xref: /qemu/include/hw/core/cpu.h (revision dd54fc2a6b95e067bc4c3a139a0169114dba594a)
1 /*
2  * QEMU CPU model
3  *
4  * Copyright (c) 2012 SUSE LINUX Products GmbH
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 #ifndef QEMU_CPU_H
21 #define QEMU_CPU_H
22 
23 #include "hw/qdev-core.h"
24 #include "disas/dis-asm.h"
25 #include "exec/breakpoint.h"
26 #include "exec/hwaddr.h"
27 #include "exec/vaddr.h"
28 #include "exec/memattrs.h"
29 #include "exec/mmu-access-type.h"
30 #include "exec/tlb-common.h"
31 #include "qapi/qapi-types-machine.h"
32 #include "qapi/qapi-types-run-state.h"
33 #include "qemu/bitmap.h"
34 #include "qemu/rcu_queue.h"
35 #include "qemu/queue.h"
36 #include "qemu/lockcnt.h"
37 #include "qemu/thread.h"
38 #include "qom/object.h"
39 
40 typedef int (*WriteCoreDumpFunction)(const void *buf, size_t size,
41                                      void *opaque);
42 
43 /**
44  * SECTION:cpu
45  * @section_id: QEMU-cpu
46  * @title: CPU Class
47  * @short_description: Base class for all CPUs
48  */
49 
50 #define TYPE_CPU "cpu"
51 
52 /* Since this macro is used a lot in hot code paths and in conjunction with
53  * FooCPU *foo_env_get_cpu(), we deviate from usual QOM practice by using
54  * an unchecked cast.
55  */
56 #define CPU(obj) ((CPUState *)(obj))
57 
58 /*
59  * The class checkers bring in CPU_GET_CLASS() which is potentially
60  * expensive given the eventual call to
61  * object_class_dynamic_cast_assert(). Because of this the CPUState
62  * has a cached value for the class in cs->cc which is set up in
63  * cpu_exec_realizefn() for use in hot code paths.
64  */
65 typedef struct CPUClass CPUClass;
66 DECLARE_CLASS_CHECKERS(CPUClass, CPU,
67                        TYPE_CPU)
68 
69 /**
70  * OBJECT_DECLARE_CPU_TYPE:
71  * @CpuInstanceType: instance struct name
72  * @CpuClassType: class struct name
73  * @CPU_MODULE_OBJ_NAME: the CPU name in uppercase with underscore separators
74  *
75  * This macro is typically used in "cpu-qom.h" header file, and will:
76  *
77  *   - create the typedefs for the CPU object and class structs
78  *   - register the type for use with g_autoptr
79  *   - provide three standard type cast functions
80  *
81  * The object struct and class struct need to be declared manually.
82  */
83 #define OBJECT_DECLARE_CPU_TYPE(CpuInstanceType, CpuClassType, CPU_MODULE_OBJ_NAME) \
84     typedef struct ArchCPU CpuInstanceType; \
85     OBJECT_DECLARE_TYPE(ArchCPU, CpuClassType, CPU_MODULE_OBJ_NAME);
86 
87 typedef struct CPUWatchpoint CPUWatchpoint;
88 
89 /* see physmem.c */
90 struct CPUAddressSpace;
91 
92 /* see accel/tcg/tb-jmp-cache.h */
93 struct CPUJumpCache;
94 
95 /* see accel-cpu.h */
96 struct AccelCPUClass;
97 
98 /* see sysemu-cpu-ops.h */
99 struct SysemuCPUOps;
100 
101 /**
102  * CPUClass:
103  * @class_by_name: Callback to map -cpu command line model name to an
104  *                 instantiatable CPU type.
105  * @list_cpus: list available CPU models and flags.
106  * @parse_features: Callback to parse command line arguments.
107  * @reset_dump_flags: #CPUDumpFlags to use for reset logging.
108  * @memory_rw_debug: Callback for GDB memory access.
109  * @dump_state: Callback for dumping state.
110  * @query_cpu_fast:
111  *       Fill in target specific information for the "query-cpus-fast"
112  *       QAPI call.
113  * @get_arch_id: Callback for getting architecture-dependent CPU ID.
114  * @set_pc: Callback for setting the Program Counter register. This
115  *       should have the semantics used by the target architecture when
116  *       setting the PC from a source such as an ELF file entry point;
117  *       for example on Arm it will also set the Thumb mode bit based
118  *       on the least significant bit of the new PC value.
119  *       If the target behaviour here is anything other than "set
120  *       the PC register to the value passed in" then the target must
121  *       also implement the synchronize_from_tb hook.
122  * @get_pc: Callback for getting the Program Counter register.
123  *       As above, with the semantics of the target architecture.
124  * @gdb_read_register: Callback for letting GDB read a register.
125  *                     No more than @gdb_num_core_regs registers can be read.
126  * @gdb_write_register: Callback for letting GDB write a register.
127  *                     No more than @gdb_num_core_regs registers can be written.
128  * @gdb_adjust_breakpoint: Callback for adjusting the address of a
129  *       breakpoint.  Used by AVR to handle a gdb mis-feature with
130  *       its Harvard architecture split code and data.
131  * @gdb_num_core_regs: Number of core registers accessible to GDB or 0 to infer
132  *                     from @gdb_core_xml_file.
133  * @gdb_core_xml_file: File name for core registers GDB XML description.
134  * @gdb_get_core_xml_file: Optional callback that returns the file name for
135  * the core registers GDB XML description. The returned value is expected to
136  * be a simple constant string: the caller will not g_free() it. If this
137  * is NULL then @gdb_core_xml_file will be used instead.
138  * @gdb_stop_before_watchpoint: Indicates whether GDB expects the CPU to stop
139  *           before the insn which triggers a watchpoint rather than after it.
140  * @gdb_arch_name: Optional callback that returns the architecture name known
141  * to GDB. The returned value is expected to be a simple constant string:
142  * the caller will not g_free() it.
143  * @disas_set_info: Setup architecture specific components of disassembly info
144  * @adjust_watchpoint_address: Perform a target-specific adjustment to an
145  * address before attempting to match it against watchpoints.
146  * @deprecation_note: If this CPUClass is deprecated, this field provides
147  *                    related information.
148  *
149  * Represents a CPU family or model.
150  */
151 struct CPUClass {
152     /*< private >*/
153     DeviceClass parent_class;
154     /*< public >*/
155 
156     ObjectClass *(*class_by_name)(const char *cpu_model);
157     void (*list_cpus)(void);
158     void (*parse_features)(const char *typename, char *str, Error **errp);
159 
160     int (*memory_rw_debug)(CPUState *cpu, vaddr addr,
161                            uint8_t *buf, size_t len, bool is_write);
162     void (*dump_state)(CPUState *cpu, FILE *, int flags);
163     void (*query_cpu_fast)(CPUState *cpu, CpuInfoFast *value);
164     int64_t (*get_arch_id)(CPUState *cpu);
165     void (*set_pc)(CPUState *cpu, vaddr value);
166     vaddr (*get_pc)(CPUState *cpu);
167     int (*gdb_read_register)(CPUState *cpu, GByteArray *buf, int reg);
168     int (*gdb_write_register)(CPUState *cpu, uint8_t *buf, int reg);
169     vaddr (*gdb_adjust_breakpoint)(CPUState *cpu, vaddr addr);
170 
171     const char *gdb_core_xml_file;
172     const gchar * (*gdb_arch_name)(CPUState *cpu);
173     const char * (*gdb_get_core_xml_file)(CPUState *cpu);
174 
175     void (*disas_set_info)(CPUState *cpu, disassemble_info *info);
176 
177     const char *deprecation_note;
178     struct AccelCPUClass *accel_cpu;
179 
180     /* when system emulation is not available, this pointer is NULL */
181     const struct SysemuCPUOps *sysemu_ops;
182 
183     /* when TCG is not available, this pointer is NULL */
184     const TCGCPUOps *tcg_ops;
185 
186     /*
187      * if not NULL, this is called in order for the CPUClass to initialize
188      * class data that depends on the accelerator, see accel/accel-common.c.
189      */
190     void (*init_accel_cpu)(struct AccelCPUClass *accel_cpu, CPUClass *cc);
191 
192     /*
193      * Keep non-pointer data at the end to minimize holes.
194      */
195     int reset_dump_flags;
196     int gdb_num_core_regs;
197     bool gdb_stop_before_watchpoint;
198 };
199 
200 /*
201  * Fix the number of mmu modes to 16, which is also the maximum
202  * supported by the softmmu tlb api.
203  */
204 #define NB_MMU_MODES 16
205 
206 /* Use a fully associative victim tlb of 8 entries. */
207 #define CPU_VTLB_SIZE 8
208 
209 /*
210  * The full TLB entry, which is not accessed by generated TCG code,
211  * so the layout is not as critical as that of CPUTLBEntry. This is
212  * also why we don't want to combine the two structs.
213  */
214 struct CPUTLBEntryFull {
215     /*
216      * @xlat_section contains:
217      *  - in the lower TARGET_PAGE_BITS, a physical section number
218      *  - with the lower TARGET_PAGE_BITS masked off, an offset which
219      *    must be added to the virtual address to obtain:
220      *     + the ram_addr_t of the target RAM (if the physical section
221      *       number is PHYS_SECTION_NOTDIRTY or PHYS_SECTION_ROM)
222      *     + the offset within the target MemoryRegion (otherwise)
223      */
224     hwaddr xlat_section;
225 
226     /*
227      * @phys_addr contains the physical address in the address space
228      * given by cpu_asidx_from_attrs(cpu, @attrs).
229      */
230     hwaddr phys_addr;
231 
232     /* @attrs contains the memory transaction attributes for the page. */
233     MemTxAttrs attrs;
234 
235     /* @prot contains the complete protections for the page. */
236     uint8_t prot;
237 
238     /* @lg_page_size contains the log2 of the page size. */
239     uint8_t lg_page_size;
240 
241     /* Additional tlb flags requested by tlb_fill. */
242     uint8_t tlb_fill_flags;
243 
244     /*
245      * Additional tlb flags for use by the slow path. If non-zero,
246      * the corresponding CPUTLBEntry comparator must have TLB_FORCE_SLOW.
247      */
248     uint8_t slow_flags[MMU_ACCESS_COUNT];
249 
250     /*
251      * Allow target-specific additions to this structure.
252      * This may be used to cache items from the guest cpu
253      * page tables for later use by the implementation.
254      */
255     union {
256         /*
257          * Cache the attrs and shareability fields from the page table entry.
258          *
259          * For ARMMMUIdx_Stage2*, pte_attrs is the S2 descriptor bits [5:2].
260          * Otherwise, pte_attrs is the same as the MAIR_EL1 8-bit format.
261          * For shareability and guarded, as in the SH and GP fields respectively
262          * of the VMSAv8-64 PTEs.
263          */
264         struct {
265             uint8_t pte_attrs;
266             uint8_t shareability;
267             bool guarded;
268         } arm;
269     } extra;
270 };
271 
272 /*
273  * Data elements that are per MMU mode, minus the bits accessed by
274  * the TCG fast path.
275  */
276 typedef struct CPUTLBDesc {
277     /*
278      * Describe a region covering all of the large pages allocated
279      * into the tlb.  When any page within this region is flushed,
280      * we must flush the entire tlb.  The region is matched if
281      * (addr & large_page_mask) == large_page_addr.
282      */
283     vaddr large_page_addr;
284     vaddr large_page_mask;
285     /* host time (in ns) at the beginning of the time window */
286     int64_t window_begin_ns;
287     /* maximum number of entries observed in the window */
288     size_t window_max_entries;
289     size_t n_used_entries;
290     /* The next index to use in the tlb victim table.  */
291     size_t vindex;
292     /* The tlb victim table, in two parts.  */
293     CPUTLBEntry vtable[CPU_VTLB_SIZE];
294     CPUTLBEntryFull vfulltlb[CPU_VTLB_SIZE];
295     CPUTLBEntryFull *fulltlb;
296 } CPUTLBDesc;
297 
298 /*
299  * Data elements that are shared between all MMU modes.
300  */
301 typedef struct CPUTLBCommon {
302     /* Serialize updates to f.table and d.vtable, and others as noted. */
303     QemuSpin lock;
304     /*
305      * Within dirty, for each bit N, modifications have been made to
306      * mmu_idx N since the last time that mmu_idx was flushed.
307      * Protected by tlb_c.lock.
308      */
309     uint16_t dirty;
310     /*
311      * Statistics.  These are not lock protected, but are read and
312      * written atomically.  This allows the monitor to print a snapshot
313      * of the stats without interfering with the cpu.
314      */
315     size_t full_flush_count;
316     size_t part_flush_count;
317     size_t elide_flush_count;
318 } CPUTLBCommon;
319 
320 /*
321  * The entire softmmu tlb, for all MMU modes.
322  * The meaning of each of the MMU modes is defined in the target code.
323  * Since this is placed within CPUNegativeOffsetState, the smallest
324  * negative offsets are at the end of the struct.
325  */
326 typedef struct CPUTLB {
327 #ifdef CONFIG_TCG
328     CPUTLBCommon c;
329     CPUTLBDesc d[NB_MMU_MODES];
330     CPUTLBDescFast f[NB_MMU_MODES];
331 #endif
332 } CPUTLB;
333 
334 /*
335  * Low 16 bits: number of cycles left, used only in icount mode.
336  * High 16 bits: Set to -1 to force TCG to stop executing linked TBs
337  * for this CPU and return to its top level loop (even in non-icount mode).
338  * This allows a single read-compare-cbranch-write sequence to test
339  * for both decrementer underflow and exceptions.
340  */
341 typedef union IcountDecr {
342     uint32_t u32;
343     struct {
344 #if HOST_BIG_ENDIAN
345         uint16_t high;
346         uint16_t low;
347 #else
348         uint16_t low;
349         uint16_t high;
350 #endif
351     } u16;
352 } IcountDecr;
353 
354 /**
355  * CPUNegativeOffsetState: Elements of CPUState most efficiently accessed
356  *                         from CPUArchState, via small negative offsets.
357  * @can_do_io: True if memory-mapped IO is allowed.
358  * @plugin_mem_cbs: active plugin memory callbacks
359  * @plugin_mem_value_low: 64 lower bits of latest accessed mem value.
360  * @plugin_mem_value_high: 64 higher bits of latest accessed mem value.
361  */
362 typedef struct CPUNegativeOffsetState {
363     CPUTLB tlb;
364 #ifdef CONFIG_PLUGIN
365     /*
366      * The callback pointer are accessed via TCG (see gen_empty_mem_helper).
367      */
368     GArray *plugin_mem_cbs;
369     uint64_t plugin_mem_value_low;
370     uint64_t plugin_mem_value_high;
371 #endif
372     IcountDecr icount_decr;
373     bool can_do_io;
374 } CPUNegativeOffsetState;
375 
376 struct KVMState;
377 struct kvm_run;
378 
379 /* work queue */
380 
381 /* The union type allows passing of 64 bit target pointers on 32 bit
382  * hosts in a single parameter
383  */
384 typedef union {
385     int           host_int;
386     unsigned long host_ulong;
387     void         *host_ptr;
388     vaddr         target_ptr;
389 } run_on_cpu_data;
390 
391 #define RUN_ON_CPU_HOST_PTR(p)    ((run_on_cpu_data){.host_ptr = (p)})
392 #define RUN_ON_CPU_HOST_INT(i)    ((run_on_cpu_data){.host_int = (i)})
393 #define RUN_ON_CPU_HOST_ULONG(ul) ((run_on_cpu_data){.host_ulong = (ul)})
394 #define RUN_ON_CPU_TARGET_PTR(v)  ((run_on_cpu_data){.target_ptr = (v)})
395 #define RUN_ON_CPU_NULL           RUN_ON_CPU_HOST_PTR(NULL)
396 
397 typedef void (*run_on_cpu_func)(CPUState *cpu, run_on_cpu_data data);
398 
399 struct qemu_work_item;
400 
401 #define CPU_UNSET_NUMA_NODE_ID -1
402 
403 /**
404  * struct CPUState - common state of one CPU core or thread.
405  *
406  * @cpu_index: CPU index (informative).
407  * @cluster_index: Identifies which cluster this CPU is in.
408  *   For boards which don't define clusters or for "loose" CPUs not assigned
409  *   to a cluster this will be UNASSIGNED_CLUSTER_INDEX; otherwise it will
410  *   be the same as the cluster-id property of the CPU object's TYPE_CPU_CLUSTER
411  *   QOM parent.
412  *   Under TCG this value is propagated to @tcg_cflags.
413  *   See TranslationBlock::TCG CF_CLUSTER_MASK.
414  * @tcg_cflags: Pre-computed cflags for this cpu.
415  * @nr_threads: Number of threads within this CPU core.
416  * @thread: Host thread details, only live once @created is #true
417  * @sem: WIN32 only semaphore used only for qtest
418  * @thread_id: native thread id of vCPU, only live once @created is #true
419  * @running: #true if CPU is currently running (lockless).
420  * @has_waiter: #true if a CPU is currently waiting for the cpu_exec_end;
421  * valid under cpu_list_lock.
422  * @created: Indicates whether the CPU thread has been successfully created.
423  * @halt_cond: condition variable sleeping threads can wait on.
424  * @interrupt_request: Indicates a pending interrupt request.
425  * @halted: Nonzero if the CPU is in suspended state.
426  * @stop: Indicates a pending stop request.
427  * @stopped: Indicates the CPU has been artificially stopped.
428  * @unplug: Indicates a pending CPU unplug request.
429  * @crash_occurred: Indicates the OS reported a crash (panic) for this CPU
430  * @singlestep_enabled: Flags for single-stepping.
431  * @icount_extra: Instructions until next timer event.
432  * @cpu_ases: Pointer to array of CPUAddressSpaces (which define the
433  *            AddressSpaces this CPU has)
434  * @num_ases: number of CPUAddressSpaces in @cpu_ases
435  * @as: Pointer to the first AddressSpace, for the convenience of targets which
436  *      only have a single AddressSpace
437  * @gdb_regs: Additional GDB registers.
438  * @gdb_num_regs: Number of total registers accessible to GDB.
439  * @gdb_num_g_regs: Number of registers in GDB 'g' packets.
440  * @node: QTAILQ of CPUs sharing TB cache.
441  * @opaque: User data.
442  * @mem_io_pc: Host Program Counter at which the memory was accessed.
443  * @accel: Pointer to accelerator specific state.
444  * @kvm_fd: vCPU file descriptor for KVM.
445  * @work_mutex: Lock to prevent multiple access to @work_list.
446  * @work_list: List of pending asynchronous work.
447  * @plugin_state: per-CPU plugin state
448  * @ignore_memory_transaction_failures: Cached copy of the MachineState
449  *    flag of the same name: allows the board to suppress calling of the
450  *    CPU do_transaction_failed hook function.
451  * @kvm_dirty_gfns: Points to the KVM dirty ring for this CPU when KVM dirty
452  *    ring is enabled.
453  * @kvm_fetch_index: Keeps the index that we last fetched from the per-vCPU
454  *    dirty ring structure.
455  *
456  * @neg_align: The CPUState is the common part of a concrete ArchCPU
457  * which is allocated when an individual CPU instance is created. As
458  * such care is taken is ensure there is no gap between between
459  * CPUState and CPUArchState within ArchCPU.
460  *
461  * @neg: The architectural register state ("cpu_env") immediately follows
462  * CPUState in ArchCPU and is passed to TCG code. The @neg structure holds
463  * some common TCG CPU variables which are accessed with a negative offset
464  * from cpu_env.
465  */
466 struct CPUState {
467     /*< private >*/
468     DeviceState parent_obj;
469     /* cache to avoid expensive CPU_GET_CLASS */
470     CPUClass *cc;
471     /*< public >*/
472 
473     int nr_threads;
474 
475     struct QemuThread *thread;
476 #ifdef _WIN32
477     QemuSemaphore sem;
478 #endif
479     int thread_id;
480     bool running, has_waiter;
481     struct QemuCond *halt_cond;
482     bool thread_kicked;
483     bool created;
484     bool stop;
485     bool stopped;
486 
487     /* Should CPU start in powered-off state? */
488     bool start_powered_off;
489 
490     bool unplug;
491     bool crash_occurred;
492     bool exit_request;
493     int exclusive_context_count;
494     uint32_t cflags_next_tb;
495     /* updates protected by BQL */
496     uint32_t interrupt_request;
497     int singlestep_enabled;
498     int64_t icount_budget;
499     int64_t icount_extra;
500     uint64_t random_seed;
501     sigjmp_buf jmp_env;
502 
503     QemuMutex work_mutex;
504     QSIMPLEQ_HEAD(, qemu_work_item) work_list;
505 
506     struct CPUAddressSpace *cpu_ases;
507     int cpu_ases_count;
508     int num_ases;
509     AddressSpace *as;
510     MemoryRegion *memory;
511 
512     struct CPUJumpCache *tb_jmp_cache;
513 
514     GArray *gdb_regs;
515     int gdb_num_regs;
516     int gdb_num_g_regs;
517     QTAILQ_ENTRY(CPUState) node;
518 
519     /* ice debug support */
520     QTAILQ_HEAD(, CPUBreakpoint) breakpoints;
521 
522     QTAILQ_HEAD(, CPUWatchpoint) watchpoints;
523     CPUWatchpoint *watchpoint_hit;
524 
525     void *opaque;
526 
527     /* In order to avoid passing too many arguments to the MMIO helpers,
528      * we store some rarely used information in the CPU context.
529      */
530     uintptr_t mem_io_pc;
531 
532     /* Only used in KVM */
533     int kvm_fd;
534     struct KVMState *kvm_state;
535     struct kvm_run *kvm_run;
536     struct kvm_dirty_gfn *kvm_dirty_gfns;
537     uint32_t kvm_fetch_index;
538     uint64_t dirty_pages;
539     int kvm_vcpu_stats_fd;
540     bool vcpu_dirty;
541 
542     /* Use by accel-block: CPU is executing an ioctl() */
543     QemuLockCnt in_ioctl_lock;
544 
545 #ifdef CONFIG_PLUGIN
546     CPUPluginState *plugin_state;
547 #endif
548 
549     /* TODO Move common fields from CPUArchState here. */
550     int cpu_index;
551     int cluster_index;
552     uint32_t tcg_cflags;
553     uint32_t halted;
554     int32_t exception_index;
555 
556     AccelCPUState *accel;
557 
558     /* Used to keep track of an outstanding cpu throttle thread for migration
559      * autoconverge
560      */
561     bool throttle_thread_scheduled;
562 
563     /*
564      * Sleep throttle_us_per_full microseconds once dirty ring is full
565      * if dirty page rate limit is enabled.
566      */
567     int64_t throttle_us_per_full;
568 
569     bool ignore_memory_transaction_failures;
570 
571     /* Used for user-only emulation of prctl(PR_SET_UNALIGN). */
572     bool prctl_unalign_sigbus;
573 
574     /* track IOMMUs whose translations we've cached in the TCG TLB */
575     GArray *iommu_notifiers;
576 
577     /*
578      * MUST BE LAST in order to minimize the displacement to CPUArchState.
579      */
580     char neg_align[-sizeof(CPUNegativeOffsetState) % 16] QEMU_ALIGNED(16);
581     CPUNegativeOffsetState neg;
582 };
583 
584 /* Validate placement of CPUNegativeOffsetState. */
585 QEMU_BUILD_BUG_ON(offsetof(CPUState, neg) !=
586                   sizeof(CPUState) - sizeof(CPUNegativeOffsetState));
587 
cpu_env(CPUState * cpu)588 static inline CPUArchState *cpu_env(CPUState *cpu)
589 {
590     /* We validate that CPUArchState follows CPUState in cpu-target.c */
591     return (CPUArchState *)(cpu + 1);
592 }
593 
594 typedef QTAILQ_HEAD(CPUTailQ, CPUState) CPUTailQ;
595 extern CPUTailQ cpus_queue;
596 
597 #define first_cpu        QTAILQ_FIRST_RCU(&cpus_queue)
598 #define CPU_NEXT(cpu)    QTAILQ_NEXT_RCU(cpu, node)
599 #define CPU_FOREACH(cpu) QTAILQ_FOREACH_RCU(cpu, &cpus_queue, node)
600 #define CPU_FOREACH_SAFE(cpu, next_cpu) \
601     QTAILQ_FOREACH_SAFE_RCU(cpu, &cpus_queue, node, next_cpu)
602 
603 extern __thread CPUState *current_cpu;
604 
605 /**
606  * cpu_paging_enabled:
607  * @cpu: The CPU whose state is to be inspected.
608  *
609  * Returns: %true if paging is enabled, %false otherwise.
610  */
611 bool cpu_paging_enabled(const CPUState *cpu);
612 
613 /**
614  * cpu_get_memory_mapping:
615  * @cpu: The CPU whose memory mappings are to be obtained.
616  * @list: Where to write the memory mappings to.
617  * @errp: Pointer for reporting an #Error.
618  *
619  * Returns: %true on success, %false otherwise.
620  */
621 bool cpu_get_memory_mapping(CPUState *cpu, MemoryMappingList *list,
622                             Error **errp);
623 
624 /**
625  * cpu_write_elf64_note:
626  * @f: pointer to a function that writes memory to a file
627  * @cpu: The CPU whose memory is to be dumped
628  * @cpuid: ID number of the CPU
629  * @opaque: pointer to the CPUState struct
630  */
631 int cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cpu,
632                          int cpuid, void *opaque);
633 
634 /**
635  * cpu_write_elf64_qemunote:
636  * @f: pointer to a function that writes memory to a file
637  * @cpu: The CPU whose memory is to be dumped
638  * @cpuid: ID number of the CPU
639  * @opaque: pointer to the CPUState struct
640  */
641 int cpu_write_elf64_qemunote(WriteCoreDumpFunction f, CPUState *cpu,
642                              void *opaque);
643 
644 /**
645  * cpu_write_elf32_note:
646  * @f: pointer to a function that writes memory to a file
647  * @cpu: The CPU whose memory is to be dumped
648  * @cpuid: ID number of the CPU
649  * @opaque: pointer to the CPUState struct
650  */
651 int cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cpu,
652                          int cpuid, void *opaque);
653 
654 /**
655  * cpu_write_elf32_qemunote:
656  * @f: pointer to a function that writes memory to a file
657  * @cpu: The CPU whose memory is to be dumped
658  * @cpuid: ID number of the CPU
659  * @opaque: pointer to the CPUState struct
660  */
661 int cpu_write_elf32_qemunote(WriteCoreDumpFunction f, CPUState *cpu,
662                              void *opaque);
663 
664 /**
665  * cpu_get_crash_info:
666  * @cpu: The CPU to get crash information for
667  *
668  * Gets the previously saved crash information.
669  * Caller is responsible for freeing the data.
670  */
671 GuestPanicInformation *cpu_get_crash_info(CPUState *cpu);
672 
673 /**
674  * CPUDumpFlags:
675  * @CPU_DUMP_CODE:
676  * @CPU_DUMP_FPU: dump FPU register state, not just integer
677  * @CPU_DUMP_CCOP: dump info about TCG QEMU's condition code optimization state
678  * @CPU_DUMP_VPU: dump VPU registers
679  */
680 enum CPUDumpFlags {
681     CPU_DUMP_CODE = 0x00010000,
682     CPU_DUMP_FPU  = 0x00020000,
683     CPU_DUMP_CCOP = 0x00040000,
684     CPU_DUMP_VPU  = 0x00080000,
685 };
686 
687 /**
688  * cpu_dump_state:
689  * @cpu: The CPU whose state is to be dumped.
690  * @f: If non-null, dump to this stream, else to current print sink.
691  *
692  * Dumps CPU state.
693  */
694 void cpu_dump_state(CPUState *cpu, FILE *f, int flags);
695 
696 /**
697  * cpu_get_phys_page_attrs_debug:
698  * @cpu: The CPU to obtain the physical page address for.
699  * @addr: The virtual address.
700  * @attrs: Updated on return with the memory transaction attributes to use
701  *         for this access.
702  *
703  * Obtains the physical page corresponding to a virtual one, together
704  * with the corresponding memory transaction attributes to use for the access.
705  * Use it only for debugging because no protection checks are done.
706  *
707  * Returns: Corresponding physical page address or -1 if no page found.
708  */
709 hwaddr cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
710                                      MemTxAttrs *attrs);
711 
712 /**
713  * cpu_get_phys_page_debug:
714  * @cpu: The CPU to obtain the physical page address for.
715  * @addr: The virtual address.
716  *
717  * Obtains the physical page corresponding to a virtual one.
718  * Use it only for debugging because no protection checks are done.
719  *
720  * Returns: Corresponding physical page address or -1 if no page found.
721  */
722 hwaddr cpu_get_phys_page_debug(CPUState *cpu, vaddr addr);
723 
724 /** cpu_asidx_from_attrs:
725  * @cpu: CPU
726  * @attrs: memory transaction attributes
727  *
728  * Returns the address space index specifying the CPU AddressSpace
729  * to use for a memory access with the given transaction attributes.
730  */
731 int cpu_asidx_from_attrs(CPUState *cpu, MemTxAttrs attrs);
732 
733 /**
734  * cpu_virtio_is_big_endian:
735  * @cpu: CPU
736 
737  * Returns %true if a CPU which supports runtime configurable endianness
738  * is currently big-endian.
739  */
740 bool cpu_virtio_is_big_endian(CPUState *cpu);
741 
742 /**
743  * cpu_has_work:
744  * @cpu: The vCPU to check.
745  *
746  * Checks whether the CPU has work to do.
747  *
748  * Returns: %true if the CPU has work, %false otherwise.
749  */
750 bool cpu_has_work(CPUState *cpu);
751 
752 /**
753  * cpu_list_add:
754  * @cpu: The CPU to be added to the list of CPUs.
755  */
756 void cpu_list_add(CPUState *cpu);
757 
758 /**
759  * cpu_list_remove:
760  * @cpu: The CPU to be removed from the list of CPUs.
761  */
762 void cpu_list_remove(CPUState *cpu);
763 
764 /**
765  * cpu_reset:
766  * @cpu: The CPU whose state is to be reset.
767  */
768 void cpu_reset(CPUState *cpu);
769 
770 /**
771  * cpu_class_by_name:
772  * @typename: The CPU base type.
773  * @cpu_model: The model string without any parameters.
774  *
775  * Looks up a concrete CPU #ObjectClass matching name @cpu_model.
776  *
777  * Returns: A concrete #CPUClass or %NULL if no matching class is found
778  *          or if the matching class is abstract.
779  */
780 ObjectClass *cpu_class_by_name(const char *typename, const char *cpu_model);
781 
782 /**
783  * cpu_model_from_type:
784  * @typename: The CPU type name
785  *
786  * Extract the CPU model name from the CPU type name. The
787  * CPU type name is either the combination of the CPU model
788  * name and suffix, or same to the CPU model name.
789  *
790  * Returns: CPU model name or NULL if the CPU class doesn't exist
791  *          The user should g_free() the string once no longer needed.
792  */
793 char *cpu_model_from_type(const char *typename);
794 
795 /**
796  * cpu_create:
797  * @typename: The CPU type.
798  *
799  * Instantiates a CPU and realizes the CPU.
800  *
801  * Returns: A #CPUState or %NULL if an error occurred.
802  */
803 CPUState *cpu_create(const char *typename);
804 
805 /**
806  * parse_cpu_option:
807  * @cpu_option: The -cpu option including optional parameters.
808  *
809  * processes optional parameters and registers them as global properties
810  *
811  * Returns: type of CPU to create or prints error and terminates process
812  *          if an error occurred.
813  */
814 const char *parse_cpu_option(const char *cpu_option);
815 
816 /**
817  * qemu_cpu_is_self:
818  * @cpu: The vCPU to check against.
819  *
820  * Checks whether the caller is executing on the vCPU thread.
821  *
822  * Returns: %true if called from @cpu's thread, %false otherwise.
823  */
824 bool qemu_cpu_is_self(CPUState *cpu);
825 
826 /**
827  * qemu_cpu_kick:
828  * @cpu: The vCPU to kick.
829  *
830  * Kicks @cpu's thread.
831  */
832 void qemu_cpu_kick(CPUState *cpu);
833 
834 /**
835  * cpu_is_stopped:
836  * @cpu: The CPU to check.
837  *
838  * Checks whether the CPU is stopped.
839  *
840  * Returns: %true if run state is not running or if artificially stopped;
841  * %false otherwise.
842  */
843 bool cpu_is_stopped(CPUState *cpu);
844 
845 /**
846  * do_run_on_cpu:
847  * @cpu: The vCPU to run on.
848  * @func: The function to be executed.
849  * @data: Data to pass to the function.
850  * @mutex: Mutex to release while waiting for @func to run.
851  *
852  * Used internally in the implementation of run_on_cpu.
853  */
854 void do_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data,
855                    QemuMutex *mutex);
856 
857 /**
858  * run_on_cpu:
859  * @cpu: The vCPU to run on.
860  * @func: The function to be executed.
861  * @data: Data to pass to the function.
862  *
863  * Schedules the function @func for execution on the vCPU @cpu.
864  */
865 void run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
866 
867 /**
868  * async_run_on_cpu:
869  * @cpu: The vCPU to run on.
870  * @func: The function to be executed.
871  * @data: Data to pass to the function.
872  *
873  * Schedules the function @func for execution on the vCPU @cpu asynchronously.
874  */
875 void async_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
876 
877 /**
878  * async_safe_run_on_cpu:
879  * @cpu: The vCPU to run on.
880  * @func: The function to be executed.
881  * @data: Data to pass to the function.
882  *
883  * Schedules the function @func for execution on the vCPU @cpu asynchronously,
884  * while all other vCPUs are sleeping.
885  *
886  * Unlike run_on_cpu and async_run_on_cpu, the function is run outside the
887  * BQL.
888  */
889 void async_safe_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
890 
891 /**
892  * cpu_in_exclusive_context()
893  * @cpu: The vCPU to check
894  *
895  * Returns true if @cpu is an exclusive context, for example running
896  * something which has previously been queued via async_safe_run_on_cpu().
897  */
cpu_in_exclusive_context(const CPUState * cpu)898 static inline bool cpu_in_exclusive_context(const CPUState *cpu)
899 {
900     return cpu->exclusive_context_count;
901 }
902 
903 /**
904  * qemu_get_cpu:
905  * @index: The CPUState@cpu_index value of the CPU to obtain.
906  *
907  * Gets a CPU matching @index.
908  *
909  * Returns: The CPU or %NULL if there is no matching CPU.
910  */
911 CPUState *qemu_get_cpu(int index);
912 
913 /**
914  * cpu_exists:
915  * @id: Guest-exposed CPU ID to lookup.
916  *
917  * Search for CPU with specified ID.
918  *
919  * Returns: %true - CPU is found, %false - CPU isn't found.
920  */
921 bool cpu_exists(int64_t id);
922 
923 /**
924  * cpu_by_arch_id:
925  * @id: Guest-exposed CPU ID of the CPU to obtain.
926  *
927  * Get a CPU with matching @id.
928  *
929  * Returns: The CPU or %NULL if there is no matching CPU.
930  */
931 CPUState *cpu_by_arch_id(int64_t id);
932 
933 /**
934  * cpu_interrupt:
935  * @cpu: The CPU to set an interrupt on.
936  * @mask: The interrupts to set.
937  *
938  * Invokes the interrupt handler.
939  */
940 
941 void cpu_interrupt(CPUState *cpu, int mask);
942 
943 /**
944  * cpu_set_pc:
945  * @cpu: The CPU to set the program counter for.
946  * @addr: Program counter value.
947  *
948  * Sets the program counter for a CPU.
949  */
cpu_set_pc(CPUState * cpu,vaddr addr)950 static inline void cpu_set_pc(CPUState *cpu, vaddr addr)
951 {
952     cpu->cc->set_pc(cpu, addr);
953 }
954 
955 /**
956  * cpu_reset_interrupt:
957  * @cpu: The CPU to clear the interrupt on.
958  * @mask: The interrupt mask to clear.
959  *
960  * Resets interrupts on the vCPU @cpu.
961  */
962 void cpu_reset_interrupt(CPUState *cpu, int mask);
963 
964 /**
965  * cpu_exit:
966  * @cpu: The CPU to exit.
967  *
968  * Requests the CPU @cpu to exit execution.
969  */
970 void cpu_exit(CPUState *cpu);
971 
972 /**
973  * cpu_pause:
974  * @cpu: The CPU to pause.
975  *
976  * Pauses CPU, i.e. puts CPU into stopped state.
977  */
978 void cpu_pause(CPUState *cpu);
979 
980 /**
981  * cpu_resume:
982  * @cpu: The CPU to resume.
983  *
984  * Resumes CPU, i.e. puts CPU into runnable state.
985  */
986 void cpu_resume(CPUState *cpu);
987 
988 /**
989  * cpu_remove_sync:
990  * @cpu: The CPU to remove.
991  *
992  * Requests the CPU to be removed and waits till it is removed.
993  */
994 void cpu_remove_sync(CPUState *cpu);
995 
996 /**
997  * free_queued_cpu_work() - free all items on CPU work queue
998  * @cpu: The CPU which work queue to free.
999  */
1000 void free_queued_cpu_work(CPUState *cpu);
1001 
1002 /**
1003  * process_queued_cpu_work() - process all items on CPU work queue
1004  * @cpu: The CPU which work queue to process.
1005  */
1006 void process_queued_cpu_work(CPUState *cpu);
1007 
1008 /**
1009  * cpu_exec_start:
1010  * @cpu: The CPU for the current thread.
1011  *
1012  * Record that a CPU has started execution and can be interrupted with
1013  * cpu_exit.
1014  */
1015 void cpu_exec_start(CPUState *cpu);
1016 
1017 /**
1018  * cpu_exec_end:
1019  * @cpu: The CPU for the current thread.
1020  *
1021  * Record that a CPU has stopped execution and exclusive sections
1022  * can be executed without interrupting it.
1023  */
1024 void cpu_exec_end(CPUState *cpu);
1025 
1026 /**
1027  * start_exclusive:
1028  *
1029  * Wait for a concurrent exclusive section to end, and then start
1030  * a section of work that is run while other CPUs are not running
1031  * between cpu_exec_start and cpu_exec_end.  CPUs that are running
1032  * cpu_exec are exited immediately.  CPUs that call cpu_exec_start
1033  * during the exclusive section go to sleep until this CPU calls
1034  * end_exclusive.
1035  */
1036 void start_exclusive(void);
1037 
1038 /**
1039  * end_exclusive:
1040  *
1041  * Concludes an exclusive execution section started by start_exclusive.
1042  */
1043 void end_exclusive(void);
1044 
1045 /**
1046  * qemu_init_vcpu:
1047  * @cpu: The vCPU to initialize.
1048  *
1049  * Initializes a vCPU.
1050  */
1051 void qemu_init_vcpu(CPUState *cpu);
1052 
1053 #define SSTEP_ENABLE  0x1  /* Enable simulated HW single stepping */
1054 #define SSTEP_NOIRQ   0x2  /* Do not use IRQ while single stepping */
1055 #define SSTEP_NOTIMER 0x4  /* Do not Timers while single stepping */
1056 
1057 /**
1058  * cpu_single_step:
1059  * @cpu: CPU to the flags for.
1060  * @enabled: Flags to enable.
1061  *
1062  * Enables or disables single-stepping for @cpu.
1063  */
1064 void cpu_single_step(CPUState *cpu, int enabled);
1065 
1066 /* Breakpoint/watchpoint flags */
1067 #define BP_MEM_READ           0x01
1068 #define BP_MEM_WRITE          0x02
1069 #define BP_MEM_ACCESS         (BP_MEM_READ | BP_MEM_WRITE)
1070 #define BP_STOP_BEFORE_ACCESS 0x04
1071 /* 0x08 currently unused */
1072 #define BP_GDB                0x10
1073 #define BP_CPU                0x20
1074 #define BP_ANY                (BP_GDB | BP_CPU)
1075 #define BP_HIT_SHIFT          6
1076 #define BP_WATCHPOINT_HIT_READ  (BP_MEM_READ << BP_HIT_SHIFT)
1077 #define BP_WATCHPOINT_HIT_WRITE (BP_MEM_WRITE << BP_HIT_SHIFT)
1078 #define BP_WATCHPOINT_HIT       (BP_MEM_ACCESS << BP_HIT_SHIFT)
1079 
1080 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
1081                           CPUBreakpoint **breakpoint);
1082 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags);
1083 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint);
1084 void cpu_breakpoint_remove_all(CPUState *cpu, int mask);
1085 
1086 /* Return true if PC matches an installed breakpoint.  */
cpu_breakpoint_test(CPUState * cpu,vaddr pc,int mask)1087 static inline bool cpu_breakpoint_test(CPUState *cpu, vaddr pc, int mask)
1088 {
1089     CPUBreakpoint *bp;
1090 
1091     if (unlikely(!QTAILQ_EMPTY(&cpu->breakpoints))) {
1092         QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
1093             if (bp->pc == pc && (bp->flags & mask)) {
1094                 return true;
1095             }
1096         }
1097     }
1098     return false;
1099 }
1100 
1101 /**
1102  * cpu_get_address_space:
1103  * @cpu: CPU to get address space from
1104  * @asidx: index identifying which address space to get
1105  *
1106  * Return the requested address space of this CPU. @asidx
1107  * specifies which address space to read.
1108  */
1109 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx);
1110 
1111 G_NORETURN void cpu_abort(CPUState *cpu, const char *fmt, ...)
1112     G_GNUC_PRINTF(2, 3);
1113 
1114 /* $(top_srcdir)/cpu.c */
1115 void cpu_class_init_props(DeviceClass *dc);
1116 void cpu_exec_class_post_init(CPUClass *cc);
1117 void cpu_exec_initfn(CPUState *cpu);
1118 void cpu_vmstate_register(CPUState *cpu);
1119 void cpu_vmstate_unregister(CPUState *cpu);
1120 bool cpu_exec_realizefn(CPUState *cpu, Error **errp);
1121 void cpu_exec_unrealizefn(CPUState *cpu);
1122 void cpu_exec_reset_hold(CPUState *cpu);
1123 
1124 extern const VMStateDescription vmstate_cpu_common;
1125 
1126 #define UNASSIGNED_CPU_INDEX -1
1127 #define UNASSIGNED_CLUSTER_INDEX -1
1128 
1129 #endif
1130