */
1920 		last = (i == fp->len - 1) ? 1 : 0;
1921 		if (last)
1922 			break;
1923 		if (!is_first_pass(jit) && can_use_rel(jit, jit->exit_ip))
1924 			/* brc 0xf, <exit> */
1925 			EMIT4_PCREL_RIC(0xa7040000, 0xf, jit->exit_ip);
1926 		else
1927 			/* brcl 0xf, <exit> */
1928 			EMIT6_PCREL_RILC(0xc0040000, 0xf, jit->exit_ip);
1929 		break;
1930 	/*
1931 	 * Branch relative (number of skipped instructions) to offset on
1932 	 * condition.
1933 	 *
1934 	 * Condition code to mask mapping:
1935 	 *
1936 	 * CC | Description	   | Mask
1937 	 * ------------------------------
1938 	 * 0  | Operands equal	   |	8
1939 	 * 1  | First operand low  |	4
1940 	 * 2  | First operand high |	2
1941 	 * 3  | Unused		   |	1
1942 	 *
1943 	 * For s390x relative branches: ip = ip + off_bytes
1944 	 * For BPF relative branches:	insn = insn + off_insns + 1
1945 	 *
1946 	 * For example for s390x with offset 0 we jump to the branch
1947 	 * instruction itself (loop) and for BPF with offset 0 we
1948 	 * branch to the instruction behind the branch.
1949 	 */
1950 	case BPF_JMP32 | BPF_JA: /* if (true) */
1951 		branch_oc_off = imm;
1952 		fallthrough;
1953 	case BPF_JMP | BPF_JA: /* if (true) */
1954 		mask = 0xf000; /* j */
1955 		goto branch_oc;
1956 	case BPF_JMP | BPF_JSGT | BPF_K: /* ((s64) dst > (s64) imm) */
1957 	case BPF_JMP32 | BPF_JSGT | BPF_K: /* ((s32) dst > (s32) imm) */
1958 		mask = 0x2000; /* jh */
1959 		goto branch_ks;
1960 	case BPF_JMP | BPF_JSLT | BPF_K: /* ((s64) dst < (s64) imm) */
1961 	case BPF_JMP32 | BPF_JSLT | BPF_K: /* ((s32) dst < (s32) imm) */
1962 		mask = 0x4000; /* jl */
1963 		goto branch_ks;
1964 	case BPF_JMP | BPF_JSGE | BPF_K: /* ((s64) dst >= (s64) imm) */
1965 	case BPF_JMP32 | BPF_JSGE | BPF_K: /* ((s32) dst >= (s32) imm) */
1966 		mask = 0xa000; /* jhe */
1967 		goto branch_ks;
1968 	case BPF_JMP | BPF_JSLE | BPF_K: /* ((s64) dst <= (s64) imm) */
1969 	case BPF_JMP32 | BPF_JSLE | BPF_K: /* ((s32) dst <= (s32) imm) */
1970 		mask = 0xc000; /* jle */
1971 		goto branch_ks;
1972 	case BPF_JMP | BPF_JGT | BPF_K: /* (dst_reg > imm) */
1973 	case BPF_JMP32 | BPF_JGT | BPF_K: /* ((u32) dst_reg > (u32) imm) */
1974 		mask = 0x2000; /* jh */
1975 		goto branch_ku;
1976 	case BPF_JMP | BPF_JLT | BPF_K: /* (dst_reg < imm) */
1977 	case BPF_JMP32 | BPF_JLT | BPF_K: /* ((u32) dst_reg < (u32) imm) */
1978 		mask = 0x4000; /* jl */
1979 		goto branch_ku;
1980 	case BPF_JMP | BPF_JGE | BPF_K: /* (dst_reg >= imm) */
1981 	case BPF_JMP32 | BPF_JGE | BPF_K: /* ((u32) dst_reg >= (u32) imm) */
1982 		mask = 0xa000; /* jhe */
1983 		goto branch_ku;
1984 	case BPF_JMP | BPF_JLE | BPF_K: /* (dst_reg <= imm) */
1985 	case BPF_JMP32 | BPF_JLE | BPF_K: /* ((u32) dst_reg <= (u32) imm) */
1986 		mask = 0xc000; /* jle */
1987 		goto branch_ku;
1988 	case BPF_JMP | BPF_JNE | BPF_K: /* (dst_reg != imm) */
1989 	case BPF_JMP32 | BPF_JNE | BPF_K: /* ((u32) dst_reg != (u32) imm) */
1990 		mask = 0x7000; /* jne */
1991 		goto branch_ku;
1992 	case BPF_JMP | BPF_JEQ | BPF_K: /* (dst_reg == imm) */
1993 	case BPF_JMP32 | BPF_JEQ | BPF_K: /* ((u32) dst_reg == (u32) imm) */
1994 		mask = 0x8000; /* je */
1995 		goto branch_ku;
1996 	case BPF_JMP | BPF_JSET | BPF_K: /* (dst_reg & imm) */
1997 	case BPF_JMP32 | BPF_JSET | BPF_K: /* ((u32) dst_reg & (u32) imm) */
1998 		mask = 0x7000; /* jnz */
1999 		if (BPF_CLASS(insn->code) == BPF_JMP32) {
2000 			/* llilf %w1,imm (load zero extend imm) */
2001 			EMIT6_IMM(0xc00f0000, REG_W1, imm);
2002 			/* nr %w1,%dst */
2003 			EMIT2(0x1400, REG_W1, dst_reg);
2004 		} else {
2005 			/* lgfi %w1,imm (load sign extend imm) */
2006 			EMIT6_IMM(0xc0010000, REG_W1, imm);
2007 			/* ngr %w1,%dst */
2008 			EMIT4(0xb9800000, REG_W1, dst_reg);
2009 		}
2010 		goto branch_oc;
2011 
2012 	case BPF_JMP | BPF_JSGT | BPF_X: /* ((s64) dst > (s64) src) */
2013 	case BPF_JMP32 | BPF_JSGT | BPF_X: /* ((s32) dst > (s32) src) */
2014 		mask = 0x2000; /* jh */
2015 		goto branch_xs;
2016 	case BPF_JMP | BPF_JSLT | BPF_X: /* ((s64) dst < (s64) src) */
2017 	case BPF_JMP32 | BPF_JSLT | BPF_X: /* ((s32) dst < (s32) src) */
2018 		mask = 0x4000; /* jl */
2019 		goto branch_xs;
2020 	case BPF_JMP | BPF_JSGE | BPF_X: /* ((s64) dst >= (s64) src) */
2021 	case BPF_JMP32 | BPF_JSGE | BPF_X: /* ((s32) dst >= (s32) src) */
2022 		mask = 0xa000; /* jhe */
2023 		goto branch_xs;
2024 	case BPF_JMP | BPF_JSLE | BPF_X: /* ((s64) dst <= (s64) src) */
2025 	case BPF_JMP32 | BPF_JSLE | BPF_X: /* ((s32) dst <= (s32) src) */
2026 		mask = 0xc000; /* jle */
2027 		goto branch_xs;
2028 	case BPF_JMP | BPF_JGT | BPF_X: /* (dst > src) */
2029 	case BPF_JMP32 | BPF_JGT | BPF_X: /* ((u32) dst > (u32) src) */
2030 		mask = 0x2000; /* jh */
2031 		goto branch_xu;
2032 	case BPF_JMP | BPF_JLT | BPF_X: /* (dst < src) */
2033 	case BPF_JMP32 | BPF_JLT | BPF_X: /* ((u32) dst < (u32) src) */
2034 		mask = 0x4000; /* jl */
2035 		goto branch_xu;
2036 	case BPF_JMP | BPF_JGE | BPF_X: /* (dst >= src) */
2037 	case BPF_JMP32 | BPF_JGE | BPF_X: /* ((u32) dst >= (u32) src) */
2038 		mask = 0xa000; /* jhe */
2039 		goto branch_xu;
2040 	case BPF_JMP | BPF_JLE | BPF_X: /* (dst <= src) */
2041 	case BPF_JMP32 | BPF_JLE | BPF_X: /* ((u32) dst <= (u32) src) */
2042 		mask = 0xc000; /* jle */
2043 		goto branch_xu;
2044 	case BPF_JMP | BPF_JNE | BPF_X: /* (dst != src) */
2045 	case BPF_JMP32 | BPF_JNE | BPF_X: /* ((u32) dst != (u32) src) */
2046 		mask = 0x7000; /* jne */
2047 		goto branch_xu;
2048 	case BPF_JMP | BPF_JEQ | BPF_X: /* (dst == src) */
2049 	case BPF_JMP32 | BPF_JEQ | BPF_X: /* ((u32) dst == (u32) src) */
2050 		mask = 0x8000; /* je */
2051 		goto branch_xu;
2052 	case BPF_JMP | BPF_JSET | BPF_X: /* (dst & src) */
2053 	case BPF_JMP32 | BPF_JSET | BPF_X: /* ((u32) dst & (u32) src) */
2054 	{
2055 		bool is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
2056 
2057 		mask = 0x7000; /* jnz */
2058 		/* nrk or ngrk %w1,%dst,%src */
2059 		EMIT4_RRF((is_jmp32 ? 0xb9f40000 : 0xb9e40000),
2060 			  REG_W1, dst_reg, src_reg);
2061 		goto branch_oc;
2062 branch_ks:
2063 		is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
2064 		/* cfi or cgfi %dst,imm */
2065 		EMIT6_IMM(is_jmp32 ? 0xc20d0000 : 0xc20c0000,
2066 			  dst_reg, imm);
2067 		if (!is_first_pass(jit) &&
2068 		    can_use_rel(jit, addrs[i + off + 1])) {
2069 			/* brc mask,off */
2070 			EMIT4_PCREL_RIC(0xa7040000,
2071 					mask >> 12, addrs[i + off + 1]);
2072 		} else {
2073 			/* brcl mask,off */
2074 			EMIT6_PCREL_RILC(0xc0040000,
2075 					 mask >> 12, addrs[i + off + 1]);
2076 		}
2077 		break;
2078 branch_ku:
2079 		/* lgfi %w1,imm (load sign extend imm) */
2080 		src_reg = REG_1;
2081 		EMIT6_IMM(0xc0010000, src_reg, imm);
2082 		goto branch_xu;
2083 branch_xs:
2084 		is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
2085 		if (!is_first_pass(jit) &&
2086 		    can_use_rel(jit, addrs[i + off + 1])) {
2087 			/* crj or cgrj %dst,%src,mask,off */
2088 			EMIT6_PCREL(0xec000000, (is_jmp32 ? 0x0076 : 0x0064),
2089 				    dst_reg, src_reg, i, off, mask);
2090 		} else {
2091 			/* cr or cgr %dst,%src */
2092 			if (is_jmp32)
2093 				EMIT2(0x1900, dst_reg, src_reg);
2094 			else
2095 				EMIT4(0xb9200000, dst_reg, src_reg);
2096 			/* brcl mask,off */
2097 			EMIT6_PCREL_RILC(0xc0040000,
2098 					 mask >> 12, addrs[i + off + 1]);
2099 		}
2100 		break;
2101 branch_xu:
2102 		is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
2103 		if (!is_first_pass(jit) &&
2104 		    can_use_rel(jit, addrs[i + off + 1])) {
2105 			/* clrj or clgrj %dst,%src,mask,off */
2106 			EMIT6_PCREL(0xec000000, (is_jmp32 ? 0x0077 : 0x0065),
2107 				    dst_reg, src_reg, i, off, mask);
2108 		} else {
2109 			/* clr or clgr %dst,%src */
2110 			if (is_jmp32)
2111 				EMIT2(0x1500, dst_reg, src_reg);
2112 			else
2113 				EMIT4(0xb9210000, dst_reg, src_reg);
2114 			/* brcl mask,off */
2115 			EMIT6_PCREL_RILC(0xc0040000,
2116 					 mask >> 12, addrs[i + off + 1]);
2117 		}
2118 		break;
2119 branch_oc:
2120 		if (!is_first_pass(jit) &&
2121 		    can_use_rel(jit, addrs[i + branch_oc_off + 1])) {
2122 			/* brc mask,off */
2123 			EMIT4_PCREL_RIC(0xa7040000,
2124 					mask >> 12,
2125 					addrs[i + branch_oc_off + 1]);
2126 		} else {
2127 			/* brcl mask,off */
2128 			EMIT6_PCREL_RILC(0xc0040000,
2129 					 mask >> 12,
2130 					 addrs[i + branch_oc_off + 1]);
2131 		}
2132 		break;
2133 	}
2134 	default: /* too complex, give up */
2135 		pr_err("Unknown opcode %02x\n", insn->code);
2136 		return -1;
2137 	}
2138 
2139 	return insn_count;
2140 }
2141 
2142 /*
2143  * Return whether new i-th instruction address does not violate any invariant
2144  */
bpf_is_new_addr_sane(struct bpf_jit * jit,int i)2145 static bool bpf_is_new_addr_sane(struct bpf_jit *jit, int i)
2146 {
2147 	/* On the first pass anything goes */
2148 	if (is_first_pass(jit))
2149 		return true;
2150 
2151 	/* The codegen pass must not change anything */
2152 	if (is_codegen_pass(jit))
2153 		return jit->addrs[i] == jit->prg;
2154 
2155 	/* Passes in between must not increase code size */
2156 	return jit->addrs[i] >= jit->prg;
2157 }
2158 
2159 /*
2160  * Update the address of i-th instruction
2161  */
bpf_set_addr(struct bpf_jit * jit,int i)2162 static int bpf_set_addr(struct bpf_jit *jit, int i)
2163 {
2164 	int delta;
2165 
2166 	if (is_codegen_pass(jit)) {
2167 		delta = jit->prg - jit->addrs[i];
2168 		if (delta < 0)
2169 			bpf_skip(jit, -delta);
2170 	}
2171 	if (WARN_ON_ONCE(!bpf_is_new_addr_sane(jit, i)))
2172 		return -1;
2173 	jit->addrs[i] = jit->prg;
2174 	return 0;
2175 }
2176 
2177 /*
2178  * Compile eBPF program into s390x code
2179  */
bpf_jit_prog(struct bpf_jit * jit,struct bpf_prog * fp,bool extra_pass)2180 static int bpf_jit_prog(struct bpf_jit *jit, struct bpf_prog *fp,
2181 			bool extra_pass)
2182 {
2183 	int i, insn_count, lit32_size, lit64_size;
2184 	u64 kern_arena;
2185 
2186 	jit->lit32 = jit->lit32_start;
2187 	jit->lit64 = jit->lit64_start;
2188 	jit->prg = 0;
2189 	jit->excnt = 0;
2190 	if (is_first_pass(jit) || (jit->seen & SEEN_STACK))
2191 		jit->frame_off = sizeof(struct prog_frame) -
2192 				 offsetofend(struct prog_frame, unused) +
2193 				 round_up(fp->aux->stack_depth, 8);
2194 	else
2195 		jit->frame_off = 0;
2196 
2197 	kern_arena = bpf_arena_get_kern_vm_start(fp->aux->arena);
2198 	if (kern_arena)
2199 		jit->kern_arena = _EMIT_CONST_U64(kern_arena);
2200 	jit->user_arena = bpf_arena_get_user_vm_start(fp->aux->arena);
2201 
2202 	bpf_jit_prologue(jit, fp);
2203 	if (bpf_set_addr(jit, 0) < 0)
2204 		return -1;
2205 	for (i = 0; i < fp->len; i += insn_count) {
2206 		insn_count = bpf_jit_insn(jit, fp, i, extra_pass);
2207 		if (insn_count < 0)
2208 			return -1;
2209 		/* Next instruction address */
2210 		if (bpf_set_addr(jit, i + insn_count) < 0)
2211 			return -1;
2212 	}
2213 	bpf_jit_epilogue(jit);
2214 
2215 	lit32_size = jit->lit32 - jit->lit32_start;
2216 	lit64_size = jit->lit64 - jit->lit64_start;
2217 	jit->lit32_start = jit->prg;
2218 	if (lit32_size)
2219 		jit->lit32_start = ALIGN(jit->lit32_start, 4);
2220 	jit->lit64_start = jit->lit32_start + lit32_size;
2221 	if (lit64_size)
2222 		jit->lit64_start = ALIGN(jit->lit64_start, 8);
2223 	jit->size = jit->lit64_start + lit64_size;
2224 	jit->size_prg = jit->prg;
2225 
2226 	if (WARN_ON_ONCE(fp->aux->extable &&
2227 			 jit->excnt != fp->aux->num_exentries))
2228 		/* Verifier bug - too many entries. */
2229 		return -1;
2230 
2231 	return 0;
2232 }
2233 
bpf_jit_needs_zext(void)2234 bool bpf_jit_needs_zext(void)
2235 {
2236 	return true;
2237 }
2238 
2239 struct s390_jit_data {
2240 	struct bpf_binary_header *header;
2241 	struct bpf_jit ctx;
2242 	int pass;
2243 };
2244 
bpf_jit_alloc(struct bpf_jit * jit,struct bpf_prog * fp)2245 static struct bpf_binary_header *bpf_jit_alloc(struct bpf_jit *jit,
2246 					       struct bpf_prog *fp)
2247 {
2248 	struct bpf_binary_header *header;
2249 	struct bpf_insn *insn;
2250 	u32 extable_size;
2251 	u32 code_size;
2252 	int i;
2253 
2254 	for (i = 0; i < fp->len; i++) {
2255 		insn = &fp->insnsi[i];
2256 
2257 		if (BPF_CLASS(insn->code) == BPF_STX &&
2258 		    BPF_MODE(insn->code) == BPF_PROBE_ATOMIC &&
2259 		    (BPF_SIZE(insn->code) == BPF_DW ||
2260 		     BPF_SIZE(insn->code) == BPF_W) &&
2261 		    insn->imm == BPF_XCHG)
2262 			/*
2263 			 * bpf_jit_insn() emits a load and a compare-and-swap,
2264 			 * both of which need to be probed.
2265 			 */
2266 			fp->aux->num_exentries += 1;
2267 	}
2268 	/* We need two entries per insn. */
2269 	fp->aux->num_exentries *= 2;
2270 
2271 	code_size = roundup(jit->size,
2272 			    __alignof__(struct exception_table_entry));
2273 	extable_size = fp->aux->num_exentries *
2274 		sizeof(struct exception_table_entry);
2275 	header = bpf_jit_binary_alloc(code_size + extable_size, &jit->prg_buf,
2276 				      8, jit_fill_hole);
2277 	if (!header)
2278 		return NULL;
2279 	fp->aux->extable = (struct exception_table_entry *)
2280 		(jit->prg_buf + code_size);
2281 	return header;
2282 }
2283 
2284 /*
2285  * Compile eBPF program "fp"
2286  */
bpf_int_jit_compile(struct bpf_prog * fp)2287 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *fp)
2288 {
2289 	struct bpf_prog *tmp, *orig_fp = fp;
2290 	struct bpf_binary_header *header;
2291 	struct s390_jit_data *jit_data;
2292 	bool tmp_blinded = false;
2293 	bool extra_pass = false;
2294 	struct bpf_jit jit;
2295 	int pass;
2296 
2297 	if (!fp->jit_requested)
2298 		return orig_fp;
2299 
2300 	tmp = bpf_jit_blind_constants(fp);
2301 	/*
2302 	 * If blinding was requested and we failed during blinding,
2303 	 * we must fall back to the interpreter.
2304 	 */
2305 	if (IS_ERR(tmp))
2306 		return orig_fp;
2307 	if (tmp != fp) {
2308 		tmp_blinded = true;
2309 		fp = tmp;
2310 	}
2311 
2312 	jit_data = fp->aux->jit_data;
2313 	if (!jit_data) {
2314 		jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
2315 		if (!jit_data) {
2316 			fp = orig_fp;
2317 			goto out;
2318 		}
2319 		fp->aux->jit_data = jit_data;
2320 	}
2321 	if (jit_data->ctx.addrs) {
2322 		jit = jit_data->ctx;
2323 		header = jit_data->header;
2324 		extra_pass = true;
2325 		pass = jit_data->pass + 1;
2326 		goto skip_init_ctx;
2327 	}
2328 
2329 	memset(&jit, 0, sizeof(jit));
2330 	jit.addrs = kvcalloc(fp->len + 1, sizeof(*jit.addrs), GFP_KERNEL);
2331 	if (jit.addrs == NULL) {
2332 		fp = orig_fp;
2333 		goto free_addrs;
2334 	}
2335 	/*
2336 	 * Three initial passes:
2337 	 *   - 1/2: Determine clobbered registers
2338 	 *   - 3:   Calculate program size and addrs array
2339 	 */
2340 	for (pass = 1; pass <= 3; pass++) {
2341 		if (bpf_jit_prog(&jit, fp, extra_pass)) {
2342 			fp = orig_fp;
2343 			goto free_addrs;
2344 		}
2345 	}
2346 	/*
2347 	 * Final pass: Allocate and generate program
2348 	 */
2349 	header = bpf_jit_alloc(&jit, fp);
2350 	if (!header) {
2351 		fp = orig_fp;
2352 		goto free_addrs;
2353 	}
2354 skip_init_ctx:
2355 	if (bpf_jit_prog(&jit, fp, extra_pass)) {
2356 		bpf_jit_binary_free(header);
2357 		fp = orig_fp;
2358 		goto free_addrs;
2359 	}
2360 	if (bpf_jit_enable > 1) {
2361 		bpf_jit_dump(fp->len, jit.size, pass, jit.prg_buf);
2362 		print_fn_code(jit.prg_buf, jit.size_prg);
2363 	}
2364 	if (!fp->is_func || extra_pass) {
2365 		if (bpf_jit_binary_lock_ro(header)) {
2366 			bpf_jit_binary_free(header);
2367 			fp = orig_fp;
2368 			goto free_addrs;
2369 		}
2370 	} else {
2371 		jit_data->header = header;
2372 		jit_data->ctx = jit;
2373 		jit_data->pass = pass;
2374 	}
2375 	fp->bpf_func = (void *) jit.prg_buf;
2376 	fp->jited = 1;
2377 	fp->jited_len = jit.size;
2378 
2379 	if (!fp->is_func || extra_pass) {
2380 		bpf_prog_fill_jited_linfo(fp, jit.addrs + 1);
2381 free_addrs:
2382 		kvfree(jit.addrs);
2383 		kfree(jit_data);
2384 		fp->aux->jit_data = NULL;
2385 	}
2386 out:
2387 	if (tmp_blinded)
2388 		bpf_jit_prog_release_other(fp, fp == orig_fp ?
2389 					   tmp : orig_fp);
2390 	return fp;
2391 }
2392 
bpf_jit_supports_kfunc_call(void)2393 bool bpf_jit_supports_kfunc_call(void)
2394 {
2395 	return true;
2396 }
2397 
bpf_jit_supports_far_kfunc_call(void)2398 bool bpf_jit_supports_far_kfunc_call(void)
2399 {
2400 	return true;
2401 }
2402 
bpf_arch_text_poke(void * ip,enum bpf_text_poke_type t,void * old_addr,void * new_addr)2403 int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
2404 		       void *old_addr, void *new_addr)
2405 {
2406 	struct bpf_plt expected_plt, current_plt, new_plt, *plt;
2407 	struct {
2408 		u16 opc;
2409 		s32 disp;
2410 	} __packed insn;
2411 	char *ret;
2412 	int err;
2413 
2414 	/* Verify the branch to be patched. */
2415 	err = copy_from_kernel_nofault(&insn, ip, sizeof(insn));
2416 	if (err < 0)
2417 		return err;
2418 	if (insn.opc != (0xc004 | (old_addr ? 0xf0 : 0)))
2419 		return -EINVAL;
2420 
2421 	if (t == BPF_MOD_JUMP &&
2422 	    insn.disp == ((char *)new_addr - (char *)ip) >> 1) {
2423 		/*
2424 		 * The branch already points to the destination,
2425 		 * there is no PLT.
2426 		 */
2427 	} else {
2428 		/* Verify the PLT. */
2429 		plt = ip + (insn.disp << 1);
2430 		err = copy_from_kernel_nofault(&current_plt, plt,
2431 					       sizeof(current_plt));
2432 		if (err < 0)
2433 			return err;
2434 		ret = (char *)ip + 6;
2435 		bpf_jit_plt(&expected_plt, ret, old_addr);
2436 		if (memcmp(&current_plt, &expected_plt, sizeof(current_plt)))
2437 			return -EINVAL;
2438 		/* Adjust the call address. */
2439 		bpf_jit_plt(&new_plt, ret, new_addr);
2440 		s390_kernel_write(&plt->target, &new_plt.target,
2441 				  sizeof(void *));
2442 	}
2443 
2444 	/* Adjust the mask of the branch. */
2445 	insn.opc = 0xc004 | (new_addr ? 0xf0 : 0);
2446 	s390_kernel_write((char *)ip + 1, (char *)&insn.opc + 1, 1);
2447 
2448 	/* Make the new code visible to the other CPUs. */
2449 	text_poke_sync_lock();
2450 
2451 	return 0;
2452 }
2453 
2454 struct bpf_tramp_jit {
2455 	struct bpf_jit common;
2456 	int orig_stack_args_off;/* Offset of arguments placed on stack by the
2457 				 * func_addr's original caller
2458 				 */
2459 	int stack_size;		/* Trampoline stack size */
2460 	int backchain_off;	/* Offset of backchain */
2461 	int stack_args_off;	/* Offset of stack arguments for calling
2462 				 * func_addr, has to be at the top
2463 				 */
2464 	int reg_args_off;	/* Offset of register arguments for calling
2465 				 * func_addr
2466 				 */
2467 	int ip_off;		/* For bpf_get_func_ip(), has to be at
2468 				 * (ctx - 16)
2469 				 */
2470 	int arg_cnt_off;	/* For bpf_get_func_arg_cnt(), has to be at
2471 				 * (ctx - 8)
2472 				 */
2473 	int bpf_args_off;	/* Offset of BPF_PROG context, which consists
2474 				 * of BPF arguments followed by return value
2475 				 */
2476 	int retval_off;		/* Offset of return value (see above) */
2477 	int r7_r8_off;		/* Offset of saved %r7 and %r8, which are used
2478 				 * for __bpf_prog_enter() return value and
2479 				 * func_addr respectively
2480 				 */
2481 	int run_ctx_off;	/* Offset of struct bpf_tramp_run_ctx */
2482 	int tccnt_off;		/* Offset of saved tailcall counter */
2483 	int r14_off;		/* Offset of saved %r14, has to be at the
2484 				 * bottom */
2485 	int do_fexit;		/* do_fexit: label */
2486 };
2487 
load_imm64(struct bpf_jit * jit,int dst_reg,u64 val)2488 static void load_imm64(struct bpf_jit *jit, int dst_reg, u64 val)
2489 {
2490 	/* llihf %dst_reg,val_hi */
2491 	EMIT6_IMM(0xc00e0000, dst_reg, (val >> 32));
2492 	/* oilf %rdst_reg,val_lo */
2493 	EMIT6_IMM(0xc00d0000, dst_reg, val);
2494 }
2495 
invoke_bpf_prog(struct bpf_tramp_jit * tjit,const struct btf_func_model * m,struct bpf_tramp_link * tlink,bool save_ret)2496 static int invoke_bpf_prog(struct bpf_tramp_jit *tjit,
2497 			   const struct btf_func_model *m,
2498 			   struct bpf_tramp_link *tlink, bool save_ret)
2499 {
2500 	struct bpf_jit *jit = &tjit->common;
2501 	int cookie_off = tjit->run_ctx_off +
2502 			 offsetof(struct bpf_tramp_run_ctx, bpf_cookie);
2503 	struct bpf_prog *p = tlink->link.prog;
2504 	int patch;
2505 
2506 	/*
2507 	 * run_ctx.cookie = tlink->cookie;
2508 	 */
2509 
2510 	/* %r0 = tlink->cookie */
2511 	load_imm64(jit, REG_W0, tlink->cookie);
2512 	/* stg %r0,cookie_off(%r15) */
2513 	EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W0, REG_0, REG_15, cookie_off);
2514 
2515 	/*
2516 	 * if ((start = __bpf_prog_enter(p, &run_ctx)) == 0)
2517 	 *         goto skip;
2518 	 */
2519 
2520 	/* %r1 = __bpf_prog_enter */
2521 	load_imm64(jit, REG_1, (u64)bpf_trampoline_enter(p));
2522 	/* %r2 = p */
2523 	load_imm64(jit, REG_2, (u64)p);
2524 	/* la %r3,run_ctx_off(%r15) */
2525 	EMIT4_DISP(0x41000000, REG_3, REG_15, tjit->run_ctx_off);
2526 	/* %r1() */
2527 	call_r1(jit);
2528 	/* ltgr %r7,%r2 */
2529 	EMIT4(0xb9020000, REG_7, REG_2);
2530 	/* brcl 8,skip */
2531 	patch = jit->prg;
2532 	EMIT6_PCREL_RILC(0xc0040000, 8, 0);
2533 
2534 	/*
2535 	 * retval = bpf_func(args, p->insnsi);
2536 	 */
2537 
2538 	/* %r1 = p->bpf_func */
2539 	load_imm64(jit, REG_1, (u64)p->bpf_func);
2540 	/* la %r2,bpf_args_off(%r15) */
2541 	EMIT4_DISP(0x41000000, REG_2, REG_15, tjit->bpf_args_off);
2542 	/* %r3 = p->insnsi */
2543 	if (!p->jited)
2544 		load_imm64(jit, REG_3, (u64)p->insnsi);
2545 	/* %r1() */
2546 	call_r1(jit);
2547 	/* stg %r2,retval_off(%r15) */
2548 	if (save_ret) {
2549 		if (sign_extend(jit, REG_2, m->ret_size, m->ret_flags))
2550 			return -1;
2551 		EMIT6_DISP_LH(0xe3000000, 0x0024, REG_2, REG_0, REG_15,
2552 			      tjit->retval_off);
2553 	}
2554 
2555 	/* skip: */
2556 	if (jit->prg_buf)
2557 		*(u32 *)&jit->prg_buf[patch + 2] = (jit->prg - patch) >> 1;
2558 
2559 	/*
2560 	 * __bpf_prog_exit(p, start, &run_ctx);
2561 	 */
2562 
2563 	/* %r1 = __bpf_prog_exit */
2564 	load_imm64(jit, REG_1, (u64)bpf_trampoline_exit(p));
2565 	/* %r2 = p */
2566 	load_imm64(jit, REG_2, (u64)p);
2567 	/* lgr %r3,%r7 */
2568 	EMIT4(0xb9040000, REG_3, REG_7);
2569 	/* la %r4,run_ctx_off(%r15) */
2570 	EMIT4_DISP(0x41000000, REG_4, REG_15, tjit->run_ctx_off);
2571 	/* %r1() */
2572 	call_r1(jit);
2573 
2574 	return 0;
2575 }
2576 
alloc_stack(struct bpf_tramp_jit * tjit,size_t size)2577 static int alloc_stack(struct bpf_tramp_jit *tjit, size_t size)
2578 {
2579 	int stack_offset = tjit->stack_size;
2580 
2581 	tjit->stack_size += size;
2582 	return stack_offset;
2583 }
2584 
2585 /* ABI uses %r2 - %r6 for parameter passing. */
2586 #define MAX_NR_REG_ARGS 5
2587 
2588 /* The "L" field of the "mvc" instruction is 8 bits. */
2589 #define MAX_MVC_SIZE 256
2590 #define MAX_NR_STACK_ARGS (MAX_MVC_SIZE / sizeof(u64))
2591 
2592 /* -mfentry generates a 6-byte nop on s390x. */
2593 #define S390X_PATCH_SIZE 6
2594 
__arch_prepare_bpf_trampoline(struct bpf_tramp_image * im,struct bpf_tramp_jit * tjit,const struct btf_func_model * m,u32 flags,struct bpf_tramp_links * tlinks,void * func_addr)2595 static int __arch_prepare_bpf_trampoline(struct bpf_tramp_image *im,
2596 					 struct bpf_tramp_jit *tjit,
2597 					 const struct btf_func_model *m,
2598 					 u32 flags,
2599 					 struct bpf_tramp_links *tlinks,
2600 					 void *func_addr)
2601 {
2602 	struct bpf_tramp_links *fmod_ret = &tlinks[BPF_TRAMP_MODIFY_RETURN];
2603 	struct bpf_tramp_links *fentry = &tlinks[BPF_TRAMP_FENTRY];
2604 	struct bpf_tramp_links *fexit = &tlinks[BPF_TRAMP_FEXIT];
2605 	int nr_bpf_args, nr_reg_args, nr_stack_args;
2606 	struct bpf_jit *jit = &tjit->common;
2607 	int arg, bpf_arg_off;
2608 	int i, j;
2609 
2610 	/* Support as many stack arguments as "mvc" instruction can handle. */
2611 	nr_reg_args = min_t(int, m->nr_args, MAX_NR_REG_ARGS);
2612 	nr_stack_args = m->nr_args - nr_reg_args;
2613 	if (nr_stack_args > MAX_NR_STACK_ARGS)
2614 		return -ENOTSUPP;
2615 
2616 	/* Return to %r14 in the struct_ops case. */
2617 	if (flags & BPF_TRAMP_F_INDIRECT)
2618 		flags |= BPF_TRAMP_F_SKIP_FRAME;
2619 
2620 	/*
2621 	 * Compute how many arguments we need to pass to BPF programs.
2622 	 * BPF ABI mirrors that of x86_64: arguments that are 16 bytes or
2623 	 * smaller are packed into 1 or 2 registers; larger arguments are
2624 	 * passed via pointers.
2625 	 * In s390x ABI, arguments that are 8 bytes or smaller are packed into
2626 	 * a register; larger arguments are passed via pointers.
2627 	 * We need to deal with this difference.
2628 	 */
2629 	nr_bpf_args = 0;
2630 	for (i = 0; i < m->nr_args; i++) {
2631 		if (m->arg_size[i] <= 8)
2632 			nr_bpf_args += 1;
2633 		else if (m->arg_size[i] <= 16)
2634 			nr_bpf_args += 2;
2635 		else
2636 			return -ENOTSUPP;
2637 	}
2638 
2639 	/*
2640 	 * Calculate the stack layout.
2641 	 */
2642 
2643 	/*
2644 	 * Allocate STACK_FRAME_OVERHEAD bytes for the callees. As the s390x
2645 	 * ABI requires, put our backchain at the end of the allocated memory.
2646 	 */
2647 	tjit->stack_size = STACK_FRAME_OVERHEAD;
2648 	tjit->backchain_off = tjit->stack_size - sizeof(u64);
2649 	tjit->stack_args_off = alloc_stack(tjit, nr_stack_args * sizeof(u64));
2650 	tjit->reg_args_off = alloc_stack(tjit, nr_reg_args * sizeof(u64));
2651 	tjit->ip_off = alloc_stack(tjit, sizeof(u64));
2652 	tjit->arg_cnt_off = alloc_stack(tjit, sizeof(u64));
2653 	tjit->bpf_args_off = alloc_stack(tjit, nr_bpf_args * sizeof(u64));
2654 	tjit->retval_off = alloc_stack(tjit, sizeof(u64));
2655 	tjit->r7_r8_off = alloc_stack(tjit, 2 * sizeof(u64));
2656 	tjit->run_ctx_off = alloc_stack(tjit,
2657 					sizeof(struct bpf_tramp_run_ctx));
2658 	tjit->tccnt_off = alloc_stack(tjit, sizeof(u64));
2659 	tjit->r14_off = alloc_stack(tjit, sizeof(u64) * 2);
2660 	/*
2661 	 * In accordance with the s390x ABI, the caller has allocated
2662 	 * STACK_FRAME_OVERHEAD bytes for us. 8 of them contain the caller's
2663 	 * backchain, and the rest we can use.
2664 	 */
2665 	tjit->stack_size -= STACK_FRAME_OVERHEAD - sizeof(u64);
2666 	tjit->orig_stack_args_off = tjit->stack_size + STACK_FRAME_OVERHEAD;
2667 
2668 	/* lgr %r1,%r15 */
2669 	EMIT4(0xb9040000, REG_1, REG_15);
2670 	/* aghi %r15,-stack_size */
2671 	EMIT4_IMM(0xa70b0000, REG_15, -tjit->stack_size);
2672 	/* stg %r1,backchain_off(%r15) */
2673 	EMIT6_DISP_LH(0xe3000000, 0x0024, REG_1, REG_0, REG_15,
2674 		      tjit->backchain_off);
2675 	/* mvc tccnt_off(4,%r15),stack_size+tail_call_cnt(%r15) */
2676 	_EMIT6(0xd203f000 | tjit->tccnt_off,
2677 	       0xf000 | (tjit->stack_size +
2678 			 offsetof(struct prog_frame, tail_call_cnt)));
2679 	/* stmg %r2,%rN,fwd_reg_args_off(%r15) */
2680 	if (nr_reg_args)
2681 		EMIT6_DISP_LH(0xeb000000, 0x0024, REG_2,
2682 			      REG_2 + (nr_reg_args - 1), REG_15,
2683 			      tjit->reg_args_off);
2684 	for (i = 0, j = 0; i < m->nr_args; i++) {
2685 		if (i < MAX_NR_REG_ARGS)
2686 			arg = REG_2 + i;
2687 		else
2688 			arg = tjit->orig_stack_args_off +
2689 			      (i - MAX_NR_REG_ARGS) * sizeof(u64);
2690 		bpf_arg_off = tjit->bpf_args_off + j * sizeof(u64);
2691 		if (m->arg_size[i] <= 8) {
2692 			if (i < MAX_NR_REG_ARGS)
2693 				/* stg %arg,bpf_arg_off(%r15) */
2694 				EMIT6_DISP_LH(0xe3000000, 0x0024, arg,
2695 					      REG_0, REG_15, bpf_arg_off);
2696 			else
2697 				/* mvc bpf_arg_off(8,%r15),arg(%r15) */
2698 				_EMIT6(0xd207f000 | bpf_arg_off,
2699 				       0xf000 | arg);
2700 			j += 1;
2701 		} else {
2702 			if (i < MAX_NR_REG_ARGS) {
2703 				/* mvc bpf_arg_off(16,%r15),0(%arg) */
2704 				_EMIT6(0xd20ff000 | bpf_arg_off,
2705 				       reg2hex[arg] << 12);
2706 			} else {
2707 				/* lg %r1,arg(%r15) */
2708 				EMIT6_DISP_LH(0xe3000000, 0x0004, REG_1, REG_0,
2709 					      REG_15, arg);
2710 				/* mvc bpf_arg_off(16,%r15),0(%r1) */
2711 				_EMIT6(0xd20ff000 | bpf_arg_off, 0x1000);
2712 			}
2713 			j += 2;
2714 		}
2715 	}
2716 	/* stmg %r7,%r8,r7_r8_off(%r15) */
2717 	EMIT6_DISP_LH(0xeb000000, 0x0024, REG_7, REG_8, REG_15,
2718 		      tjit->r7_r8_off);
2719 	/* stg %r14,r14_off(%r15) */
2720 	EMIT6_DISP_LH(0xe3000000, 0x0024, REG_14, REG_0, REG_15, tjit->r14_off);
2721 
2722 	if (flags & BPF_TRAMP_F_ORIG_STACK) {
2723 		/*
2724 		 * The ftrace trampoline puts the return address (which is the
2725 		 * address of the original function + S390X_PATCH_SIZE) into
2726 		 * %r0; see ftrace_shared_hotpatch_trampoline_br and
2727 		 * ftrace_init_nop() for details.
2728 		 */
2729 
2730 		/* lgr %r8,%r0 */
2731 		EMIT4(0xb9040000, REG_8, REG_0);
2732 	} else {
2733 		/* %r8 = func_addr + S390X_PATCH_SIZE */
2734 		load_imm64(jit, REG_8, (u64)func_addr + S390X_PATCH_SIZE);
2735 	}
2736 
2737 	/*
2738 	 * ip = func_addr;
2739 	 * arg_cnt = m->nr_args;
2740 	 */
2741 
2742 	if (flags & BPF_TRAMP_F_IP_ARG) {
2743 		/* %r0 = func_addr */
2744 		load_imm64(jit, REG_0, (u64)func_addr);
2745 		/* stg %r0,ip_off(%r15) */
2746 		EMIT6_DISP_LH(0xe3000000, 0x0024, REG_0, REG_0, REG_15,
2747 			      tjit->ip_off);
2748 	}
2749 	/* lghi %r0,nr_bpf_args */
2750 	EMIT4_IMM(0xa7090000, REG_0, nr_bpf_args);
2751 	/* stg %r0,arg_cnt_off(%r15) */
2752 	EMIT6_DISP_LH(0xe3000000, 0x0024, REG_0, REG_0, REG_15,
2753 		      tjit->arg_cnt_off);
2754 
2755 	if (flags & BPF_TRAMP_F_CALL_ORIG) {
2756 		/*
2757 		 * __bpf_tramp_enter(im);
2758 		 */
2759 
2760 		/* %r1 = __bpf_tramp_enter */
2761 		load_imm64(jit, REG_1, (u64)__bpf_tramp_enter);
2762 		/* %r2 = im */
2763 		load_imm64(jit, REG_2, (u64)im);
2764 		/* %r1() */
2765 		call_r1(jit);
2766 	}
2767 
2768 	for (i = 0; i < fentry->nr_links; i++)
2769 		if (invoke_bpf_prog(tjit, m, fentry->links[i],
2770 				    flags & BPF_TRAMP_F_RET_FENTRY_RET))
2771 			return -EINVAL;
2772 
2773 	if (fmod_ret->nr_links) {
2774 		/*
2775 		 * retval = 0;
2776 		 */
2777 
2778 		/* xc retval_off(8,%r15),retval_off(%r15) */
2779 		_EMIT6(0xd707f000 | tjit->retval_off,
2780 		       0xf000 | tjit->retval_off);
2781 
2782 		for (i = 0; i < fmod_ret->nr_links; i++) {
2783 			if (invoke_bpf_prog(tjit, m, fmod_ret->links[i], true))
2784 				return -EINVAL;
2785 
2786 			/*
2787 			 * if (retval)
2788 			 *         goto do_fexit;
2789 			 */
2790 
2791 			/* ltg %r0,retval_off(%r15) */
2792 			EMIT6_DISP_LH(0xe3000000, 0x0002, REG_0, REG_0, REG_15,
2793 				      tjit->retval_off);
2794 			/* brcl 7,do_fexit */
2795 			EMIT6_PCREL_RILC(0xc0040000, 7, tjit->do_fexit);
2796 		}
2797 	}
2798 
2799 	if (flags & BPF_TRAMP_F_CALL_ORIG) {
2800 		/*
2801 		 * retval = func_addr(args);
2802 		 */
2803 
2804 		/* lmg %r2,%rN,reg_args_off(%r15) */
2805 		if (nr_reg_args)
2806 			EMIT6_DISP_LH(0xeb000000, 0x0004, REG_2,
2807 				      REG_2 + (nr_reg_args - 1), REG_15,
2808 				      tjit->reg_args_off);
2809 		/* mvc stack_args_off(N,%r15),orig_stack_args_off(%r15) */
2810 		if (nr_stack_args)
2811 			_EMIT6(0xd200f000 |
2812 				       (nr_stack_args * sizeof(u64) - 1) << 16 |
2813 				       tjit->stack_args_off,
2814 			       0xf000 | tjit->orig_stack_args_off);
2815 		/* mvc tail_call_cnt(4,%r15),tccnt_off(%r15) */
2816 		_EMIT6(0xd203f000 | offsetof(struct prog_frame, tail_call_cnt),
2817 		       0xf000 | tjit->tccnt_off);
2818 		/* lgr %r1,%r8 */
2819 		EMIT4(0xb9040000, REG_1, REG_8);
2820 		/* %r1() */
2821 		call_r1(jit);
2822 		/* stg %r2,retval_off(%r15) */
2823 		EMIT6_DISP_LH(0xe3000000, 0x0024, REG_2, REG_0, REG_15,
2824 			      tjit->retval_off);
2825 
2826 		im->ip_after_call = jit->prg_buf + jit->prg;
2827 
2828 		/*
2829 		 * The following nop will be patched by bpf_tramp_image_put().
2830 		 */
2831 
2832 		/* brcl 0,im->ip_epilogue */
2833 		EMIT6_PCREL_RILC(0xc0040000, 0, (u64)im->ip_epilogue);
2834 	}
2835 
2836 	/* do_fexit: */
2837 	tjit->do_fexit = jit->prg;
2838 	for (i = 0; i < fexit->nr_links; i++)
2839 		if (invoke_bpf_prog(tjit, m, fexit->links[i], false))
2840 			return -EINVAL;
2841 
2842 	if (flags & BPF_TRAMP_F_CALL_ORIG) {
2843 		im->ip_epilogue = jit->prg_buf + jit->prg;
2844 
2845 		/*
2846 		 * __bpf_tramp_exit(im);
2847 		 */
2848 
2849 		/* %r1 = __bpf_tramp_exit */
2850 		load_imm64(jit, REG_1, (u64)__bpf_tramp_exit);
2851 		/* %r2 = im */
2852 		load_imm64(jit, REG_2, (u64)im);
2853 		/* %r1() */
2854 		call_r1(jit);
2855 	}
2856 
2857 	/* lmg %r2,%rN,reg_args_off(%r15) */
2858 	if ((flags & BPF_TRAMP_F_RESTORE_REGS) && nr_reg_args)
2859 		EMIT6_DISP_LH(0xeb000000, 0x0004, REG_2,
2860 			      REG_2 + (nr_reg_args - 1), REG_15,
2861 			      tjit->reg_args_off);
2862 	/* lgr %r1,%r8 */
2863 	if (!(flags & BPF_TRAMP_F_SKIP_FRAME))
2864 		EMIT4(0xb9040000, REG_1, REG_8);
2865 	/* lmg %r7,%r8,r7_r8_off(%r15) */
2866 	EMIT6_DISP_LH(0xeb000000, 0x0004, REG_7, REG_8, REG_15,
2867 		      tjit->r7_r8_off);
2868 	/* lg %r14,r14_off(%r15) */
2869 	EMIT6_DISP_LH(0xe3000000, 0x0004, REG_14, REG_0, REG_15, tjit->r14_off);
2870 	/* lg %r2,retval_off(%r15) */
2871 	if (flags & (BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_RET_FENTRY_RET))
2872 		EMIT6_DISP_LH(0xe3000000, 0x0004, REG_2, REG_0, REG_15,
2873 			      tjit->retval_off);
2874 	/* mvc stack_size+tail_call_cnt(4,%r15),tccnt_off(%r15) */
2875 	_EMIT6(0xd203f000 | (tjit->stack_size +
2876 			     offsetof(struct prog_frame, tail_call_cnt)),
2877 	       0xf000 | tjit->tccnt_off);
2878 	/* aghi %r15,stack_size */
2879 	EMIT4_IMM(0xa70b0000, REG_15, tjit->stack_size);
2880 	if (flags & BPF_TRAMP_F_SKIP_FRAME)
2881 		EMIT_JUMP_REG(14);
2882 	else
2883 		EMIT_JUMP_REG(1);
2884 
2885 	return 0;
2886 }
2887 
arch_bpf_trampoline_size(const struct btf_func_model * m,u32 flags,struct bpf_tramp_links * tlinks,void * orig_call)2888 int arch_bpf_trampoline_size(const struct btf_func_model *m, u32 flags,
2889 			     struct bpf_tramp_links *tlinks, void *orig_call)
2890 {
2891 	struct bpf_tramp_image im;
2892 	struct bpf_tramp_jit tjit;
2893 	int ret;
2894 
2895 	memset(&tjit, 0, sizeof(tjit));
2896 
2897 	ret = __arch_prepare_bpf_trampoline(&im, &tjit, m, flags,
2898 					    tlinks, orig_call);
2899 
2900 	return ret < 0 ? ret : tjit.common.prg;
2901 }
2902 
arch_prepare_bpf_trampoline(struct bpf_tramp_image * im,void * image,void * image_end,const struct btf_func_model * m,u32 flags,struct bpf_tramp_links * tlinks,void * func_addr)2903 int arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *image,
2904 				void *image_end, const struct btf_func_model *m,
2905 				u32 flags, struct bpf_tramp_links *tlinks,
2906 				void *func_addr)
2907 {
2908 	struct bpf_tramp_jit tjit;
2909 	int ret;
2910 
2911 	/* Compute offsets, check whether the code fits. */
2912 	memset(&tjit, 0, sizeof(tjit));
2913 	ret = __arch_prepare_bpf_trampoline(im, &tjit, m, flags,
2914 					    tlinks, func_addr);
2915 
2916 	if (ret < 0)
2917 		return ret;
2918 	if (tjit.common.prg > (char *)image_end - (char *)image)
2919 		/*
2920 		 * Use the same error code as for exceeding
2921 		 * BPF_MAX_TRAMP_LINKS.
2922 		 */
2923 		return -E2BIG;
2924 
2925 	tjit.common.prg = 0;
2926 	tjit.common.prg_buf = image;
2927 	ret = __arch_prepare_bpf_trampoline(im, &tjit, m, flags,
2928 					    tlinks, func_addr);
2929 
2930 	return ret < 0 ? ret : tjit.common.prg;
2931 }
2932 
bpf_jit_supports_subprog_tailcalls(void)2933 bool bpf_jit_supports_subprog_tailcalls(void)
2934 {
2935 	return true;
2936 }
2937 
bpf_jit_supports_arena(void)2938 bool bpf_jit_supports_arena(void)
2939 {
2940 	return true;
2941 }
2942 
bpf_jit_supports_insn(struct bpf_insn * insn,bool in_arena)2943 bool bpf_jit_supports_insn(struct bpf_insn *insn, bool in_arena)
2944 {
2945 	if (!in_arena)
2946 		return true;
2947 	switch (insn->code) {
2948 	case BPF_STX | BPF_ATOMIC | BPF_B:
2949 	case BPF_STX | BPF_ATOMIC | BPF_H:
2950 	case BPF_STX | BPF_ATOMIC | BPF_W:
2951 	case BPF_STX | BPF_ATOMIC | BPF_DW:
2952 		if (bpf_atomic_is_load_store(insn))
2953 			return false;
2954 	}
2955 	return true;
2956 }
2957 
bpf_jit_supports_exceptions(void)2958 bool bpf_jit_supports_exceptions(void)
2959 {
2960 	/*
2961 	 * Exceptions require unwinding support, which is always available,
2962 	 * because the kernel is always built with backchain.
2963 	 */
2964 	return true;
2965 }
2966 
arch_bpf_stack_walk(bool (* consume_fn)(void *,u64,u64,u64),void * cookie)2967 void arch_bpf_stack_walk(bool (*consume_fn)(void *, u64, u64, u64),
2968 			 void *cookie)
2969 {
2970 	unsigned long addr, prev_addr = 0;
2971 	struct unwind_state state;
2972 
2973 	unwind_for_each_frame(&state, NULL, NULL, 0) {
2974 		addr = unwind_get_return_address(&state);
2975 		if (!addr)
2976 			break;
2977 		/*
2978 		 * addr is a return address and state.sp is the value of %r15
2979 		 * at this address. exception_cb needs %r15 at entry to the
2980 		 * function containing addr, so take the next state.sp.
2981 		 *
2982 		 * There is no bp, and the exception_cb prog does not need one
2983 		 * to perform a quasi-longjmp. The common code requires a
2984 		 * non-zero bp, so pass sp there as well.
2985 		 */
2986 		if (prev_addr && !consume_fn(cookie, prev_addr, state.sp,
2987 					     state.sp))
2988 			break;
2989 		prev_addr = addr;
2990 	}
2991 }
2992