xref: /linux/arch/x86/coco/core.c (revision ab93e0dd72c37d378dd936f031ffb83ff2bd87ce)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Confidential Computing Platform Capability checks
4  *
5  * Copyright (C) 2021 Advanced Micro Devices, Inc.
6  * Copyright (C) 2024 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
7  *
8  * Author: Tom Lendacky <thomas.lendacky@amd.com>
9  */
10 
11 #include <linux/export.h>
12 #include <linux/cc_platform.h>
13 #include <linux/string.h>
14 #include <linux/random.h>
15 
16 #include <asm/archrandom.h>
17 #include <asm/coco.h>
18 #include <asm/processor.h>
19 
20 enum cc_vendor cc_vendor __ro_after_init = CC_VENDOR_NONE;
21 SYM_PIC_ALIAS(cc_vendor);
22 u64 cc_mask __ro_after_init;
23 SYM_PIC_ALIAS(cc_mask);
24 
25 static struct cc_attr_flags {
26 	__u64 host_sev_snp	: 1,
27 	      __resv		: 63;
28 } cc_flags;
29 
intel_cc_platform_has(enum cc_attr attr)30 static bool noinstr intel_cc_platform_has(enum cc_attr attr)
31 {
32 	switch (attr) {
33 	case CC_ATTR_GUEST_UNROLL_STRING_IO:
34 	case CC_ATTR_GUEST_MEM_ENCRYPT:
35 	case CC_ATTR_MEM_ENCRYPT:
36 		return true;
37 	default:
38 		return false;
39 	}
40 }
41 
42 /*
43  * Handle the SEV-SNP vTOM case where sme_me_mask is zero, and
44  * the other levels of SME/SEV functionality, including C-bit
45  * based SEV-SNP, are not enabled.
46  */
amd_cc_platform_vtom(enum cc_attr attr)47 static __maybe_unused __always_inline bool amd_cc_platform_vtom(enum cc_attr attr)
48 {
49 	switch (attr) {
50 	case CC_ATTR_GUEST_MEM_ENCRYPT:
51 	case CC_ATTR_MEM_ENCRYPT:
52 		return true;
53 	default:
54 		return false;
55 	}
56 }
57 
58 /*
59  * SME and SEV are very similar but they are not the same, so there are
60  * times that the kernel will need to distinguish between SME and SEV. The
61  * cc_platform_has() function is used for this.  When a distinction isn't
62  * needed, the CC_ATTR_MEM_ENCRYPT attribute can be used.
63  *
64  * The trampoline code is a good example for this requirement.  Before
65  * paging is activated, SME will access all memory as decrypted, but SEV
66  * will access all memory as encrypted.  So, when APs are being brought
67  * up under SME the trampoline area cannot be encrypted, whereas under SEV
68  * the trampoline area must be encrypted.
69  */
amd_cc_platform_has(enum cc_attr attr)70 static bool noinstr amd_cc_platform_has(enum cc_attr attr)
71 {
72 #ifdef CONFIG_AMD_MEM_ENCRYPT
73 
74 	if (sev_status & MSR_AMD64_SNP_VTOM)
75 		return amd_cc_platform_vtom(attr);
76 
77 	switch (attr) {
78 	case CC_ATTR_MEM_ENCRYPT:
79 		return sme_me_mask;
80 
81 	case CC_ATTR_HOST_MEM_ENCRYPT:
82 		return sme_me_mask && !(sev_status & MSR_AMD64_SEV_ENABLED);
83 
84 	case CC_ATTR_GUEST_MEM_ENCRYPT:
85 		return sev_status & MSR_AMD64_SEV_ENABLED;
86 
87 	case CC_ATTR_GUEST_STATE_ENCRYPT:
88 		return sev_status & MSR_AMD64_SEV_ES_ENABLED;
89 
90 	/*
91 	 * With SEV, the rep string I/O instructions need to be unrolled
92 	 * but SEV-ES supports them through the #VC handler.
93 	 */
94 	case CC_ATTR_GUEST_UNROLL_STRING_IO:
95 		return (sev_status & MSR_AMD64_SEV_ENABLED) &&
96 			!(sev_status & MSR_AMD64_SEV_ES_ENABLED);
97 
98 	case CC_ATTR_GUEST_SEV_SNP:
99 		return sev_status & MSR_AMD64_SEV_SNP_ENABLED;
100 
101 	case CC_ATTR_GUEST_SNP_SECURE_TSC:
102 		return sev_status & MSR_AMD64_SNP_SECURE_TSC;
103 
104 	case CC_ATTR_HOST_SEV_SNP:
105 		return cc_flags.host_sev_snp;
106 
107 	default:
108 		return false;
109 	}
110 #else
111 	return false;
112 #endif
113 }
114 
cc_platform_has(enum cc_attr attr)115 bool noinstr cc_platform_has(enum cc_attr attr)
116 {
117 	switch (cc_vendor) {
118 	case CC_VENDOR_AMD:
119 		return amd_cc_platform_has(attr);
120 	case CC_VENDOR_INTEL:
121 		return intel_cc_platform_has(attr);
122 	default:
123 		return false;
124 	}
125 }
126 EXPORT_SYMBOL_GPL(cc_platform_has);
127 
cc_mkenc(u64 val)128 u64 cc_mkenc(u64 val)
129 {
130 	/*
131 	 * Both AMD and Intel use a bit in the page table to indicate
132 	 * encryption status of the page.
133 	 *
134 	 * - for AMD, bit *set* means the page is encrypted
135 	 * - for AMD with vTOM and for Intel, *clear* means encrypted
136 	 */
137 	switch (cc_vendor) {
138 	case CC_VENDOR_AMD:
139 		if (sev_status & MSR_AMD64_SNP_VTOM)
140 			return val & ~cc_mask;
141 		else
142 			return val | cc_mask;
143 	case CC_VENDOR_INTEL:
144 		return val & ~cc_mask;
145 	default:
146 		return val;
147 	}
148 }
149 
cc_mkdec(u64 val)150 u64 cc_mkdec(u64 val)
151 {
152 	/* See comment in cc_mkenc() */
153 	switch (cc_vendor) {
154 	case CC_VENDOR_AMD:
155 		if (sev_status & MSR_AMD64_SNP_VTOM)
156 			return val | cc_mask;
157 		else
158 			return val & ~cc_mask;
159 	case CC_VENDOR_INTEL:
160 		return val | cc_mask;
161 	default:
162 		return val;
163 	}
164 }
165 EXPORT_SYMBOL_GPL(cc_mkdec);
166 
amd_cc_platform_clear(enum cc_attr attr)167 static void amd_cc_platform_clear(enum cc_attr attr)
168 {
169 	switch (attr) {
170 	case CC_ATTR_HOST_SEV_SNP:
171 		cc_flags.host_sev_snp = 0;
172 		break;
173 	default:
174 		break;
175 	}
176 }
177 
cc_platform_clear(enum cc_attr attr)178 void cc_platform_clear(enum cc_attr attr)
179 {
180 	switch (cc_vendor) {
181 	case CC_VENDOR_AMD:
182 		amd_cc_platform_clear(attr);
183 		break;
184 	default:
185 		break;
186 	}
187 }
188 
amd_cc_platform_set(enum cc_attr attr)189 static void amd_cc_platform_set(enum cc_attr attr)
190 {
191 	switch (attr) {
192 	case CC_ATTR_HOST_SEV_SNP:
193 		cc_flags.host_sev_snp = 1;
194 		break;
195 	default:
196 		break;
197 	}
198 }
199 
cc_platform_set(enum cc_attr attr)200 void cc_platform_set(enum cc_attr attr)
201 {
202 	switch (cc_vendor) {
203 	case CC_VENDOR_AMD:
204 		amd_cc_platform_set(attr);
205 		break;
206 	default:
207 		break;
208 	}
209 }
210 
cc_random_init(void)211 __init void cc_random_init(void)
212 {
213 	/*
214 	 * The seed is 32 bytes (in units of longs), which is 256 bits, which
215 	 * is the security level that the RNG is targeting.
216 	 */
217 	unsigned long rng_seed[32 / sizeof(long)];
218 	size_t i, longs;
219 
220 	if (!cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT))
221 		return;
222 
223 	/*
224 	 * Since the CoCo threat model includes the host, the only reliable
225 	 * source of entropy that can be neither observed nor manipulated is
226 	 * RDRAND. Usually, RDRAND failure is considered tolerable, but since
227 	 * CoCo guests have no other unobservable source of entropy, it's
228 	 * important to at least ensure the RNG gets some initial random seeds.
229 	 */
230 	for (i = 0; i < ARRAY_SIZE(rng_seed); i += longs) {
231 		longs = arch_get_random_longs(&rng_seed[i], ARRAY_SIZE(rng_seed) - i);
232 
233 		/*
234 		 * A zero return value means that the guest doesn't have RDRAND
235 		 * or the CPU is physically broken, and in both cases that
236 		 * means most crypto inside of the CoCo instance will be
237 		 * broken, defeating the purpose of CoCo in the first place. So
238 		 * just panic here because it's absolutely unsafe to continue
239 		 * executing.
240 		 */
241 		if (longs == 0)
242 			panic("RDRAND is defective.");
243 	}
244 	add_device_randomness(rng_seed, sizeof(rng_seed));
245 	memzero_explicit(rng_seed, sizeof(rng_seed));
246 }
247