1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * This file is part of STM32 Crypto driver for Linux.
4 *
5 * Copyright (C) 2017, STMicroelectronics - All Rights Reserved
6 * Author(s): Lionel DEBIEVE <lionel.debieve@st.com> for STMicroelectronics.
7 */
8
9 #include <crypto/engine.h>
10 #include <crypto/internal/hash.h>
11 #include <crypto/md5.h>
12 #include <crypto/scatterwalk.h>
13 #include <crypto/sha1.h>
14 #include <crypto/sha2.h>
15 #include <crypto/sha3.h>
16 #include <linux/clk.h>
17 #include <linux/delay.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/dmaengine.h>
20 #include <linux/interrupt.h>
21 #include <linux/iopoll.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/of.h>
25 #include <linux/platform_device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/reset.h>
28 #include <linux/string.h>
29
30 #define HASH_CR 0x00
31 #define HASH_DIN 0x04
32 #define HASH_STR 0x08
33 #define HASH_UX500_HREG(x) (0x0c + ((x) * 0x04))
34 #define HASH_IMR 0x20
35 #define HASH_SR 0x24
36 #define HASH_CSR(x) (0x0F8 + ((x) * 0x04))
37 #define HASH_HREG(x) (0x310 + ((x) * 0x04))
38 #define HASH_HWCFGR 0x3F0
39 #define HASH_VER 0x3F4
40 #define HASH_ID 0x3F8
41
42 /* Control Register */
43 #define HASH_CR_INIT BIT(2)
44 #define HASH_CR_DMAE BIT(3)
45 #define HASH_CR_DATATYPE_POS 4
46 #define HASH_CR_MODE BIT(6)
47 #define HASH_CR_ALGO_POS 7
48 #define HASH_CR_MDMAT BIT(13)
49 #define HASH_CR_DMAA BIT(14)
50 #define HASH_CR_LKEY BIT(16)
51
52 /* Interrupt */
53 #define HASH_DINIE BIT(0)
54 #define HASH_DCIE BIT(1)
55
56 /* Interrupt Mask */
57 #define HASH_MASK_CALC_COMPLETION BIT(0)
58 #define HASH_MASK_DATA_INPUT BIT(1)
59
60 /* Status Flags */
61 #define HASH_SR_DATA_INPUT_READY BIT(0)
62 #define HASH_SR_OUTPUT_READY BIT(1)
63 #define HASH_SR_DMA_ACTIVE BIT(2)
64 #define HASH_SR_BUSY BIT(3)
65
66 /* STR Register */
67 #define HASH_STR_NBLW_MASK GENMASK(4, 0)
68 #define HASH_STR_DCAL BIT(8)
69
70 /* HWCFGR Register */
71 #define HASH_HWCFG_DMA_MASK GENMASK(3, 0)
72
73 /* Context swap register */
74 #define HASH_CSR_NB_SHA256_HMAC 54
75 #define HASH_CSR_NB_SHA256 38
76 #define HASH_CSR_NB_SHA512_HMAC 103
77 #define HASH_CSR_NB_SHA512 91
78 #define HASH_CSR_NB_SHA3_HMAC 88
79 #define HASH_CSR_NB_SHA3 72
80 #define HASH_CSR_NB_MAX HASH_CSR_NB_SHA512_HMAC
81
82 #define HASH_FLAGS_INIT BIT(0)
83 #define HASH_FLAGS_OUTPUT_READY BIT(1)
84 #define HASH_FLAGS_CPU BIT(2)
85 #define HASH_FLAGS_DMA_ACTIVE BIT(3)
86 #define HASH_FLAGS_HMAC_INIT BIT(4)
87 #define HASH_FLAGS_HMAC_FINAL BIT(5)
88 #define HASH_FLAGS_HMAC_KEY BIT(6)
89 #define HASH_FLAGS_SHA3_MODE BIT(7)
90 #define HASH_FLAGS_FINAL BIT(15)
91 #define HASH_FLAGS_FINUP BIT(16)
92 #define HASH_FLAGS_ALGO_MASK GENMASK(20, 17)
93 #define HASH_FLAGS_ALGO_SHIFT 17
94 #define HASH_FLAGS_ERRORS BIT(21)
95 #define HASH_FLAGS_EMPTY BIT(22)
96 #define HASH_FLAGS_HMAC BIT(23)
97 #define HASH_FLAGS_SGS_COPIED BIT(24)
98
99 #define HASH_OP_UPDATE 1
100 #define HASH_OP_FINAL 2
101
102 #define HASH_BURST_LEVEL 4
103
104 enum stm32_hash_data_format {
105 HASH_DATA_32_BITS = 0x0,
106 HASH_DATA_16_BITS = 0x1,
107 HASH_DATA_8_BITS = 0x2,
108 HASH_DATA_1_BIT = 0x3
109 };
110
111 #define HASH_BUFLEN (SHA3_224_BLOCK_SIZE + 4)
112 #define HASH_MAX_KEY_SIZE (SHA512_BLOCK_SIZE * 8)
113
114 enum stm32_hash_algo {
115 HASH_SHA1 = 0,
116 HASH_MD5 = 1,
117 HASH_SHA224 = 2,
118 HASH_SHA256 = 3,
119 HASH_SHA3_224 = 4,
120 HASH_SHA3_256 = 5,
121 HASH_SHA3_384 = 6,
122 HASH_SHA3_512 = 7,
123 HASH_SHA384 = 12,
124 HASH_SHA512 = 15,
125 };
126
127 enum ux500_hash_algo {
128 HASH_SHA256_UX500 = 0,
129 HASH_SHA1_UX500 = 1,
130 };
131
132 #define HASH_AUTOSUSPEND_DELAY 50
133
134 struct stm32_hash_ctx {
135 struct stm32_hash_dev *hdev;
136 struct crypto_shash *xtfm;
137 unsigned long flags;
138
139 u8 key[HASH_MAX_KEY_SIZE];
140 int keylen;
141 };
142
143 struct stm32_hash_state {
144 u32 flags;
145
146 u16 bufcnt;
147 u16 blocklen;
148
149 u8 buffer[HASH_BUFLEN] __aligned(sizeof(u32));
150
151 /* hash state */
152 u32 hw_context[3 + HASH_CSR_NB_MAX];
153 };
154
155 struct stm32_hash_request_ctx {
156 struct stm32_hash_dev *hdev;
157 unsigned long op;
158
159 u8 digest[SHA512_DIGEST_SIZE] __aligned(sizeof(u32));
160 size_t digcnt;
161
162 struct scatterlist *sg;
163 struct scatterlist sgl[2]; /* scatterlist used to realize alignment */
164 unsigned int offset;
165 unsigned int total;
166 struct scatterlist sg_key;
167
168 dma_addr_t dma_addr;
169 size_t dma_ct;
170 int nents;
171
172 u8 data_type;
173
174 struct stm32_hash_state state;
175 };
176
177 struct stm32_hash_algs_info {
178 struct ahash_engine_alg *algs_list;
179 size_t size;
180 };
181
182 struct stm32_hash_pdata {
183 const int alg_shift;
184 const struct stm32_hash_algs_info *algs_info;
185 size_t algs_info_size;
186 bool has_sr;
187 bool has_mdmat;
188 bool context_secured;
189 bool broken_emptymsg;
190 bool ux500;
191 };
192
193 struct stm32_hash_dev {
194 struct list_head list;
195 struct device *dev;
196 struct clk *clk;
197 struct reset_control *rst;
198 void __iomem *io_base;
199 phys_addr_t phys_base;
200 u8 xmit_buf[HASH_BUFLEN] __aligned(sizeof(u32));
201 u32 dma_mode;
202 bool polled;
203
204 struct ahash_request *req;
205 struct crypto_engine *engine;
206
207 unsigned long flags;
208
209 struct dma_chan *dma_lch;
210 struct completion dma_completion;
211
212 const struct stm32_hash_pdata *pdata;
213 };
214
215 struct stm32_hash_drv {
216 struct list_head dev_list;
217 spinlock_t lock; /* List protection access */
218 };
219
220 static struct stm32_hash_drv stm32_hash = {
221 .dev_list = LIST_HEAD_INIT(stm32_hash.dev_list),
222 .lock = __SPIN_LOCK_UNLOCKED(stm32_hash.lock),
223 };
224
225 static void stm32_hash_dma_callback(void *param);
226 static int stm32_hash_prepare_request(struct ahash_request *req);
227 static void stm32_hash_unprepare_request(struct ahash_request *req);
228
stm32_hash_read(struct stm32_hash_dev * hdev,u32 offset)229 static inline u32 stm32_hash_read(struct stm32_hash_dev *hdev, u32 offset)
230 {
231 return readl_relaxed(hdev->io_base + offset);
232 }
233
stm32_hash_write(struct stm32_hash_dev * hdev,u32 offset,u32 value)234 static inline void stm32_hash_write(struct stm32_hash_dev *hdev,
235 u32 offset, u32 value)
236 {
237 writel_relaxed(value, hdev->io_base + offset);
238 }
239
240 /**
241 * stm32_hash_wait_busy - wait until hash processor is available. It return an
242 * error if the hash core is processing a block of data for more than 10 ms.
243 * @hdev: the stm32_hash_dev device.
244 */
stm32_hash_wait_busy(struct stm32_hash_dev * hdev)245 static inline int stm32_hash_wait_busy(struct stm32_hash_dev *hdev)
246 {
247 u32 status;
248
249 /* The Ux500 lacks the special status register, we poll the DCAL bit instead */
250 if (!hdev->pdata->has_sr)
251 return readl_relaxed_poll_timeout(hdev->io_base + HASH_STR, status,
252 !(status & HASH_STR_DCAL), 10, 10000);
253
254 return readl_relaxed_poll_timeout(hdev->io_base + HASH_SR, status,
255 !(status & HASH_SR_BUSY), 10, 10000);
256 }
257
258 /**
259 * stm32_hash_set_nblw - set the number of valid bytes in the last word.
260 * @hdev: the stm32_hash_dev device.
261 * @length: the length of the final word.
262 */
stm32_hash_set_nblw(struct stm32_hash_dev * hdev,int length)263 static void stm32_hash_set_nblw(struct stm32_hash_dev *hdev, int length)
264 {
265 u32 reg;
266
267 reg = stm32_hash_read(hdev, HASH_STR);
268 reg &= ~(HASH_STR_NBLW_MASK);
269 reg |= (8U * ((length) % 4U));
270 stm32_hash_write(hdev, HASH_STR, reg);
271 }
272
stm32_hash_write_key(struct stm32_hash_dev * hdev)273 static int stm32_hash_write_key(struct stm32_hash_dev *hdev)
274 {
275 struct crypto_ahash *tfm = crypto_ahash_reqtfm(hdev->req);
276 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
277 u32 reg;
278 int keylen = ctx->keylen;
279 void *key = ctx->key;
280
281 if (keylen) {
282 stm32_hash_set_nblw(hdev, keylen);
283
284 while (keylen > 0) {
285 stm32_hash_write(hdev, HASH_DIN, *(u32 *)key);
286 keylen -= 4;
287 key += 4;
288 }
289
290 reg = stm32_hash_read(hdev, HASH_STR);
291 reg |= HASH_STR_DCAL;
292 stm32_hash_write(hdev, HASH_STR, reg);
293
294 return -EINPROGRESS;
295 }
296
297 return 0;
298 }
299
300 /**
301 * stm32_hash_write_ctrl - Initialize the hash processor, only if
302 * HASH_FLAGS_INIT is set.
303 * @hdev: the stm32_hash_dev device
304 */
stm32_hash_write_ctrl(struct stm32_hash_dev * hdev)305 static void stm32_hash_write_ctrl(struct stm32_hash_dev *hdev)
306 {
307 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req);
308 struct crypto_ahash *tfm = crypto_ahash_reqtfm(hdev->req);
309 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
310 struct stm32_hash_state *state = &rctx->state;
311 u32 alg = (state->flags & HASH_FLAGS_ALGO_MASK) >> HASH_FLAGS_ALGO_SHIFT;
312
313 u32 reg = HASH_CR_INIT;
314
315 if (!(hdev->flags & HASH_FLAGS_INIT)) {
316 if (hdev->pdata->ux500) {
317 reg |= ((alg & BIT(0)) << HASH_CR_ALGO_POS);
318 } else {
319 if (hdev->pdata->alg_shift == HASH_CR_ALGO_POS)
320 reg |= ((alg & BIT(1)) << 17) |
321 ((alg & BIT(0)) << HASH_CR_ALGO_POS);
322 else
323 reg |= alg << hdev->pdata->alg_shift;
324 }
325
326 reg |= (rctx->data_type << HASH_CR_DATATYPE_POS);
327
328 if (state->flags & HASH_FLAGS_HMAC) {
329 hdev->flags |= HASH_FLAGS_HMAC;
330 reg |= HASH_CR_MODE;
331 if (ctx->keylen > crypto_ahash_blocksize(tfm))
332 reg |= HASH_CR_LKEY;
333 }
334
335 if (!hdev->polled)
336 stm32_hash_write(hdev, HASH_IMR, HASH_DCIE);
337
338 stm32_hash_write(hdev, HASH_CR, reg);
339
340 hdev->flags |= HASH_FLAGS_INIT;
341
342 /*
343 * After first block + 1 words are fill up,
344 * we only need to fill 1 block to start partial computation
345 */
346 rctx->state.blocklen -= sizeof(u32);
347
348 dev_dbg(hdev->dev, "Write Control %x\n", reg);
349 }
350 }
351
stm32_hash_append_sg(struct stm32_hash_request_ctx * rctx)352 static void stm32_hash_append_sg(struct stm32_hash_request_ctx *rctx)
353 {
354 struct stm32_hash_state *state = &rctx->state;
355 size_t count;
356
357 while ((state->bufcnt < state->blocklen) && rctx->total) {
358 count = min(rctx->sg->length - rctx->offset, rctx->total);
359 count = min_t(size_t, count, state->blocklen - state->bufcnt);
360
361 if (count <= 0) {
362 if ((rctx->sg->length == 0) && !sg_is_last(rctx->sg)) {
363 rctx->sg = sg_next(rctx->sg);
364 continue;
365 } else {
366 break;
367 }
368 }
369
370 scatterwalk_map_and_copy(state->buffer + state->bufcnt,
371 rctx->sg, rctx->offset, count, 0);
372
373 state->bufcnt += count;
374 rctx->offset += count;
375 rctx->total -= count;
376
377 if (rctx->offset == rctx->sg->length) {
378 rctx->sg = sg_next(rctx->sg);
379 if (rctx->sg)
380 rctx->offset = 0;
381 else
382 rctx->total = 0;
383 }
384 }
385 }
386
stm32_hash_xmit_cpu(struct stm32_hash_dev * hdev,const u8 * buf,size_t length,int final)387 static int stm32_hash_xmit_cpu(struct stm32_hash_dev *hdev,
388 const u8 *buf, size_t length, int final)
389 {
390 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req);
391 struct stm32_hash_state *state = &rctx->state;
392 unsigned int count, len32;
393 const u32 *buffer = (const u32 *)buf;
394 u32 reg;
395
396 if (final) {
397 hdev->flags |= HASH_FLAGS_FINAL;
398
399 /* Do not process empty messages if hw is buggy. */
400 if (!(hdev->flags & HASH_FLAGS_INIT) && !length &&
401 hdev->pdata->broken_emptymsg) {
402 state->flags |= HASH_FLAGS_EMPTY;
403 return 0;
404 }
405 }
406
407 len32 = DIV_ROUND_UP(length, sizeof(u32));
408
409 dev_dbg(hdev->dev, "%s: length: %zd, final: %x len32 %i\n",
410 __func__, length, final, len32);
411
412 hdev->flags |= HASH_FLAGS_CPU;
413
414 stm32_hash_write_ctrl(hdev);
415
416 if (stm32_hash_wait_busy(hdev))
417 return -ETIMEDOUT;
418
419 if ((hdev->flags & HASH_FLAGS_HMAC) &&
420 (!(hdev->flags & HASH_FLAGS_HMAC_KEY))) {
421 hdev->flags |= HASH_FLAGS_HMAC_KEY;
422 stm32_hash_write_key(hdev);
423 if (stm32_hash_wait_busy(hdev))
424 return -ETIMEDOUT;
425 }
426
427 for (count = 0; count < len32; count++)
428 stm32_hash_write(hdev, HASH_DIN, buffer[count]);
429
430 if (final) {
431 if (stm32_hash_wait_busy(hdev))
432 return -ETIMEDOUT;
433
434 stm32_hash_set_nblw(hdev, length);
435 reg = stm32_hash_read(hdev, HASH_STR);
436 reg |= HASH_STR_DCAL;
437 stm32_hash_write(hdev, HASH_STR, reg);
438 if (hdev->flags & HASH_FLAGS_HMAC) {
439 if (stm32_hash_wait_busy(hdev))
440 return -ETIMEDOUT;
441 stm32_hash_write_key(hdev);
442 }
443 return -EINPROGRESS;
444 }
445
446 return 0;
447 }
448
hash_swap_reg(struct stm32_hash_request_ctx * rctx)449 static int hash_swap_reg(struct stm32_hash_request_ctx *rctx)
450 {
451 struct stm32_hash_state *state = &rctx->state;
452
453 switch ((state->flags & HASH_FLAGS_ALGO_MASK) >>
454 HASH_FLAGS_ALGO_SHIFT) {
455 case HASH_MD5:
456 case HASH_SHA1:
457 case HASH_SHA224:
458 case HASH_SHA256:
459 if (state->flags & HASH_FLAGS_HMAC)
460 return HASH_CSR_NB_SHA256_HMAC;
461 else
462 return HASH_CSR_NB_SHA256;
463 break;
464
465 case HASH_SHA384:
466 case HASH_SHA512:
467 if (state->flags & HASH_FLAGS_HMAC)
468 return HASH_CSR_NB_SHA512_HMAC;
469 else
470 return HASH_CSR_NB_SHA512;
471 break;
472
473 case HASH_SHA3_224:
474 case HASH_SHA3_256:
475 case HASH_SHA3_384:
476 case HASH_SHA3_512:
477 if (state->flags & HASH_FLAGS_HMAC)
478 return HASH_CSR_NB_SHA3_HMAC;
479 else
480 return HASH_CSR_NB_SHA3;
481 break;
482
483 default:
484 return -EINVAL;
485 }
486 }
487
stm32_hash_update_cpu(struct stm32_hash_dev * hdev)488 static int stm32_hash_update_cpu(struct stm32_hash_dev *hdev)
489 {
490 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req);
491 struct stm32_hash_state *state = &rctx->state;
492 int bufcnt, err = 0, final;
493
494 dev_dbg(hdev->dev, "%s flags %x\n", __func__, state->flags);
495
496 final = state->flags & HASH_FLAGS_FINAL;
497
498 while ((rctx->total >= state->blocklen) ||
499 (state->bufcnt + rctx->total >= state->blocklen)) {
500 stm32_hash_append_sg(rctx);
501 bufcnt = state->bufcnt;
502 state->bufcnt = 0;
503 err = stm32_hash_xmit_cpu(hdev, state->buffer, bufcnt, 0);
504 if (err)
505 return err;
506 }
507
508 stm32_hash_append_sg(rctx);
509
510 if (final) {
511 bufcnt = state->bufcnt;
512 state->bufcnt = 0;
513 return stm32_hash_xmit_cpu(hdev, state->buffer, bufcnt, 1);
514 }
515
516 return err;
517 }
518
stm32_hash_xmit_dma(struct stm32_hash_dev * hdev,struct scatterlist * sg,int length,int mdmat)519 static int stm32_hash_xmit_dma(struct stm32_hash_dev *hdev,
520 struct scatterlist *sg, int length, int mdmat)
521 {
522 struct dma_async_tx_descriptor *in_desc;
523 dma_cookie_t cookie;
524 u32 reg;
525 int err;
526
527 dev_dbg(hdev->dev, "%s mdmat: %x length: %d\n", __func__, mdmat, length);
528
529 /* do not use dma if there is no data to send */
530 if (length <= 0)
531 return 0;
532
533 in_desc = dmaengine_prep_slave_sg(hdev->dma_lch, sg, 1,
534 DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT |
535 DMA_CTRL_ACK);
536 if (!in_desc) {
537 dev_err(hdev->dev, "dmaengine_prep_slave error\n");
538 return -ENOMEM;
539 }
540
541 reinit_completion(&hdev->dma_completion);
542 in_desc->callback = stm32_hash_dma_callback;
543 in_desc->callback_param = hdev;
544
545 hdev->flags |= HASH_FLAGS_DMA_ACTIVE;
546
547 reg = stm32_hash_read(hdev, HASH_CR);
548
549 if (hdev->pdata->has_mdmat) {
550 if (mdmat)
551 reg |= HASH_CR_MDMAT;
552 else
553 reg &= ~HASH_CR_MDMAT;
554 }
555 reg |= HASH_CR_DMAE;
556
557 stm32_hash_write(hdev, HASH_CR, reg);
558
559
560 cookie = dmaengine_submit(in_desc);
561 err = dma_submit_error(cookie);
562 if (err)
563 return -ENOMEM;
564
565 dma_async_issue_pending(hdev->dma_lch);
566
567 if (!wait_for_completion_timeout(&hdev->dma_completion,
568 msecs_to_jiffies(100)))
569 err = -ETIMEDOUT;
570
571 if (dma_async_is_tx_complete(hdev->dma_lch, cookie,
572 NULL, NULL) != DMA_COMPLETE)
573 err = -ETIMEDOUT;
574
575 if (err) {
576 dev_err(hdev->dev, "DMA Error %i\n", err);
577 dmaengine_terminate_all(hdev->dma_lch);
578 return err;
579 }
580
581 return -EINPROGRESS;
582 }
583
stm32_hash_dma_callback(void * param)584 static void stm32_hash_dma_callback(void *param)
585 {
586 struct stm32_hash_dev *hdev = param;
587
588 complete(&hdev->dma_completion);
589 }
590
stm32_hash_hmac_dma_send(struct stm32_hash_dev * hdev)591 static int stm32_hash_hmac_dma_send(struct stm32_hash_dev *hdev)
592 {
593 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req);
594 struct crypto_ahash *tfm = crypto_ahash_reqtfm(hdev->req);
595 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
596 int err;
597
598 if (ctx->keylen < rctx->state.blocklen || hdev->dma_mode > 0) {
599 err = stm32_hash_write_key(hdev);
600 if (stm32_hash_wait_busy(hdev))
601 return -ETIMEDOUT;
602 } else {
603 if (!(hdev->flags & HASH_FLAGS_HMAC_KEY))
604 sg_init_one(&rctx->sg_key, ctx->key,
605 ALIGN(ctx->keylen, sizeof(u32)));
606
607 rctx->dma_ct = dma_map_sg(hdev->dev, &rctx->sg_key, 1,
608 DMA_TO_DEVICE);
609 if (rctx->dma_ct == 0) {
610 dev_err(hdev->dev, "dma_map_sg error\n");
611 return -ENOMEM;
612 }
613
614 err = stm32_hash_xmit_dma(hdev, &rctx->sg_key, ctx->keylen, 0);
615
616 dma_unmap_sg(hdev->dev, &rctx->sg_key, 1, DMA_TO_DEVICE);
617 }
618
619 return err;
620 }
621
stm32_hash_dma_init(struct stm32_hash_dev * hdev)622 static int stm32_hash_dma_init(struct stm32_hash_dev *hdev)
623 {
624 struct dma_slave_config dma_conf;
625 struct dma_chan *chan;
626 int err;
627
628 memset(&dma_conf, 0, sizeof(dma_conf));
629
630 dma_conf.direction = DMA_MEM_TO_DEV;
631 dma_conf.dst_addr = hdev->phys_base + HASH_DIN;
632 dma_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
633 dma_conf.src_maxburst = HASH_BURST_LEVEL;
634 dma_conf.dst_maxburst = HASH_BURST_LEVEL;
635 dma_conf.device_fc = false;
636
637 chan = dma_request_chan(hdev->dev, "in");
638 if (IS_ERR(chan))
639 return PTR_ERR(chan);
640
641 hdev->dma_lch = chan;
642
643 err = dmaengine_slave_config(hdev->dma_lch, &dma_conf);
644 if (err) {
645 dma_release_channel(hdev->dma_lch);
646 hdev->dma_lch = NULL;
647 dev_err(hdev->dev, "Couldn't configure DMA slave.\n");
648 return err;
649 }
650
651 init_completion(&hdev->dma_completion);
652
653 return 0;
654 }
655
stm32_hash_dma_send(struct stm32_hash_dev * hdev)656 static int stm32_hash_dma_send(struct stm32_hash_dev *hdev)
657 {
658 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req);
659 u32 *buffer = (void *)rctx->state.buffer;
660 struct scatterlist sg[1], *tsg;
661 int err = 0, reg, ncp = 0;
662 unsigned int i, len = 0, bufcnt = 0;
663 bool final = hdev->flags & HASH_FLAGS_FINAL;
664 bool is_last = false;
665 u32 last_word;
666
667 dev_dbg(hdev->dev, "%s total: %d bufcnt: %d final: %d\n",
668 __func__, rctx->total, rctx->state.bufcnt, final);
669
670 if (rctx->nents < 0)
671 return -EINVAL;
672
673 stm32_hash_write_ctrl(hdev);
674
675 if (hdev->flags & HASH_FLAGS_HMAC && (!(hdev->flags & HASH_FLAGS_HMAC_KEY))) {
676 hdev->flags |= HASH_FLAGS_HMAC_KEY;
677 err = stm32_hash_hmac_dma_send(hdev);
678 if (err != -EINPROGRESS)
679 return err;
680 }
681
682 for_each_sg(rctx->sg, tsg, rctx->nents, i) {
683 sg[0] = *tsg;
684 len = sg->length;
685
686 if (sg_is_last(sg) || (bufcnt + sg[0].length) >= rctx->total) {
687 if (!final) {
688 /* Always manually put the last word of a non-final transfer. */
689 len -= sizeof(u32);
690 sg_pcopy_to_buffer(rctx->sg, rctx->nents, &last_word, 4, len);
691 sg->length -= sizeof(u32);
692 } else {
693 /*
694 * In Multiple DMA mode, DMA must be aborted before the final
695 * transfer.
696 */
697 sg->length = rctx->total - bufcnt;
698 if (hdev->dma_mode > 0) {
699 len = (ALIGN(sg->length, 16) - 16);
700
701 ncp = sg_pcopy_to_buffer(rctx->sg, rctx->nents,
702 rctx->state.buffer,
703 sg->length - len,
704 rctx->total - sg->length + len);
705
706 if (!len)
707 break;
708
709 sg->length = len;
710 } else {
711 is_last = true;
712 if (!(IS_ALIGNED(sg->length, sizeof(u32)))) {
713 len = sg->length;
714 sg->length = ALIGN(sg->length,
715 sizeof(u32));
716 }
717 }
718 }
719 }
720
721 rctx->dma_ct = dma_map_sg(hdev->dev, sg, 1,
722 DMA_TO_DEVICE);
723 if (rctx->dma_ct == 0) {
724 dev_err(hdev->dev, "dma_map_sg error\n");
725 return -ENOMEM;
726 }
727
728 err = stm32_hash_xmit_dma(hdev, sg, len, !is_last);
729
730 /* The last word of a non final transfer is sent manually. */
731 if (!final) {
732 stm32_hash_write(hdev, HASH_DIN, last_word);
733 len += sizeof(u32);
734 }
735
736 rctx->total -= len;
737
738 bufcnt += sg[0].length;
739 dma_unmap_sg(hdev->dev, sg, 1, DMA_TO_DEVICE);
740
741 if (err == -ENOMEM || err == -ETIMEDOUT)
742 return err;
743 if (is_last)
744 break;
745 }
746
747 /*
748 * When the second last block transfer of 4 words is performed by the DMA,
749 * the software must set the DMA Abort bit (DMAA) to 1 before completing the
750 * last transfer of 4 words or less.
751 */
752 if (final) {
753 if (hdev->dma_mode > 0) {
754 if (stm32_hash_wait_busy(hdev))
755 return -ETIMEDOUT;
756 reg = stm32_hash_read(hdev, HASH_CR);
757 reg &= ~HASH_CR_DMAE;
758 reg |= HASH_CR_DMAA;
759 stm32_hash_write(hdev, HASH_CR, reg);
760
761 if (ncp) {
762 memset(buffer + ncp, 0, 4 - DIV_ROUND_UP(ncp, sizeof(u32)));
763 writesl(hdev->io_base + HASH_DIN, buffer,
764 DIV_ROUND_UP(ncp, sizeof(u32)));
765 }
766
767 stm32_hash_set_nblw(hdev, ncp);
768 reg = stm32_hash_read(hdev, HASH_STR);
769 reg |= HASH_STR_DCAL;
770 stm32_hash_write(hdev, HASH_STR, reg);
771 err = -EINPROGRESS;
772 }
773
774 /*
775 * The hash processor needs the key to be loaded a second time in order
776 * to process the HMAC.
777 */
778 if (hdev->flags & HASH_FLAGS_HMAC) {
779 if (stm32_hash_wait_busy(hdev))
780 return -ETIMEDOUT;
781 err = stm32_hash_hmac_dma_send(hdev);
782 }
783
784 return err;
785 }
786
787 if (err != -EINPROGRESS)
788 return err;
789
790 return 0;
791 }
792
stm32_hash_find_dev(struct stm32_hash_ctx * ctx)793 static struct stm32_hash_dev *stm32_hash_find_dev(struct stm32_hash_ctx *ctx)
794 {
795 struct stm32_hash_dev *hdev = NULL, *tmp;
796
797 spin_lock_bh(&stm32_hash.lock);
798 if (!ctx->hdev) {
799 list_for_each_entry(tmp, &stm32_hash.dev_list, list) {
800 hdev = tmp;
801 break;
802 }
803 ctx->hdev = hdev;
804 } else {
805 hdev = ctx->hdev;
806 }
807
808 spin_unlock_bh(&stm32_hash.lock);
809
810 return hdev;
811 }
812
stm32_hash_init(struct ahash_request * req)813 static int stm32_hash_init(struct ahash_request *req)
814 {
815 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
816 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
817 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
818 struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
819 struct stm32_hash_state *state = &rctx->state;
820 bool sha3_mode = ctx->flags & HASH_FLAGS_SHA3_MODE;
821
822 rctx->hdev = hdev;
823 state->flags = 0;
824
825 if (!(hdev->dma_lch && hdev->pdata->has_mdmat))
826 state->flags |= HASH_FLAGS_CPU;
827
828 if (sha3_mode)
829 state->flags |= HASH_FLAGS_SHA3_MODE;
830
831 rctx->digcnt = crypto_ahash_digestsize(tfm);
832 switch (rctx->digcnt) {
833 case MD5_DIGEST_SIZE:
834 state->flags |= HASH_MD5 << HASH_FLAGS_ALGO_SHIFT;
835 break;
836 case SHA1_DIGEST_SIZE:
837 if (hdev->pdata->ux500)
838 state->flags |= HASH_SHA1_UX500 << HASH_FLAGS_ALGO_SHIFT;
839 else
840 state->flags |= HASH_SHA1 << HASH_FLAGS_ALGO_SHIFT;
841 break;
842 case SHA224_DIGEST_SIZE:
843 if (sha3_mode)
844 state->flags |= HASH_SHA3_224 << HASH_FLAGS_ALGO_SHIFT;
845 else
846 state->flags |= HASH_SHA224 << HASH_FLAGS_ALGO_SHIFT;
847 break;
848 case SHA256_DIGEST_SIZE:
849 if (sha3_mode) {
850 state->flags |= HASH_SHA3_256 << HASH_FLAGS_ALGO_SHIFT;
851 } else {
852 if (hdev->pdata->ux500)
853 state->flags |= HASH_SHA256_UX500 << HASH_FLAGS_ALGO_SHIFT;
854 else
855 state->flags |= HASH_SHA256 << HASH_FLAGS_ALGO_SHIFT;
856 }
857 break;
858 case SHA384_DIGEST_SIZE:
859 if (sha3_mode)
860 state->flags |= HASH_SHA3_384 << HASH_FLAGS_ALGO_SHIFT;
861 else
862 state->flags |= HASH_SHA384 << HASH_FLAGS_ALGO_SHIFT;
863 break;
864 case SHA512_DIGEST_SIZE:
865 if (sha3_mode)
866 state->flags |= HASH_SHA3_512 << HASH_FLAGS_ALGO_SHIFT;
867 else
868 state->flags |= HASH_SHA512 << HASH_FLAGS_ALGO_SHIFT;
869 break;
870 default:
871 return -EINVAL;
872 }
873
874 rctx->state.bufcnt = 0;
875 rctx->state.blocklen = crypto_ahash_blocksize(tfm) + sizeof(u32);
876 if (rctx->state.blocklen > HASH_BUFLEN) {
877 dev_err(hdev->dev, "Error, block too large");
878 return -EINVAL;
879 }
880 rctx->nents = 0;
881 rctx->total = 0;
882 rctx->offset = 0;
883 rctx->data_type = HASH_DATA_8_BITS;
884
885 if (ctx->flags & HASH_FLAGS_HMAC)
886 state->flags |= HASH_FLAGS_HMAC;
887
888 dev_dbg(hdev->dev, "%s Flags %x\n", __func__, state->flags);
889
890 return 0;
891 }
892
stm32_hash_update_req(struct stm32_hash_dev * hdev)893 static int stm32_hash_update_req(struct stm32_hash_dev *hdev)
894 {
895 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req);
896 struct stm32_hash_state *state = &rctx->state;
897
898 dev_dbg(hdev->dev, "update_req: total: %u, digcnt: %zd, final: 0",
899 rctx->total, rctx->digcnt);
900
901 if (!(state->flags & HASH_FLAGS_CPU))
902 return stm32_hash_dma_send(hdev);
903
904 return stm32_hash_update_cpu(hdev);
905 }
906
stm32_hash_final_req(struct stm32_hash_dev * hdev)907 static int stm32_hash_final_req(struct stm32_hash_dev *hdev)
908 {
909 struct ahash_request *req = hdev->req;
910 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
911 struct stm32_hash_state *state = &rctx->state;
912 int buflen = state->bufcnt;
913
914 if (!(state->flags & HASH_FLAGS_CPU)) {
915 hdev->flags |= HASH_FLAGS_FINAL;
916 return stm32_hash_dma_send(hdev);
917 }
918
919 if (state->flags & HASH_FLAGS_FINUP)
920 return stm32_hash_update_req(hdev);
921
922 state->bufcnt = 0;
923
924 return stm32_hash_xmit_cpu(hdev, state->buffer, buflen, 1);
925 }
926
stm32_hash_emptymsg_fallback(struct ahash_request * req)927 static void stm32_hash_emptymsg_fallback(struct ahash_request *req)
928 {
929 struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
930 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(ahash);
931 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
932 struct stm32_hash_dev *hdev = rctx->hdev;
933 int ret;
934
935 dev_dbg(hdev->dev, "use fallback message size 0 key size %d\n",
936 ctx->keylen);
937
938 if (!ctx->xtfm) {
939 dev_err(hdev->dev, "no fallback engine\n");
940 return;
941 }
942
943 if (ctx->keylen) {
944 ret = crypto_shash_setkey(ctx->xtfm, ctx->key, ctx->keylen);
945 if (ret) {
946 dev_err(hdev->dev, "failed to set key ret=%d\n", ret);
947 return;
948 }
949 }
950
951 ret = crypto_shash_tfm_digest(ctx->xtfm, NULL, 0, rctx->digest);
952 if (ret)
953 dev_err(hdev->dev, "shash digest error\n");
954 }
955
stm32_hash_copy_hash(struct ahash_request * req)956 static void stm32_hash_copy_hash(struct ahash_request *req)
957 {
958 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
959 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
960 struct stm32_hash_state *state = &rctx->state;
961 struct stm32_hash_dev *hdev = rctx->hdev;
962 __be32 *hash = (void *)rctx->digest;
963 unsigned int i, hashsize;
964
965 if (hdev->pdata->broken_emptymsg && (state->flags & HASH_FLAGS_EMPTY))
966 return stm32_hash_emptymsg_fallback(req);
967
968 hashsize = crypto_ahash_digestsize(tfm);
969
970 for (i = 0; i < hashsize / sizeof(u32); i++) {
971 if (hdev->pdata->ux500)
972 hash[i] = cpu_to_be32(stm32_hash_read(hdev,
973 HASH_UX500_HREG(i)));
974 else
975 hash[i] = cpu_to_be32(stm32_hash_read(hdev,
976 HASH_HREG(i)));
977 }
978 }
979
stm32_hash_finish(struct ahash_request * req)980 static int stm32_hash_finish(struct ahash_request *req)
981 {
982 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
983 u32 reg;
984
985 reg = stm32_hash_read(rctx->hdev, HASH_SR);
986 reg &= ~HASH_SR_OUTPUT_READY;
987 stm32_hash_write(rctx->hdev, HASH_SR, reg);
988
989 if (!req->result)
990 return -EINVAL;
991
992 memcpy(req->result, rctx->digest, rctx->digcnt);
993
994 return 0;
995 }
996
stm32_hash_finish_req(struct ahash_request * req,int err)997 static void stm32_hash_finish_req(struct ahash_request *req, int err)
998 {
999 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
1000 struct stm32_hash_state *state = &rctx->state;
1001 struct stm32_hash_dev *hdev = rctx->hdev;
1002
1003 if (hdev->flags & HASH_FLAGS_DMA_ACTIVE)
1004 state->flags |= HASH_FLAGS_DMA_ACTIVE;
1005 else
1006 state->flags &= ~HASH_FLAGS_DMA_ACTIVE;
1007
1008 if (!err && (HASH_FLAGS_FINAL & hdev->flags)) {
1009 stm32_hash_copy_hash(req);
1010 err = stm32_hash_finish(req);
1011 }
1012
1013 /* Finalized request mist be unprepared here */
1014 stm32_hash_unprepare_request(req);
1015
1016 crypto_finalize_hash_request(hdev->engine, req, err);
1017 }
1018
stm32_hash_handle_queue(struct stm32_hash_dev * hdev,struct ahash_request * req)1019 static int stm32_hash_handle_queue(struct stm32_hash_dev *hdev,
1020 struct ahash_request *req)
1021 {
1022 return crypto_transfer_hash_request_to_engine(hdev->engine, req);
1023 }
1024
stm32_hash_one_request(struct crypto_engine * engine,void * areq)1025 static int stm32_hash_one_request(struct crypto_engine *engine, void *areq)
1026 {
1027 struct ahash_request *req = container_of(areq, struct ahash_request,
1028 base);
1029 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
1030 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
1031 struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
1032 struct stm32_hash_state *state = &rctx->state;
1033 int swap_reg;
1034 int err = 0;
1035
1036 if (!hdev)
1037 return -ENODEV;
1038
1039 dev_dbg(hdev->dev, "processing new req, op: %lu, nbytes %d\n",
1040 rctx->op, req->nbytes);
1041
1042 pm_runtime_get_sync(hdev->dev);
1043
1044 err = stm32_hash_prepare_request(req);
1045 if (err)
1046 return err;
1047
1048 hdev->req = req;
1049 hdev->flags = 0;
1050 swap_reg = hash_swap_reg(rctx);
1051
1052 if (state->flags & HASH_FLAGS_INIT) {
1053 u32 *preg = rctx->state.hw_context;
1054 u32 reg;
1055 int i;
1056
1057 if (!hdev->pdata->ux500)
1058 stm32_hash_write(hdev, HASH_IMR, *preg++);
1059 stm32_hash_write(hdev, HASH_STR, *preg++);
1060 stm32_hash_write(hdev, HASH_CR, *preg);
1061 reg = *preg++ | HASH_CR_INIT;
1062 stm32_hash_write(hdev, HASH_CR, reg);
1063
1064 for (i = 0; i < swap_reg; i++)
1065 stm32_hash_write(hdev, HASH_CSR(i), *preg++);
1066
1067 hdev->flags |= HASH_FLAGS_INIT;
1068
1069 if (state->flags & HASH_FLAGS_HMAC)
1070 hdev->flags |= HASH_FLAGS_HMAC |
1071 HASH_FLAGS_HMAC_KEY;
1072
1073 if (state->flags & HASH_FLAGS_CPU)
1074 hdev->flags |= HASH_FLAGS_CPU;
1075
1076 if (state->flags & HASH_FLAGS_DMA_ACTIVE)
1077 hdev->flags |= HASH_FLAGS_DMA_ACTIVE;
1078 }
1079
1080 if (rctx->op == HASH_OP_UPDATE)
1081 err = stm32_hash_update_req(hdev);
1082 else if (rctx->op == HASH_OP_FINAL)
1083 err = stm32_hash_final_req(hdev);
1084
1085 /* If we have an IRQ, wait for that, else poll for completion */
1086 if (err == -EINPROGRESS && hdev->polled) {
1087 if (stm32_hash_wait_busy(hdev))
1088 err = -ETIMEDOUT;
1089 else {
1090 hdev->flags |= HASH_FLAGS_OUTPUT_READY;
1091 err = 0;
1092 }
1093 }
1094
1095 if (err != -EINPROGRESS)
1096 /* done task will not finish it, so do it here */
1097 stm32_hash_finish_req(req, err);
1098
1099 return 0;
1100 }
1101
stm32_hash_copy_sgs(struct stm32_hash_request_ctx * rctx,struct scatterlist * sg,int bs,unsigned int new_len)1102 static int stm32_hash_copy_sgs(struct stm32_hash_request_ctx *rctx,
1103 struct scatterlist *sg, int bs,
1104 unsigned int new_len)
1105 {
1106 struct stm32_hash_state *state = &rctx->state;
1107 int pages;
1108 void *buf;
1109
1110 pages = get_order(new_len);
1111
1112 buf = (void *)__get_free_pages(GFP_ATOMIC, pages);
1113 if (!buf) {
1114 pr_err("Couldn't allocate pages for unaligned cases.\n");
1115 return -ENOMEM;
1116 }
1117
1118 if (state->bufcnt)
1119 memcpy(buf, rctx->hdev->xmit_buf, state->bufcnt);
1120
1121 scatterwalk_map_and_copy(buf + state->bufcnt, sg, rctx->offset,
1122 min(new_len, rctx->total) - state->bufcnt, 0);
1123 sg_init_table(rctx->sgl, 1);
1124 sg_set_buf(rctx->sgl, buf, new_len);
1125 rctx->sg = rctx->sgl;
1126 state->flags |= HASH_FLAGS_SGS_COPIED;
1127 rctx->nents = 1;
1128 rctx->offset += new_len - state->bufcnt;
1129 state->bufcnt = 0;
1130 rctx->total = new_len;
1131
1132 return 0;
1133 }
1134
stm32_hash_align_sgs(struct scatterlist * sg,int nbytes,int bs,bool init,bool final,struct stm32_hash_request_ctx * rctx)1135 static int stm32_hash_align_sgs(struct scatterlist *sg,
1136 int nbytes, int bs, bool init, bool final,
1137 struct stm32_hash_request_ctx *rctx)
1138 {
1139 struct stm32_hash_state *state = &rctx->state;
1140 struct stm32_hash_dev *hdev = rctx->hdev;
1141 struct scatterlist *sg_tmp = sg;
1142 int offset = rctx->offset;
1143 int new_len;
1144 int n = 0;
1145 int bufcnt = state->bufcnt;
1146 bool secure_ctx = hdev->pdata->context_secured;
1147 bool aligned = true;
1148
1149 if (!sg || !sg->length || !nbytes) {
1150 if (bufcnt) {
1151 bufcnt = DIV_ROUND_UP(bufcnt, bs) * bs;
1152 sg_init_table(rctx->sgl, 1);
1153 sg_set_buf(rctx->sgl, rctx->hdev->xmit_buf, bufcnt);
1154 rctx->sg = rctx->sgl;
1155 rctx->nents = 1;
1156 }
1157
1158 return 0;
1159 }
1160
1161 new_len = nbytes;
1162
1163 if (offset)
1164 aligned = false;
1165
1166 if (final) {
1167 new_len = DIV_ROUND_UP(new_len, bs) * bs;
1168 } else {
1169 new_len = (new_len - 1) / bs * bs; // return n block - 1 block
1170
1171 /*
1172 * Context save in some version of HASH IP can only be done when the
1173 * FIFO is ready to get a new block. This implies to send n block plus a
1174 * 32 bit word in the first DMA send.
1175 */
1176 if (init && secure_ctx) {
1177 new_len += sizeof(u32);
1178 if (unlikely(new_len > nbytes))
1179 new_len -= bs;
1180 }
1181 }
1182
1183 if (!new_len)
1184 return 0;
1185
1186 if (nbytes != new_len)
1187 aligned = false;
1188
1189 while (nbytes > 0 && sg_tmp) {
1190 n++;
1191
1192 if (bufcnt) {
1193 if (!IS_ALIGNED(bufcnt, bs)) {
1194 aligned = false;
1195 break;
1196 }
1197 nbytes -= bufcnt;
1198 bufcnt = 0;
1199 if (!nbytes)
1200 aligned = false;
1201
1202 continue;
1203 }
1204
1205 if (offset < sg_tmp->length) {
1206 if (!IS_ALIGNED(offset + sg_tmp->offset, 4)) {
1207 aligned = false;
1208 break;
1209 }
1210
1211 if (!IS_ALIGNED(sg_tmp->length - offset, bs)) {
1212 aligned = false;
1213 break;
1214 }
1215 }
1216
1217 if (offset) {
1218 offset -= sg_tmp->length;
1219 if (offset < 0) {
1220 nbytes += offset;
1221 offset = 0;
1222 }
1223 } else {
1224 nbytes -= sg_tmp->length;
1225 }
1226
1227 sg_tmp = sg_next(sg_tmp);
1228
1229 if (nbytes < 0) {
1230 aligned = false;
1231 break;
1232 }
1233 }
1234
1235 if (!aligned)
1236 return stm32_hash_copy_sgs(rctx, sg, bs, new_len);
1237
1238 rctx->total = new_len;
1239 rctx->offset += new_len;
1240 rctx->nents = n;
1241 if (state->bufcnt) {
1242 sg_init_table(rctx->sgl, 2);
1243 sg_set_buf(rctx->sgl, rctx->hdev->xmit_buf, state->bufcnt);
1244 sg_chain(rctx->sgl, 2, sg);
1245 rctx->sg = rctx->sgl;
1246 } else {
1247 rctx->sg = sg;
1248 }
1249
1250 return 0;
1251 }
1252
stm32_hash_prepare_request(struct ahash_request * req)1253 static int stm32_hash_prepare_request(struct ahash_request *req)
1254 {
1255 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1256 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
1257 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
1258 struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
1259 struct stm32_hash_state *state = &rctx->state;
1260 unsigned int nbytes;
1261 int ret, hash_later, bs;
1262 bool update = rctx->op & HASH_OP_UPDATE;
1263 bool init = !(state->flags & HASH_FLAGS_INIT);
1264 bool finup = state->flags & HASH_FLAGS_FINUP;
1265 bool final = state->flags & HASH_FLAGS_FINAL;
1266
1267 if (!hdev->dma_lch || state->flags & HASH_FLAGS_CPU)
1268 return 0;
1269
1270 bs = crypto_ahash_blocksize(tfm);
1271
1272 nbytes = state->bufcnt;
1273
1274 /*
1275 * In case of update request nbytes must correspond to the content of the
1276 * buffer + the offset minus the content of the request already in the
1277 * buffer.
1278 */
1279 if (update || finup)
1280 nbytes += req->nbytes - rctx->offset;
1281
1282 dev_dbg(hdev->dev,
1283 "%s: nbytes=%d, bs=%d, total=%d, offset=%d, bufcnt=%d\n",
1284 __func__, nbytes, bs, rctx->total, rctx->offset, state->bufcnt);
1285
1286 if (!nbytes)
1287 return 0;
1288
1289 rctx->total = nbytes;
1290
1291 if (update && req->nbytes && (!IS_ALIGNED(state->bufcnt, bs))) {
1292 int len = bs - state->bufcnt % bs;
1293
1294 if (len > req->nbytes)
1295 len = req->nbytes;
1296 scatterwalk_map_and_copy(state->buffer + state->bufcnt, req->src,
1297 0, len, 0);
1298 state->bufcnt += len;
1299 rctx->offset = len;
1300 }
1301
1302 /* copy buffer in a temporary one that is used for sg alignment */
1303 if (state->bufcnt)
1304 memcpy(hdev->xmit_buf, state->buffer, state->bufcnt);
1305
1306 ret = stm32_hash_align_sgs(req->src, nbytes, bs, init, final, rctx);
1307 if (ret)
1308 return ret;
1309
1310 hash_later = nbytes - rctx->total;
1311 if (hash_later < 0)
1312 hash_later = 0;
1313
1314 if (hash_later && hash_later <= state->blocklen) {
1315 scatterwalk_map_and_copy(state->buffer,
1316 req->src,
1317 req->nbytes - hash_later,
1318 hash_later, 0);
1319
1320 state->bufcnt = hash_later;
1321 } else {
1322 state->bufcnt = 0;
1323 }
1324
1325 if (hash_later > state->blocklen) {
1326 /* FIXME: add support of this case */
1327 pr_err("Buffer contains more than one block.\n");
1328 return -ENOMEM;
1329 }
1330
1331 rctx->total = min(nbytes, rctx->total);
1332
1333 return 0;
1334 }
1335
stm32_hash_unprepare_request(struct ahash_request * req)1336 static void stm32_hash_unprepare_request(struct ahash_request *req)
1337 {
1338 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
1339 struct stm32_hash_state *state = &rctx->state;
1340 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
1341 struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
1342 u32 *preg = state->hw_context;
1343 int swap_reg, i;
1344
1345 if (hdev->dma_lch)
1346 dmaengine_terminate_sync(hdev->dma_lch);
1347
1348 if (state->flags & HASH_FLAGS_SGS_COPIED)
1349 free_pages((unsigned long)sg_virt(rctx->sg), get_order(rctx->sg->length));
1350
1351 rctx->sg = NULL;
1352 rctx->offset = 0;
1353
1354 state->flags &= ~(HASH_FLAGS_SGS_COPIED);
1355
1356 if (!(hdev->flags & HASH_FLAGS_INIT))
1357 goto pm_runtime;
1358
1359 state->flags |= HASH_FLAGS_INIT;
1360
1361 if (stm32_hash_wait_busy(hdev)) {
1362 dev_warn(hdev->dev, "Wait busy failed.");
1363 return;
1364 }
1365
1366 swap_reg = hash_swap_reg(rctx);
1367
1368 if (!hdev->pdata->ux500)
1369 *preg++ = stm32_hash_read(hdev, HASH_IMR);
1370 *preg++ = stm32_hash_read(hdev, HASH_STR);
1371 *preg++ = stm32_hash_read(hdev, HASH_CR);
1372 for (i = 0; i < swap_reg; i++)
1373 *preg++ = stm32_hash_read(hdev, HASH_CSR(i));
1374
1375 pm_runtime:
1376 pm_runtime_put_autosuspend(hdev->dev);
1377 }
1378
stm32_hash_enqueue(struct ahash_request * req,unsigned int op)1379 static int stm32_hash_enqueue(struct ahash_request *req, unsigned int op)
1380 {
1381 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
1382 struct stm32_hash_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
1383 struct stm32_hash_dev *hdev = ctx->hdev;
1384
1385 rctx->op = op;
1386
1387 return stm32_hash_handle_queue(hdev, req);
1388 }
1389
stm32_hash_update(struct ahash_request * req)1390 static int stm32_hash_update(struct ahash_request *req)
1391 {
1392 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
1393 struct stm32_hash_state *state = &rctx->state;
1394
1395 if (!req->nbytes)
1396 return 0;
1397
1398
1399 if (state->flags & HASH_FLAGS_CPU) {
1400 rctx->total = req->nbytes;
1401 rctx->sg = req->src;
1402 rctx->offset = 0;
1403
1404 if ((state->bufcnt + rctx->total < state->blocklen)) {
1405 stm32_hash_append_sg(rctx);
1406 return 0;
1407 }
1408 } else { /* DMA mode */
1409 if (state->bufcnt + req->nbytes <= state->blocklen) {
1410 scatterwalk_map_and_copy(state->buffer + state->bufcnt, req->src,
1411 0, req->nbytes, 0);
1412 state->bufcnt += req->nbytes;
1413 return 0;
1414 }
1415 }
1416
1417 return stm32_hash_enqueue(req, HASH_OP_UPDATE);
1418 }
1419
stm32_hash_final(struct ahash_request * req)1420 static int stm32_hash_final(struct ahash_request *req)
1421 {
1422 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
1423 struct stm32_hash_state *state = &rctx->state;
1424
1425 state->flags |= HASH_FLAGS_FINAL;
1426
1427 return stm32_hash_enqueue(req, HASH_OP_FINAL);
1428 }
1429
stm32_hash_finup(struct ahash_request * req)1430 static int stm32_hash_finup(struct ahash_request *req)
1431 {
1432 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
1433 struct stm32_hash_state *state = &rctx->state;
1434
1435 if (!req->nbytes)
1436 goto out;
1437
1438 state->flags |= HASH_FLAGS_FINUP;
1439
1440 if ((state->flags & HASH_FLAGS_CPU)) {
1441 rctx->total = req->nbytes;
1442 rctx->sg = req->src;
1443 rctx->offset = 0;
1444 }
1445
1446 out:
1447 return stm32_hash_final(req);
1448 }
1449
stm32_hash_digest(struct ahash_request * req)1450 static int stm32_hash_digest(struct ahash_request *req)
1451 {
1452 return stm32_hash_init(req) ?: stm32_hash_finup(req);
1453 }
1454
stm32_hash_export(struct ahash_request * req,void * out)1455 static int stm32_hash_export(struct ahash_request *req, void *out)
1456 {
1457 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
1458
1459 memcpy(out, &rctx->state, sizeof(rctx->state));
1460
1461 return 0;
1462 }
1463
stm32_hash_import(struct ahash_request * req,const void * in)1464 static int stm32_hash_import(struct ahash_request *req, const void *in)
1465 {
1466 struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
1467
1468 stm32_hash_init(req);
1469 memcpy(&rctx->state, in, sizeof(rctx->state));
1470
1471 return 0;
1472 }
1473
stm32_hash_setkey(struct crypto_ahash * tfm,const u8 * key,unsigned int keylen)1474 static int stm32_hash_setkey(struct crypto_ahash *tfm,
1475 const u8 *key, unsigned int keylen)
1476 {
1477 struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
1478
1479 if (keylen <= HASH_MAX_KEY_SIZE) {
1480 memcpy(ctx->key, key, keylen);
1481 ctx->keylen = keylen;
1482 } else {
1483 return -ENOMEM;
1484 }
1485
1486 return 0;
1487 }
1488
stm32_hash_init_fallback(struct crypto_tfm * tfm)1489 static int stm32_hash_init_fallback(struct crypto_tfm *tfm)
1490 {
1491 struct stm32_hash_ctx *ctx = crypto_tfm_ctx(tfm);
1492 struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
1493 const char *name = crypto_tfm_alg_name(tfm);
1494 struct crypto_shash *xtfm;
1495
1496 /* The fallback is only needed on Ux500 */
1497 if (!hdev->pdata->ux500)
1498 return 0;
1499
1500 xtfm = crypto_alloc_shash(name, 0, CRYPTO_ALG_NEED_FALLBACK);
1501 if (IS_ERR(xtfm)) {
1502 dev_err(hdev->dev, "failed to allocate %s fallback\n",
1503 name);
1504 return PTR_ERR(xtfm);
1505 }
1506 dev_info(hdev->dev, "allocated %s fallback\n", name);
1507 ctx->xtfm = xtfm;
1508
1509 return 0;
1510 }
1511
stm32_hash_cra_init_algs(struct crypto_tfm * tfm,u32 algs_flags)1512 static int stm32_hash_cra_init_algs(struct crypto_tfm *tfm, u32 algs_flags)
1513 {
1514 struct stm32_hash_ctx *ctx = crypto_tfm_ctx(tfm);
1515
1516 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
1517 sizeof(struct stm32_hash_request_ctx));
1518
1519 ctx->keylen = 0;
1520
1521 if (algs_flags)
1522 ctx->flags |= algs_flags;
1523
1524 return stm32_hash_init_fallback(tfm);
1525 }
1526
stm32_hash_cra_init(struct crypto_tfm * tfm)1527 static int stm32_hash_cra_init(struct crypto_tfm *tfm)
1528 {
1529 return stm32_hash_cra_init_algs(tfm, 0);
1530 }
1531
stm32_hash_cra_hmac_init(struct crypto_tfm * tfm)1532 static int stm32_hash_cra_hmac_init(struct crypto_tfm *tfm)
1533 {
1534 return stm32_hash_cra_init_algs(tfm, HASH_FLAGS_HMAC);
1535 }
1536
stm32_hash_cra_sha3_init(struct crypto_tfm * tfm)1537 static int stm32_hash_cra_sha3_init(struct crypto_tfm *tfm)
1538 {
1539 return stm32_hash_cra_init_algs(tfm, HASH_FLAGS_SHA3_MODE);
1540 }
1541
stm32_hash_cra_sha3_hmac_init(struct crypto_tfm * tfm)1542 static int stm32_hash_cra_sha3_hmac_init(struct crypto_tfm *tfm)
1543 {
1544 return stm32_hash_cra_init_algs(tfm, HASH_FLAGS_SHA3_MODE |
1545 HASH_FLAGS_HMAC);
1546 }
1547
stm32_hash_cra_exit(struct crypto_tfm * tfm)1548 static void stm32_hash_cra_exit(struct crypto_tfm *tfm)
1549 {
1550 struct stm32_hash_ctx *ctx = crypto_tfm_ctx(tfm);
1551
1552 if (ctx->xtfm)
1553 crypto_free_shash(ctx->xtfm);
1554 }
1555
stm32_hash_irq_thread(int irq,void * dev_id)1556 static irqreturn_t stm32_hash_irq_thread(int irq, void *dev_id)
1557 {
1558 struct stm32_hash_dev *hdev = dev_id;
1559
1560 if (HASH_FLAGS_OUTPUT_READY & hdev->flags) {
1561 hdev->flags &= ~HASH_FLAGS_OUTPUT_READY;
1562 goto finish;
1563 }
1564
1565 return IRQ_HANDLED;
1566
1567 finish:
1568 /* Finish current request */
1569 stm32_hash_finish_req(hdev->req, 0);
1570
1571 return IRQ_HANDLED;
1572 }
1573
stm32_hash_irq_handler(int irq,void * dev_id)1574 static irqreturn_t stm32_hash_irq_handler(int irq, void *dev_id)
1575 {
1576 struct stm32_hash_dev *hdev = dev_id;
1577 u32 reg;
1578
1579 reg = stm32_hash_read(hdev, HASH_SR);
1580 if (reg & HASH_SR_OUTPUT_READY) {
1581 hdev->flags |= HASH_FLAGS_OUTPUT_READY;
1582 /* Disable IT*/
1583 stm32_hash_write(hdev, HASH_IMR, 0);
1584 return IRQ_WAKE_THREAD;
1585 }
1586
1587 return IRQ_NONE;
1588 }
1589
1590 static struct ahash_engine_alg algs_md5[] = {
1591 {
1592 .base.init = stm32_hash_init,
1593 .base.update = stm32_hash_update,
1594 .base.final = stm32_hash_final,
1595 .base.finup = stm32_hash_finup,
1596 .base.digest = stm32_hash_digest,
1597 .base.export = stm32_hash_export,
1598 .base.import = stm32_hash_import,
1599 .base.halg = {
1600 .digestsize = MD5_DIGEST_SIZE,
1601 .statesize = sizeof(struct stm32_hash_state),
1602 .base = {
1603 .cra_name = "md5",
1604 .cra_driver_name = "stm32-md5",
1605 .cra_priority = 200,
1606 .cra_flags = CRYPTO_ALG_ASYNC |
1607 CRYPTO_ALG_KERN_DRIVER_ONLY,
1608 .cra_blocksize = MD5_HMAC_BLOCK_SIZE,
1609 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1610 .cra_init = stm32_hash_cra_init,
1611 .cra_exit = stm32_hash_cra_exit,
1612 .cra_module = THIS_MODULE,
1613 }
1614 },
1615 .op = {
1616 .do_one_request = stm32_hash_one_request,
1617 },
1618 },
1619 {
1620 .base.init = stm32_hash_init,
1621 .base.update = stm32_hash_update,
1622 .base.final = stm32_hash_final,
1623 .base.finup = stm32_hash_finup,
1624 .base.digest = stm32_hash_digest,
1625 .base.export = stm32_hash_export,
1626 .base.import = stm32_hash_import,
1627 .base.setkey = stm32_hash_setkey,
1628 .base.halg = {
1629 .digestsize = MD5_DIGEST_SIZE,
1630 .statesize = sizeof(struct stm32_hash_state),
1631 .base = {
1632 .cra_name = "hmac(md5)",
1633 .cra_driver_name = "stm32-hmac-md5",
1634 .cra_priority = 200,
1635 .cra_flags = CRYPTO_ALG_ASYNC |
1636 CRYPTO_ALG_KERN_DRIVER_ONLY,
1637 .cra_blocksize = MD5_HMAC_BLOCK_SIZE,
1638 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1639 .cra_init = stm32_hash_cra_hmac_init,
1640 .cra_exit = stm32_hash_cra_exit,
1641 .cra_module = THIS_MODULE,
1642 }
1643 },
1644 .op = {
1645 .do_one_request = stm32_hash_one_request,
1646 },
1647 }
1648 };
1649
1650 static struct ahash_engine_alg algs_sha1[] = {
1651 {
1652 .base.init = stm32_hash_init,
1653 .base.update = stm32_hash_update,
1654 .base.final = stm32_hash_final,
1655 .base.finup = stm32_hash_finup,
1656 .base.digest = stm32_hash_digest,
1657 .base.export = stm32_hash_export,
1658 .base.import = stm32_hash_import,
1659 .base.halg = {
1660 .digestsize = SHA1_DIGEST_SIZE,
1661 .statesize = sizeof(struct stm32_hash_state),
1662 .base = {
1663 .cra_name = "sha1",
1664 .cra_driver_name = "stm32-sha1",
1665 .cra_priority = 200,
1666 .cra_flags = CRYPTO_ALG_ASYNC |
1667 CRYPTO_ALG_KERN_DRIVER_ONLY,
1668 .cra_blocksize = SHA1_BLOCK_SIZE,
1669 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1670 .cra_init = stm32_hash_cra_init,
1671 .cra_exit = stm32_hash_cra_exit,
1672 .cra_module = THIS_MODULE,
1673 }
1674 },
1675 .op = {
1676 .do_one_request = stm32_hash_one_request,
1677 },
1678 },
1679 {
1680 .base.init = stm32_hash_init,
1681 .base.update = stm32_hash_update,
1682 .base.final = stm32_hash_final,
1683 .base.finup = stm32_hash_finup,
1684 .base.digest = stm32_hash_digest,
1685 .base.export = stm32_hash_export,
1686 .base.import = stm32_hash_import,
1687 .base.setkey = stm32_hash_setkey,
1688 .base.halg = {
1689 .digestsize = SHA1_DIGEST_SIZE,
1690 .statesize = sizeof(struct stm32_hash_state),
1691 .base = {
1692 .cra_name = "hmac(sha1)",
1693 .cra_driver_name = "stm32-hmac-sha1",
1694 .cra_priority = 200,
1695 .cra_flags = CRYPTO_ALG_ASYNC |
1696 CRYPTO_ALG_KERN_DRIVER_ONLY,
1697 .cra_blocksize = SHA1_BLOCK_SIZE,
1698 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1699 .cra_init = stm32_hash_cra_hmac_init,
1700 .cra_exit = stm32_hash_cra_exit,
1701 .cra_module = THIS_MODULE,
1702 }
1703 },
1704 .op = {
1705 .do_one_request = stm32_hash_one_request,
1706 },
1707 },
1708 };
1709
1710 static struct ahash_engine_alg algs_sha224[] = {
1711 {
1712 .base.init = stm32_hash_init,
1713 .base.update = stm32_hash_update,
1714 .base.final = stm32_hash_final,
1715 .base.finup = stm32_hash_finup,
1716 .base.digest = stm32_hash_digest,
1717 .base.export = stm32_hash_export,
1718 .base.import = stm32_hash_import,
1719 .base.halg = {
1720 .digestsize = SHA224_DIGEST_SIZE,
1721 .statesize = sizeof(struct stm32_hash_state),
1722 .base = {
1723 .cra_name = "sha224",
1724 .cra_driver_name = "stm32-sha224",
1725 .cra_priority = 200,
1726 .cra_flags = CRYPTO_ALG_ASYNC |
1727 CRYPTO_ALG_KERN_DRIVER_ONLY,
1728 .cra_blocksize = SHA224_BLOCK_SIZE,
1729 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1730 .cra_init = stm32_hash_cra_init,
1731 .cra_exit = stm32_hash_cra_exit,
1732 .cra_module = THIS_MODULE,
1733 }
1734 },
1735 .op = {
1736 .do_one_request = stm32_hash_one_request,
1737 },
1738 },
1739 {
1740 .base.init = stm32_hash_init,
1741 .base.update = stm32_hash_update,
1742 .base.final = stm32_hash_final,
1743 .base.finup = stm32_hash_finup,
1744 .base.digest = stm32_hash_digest,
1745 .base.setkey = stm32_hash_setkey,
1746 .base.export = stm32_hash_export,
1747 .base.import = stm32_hash_import,
1748 .base.halg = {
1749 .digestsize = SHA224_DIGEST_SIZE,
1750 .statesize = sizeof(struct stm32_hash_state),
1751 .base = {
1752 .cra_name = "hmac(sha224)",
1753 .cra_driver_name = "stm32-hmac-sha224",
1754 .cra_priority = 200,
1755 .cra_flags = CRYPTO_ALG_ASYNC |
1756 CRYPTO_ALG_KERN_DRIVER_ONLY,
1757 .cra_blocksize = SHA224_BLOCK_SIZE,
1758 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1759 .cra_init = stm32_hash_cra_hmac_init,
1760 .cra_exit = stm32_hash_cra_exit,
1761 .cra_module = THIS_MODULE,
1762 }
1763 },
1764 .op = {
1765 .do_one_request = stm32_hash_one_request,
1766 },
1767 },
1768 };
1769
1770 static struct ahash_engine_alg algs_sha256[] = {
1771 {
1772 .base.init = stm32_hash_init,
1773 .base.update = stm32_hash_update,
1774 .base.final = stm32_hash_final,
1775 .base.finup = stm32_hash_finup,
1776 .base.digest = stm32_hash_digest,
1777 .base.export = stm32_hash_export,
1778 .base.import = stm32_hash_import,
1779 .base.halg = {
1780 .digestsize = SHA256_DIGEST_SIZE,
1781 .statesize = sizeof(struct stm32_hash_state),
1782 .base = {
1783 .cra_name = "sha256",
1784 .cra_driver_name = "stm32-sha256",
1785 .cra_priority = 200,
1786 .cra_flags = CRYPTO_ALG_ASYNC |
1787 CRYPTO_ALG_KERN_DRIVER_ONLY,
1788 .cra_blocksize = SHA256_BLOCK_SIZE,
1789 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1790 .cra_init = stm32_hash_cra_init,
1791 .cra_exit = stm32_hash_cra_exit,
1792 .cra_module = THIS_MODULE,
1793 }
1794 },
1795 .op = {
1796 .do_one_request = stm32_hash_one_request,
1797 },
1798 },
1799 {
1800 .base.init = stm32_hash_init,
1801 .base.update = stm32_hash_update,
1802 .base.final = stm32_hash_final,
1803 .base.finup = stm32_hash_finup,
1804 .base.digest = stm32_hash_digest,
1805 .base.export = stm32_hash_export,
1806 .base.import = stm32_hash_import,
1807 .base.setkey = stm32_hash_setkey,
1808 .base.halg = {
1809 .digestsize = SHA256_DIGEST_SIZE,
1810 .statesize = sizeof(struct stm32_hash_state),
1811 .base = {
1812 .cra_name = "hmac(sha256)",
1813 .cra_driver_name = "stm32-hmac-sha256",
1814 .cra_priority = 200,
1815 .cra_flags = CRYPTO_ALG_ASYNC |
1816 CRYPTO_ALG_KERN_DRIVER_ONLY,
1817 .cra_blocksize = SHA256_BLOCK_SIZE,
1818 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1819 .cra_init = stm32_hash_cra_hmac_init,
1820 .cra_exit = stm32_hash_cra_exit,
1821 .cra_module = THIS_MODULE,
1822 }
1823 },
1824 .op = {
1825 .do_one_request = stm32_hash_one_request,
1826 },
1827 },
1828 };
1829
1830 static struct ahash_engine_alg algs_sha384_sha512[] = {
1831 {
1832 .base.init = stm32_hash_init,
1833 .base.update = stm32_hash_update,
1834 .base.final = stm32_hash_final,
1835 .base.finup = stm32_hash_finup,
1836 .base.digest = stm32_hash_digest,
1837 .base.export = stm32_hash_export,
1838 .base.import = stm32_hash_import,
1839 .base.halg = {
1840 .digestsize = SHA384_DIGEST_SIZE,
1841 .statesize = sizeof(struct stm32_hash_state),
1842 .base = {
1843 .cra_name = "sha384",
1844 .cra_driver_name = "stm32-sha384",
1845 .cra_priority = 200,
1846 .cra_flags = CRYPTO_ALG_ASYNC |
1847 CRYPTO_ALG_KERN_DRIVER_ONLY,
1848 .cra_blocksize = SHA384_BLOCK_SIZE,
1849 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1850 .cra_init = stm32_hash_cra_init,
1851 .cra_exit = stm32_hash_cra_exit,
1852 .cra_module = THIS_MODULE,
1853 }
1854 },
1855 .op = {
1856 .do_one_request = stm32_hash_one_request,
1857 },
1858 },
1859 {
1860 .base.init = stm32_hash_init,
1861 .base.update = stm32_hash_update,
1862 .base.final = stm32_hash_final,
1863 .base.finup = stm32_hash_finup,
1864 .base.digest = stm32_hash_digest,
1865 .base.setkey = stm32_hash_setkey,
1866 .base.export = stm32_hash_export,
1867 .base.import = stm32_hash_import,
1868 .base.halg = {
1869 .digestsize = SHA384_DIGEST_SIZE,
1870 .statesize = sizeof(struct stm32_hash_state),
1871 .base = {
1872 .cra_name = "hmac(sha384)",
1873 .cra_driver_name = "stm32-hmac-sha384",
1874 .cra_priority = 200,
1875 .cra_flags = CRYPTO_ALG_ASYNC |
1876 CRYPTO_ALG_KERN_DRIVER_ONLY,
1877 .cra_blocksize = SHA384_BLOCK_SIZE,
1878 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1879 .cra_init = stm32_hash_cra_hmac_init,
1880 .cra_exit = stm32_hash_cra_exit,
1881 .cra_module = THIS_MODULE,
1882 }
1883 },
1884 .op = {
1885 .do_one_request = stm32_hash_one_request,
1886 },
1887 },
1888 {
1889 .base.init = stm32_hash_init,
1890 .base.update = stm32_hash_update,
1891 .base.final = stm32_hash_final,
1892 .base.finup = stm32_hash_finup,
1893 .base.digest = stm32_hash_digest,
1894 .base.export = stm32_hash_export,
1895 .base.import = stm32_hash_import,
1896 .base.halg = {
1897 .digestsize = SHA512_DIGEST_SIZE,
1898 .statesize = sizeof(struct stm32_hash_state),
1899 .base = {
1900 .cra_name = "sha512",
1901 .cra_driver_name = "stm32-sha512",
1902 .cra_priority = 200,
1903 .cra_flags = CRYPTO_ALG_ASYNC |
1904 CRYPTO_ALG_KERN_DRIVER_ONLY,
1905 .cra_blocksize = SHA512_BLOCK_SIZE,
1906 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1907 .cra_init = stm32_hash_cra_init,
1908 .cra_exit = stm32_hash_cra_exit,
1909 .cra_module = THIS_MODULE,
1910 }
1911 },
1912 .op = {
1913 .do_one_request = stm32_hash_one_request,
1914 },
1915 },
1916 {
1917 .base.init = stm32_hash_init,
1918 .base.update = stm32_hash_update,
1919 .base.final = stm32_hash_final,
1920 .base.finup = stm32_hash_finup,
1921 .base.digest = stm32_hash_digest,
1922 .base.export = stm32_hash_export,
1923 .base.import = stm32_hash_import,
1924 .base.setkey = stm32_hash_setkey,
1925 .base.halg = {
1926 .digestsize = SHA512_DIGEST_SIZE,
1927 .statesize = sizeof(struct stm32_hash_state),
1928 .base = {
1929 .cra_name = "hmac(sha512)",
1930 .cra_driver_name = "stm32-hmac-sha512",
1931 .cra_priority = 200,
1932 .cra_flags = CRYPTO_ALG_ASYNC |
1933 CRYPTO_ALG_KERN_DRIVER_ONLY,
1934 .cra_blocksize = SHA512_BLOCK_SIZE,
1935 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1936 .cra_init = stm32_hash_cra_hmac_init,
1937 .cra_exit = stm32_hash_cra_exit,
1938 .cra_module = THIS_MODULE,
1939 }
1940 },
1941 .op = {
1942 .do_one_request = stm32_hash_one_request,
1943 },
1944 },
1945 };
1946
1947 static struct ahash_engine_alg algs_sha3[] = {
1948 {
1949 .base.init = stm32_hash_init,
1950 .base.update = stm32_hash_update,
1951 .base.final = stm32_hash_final,
1952 .base.finup = stm32_hash_finup,
1953 .base.digest = stm32_hash_digest,
1954 .base.export = stm32_hash_export,
1955 .base.import = stm32_hash_import,
1956 .base.halg = {
1957 .digestsize = SHA3_224_DIGEST_SIZE,
1958 .statesize = sizeof(struct stm32_hash_state),
1959 .base = {
1960 .cra_name = "sha3-224",
1961 .cra_driver_name = "stm32-sha3-224",
1962 .cra_priority = 200,
1963 .cra_flags = CRYPTO_ALG_ASYNC |
1964 CRYPTO_ALG_KERN_DRIVER_ONLY,
1965 .cra_blocksize = SHA3_224_BLOCK_SIZE,
1966 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1967 .cra_init = stm32_hash_cra_sha3_init,
1968 .cra_exit = stm32_hash_cra_exit,
1969 .cra_module = THIS_MODULE,
1970 }
1971 },
1972 .op = {
1973 .do_one_request = stm32_hash_one_request,
1974 },
1975 },
1976 {
1977 .base.init = stm32_hash_init,
1978 .base.update = stm32_hash_update,
1979 .base.final = stm32_hash_final,
1980 .base.finup = stm32_hash_finup,
1981 .base.digest = stm32_hash_digest,
1982 .base.export = stm32_hash_export,
1983 .base.import = stm32_hash_import,
1984 .base.setkey = stm32_hash_setkey,
1985 .base.halg = {
1986 .digestsize = SHA3_224_DIGEST_SIZE,
1987 .statesize = sizeof(struct stm32_hash_state),
1988 .base = {
1989 .cra_name = "hmac(sha3-224)",
1990 .cra_driver_name = "stm32-hmac-sha3-224",
1991 .cra_priority = 200,
1992 .cra_flags = CRYPTO_ALG_ASYNC |
1993 CRYPTO_ALG_KERN_DRIVER_ONLY,
1994 .cra_blocksize = SHA3_224_BLOCK_SIZE,
1995 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
1996 .cra_init = stm32_hash_cra_sha3_hmac_init,
1997 .cra_exit = stm32_hash_cra_exit,
1998 .cra_module = THIS_MODULE,
1999 }
2000 },
2001 .op = {
2002 .do_one_request = stm32_hash_one_request,
2003 },
2004 },
2005 {
2006 .base.init = stm32_hash_init,
2007 .base.update = stm32_hash_update,
2008 .base.final = stm32_hash_final,
2009 .base.finup = stm32_hash_finup,
2010 .base.digest = stm32_hash_digest,
2011 .base.export = stm32_hash_export,
2012 .base.import = stm32_hash_import,
2013 .base.halg = {
2014 .digestsize = SHA3_256_DIGEST_SIZE,
2015 .statesize = sizeof(struct stm32_hash_state),
2016 .base = {
2017 .cra_name = "sha3-256",
2018 .cra_driver_name = "stm32-sha3-256",
2019 .cra_priority = 200,
2020 .cra_flags = CRYPTO_ALG_ASYNC |
2021 CRYPTO_ALG_KERN_DRIVER_ONLY,
2022 .cra_blocksize = SHA3_256_BLOCK_SIZE,
2023 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
2024 .cra_init = stm32_hash_cra_sha3_init,
2025 .cra_exit = stm32_hash_cra_exit,
2026 .cra_module = THIS_MODULE,
2027 }
2028 },
2029 .op = {
2030 .do_one_request = stm32_hash_one_request,
2031 },
2032 },
2033 {
2034 .base.init = stm32_hash_init,
2035 .base.update = stm32_hash_update,
2036 .base.final = stm32_hash_final,
2037 .base.finup = stm32_hash_finup,
2038 .base.digest = stm32_hash_digest,
2039 .base.export = stm32_hash_export,
2040 .base.import = stm32_hash_import,
2041 .base.setkey = stm32_hash_setkey,
2042 .base.halg = {
2043 .digestsize = SHA3_256_DIGEST_SIZE,
2044 .statesize = sizeof(struct stm32_hash_state),
2045 .base = {
2046 .cra_name = "hmac(sha3-256)",
2047 .cra_driver_name = "stm32-hmac-sha3-256",
2048 .cra_priority = 200,
2049 .cra_flags = CRYPTO_ALG_ASYNC |
2050 CRYPTO_ALG_KERN_DRIVER_ONLY,
2051 .cra_blocksize = SHA3_256_BLOCK_SIZE,
2052 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
2053 .cra_init = stm32_hash_cra_sha3_hmac_init,
2054 .cra_exit = stm32_hash_cra_exit,
2055 .cra_module = THIS_MODULE,
2056 }
2057 },
2058 .op = {
2059 .do_one_request = stm32_hash_one_request,
2060 },
2061 },
2062 {
2063 .base.init = stm32_hash_init,
2064 .base.update = stm32_hash_update,
2065 .base.final = stm32_hash_final,
2066 .base.finup = stm32_hash_finup,
2067 .base.digest = stm32_hash_digest,
2068 .base.export = stm32_hash_export,
2069 .base.import = stm32_hash_import,
2070 .base.halg = {
2071 .digestsize = SHA3_384_DIGEST_SIZE,
2072 .statesize = sizeof(struct stm32_hash_state),
2073 .base = {
2074 .cra_name = "sha3-384",
2075 .cra_driver_name = "stm32-sha3-384",
2076 .cra_priority = 200,
2077 .cra_flags = CRYPTO_ALG_ASYNC |
2078 CRYPTO_ALG_KERN_DRIVER_ONLY,
2079 .cra_blocksize = SHA3_384_BLOCK_SIZE,
2080 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
2081 .cra_init = stm32_hash_cra_sha3_init,
2082 .cra_exit = stm32_hash_cra_exit,
2083 .cra_module = THIS_MODULE,
2084 }
2085 },
2086 .op = {
2087 .do_one_request = stm32_hash_one_request,
2088 },
2089 },
2090 {
2091 .base.init = stm32_hash_init,
2092 .base.update = stm32_hash_update,
2093 .base.final = stm32_hash_final,
2094 .base.finup = stm32_hash_finup,
2095 .base.digest = stm32_hash_digest,
2096 .base.export = stm32_hash_export,
2097 .base.import = stm32_hash_import,
2098 .base.setkey = stm32_hash_setkey,
2099 .base.halg = {
2100 .digestsize = SHA3_384_DIGEST_SIZE,
2101 .statesize = sizeof(struct stm32_hash_state),
2102 .base = {
2103 .cra_name = "hmac(sha3-384)",
2104 .cra_driver_name = "stm32-hmac-sha3-384",
2105 .cra_priority = 200,
2106 .cra_flags = CRYPTO_ALG_ASYNC |
2107 CRYPTO_ALG_KERN_DRIVER_ONLY,
2108 .cra_blocksize = SHA3_384_BLOCK_SIZE,
2109 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
2110 .cra_init = stm32_hash_cra_sha3_hmac_init,
2111 .cra_exit = stm32_hash_cra_exit,
2112 .cra_module = THIS_MODULE,
2113 }
2114 },
2115 .op = {
2116 .do_one_request = stm32_hash_one_request,
2117 },
2118 },
2119 {
2120 .base.init = stm32_hash_init,
2121 .base.update = stm32_hash_update,
2122 .base.final = stm32_hash_final,
2123 .base.finup = stm32_hash_finup,
2124 .base.digest = stm32_hash_digest,
2125 .base.export = stm32_hash_export,
2126 .base.import = stm32_hash_import,
2127 .base.halg = {
2128 .digestsize = SHA3_512_DIGEST_SIZE,
2129 .statesize = sizeof(struct stm32_hash_state),
2130 .base = {
2131 .cra_name = "sha3-512",
2132 .cra_driver_name = "stm32-sha3-512",
2133 .cra_priority = 200,
2134 .cra_flags = CRYPTO_ALG_ASYNC |
2135 CRYPTO_ALG_KERN_DRIVER_ONLY,
2136 .cra_blocksize = SHA3_512_BLOCK_SIZE,
2137 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
2138 .cra_init = stm32_hash_cra_sha3_init,
2139 .cra_exit = stm32_hash_cra_exit,
2140 .cra_module = THIS_MODULE,
2141 }
2142 },
2143 .op = {
2144 .do_one_request = stm32_hash_one_request,
2145 },
2146 },
2147 {
2148 .base.init = stm32_hash_init,
2149 .base.update = stm32_hash_update,
2150 .base.final = stm32_hash_final,
2151 .base.finup = stm32_hash_finup,
2152 .base.digest = stm32_hash_digest,
2153 .base.export = stm32_hash_export,
2154 .base.import = stm32_hash_import,
2155 .base.setkey = stm32_hash_setkey,
2156 .base.halg = {
2157 .digestsize = SHA3_512_DIGEST_SIZE,
2158 .statesize = sizeof(struct stm32_hash_state),
2159 .base = {
2160 .cra_name = "hmac(sha3-512)",
2161 .cra_driver_name = "stm32-hmac-sha3-512",
2162 .cra_priority = 200,
2163 .cra_flags = CRYPTO_ALG_ASYNC |
2164 CRYPTO_ALG_KERN_DRIVER_ONLY,
2165 .cra_blocksize = SHA3_512_BLOCK_SIZE,
2166 .cra_ctxsize = sizeof(struct stm32_hash_ctx),
2167 .cra_init = stm32_hash_cra_sha3_hmac_init,
2168 .cra_exit = stm32_hash_cra_exit,
2169 .cra_module = THIS_MODULE,
2170 }
2171 },
2172 .op = {
2173 .do_one_request = stm32_hash_one_request,
2174 },
2175 }
2176 };
2177
stm32_hash_register_algs(struct stm32_hash_dev * hdev)2178 static int stm32_hash_register_algs(struct stm32_hash_dev *hdev)
2179 {
2180 unsigned int i, j;
2181 int err;
2182
2183 for (i = 0; i < hdev->pdata->algs_info_size; i++) {
2184 for (j = 0; j < hdev->pdata->algs_info[i].size; j++) {
2185 err = crypto_engine_register_ahash(
2186 &hdev->pdata->algs_info[i].algs_list[j]);
2187 if (err)
2188 goto err_algs;
2189 }
2190 }
2191
2192 return 0;
2193 err_algs:
2194 dev_err(hdev->dev, "Algo %d : %d failed\n", i, j);
2195 for (; i--; ) {
2196 for (; j--;)
2197 crypto_engine_unregister_ahash(
2198 &hdev->pdata->algs_info[i].algs_list[j]);
2199 }
2200
2201 return err;
2202 }
2203
stm32_hash_unregister_algs(struct stm32_hash_dev * hdev)2204 static int stm32_hash_unregister_algs(struct stm32_hash_dev *hdev)
2205 {
2206 unsigned int i, j;
2207
2208 for (i = 0; i < hdev->pdata->algs_info_size; i++) {
2209 for (j = 0; j < hdev->pdata->algs_info[i].size; j++)
2210 crypto_engine_unregister_ahash(
2211 &hdev->pdata->algs_info[i].algs_list[j]);
2212 }
2213
2214 return 0;
2215 }
2216
2217 static struct stm32_hash_algs_info stm32_hash_algs_info_ux500[] = {
2218 {
2219 .algs_list = algs_sha1,
2220 .size = ARRAY_SIZE(algs_sha1),
2221 },
2222 {
2223 .algs_list = algs_sha256,
2224 .size = ARRAY_SIZE(algs_sha256),
2225 },
2226 };
2227
2228 static const struct stm32_hash_pdata stm32_hash_pdata_ux500 = {
2229 .alg_shift = 7,
2230 .algs_info = stm32_hash_algs_info_ux500,
2231 .algs_info_size = ARRAY_SIZE(stm32_hash_algs_info_ux500),
2232 .broken_emptymsg = true,
2233 .ux500 = true,
2234 };
2235
2236 static struct stm32_hash_algs_info stm32_hash_algs_info_stm32f4[] = {
2237 {
2238 .algs_list = algs_md5,
2239 .size = ARRAY_SIZE(algs_md5),
2240 },
2241 {
2242 .algs_list = algs_sha1,
2243 .size = ARRAY_SIZE(algs_sha1),
2244 },
2245 };
2246
2247 static const struct stm32_hash_pdata stm32_hash_pdata_stm32f4 = {
2248 .alg_shift = 7,
2249 .algs_info = stm32_hash_algs_info_stm32f4,
2250 .algs_info_size = ARRAY_SIZE(stm32_hash_algs_info_stm32f4),
2251 .has_sr = true,
2252 .has_mdmat = true,
2253 };
2254
2255 static struct stm32_hash_algs_info stm32_hash_algs_info_stm32f7[] = {
2256 {
2257 .algs_list = algs_md5,
2258 .size = ARRAY_SIZE(algs_md5),
2259 },
2260 {
2261 .algs_list = algs_sha1,
2262 .size = ARRAY_SIZE(algs_sha1),
2263 },
2264 {
2265 .algs_list = algs_sha224,
2266 .size = ARRAY_SIZE(algs_sha224),
2267 },
2268 {
2269 .algs_list = algs_sha256,
2270 .size = ARRAY_SIZE(algs_sha256),
2271 },
2272 };
2273
2274 static const struct stm32_hash_pdata stm32_hash_pdata_stm32f7 = {
2275 .alg_shift = 7,
2276 .algs_info = stm32_hash_algs_info_stm32f7,
2277 .algs_info_size = ARRAY_SIZE(stm32_hash_algs_info_stm32f7),
2278 .has_sr = true,
2279 .has_mdmat = true,
2280 };
2281
2282 static struct stm32_hash_algs_info stm32_hash_algs_info_stm32mp13[] = {
2283 {
2284 .algs_list = algs_sha1,
2285 .size = ARRAY_SIZE(algs_sha1),
2286 },
2287 {
2288 .algs_list = algs_sha224,
2289 .size = ARRAY_SIZE(algs_sha224),
2290 },
2291 {
2292 .algs_list = algs_sha256,
2293 .size = ARRAY_SIZE(algs_sha256),
2294 },
2295 {
2296 .algs_list = algs_sha384_sha512,
2297 .size = ARRAY_SIZE(algs_sha384_sha512),
2298 },
2299 {
2300 .algs_list = algs_sha3,
2301 .size = ARRAY_SIZE(algs_sha3),
2302 },
2303 };
2304
2305 static const struct stm32_hash_pdata stm32_hash_pdata_stm32mp13 = {
2306 .alg_shift = 17,
2307 .algs_info = stm32_hash_algs_info_stm32mp13,
2308 .algs_info_size = ARRAY_SIZE(stm32_hash_algs_info_stm32mp13),
2309 .has_sr = true,
2310 .has_mdmat = true,
2311 .context_secured = true,
2312 };
2313
2314 static const struct of_device_id stm32_hash_of_match[] = {
2315 { .compatible = "stericsson,ux500-hash", .data = &stm32_hash_pdata_ux500 },
2316 { .compatible = "st,stm32f456-hash", .data = &stm32_hash_pdata_stm32f4 },
2317 { .compatible = "st,stm32f756-hash", .data = &stm32_hash_pdata_stm32f7 },
2318 { .compatible = "st,stm32mp13-hash", .data = &stm32_hash_pdata_stm32mp13 },
2319 {},
2320 };
2321
2322 MODULE_DEVICE_TABLE(of, stm32_hash_of_match);
2323
stm32_hash_get_of_match(struct stm32_hash_dev * hdev,struct device * dev)2324 static int stm32_hash_get_of_match(struct stm32_hash_dev *hdev,
2325 struct device *dev)
2326 {
2327 hdev->pdata = of_device_get_match_data(dev);
2328 if (!hdev->pdata) {
2329 dev_err(dev, "no compatible OF match\n");
2330 return -EINVAL;
2331 }
2332
2333 return 0;
2334 }
2335
stm32_hash_probe(struct platform_device * pdev)2336 static int stm32_hash_probe(struct platform_device *pdev)
2337 {
2338 struct stm32_hash_dev *hdev;
2339 struct device *dev = &pdev->dev;
2340 struct resource *res;
2341 int ret, irq;
2342
2343 hdev = devm_kzalloc(dev, sizeof(*hdev), GFP_KERNEL);
2344 if (!hdev)
2345 return -ENOMEM;
2346
2347 hdev->io_base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
2348 if (IS_ERR(hdev->io_base))
2349 return PTR_ERR(hdev->io_base);
2350
2351 hdev->phys_base = res->start;
2352
2353 ret = stm32_hash_get_of_match(hdev, dev);
2354 if (ret)
2355 return ret;
2356
2357 irq = platform_get_irq_optional(pdev, 0);
2358 if (irq < 0 && irq != -ENXIO)
2359 return irq;
2360
2361 if (irq > 0) {
2362 ret = devm_request_threaded_irq(dev, irq,
2363 stm32_hash_irq_handler,
2364 stm32_hash_irq_thread,
2365 IRQF_ONESHOT,
2366 dev_name(dev), hdev);
2367 if (ret) {
2368 dev_err(dev, "Cannot grab IRQ\n");
2369 return ret;
2370 }
2371 } else {
2372 dev_info(dev, "No IRQ, use polling mode\n");
2373 hdev->polled = true;
2374 }
2375
2376 hdev->clk = devm_clk_get(&pdev->dev, NULL);
2377 if (IS_ERR(hdev->clk))
2378 return dev_err_probe(dev, PTR_ERR(hdev->clk),
2379 "failed to get clock for hash\n");
2380
2381 ret = clk_prepare_enable(hdev->clk);
2382 if (ret) {
2383 dev_err(dev, "failed to enable hash clock (%d)\n", ret);
2384 return ret;
2385 }
2386
2387 pm_runtime_set_autosuspend_delay(dev, HASH_AUTOSUSPEND_DELAY);
2388 pm_runtime_use_autosuspend(dev);
2389
2390 pm_runtime_get_noresume(dev);
2391 pm_runtime_set_active(dev);
2392 pm_runtime_enable(dev);
2393
2394 hdev->rst = devm_reset_control_get(&pdev->dev, NULL);
2395 if (IS_ERR(hdev->rst)) {
2396 if (PTR_ERR(hdev->rst) == -EPROBE_DEFER) {
2397 ret = -EPROBE_DEFER;
2398 goto err_reset;
2399 }
2400 } else {
2401 reset_control_assert(hdev->rst);
2402 udelay(2);
2403 reset_control_deassert(hdev->rst);
2404 }
2405
2406 hdev->dev = dev;
2407
2408 platform_set_drvdata(pdev, hdev);
2409
2410 ret = stm32_hash_dma_init(hdev);
2411 switch (ret) {
2412 case 0:
2413 break;
2414 case -ENOENT:
2415 case -ENODEV:
2416 dev_info(dev, "DMA mode not available\n");
2417 break;
2418 default:
2419 dev_err(dev, "DMA init error %d\n", ret);
2420 goto err_dma;
2421 }
2422
2423 spin_lock(&stm32_hash.lock);
2424 list_add_tail(&hdev->list, &stm32_hash.dev_list);
2425 spin_unlock(&stm32_hash.lock);
2426
2427 /* Initialize crypto engine */
2428 hdev->engine = crypto_engine_alloc_init(dev, 1);
2429 if (!hdev->engine) {
2430 ret = -ENOMEM;
2431 goto err_engine;
2432 }
2433
2434 ret = crypto_engine_start(hdev->engine);
2435 if (ret)
2436 goto err_engine_start;
2437
2438 if (hdev->pdata->ux500)
2439 /* FIXME: implement DMA mode for Ux500 */
2440 hdev->dma_mode = 0;
2441 else
2442 hdev->dma_mode = stm32_hash_read(hdev, HASH_HWCFGR) & HASH_HWCFG_DMA_MASK;
2443
2444 /* Register algos */
2445 ret = stm32_hash_register_algs(hdev);
2446 if (ret)
2447 goto err_algs;
2448
2449 dev_info(dev, "Init HASH done HW ver %x DMA mode %u\n",
2450 stm32_hash_read(hdev, HASH_VER), hdev->dma_mode);
2451
2452 pm_runtime_put_sync(dev);
2453
2454 return 0;
2455
2456 err_algs:
2457 err_engine_start:
2458 crypto_engine_exit(hdev->engine);
2459 err_engine:
2460 spin_lock(&stm32_hash.lock);
2461 list_del(&hdev->list);
2462 spin_unlock(&stm32_hash.lock);
2463 err_dma:
2464 if (hdev->dma_lch)
2465 dma_release_channel(hdev->dma_lch);
2466 err_reset:
2467 pm_runtime_disable(dev);
2468 pm_runtime_put_noidle(dev);
2469
2470 clk_disable_unprepare(hdev->clk);
2471
2472 return ret;
2473 }
2474
stm32_hash_remove(struct platform_device * pdev)2475 static void stm32_hash_remove(struct platform_device *pdev)
2476 {
2477 struct stm32_hash_dev *hdev = platform_get_drvdata(pdev);
2478 int ret;
2479
2480 ret = pm_runtime_get_sync(hdev->dev);
2481
2482 stm32_hash_unregister_algs(hdev);
2483
2484 crypto_engine_exit(hdev->engine);
2485
2486 spin_lock(&stm32_hash.lock);
2487 list_del(&hdev->list);
2488 spin_unlock(&stm32_hash.lock);
2489
2490 if (hdev->dma_lch)
2491 dma_release_channel(hdev->dma_lch);
2492
2493 pm_runtime_disable(hdev->dev);
2494 pm_runtime_put_noidle(hdev->dev);
2495
2496 if (ret >= 0)
2497 clk_disable_unprepare(hdev->clk);
2498 }
2499
2500 #ifdef CONFIG_PM
stm32_hash_runtime_suspend(struct device * dev)2501 static int stm32_hash_runtime_suspend(struct device *dev)
2502 {
2503 struct stm32_hash_dev *hdev = dev_get_drvdata(dev);
2504
2505 clk_disable_unprepare(hdev->clk);
2506
2507 return 0;
2508 }
2509
stm32_hash_runtime_resume(struct device * dev)2510 static int stm32_hash_runtime_resume(struct device *dev)
2511 {
2512 struct stm32_hash_dev *hdev = dev_get_drvdata(dev);
2513 int ret;
2514
2515 ret = clk_prepare_enable(hdev->clk);
2516 if (ret) {
2517 dev_err(hdev->dev, "Failed to prepare_enable clock\n");
2518 return ret;
2519 }
2520
2521 return 0;
2522 }
2523 #endif
2524
2525 static const struct dev_pm_ops stm32_hash_pm_ops = {
2526 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
2527 pm_runtime_force_resume)
2528 SET_RUNTIME_PM_OPS(stm32_hash_runtime_suspend,
2529 stm32_hash_runtime_resume, NULL)
2530 };
2531
2532 static struct platform_driver stm32_hash_driver = {
2533 .probe = stm32_hash_probe,
2534 .remove = stm32_hash_remove,
2535 .driver = {
2536 .name = "stm32-hash",
2537 .pm = &stm32_hash_pm_ops,
2538 .of_match_table = stm32_hash_of_match,
2539 }
2540 };
2541
2542 module_platform_driver(stm32_hash_driver);
2543
2544 MODULE_DESCRIPTION("STM32 SHA1/SHA2/SHA3 & MD5 (HMAC) hw accelerator driver");
2545 MODULE_AUTHOR("Lionel Debieve <lionel.debieve@st.com>");
2546 MODULE_LICENSE("GPL v2");
2547