xref: /linux/drivers/mtd/nand/raw/atmel/pmecc.c (revision cbbf0a759ff96c80dfc32192a2cc427b79447f74)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright 2017 ATMEL
4  * Copyright 2017 Free Electrons
5  *
6  * Author: Boris Brezillon <boris.brezillon@free-electrons.com>
7  *
8  * Derived from the atmel_nand.c driver which contained the following
9  * copyrights:
10  *
11  *   Copyright 2003 Rick Bronson
12  *
13  *   Derived from drivers/mtd/nand/autcpu12.c (removed in v3.8)
14  *	Copyright 2001 Thomas Gleixner (gleixner@autronix.de)
15  *
16  *   Derived from drivers/mtd/spia.c (removed in v3.8)
17  *	Copyright 2000 Steven J. Hill (sjhill@cotw.com)
18  *
19  *   Add Hardware ECC support for AT91SAM9260 / AT91SAM9263
20  *	Richard Genoud (richard.genoud@gmail.com), Adeneo Copyright 2007
21  *
22  *   Derived from Das U-Boot source code
23  *	(u-boot-1.1.5/board/atmel/at91sam9263ek/nand.c)
24  *      Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas
25  *
26  *   Add Programmable Multibit ECC support for various AT91 SoC
27  *	Copyright 2012 ATMEL, Hong Xu
28  *
29  *   Add Nand Flash Controller support for SAMA5 SoC
30  *	Copyright 2013 ATMEL, Josh Wu (josh.wu@atmel.com)
31  *
32  * The PMECC is an hardware assisted BCH engine, which means part of the
33  * ECC algorithm is left to the software. The hardware/software repartition
34  * is explained in the "PMECC Controller Functional Description" chapter in
35  * Atmel datasheets, and some of the functions in this file are directly
36  * implementing the algorithms described in the "Software Implementation"
37  * sub-section.
38  *
39  * TODO: it seems that the software BCH implementation in lib/bch.c is already
40  * providing some of the logic we are implementing here. It would be smart
41  * to expose the needed lib/bch.c helpers/functions and re-use them here.
42  */
43 
44 #include <linux/genalloc.h>
45 #include <linux/iopoll.h>
46 #include <linux/module.h>
47 #include <linux/mtd/rawnand.h>
48 #include <linux/of_irq.h>
49 #include <linux/of_platform.h>
50 #include <linux/platform_device.h>
51 #include <linux/slab.h>
52 
53 #include "pmecc.h"
54 
55 /* Galois field dimension */
56 #define PMECC_GF_DIMENSION_13			13
57 #define PMECC_GF_DIMENSION_14			14
58 
59 /* Primitive Polynomial used by PMECC */
60 #define PMECC_GF_13_PRIMITIVE_POLY		0x201b
61 #define PMECC_GF_14_PRIMITIVE_POLY		0x4443
62 
63 #define PMECC_LOOKUP_TABLE_SIZE_512		0x2000
64 #define PMECC_LOOKUP_TABLE_SIZE_1024		0x4000
65 
66 /* Time out value for reading PMECC status register */
67 #define PMECC_MAX_TIMEOUT_MS			100
68 
69 /* PMECC Register Definitions */
70 #define ATMEL_PMECC_CFG				0x0
71 #define PMECC_CFG_BCH_STRENGTH(x)		(x)
72 #define PMECC_CFG_BCH_STRENGTH_MASK		GENMASK(2, 0)
73 #define PMECC_CFG_SECTOR512			(0 << 4)
74 #define PMECC_CFG_SECTOR1024			(1 << 4)
75 #define PMECC_CFG_NSECTORS(x)			((fls(x) - 1) << 8)
76 #define PMECC_CFG_READ_OP			(0 << 12)
77 #define PMECC_CFG_WRITE_OP			(1 << 12)
78 #define PMECC_CFG_SPARE_ENABLE			BIT(16)
79 #define PMECC_CFG_AUTO_ENABLE			BIT(20)
80 
81 #define ATMEL_PMECC_SAREA			0x4
82 #define ATMEL_PMECC_SADDR			0x8
83 #define ATMEL_PMECC_EADDR			0xc
84 
85 #define ATMEL_PMECC_CLK				0x10
86 #define PMECC_CLK_133MHZ			(2 << 0)
87 
88 #define ATMEL_PMECC_CTRL			0x14
89 #define PMECC_CTRL_RST				BIT(0)
90 #define PMECC_CTRL_DATA				BIT(1)
91 #define PMECC_CTRL_USER				BIT(2)
92 #define PMECC_CTRL_ENABLE			BIT(4)
93 #define PMECC_CTRL_DISABLE			BIT(5)
94 
95 #define ATMEL_PMECC_SR				0x18
96 #define PMECC_SR_BUSY				BIT(0)
97 #define PMECC_SR_ENABLE				BIT(4)
98 
99 #define ATMEL_PMECC_IER				0x1c
100 #define ATMEL_PMECC_IDR				0x20
101 #define ATMEL_PMECC_IMR				0x24
102 #define ATMEL_PMECC_ISR				0x28
103 #define PMECC_ERROR_INT				BIT(0)
104 
105 #define ATMEL_PMECC_ECC(sector, n)		\
106 	((((sector) + 1) * 0x40) + (n))
107 
108 #define ATMEL_PMECC_REM(sector, n)		\
109 	((((sector) + 1) * 0x40) + ((n) * 4) + 0x200)
110 
111 /* PMERRLOC Register Definitions */
112 #define ATMEL_PMERRLOC_ELCFG			0x0
113 #define PMERRLOC_ELCFG_SECTOR_512		(0 << 0)
114 #define PMERRLOC_ELCFG_SECTOR_1024		(1 << 0)
115 #define PMERRLOC_ELCFG_NUM_ERRORS(n)		((n) << 16)
116 
117 #define ATMEL_PMERRLOC_ELPRIM			0x4
118 #define ATMEL_PMERRLOC_ELEN			0x8
119 #define ATMEL_PMERRLOC_ELDIS			0xc
120 #define PMERRLOC_DISABLE			BIT(0)
121 
122 #define ATMEL_PMERRLOC_ELSR			0x10
123 #define PMERRLOC_ELSR_BUSY			BIT(0)
124 
125 #define ATMEL_PMERRLOC_ELIER			0x14
126 #define ATMEL_PMERRLOC_ELIDR			0x18
127 #define ATMEL_PMERRLOC_ELIMR			0x1c
128 #define ATMEL_PMERRLOC_ELISR			0x20
129 #define PMERRLOC_ERR_NUM_MASK			GENMASK(12, 8)
130 #define PMERRLOC_CALC_DONE			BIT(0)
131 
132 #define ATMEL_PMERRLOC_SIGMA(x)			(((x) * 0x4) + 0x28)
133 
134 #define ATMEL_PMERRLOC_EL(offs, x)		(((x) * 0x4) + (offs))
135 
136 struct atmel_pmecc_gf_tables {
137 	u16 *alpha_to;
138 	u16 *index_of;
139 };
140 
141 struct atmel_pmecc_caps {
142 	const int *strengths;
143 	int nstrengths;
144 	int el_offset;
145 	bool correct_erased_chunks;
146 	bool clk_ctrl;
147 };
148 
149 struct atmel_pmecc {
150 	struct device *dev;
151 	const struct atmel_pmecc_caps *caps;
152 
153 	struct {
154 		void __iomem *base;
155 		void __iomem *errloc;
156 	} regs;
157 
158 	struct mutex lock;
159 };
160 
161 struct atmel_pmecc_user_conf_cache {
162 	u32 cfg;
163 	u32 sarea;
164 	u32 saddr;
165 	u32 eaddr;
166 };
167 
168 struct atmel_pmecc_user {
169 	struct atmel_pmecc_user_conf_cache cache;
170 	struct atmel_pmecc *pmecc;
171 	const struct atmel_pmecc_gf_tables *gf_tables;
172 	int eccbytes;
173 	s16 *partial_syn;
174 	s16 *si;
175 	s16 *lmu;
176 	s16 *smu;
177 	s32 *mu;
178 	s32 *dmu;
179 	s32 *delta;
180 	u32 isr;
181 };
182 
183 static DEFINE_MUTEX(pmecc_gf_tables_lock);
184 static const struct atmel_pmecc_gf_tables *pmecc_gf_tables_512;
185 static const struct atmel_pmecc_gf_tables *pmecc_gf_tables_1024;
186 
deg(unsigned int poly)187 static inline int deg(unsigned int poly)
188 {
189 	/* polynomial degree is the most-significant bit index */
190 	return fls(poly) - 1;
191 }
192 
atmel_pmecc_build_gf_tables(int mm,unsigned int poly,struct atmel_pmecc_gf_tables * gf_tables)193 static int atmel_pmecc_build_gf_tables(int mm, unsigned int poly,
194 				       struct atmel_pmecc_gf_tables *gf_tables)
195 {
196 	unsigned int i, x = 1;
197 	const unsigned int k = BIT(deg(poly));
198 	unsigned int nn = BIT(mm) - 1;
199 
200 	/* primitive polynomial must be of degree m */
201 	if (k != (1u << mm))
202 		return -EINVAL;
203 
204 	for (i = 0; i < nn; i++) {
205 		gf_tables->alpha_to[i] = x;
206 		gf_tables->index_of[x] = i;
207 		if (i && (x == 1))
208 			/* polynomial is not primitive (a^i=1 with 0<i<2^m-1) */
209 			return -EINVAL;
210 		x <<= 1;
211 		if (x & k)
212 			x ^= poly;
213 	}
214 	gf_tables->alpha_to[nn] = 1;
215 	gf_tables->index_of[0] = 0;
216 
217 	return 0;
218 }
219 
220 static const struct atmel_pmecc_gf_tables *
atmel_pmecc_create_gf_tables(const struct atmel_pmecc_user_req * req)221 atmel_pmecc_create_gf_tables(const struct atmel_pmecc_user_req *req)
222 {
223 	struct atmel_pmecc_gf_tables *gf_tables;
224 	unsigned int poly, degree, table_size;
225 	int ret;
226 
227 	if (req->ecc.sectorsize == 512) {
228 		degree = PMECC_GF_DIMENSION_13;
229 		poly = PMECC_GF_13_PRIMITIVE_POLY;
230 		table_size = PMECC_LOOKUP_TABLE_SIZE_512;
231 	} else {
232 		degree = PMECC_GF_DIMENSION_14;
233 		poly = PMECC_GF_14_PRIMITIVE_POLY;
234 		table_size = PMECC_LOOKUP_TABLE_SIZE_1024;
235 	}
236 
237 	gf_tables = kzalloc(sizeof(*gf_tables) +
238 			    (2 * table_size * sizeof(u16)),
239 			    GFP_KERNEL);
240 	if (!gf_tables)
241 		return ERR_PTR(-ENOMEM);
242 
243 	gf_tables->alpha_to = (void *)(gf_tables + 1);
244 	gf_tables->index_of = gf_tables->alpha_to + table_size;
245 
246 	ret = atmel_pmecc_build_gf_tables(degree, poly, gf_tables);
247 	if (ret) {
248 		kfree(gf_tables);
249 		return ERR_PTR(ret);
250 	}
251 
252 	return gf_tables;
253 }
254 
255 static const struct atmel_pmecc_gf_tables *
atmel_pmecc_get_gf_tables(const struct atmel_pmecc_user_req * req)256 atmel_pmecc_get_gf_tables(const struct atmel_pmecc_user_req *req)
257 {
258 	const struct atmel_pmecc_gf_tables **gf_tables, *ret;
259 
260 	mutex_lock(&pmecc_gf_tables_lock);
261 	if (req->ecc.sectorsize == 512)
262 		gf_tables = &pmecc_gf_tables_512;
263 	else
264 		gf_tables = &pmecc_gf_tables_1024;
265 
266 	ret = *gf_tables;
267 
268 	if (!ret) {
269 		ret = atmel_pmecc_create_gf_tables(req);
270 		if (!IS_ERR(ret))
271 			*gf_tables = ret;
272 	}
273 	mutex_unlock(&pmecc_gf_tables_lock);
274 
275 	return ret;
276 }
277 
atmel_pmecc_prepare_user_req(struct atmel_pmecc * pmecc,struct atmel_pmecc_user_req * req)278 static int atmel_pmecc_prepare_user_req(struct atmel_pmecc *pmecc,
279 					struct atmel_pmecc_user_req *req)
280 {
281 	int i, max_eccbytes, eccbytes = 0, eccstrength = 0;
282 
283 	if (req->pagesize <= 0 || req->oobsize <= 0 || req->ecc.bytes <= 0)
284 		return -EINVAL;
285 
286 	if (req->ecc.ooboffset >= 0 &&
287 	    req->ecc.ooboffset + req->ecc.bytes > req->oobsize)
288 		return -EINVAL;
289 
290 	if (req->ecc.sectorsize == ATMEL_PMECC_SECTOR_SIZE_AUTO) {
291 		if (req->ecc.strength != ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH)
292 			return -EINVAL;
293 
294 		if (req->pagesize > 512)
295 			req->ecc.sectorsize = 1024;
296 		else
297 			req->ecc.sectorsize = 512;
298 	}
299 
300 	if (req->ecc.sectorsize != 512 && req->ecc.sectorsize != 1024)
301 		return -EINVAL;
302 
303 	if (req->pagesize % req->ecc.sectorsize)
304 		return -EINVAL;
305 
306 	req->ecc.nsectors = req->pagesize / req->ecc.sectorsize;
307 
308 	max_eccbytes = req->ecc.bytes;
309 
310 	for (i = 0; i < pmecc->caps->nstrengths; i++) {
311 		int nbytes, strength = pmecc->caps->strengths[i];
312 
313 		if (req->ecc.strength != ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH &&
314 		    strength < req->ecc.strength)
315 			continue;
316 
317 		nbytes = DIV_ROUND_UP(strength * fls(8 * req->ecc.sectorsize),
318 				      8);
319 		nbytes *= req->ecc.nsectors;
320 
321 		if (nbytes > max_eccbytes)
322 			break;
323 
324 		eccstrength = strength;
325 		eccbytes = nbytes;
326 
327 		if (req->ecc.strength != ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH)
328 			break;
329 	}
330 
331 	if (!eccstrength)
332 		return -EINVAL;
333 
334 	req->ecc.bytes = eccbytes;
335 	req->ecc.strength = eccstrength;
336 
337 	if (req->ecc.ooboffset < 0)
338 		req->ecc.ooboffset = req->oobsize - eccbytes;
339 
340 	return 0;
341 }
342 
343 struct atmel_pmecc_user *
atmel_pmecc_create_user(struct atmel_pmecc * pmecc,struct atmel_pmecc_user_req * req)344 atmel_pmecc_create_user(struct atmel_pmecc *pmecc,
345 			struct atmel_pmecc_user_req *req)
346 {
347 	struct atmel_pmecc_user *user;
348 	const struct atmel_pmecc_gf_tables *gf_tables;
349 	int strength, size, ret;
350 
351 	ret = atmel_pmecc_prepare_user_req(pmecc, req);
352 	if (ret)
353 		return ERR_PTR(ret);
354 
355 	size = sizeof(*user);
356 	size = ALIGN(size, sizeof(u16));
357 	/* Reserve space for partial_syn, si and smu */
358 	size += ((2 * req->ecc.strength) + 1) * sizeof(u16) *
359 		(2 + req->ecc.strength + 2);
360 	/* Reserve space for lmu. */
361 	size += (req->ecc.strength + 1) * sizeof(u16);
362 	/* Reserve space for mu, dmu and delta. */
363 	size = ALIGN(size, sizeof(s32));
364 	size += (req->ecc.strength + 1) * sizeof(s32) * 3;
365 
366 	user = devm_kzalloc(pmecc->dev, size, GFP_KERNEL);
367 	if (!user)
368 		return ERR_PTR(-ENOMEM);
369 
370 	user->pmecc = pmecc;
371 
372 	user->partial_syn = (s16 *)PTR_ALIGN(user + 1, sizeof(u16));
373 	user->si = user->partial_syn + ((2 * req->ecc.strength) + 1);
374 	user->lmu = user->si + ((2 * req->ecc.strength) + 1);
375 	user->smu = user->lmu + (req->ecc.strength + 1);
376 	user->mu = (s32 *)PTR_ALIGN(user->smu +
377 				    (((2 * req->ecc.strength) + 1) *
378 				     (req->ecc.strength + 2)),
379 				    sizeof(s32));
380 	user->dmu = user->mu + req->ecc.strength + 1;
381 	user->delta = user->dmu + req->ecc.strength + 1;
382 
383 	gf_tables = atmel_pmecc_get_gf_tables(req);
384 	if (IS_ERR(gf_tables))
385 		return ERR_CAST(gf_tables);
386 
387 	user->gf_tables = gf_tables;
388 
389 	user->eccbytes = req->ecc.bytes / req->ecc.nsectors;
390 
391 	for (strength = 0; strength < pmecc->caps->nstrengths; strength++) {
392 		if (pmecc->caps->strengths[strength] == req->ecc.strength)
393 			break;
394 	}
395 
396 	user->cache.cfg = PMECC_CFG_BCH_STRENGTH(strength) |
397 			  PMECC_CFG_NSECTORS(req->ecc.nsectors);
398 
399 	if (req->ecc.sectorsize == 1024)
400 		user->cache.cfg |= PMECC_CFG_SECTOR1024;
401 
402 	user->cache.sarea = req->oobsize - 1;
403 	user->cache.saddr = req->ecc.ooboffset;
404 	user->cache.eaddr = req->ecc.ooboffset + req->ecc.bytes - 1;
405 
406 	return user;
407 }
408 EXPORT_SYMBOL_GPL(atmel_pmecc_create_user);
409 
get_strength(struct atmel_pmecc_user * user)410 static int get_strength(struct atmel_pmecc_user *user)
411 {
412 	const int *strengths = user->pmecc->caps->strengths;
413 
414 	return strengths[user->cache.cfg & PMECC_CFG_BCH_STRENGTH_MASK];
415 }
416 
get_sectorsize(struct atmel_pmecc_user * user)417 static int get_sectorsize(struct atmel_pmecc_user *user)
418 {
419 	return user->cache.cfg & PMECC_CFG_SECTOR1024 ? 1024 : 512;
420 }
421 
atmel_pmecc_gen_syndrome(struct atmel_pmecc_user * user,int sector)422 static void atmel_pmecc_gen_syndrome(struct atmel_pmecc_user *user, int sector)
423 {
424 	int strength = get_strength(user);
425 	u32 value;
426 	int i;
427 
428 	/* Fill odd syndromes */
429 	for (i = 0; i < strength; i++) {
430 		value = readl_relaxed(user->pmecc->regs.base +
431 				      ATMEL_PMECC_REM(sector, i / 2));
432 		if (i & 1)
433 			value >>= 16;
434 
435 		user->partial_syn[(2 * i) + 1] = value;
436 	}
437 }
438 
atmel_pmecc_substitute(struct atmel_pmecc_user * user)439 static void atmel_pmecc_substitute(struct atmel_pmecc_user *user)
440 {
441 	int degree = get_sectorsize(user) == 512 ? 13 : 14;
442 	int cw_len = BIT(degree) - 1;
443 	int strength = get_strength(user);
444 	s16 *alpha_to = user->gf_tables->alpha_to;
445 	s16 *index_of = user->gf_tables->index_of;
446 	s16 *partial_syn = user->partial_syn;
447 	s16 *si;
448 	int i, j;
449 
450 	/*
451 	 * si[] is a table that holds the current syndrome value,
452 	 * an element of that table belongs to the field
453 	 */
454 	si = user->si;
455 
456 	memset(&si[1], 0, sizeof(s16) * ((2 * strength) - 1));
457 
458 	/* Computation 2t syndromes based on S(x) */
459 	/* Odd syndromes */
460 	for (i = 1; i < 2 * strength; i += 2) {
461 		for (j = 0; j < degree; j++) {
462 			if (partial_syn[i] & BIT(j))
463 				si[i] = alpha_to[i * j] ^ si[i];
464 		}
465 	}
466 	/* Even syndrome = (Odd syndrome) ** 2 */
467 	for (i = 2, j = 1; j <= strength; i = ++j << 1) {
468 		if (si[j] == 0) {
469 			si[i] = 0;
470 		} else {
471 			s16 tmp;
472 
473 			tmp = index_of[si[j]];
474 			tmp = (tmp * 2) % cw_len;
475 			si[i] = alpha_to[tmp];
476 		}
477 	}
478 }
479 
atmel_pmecc_get_sigma(struct atmel_pmecc_user * user)480 static void atmel_pmecc_get_sigma(struct atmel_pmecc_user *user)
481 {
482 	s16 *lmu = user->lmu;
483 	s16 *si = user->si;
484 	s32 *mu = user->mu;
485 	s32 *dmu = user->dmu;
486 	s32 *delta = user->delta;
487 	int degree = get_sectorsize(user) == 512 ? 13 : 14;
488 	int cw_len = BIT(degree) - 1;
489 	int strength = get_strength(user);
490 	int num = 2 * strength + 1;
491 	s16 *index_of = user->gf_tables->index_of;
492 	s16 *alpha_to = user->gf_tables->alpha_to;
493 	int i, j, k;
494 	u32 dmu_0_count, tmp;
495 	s16 *smu = user->smu;
496 
497 	/* index of largest delta */
498 	int ro;
499 	int largest;
500 	int diff;
501 
502 	dmu_0_count = 0;
503 
504 	/* First Row */
505 
506 	/* Mu */
507 	mu[0] = -1;
508 
509 	memset(smu, 0, sizeof(s16) * num);
510 	smu[0] = 1;
511 
512 	/* discrepancy set to 1 */
513 	dmu[0] = 1;
514 	/* polynom order set to 0 */
515 	lmu[0] = 0;
516 	delta[0] = (mu[0] * 2 - lmu[0]) >> 1;
517 
518 	/* Second Row */
519 
520 	/* Mu */
521 	mu[1] = 0;
522 	/* Sigma(x) set to 1 */
523 	memset(&smu[num], 0, sizeof(s16) * num);
524 	smu[num] = 1;
525 
526 	/* discrepancy set to S1 */
527 	dmu[1] = si[1];
528 
529 	/* polynom order set to 0 */
530 	lmu[1] = 0;
531 
532 	delta[1] = (mu[1] * 2 - lmu[1]) >> 1;
533 
534 	/* Init the Sigma(x) last row */
535 	memset(&smu[(strength + 1) * num], 0, sizeof(s16) * num);
536 
537 	for (i = 1; i <= strength; i++) {
538 		mu[i + 1] = i << 1;
539 		/* Begin Computing Sigma (Mu+1) and L(mu) */
540 		/* check if discrepancy is set to 0 */
541 		if (dmu[i] == 0) {
542 			dmu_0_count++;
543 
544 			tmp = ((strength - (lmu[i] >> 1) - 1) / 2);
545 			if ((strength - (lmu[i] >> 1) - 1) & 0x1)
546 				tmp += 2;
547 			else
548 				tmp += 1;
549 
550 			if (dmu_0_count == tmp) {
551 				for (j = 0; j <= (lmu[i] >> 1) + 1; j++)
552 					smu[(strength + 1) * num + j] =
553 							smu[i * num + j];
554 
555 				lmu[strength + 1] = lmu[i];
556 				return;
557 			}
558 
559 			/* copy polynom */
560 			for (j = 0; j <= lmu[i] >> 1; j++)
561 				smu[(i + 1) * num + j] = smu[i * num + j];
562 
563 			/* copy previous polynom order to the next */
564 			lmu[i + 1] = lmu[i];
565 		} else {
566 			ro = 0;
567 			largest = -1;
568 			/* find largest delta with dmu != 0 */
569 			for (j = 0; j < i; j++) {
570 				if ((dmu[j]) && (delta[j] > largest)) {
571 					largest = delta[j];
572 					ro = j;
573 				}
574 			}
575 
576 			/* compute difference */
577 			diff = (mu[i] - mu[ro]);
578 
579 			/* Compute degree of the new smu polynomial */
580 			if ((lmu[i] >> 1) > ((lmu[ro] >> 1) + diff))
581 				lmu[i + 1] = lmu[i];
582 			else
583 				lmu[i + 1] = ((lmu[ro] >> 1) + diff) * 2;
584 
585 			/* Init smu[i+1] with 0 */
586 			for (k = 0; k < num; k++)
587 				smu[(i + 1) * num + k] = 0;
588 
589 			/* Compute smu[i+1] */
590 			for (k = 0; k <= lmu[ro] >> 1; k++) {
591 				s16 a, b, c;
592 
593 				if (!(smu[ro * num + k] && dmu[i]))
594 					continue;
595 
596 				a = index_of[dmu[i]];
597 				b = index_of[dmu[ro]];
598 				c = index_of[smu[ro * num + k]];
599 				tmp = a + (cw_len - b) + c;
600 				a = alpha_to[tmp % cw_len];
601 				smu[(i + 1) * num + (k + diff)] = a;
602 			}
603 
604 			for (k = 0; k <= lmu[i] >> 1; k++)
605 				smu[(i + 1) * num + k] ^= smu[i * num + k];
606 		}
607 
608 		/* End Computing Sigma (Mu+1) and L(mu) */
609 		/* In either case compute delta */
610 		delta[i + 1] = (mu[i + 1] * 2 - lmu[i + 1]) >> 1;
611 
612 		/* Do not compute discrepancy for the last iteration */
613 		if (i >= strength)
614 			continue;
615 
616 		for (k = 0; k <= (lmu[i + 1] >> 1); k++) {
617 			tmp = 2 * (i - 1);
618 			if (k == 0) {
619 				dmu[i + 1] = si[tmp + 3];
620 			} else if (smu[(i + 1) * num + k] && si[tmp + 3 - k]) {
621 				s16 a, b, c;
622 
623 				a = index_of[smu[(i + 1) * num + k]];
624 				b = si[2 * (i - 1) + 3 - k];
625 				c = index_of[b];
626 				tmp = a + c;
627 				tmp %= cw_len;
628 				dmu[i + 1] = alpha_to[tmp] ^ dmu[i + 1];
629 			}
630 		}
631 	}
632 }
633 
atmel_pmecc_err_location(struct atmel_pmecc_user * user)634 static int atmel_pmecc_err_location(struct atmel_pmecc_user *user)
635 {
636 	int sector_size = get_sectorsize(user);
637 	int degree = sector_size == 512 ? 13 : 14;
638 	struct atmel_pmecc *pmecc = user->pmecc;
639 	int strength = get_strength(user);
640 	int ret, roots_nbr, i, err_nbr = 0;
641 	int num = (2 * strength) + 1;
642 	s16 *smu = user->smu;
643 	u32 val;
644 
645 	writel(PMERRLOC_DISABLE, pmecc->regs.errloc + ATMEL_PMERRLOC_ELDIS);
646 
647 	for (i = 0; i <= user->lmu[strength + 1] >> 1; i++) {
648 		writel_relaxed(smu[(strength + 1) * num + i],
649 			       pmecc->regs.errloc + ATMEL_PMERRLOC_SIGMA(i));
650 		err_nbr++;
651 	}
652 
653 	val = (err_nbr - 1) << 16;
654 	if (sector_size == 1024)
655 		val |= 1;
656 
657 	writel(val, pmecc->regs.errloc + ATMEL_PMERRLOC_ELCFG);
658 	writel((sector_size * 8) + (degree * strength),
659 	       pmecc->regs.errloc + ATMEL_PMERRLOC_ELEN);
660 
661 	ret = readl_relaxed_poll_timeout(pmecc->regs.errloc +
662 					 ATMEL_PMERRLOC_ELISR,
663 					 val, val & PMERRLOC_CALC_DONE, 0,
664 					 PMECC_MAX_TIMEOUT_MS * 1000);
665 	if (ret) {
666 		dev_err(pmecc->dev,
667 			"PMECC: Timeout to calculate error location.\n");
668 		return ret;
669 	}
670 
671 	roots_nbr = (val & PMERRLOC_ERR_NUM_MASK) >> 8;
672 	/* Number of roots == degree of smu hence <= cap */
673 	if (roots_nbr == user->lmu[strength + 1] >> 1)
674 		return err_nbr - 1;
675 
676 	/*
677 	 * Number of roots does not match the degree of smu
678 	 * unable to correct error.
679 	 */
680 	return -EBADMSG;
681 }
682 
atmel_pmecc_correct_sector(struct atmel_pmecc_user * user,int sector,void * data,void * ecc)683 int atmel_pmecc_correct_sector(struct atmel_pmecc_user *user, int sector,
684 			       void *data, void *ecc)
685 {
686 	struct atmel_pmecc *pmecc = user->pmecc;
687 	int sectorsize = get_sectorsize(user);
688 	int eccbytes = user->eccbytes;
689 	int i, nerrors;
690 
691 	if (!(user->isr & BIT(sector)))
692 		return 0;
693 
694 	atmel_pmecc_gen_syndrome(user, sector);
695 	atmel_pmecc_substitute(user);
696 	atmel_pmecc_get_sigma(user);
697 
698 	nerrors = atmel_pmecc_err_location(user);
699 	if (nerrors < 0)
700 		return nerrors;
701 
702 	for (i = 0; i < nerrors; i++) {
703 		const char *area;
704 		int byte, bit;
705 		u32 errpos;
706 		u8 *ptr;
707 
708 		errpos = readl_relaxed(pmecc->regs.errloc +
709 				ATMEL_PMERRLOC_EL(pmecc->caps->el_offset, i));
710 		errpos--;
711 
712 		byte = errpos / 8;
713 		bit = errpos % 8;
714 
715 		if (byte < sectorsize) {
716 			ptr = data + byte;
717 			area = "data";
718 		} else if (byte < sectorsize + eccbytes) {
719 			ptr = ecc + byte - sectorsize;
720 			area = "ECC";
721 		} else {
722 			dev_dbg(pmecc->dev,
723 				"Invalid errpos value (%d, max is %d)\n",
724 				errpos, (sectorsize + eccbytes) * 8);
725 			return -EINVAL;
726 		}
727 
728 		dev_dbg(pmecc->dev,
729 			"Bit flip in %s area, byte %d: 0x%02x -> 0x%02x\n",
730 			area, byte, *ptr, (unsigned int)(*ptr ^ BIT(bit)));
731 
732 		*ptr ^= BIT(bit);
733 	}
734 
735 	return nerrors;
736 }
737 EXPORT_SYMBOL_GPL(atmel_pmecc_correct_sector);
738 
atmel_pmecc_correct_erased_chunks(struct atmel_pmecc_user * user)739 bool atmel_pmecc_correct_erased_chunks(struct atmel_pmecc_user *user)
740 {
741 	return user->pmecc->caps->correct_erased_chunks;
742 }
743 EXPORT_SYMBOL_GPL(atmel_pmecc_correct_erased_chunks);
744 
atmel_pmecc_get_generated_eccbytes(struct atmel_pmecc_user * user,int sector,void * ecc)745 void atmel_pmecc_get_generated_eccbytes(struct atmel_pmecc_user *user,
746 					int sector, void *ecc)
747 {
748 	struct atmel_pmecc *pmecc = user->pmecc;
749 	u8 *ptr = ecc;
750 	int i;
751 
752 	for (i = 0; i < user->eccbytes; i++)
753 		ptr[i] = readb_relaxed(pmecc->regs.base +
754 				       ATMEL_PMECC_ECC(sector, i));
755 }
756 EXPORT_SYMBOL_GPL(atmel_pmecc_get_generated_eccbytes);
757 
atmel_pmecc_reset(struct atmel_pmecc * pmecc)758 void atmel_pmecc_reset(struct atmel_pmecc *pmecc)
759 {
760 	writel(PMECC_CTRL_RST, pmecc->regs.base + ATMEL_PMECC_CTRL);
761 	writel(PMECC_CTRL_DISABLE, pmecc->regs.base + ATMEL_PMECC_CTRL);
762 }
763 EXPORT_SYMBOL_GPL(atmel_pmecc_reset);
764 
atmel_pmecc_enable(struct atmel_pmecc_user * user,int op)765 int atmel_pmecc_enable(struct atmel_pmecc_user *user, int op)
766 {
767 	struct atmel_pmecc *pmecc = user->pmecc;
768 	u32 cfg;
769 
770 	if (op != NAND_ECC_READ && op != NAND_ECC_WRITE) {
771 		dev_err(pmecc->dev, "Bad ECC operation!");
772 		return -EINVAL;
773 	}
774 
775 	mutex_lock(&user->pmecc->lock);
776 
777 	cfg = user->cache.cfg;
778 	if (op == NAND_ECC_WRITE)
779 		cfg |= PMECC_CFG_WRITE_OP;
780 	else
781 		cfg |= PMECC_CFG_AUTO_ENABLE;
782 
783 	writel(cfg, pmecc->regs.base + ATMEL_PMECC_CFG);
784 	writel(user->cache.sarea, pmecc->regs.base + ATMEL_PMECC_SAREA);
785 	writel(user->cache.saddr, pmecc->regs.base + ATMEL_PMECC_SADDR);
786 	writel(user->cache.eaddr, pmecc->regs.base + ATMEL_PMECC_EADDR);
787 
788 	writel(PMECC_CTRL_ENABLE, pmecc->regs.base + ATMEL_PMECC_CTRL);
789 	writel(PMECC_CTRL_DATA, pmecc->regs.base + ATMEL_PMECC_CTRL);
790 
791 	return 0;
792 }
793 EXPORT_SYMBOL_GPL(atmel_pmecc_enable);
794 
atmel_pmecc_disable(struct atmel_pmecc_user * user)795 void atmel_pmecc_disable(struct atmel_pmecc_user *user)
796 {
797 	atmel_pmecc_reset(user->pmecc);
798 	mutex_unlock(&user->pmecc->lock);
799 }
800 EXPORT_SYMBOL_GPL(atmel_pmecc_disable);
801 
atmel_pmecc_wait_rdy(struct atmel_pmecc_user * user)802 int atmel_pmecc_wait_rdy(struct atmel_pmecc_user *user)
803 {
804 	struct atmel_pmecc *pmecc = user->pmecc;
805 	u32 status;
806 	int ret;
807 
808 	ret = readl_relaxed_poll_timeout(pmecc->regs.base +
809 					 ATMEL_PMECC_SR,
810 					 status, !(status & PMECC_SR_BUSY), 0,
811 					 PMECC_MAX_TIMEOUT_MS * 1000);
812 	if (ret) {
813 		dev_err(pmecc->dev,
814 			"Timeout while waiting for PMECC ready.\n");
815 		return ret;
816 	}
817 
818 	user->isr = readl_relaxed(pmecc->regs.base + ATMEL_PMECC_ISR);
819 
820 	return 0;
821 }
822 EXPORT_SYMBOL_GPL(atmel_pmecc_wait_rdy);
823 
atmel_pmecc_create(struct platform_device * pdev,const struct atmel_pmecc_caps * caps,int pmecc_res_idx,int errloc_res_idx)824 static struct atmel_pmecc *atmel_pmecc_create(struct platform_device *pdev,
825 					const struct atmel_pmecc_caps *caps,
826 					int pmecc_res_idx, int errloc_res_idx)
827 {
828 	struct device *dev = &pdev->dev;
829 	struct atmel_pmecc *pmecc;
830 
831 	pmecc = devm_kzalloc(dev, sizeof(*pmecc), GFP_KERNEL);
832 	if (!pmecc)
833 		return ERR_PTR(-ENOMEM);
834 
835 	pmecc->caps = caps;
836 	pmecc->dev = dev;
837 	mutex_init(&pmecc->lock);
838 
839 	pmecc->regs.base = devm_platform_ioremap_resource(pdev, pmecc_res_idx);
840 	if (IS_ERR(pmecc->regs.base))
841 		return ERR_CAST(pmecc->regs.base);
842 
843 	pmecc->regs.errloc = devm_platform_ioremap_resource(pdev, errloc_res_idx);
844 	if (IS_ERR(pmecc->regs.errloc))
845 		return ERR_CAST(pmecc->regs.errloc);
846 
847 	/* pmecc data setup time */
848 	if (caps->clk_ctrl)
849 		writel(PMECC_CLK_133MHZ, pmecc->regs.base + ATMEL_PMECC_CLK);
850 
851 	/* Disable all interrupts before registering the PMECC handler. */
852 	writel(0xffffffff, pmecc->regs.base + ATMEL_PMECC_IDR);
853 	atmel_pmecc_reset(pmecc);
854 
855 	return pmecc;
856 }
857 
devm_atmel_pmecc_put(struct device * dev,void * res)858 static void devm_atmel_pmecc_put(struct device *dev, void *res)
859 {
860 	struct atmel_pmecc **pmecc = res;
861 
862 	put_device((*pmecc)->dev);
863 }
864 
atmel_pmecc_get_by_node(struct device * userdev,struct device_node * np)865 static struct atmel_pmecc *atmel_pmecc_get_by_node(struct device *userdev,
866 						   struct device_node *np)
867 {
868 	struct platform_device *pdev;
869 	struct atmel_pmecc *pmecc, **ptr;
870 	int ret;
871 
872 	pdev = of_find_device_by_node(np);
873 	if (!pdev)
874 		return ERR_PTR(-EPROBE_DEFER);
875 	pmecc = platform_get_drvdata(pdev);
876 	if (!pmecc) {
877 		ret = -EPROBE_DEFER;
878 		goto err_put_device;
879 	}
880 
881 	ptr = devres_alloc(devm_atmel_pmecc_put, sizeof(*ptr), GFP_KERNEL);
882 	if (!ptr) {
883 		ret = -ENOMEM;
884 		goto err_put_device;
885 	}
886 
887 	*ptr = pmecc;
888 
889 	devres_add(userdev, ptr);
890 
891 	return pmecc;
892 
893 err_put_device:
894 	put_device(&pdev->dev);
895 	return ERR_PTR(ret);
896 }
897 
898 static const int atmel_pmecc_strengths[] = { 2, 4, 8, 12, 24, 32 };
899 
900 static struct atmel_pmecc_caps at91sam9g45_caps = {
901 	.strengths = atmel_pmecc_strengths,
902 	.nstrengths = 5,
903 	.el_offset = 0x8c,
904 	.clk_ctrl = true,
905 };
906 
907 static struct atmel_pmecc_caps sama5d4_caps = {
908 	.strengths = atmel_pmecc_strengths,
909 	.nstrengths = 5,
910 	.el_offset = 0x8c,
911 	.correct_erased_chunks = true,
912 };
913 
914 static struct atmel_pmecc_caps sama5d2_caps = {
915 	.strengths = atmel_pmecc_strengths,
916 	.nstrengths = 6,
917 	.el_offset = 0xac,
918 	.correct_erased_chunks = true,
919 };
920 
921 static const struct of_device_id __maybe_unused atmel_pmecc_legacy_match[] = {
922 	{ .compatible = "atmel,sama5d4-nand", &sama5d4_caps },
923 	{ .compatible = "atmel,sama5d2-nand", &sama5d2_caps },
924 	{ /* sentinel */ }
925 };
926 
devm_atmel_pmecc_get(struct device * userdev)927 struct atmel_pmecc *devm_atmel_pmecc_get(struct device *userdev)
928 {
929 	struct atmel_pmecc *pmecc;
930 	struct device_node *np;
931 
932 	if (!userdev)
933 		return ERR_PTR(-EINVAL);
934 
935 	if (!userdev->of_node)
936 		return NULL;
937 
938 	np = of_parse_phandle(userdev->of_node, "ecc-engine", 0);
939 	if (np) {
940 		pmecc = atmel_pmecc_get_by_node(userdev, np);
941 		of_node_put(np);
942 	} else {
943 		/*
944 		 * Support old DT bindings: in this case the PMECC iomem
945 		 * resources are directly defined in the user pdev at position
946 		 * 1 and 2. Extract all relevant information from there.
947 		 */
948 		struct platform_device *pdev = to_platform_device(userdev);
949 		const struct atmel_pmecc_caps *caps;
950 		const struct of_device_id *match;
951 
952 		/* No PMECC engine available. */
953 		if (!of_property_read_bool(userdev->of_node,
954 					   "atmel,has-pmecc"))
955 			return NULL;
956 
957 		caps = &at91sam9g45_caps;
958 
959 		/* Find the caps associated to the NAND dev node. */
960 		match = of_match_node(atmel_pmecc_legacy_match,
961 				      userdev->of_node);
962 		if (match && match->data)
963 			caps = match->data;
964 
965 		pmecc = atmel_pmecc_create(pdev, caps, 1, 2);
966 	}
967 
968 	return pmecc;
969 }
970 EXPORT_SYMBOL(devm_atmel_pmecc_get);
971 
972 static const struct of_device_id atmel_pmecc_match[] = {
973 	{ .compatible = "atmel,at91sam9g45-pmecc", &at91sam9g45_caps },
974 	{ .compatible = "atmel,sama5d4-pmecc", &sama5d4_caps },
975 	{ .compatible = "atmel,sama5d2-pmecc", &sama5d2_caps },
976 	{ /* sentinel */ }
977 };
978 MODULE_DEVICE_TABLE(of, atmel_pmecc_match);
979 
atmel_pmecc_probe(struct platform_device * pdev)980 static int atmel_pmecc_probe(struct platform_device *pdev)
981 {
982 	struct device *dev = &pdev->dev;
983 	const struct atmel_pmecc_caps *caps;
984 	struct atmel_pmecc *pmecc;
985 
986 	caps = of_device_get_match_data(&pdev->dev);
987 	if (!caps) {
988 		dev_err(dev, "Invalid caps\n");
989 		return -EINVAL;
990 	}
991 
992 	pmecc = atmel_pmecc_create(pdev, caps, 0, 1);
993 	if (IS_ERR(pmecc))
994 		return PTR_ERR(pmecc);
995 
996 	platform_set_drvdata(pdev, pmecc);
997 
998 	return 0;
999 }
1000 
1001 static struct platform_driver atmel_pmecc_driver = {
1002 	.driver = {
1003 		.name = "atmel-pmecc",
1004 		.of_match_table = atmel_pmecc_match,
1005 	},
1006 	.probe = atmel_pmecc_probe,
1007 };
1008 module_platform_driver(atmel_pmecc_driver);
1009 
1010 MODULE_LICENSE("GPL");
1011 MODULE_AUTHOR("Boris Brezillon <boris.brezillon@free-electrons.com>");
1012 MODULE_DESCRIPTION("PMECC engine driver");
1013 MODULE_ALIAS("platform:atmel_pmecc");
1014