1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2008 Oracle. All rights reserved.
4 */
5
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/blkdev.h>
9 #include <linux/list_sort.h>
10 #include <linux/iversion.h>
11 #include "misc.h"
12 #include "ctree.h"
13 #include "tree-log.h"
14 #include "disk-io.h"
15 #include "locking.h"
16 #include "backref.h"
17 #include "compression.h"
18 #include "qgroup.h"
19 #include "block-group.h"
20 #include "space-info.h"
21 #include "inode-item.h"
22 #include "fs.h"
23 #include "accessors.h"
24 #include "extent-tree.h"
25 #include "root-tree.h"
26 #include "dir-item.h"
27 #include "file-item.h"
28 #include "file.h"
29 #include "orphan.h"
30 #include "tree-checker.h"
31
32 #define MAX_CONFLICT_INODES 10
33
34 /* magic values for the inode_only field in btrfs_log_inode:
35 *
36 * LOG_INODE_ALL means to log everything
37 * LOG_INODE_EXISTS means to log just enough to recreate the inode
38 * during log replay
39 */
40 enum {
41 LOG_INODE_ALL,
42 LOG_INODE_EXISTS,
43 };
44
45 /*
46 * directory trouble cases
47 *
48 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
49 * log, we must force a full commit before doing an fsync of the directory
50 * where the unlink was done.
51 * ---> record transid of last unlink/rename per directory
52 *
53 * mkdir foo/some_dir
54 * normal commit
55 * rename foo/some_dir foo2/some_dir
56 * mkdir foo/some_dir
57 * fsync foo/some_dir/some_file
58 *
59 * The fsync above will unlink the original some_dir without recording
60 * it in its new location (foo2). After a crash, some_dir will be gone
61 * unless the fsync of some_file forces a full commit
62 *
63 * 2) we must log any new names for any file or dir that is in the fsync
64 * log. ---> check inode while renaming/linking.
65 *
66 * 2a) we must log any new names for any file or dir during rename
67 * when the directory they are being removed from was logged.
68 * ---> check inode and old parent dir during rename
69 *
70 * 2a is actually the more important variant. With the extra logging
71 * a crash might unlink the old name without recreating the new one
72 *
73 * 3) after a crash, we must go through any directories with a link count
74 * of zero and redo the rm -rf
75 *
76 * mkdir f1/foo
77 * normal commit
78 * rm -rf f1/foo
79 * fsync(f1)
80 *
81 * The directory f1 was fully removed from the FS, but fsync was never
82 * called on f1, only its parent dir. After a crash the rm -rf must
83 * be replayed. This must be able to recurse down the entire
84 * directory tree. The inode link count fixup code takes care of the
85 * ugly details.
86 */
87
88 /*
89 * stages for the tree walking. The first
90 * stage (0) is to only pin down the blocks we find
91 * the second stage (1) is to make sure that all the inodes
92 * we find in the log are created in the subvolume.
93 *
94 * The last stage is to deal with directories and links and extents
95 * and all the other fun semantics
96 */
97 enum {
98 LOG_WALK_PIN_ONLY,
99 LOG_WALK_REPLAY_INODES,
100 LOG_WALK_REPLAY_DIR_INDEX,
101 LOG_WALK_REPLAY_ALL,
102 };
103
104 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
105 struct btrfs_inode *inode,
106 int inode_only,
107 struct btrfs_log_ctx *ctx);
108 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
109 struct btrfs_root *root,
110 struct btrfs_path *path, u64 objectid);
111 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
112 struct btrfs_root *root,
113 struct btrfs_root *log,
114 struct btrfs_path *path,
115 u64 dirid, bool del_all);
116 static void wait_log_commit(struct btrfs_root *root, int transid);
117
118 /*
119 * tree logging is a special write ahead log used to make sure that
120 * fsyncs and O_SYNCs can happen without doing full tree commits.
121 *
122 * Full tree commits are expensive because they require commonly
123 * modified blocks to be recowed, creating many dirty pages in the
124 * extent tree an 4x-6x higher write load than ext3.
125 *
126 * Instead of doing a tree commit on every fsync, we use the
127 * key ranges and transaction ids to find items for a given file or directory
128 * that have changed in this transaction. Those items are copied into
129 * a special tree (one per subvolume root), that tree is written to disk
130 * and then the fsync is considered complete.
131 *
132 * After a crash, items are copied out of the log-tree back into the
133 * subvolume tree. Any file data extents found are recorded in the extent
134 * allocation tree, and the log-tree freed.
135 *
136 * The log tree is read three times, once to pin down all the extents it is
137 * using in ram and once, once to create all the inodes logged in the tree
138 * and once to do all the other items.
139 */
140
btrfs_iget_logging(u64 objectid,struct btrfs_root * root)141 static struct btrfs_inode *btrfs_iget_logging(u64 objectid, struct btrfs_root *root)
142 {
143 unsigned int nofs_flag;
144 struct btrfs_inode *inode;
145
146 /* Only meant to be called for subvolume roots and not for log roots. */
147 ASSERT(btrfs_is_fstree(btrfs_root_id(root)));
148
149 /*
150 * We're holding a transaction handle whether we are logging or
151 * replaying a log tree, so we must make sure NOFS semantics apply
152 * because btrfs_alloc_inode() may be triggered and it uses GFP_KERNEL
153 * to allocate an inode, which can recurse back into the filesystem and
154 * attempt a transaction commit, resulting in a deadlock.
155 */
156 nofs_flag = memalloc_nofs_save();
157 inode = btrfs_iget(objectid, root);
158 memalloc_nofs_restore(nofs_flag);
159
160 return inode;
161 }
162
163 /*
164 * start a sub transaction and setup the log tree
165 * this increments the log tree writer count to make the people
166 * syncing the tree wait for us to finish
167 */
start_log_trans(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_log_ctx * ctx)168 static int start_log_trans(struct btrfs_trans_handle *trans,
169 struct btrfs_root *root,
170 struct btrfs_log_ctx *ctx)
171 {
172 struct btrfs_fs_info *fs_info = root->fs_info;
173 struct btrfs_root *tree_root = fs_info->tree_root;
174 const bool zoned = btrfs_is_zoned(fs_info);
175 int ret = 0;
176 bool created = false;
177
178 /*
179 * First check if the log root tree was already created. If not, create
180 * it before locking the root's log_mutex, just to keep lockdep happy.
181 */
182 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state)) {
183 mutex_lock(&tree_root->log_mutex);
184 if (!fs_info->log_root_tree) {
185 ret = btrfs_init_log_root_tree(trans, fs_info);
186 if (!ret) {
187 set_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state);
188 created = true;
189 }
190 }
191 mutex_unlock(&tree_root->log_mutex);
192 if (ret)
193 return ret;
194 }
195
196 mutex_lock(&root->log_mutex);
197
198 again:
199 if (root->log_root) {
200 int index = (root->log_transid + 1) % 2;
201
202 if (btrfs_need_log_full_commit(trans)) {
203 ret = BTRFS_LOG_FORCE_COMMIT;
204 goto out;
205 }
206
207 if (zoned && atomic_read(&root->log_commit[index])) {
208 wait_log_commit(root, root->log_transid - 1);
209 goto again;
210 }
211
212 if (!root->log_start_pid) {
213 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
214 root->log_start_pid = current->pid;
215 } else if (root->log_start_pid != current->pid) {
216 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
217 }
218 } else {
219 /*
220 * This means fs_info->log_root_tree was already created
221 * for some other FS trees. Do the full commit not to mix
222 * nodes from multiple log transactions to do sequential
223 * writing.
224 */
225 if (zoned && !created) {
226 ret = BTRFS_LOG_FORCE_COMMIT;
227 goto out;
228 }
229
230 ret = btrfs_add_log_tree(trans, root);
231 if (ret)
232 goto out;
233
234 set_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
235 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
236 root->log_start_pid = current->pid;
237 }
238
239 atomic_inc(&root->log_writers);
240 if (!ctx->logging_new_name) {
241 int index = root->log_transid % 2;
242 list_add_tail(&ctx->list, &root->log_ctxs[index]);
243 ctx->log_transid = root->log_transid;
244 }
245
246 out:
247 mutex_unlock(&root->log_mutex);
248 return ret;
249 }
250
251 /*
252 * returns 0 if there was a log transaction running and we were able
253 * to join, or returns -ENOENT if there were not transactions
254 * in progress
255 */
join_running_log_trans(struct btrfs_root * root)256 static int join_running_log_trans(struct btrfs_root *root)
257 {
258 const bool zoned = btrfs_is_zoned(root->fs_info);
259 int ret = -ENOENT;
260
261 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state))
262 return ret;
263
264 mutex_lock(&root->log_mutex);
265 again:
266 if (root->log_root) {
267 int index = (root->log_transid + 1) % 2;
268
269 ret = 0;
270 if (zoned && atomic_read(&root->log_commit[index])) {
271 wait_log_commit(root, root->log_transid - 1);
272 goto again;
273 }
274 atomic_inc(&root->log_writers);
275 }
276 mutex_unlock(&root->log_mutex);
277 return ret;
278 }
279
280 /*
281 * This either makes the current running log transaction wait
282 * until you call btrfs_end_log_trans() or it makes any future
283 * log transactions wait until you call btrfs_end_log_trans()
284 */
btrfs_pin_log_trans(struct btrfs_root * root)285 void btrfs_pin_log_trans(struct btrfs_root *root)
286 {
287 atomic_inc(&root->log_writers);
288 }
289
290 /*
291 * indicate we're done making changes to the log tree
292 * and wake up anyone waiting to do a sync
293 */
btrfs_end_log_trans(struct btrfs_root * root)294 void btrfs_end_log_trans(struct btrfs_root *root)
295 {
296 if (atomic_dec_and_test(&root->log_writers)) {
297 /* atomic_dec_and_test implies a barrier */
298 cond_wake_up_nomb(&root->log_writer_wait);
299 }
300 }
301
302 /*
303 * the walk control struct is used to pass state down the chain when
304 * processing the log tree. The stage field tells us which part
305 * of the log tree processing we are currently doing. The others
306 * are state fields used for that specific part
307 */
308 struct walk_control {
309 /* should we free the extent on disk when done? This is used
310 * at transaction commit time while freeing a log tree
311 */
312 int free;
313
314 /* pin only walk, we record which extents on disk belong to the
315 * log trees
316 */
317 int pin;
318
319 /* what stage of the replay code we're currently in */
320 int stage;
321
322 /*
323 * Ignore any items from the inode currently being processed. Needs
324 * to be set every time we find a BTRFS_INODE_ITEM_KEY.
325 */
326 bool ignore_cur_inode;
327
328 /* the root we are currently replaying */
329 struct btrfs_root *replay_dest;
330
331 /* the trans handle for the current replay */
332 struct btrfs_trans_handle *trans;
333
334 /* the function that gets used to process blocks we find in the
335 * tree. Note the extent_buffer might not be up to date when it is
336 * passed in, and it must be checked or read if you need the data
337 * inside it
338 */
339 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
340 struct walk_control *wc, u64 gen, int level);
341 };
342
343 /*
344 * process_func used to pin down extents, write them or wait on them
345 */
process_one_buffer(struct btrfs_root * log,struct extent_buffer * eb,struct walk_control * wc,u64 gen,int level)346 static int process_one_buffer(struct btrfs_root *log,
347 struct extent_buffer *eb,
348 struct walk_control *wc, u64 gen, int level)
349 {
350 struct btrfs_fs_info *fs_info = log->fs_info;
351 int ret = 0;
352
353 /*
354 * If this fs is mixed then we need to be able to process the leaves to
355 * pin down any logged extents, so we have to read the block.
356 */
357 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
358 struct btrfs_tree_parent_check check = {
359 .level = level,
360 .transid = gen
361 };
362
363 ret = btrfs_read_extent_buffer(eb, &check);
364 if (ret)
365 return ret;
366 }
367
368 if (wc->pin) {
369 ret = btrfs_pin_extent_for_log_replay(wc->trans, eb);
370 if (ret)
371 return ret;
372
373 if (btrfs_buffer_uptodate(eb, gen, 0) &&
374 btrfs_header_level(eb) == 0)
375 ret = btrfs_exclude_logged_extents(eb);
376 }
377 return ret;
378 }
379
380 /*
381 * Item overwrite used by log replay. The given eb, slot and key all refer to
382 * the source data we are copying out.
383 *
384 * The given root is for the tree we are copying into, and path is a scratch
385 * path for use in this function (it should be released on entry and will be
386 * released on exit).
387 *
388 * If the key is already in the destination tree the existing item is
389 * overwritten. If the existing item isn't big enough, it is extended.
390 * If it is too large, it is truncated.
391 *
392 * If the key isn't in the destination yet, a new item is inserted.
393 */
overwrite_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * eb,int slot,struct btrfs_key * key)394 static int overwrite_item(struct btrfs_trans_handle *trans,
395 struct btrfs_root *root,
396 struct btrfs_path *path,
397 struct extent_buffer *eb, int slot,
398 struct btrfs_key *key)
399 {
400 int ret;
401 u32 item_size;
402 u64 saved_i_size = 0;
403 int save_old_i_size = 0;
404 unsigned long src_ptr;
405 unsigned long dst_ptr;
406 struct extent_buffer *dst_eb;
407 int dst_slot;
408 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
409
410 /*
411 * This is only used during log replay, so the root is always from a
412 * fs/subvolume tree. In case we ever need to support a log root, then
413 * we'll have to clone the leaf in the path, release the path and use
414 * the leaf before writing into the log tree. See the comments at
415 * copy_items() for more details.
416 */
417 ASSERT(btrfs_root_id(root) != BTRFS_TREE_LOG_OBJECTID);
418
419 item_size = btrfs_item_size(eb, slot);
420 src_ptr = btrfs_item_ptr_offset(eb, slot);
421
422 /* Look for the key in the destination tree. */
423 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
424 if (ret < 0)
425 return ret;
426
427 dst_eb = path->nodes[0];
428 dst_slot = path->slots[0];
429
430 if (ret == 0) {
431 char *src_copy;
432 const u32 dst_size = btrfs_item_size(dst_eb, dst_slot);
433
434 if (dst_size != item_size)
435 goto insert;
436
437 if (item_size == 0) {
438 btrfs_release_path(path);
439 return 0;
440 }
441 src_copy = kmalloc(item_size, GFP_NOFS);
442 if (!src_copy) {
443 btrfs_release_path(path);
444 return -ENOMEM;
445 }
446
447 read_extent_buffer(eb, src_copy, src_ptr, item_size);
448 dst_ptr = btrfs_item_ptr_offset(dst_eb, dst_slot);
449 ret = memcmp_extent_buffer(dst_eb, src_copy, dst_ptr, item_size);
450
451 kfree(src_copy);
452 /*
453 * they have the same contents, just return, this saves
454 * us from cowing blocks in the destination tree and doing
455 * extra writes that may not have been done by a previous
456 * sync
457 */
458 if (ret == 0) {
459 btrfs_release_path(path);
460 return 0;
461 }
462
463 /*
464 * We need to load the old nbytes into the inode so when we
465 * replay the extents we've logged we get the right nbytes.
466 */
467 if (inode_item) {
468 struct btrfs_inode_item *item;
469 u64 nbytes;
470 u32 mode;
471
472 item = btrfs_item_ptr(dst_eb, dst_slot,
473 struct btrfs_inode_item);
474 nbytes = btrfs_inode_nbytes(dst_eb, item);
475 item = btrfs_item_ptr(eb, slot,
476 struct btrfs_inode_item);
477 btrfs_set_inode_nbytes(eb, item, nbytes);
478
479 /*
480 * If this is a directory we need to reset the i_size to
481 * 0 so that we can set it up properly when replaying
482 * the rest of the items in this log.
483 */
484 mode = btrfs_inode_mode(eb, item);
485 if (S_ISDIR(mode))
486 btrfs_set_inode_size(eb, item, 0);
487 }
488 } else if (inode_item) {
489 struct btrfs_inode_item *item;
490 u32 mode;
491
492 /*
493 * New inode, set nbytes to 0 so that the nbytes comes out
494 * properly when we replay the extents.
495 */
496 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
497 btrfs_set_inode_nbytes(eb, item, 0);
498
499 /*
500 * If this is a directory we need to reset the i_size to 0 so
501 * that we can set it up properly when replaying the rest of
502 * the items in this log.
503 */
504 mode = btrfs_inode_mode(eb, item);
505 if (S_ISDIR(mode))
506 btrfs_set_inode_size(eb, item, 0);
507 }
508 insert:
509 btrfs_release_path(path);
510 /* try to insert the key into the destination tree */
511 path->skip_release_on_error = 1;
512 ret = btrfs_insert_empty_item(trans, root, path,
513 key, item_size);
514 path->skip_release_on_error = 0;
515
516 dst_eb = path->nodes[0];
517 dst_slot = path->slots[0];
518
519 /* make sure any existing item is the correct size */
520 if (ret == -EEXIST || ret == -EOVERFLOW) {
521 const u32 found_size = btrfs_item_size(dst_eb, dst_slot);
522
523 if (found_size > item_size)
524 btrfs_truncate_item(trans, path, item_size, 1);
525 else if (found_size < item_size)
526 btrfs_extend_item(trans, path, item_size - found_size);
527 } else if (ret) {
528 return ret;
529 }
530 dst_ptr = btrfs_item_ptr_offset(dst_eb, dst_slot);
531
532 /* don't overwrite an existing inode if the generation number
533 * was logged as zero. This is done when the tree logging code
534 * is just logging an inode to make sure it exists after recovery.
535 *
536 * Also, don't overwrite i_size on directories during replay.
537 * log replay inserts and removes directory items based on the
538 * state of the tree found in the subvolume, and i_size is modified
539 * as it goes
540 */
541 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
542 struct btrfs_inode_item *src_item;
543 struct btrfs_inode_item *dst_item;
544
545 src_item = (struct btrfs_inode_item *)src_ptr;
546 dst_item = (struct btrfs_inode_item *)dst_ptr;
547
548 if (btrfs_inode_generation(eb, src_item) == 0) {
549 const u64 ino_size = btrfs_inode_size(eb, src_item);
550
551 /*
552 * For regular files an ino_size == 0 is used only when
553 * logging that an inode exists, as part of a directory
554 * fsync, and the inode wasn't fsynced before. In this
555 * case don't set the size of the inode in the fs/subvol
556 * tree, otherwise we would be throwing valid data away.
557 */
558 if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
559 S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
560 ino_size != 0)
561 btrfs_set_inode_size(dst_eb, dst_item, ino_size);
562 goto no_copy;
563 }
564
565 if (S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
566 S_ISDIR(btrfs_inode_mode(dst_eb, dst_item))) {
567 save_old_i_size = 1;
568 saved_i_size = btrfs_inode_size(dst_eb, dst_item);
569 }
570 }
571
572 copy_extent_buffer(dst_eb, eb, dst_ptr, src_ptr, item_size);
573
574 if (save_old_i_size) {
575 struct btrfs_inode_item *dst_item;
576
577 dst_item = (struct btrfs_inode_item *)dst_ptr;
578 btrfs_set_inode_size(dst_eb, dst_item, saved_i_size);
579 }
580
581 /* make sure the generation is filled in */
582 if (key->type == BTRFS_INODE_ITEM_KEY) {
583 struct btrfs_inode_item *dst_item;
584
585 dst_item = (struct btrfs_inode_item *)dst_ptr;
586 if (btrfs_inode_generation(dst_eb, dst_item) == 0)
587 btrfs_set_inode_generation(dst_eb, dst_item, trans->transid);
588 }
589 no_copy:
590 btrfs_release_path(path);
591 return 0;
592 }
593
read_alloc_one_name(struct extent_buffer * eb,void * start,int len,struct fscrypt_str * name)594 static int read_alloc_one_name(struct extent_buffer *eb, void *start, int len,
595 struct fscrypt_str *name)
596 {
597 char *buf;
598
599 buf = kmalloc(len, GFP_NOFS);
600 if (!buf)
601 return -ENOMEM;
602
603 read_extent_buffer(eb, buf, (unsigned long)start, len);
604 name->name = buf;
605 name->len = len;
606 return 0;
607 }
608
609 /* replays a single extent in 'eb' at 'slot' with 'key' into the
610 * subvolume 'root'. path is released on entry and should be released
611 * on exit.
612 *
613 * extents in the log tree have not been allocated out of the extent
614 * tree yet. So, this completes the allocation, taking a reference
615 * as required if the extent already exists or creating a new extent
616 * if it isn't in the extent allocation tree yet.
617 *
618 * The extent is inserted into the file, dropping any existing extents
619 * from the file that overlap the new one.
620 */
replay_one_extent(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * eb,int slot,struct btrfs_key * key)621 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
622 struct btrfs_root *root,
623 struct btrfs_path *path,
624 struct extent_buffer *eb, int slot,
625 struct btrfs_key *key)
626 {
627 struct btrfs_drop_extents_args drop_args = { 0 };
628 struct btrfs_fs_info *fs_info = root->fs_info;
629 int found_type;
630 u64 extent_end;
631 u64 start = key->offset;
632 u64 nbytes = 0;
633 struct btrfs_file_extent_item *item;
634 struct btrfs_inode *inode = NULL;
635 unsigned long size;
636 int ret = 0;
637
638 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
639 found_type = btrfs_file_extent_type(eb, item);
640
641 if (found_type == BTRFS_FILE_EXTENT_REG ||
642 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
643 nbytes = btrfs_file_extent_num_bytes(eb, item);
644 extent_end = start + nbytes;
645
646 /*
647 * We don't add to the inodes nbytes if we are prealloc or a
648 * hole.
649 */
650 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
651 nbytes = 0;
652 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
653 size = btrfs_file_extent_ram_bytes(eb, item);
654 nbytes = btrfs_file_extent_ram_bytes(eb, item);
655 extent_end = ALIGN(start + size,
656 fs_info->sectorsize);
657 } else {
658 btrfs_err(fs_info,
659 "unexpected extent type=%d root=%llu inode=%llu offset=%llu",
660 found_type, btrfs_root_id(root), key->objectid, key->offset);
661 return -EUCLEAN;
662 }
663
664 inode = btrfs_iget_logging(key->objectid, root);
665 if (IS_ERR(inode))
666 return PTR_ERR(inode);
667
668 /*
669 * first check to see if we already have this extent in the
670 * file. This must be done before the btrfs_drop_extents run
671 * so we don't try to drop this extent.
672 */
673 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode), start, 0);
674
675 if (ret == 0 &&
676 (found_type == BTRFS_FILE_EXTENT_REG ||
677 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
678 struct btrfs_file_extent_item existing;
679 unsigned long ptr;
680
681 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
682 read_extent_buffer(path->nodes[0], &existing, ptr, sizeof(existing));
683
684 /*
685 * we already have a pointer to this exact extent,
686 * we don't have to do anything
687 */
688 if (memcmp_extent_buffer(eb, &existing, (unsigned long)item,
689 sizeof(existing)) == 0) {
690 btrfs_release_path(path);
691 goto out;
692 }
693 }
694 btrfs_release_path(path);
695
696 /* drop any overlapping extents */
697 drop_args.start = start;
698 drop_args.end = extent_end;
699 drop_args.drop_cache = true;
700 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
701 if (ret)
702 goto out;
703
704 if (found_type == BTRFS_FILE_EXTENT_REG ||
705 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
706 u64 offset;
707 unsigned long dest_offset;
708 struct btrfs_key ins;
709
710 if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
711 btrfs_fs_incompat(fs_info, NO_HOLES))
712 goto update_inode;
713
714 ret = btrfs_insert_empty_item(trans, root, path, key,
715 sizeof(*item));
716 if (ret)
717 goto out;
718 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
719 path->slots[0]);
720 copy_extent_buffer(path->nodes[0], eb, dest_offset,
721 (unsigned long)item, sizeof(*item));
722
723 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
724 ins.type = BTRFS_EXTENT_ITEM_KEY;
725 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
726 offset = key->offset - btrfs_file_extent_offset(eb, item);
727
728 /*
729 * Manually record dirty extent, as here we did a shallow
730 * file extent item copy and skip normal backref update,
731 * but modifying extent tree all by ourselves.
732 * So need to manually record dirty extent for qgroup,
733 * as the owner of the file extent changed from log tree
734 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
735 */
736 ret = btrfs_qgroup_trace_extent(trans,
737 btrfs_file_extent_disk_bytenr(eb, item),
738 btrfs_file_extent_disk_num_bytes(eb, item));
739 if (ret < 0)
740 goto out;
741
742 if (ins.objectid > 0) {
743 u64 csum_start;
744 u64 csum_end;
745 LIST_HEAD(ordered_sums);
746
747 /*
748 * is this extent already allocated in the extent
749 * allocation tree? If so, just add a reference
750 */
751 ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
752 ins.offset);
753 if (ret < 0) {
754 goto out;
755 } else if (ret == 0) {
756 struct btrfs_ref ref = {
757 .action = BTRFS_ADD_DELAYED_REF,
758 .bytenr = ins.objectid,
759 .num_bytes = ins.offset,
760 .owning_root = btrfs_root_id(root),
761 .ref_root = btrfs_root_id(root),
762 };
763 btrfs_init_data_ref(&ref, key->objectid, offset,
764 0, false);
765 ret = btrfs_inc_extent_ref(trans, &ref);
766 if (ret)
767 goto out;
768 } else {
769 /*
770 * insert the extent pointer in the extent
771 * allocation tree
772 */
773 ret = btrfs_alloc_logged_file_extent(trans,
774 btrfs_root_id(root),
775 key->objectid, offset, &ins);
776 if (ret)
777 goto out;
778 }
779 btrfs_release_path(path);
780
781 if (btrfs_file_extent_compression(eb, item)) {
782 csum_start = ins.objectid;
783 csum_end = csum_start + ins.offset;
784 } else {
785 csum_start = ins.objectid +
786 btrfs_file_extent_offset(eb, item);
787 csum_end = csum_start +
788 btrfs_file_extent_num_bytes(eb, item);
789 }
790
791 ret = btrfs_lookup_csums_list(root->log_root,
792 csum_start, csum_end - 1,
793 &ordered_sums, false);
794 if (ret < 0)
795 goto out;
796 ret = 0;
797 /*
798 * Now delete all existing cums in the csum root that
799 * cover our range. We do this because we can have an
800 * extent that is completely referenced by one file
801 * extent item and partially referenced by another
802 * file extent item (like after using the clone or
803 * extent_same ioctls). In this case if we end up doing
804 * the replay of the one that partially references the
805 * extent first, and we do not do the csum deletion
806 * below, we can get 2 csum items in the csum tree that
807 * overlap each other. For example, imagine our log has
808 * the two following file extent items:
809 *
810 * key (257 EXTENT_DATA 409600)
811 * extent data disk byte 12845056 nr 102400
812 * extent data offset 20480 nr 20480 ram 102400
813 *
814 * key (257 EXTENT_DATA 819200)
815 * extent data disk byte 12845056 nr 102400
816 * extent data offset 0 nr 102400 ram 102400
817 *
818 * Where the second one fully references the 100K extent
819 * that starts at disk byte 12845056, and the log tree
820 * has a single csum item that covers the entire range
821 * of the extent:
822 *
823 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
824 *
825 * After the first file extent item is replayed, the
826 * csum tree gets the following csum item:
827 *
828 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
829 *
830 * Which covers the 20K sub-range starting at offset 20K
831 * of our extent. Now when we replay the second file
832 * extent item, if we do not delete existing csum items
833 * that cover any of its blocks, we end up getting two
834 * csum items in our csum tree that overlap each other:
835 *
836 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
837 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
838 *
839 * Which is a problem, because after this anyone trying
840 * to lookup up for the checksum of any block of our
841 * extent starting at an offset of 40K or higher, will
842 * end up looking at the second csum item only, which
843 * does not contain the checksum for any block starting
844 * at offset 40K or higher of our extent.
845 */
846 while (!list_empty(&ordered_sums)) {
847 struct btrfs_ordered_sum *sums;
848 struct btrfs_root *csum_root;
849
850 sums = list_first_entry(&ordered_sums,
851 struct btrfs_ordered_sum,
852 list);
853 csum_root = btrfs_csum_root(fs_info,
854 sums->logical);
855 if (!ret)
856 ret = btrfs_del_csums(trans, csum_root,
857 sums->logical,
858 sums->len);
859 if (!ret)
860 ret = btrfs_csum_file_blocks(trans,
861 csum_root,
862 sums);
863 list_del(&sums->list);
864 kfree(sums);
865 }
866 if (ret)
867 goto out;
868 } else {
869 btrfs_release_path(path);
870 }
871 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
872 /* inline extents are easy, we just overwrite them */
873 ret = overwrite_item(trans, root, path, eb, slot, key);
874 if (ret)
875 goto out;
876 }
877
878 ret = btrfs_inode_set_file_extent_range(inode, start, extent_end - start);
879 if (ret)
880 goto out;
881
882 update_inode:
883 btrfs_update_inode_bytes(inode, nbytes, drop_args.bytes_found);
884 ret = btrfs_update_inode(trans, inode);
885 out:
886 iput(&inode->vfs_inode);
887 return ret;
888 }
889
unlink_inode_for_log_replay(struct btrfs_trans_handle * trans,struct btrfs_inode * dir,struct btrfs_inode * inode,const struct fscrypt_str * name)890 static int unlink_inode_for_log_replay(struct btrfs_trans_handle *trans,
891 struct btrfs_inode *dir,
892 struct btrfs_inode *inode,
893 const struct fscrypt_str *name)
894 {
895 int ret;
896
897 ret = btrfs_unlink_inode(trans, dir, inode, name);
898 if (ret)
899 return ret;
900 /*
901 * Whenever we need to check if a name exists or not, we check the
902 * fs/subvolume tree. So after an unlink we must run delayed items, so
903 * that future checks for a name during log replay see that the name
904 * does not exists anymore.
905 */
906 return btrfs_run_delayed_items(trans);
907 }
908
909 /*
910 * when cleaning up conflicts between the directory names in the
911 * subvolume, directory names in the log and directory names in the
912 * inode back references, we may have to unlink inodes from directories.
913 *
914 * This is a helper function to do the unlink of a specific directory
915 * item
916 */
drop_one_dir_item(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_inode * dir,struct btrfs_dir_item * di)917 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
918 struct btrfs_path *path,
919 struct btrfs_inode *dir,
920 struct btrfs_dir_item *di)
921 {
922 struct btrfs_root *root = dir->root;
923 struct btrfs_inode *inode;
924 struct fscrypt_str name;
925 struct extent_buffer *leaf;
926 struct btrfs_key location;
927 int ret;
928
929 leaf = path->nodes[0];
930
931 btrfs_dir_item_key_to_cpu(leaf, di, &location);
932 ret = read_alloc_one_name(leaf, di + 1, btrfs_dir_name_len(leaf, di), &name);
933 if (ret)
934 return -ENOMEM;
935
936 btrfs_release_path(path);
937
938 inode = btrfs_iget_logging(location.objectid, root);
939 if (IS_ERR(inode)) {
940 ret = PTR_ERR(inode);
941 inode = NULL;
942 goto out;
943 }
944
945 ret = link_to_fixup_dir(trans, root, path, location.objectid);
946 if (ret)
947 goto out;
948
949 ret = unlink_inode_for_log_replay(trans, dir, inode, &name);
950 out:
951 kfree(name.name);
952 if (inode)
953 iput(&inode->vfs_inode);
954 return ret;
955 }
956
957 /*
958 * See if a given name and sequence number found in an inode back reference are
959 * already in a directory and correctly point to this inode.
960 *
961 * Returns: < 0 on error, 0 if the directory entry does not exists and 1 if it
962 * exists.
963 */
inode_in_dir(struct btrfs_root * root,struct btrfs_path * path,u64 dirid,u64 objectid,u64 index,struct fscrypt_str * name)964 static noinline int inode_in_dir(struct btrfs_root *root,
965 struct btrfs_path *path,
966 u64 dirid, u64 objectid, u64 index,
967 struct fscrypt_str *name)
968 {
969 struct btrfs_dir_item *di;
970 struct btrfs_key location;
971 int ret = 0;
972
973 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
974 index, name, 0);
975 if (IS_ERR(di)) {
976 ret = PTR_ERR(di);
977 goto out;
978 } else if (di) {
979 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
980 if (location.objectid != objectid)
981 goto out;
982 } else {
983 goto out;
984 }
985
986 btrfs_release_path(path);
987 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, 0);
988 if (IS_ERR(di)) {
989 ret = PTR_ERR(di);
990 goto out;
991 } else if (di) {
992 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
993 if (location.objectid == objectid)
994 ret = 1;
995 }
996 out:
997 btrfs_release_path(path);
998 return ret;
999 }
1000
1001 /*
1002 * helper function to check a log tree for a named back reference in
1003 * an inode. This is used to decide if a back reference that is
1004 * found in the subvolume conflicts with what we find in the log.
1005 *
1006 * inode backreferences may have multiple refs in a single item,
1007 * during replay we process one reference at a time, and we don't
1008 * want to delete valid links to a file from the subvolume if that
1009 * link is also in the log.
1010 */
backref_in_log(struct btrfs_root * log,struct btrfs_key * key,u64 ref_objectid,const struct fscrypt_str * name)1011 static noinline int backref_in_log(struct btrfs_root *log,
1012 struct btrfs_key *key,
1013 u64 ref_objectid,
1014 const struct fscrypt_str *name)
1015 {
1016 struct btrfs_path *path;
1017 int ret;
1018
1019 path = btrfs_alloc_path();
1020 if (!path)
1021 return -ENOMEM;
1022
1023 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
1024 if (ret < 0) {
1025 goto out;
1026 } else if (ret == 1) {
1027 ret = 0;
1028 goto out;
1029 }
1030
1031 if (key->type == BTRFS_INODE_EXTREF_KEY)
1032 ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
1033 path->slots[0],
1034 ref_objectid, name);
1035 else
1036 ret = !!btrfs_find_name_in_backref(path->nodes[0],
1037 path->slots[0], name);
1038 out:
1039 btrfs_free_path(path);
1040 return ret;
1041 }
1042
unlink_refs_not_in_log(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_root * log_root,struct btrfs_key * search_key,struct btrfs_inode * dir,struct btrfs_inode * inode,u64 parent_objectid)1043 static int unlink_refs_not_in_log(struct btrfs_trans_handle *trans,
1044 struct btrfs_path *path,
1045 struct btrfs_root *log_root,
1046 struct btrfs_key *search_key,
1047 struct btrfs_inode *dir,
1048 struct btrfs_inode *inode,
1049 u64 parent_objectid)
1050 {
1051 struct extent_buffer *leaf = path->nodes[0];
1052 unsigned long ptr;
1053 unsigned long ptr_end;
1054
1055 /*
1056 * Check all the names in this back reference to see if they are in the
1057 * log. If so, we allow them to stay otherwise they must be unlinked as
1058 * a conflict.
1059 */
1060 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1061 ptr_end = ptr + btrfs_item_size(leaf, path->slots[0]);
1062 while (ptr < ptr_end) {
1063 struct fscrypt_str victim_name;
1064 struct btrfs_inode_ref *victim_ref;
1065 int ret;
1066
1067 victim_ref = (struct btrfs_inode_ref *)ptr;
1068 ret = read_alloc_one_name(leaf, (victim_ref + 1),
1069 btrfs_inode_ref_name_len(leaf, victim_ref),
1070 &victim_name);
1071 if (ret)
1072 return ret;
1073
1074 ret = backref_in_log(log_root, search_key, parent_objectid, &victim_name);
1075 if (ret) {
1076 kfree(victim_name.name);
1077 if (ret < 0)
1078 return ret;
1079 ptr = (unsigned long)(victim_ref + 1) + victim_name.len;
1080 continue;
1081 }
1082
1083 inc_nlink(&inode->vfs_inode);
1084 btrfs_release_path(path);
1085
1086 ret = unlink_inode_for_log_replay(trans, dir, inode, &victim_name);
1087 kfree(victim_name.name);
1088 if (ret)
1089 return ret;
1090 return -EAGAIN;
1091 }
1092
1093 return 0;
1094 }
1095
unlink_extrefs_not_in_log(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_root * root,struct btrfs_root * log_root,struct btrfs_key * search_key,struct btrfs_inode * inode,u64 inode_objectid,u64 parent_objectid)1096 static int unlink_extrefs_not_in_log(struct btrfs_trans_handle *trans,
1097 struct btrfs_path *path,
1098 struct btrfs_root *root,
1099 struct btrfs_root *log_root,
1100 struct btrfs_key *search_key,
1101 struct btrfs_inode *inode,
1102 u64 inode_objectid,
1103 u64 parent_objectid)
1104 {
1105 struct extent_buffer *leaf = path->nodes[0];
1106 const unsigned long base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1107 const u32 item_size = btrfs_item_size(leaf, path->slots[0]);
1108 u32 cur_offset = 0;
1109
1110 while (cur_offset < item_size) {
1111 struct btrfs_inode_extref *extref;
1112 struct btrfs_inode *victim_parent;
1113 struct fscrypt_str victim_name;
1114 int ret;
1115
1116 extref = (struct btrfs_inode_extref *)(base + cur_offset);
1117 victim_name.len = btrfs_inode_extref_name_len(leaf, extref);
1118
1119 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1120 goto next;
1121
1122 ret = read_alloc_one_name(leaf, &extref->name, victim_name.len,
1123 &victim_name);
1124 if (ret)
1125 return ret;
1126
1127 search_key->objectid = inode_objectid;
1128 search_key->type = BTRFS_INODE_EXTREF_KEY;
1129 search_key->offset = btrfs_extref_hash(parent_objectid,
1130 victim_name.name,
1131 victim_name.len);
1132 ret = backref_in_log(log_root, search_key, parent_objectid, &victim_name);
1133 if (ret) {
1134 kfree(victim_name.name);
1135 if (ret < 0)
1136 return ret;
1137 next:
1138 cur_offset += victim_name.len + sizeof(*extref);
1139 continue;
1140 }
1141
1142 victim_parent = btrfs_iget_logging(parent_objectid, root);
1143 if (IS_ERR(victim_parent)) {
1144 kfree(victim_name.name);
1145 return PTR_ERR(victim_parent);
1146 }
1147
1148 inc_nlink(&inode->vfs_inode);
1149 btrfs_release_path(path);
1150
1151 ret = unlink_inode_for_log_replay(trans, victim_parent, inode,
1152 &victim_name);
1153 iput(&victim_parent->vfs_inode);
1154 kfree(victim_name.name);
1155 if (ret)
1156 return ret;
1157 return -EAGAIN;
1158 }
1159
1160 return 0;
1161 }
1162
__add_inode_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_root * log_root,struct btrfs_inode * dir,struct btrfs_inode * inode,u64 inode_objectid,u64 parent_objectid,u64 ref_index,struct fscrypt_str * name)1163 static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
1164 struct btrfs_root *root,
1165 struct btrfs_path *path,
1166 struct btrfs_root *log_root,
1167 struct btrfs_inode *dir,
1168 struct btrfs_inode *inode,
1169 u64 inode_objectid, u64 parent_objectid,
1170 u64 ref_index, struct fscrypt_str *name)
1171 {
1172 int ret;
1173 struct btrfs_dir_item *di;
1174 struct btrfs_key search_key;
1175 struct btrfs_inode_extref *extref;
1176
1177 again:
1178 /* Search old style refs */
1179 search_key.objectid = inode_objectid;
1180 search_key.type = BTRFS_INODE_REF_KEY;
1181 search_key.offset = parent_objectid;
1182 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
1183 if (ret < 0) {
1184 return ret;
1185 } else if (ret == 0) {
1186 /*
1187 * Are we trying to overwrite a back ref for the root directory?
1188 * If so, we're done.
1189 */
1190 if (search_key.objectid == search_key.offset)
1191 return 1;
1192
1193 ret = unlink_refs_not_in_log(trans, path, log_root, &search_key,
1194 dir, inode, parent_objectid);
1195 if (ret == -EAGAIN)
1196 goto again;
1197 else if (ret)
1198 return ret;
1199 }
1200 btrfs_release_path(path);
1201
1202 /* Same search but for extended refs */
1203 extref = btrfs_lookup_inode_extref(root, path, name, inode_objectid, parent_objectid);
1204 if (IS_ERR(extref)) {
1205 return PTR_ERR(extref);
1206 } else if (extref) {
1207 ret = unlink_extrefs_not_in_log(trans, path, root, log_root,
1208 &search_key, inode,
1209 inode_objectid, parent_objectid);
1210 if (ret == -EAGAIN)
1211 goto again;
1212 else if (ret)
1213 return ret;
1214 }
1215 btrfs_release_path(path);
1216
1217 /* look for a conflicting sequence number */
1218 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1219 ref_index, name, 0);
1220 if (IS_ERR(di)) {
1221 return PTR_ERR(di);
1222 } else if (di) {
1223 ret = drop_one_dir_item(trans, path, dir, di);
1224 if (ret)
1225 return ret;
1226 }
1227 btrfs_release_path(path);
1228
1229 /* look for a conflicting name */
1230 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir), name, 0);
1231 if (IS_ERR(di)) {
1232 return PTR_ERR(di);
1233 } else if (di) {
1234 ret = drop_one_dir_item(trans, path, dir, di);
1235 if (ret)
1236 return ret;
1237 }
1238 btrfs_release_path(path);
1239
1240 return 0;
1241 }
1242
extref_get_fields(struct extent_buffer * eb,unsigned long ref_ptr,struct fscrypt_str * name,u64 * index,u64 * parent_objectid)1243 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1244 struct fscrypt_str *name, u64 *index,
1245 u64 *parent_objectid)
1246 {
1247 struct btrfs_inode_extref *extref;
1248 int ret;
1249
1250 extref = (struct btrfs_inode_extref *)ref_ptr;
1251
1252 ret = read_alloc_one_name(eb, &extref->name,
1253 btrfs_inode_extref_name_len(eb, extref), name);
1254 if (ret)
1255 return ret;
1256
1257 if (index)
1258 *index = btrfs_inode_extref_index(eb, extref);
1259 if (parent_objectid)
1260 *parent_objectid = btrfs_inode_extref_parent(eb, extref);
1261
1262 return 0;
1263 }
1264
ref_get_fields(struct extent_buffer * eb,unsigned long ref_ptr,struct fscrypt_str * name,u64 * index)1265 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1266 struct fscrypt_str *name, u64 *index)
1267 {
1268 struct btrfs_inode_ref *ref;
1269 int ret;
1270
1271 ref = (struct btrfs_inode_ref *)ref_ptr;
1272
1273 ret = read_alloc_one_name(eb, ref + 1, btrfs_inode_ref_name_len(eb, ref),
1274 name);
1275 if (ret)
1276 return ret;
1277
1278 if (index)
1279 *index = btrfs_inode_ref_index(eb, ref);
1280
1281 return 0;
1282 }
1283
1284 /*
1285 * Take an inode reference item from the log tree and iterate all names from the
1286 * inode reference item in the subvolume tree with the same key (if it exists).
1287 * For any name that is not in the inode reference item from the log tree, do a
1288 * proper unlink of that name (that is, remove its entry from the inode
1289 * reference item and both dir index keys).
1290 */
unlink_old_inode_refs(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_inode * inode,struct extent_buffer * log_eb,int log_slot,struct btrfs_key * key)1291 static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1292 struct btrfs_root *root,
1293 struct btrfs_path *path,
1294 struct btrfs_inode *inode,
1295 struct extent_buffer *log_eb,
1296 int log_slot,
1297 struct btrfs_key *key)
1298 {
1299 int ret;
1300 unsigned long ref_ptr;
1301 unsigned long ref_end;
1302 struct extent_buffer *eb;
1303
1304 again:
1305 btrfs_release_path(path);
1306 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1307 if (ret > 0) {
1308 ret = 0;
1309 goto out;
1310 }
1311 if (ret < 0)
1312 goto out;
1313
1314 eb = path->nodes[0];
1315 ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
1316 ref_end = ref_ptr + btrfs_item_size(eb, path->slots[0]);
1317 while (ref_ptr < ref_end) {
1318 struct fscrypt_str name;
1319 u64 parent_id;
1320
1321 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1322 ret = extref_get_fields(eb, ref_ptr, &name,
1323 NULL, &parent_id);
1324 } else {
1325 parent_id = key->offset;
1326 ret = ref_get_fields(eb, ref_ptr, &name, NULL);
1327 }
1328 if (ret)
1329 goto out;
1330
1331 if (key->type == BTRFS_INODE_EXTREF_KEY)
1332 ret = !!btrfs_find_name_in_ext_backref(log_eb, log_slot,
1333 parent_id, &name);
1334 else
1335 ret = !!btrfs_find_name_in_backref(log_eb, log_slot, &name);
1336
1337 if (!ret) {
1338 struct btrfs_inode *dir;
1339
1340 btrfs_release_path(path);
1341 dir = btrfs_iget_logging(parent_id, root);
1342 if (IS_ERR(dir)) {
1343 ret = PTR_ERR(dir);
1344 kfree(name.name);
1345 goto out;
1346 }
1347 ret = unlink_inode_for_log_replay(trans, dir, inode, &name);
1348 kfree(name.name);
1349 iput(&dir->vfs_inode);
1350 if (ret)
1351 goto out;
1352 goto again;
1353 }
1354
1355 kfree(name.name);
1356 ref_ptr += name.len;
1357 if (key->type == BTRFS_INODE_EXTREF_KEY)
1358 ref_ptr += sizeof(struct btrfs_inode_extref);
1359 else
1360 ref_ptr += sizeof(struct btrfs_inode_ref);
1361 }
1362 ret = 0;
1363 out:
1364 btrfs_release_path(path);
1365 return ret;
1366 }
1367
1368 /*
1369 * replay one inode back reference item found in the log tree.
1370 * eb, slot and key refer to the buffer and key found in the log tree.
1371 * root is the destination we are replaying into, and path is for temp
1372 * use by this function. (it should be released on return).
1373 */
add_inode_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_root * log,struct btrfs_path * path,struct extent_buffer * eb,int slot,struct btrfs_key * key)1374 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1375 struct btrfs_root *root,
1376 struct btrfs_root *log,
1377 struct btrfs_path *path,
1378 struct extent_buffer *eb, int slot,
1379 struct btrfs_key *key)
1380 {
1381 struct btrfs_inode *dir = NULL;
1382 struct btrfs_inode *inode = NULL;
1383 unsigned long ref_ptr;
1384 unsigned long ref_end;
1385 struct fscrypt_str name = { 0 };
1386 int ret;
1387 const bool is_extref_item = (key->type == BTRFS_INODE_EXTREF_KEY);
1388 u64 parent_objectid;
1389 u64 inode_objectid;
1390 u64 ref_index = 0;
1391 int ref_struct_size;
1392
1393 ref_ptr = btrfs_item_ptr_offset(eb, slot);
1394 ref_end = ref_ptr + btrfs_item_size(eb, slot);
1395
1396 if (is_extref_item) {
1397 struct btrfs_inode_extref *r;
1398
1399 ref_struct_size = sizeof(struct btrfs_inode_extref);
1400 r = (struct btrfs_inode_extref *)ref_ptr;
1401 parent_objectid = btrfs_inode_extref_parent(eb, r);
1402 } else {
1403 ref_struct_size = sizeof(struct btrfs_inode_ref);
1404 parent_objectid = key->offset;
1405 }
1406 inode_objectid = key->objectid;
1407
1408 /*
1409 * it is possible that we didn't log all the parent directories
1410 * for a given inode. If we don't find the dir, just don't
1411 * copy the back ref in. The link count fixup code will take
1412 * care of the rest
1413 */
1414 dir = btrfs_iget_logging(parent_objectid, root);
1415 if (IS_ERR(dir)) {
1416 ret = PTR_ERR(dir);
1417 if (ret == -ENOENT)
1418 ret = 0;
1419 dir = NULL;
1420 goto out;
1421 }
1422
1423 inode = btrfs_iget_logging(inode_objectid, root);
1424 if (IS_ERR(inode)) {
1425 ret = PTR_ERR(inode);
1426 inode = NULL;
1427 goto out;
1428 }
1429
1430 while (ref_ptr < ref_end) {
1431 if (is_extref_item) {
1432 ret = extref_get_fields(eb, ref_ptr, &name,
1433 &ref_index, &parent_objectid);
1434 if (ret)
1435 goto out;
1436 /*
1437 * parent object can change from one array
1438 * item to another.
1439 */
1440 if (!dir) {
1441 dir = btrfs_iget_logging(parent_objectid, root);
1442 if (IS_ERR(dir)) {
1443 ret = PTR_ERR(dir);
1444 dir = NULL;
1445 /*
1446 * A new parent dir may have not been
1447 * logged and not exist in the subvolume
1448 * tree, see the comment above before
1449 * the loop when getting the first
1450 * parent dir.
1451 */
1452 if (ret == -ENOENT) {
1453 /*
1454 * The next extref may refer to
1455 * another parent dir that
1456 * exists, so continue.
1457 */
1458 ret = 0;
1459 goto next;
1460 }
1461 goto out;
1462 }
1463 }
1464 } else {
1465 ret = ref_get_fields(eb, ref_ptr, &name, &ref_index);
1466 if (ret)
1467 goto out;
1468 }
1469
1470 ret = inode_in_dir(root, path, btrfs_ino(dir), btrfs_ino(inode),
1471 ref_index, &name);
1472 if (ret < 0) {
1473 goto out;
1474 } else if (ret == 0) {
1475 /*
1476 * look for a conflicting back reference in the
1477 * metadata. if we find one we have to unlink that name
1478 * of the file before we add our new link. Later on, we
1479 * overwrite any existing back reference, and we don't
1480 * want to create dangling pointers in the directory.
1481 */
1482 ret = __add_inode_ref(trans, root, path, log, dir, inode,
1483 inode_objectid, parent_objectid,
1484 ref_index, &name);
1485 if (ret) {
1486 if (ret == 1)
1487 ret = 0;
1488 goto out;
1489 }
1490
1491 /* insert our name */
1492 ret = btrfs_add_link(trans, dir, inode, &name, 0, ref_index);
1493 if (ret)
1494 goto out;
1495
1496 ret = btrfs_update_inode(trans, inode);
1497 if (ret)
1498 goto out;
1499 }
1500 /* Else, ret == 1, we already have a perfect match, we're done. */
1501
1502 next:
1503 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + name.len;
1504 kfree(name.name);
1505 name.name = NULL;
1506 if (is_extref_item && dir) {
1507 iput(&dir->vfs_inode);
1508 dir = NULL;
1509 }
1510 }
1511
1512 /*
1513 * Before we overwrite the inode reference item in the subvolume tree
1514 * with the item from the log tree, we must unlink all names from the
1515 * parent directory that are in the subvolume's tree inode reference
1516 * item, otherwise we end up with an inconsistent subvolume tree where
1517 * dir index entries exist for a name but there is no inode reference
1518 * item with the same name.
1519 */
1520 ret = unlink_old_inode_refs(trans, root, path, inode, eb, slot, key);
1521 if (ret)
1522 goto out;
1523
1524 /* finally write the back reference in the inode */
1525 ret = overwrite_item(trans, root, path, eb, slot, key);
1526 out:
1527 btrfs_release_path(path);
1528 kfree(name.name);
1529 if (dir)
1530 iput(&dir->vfs_inode);
1531 if (inode)
1532 iput(&inode->vfs_inode);
1533 return ret;
1534 }
1535
count_inode_extrefs(struct btrfs_inode * inode,struct btrfs_path * path)1536 static int count_inode_extrefs(struct btrfs_inode *inode, struct btrfs_path *path)
1537 {
1538 int ret = 0;
1539 int name_len;
1540 unsigned int nlink = 0;
1541 u32 item_size;
1542 u32 cur_offset = 0;
1543 u64 inode_objectid = btrfs_ino(inode);
1544 u64 offset = 0;
1545 unsigned long ptr;
1546 struct btrfs_inode_extref *extref;
1547 struct extent_buffer *leaf;
1548
1549 while (1) {
1550 ret = btrfs_find_one_extref(inode->root, inode_objectid, offset,
1551 path, &extref, &offset);
1552 if (ret)
1553 break;
1554
1555 leaf = path->nodes[0];
1556 item_size = btrfs_item_size(leaf, path->slots[0]);
1557 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1558 cur_offset = 0;
1559
1560 while (cur_offset < item_size) {
1561 extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1562 name_len = btrfs_inode_extref_name_len(leaf, extref);
1563
1564 nlink++;
1565
1566 cur_offset += name_len + sizeof(*extref);
1567 }
1568
1569 offset++;
1570 btrfs_release_path(path);
1571 }
1572 btrfs_release_path(path);
1573
1574 if (ret < 0 && ret != -ENOENT)
1575 return ret;
1576 return nlink;
1577 }
1578
count_inode_refs(struct btrfs_inode * inode,struct btrfs_path * path)1579 static int count_inode_refs(struct btrfs_inode *inode, struct btrfs_path *path)
1580 {
1581 int ret;
1582 struct btrfs_key key;
1583 unsigned int nlink = 0;
1584 unsigned long ptr;
1585 unsigned long ptr_end;
1586 int name_len;
1587 u64 ino = btrfs_ino(inode);
1588
1589 key.objectid = ino;
1590 key.type = BTRFS_INODE_REF_KEY;
1591 key.offset = (u64)-1;
1592
1593 while (1) {
1594 ret = btrfs_search_slot(NULL, inode->root, &key, path, 0, 0);
1595 if (ret < 0)
1596 break;
1597 if (ret > 0) {
1598 if (path->slots[0] == 0)
1599 break;
1600 path->slots[0]--;
1601 }
1602 process_slot:
1603 btrfs_item_key_to_cpu(path->nodes[0], &key,
1604 path->slots[0]);
1605 if (key.objectid != ino ||
1606 key.type != BTRFS_INODE_REF_KEY)
1607 break;
1608 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1609 ptr_end = ptr + btrfs_item_size(path->nodes[0],
1610 path->slots[0]);
1611 while (ptr < ptr_end) {
1612 struct btrfs_inode_ref *ref;
1613
1614 ref = (struct btrfs_inode_ref *)ptr;
1615 name_len = btrfs_inode_ref_name_len(path->nodes[0],
1616 ref);
1617 ptr = (unsigned long)(ref + 1) + name_len;
1618 nlink++;
1619 }
1620
1621 if (key.offset == 0)
1622 break;
1623 if (path->slots[0] > 0) {
1624 path->slots[0]--;
1625 goto process_slot;
1626 }
1627 key.offset--;
1628 btrfs_release_path(path);
1629 }
1630 btrfs_release_path(path);
1631
1632 return nlink;
1633 }
1634
1635 /*
1636 * There are a few corners where the link count of the file can't
1637 * be properly maintained during replay. So, instead of adding
1638 * lots of complexity to the log code, we just scan the backrefs
1639 * for any file that has been through replay.
1640 *
1641 * The scan will update the link count on the inode to reflect the
1642 * number of back refs found. If it goes down to zero, the iput
1643 * will free the inode.
1644 */
fixup_inode_link_count(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)1645 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1646 struct btrfs_inode *inode)
1647 {
1648 struct btrfs_root *root = inode->root;
1649 struct btrfs_path *path;
1650 int ret;
1651 u64 nlink = 0;
1652 const u64 ino = btrfs_ino(inode);
1653
1654 path = btrfs_alloc_path();
1655 if (!path)
1656 return -ENOMEM;
1657
1658 ret = count_inode_refs(inode, path);
1659 if (ret < 0)
1660 goto out;
1661
1662 nlink = ret;
1663
1664 ret = count_inode_extrefs(inode, path);
1665 if (ret < 0)
1666 goto out;
1667
1668 nlink += ret;
1669
1670 ret = 0;
1671
1672 if (nlink != inode->vfs_inode.i_nlink) {
1673 set_nlink(&inode->vfs_inode, nlink);
1674 ret = btrfs_update_inode(trans, inode);
1675 if (ret)
1676 goto out;
1677 }
1678 if (S_ISDIR(inode->vfs_inode.i_mode))
1679 inode->index_cnt = (u64)-1;
1680
1681 if (inode->vfs_inode.i_nlink == 0) {
1682 if (S_ISDIR(inode->vfs_inode.i_mode)) {
1683 ret = replay_dir_deletes(trans, root, NULL, path, ino, true);
1684 if (ret)
1685 goto out;
1686 }
1687 ret = btrfs_insert_orphan_item(trans, root, ino);
1688 if (ret == -EEXIST)
1689 ret = 0;
1690 }
1691
1692 out:
1693 btrfs_free_path(path);
1694 return ret;
1695 }
1696
fixup_inode_link_counts(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path)1697 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1698 struct btrfs_root *root,
1699 struct btrfs_path *path)
1700 {
1701 int ret;
1702 struct btrfs_key key;
1703
1704 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1705 key.type = BTRFS_ORPHAN_ITEM_KEY;
1706 key.offset = (u64)-1;
1707 while (1) {
1708 struct btrfs_inode *inode;
1709
1710 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1711 if (ret < 0)
1712 break;
1713
1714 if (ret == 1) {
1715 ret = 0;
1716 if (path->slots[0] == 0)
1717 break;
1718 path->slots[0]--;
1719 }
1720
1721 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1722 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1723 key.type != BTRFS_ORPHAN_ITEM_KEY)
1724 break;
1725
1726 ret = btrfs_del_item(trans, root, path);
1727 if (ret)
1728 break;
1729
1730 btrfs_release_path(path);
1731 inode = btrfs_iget_logging(key.offset, root);
1732 if (IS_ERR(inode)) {
1733 ret = PTR_ERR(inode);
1734 break;
1735 }
1736
1737 ret = fixup_inode_link_count(trans, inode);
1738 iput(&inode->vfs_inode);
1739 if (ret)
1740 break;
1741
1742 /*
1743 * fixup on a directory may create new entries,
1744 * make sure we always look for the highset possible
1745 * offset
1746 */
1747 key.offset = (u64)-1;
1748 }
1749 btrfs_release_path(path);
1750 return ret;
1751 }
1752
1753
1754 /*
1755 * record a given inode in the fixup dir so we can check its link
1756 * count when replay is done. The link count is incremented here
1757 * so the inode won't go away until we check it
1758 */
link_to_fixup_dir(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,u64 objectid)1759 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1760 struct btrfs_root *root,
1761 struct btrfs_path *path,
1762 u64 objectid)
1763 {
1764 struct btrfs_key key;
1765 int ret = 0;
1766 struct btrfs_inode *inode;
1767 struct inode *vfs_inode;
1768
1769 inode = btrfs_iget_logging(objectid, root);
1770 if (IS_ERR(inode))
1771 return PTR_ERR(inode);
1772
1773 vfs_inode = &inode->vfs_inode;
1774 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1775 key.type = BTRFS_ORPHAN_ITEM_KEY;
1776 key.offset = objectid;
1777
1778 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1779
1780 btrfs_release_path(path);
1781 if (ret == 0) {
1782 if (!vfs_inode->i_nlink)
1783 set_nlink(vfs_inode, 1);
1784 else
1785 inc_nlink(vfs_inode);
1786 ret = btrfs_update_inode(trans, inode);
1787 } else if (ret == -EEXIST) {
1788 ret = 0;
1789 }
1790 iput(vfs_inode);
1791
1792 return ret;
1793 }
1794
1795 /*
1796 * when replaying the log for a directory, we only insert names
1797 * for inodes that actually exist. This means an fsync on a directory
1798 * does not implicitly fsync all the new files in it
1799 */
insert_one_name(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 dirid,u64 index,const struct fscrypt_str * name,struct btrfs_key * location)1800 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1801 struct btrfs_root *root,
1802 u64 dirid, u64 index,
1803 const struct fscrypt_str *name,
1804 struct btrfs_key *location)
1805 {
1806 struct btrfs_inode *inode;
1807 struct btrfs_inode *dir;
1808 int ret;
1809
1810 inode = btrfs_iget_logging(location->objectid, root);
1811 if (IS_ERR(inode))
1812 return PTR_ERR(inode);
1813
1814 dir = btrfs_iget_logging(dirid, root);
1815 if (IS_ERR(dir)) {
1816 iput(&inode->vfs_inode);
1817 return PTR_ERR(dir);
1818 }
1819
1820 ret = btrfs_add_link(trans, dir, inode, name, 1, index);
1821
1822 /* FIXME, put inode into FIXUP list */
1823
1824 iput(&inode->vfs_inode);
1825 iput(&dir->vfs_inode);
1826 return ret;
1827 }
1828
delete_conflicting_dir_entry(struct btrfs_trans_handle * trans,struct btrfs_inode * dir,struct btrfs_path * path,struct btrfs_dir_item * dst_di,const struct btrfs_key * log_key,u8 log_flags,bool exists)1829 static int delete_conflicting_dir_entry(struct btrfs_trans_handle *trans,
1830 struct btrfs_inode *dir,
1831 struct btrfs_path *path,
1832 struct btrfs_dir_item *dst_di,
1833 const struct btrfs_key *log_key,
1834 u8 log_flags,
1835 bool exists)
1836 {
1837 struct btrfs_key found_key;
1838
1839 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1840 /* The existing dentry points to the same inode, don't delete it. */
1841 if (found_key.objectid == log_key->objectid &&
1842 found_key.type == log_key->type &&
1843 found_key.offset == log_key->offset &&
1844 btrfs_dir_flags(path->nodes[0], dst_di) == log_flags)
1845 return 1;
1846
1847 /*
1848 * Don't drop the conflicting directory entry if the inode for the new
1849 * entry doesn't exist.
1850 */
1851 if (!exists)
1852 return 0;
1853
1854 return drop_one_dir_item(trans, path, dir, dst_di);
1855 }
1856
1857 /*
1858 * take a single entry in a log directory item and replay it into
1859 * the subvolume.
1860 *
1861 * if a conflicting item exists in the subdirectory already,
1862 * the inode it points to is unlinked and put into the link count
1863 * fix up tree.
1864 *
1865 * If a name from the log points to a file or directory that does
1866 * not exist in the FS, it is skipped. fsyncs on directories
1867 * do not force down inodes inside that directory, just changes to the
1868 * names or unlinks in a directory.
1869 *
1870 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1871 * non-existing inode) and 1 if the name was replayed.
1872 */
replay_one_name(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * eb,struct btrfs_dir_item * di,struct btrfs_key * key)1873 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1874 struct btrfs_root *root,
1875 struct btrfs_path *path,
1876 struct extent_buffer *eb,
1877 struct btrfs_dir_item *di,
1878 struct btrfs_key *key)
1879 {
1880 struct fscrypt_str name = { 0 };
1881 struct btrfs_dir_item *dir_dst_di;
1882 struct btrfs_dir_item *index_dst_di;
1883 bool dir_dst_matches = false;
1884 bool index_dst_matches = false;
1885 struct btrfs_key log_key;
1886 struct btrfs_key search_key;
1887 struct btrfs_inode *dir;
1888 u8 log_flags;
1889 bool exists;
1890 int ret;
1891 bool update_size = true;
1892 bool name_added = false;
1893
1894 dir = btrfs_iget_logging(key->objectid, root);
1895 if (IS_ERR(dir))
1896 return PTR_ERR(dir);
1897
1898 ret = read_alloc_one_name(eb, di + 1, btrfs_dir_name_len(eb, di), &name);
1899 if (ret)
1900 goto out;
1901
1902 log_flags = btrfs_dir_flags(eb, di);
1903 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1904 ret = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1905 btrfs_release_path(path);
1906 if (ret < 0)
1907 goto out;
1908 exists = (ret == 0);
1909 ret = 0;
1910
1911 dir_dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1912 &name, 1);
1913 if (IS_ERR(dir_dst_di)) {
1914 ret = PTR_ERR(dir_dst_di);
1915 goto out;
1916 } else if (dir_dst_di) {
1917 ret = delete_conflicting_dir_entry(trans, dir, path, dir_dst_di,
1918 &log_key, log_flags, exists);
1919 if (ret < 0)
1920 goto out;
1921 dir_dst_matches = (ret == 1);
1922 }
1923
1924 btrfs_release_path(path);
1925
1926 index_dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1927 key->objectid, key->offset,
1928 &name, 1);
1929 if (IS_ERR(index_dst_di)) {
1930 ret = PTR_ERR(index_dst_di);
1931 goto out;
1932 } else if (index_dst_di) {
1933 ret = delete_conflicting_dir_entry(trans, dir, path, index_dst_di,
1934 &log_key, log_flags, exists);
1935 if (ret < 0)
1936 goto out;
1937 index_dst_matches = (ret == 1);
1938 }
1939
1940 btrfs_release_path(path);
1941
1942 if (dir_dst_matches && index_dst_matches) {
1943 ret = 0;
1944 update_size = false;
1945 goto out;
1946 }
1947
1948 /*
1949 * Check if the inode reference exists in the log for the given name,
1950 * inode and parent inode
1951 */
1952 search_key.objectid = log_key.objectid;
1953 search_key.type = BTRFS_INODE_REF_KEY;
1954 search_key.offset = key->objectid;
1955 ret = backref_in_log(root->log_root, &search_key, 0, &name);
1956 if (ret < 0) {
1957 goto out;
1958 } else if (ret) {
1959 /* The dentry will be added later. */
1960 ret = 0;
1961 update_size = false;
1962 goto out;
1963 }
1964
1965 search_key.objectid = log_key.objectid;
1966 search_key.type = BTRFS_INODE_EXTREF_KEY;
1967 search_key.offset = key->objectid;
1968 ret = backref_in_log(root->log_root, &search_key, key->objectid, &name);
1969 if (ret < 0) {
1970 goto out;
1971 } else if (ret) {
1972 /* The dentry will be added later. */
1973 ret = 0;
1974 update_size = false;
1975 goto out;
1976 }
1977 btrfs_release_path(path);
1978 ret = insert_one_name(trans, root, key->objectid, key->offset,
1979 &name, &log_key);
1980 if (ret && ret != -ENOENT && ret != -EEXIST)
1981 goto out;
1982 if (!ret)
1983 name_added = true;
1984 update_size = false;
1985 ret = 0;
1986
1987 out:
1988 if (!ret && update_size) {
1989 btrfs_i_size_write(dir, dir->vfs_inode.i_size + name.len * 2);
1990 ret = btrfs_update_inode(trans, dir);
1991 }
1992 kfree(name.name);
1993 iput(&dir->vfs_inode);
1994 if (!ret && name_added)
1995 ret = 1;
1996 return ret;
1997 }
1998
1999 /* Replay one dir item from a BTRFS_DIR_INDEX_KEY key. */
replay_one_dir_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * eb,int slot,struct btrfs_key * key)2000 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
2001 struct btrfs_root *root,
2002 struct btrfs_path *path,
2003 struct extent_buffer *eb, int slot,
2004 struct btrfs_key *key)
2005 {
2006 int ret;
2007 struct btrfs_dir_item *di;
2008
2009 /* We only log dir index keys, which only contain a single dir item. */
2010 ASSERT(key->type == BTRFS_DIR_INDEX_KEY);
2011
2012 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2013 ret = replay_one_name(trans, root, path, eb, di, key);
2014 if (ret < 0)
2015 return ret;
2016
2017 /*
2018 * If this entry refers to a non-directory (directories can not have a
2019 * link count > 1) and it was added in the transaction that was not
2020 * committed, make sure we fixup the link count of the inode the entry
2021 * points to. Otherwise something like the following would result in a
2022 * directory pointing to an inode with a wrong link that does not account
2023 * for this dir entry:
2024 *
2025 * mkdir testdir
2026 * touch testdir/foo
2027 * touch testdir/bar
2028 * sync
2029 *
2030 * ln testdir/bar testdir/bar_link
2031 * ln testdir/foo testdir/foo_link
2032 * xfs_io -c "fsync" testdir/bar
2033 *
2034 * <power failure>
2035 *
2036 * mount fs, log replay happens
2037 *
2038 * File foo would remain with a link count of 1 when it has two entries
2039 * pointing to it in the directory testdir. This would make it impossible
2040 * to ever delete the parent directory has it would result in stale
2041 * dentries that can never be deleted.
2042 */
2043 if (ret == 1 && btrfs_dir_ftype(eb, di) != BTRFS_FT_DIR) {
2044 struct btrfs_path *fixup_path;
2045 struct btrfs_key di_key;
2046
2047 fixup_path = btrfs_alloc_path();
2048 if (!fixup_path)
2049 return -ENOMEM;
2050
2051 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2052 ret = link_to_fixup_dir(trans, root, fixup_path, di_key.objectid);
2053 btrfs_free_path(fixup_path);
2054 }
2055
2056 return ret;
2057 }
2058
2059 /*
2060 * directory replay has two parts. There are the standard directory
2061 * items in the log copied from the subvolume, and range items
2062 * created in the log while the subvolume was logged.
2063 *
2064 * The range items tell us which parts of the key space the log
2065 * is authoritative for. During replay, if a key in the subvolume
2066 * directory is in a logged range item, but not actually in the log
2067 * that means it was deleted from the directory before the fsync
2068 * and should be removed.
2069 */
find_dir_range(struct btrfs_root * root,struct btrfs_path * path,u64 dirid,u64 * start_ret,u64 * end_ret)2070 static noinline int find_dir_range(struct btrfs_root *root,
2071 struct btrfs_path *path,
2072 u64 dirid,
2073 u64 *start_ret, u64 *end_ret)
2074 {
2075 struct btrfs_key key;
2076 u64 found_end;
2077 struct btrfs_dir_log_item *item;
2078 int ret;
2079 int nritems;
2080
2081 if (*start_ret == (u64)-1)
2082 return 1;
2083
2084 key.objectid = dirid;
2085 key.type = BTRFS_DIR_LOG_INDEX_KEY;
2086 key.offset = *start_ret;
2087
2088 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2089 if (ret < 0)
2090 goto out;
2091 if (ret > 0) {
2092 if (path->slots[0] == 0)
2093 goto out;
2094 path->slots[0]--;
2095 }
2096 if (ret != 0)
2097 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2098
2099 if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) {
2100 ret = 1;
2101 goto next;
2102 }
2103 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2104 struct btrfs_dir_log_item);
2105 found_end = btrfs_dir_log_end(path->nodes[0], item);
2106
2107 if (*start_ret >= key.offset && *start_ret <= found_end) {
2108 ret = 0;
2109 *start_ret = key.offset;
2110 *end_ret = found_end;
2111 goto out;
2112 }
2113 ret = 1;
2114 next:
2115 /* check the next slot in the tree to see if it is a valid item */
2116 nritems = btrfs_header_nritems(path->nodes[0]);
2117 path->slots[0]++;
2118 if (path->slots[0] >= nritems) {
2119 ret = btrfs_next_leaf(root, path);
2120 if (ret)
2121 goto out;
2122 }
2123
2124 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2125
2126 if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) {
2127 ret = 1;
2128 goto out;
2129 }
2130 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2131 struct btrfs_dir_log_item);
2132 found_end = btrfs_dir_log_end(path->nodes[0], item);
2133 *start_ret = key.offset;
2134 *end_ret = found_end;
2135 ret = 0;
2136 out:
2137 btrfs_release_path(path);
2138 return ret;
2139 }
2140
2141 /*
2142 * this looks for a given directory item in the log. If the directory
2143 * item is not in the log, the item is removed and the inode it points
2144 * to is unlinked
2145 */
check_item_in_log(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * path,struct btrfs_path * log_path,struct btrfs_inode * dir,struct btrfs_key * dir_key)2146 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
2147 struct btrfs_root *log,
2148 struct btrfs_path *path,
2149 struct btrfs_path *log_path,
2150 struct btrfs_inode *dir,
2151 struct btrfs_key *dir_key)
2152 {
2153 struct btrfs_root *root = dir->root;
2154 int ret;
2155 struct extent_buffer *eb;
2156 int slot;
2157 struct btrfs_dir_item *di;
2158 struct fscrypt_str name = { 0 };
2159 struct btrfs_inode *inode = NULL;
2160 struct btrfs_key location;
2161
2162 /*
2163 * Currently we only log dir index keys. Even if we replay a log created
2164 * by an older kernel that logged both dir index and dir item keys, all
2165 * we need to do is process the dir index keys, we (and our caller) can
2166 * safely ignore dir item keys (key type BTRFS_DIR_ITEM_KEY).
2167 */
2168 ASSERT(dir_key->type == BTRFS_DIR_INDEX_KEY);
2169
2170 eb = path->nodes[0];
2171 slot = path->slots[0];
2172 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2173 ret = read_alloc_one_name(eb, di + 1, btrfs_dir_name_len(eb, di), &name);
2174 if (ret)
2175 goto out;
2176
2177 if (log) {
2178 struct btrfs_dir_item *log_di;
2179
2180 log_di = btrfs_lookup_dir_index_item(trans, log, log_path,
2181 dir_key->objectid,
2182 dir_key->offset, &name, 0);
2183 if (IS_ERR(log_di)) {
2184 ret = PTR_ERR(log_di);
2185 goto out;
2186 } else if (log_di) {
2187 /* The dentry exists in the log, we have nothing to do. */
2188 ret = 0;
2189 goto out;
2190 }
2191 }
2192
2193 btrfs_dir_item_key_to_cpu(eb, di, &location);
2194 btrfs_release_path(path);
2195 btrfs_release_path(log_path);
2196 inode = btrfs_iget_logging(location.objectid, root);
2197 if (IS_ERR(inode)) {
2198 ret = PTR_ERR(inode);
2199 inode = NULL;
2200 goto out;
2201 }
2202
2203 ret = link_to_fixup_dir(trans, root, path, location.objectid);
2204 if (ret)
2205 goto out;
2206
2207 inc_nlink(&inode->vfs_inode);
2208 ret = unlink_inode_for_log_replay(trans, dir, inode, &name);
2209 /*
2210 * Unlike dir item keys, dir index keys can only have one name (entry) in
2211 * them, as there are no key collisions since each key has a unique offset
2212 * (an index number), so we're done.
2213 */
2214 out:
2215 btrfs_release_path(path);
2216 btrfs_release_path(log_path);
2217 kfree(name.name);
2218 if (inode)
2219 iput(&inode->vfs_inode);
2220 return ret;
2221 }
2222
replay_xattr_deletes(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_root * log,struct btrfs_path * path,const u64 ino)2223 static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2224 struct btrfs_root *root,
2225 struct btrfs_root *log,
2226 struct btrfs_path *path,
2227 const u64 ino)
2228 {
2229 struct btrfs_key search_key;
2230 struct btrfs_path *log_path;
2231 int i;
2232 int nritems;
2233 int ret;
2234
2235 log_path = btrfs_alloc_path();
2236 if (!log_path)
2237 return -ENOMEM;
2238
2239 search_key.objectid = ino;
2240 search_key.type = BTRFS_XATTR_ITEM_KEY;
2241 search_key.offset = 0;
2242 again:
2243 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2244 if (ret < 0)
2245 goto out;
2246 process_leaf:
2247 nritems = btrfs_header_nritems(path->nodes[0]);
2248 for (i = path->slots[0]; i < nritems; i++) {
2249 struct btrfs_key key;
2250 struct btrfs_dir_item *di;
2251 struct btrfs_dir_item *log_di;
2252 u32 total_size;
2253 u32 cur;
2254
2255 btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2256 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2257 ret = 0;
2258 goto out;
2259 }
2260
2261 di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2262 total_size = btrfs_item_size(path->nodes[0], i);
2263 cur = 0;
2264 while (cur < total_size) {
2265 u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2266 u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2267 u32 this_len = sizeof(*di) + name_len + data_len;
2268 char *name;
2269
2270 name = kmalloc(name_len, GFP_NOFS);
2271 if (!name) {
2272 ret = -ENOMEM;
2273 goto out;
2274 }
2275 read_extent_buffer(path->nodes[0], name,
2276 (unsigned long)(di + 1), name_len);
2277
2278 log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2279 name, name_len, 0);
2280 btrfs_release_path(log_path);
2281 if (!log_di) {
2282 /* Doesn't exist in log tree, so delete it. */
2283 btrfs_release_path(path);
2284 di = btrfs_lookup_xattr(trans, root, path, ino,
2285 name, name_len, -1);
2286 kfree(name);
2287 if (IS_ERR(di)) {
2288 ret = PTR_ERR(di);
2289 goto out;
2290 }
2291 ASSERT(di);
2292 ret = btrfs_delete_one_dir_name(trans, root,
2293 path, di);
2294 if (ret)
2295 goto out;
2296 btrfs_release_path(path);
2297 search_key = key;
2298 goto again;
2299 }
2300 kfree(name);
2301 if (IS_ERR(log_di)) {
2302 ret = PTR_ERR(log_di);
2303 goto out;
2304 }
2305 cur += this_len;
2306 di = (struct btrfs_dir_item *)((char *)di + this_len);
2307 }
2308 }
2309 ret = btrfs_next_leaf(root, path);
2310 if (ret > 0)
2311 ret = 0;
2312 else if (ret == 0)
2313 goto process_leaf;
2314 out:
2315 btrfs_free_path(log_path);
2316 btrfs_release_path(path);
2317 return ret;
2318 }
2319
2320
2321 /*
2322 * deletion replay happens before we copy any new directory items
2323 * out of the log or out of backreferences from inodes. It
2324 * scans the log to find ranges of keys that log is authoritative for,
2325 * and then scans the directory to find items in those ranges that are
2326 * not present in the log.
2327 *
2328 * Anything we don't find in the log is unlinked and removed from the
2329 * directory.
2330 */
replay_dir_deletes(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_root * log,struct btrfs_path * path,u64 dirid,bool del_all)2331 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2332 struct btrfs_root *root,
2333 struct btrfs_root *log,
2334 struct btrfs_path *path,
2335 u64 dirid, bool del_all)
2336 {
2337 u64 range_start;
2338 u64 range_end;
2339 int ret = 0;
2340 struct btrfs_key dir_key;
2341 struct btrfs_key found_key;
2342 struct btrfs_path *log_path;
2343 struct btrfs_inode *dir;
2344
2345 dir_key.objectid = dirid;
2346 dir_key.type = BTRFS_DIR_INDEX_KEY;
2347 log_path = btrfs_alloc_path();
2348 if (!log_path)
2349 return -ENOMEM;
2350
2351 dir = btrfs_iget_logging(dirid, root);
2352 /*
2353 * It isn't an error if the inode isn't there, that can happen because
2354 * we replay the deletes before we copy in the inode item from the log.
2355 */
2356 if (IS_ERR(dir)) {
2357 btrfs_free_path(log_path);
2358 ret = PTR_ERR(dir);
2359 if (ret == -ENOENT)
2360 ret = 0;
2361 return ret;
2362 }
2363
2364 range_start = 0;
2365 range_end = 0;
2366 while (1) {
2367 if (del_all)
2368 range_end = (u64)-1;
2369 else {
2370 ret = find_dir_range(log, path, dirid,
2371 &range_start, &range_end);
2372 if (ret < 0)
2373 goto out;
2374 else if (ret > 0)
2375 break;
2376 }
2377
2378 dir_key.offset = range_start;
2379 while (1) {
2380 int nritems;
2381 ret = btrfs_search_slot(NULL, root, &dir_key, path,
2382 0, 0);
2383 if (ret < 0)
2384 goto out;
2385
2386 nritems = btrfs_header_nritems(path->nodes[0]);
2387 if (path->slots[0] >= nritems) {
2388 ret = btrfs_next_leaf(root, path);
2389 if (ret == 1)
2390 break;
2391 else if (ret < 0)
2392 goto out;
2393 }
2394 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2395 path->slots[0]);
2396 if (found_key.objectid != dirid ||
2397 found_key.type != dir_key.type) {
2398 ret = 0;
2399 goto out;
2400 }
2401
2402 if (found_key.offset > range_end)
2403 break;
2404
2405 ret = check_item_in_log(trans, log, path,
2406 log_path, dir,
2407 &found_key);
2408 if (ret)
2409 goto out;
2410 if (found_key.offset == (u64)-1)
2411 break;
2412 dir_key.offset = found_key.offset + 1;
2413 }
2414 btrfs_release_path(path);
2415 if (range_end == (u64)-1)
2416 break;
2417 range_start = range_end + 1;
2418 }
2419 ret = 0;
2420 out:
2421 btrfs_release_path(path);
2422 btrfs_free_path(log_path);
2423 iput(&dir->vfs_inode);
2424 return ret;
2425 }
2426
2427 /*
2428 * the process_func used to replay items from the log tree. This
2429 * gets called in two different stages. The first stage just looks
2430 * for inodes and makes sure they are all copied into the subvolume.
2431 *
2432 * The second stage copies all the other item types from the log into
2433 * the subvolume. The two stage approach is slower, but gets rid of
2434 * lots of complexity around inodes referencing other inodes that exist
2435 * only in the log (references come from either directory items or inode
2436 * back refs).
2437 */
replay_one_buffer(struct btrfs_root * log,struct extent_buffer * eb,struct walk_control * wc,u64 gen,int level)2438 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2439 struct walk_control *wc, u64 gen, int level)
2440 {
2441 int nritems;
2442 struct btrfs_tree_parent_check check = {
2443 .transid = gen,
2444 .level = level
2445 };
2446 struct btrfs_path *path;
2447 struct btrfs_root *root = wc->replay_dest;
2448 struct btrfs_key key;
2449 int i;
2450 int ret;
2451
2452 ret = btrfs_read_extent_buffer(eb, &check);
2453 if (ret)
2454 return ret;
2455
2456 level = btrfs_header_level(eb);
2457
2458 if (level != 0)
2459 return 0;
2460
2461 path = btrfs_alloc_path();
2462 if (!path)
2463 return -ENOMEM;
2464
2465 nritems = btrfs_header_nritems(eb);
2466 for (i = 0; i < nritems; i++) {
2467 struct btrfs_inode_item *inode_item;
2468
2469 btrfs_item_key_to_cpu(eb, &key, i);
2470
2471 if (key.type == BTRFS_INODE_ITEM_KEY) {
2472 inode_item = btrfs_item_ptr(eb, i, struct btrfs_inode_item);
2473 /*
2474 * An inode with no links is either:
2475 *
2476 * 1) A tmpfile (O_TMPFILE) that got fsync'ed and never
2477 * got linked before the fsync, skip it, as replaying
2478 * it is pointless since it would be deleted later.
2479 * We skip logging tmpfiles, but it's always possible
2480 * we are replaying a log created with a kernel that
2481 * used to log tmpfiles;
2482 *
2483 * 2) A non-tmpfile which got its last link deleted
2484 * while holding an open fd on it and later got
2485 * fsynced through that fd. We always log the
2486 * parent inodes when inode->last_unlink_trans is
2487 * set to the current transaction, so ignore all the
2488 * inode items for this inode. We will delete the
2489 * inode when processing the parent directory with
2490 * replay_dir_deletes().
2491 */
2492 if (btrfs_inode_nlink(eb, inode_item) == 0) {
2493 wc->ignore_cur_inode = true;
2494 continue;
2495 } else {
2496 wc->ignore_cur_inode = false;
2497 }
2498 }
2499
2500 /* Inode keys are done during the first stage. */
2501 if (key.type == BTRFS_INODE_ITEM_KEY &&
2502 wc->stage == LOG_WALK_REPLAY_INODES) {
2503 u32 mode;
2504
2505 ret = replay_xattr_deletes(wc->trans, root, log, path, key.objectid);
2506 if (ret)
2507 break;
2508 mode = btrfs_inode_mode(eb, inode_item);
2509 if (S_ISDIR(mode)) {
2510 ret = replay_dir_deletes(wc->trans, root, log, path,
2511 key.objectid, false);
2512 if (ret)
2513 break;
2514 }
2515 ret = overwrite_item(wc->trans, root, path,
2516 eb, i, &key);
2517 if (ret)
2518 break;
2519
2520 /*
2521 * Before replaying extents, truncate the inode to its
2522 * size. We need to do it now and not after log replay
2523 * because before an fsync we can have prealloc extents
2524 * added beyond the inode's i_size. If we did it after,
2525 * through orphan cleanup for example, we would drop
2526 * those prealloc extents just after replaying them.
2527 */
2528 if (S_ISREG(mode)) {
2529 struct btrfs_drop_extents_args drop_args = { 0 };
2530 struct btrfs_inode *inode;
2531 u64 from;
2532
2533 inode = btrfs_iget_logging(key.objectid, root);
2534 if (IS_ERR(inode)) {
2535 ret = PTR_ERR(inode);
2536 break;
2537 }
2538 from = ALIGN(i_size_read(&inode->vfs_inode),
2539 root->fs_info->sectorsize);
2540 drop_args.start = from;
2541 drop_args.end = (u64)-1;
2542 drop_args.drop_cache = true;
2543 ret = btrfs_drop_extents(wc->trans, root, inode,
2544 &drop_args);
2545 if (!ret) {
2546 inode_sub_bytes(&inode->vfs_inode,
2547 drop_args.bytes_found);
2548 /* Update the inode's nbytes. */
2549 ret = btrfs_update_inode(wc->trans, inode);
2550 }
2551 iput(&inode->vfs_inode);
2552 if (ret)
2553 break;
2554 }
2555
2556 ret = link_to_fixup_dir(wc->trans, root,
2557 path, key.objectid);
2558 if (ret)
2559 break;
2560 }
2561
2562 if (wc->ignore_cur_inode)
2563 continue;
2564
2565 if (key.type == BTRFS_DIR_INDEX_KEY &&
2566 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2567 ret = replay_one_dir_item(wc->trans, root, path,
2568 eb, i, &key);
2569 if (ret)
2570 break;
2571 }
2572
2573 if (wc->stage < LOG_WALK_REPLAY_ALL)
2574 continue;
2575
2576 /* these keys are simply copied */
2577 if (key.type == BTRFS_XATTR_ITEM_KEY) {
2578 ret = overwrite_item(wc->trans, root, path,
2579 eb, i, &key);
2580 if (ret)
2581 break;
2582 } else if (key.type == BTRFS_INODE_REF_KEY ||
2583 key.type == BTRFS_INODE_EXTREF_KEY) {
2584 ret = add_inode_ref(wc->trans, root, log, path,
2585 eb, i, &key);
2586 if (ret)
2587 break;
2588 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2589 ret = replay_one_extent(wc->trans, root, path,
2590 eb, i, &key);
2591 if (ret)
2592 break;
2593 }
2594 /*
2595 * We don't log BTRFS_DIR_ITEM_KEY keys anymore, only the
2596 * BTRFS_DIR_INDEX_KEY items which we use to derive the
2597 * BTRFS_DIR_ITEM_KEY items. If we are replaying a log from an
2598 * older kernel with such keys, ignore them.
2599 */
2600 }
2601 btrfs_free_path(path);
2602 return ret;
2603 }
2604
2605 /*
2606 * Correctly adjust the reserved bytes occupied by a log tree extent buffer
2607 */
unaccount_log_buffer(struct btrfs_fs_info * fs_info,u64 start)2608 static void unaccount_log_buffer(struct btrfs_fs_info *fs_info, u64 start)
2609 {
2610 struct btrfs_block_group *cache;
2611
2612 cache = btrfs_lookup_block_group(fs_info, start);
2613 if (!cache) {
2614 btrfs_err(fs_info, "unable to find block group for %llu", start);
2615 return;
2616 }
2617
2618 spin_lock(&cache->space_info->lock);
2619 spin_lock(&cache->lock);
2620 cache->reserved -= fs_info->nodesize;
2621 cache->space_info->bytes_reserved -= fs_info->nodesize;
2622 spin_unlock(&cache->lock);
2623 spin_unlock(&cache->space_info->lock);
2624
2625 btrfs_put_block_group(cache);
2626 }
2627
clean_log_buffer(struct btrfs_trans_handle * trans,struct extent_buffer * eb)2628 static int clean_log_buffer(struct btrfs_trans_handle *trans,
2629 struct extent_buffer *eb)
2630 {
2631 int ret;
2632
2633 btrfs_tree_lock(eb);
2634 btrfs_clear_buffer_dirty(trans, eb);
2635 wait_on_extent_buffer_writeback(eb);
2636 btrfs_tree_unlock(eb);
2637
2638 if (trans) {
2639 ret = btrfs_pin_reserved_extent(trans, eb);
2640 if (ret)
2641 return ret;
2642 } else {
2643 unaccount_log_buffer(eb->fs_info, eb->start);
2644 }
2645
2646 return 0;
2647 }
2648
walk_down_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int * level,struct walk_control * wc)2649 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2650 struct btrfs_root *root,
2651 struct btrfs_path *path, int *level,
2652 struct walk_control *wc)
2653 {
2654 struct btrfs_fs_info *fs_info = root->fs_info;
2655 u64 bytenr;
2656 u64 ptr_gen;
2657 struct extent_buffer *next;
2658 struct extent_buffer *cur;
2659 int ret = 0;
2660
2661 while (*level > 0) {
2662 struct btrfs_tree_parent_check check = { 0 };
2663
2664 cur = path->nodes[*level];
2665
2666 WARN_ON(btrfs_header_level(cur) != *level);
2667
2668 if (path->slots[*level] >=
2669 btrfs_header_nritems(cur))
2670 break;
2671
2672 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2673 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2674 check.transid = ptr_gen;
2675 check.level = *level - 1;
2676 check.has_first_key = true;
2677 btrfs_node_key_to_cpu(cur, &check.first_key, path->slots[*level]);
2678
2679 next = btrfs_find_create_tree_block(fs_info, bytenr,
2680 btrfs_header_owner(cur),
2681 *level - 1);
2682 if (IS_ERR(next))
2683 return PTR_ERR(next);
2684
2685 if (*level == 1) {
2686 ret = wc->process_func(root, next, wc, ptr_gen,
2687 *level - 1);
2688 if (ret) {
2689 free_extent_buffer(next);
2690 return ret;
2691 }
2692
2693 path->slots[*level]++;
2694 if (wc->free) {
2695 ret = btrfs_read_extent_buffer(next, &check);
2696 if (ret) {
2697 free_extent_buffer(next);
2698 return ret;
2699 }
2700
2701 ret = clean_log_buffer(trans, next);
2702 if (ret) {
2703 free_extent_buffer(next);
2704 return ret;
2705 }
2706 }
2707 free_extent_buffer(next);
2708 continue;
2709 }
2710 ret = btrfs_read_extent_buffer(next, &check);
2711 if (ret) {
2712 free_extent_buffer(next);
2713 return ret;
2714 }
2715
2716 if (path->nodes[*level-1])
2717 free_extent_buffer(path->nodes[*level-1]);
2718 path->nodes[*level-1] = next;
2719 *level = btrfs_header_level(next);
2720 path->slots[*level] = 0;
2721 cond_resched();
2722 }
2723 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2724
2725 cond_resched();
2726 return 0;
2727 }
2728
walk_up_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int * level,struct walk_control * wc)2729 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2730 struct btrfs_root *root,
2731 struct btrfs_path *path, int *level,
2732 struct walk_control *wc)
2733 {
2734 int i;
2735 int slot;
2736 int ret;
2737
2738 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2739 slot = path->slots[i];
2740 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2741 path->slots[i]++;
2742 *level = i;
2743 WARN_ON(*level == 0);
2744 return 0;
2745 } else {
2746 ret = wc->process_func(root, path->nodes[*level], wc,
2747 btrfs_header_generation(path->nodes[*level]),
2748 *level);
2749 if (ret)
2750 return ret;
2751
2752 if (wc->free) {
2753 ret = clean_log_buffer(trans, path->nodes[*level]);
2754 if (ret)
2755 return ret;
2756 }
2757 free_extent_buffer(path->nodes[*level]);
2758 path->nodes[*level] = NULL;
2759 *level = i + 1;
2760 }
2761 }
2762 return 1;
2763 }
2764
2765 /*
2766 * drop the reference count on the tree rooted at 'snap'. This traverses
2767 * the tree freeing any blocks that have a ref count of zero after being
2768 * decremented.
2769 */
walk_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct walk_control * wc)2770 static int walk_log_tree(struct btrfs_trans_handle *trans,
2771 struct btrfs_root *log, struct walk_control *wc)
2772 {
2773 int ret = 0;
2774 int wret;
2775 int level;
2776 struct btrfs_path *path;
2777 int orig_level;
2778
2779 path = btrfs_alloc_path();
2780 if (!path)
2781 return -ENOMEM;
2782
2783 level = btrfs_header_level(log->node);
2784 orig_level = level;
2785 path->nodes[level] = log->node;
2786 refcount_inc(&log->node->refs);
2787 path->slots[level] = 0;
2788
2789 while (1) {
2790 wret = walk_down_log_tree(trans, log, path, &level, wc);
2791 if (wret > 0)
2792 break;
2793 if (wret < 0) {
2794 ret = wret;
2795 goto out;
2796 }
2797
2798 wret = walk_up_log_tree(trans, log, path, &level, wc);
2799 if (wret > 0)
2800 break;
2801 if (wret < 0) {
2802 ret = wret;
2803 goto out;
2804 }
2805 }
2806
2807 /* was the root node processed? if not, catch it here */
2808 if (path->nodes[orig_level]) {
2809 ret = wc->process_func(log, path->nodes[orig_level], wc,
2810 btrfs_header_generation(path->nodes[orig_level]),
2811 orig_level);
2812 if (ret)
2813 goto out;
2814 if (wc->free)
2815 ret = clean_log_buffer(trans, path->nodes[orig_level]);
2816 }
2817
2818 out:
2819 btrfs_free_path(path);
2820 return ret;
2821 }
2822
2823 /*
2824 * helper function to update the item for a given subvolumes log root
2825 * in the tree of log roots
2826 */
update_log_root(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_root_item * root_item)2827 static int update_log_root(struct btrfs_trans_handle *trans,
2828 struct btrfs_root *log,
2829 struct btrfs_root_item *root_item)
2830 {
2831 struct btrfs_fs_info *fs_info = log->fs_info;
2832 int ret;
2833
2834 if (log->log_transid == 1) {
2835 /* insert root item on the first sync */
2836 ret = btrfs_insert_root(trans, fs_info->log_root_tree,
2837 &log->root_key, root_item);
2838 } else {
2839 ret = btrfs_update_root(trans, fs_info->log_root_tree,
2840 &log->root_key, root_item);
2841 }
2842 return ret;
2843 }
2844
wait_log_commit(struct btrfs_root * root,int transid)2845 static void wait_log_commit(struct btrfs_root *root, int transid)
2846 {
2847 DEFINE_WAIT(wait);
2848 int index = transid % 2;
2849
2850 /*
2851 * we only allow two pending log transactions at a time,
2852 * so we know that if ours is more than 2 older than the
2853 * current transaction, we're done
2854 */
2855 for (;;) {
2856 prepare_to_wait(&root->log_commit_wait[index],
2857 &wait, TASK_UNINTERRUPTIBLE);
2858
2859 if (!(root->log_transid_committed < transid &&
2860 atomic_read(&root->log_commit[index])))
2861 break;
2862
2863 mutex_unlock(&root->log_mutex);
2864 schedule();
2865 mutex_lock(&root->log_mutex);
2866 }
2867 finish_wait(&root->log_commit_wait[index], &wait);
2868 }
2869
wait_for_writer(struct btrfs_root * root)2870 static void wait_for_writer(struct btrfs_root *root)
2871 {
2872 DEFINE_WAIT(wait);
2873
2874 for (;;) {
2875 prepare_to_wait(&root->log_writer_wait, &wait,
2876 TASK_UNINTERRUPTIBLE);
2877 if (!atomic_read(&root->log_writers))
2878 break;
2879
2880 mutex_unlock(&root->log_mutex);
2881 schedule();
2882 mutex_lock(&root->log_mutex);
2883 }
2884 finish_wait(&root->log_writer_wait, &wait);
2885 }
2886
btrfs_init_log_ctx(struct btrfs_log_ctx * ctx,struct btrfs_inode * inode)2887 void btrfs_init_log_ctx(struct btrfs_log_ctx *ctx, struct btrfs_inode *inode)
2888 {
2889 ctx->log_ret = 0;
2890 ctx->log_transid = 0;
2891 ctx->log_new_dentries = false;
2892 ctx->logging_new_name = false;
2893 ctx->logging_new_delayed_dentries = false;
2894 ctx->logged_before = false;
2895 ctx->inode = inode;
2896 INIT_LIST_HEAD(&ctx->list);
2897 INIT_LIST_HEAD(&ctx->ordered_extents);
2898 INIT_LIST_HEAD(&ctx->conflict_inodes);
2899 ctx->num_conflict_inodes = 0;
2900 ctx->logging_conflict_inodes = false;
2901 ctx->scratch_eb = NULL;
2902 }
2903
btrfs_init_log_ctx_scratch_eb(struct btrfs_log_ctx * ctx)2904 void btrfs_init_log_ctx_scratch_eb(struct btrfs_log_ctx *ctx)
2905 {
2906 struct btrfs_inode *inode = ctx->inode;
2907
2908 if (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) &&
2909 !test_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags))
2910 return;
2911
2912 /*
2913 * Don't care about allocation failure. This is just for optimization,
2914 * if we fail to allocate here, we will try again later if needed.
2915 */
2916 ctx->scratch_eb = alloc_dummy_extent_buffer(inode->root->fs_info, 0);
2917 }
2918
btrfs_release_log_ctx_extents(struct btrfs_log_ctx * ctx)2919 void btrfs_release_log_ctx_extents(struct btrfs_log_ctx *ctx)
2920 {
2921 struct btrfs_ordered_extent *ordered;
2922 struct btrfs_ordered_extent *tmp;
2923
2924 btrfs_assert_inode_locked(ctx->inode);
2925
2926 list_for_each_entry_safe(ordered, tmp, &ctx->ordered_extents, log_list) {
2927 list_del_init(&ordered->log_list);
2928 btrfs_put_ordered_extent(ordered);
2929 }
2930 }
2931
2932
btrfs_remove_log_ctx(struct btrfs_root * root,struct btrfs_log_ctx * ctx)2933 static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2934 struct btrfs_log_ctx *ctx)
2935 {
2936 mutex_lock(&root->log_mutex);
2937 list_del_init(&ctx->list);
2938 mutex_unlock(&root->log_mutex);
2939 }
2940
2941 /*
2942 * Invoked in log mutex context, or be sure there is no other task which
2943 * can access the list.
2944 */
btrfs_remove_all_log_ctxs(struct btrfs_root * root,int index,int error)2945 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2946 int index, int error)
2947 {
2948 struct btrfs_log_ctx *ctx;
2949 struct btrfs_log_ctx *safe;
2950
2951 list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
2952 list_del_init(&ctx->list);
2953 ctx->log_ret = error;
2954 }
2955 }
2956
2957 /*
2958 * Sends a given tree log down to the disk and updates the super blocks to
2959 * record it. When this call is done, you know that any inodes previously
2960 * logged are safely on disk only if it returns 0.
2961 *
2962 * Any other return value means you need to call btrfs_commit_transaction.
2963 * Some of the edge cases for fsyncing directories that have had unlinks
2964 * or renames done in the past mean that sometimes the only safe
2965 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
2966 * that has happened.
2967 */
btrfs_sync_log(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_log_ctx * ctx)2968 int btrfs_sync_log(struct btrfs_trans_handle *trans,
2969 struct btrfs_root *root, struct btrfs_log_ctx *ctx)
2970 {
2971 int index1;
2972 int index2;
2973 int mark;
2974 int ret;
2975 struct btrfs_fs_info *fs_info = root->fs_info;
2976 struct btrfs_root *log = root->log_root;
2977 struct btrfs_root *log_root_tree = fs_info->log_root_tree;
2978 struct btrfs_root_item new_root_item;
2979 int log_transid = 0;
2980 struct btrfs_log_ctx root_log_ctx;
2981 struct blk_plug plug;
2982 u64 log_root_start;
2983 u64 log_root_level;
2984
2985 mutex_lock(&root->log_mutex);
2986 log_transid = ctx->log_transid;
2987 if (root->log_transid_committed >= log_transid) {
2988 mutex_unlock(&root->log_mutex);
2989 return ctx->log_ret;
2990 }
2991
2992 index1 = log_transid % 2;
2993 if (atomic_read(&root->log_commit[index1])) {
2994 wait_log_commit(root, log_transid);
2995 mutex_unlock(&root->log_mutex);
2996 return ctx->log_ret;
2997 }
2998 ASSERT(log_transid == root->log_transid);
2999 atomic_set(&root->log_commit[index1], 1);
3000
3001 /* wait for previous tree log sync to complete */
3002 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
3003 wait_log_commit(root, log_transid - 1);
3004
3005 while (1) {
3006 int batch = atomic_read(&root->log_batch);
3007 /* when we're on an ssd, just kick the log commit out */
3008 if (!btrfs_test_opt(fs_info, SSD) &&
3009 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
3010 mutex_unlock(&root->log_mutex);
3011 schedule_timeout_uninterruptible(1);
3012 mutex_lock(&root->log_mutex);
3013 }
3014 wait_for_writer(root);
3015 if (batch == atomic_read(&root->log_batch))
3016 break;
3017 }
3018
3019 /* bail out if we need to do a full commit */
3020 if (btrfs_need_log_full_commit(trans)) {
3021 ret = BTRFS_LOG_FORCE_COMMIT;
3022 mutex_unlock(&root->log_mutex);
3023 goto out;
3024 }
3025
3026 if (log_transid % 2 == 0)
3027 mark = EXTENT_DIRTY_LOG1;
3028 else
3029 mark = EXTENT_DIRTY_LOG2;
3030
3031 /* we start IO on all the marked extents here, but we don't actually
3032 * wait for them until later.
3033 */
3034 blk_start_plug(&plug);
3035 ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
3036 /*
3037 * -EAGAIN happens when someone, e.g., a concurrent transaction
3038 * commit, writes a dirty extent in this tree-log commit. This
3039 * concurrent write will create a hole writing out the extents,
3040 * and we cannot proceed on a zoned filesystem, requiring
3041 * sequential writing. While we can bail out to a full commit
3042 * here, but we can continue hoping the concurrent writing fills
3043 * the hole.
3044 */
3045 if (ret == -EAGAIN && btrfs_is_zoned(fs_info))
3046 ret = 0;
3047 if (ret) {
3048 blk_finish_plug(&plug);
3049 btrfs_set_log_full_commit(trans);
3050 mutex_unlock(&root->log_mutex);
3051 goto out;
3052 }
3053
3054 /*
3055 * We _must_ update under the root->log_mutex in order to make sure we
3056 * have a consistent view of the log root we are trying to commit at
3057 * this moment.
3058 *
3059 * We _must_ copy this into a local copy, because we are not holding the
3060 * log_root_tree->log_mutex yet. This is important because when we
3061 * commit the log_root_tree we must have a consistent view of the
3062 * log_root_tree when we update the super block to point at the
3063 * log_root_tree bytenr. If we update the log_root_tree here we'll race
3064 * with the commit and possibly point at the new block which we may not
3065 * have written out.
3066 */
3067 btrfs_set_root_node(&log->root_item, log->node);
3068 memcpy(&new_root_item, &log->root_item, sizeof(new_root_item));
3069
3070 btrfs_set_root_log_transid(root, root->log_transid + 1);
3071 log->log_transid = root->log_transid;
3072 root->log_start_pid = 0;
3073 /*
3074 * IO has been started, blocks of the log tree have WRITTEN flag set
3075 * in their headers. new modifications of the log will be written to
3076 * new positions. so it's safe to allow log writers to go in.
3077 */
3078 mutex_unlock(&root->log_mutex);
3079
3080 if (btrfs_is_zoned(fs_info)) {
3081 mutex_lock(&fs_info->tree_root->log_mutex);
3082 if (!log_root_tree->node) {
3083 ret = btrfs_alloc_log_tree_node(trans, log_root_tree);
3084 if (ret) {
3085 mutex_unlock(&fs_info->tree_root->log_mutex);
3086 blk_finish_plug(&plug);
3087 goto out;
3088 }
3089 }
3090 mutex_unlock(&fs_info->tree_root->log_mutex);
3091 }
3092
3093 btrfs_init_log_ctx(&root_log_ctx, NULL);
3094
3095 mutex_lock(&log_root_tree->log_mutex);
3096
3097 index2 = log_root_tree->log_transid % 2;
3098 list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
3099 root_log_ctx.log_transid = log_root_tree->log_transid;
3100
3101 /*
3102 * Now we are safe to update the log_root_tree because we're under the
3103 * log_mutex, and we're a current writer so we're holding the commit
3104 * open until we drop the log_mutex.
3105 */
3106 ret = update_log_root(trans, log, &new_root_item);
3107 if (ret) {
3108 list_del_init(&root_log_ctx.list);
3109 blk_finish_plug(&plug);
3110 btrfs_set_log_full_commit(trans);
3111 if (ret != -ENOSPC)
3112 btrfs_err(fs_info,
3113 "failed to update log for root %llu ret %d",
3114 btrfs_root_id(root), ret);
3115 btrfs_wait_tree_log_extents(log, mark);
3116 mutex_unlock(&log_root_tree->log_mutex);
3117 goto out;
3118 }
3119
3120 if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3121 blk_finish_plug(&plug);
3122 list_del_init(&root_log_ctx.list);
3123 mutex_unlock(&log_root_tree->log_mutex);
3124 ret = root_log_ctx.log_ret;
3125 goto out;
3126 }
3127
3128 if (atomic_read(&log_root_tree->log_commit[index2])) {
3129 blk_finish_plug(&plug);
3130 ret = btrfs_wait_tree_log_extents(log, mark);
3131 wait_log_commit(log_root_tree,
3132 root_log_ctx.log_transid);
3133 mutex_unlock(&log_root_tree->log_mutex);
3134 if (!ret)
3135 ret = root_log_ctx.log_ret;
3136 goto out;
3137 }
3138 ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
3139 atomic_set(&log_root_tree->log_commit[index2], 1);
3140
3141 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
3142 wait_log_commit(log_root_tree,
3143 root_log_ctx.log_transid - 1);
3144 }
3145
3146 /*
3147 * now that we've moved on to the tree of log tree roots,
3148 * check the full commit flag again
3149 */
3150 if (btrfs_need_log_full_commit(trans)) {
3151 blk_finish_plug(&plug);
3152 btrfs_wait_tree_log_extents(log, mark);
3153 mutex_unlock(&log_root_tree->log_mutex);
3154 ret = BTRFS_LOG_FORCE_COMMIT;
3155 goto out_wake_log_root;
3156 }
3157
3158 ret = btrfs_write_marked_extents(fs_info,
3159 &log_root_tree->dirty_log_pages,
3160 EXTENT_DIRTY_LOG1 | EXTENT_DIRTY_LOG2);
3161 blk_finish_plug(&plug);
3162 /*
3163 * As described above, -EAGAIN indicates a hole in the extents. We
3164 * cannot wait for these write outs since the waiting cause a
3165 * deadlock. Bail out to the full commit instead.
3166 */
3167 if (ret == -EAGAIN && btrfs_is_zoned(fs_info)) {
3168 btrfs_set_log_full_commit(trans);
3169 btrfs_wait_tree_log_extents(log, mark);
3170 mutex_unlock(&log_root_tree->log_mutex);
3171 goto out_wake_log_root;
3172 } else if (ret) {
3173 btrfs_set_log_full_commit(trans);
3174 mutex_unlock(&log_root_tree->log_mutex);
3175 goto out_wake_log_root;
3176 }
3177 ret = btrfs_wait_tree_log_extents(log, mark);
3178 if (!ret)
3179 ret = btrfs_wait_tree_log_extents(log_root_tree,
3180 EXTENT_DIRTY_LOG1 | EXTENT_DIRTY_LOG2);
3181 if (ret) {
3182 btrfs_set_log_full_commit(trans);
3183 mutex_unlock(&log_root_tree->log_mutex);
3184 goto out_wake_log_root;
3185 }
3186
3187 log_root_start = log_root_tree->node->start;
3188 log_root_level = btrfs_header_level(log_root_tree->node);
3189 log_root_tree->log_transid++;
3190 mutex_unlock(&log_root_tree->log_mutex);
3191
3192 /*
3193 * Here we are guaranteed that nobody is going to write the superblock
3194 * for the current transaction before us and that neither we do write
3195 * our superblock before the previous transaction finishes its commit
3196 * and writes its superblock, because:
3197 *
3198 * 1) We are holding a handle on the current transaction, so no body
3199 * can commit it until we release the handle;
3200 *
3201 * 2) Before writing our superblock we acquire the tree_log_mutex, so
3202 * if the previous transaction is still committing, and hasn't yet
3203 * written its superblock, we wait for it to do it, because a
3204 * transaction commit acquires the tree_log_mutex when the commit
3205 * begins and releases it only after writing its superblock.
3206 */
3207 mutex_lock(&fs_info->tree_log_mutex);
3208
3209 /*
3210 * The previous transaction writeout phase could have failed, and thus
3211 * marked the fs in an error state. We must not commit here, as we
3212 * could have updated our generation in the super_for_commit and
3213 * writing the super here would result in transid mismatches. If there
3214 * is an error here just bail.
3215 */
3216 if (BTRFS_FS_ERROR(fs_info)) {
3217 ret = -EIO;
3218 btrfs_set_log_full_commit(trans);
3219 btrfs_abort_transaction(trans, ret);
3220 mutex_unlock(&fs_info->tree_log_mutex);
3221 goto out_wake_log_root;
3222 }
3223
3224 btrfs_set_super_log_root(fs_info->super_for_commit, log_root_start);
3225 btrfs_set_super_log_root_level(fs_info->super_for_commit, log_root_level);
3226 ret = write_all_supers(fs_info, 1);
3227 mutex_unlock(&fs_info->tree_log_mutex);
3228 if (ret) {
3229 btrfs_set_log_full_commit(trans);
3230 btrfs_abort_transaction(trans, ret);
3231 goto out_wake_log_root;
3232 }
3233
3234 /*
3235 * We know there can only be one task here, since we have not yet set
3236 * root->log_commit[index1] to 0 and any task attempting to sync the
3237 * log must wait for the previous log transaction to commit if it's
3238 * still in progress or wait for the current log transaction commit if
3239 * someone else already started it. We use <= and not < because the
3240 * first log transaction has an ID of 0.
3241 */
3242 ASSERT(btrfs_get_root_last_log_commit(root) <= log_transid);
3243 btrfs_set_root_last_log_commit(root, log_transid);
3244
3245 out_wake_log_root:
3246 mutex_lock(&log_root_tree->log_mutex);
3247 btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3248
3249 log_root_tree->log_transid_committed++;
3250 atomic_set(&log_root_tree->log_commit[index2], 0);
3251 mutex_unlock(&log_root_tree->log_mutex);
3252
3253 /*
3254 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3255 * all the updates above are seen by the woken threads. It might not be
3256 * necessary, but proving that seems to be hard.
3257 */
3258 cond_wake_up(&log_root_tree->log_commit_wait[index2]);
3259 out:
3260 mutex_lock(&root->log_mutex);
3261 btrfs_remove_all_log_ctxs(root, index1, ret);
3262 root->log_transid_committed++;
3263 atomic_set(&root->log_commit[index1], 0);
3264 mutex_unlock(&root->log_mutex);
3265
3266 /*
3267 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3268 * all the updates above are seen by the woken threads. It might not be
3269 * necessary, but proving that seems to be hard.
3270 */
3271 cond_wake_up(&root->log_commit_wait[index1]);
3272 return ret;
3273 }
3274
free_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * log)3275 static void free_log_tree(struct btrfs_trans_handle *trans,
3276 struct btrfs_root *log)
3277 {
3278 int ret;
3279 struct walk_control wc = {
3280 .free = 1,
3281 .process_func = process_one_buffer
3282 };
3283
3284 if (log->node) {
3285 ret = walk_log_tree(trans, log, &wc);
3286 if (ret) {
3287 /*
3288 * We weren't able to traverse the entire log tree, the
3289 * typical scenario is getting an -EIO when reading an
3290 * extent buffer of the tree, due to a previous writeback
3291 * failure of it.
3292 */
3293 set_bit(BTRFS_FS_STATE_LOG_CLEANUP_ERROR,
3294 &log->fs_info->fs_state);
3295
3296 /*
3297 * Some extent buffers of the log tree may still be dirty
3298 * and not yet written back to storage, because we may
3299 * have updates to a log tree without syncing a log tree,
3300 * such as during rename and link operations. So flush
3301 * them out and wait for their writeback to complete, so
3302 * that we properly cleanup their state and pages.
3303 */
3304 btrfs_write_marked_extents(log->fs_info,
3305 &log->dirty_log_pages,
3306 EXTENT_DIRTY_LOG1 | EXTENT_DIRTY_LOG2);
3307 btrfs_wait_tree_log_extents(log,
3308 EXTENT_DIRTY_LOG1 | EXTENT_DIRTY_LOG2);
3309
3310 if (trans)
3311 btrfs_abort_transaction(trans, ret);
3312 else
3313 btrfs_handle_fs_error(log->fs_info, ret, NULL);
3314 }
3315 }
3316
3317 btrfs_extent_io_tree_release(&log->dirty_log_pages);
3318 btrfs_extent_io_tree_release(&log->log_csum_range);
3319
3320 btrfs_put_root(log);
3321 }
3322
3323 /*
3324 * free all the extents used by the tree log. This should be called
3325 * at commit time of the full transaction
3326 */
btrfs_free_log(struct btrfs_trans_handle * trans,struct btrfs_root * root)3327 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3328 {
3329 if (root->log_root) {
3330 free_log_tree(trans, root->log_root);
3331 root->log_root = NULL;
3332 clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
3333 }
3334 return 0;
3335 }
3336
btrfs_free_log_root_tree(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)3337 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3338 struct btrfs_fs_info *fs_info)
3339 {
3340 if (fs_info->log_root_tree) {
3341 free_log_tree(trans, fs_info->log_root_tree);
3342 fs_info->log_root_tree = NULL;
3343 clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &fs_info->tree_root->state);
3344 }
3345 return 0;
3346 }
3347
3348 /*
3349 * Check if an inode was logged in the current transaction. This correctly deals
3350 * with the case where the inode was logged but has a logged_trans of 0, which
3351 * happens if the inode is evicted and loaded again, as logged_trans is an in
3352 * memory only field (not persisted).
3353 *
3354 * Returns 1 if the inode was logged before in the transaction, 0 if it was not,
3355 * and < 0 on error.
3356 */
inode_logged(const struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path_in)3357 static int inode_logged(const struct btrfs_trans_handle *trans,
3358 struct btrfs_inode *inode,
3359 struct btrfs_path *path_in)
3360 {
3361 struct btrfs_path *path = path_in;
3362 struct btrfs_key key;
3363 int ret;
3364
3365 if (inode->logged_trans == trans->transid)
3366 return 1;
3367
3368 /*
3369 * If logged_trans is not 0, then we know the inode logged was not logged
3370 * in this transaction, so we can return false right away.
3371 */
3372 if (inode->logged_trans > 0)
3373 return 0;
3374
3375 /*
3376 * If no log tree was created for this root in this transaction, then
3377 * the inode can not have been logged in this transaction. In that case
3378 * set logged_trans to anything greater than 0 and less than the current
3379 * transaction's ID, to avoid the search below in a future call in case
3380 * a log tree gets created after this.
3381 */
3382 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &inode->root->state)) {
3383 inode->logged_trans = trans->transid - 1;
3384 return 0;
3385 }
3386
3387 /*
3388 * We have a log tree and the inode's logged_trans is 0. We can't tell
3389 * for sure if the inode was logged before in this transaction by looking
3390 * only at logged_trans. We could be pessimistic and assume it was, but
3391 * that can lead to unnecessarily logging an inode during rename and link
3392 * operations, and then further updating the log in followup rename and
3393 * link operations, specially if it's a directory, which adds latency
3394 * visible to applications doing a series of rename or link operations.
3395 *
3396 * A logged_trans of 0 here can mean several things:
3397 *
3398 * 1) The inode was never logged since the filesystem was mounted, and may
3399 * or may have not been evicted and loaded again;
3400 *
3401 * 2) The inode was logged in a previous transaction, then evicted and
3402 * then loaded again;
3403 *
3404 * 3) The inode was logged in the current transaction, then evicted and
3405 * then loaded again.
3406 *
3407 * For cases 1) and 2) we don't want to return true, but we need to detect
3408 * case 3) and return true. So we do a search in the log root for the inode
3409 * item.
3410 */
3411 key.objectid = btrfs_ino(inode);
3412 key.type = BTRFS_INODE_ITEM_KEY;
3413 key.offset = 0;
3414
3415 if (!path) {
3416 path = btrfs_alloc_path();
3417 if (!path)
3418 return -ENOMEM;
3419 }
3420
3421 ret = btrfs_search_slot(NULL, inode->root->log_root, &key, path, 0, 0);
3422
3423 if (path_in)
3424 btrfs_release_path(path);
3425 else
3426 btrfs_free_path(path);
3427
3428 /*
3429 * Logging an inode always results in logging its inode item. So if we
3430 * did not find the item we know the inode was not logged for sure.
3431 */
3432 if (ret < 0) {
3433 return ret;
3434 } else if (ret > 0) {
3435 /*
3436 * Set logged_trans to a value greater than 0 and less then the
3437 * current transaction to avoid doing the search in future calls.
3438 */
3439 inode->logged_trans = trans->transid - 1;
3440 return 0;
3441 }
3442
3443 /*
3444 * The inode was previously logged and then evicted, set logged_trans to
3445 * the current transacion's ID, to avoid future tree searches as long as
3446 * the inode is not evicted again.
3447 */
3448 inode->logged_trans = trans->transid;
3449
3450 /*
3451 * If it's a directory, then we must set last_dir_index_offset to the
3452 * maximum possible value, so that the next attempt to log the inode does
3453 * not skip checking if dir index keys found in modified subvolume tree
3454 * leaves have been logged before, otherwise it would result in attempts
3455 * to insert duplicate dir index keys in the log tree. This must be done
3456 * because last_dir_index_offset is an in-memory only field, not persisted
3457 * in the inode item or any other on-disk structure, so its value is lost
3458 * once the inode is evicted.
3459 */
3460 if (S_ISDIR(inode->vfs_inode.i_mode))
3461 inode->last_dir_index_offset = (u64)-1;
3462
3463 return 1;
3464 }
3465
3466 /*
3467 * Delete a directory entry from the log if it exists.
3468 *
3469 * Returns < 0 on error
3470 * 1 if the entry does not exists
3471 * 0 if the entry existed and was successfully deleted
3472 */
del_logged_dentry(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * path,u64 dir_ino,const struct fscrypt_str * name,u64 index)3473 static int del_logged_dentry(struct btrfs_trans_handle *trans,
3474 struct btrfs_root *log,
3475 struct btrfs_path *path,
3476 u64 dir_ino,
3477 const struct fscrypt_str *name,
3478 u64 index)
3479 {
3480 struct btrfs_dir_item *di;
3481
3482 /*
3483 * We only log dir index items of a directory, so we don't need to look
3484 * for dir item keys.
3485 */
3486 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3487 index, name, -1);
3488 if (IS_ERR(di))
3489 return PTR_ERR(di);
3490 else if (!di)
3491 return 1;
3492
3493 /*
3494 * We do not need to update the size field of the directory's
3495 * inode item because on log replay we update the field to reflect
3496 * all existing entries in the directory (see overwrite_item()).
3497 */
3498 return btrfs_del_item(trans, log, path);
3499 }
3500
3501 /*
3502 * If both a file and directory are logged, and unlinks or renames are
3503 * mixed in, we have a few interesting corners:
3504 *
3505 * create file X in dir Y
3506 * link file X to X.link in dir Y
3507 * fsync file X
3508 * unlink file X but leave X.link
3509 * fsync dir Y
3510 *
3511 * After a crash we would expect only X.link to exist. But file X
3512 * didn't get fsync'd again so the log has back refs for X and X.link.
3513 *
3514 * We solve this by removing directory entries and inode backrefs from the
3515 * log when a file that was logged in the current transaction is
3516 * unlinked. Any later fsync will include the updated log entries, and
3517 * we'll be able to reconstruct the proper directory items from backrefs.
3518 *
3519 * This optimizations allows us to avoid relogging the entire inode
3520 * or the entire directory.
3521 */
btrfs_del_dir_entries_in_log(struct btrfs_trans_handle * trans,struct btrfs_root * root,const struct fscrypt_str * name,struct btrfs_inode * dir,u64 index)3522 void btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3523 struct btrfs_root *root,
3524 const struct fscrypt_str *name,
3525 struct btrfs_inode *dir, u64 index)
3526 {
3527 struct btrfs_path *path;
3528 int ret;
3529
3530 ret = inode_logged(trans, dir, NULL);
3531 if (ret == 0)
3532 return;
3533 else if (ret < 0) {
3534 btrfs_set_log_full_commit(trans);
3535 return;
3536 }
3537
3538 path = btrfs_alloc_path();
3539 if (!path) {
3540 btrfs_set_log_full_commit(trans);
3541 return;
3542 }
3543
3544 ret = join_running_log_trans(root);
3545 ASSERT(ret == 0, "join_running_log_trans() ret=%d", ret);
3546 if (WARN_ON(ret))
3547 goto out;
3548
3549 mutex_lock(&dir->log_mutex);
3550
3551 ret = del_logged_dentry(trans, root->log_root, path, btrfs_ino(dir),
3552 name, index);
3553 mutex_unlock(&dir->log_mutex);
3554 if (ret < 0)
3555 btrfs_set_log_full_commit(trans);
3556 btrfs_end_log_trans(root);
3557 out:
3558 btrfs_free_path(path);
3559 }
3560
3561 /* see comments for btrfs_del_dir_entries_in_log */
btrfs_del_inode_ref_in_log(struct btrfs_trans_handle * trans,struct btrfs_root * root,const struct fscrypt_str * name,struct btrfs_inode * inode,u64 dirid)3562 void btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3563 struct btrfs_root *root,
3564 const struct fscrypt_str *name,
3565 struct btrfs_inode *inode, u64 dirid)
3566 {
3567 struct btrfs_root *log;
3568 int ret;
3569
3570 ret = inode_logged(trans, inode, NULL);
3571 if (ret == 0)
3572 return;
3573 else if (ret < 0) {
3574 btrfs_set_log_full_commit(trans);
3575 return;
3576 }
3577
3578 ret = join_running_log_trans(root);
3579 ASSERT(ret == 0, "join_running_log_trans() ret=%d", ret);
3580 if (WARN_ON(ret))
3581 return;
3582 log = root->log_root;
3583 mutex_lock(&inode->log_mutex);
3584
3585 ret = btrfs_del_inode_ref(trans, log, name, btrfs_ino(inode), dirid, NULL);
3586 mutex_unlock(&inode->log_mutex);
3587 if (ret < 0 && ret != -ENOENT)
3588 btrfs_set_log_full_commit(trans);
3589 btrfs_end_log_trans(root);
3590 }
3591
3592 /*
3593 * creates a range item in the log for 'dirid'. first_offset and
3594 * last_offset tell us which parts of the key space the log should
3595 * be considered authoritative for.
3596 */
insert_dir_log_key(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * path,u64 dirid,u64 first_offset,u64 last_offset)3597 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3598 struct btrfs_root *log,
3599 struct btrfs_path *path,
3600 u64 dirid,
3601 u64 first_offset, u64 last_offset)
3602 {
3603 int ret;
3604 struct btrfs_key key;
3605 struct btrfs_dir_log_item *item;
3606
3607 key.objectid = dirid;
3608 key.type = BTRFS_DIR_LOG_INDEX_KEY;
3609 key.offset = first_offset;
3610 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3611 /*
3612 * -EEXIST is fine and can happen sporadically when we are logging a
3613 * directory and have concurrent insertions in the subvolume's tree for
3614 * items from other inodes and that result in pushing off some dir items
3615 * from one leaf to another in order to accommodate for the new items.
3616 * This results in logging the same dir index range key.
3617 */
3618 if (ret && ret != -EEXIST)
3619 return ret;
3620
3621 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3622 struct btrfs_dir_log_item);
3623 if (ret == -EEXIST) {
3624 const u64 curr_end = btrfs_dir_log_end(path->nodes[0], item);
3625
3626 /*
3627 * btrfs_del_dir_entries_in_log() might have been called during
3628 * an unlink between the initial insertion of this key and the
3629 * current update, or we might be logging a single entry deletion
3630 * during a rename, so set the new last_offset to the max value.
3631 */
3632 last_offset = max(last_offset, curr_end);
3633 }
3634 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3635 btrfs_release_path(path);
3636 return 0;
3637 }
3638
flush_dir_items_batch(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct extent_buffer * src,struct btrfs_path * dst_path,int start_slot,int count)3639 static int flush_dir_items_batch(struct btrfs_trans_handle *trans,
3640 struct btrfs_inode *inode,
3641 struct extent_buffer *src,
3642 struct btrfs_path *dst_path,
3643 int start_slot,
3644 int count)
3645 {
3646 struct btrfs_root *log = inode->root->log_root;
3647 char *ins_data = NULL;
3648 struct btrfs_item_batch batch;
3649 struct extent_buffer *dst;
3650 unsigned long src_offset;
3651 unsigned long dst_offset;
3652 u64 last_index;
3653 struct btrfs_key key;
3654 u32 item_size;
3655 int ret;
3656 int i;
3657
3658 ASSERT(count > 0);
3659 batch.nr = count;
3660
3661 if (count == 1) {
3662 btrfs_item_key_to_cpu(src, &key, start_slot);
3663 item_size = btrfs_item_size(src, start_slot);
3664 batch.keys = &key;
3665 batch.data_sizes = &item_size;
3666 batch.total_data_size = item_size;
3667 } else {
3668 struct btrfs_key *ins_keys;
3669 u32 *ins_sizes;
3670
3671 ins_data = kmalloc(count * sizeof(u32) +
3672 count * sizeof(struct btrfs_key), GFP_NOFS);
3673 if (!ins_data)
3674 return -ENOMEM;
3675
3676 ins_sizes = (u32 *)ins_data;
3677 ins_keys = (struct btrfs_key *)(ins_data + count * sizeof(u32));
3678 batch.keys = ins_keys;
3679 batch.data_sizes = ins_sizes;
3680 batch.total_data_size = 0;
3681
3682 for (i = 0; i < count; i++) {
3683 const int slot = start_slot + i;
3684
3685 btrfs_item_key_to_cpu(src, &ins_keys[i], slot);
3686 ins_sizes[i] = btrfs_item_size(src, slot);
3687 batch.total_data_size += ins_sizes[i];
3688 }
3689 }
3690
3691 ret = btrfs_insert_empty_items(trans, log, dst_path, &batch);
3692 if (ret)
3693 goto out;
3694
3695 dst = dst_path->nodes[0];
3696 /*
3697 * Copy all the items in bulk, in a single copy operation. Item data is
3698 * organized such that it's placed at the end of a leaf and from right
3699 * to left. For example, the data for the second item ends at an offset
3700 * that matches the offset where the data for the first item starts, the
3701 * data for the third item ends at an offset that matches the offset
3702 * where the data of the second items starts, and so on.
3703 * Therefore our source and destination start offsets for copy match the
3704 * offsets of the last items (highest slots).
3705 */
3706 dst_offset = btrfs_item_ptr_offset(dst, dst_path->slots[0] + count - 1);
3707 src_offset = btrfs_item_ptr_offset(src, start_slot + count - 1);
3708 copy_extent_buffer(dst, src, dst_offset, src_offset, batch.total_data_size);
3709 btrfs_release_path(dst_path);
3710
3711 last_index = batch.keys[count - 1].offset;
3712 ASSERT(last_index > inode->last_dir_index_offset);
3713
3714 /*
3715 * If for some unexpected reason the last item's index is not greater
3716 * than the last index we logged, warn and force a transaction commit.
3717 */
3718 if (WARN_ON(last_index <= inode->last_dir_index_offset))
3719 ret = BTRFS_LOG_FORCE_COMMIT;
3720 else
3721 inode->last_dir_index_offset = last_index;
3722
3723 if (btrfs_get_first_dir_index_to_log(inode) == 0)
3724 btrfs_set_first_dir_index_to_log(inode, batch.keys[0].offset);
3725 out:
3726 kfree(ins_data);
3727
3728 return ret;
3729 }
3730
clone_leaf(struct btrfs_path * path,struct btrfs_log_ctx * ctx)3731 static int clone_leaf(struct btrfs_path *path, struct btrfs_log_ctx *ctx)
3732 {
3733 const int slot = path->slots[0];
3734
3735 if (ctx->scratch_eb) {
3736 copy_extent_buffer_full(ctx->scratch_eb, path->nodes[0]);
3737 } else {
3738 ctx->scratch_eb = btrfs_clone_extent_buffer(path->nodes[0]);
3739 if (!ctx->scratch_eb)
3740 return -ENOMEM;
3741 }
3742
3743 btrfs_release_path(path);
3744 path->nodes[0] = ctx->scratch_eb;
3745 path->slots[0] = slot;
3746 /*
3747 * Add extra ref to scratch eb so that it is not freed when callers
3748 * release the path, so we can reuse it later if needed.
3749 */
3750 refcount_inc(&ctx->scratch_eb->refs);
3751
3752 return 0;
3753 }
3754
process_dir_items_leaf(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_path * dst_path,struct btrfs_log_ctx * ctx,u64 * last_old_dentry_offset)3755 static int process_dir_items_leaf(struct btrfs_trans_handle *trans,
3756 struct btrfs_inode *inode,
3757 struct btrfs_path *path,
3758 struct btrfs_path *dst_path,
3759 struct btrfs_log_ctx *ctx,
3760 u64 *last_old_dentry_offset)
3761 {
3762 struct btrfs_root *log = inode->root->log_root;
3763 struct extent_buffer *src;
3764 const int nritems = btrfs_header_nritems(path->nodes[0]);
3765 const u64 ino = btrfs_ino(inode);
3766 bool last_found = false;
3767 int batch_start = 0;
3768 int batch_size = 0;
3769 int ret;
3770
3771 /*
3772 * We need to clone the leaf, release the read lock on it, and use the
3773 * clone before modifying the log tree. See the comment at copy_items()
3774 * about why we need to do this.
3775 */
3776 ret = clone_leaf(path, ctx);
3777 if (ret < 0)
3778 return ret;
3779
3780 src = path->nodes[0];
3781
3782 for (int i = path->slots[0]; i < nritems; i++) {
3783 struct btrfs_dir_item *di;
3784 struct btrfs_key key;
3785 int ret;
3786
3787 btrfs_item_key_to_cpu(src, &key, i);
3788
3789 if (key.objectid != ino || key.type != BTRFS_DIR_INDEX_KEY) {
3790 last_found = true;
3791 break;
3792 }
3793
3794 di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3795
3796 /*
3797 * Skip ranges of items that consist only of dir item keys created
3798 * in past transactions. However if we find a gap, we must log a
3799 * dir index range item for that gap, so that index keys in that
3800 * gap are deleted during log replay.
3801 */
3802 if (btrfs_dir_transid(src, di) < trans->transid) {
3803 if (key.offset > *last_old_dentry_offset + 1) {
3804 ret = insert_dir_log_key(trans, log, dst_path,
3805 ino, *last_old_dentry_offset + 1,
3806 key.offset - 1);
3807 if (ret < 0)
3808 return ret;
3809 }
3810
3811 *last_old_dentry_offset = key.offset;
3812 continue;
3813 }
3814
3815 /* If we logged this dir index item before, we can skip it. */
3816 if (key.offset <= inode->last_dir_index_offset)
3817 continue;
3818
3819 /*
3820 * We must make sure that when we log a directory entry, the
3821 * corresponding inode, after log replay, has a matching link
3822 * count. For example:
3823 *
3824 * touch foo
3825 * mkdir mydir
3826 * sync
3827 * ln foo mydir/bar
3828 * xfs_io -c "fsync" mydir
3829 * <crash>
3830 * <mount fs and log replay>
3831 *
3832 * Would result in a fsync log that when replayed, our file inode
3833 * would have a link count of 1, but we get two directory entries
3834 * pointing to the same inode. After removing one of the names,
3835 * it would not be possible to remove the other name, which
3836 * resulted always in stale file handle errors, and would not be
3837 * possible to rmdir the parent directory, since its i_size could
3838 * never be decremented to the value BTRFS_EMPTY_DIR_SIZE,
3839 * resulting in -ENOTEMPTY errors.
3840 */
3841 if (!ctx->log_new_dentries) {
3842 struct btrfs_key di_key;
3843
3844 btrfs_dir_item_key_to_cpu(src, di, &di_key);
3845 if (di_key.type != BTRFS_ROOT_ITEM_KEY)
3846 ctx->log_new_dentries = true;
3847 }
3848
3849 if (batch_size == 0)
3850 batch_start = i;
3851 batch_size++;
3852 }
3853
3854 if (batch_size > 0) {
3855 int ret;
3856
3857 ret = flush_dir_items_batch(trans, inode, src, dst_path,
3858 batch_start, batch_size);
3859 if (ret < 0)
3860 return ret;
3861 }
3862
3863 return last_found ? 1 : 0;
3864 }
3865
3866 /*
3867 * log all the items included in the current transaction for a given
3868 * directory. This also creates the range items in the log tree required
3869 * to replay anything deleted before the fsync
3870 */
log_dir_items(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_path * dst_path,struct btrfs_log_ctx * ctx,u64 min_offset,u64 * last_offset_ret)3871 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3872 struct btrfs_inode *inode,
3873 struct btrfs_path *path,
3874 struct btrfs_path *dst_path,
3875 struct btrfs_log_ctx *ctx,
3876 u64 min_offset, u64 *last_offset_ret)
3877 {
3878 struct btrfs_key min_key;
3879 struct btrfs_root *root = inode->root;
3880 struct btrfs_root *log = root->log_root;
3881 int ret;
3882 u64 last_old_dentry_offset = min_offset - 1;
3883 u64 last_offset = (u64)-1;
3884 u64 ino = btrfs_ino(inode);
3885
3886 min_key.objectid = ino;
3887 min_key.type = BTRFS_DIR_INDEX_KEY;
3888 min_key.offset = min_offset;
3889
3890 ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3891
3892 /*
3893 * we didn't find anything from this transaction, see if there
3894 * is anything at all
3895 */
3896 if (ret != 0 || min_key.objectid != ino ||
3897 min_key.type != BTRFS_DIR_INDEX_KEY) {
3898 min_key.objectid = ino;
3899 min_key.type = BTRFS_DIR_INDEX_KEY;
3900 min_key.offset = (u64)-1;
3901 btrfs_release_path(path);
3902 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3903 if (ret < 0) {
3904 btrfs_release_path(path);
3905 return ret;
3906 }
3907 ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY);
3908
3909 /* if ret == 0 there are items for this type,
3910 * create a range to tell us the last key of this type.
3911 * otherwise, there are no items in this directory after
3912 * *min_offset, and we create a range to indicate that.
3913 */
3914 if (ret == 0) {
3915 struct btrfs_key tmp;
3916
3917 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3918 path->slots[0]);
3919 if (tmp.type == BTRFS_DIR_INDEX_KEY)
3920 last_old_dentry_offset = tmp.offset;
3921 } else if (ret > 0) {
3922 ret = 0;
3923 }
3924
3925 goto done;
3926 }
3927
3928 /* go backward to find any previous key */
3929 ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY);
3930 if (ret == 0) {
3931 struct btrfs_key tmp;
3932
3933 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3934 /*
3935 * The dir index key before the first one we found that needs to
3936 * be logged might be in a previous leaf, and there might be a
3937 * gap between these keys, meaning that we had deletions that
3938 * happened. So the key range item we log (key type
3939 * BTRFS_DIR_LOG_INDEX_KEY) must cover a range that starts at the
3940 * previous key's offset plus 1, so that those deletes are replayed.
3941 */
3942 if (tmp.type == BTRFS_DIR_INDEX_KEY)
3943 last_old_dentry_offset = tmp.offset;
3944 } else if (ret < 0) {
3945 goto done;
3946 }
3947
3948 btrfs_release_path(path);
3949
3950 /*
3951 * Find the first key from this transaction again or the one we were at
3952 * in the loop below in case we had to reschedule. We may be logging the
3953 * directory without holding its VFS lock, which happen when logging new
3954 * dentries (through log_new_dir_dentries()) or in some cases when we
3955 * need to log the parent directory of an inode. This means a dir index
3956 * key might be deleted from the inode's root, and therefore we may not
3957 * find it anymore. If we can't find it, just move to the next key. We
3958 * can not bail out and ignore, because if we do that we will simply
3959 * not log dir index keys that come after the one that was just deleted
3960 * and we can end up logging a dir index range that ends at (u64)-1
3961 * (@last_offset is initialized to that), resulting in removing dir
3962 * entries we should not remove at log replay time.
3963 */
3964 search:
3965 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3966 if (ret > 0) {
3967 ret = btrfs_next_item(root, path);
3968 if (ret > 0) {
3969 /* There are no more keys in the inode's root. */
3970 ret = 0;
3971 goto done;
3972 }
3973 }
3974 if (ret < 0)
3975 goto done;
3976
3977 /*
3978 * we have a block from this transaction, log every item in it
3979 * from our directory
3980 */
3981 while (1) {
3982 ret = process_dir_items_leaf(trans, inode, path, dst_path, ctx,
3983 &last_old_dentry_offset);
3984 if (ret != 0) {
3985 if (ret > 0)
3986 ret = 0;
3987 goto done;
3988 }
3989 path->slots[0] = btrfs_header_nritems(path->nodes[0]);
3990
3991 /*
3992 * look ahead to the next item and see if it is also
3993 * from this directory and from this transaction
3994 */
3995 ret = btrfs_next_leaf(root, path);
3996 if (ret) {
3997 if (ret == 1) {
3998 last_offset = (u64)-1;
3999 ret = 0;
4000 }
4001 goto done;
4002 }
4003 btrfs_item_key_to_cpu(path->nodes[0], &min_key, path->slots[0]);
4004 if (min_key.objectid != ino || min_key.type != BTRFS_DIR_INDEX_KEY) {
4005 last_offset = (u64)-1;
4006 goto done;
4007 }
4008 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
4009 /*
4010 * The next leaf was not changed in the current transaction
4011 * and has at least one dir index key.
4012 * We check for the next key because there might have been
4013 * one or more deletions between the last key we logged and
4014 * that next key. So the key range item we log (key type
4015 * BTRFS_DIR_LOG_INDEX_KEY) must end at the next key's
4016 * offset minus 1, so that those deletes are replayed.
4017 */
4018 last_offset = min_key.offset - 1;
4019 goto done;
4020 }
4021 if (need_resched()) {
4022 btrfs_release_path(path);
4023 cond_resched();
4024 goto search;
4025 }
4026 }
4027 done:
4028 btrfs_release_path(path);
4029 btrfs_release_path(dst_path);
4030
4031 if (ret == 0) {
4032 *last_offset_ret = last_offset;
4033 /*
4034 * In case the leaf was changed in the current transaction but
4035 * all its dir items are from a past transaction, the last item
4036 * in the leaf is a dir item and there's no gap between that last
4037 * dir item and the first one on the next leaf (which did not
4038 * change in the current transaction), then we don't need to log
4039 * a range, last_old_dentry_offset is == to last_offset.
4040 */
4041 ASSERT(last_old_dentry_offset <= last_offset);
4042 if (last_old_dentry_offset < last_offset)
4043 ret = insert_dir_log_key(trans, log, path, ino,
4044 last_old_dentry_offset + 1,
4045 last_offset);
4046 }
4047
4048 return ret;
4049 }
4050
4051 /*
4052 * If the inode was logged before and it was evicted, then its
4053 * last_dir_index_offset is (u64)-1, so we don't the value of the last index
4054 * key offset. If that's the case, search for it and update the inode. This
4055 * is to avoid lookups in the log tree every time we try to insert a dir index
4056 * key from a leaf changed in the current transaction, and to allow us to always
4057 * do batch insertions of dir index keys.
4058 */
update_last_dir_index_offset(struct btrfs_inode * inode,struct btrfs_path * path,const struct btrfs_log_ctx * ctx)4059 static int update_last_dir_index_offset(struct btrfs_inode *inode,
4060 struct btrfs_path *path,
4061 const struct btrfs_log_ctx *ctx)
4062 {
4063 const u64 ino = btrfs_ino(inode);
4064 struct btrfs_key key;
4065 int ret;
4066
4067 lockdep_assert_held(&inode->log_mutex);
4068
4069 if (inode->last_dir_index_offset != (u64)-1)
4070 return 0;
4071
4072 if (!ctx->logged_before) {
4073 inode->last_dir_index_offset = BTRFS_DIR_START_INDEX - 1;
4074 return 0;
4075 }
4076
4077 key.objectid = ino;
4078 key.type = BTRFS_DIR_INDEX_KEY;
4079 key.offset = (u64)-1;
4080
4081 ret = btrfs_search_slot(NULL, inode->root->log_root, &key, path, 0, 0);
4082 /*
4083 * An error happened or we actually have an index key with an offset
4084 * value of (u64)-1. Bail out, we're done.
4085 */
4086 if (ret <= 0)
4087 goto out;
4088
4089 ret = 0;
4090 inode->last_dir_index_offset = BTRFS_DIR_START_INDEX - 1;
4091
4092 /*
4093 * No dir index items, bail out and leave last_dir_index_offset with
4094 * the value right before the first valid index value.
4095 */
4096 if (path->slots[0] == 0)
4097 goto out;
4098
4099 /*
4100 * btrfs_search_slot() left us at one slot beyond the slot with the last
4101 * index key, or beyond the last key of the directory that is not an
4102 * index key. If we have an index key before, set last_dir_index_offset
4103 * to its offset value, otherwise leave it with a value right before the
4104 * first valid index value, as it means we have an empty directory.
4105 */
4106 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
4107 if (key.objectid == ino && key.type == BTRFS_DIR_INDEX_KEY)
4108 inode->last_dir_index_offset = key.offset;
4109
4110 out:
4111 btrfs_release_path(path);
4112
4113 return ret;
4114 }
4115
4116 /*
4117 * logging directories is very similar to logging inodes, We find all the items
4118 * from the current transaction and write them to the log.
4119 *
4120 * The recovery code scans the directory in the subvolume, and if it finds a
4121 * key in the range logged that is not present in the log tree, then it means
4122 * that dir entry was unlinked during the transaction.
4123 *
4124 * In order for that scan to work, we must include one key smaller than
4125 * the smallest logged by this transaction and one key larger than the largest
4126 * key logged by this transaction.
4127 */
log_directory_changes(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_path * dst_path,struct btrfs_log_ctx * ctx)4128 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
4129 struct btrfs_inode *inode,
4130 struct btrfs_path *path,
4131 struct btrfs_path *dst_path,
4132 struct btrfs_log_ctx *ctx)
4133 {
4134 u64 min_key;
4135 u64 max_key;
4136 int ret;
4137
4138 ret = update_last_dir_index_offset(inode, path, ctx);
4139 if (ret)
4140 return ret;
4141
4142 min_key = BTRFS_DIR_START_INDEX;
4143 max_key = 0;
4144
4145 while (1) {
4146 ret = log_dir_items(trans, inode, path, dst_path,
4147 ctx, min_key, &max_key);
4148 if (ret)
4149 return ret;
4150 if (max_key == (u64)-1)
4151 break;
4152 min_key = max_key + 1;
4153 }
4154
4155 return 0;
4156 }
4157
4158 /*
4159 * a helper function to drop items from the log before we relog an
4160 * inode. max_key_type indicates the highest item type to remove.
4161 * This cannot be run for file data extents because it does not
4162 * free the extents they point to.
4163 */
drop_inode_items(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * path,struct btrfs_inode * inode,int max_key_type)4164 static int drop_inode_items(struct btrfs_trans_handle *trans,
4165 struct btrfs_root *log,
4166 struct btrfs_path *path,
4167 struct btrfs_inode *inode,
4168 int max_key_type)
4169 {
4170 int ret;
4171 struct btrfs_key key;
4172 struct btrfs_key found_key;
4173 int start_slot;
4174
4175 key.objectid = btrfs_ino(inode);
4176 key.type = max_key_type;
4177 key.offset = (u64)-1;
4178
4179 while (1) {
4180 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
4181 if (ret < 0) {
4182 break;
4183 } else if (ret > 0) {
4184 if (path->slots[0] == 0)
4185 break;
4186 path->slots[0]--;
4187 }
4188
4189 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
4190 path->slots[0]);
4191
4192 if (found_key.objectid != key.objectid)
4193 break;
4194
4195 found_key.offset = 0;
4196 found_key.type = 0;
4197 ret = btrfs_bin_search(path->nodes[0], 0, &found_key, &start_slot);
4198 if (ret < 0)
4199 break;
4200
4201 ret = btrfs_del_items(trans, log, path, start_slot,
4202 path->slots[0] - start_slot + 1);
4203 /*
4204 * If start slot isn't 0 then we don't need to re-search, we've
4205 * found the last guy with the objectid in this tree.
4206 */
4207 if (ret || start_slot != 0)
4208 break;
4209 btrfs_release_path(path);
4210 }
4211 btrfs_release_path(path);
4212 if (ret > 0)
4213 ret = 0;
4214 return ret;
4215 }
4216
truncate_inode_items(struct btrfs_trans_handle * trans,struct btrfs_root * log_root,struct btrfs_inode * inode,u64 new_size,u32 min_type)4217 static int truncate_inode_items(struct btrfs_trans_handle *trans,
4218 struct btrfs_root *log_root,
4219 struct btrfs_inode *inode,
4220 u64 new_size, u32 min_type)
4221 {
4222 struct btrfs_truncate_control control = {
4223 .new_size = new_size,
4224 .ino = btrfs_ino(inode),
4225 .min_type = min_type,
4226 .skip_ref_updates = true,
4227 };
4228
4229 return btrfs_truncate_inode_items(trans, log_root, &control);
4230 }
4231
fill_inode_item(struct btrfs_trans_handle * trans,struct extent_buffer * leaf,struct btrfs_inode_item * item,struct inode * inode,int log_inode_only,u64 logged_isize)4232 static void fill_inode_item(struct btrfs_trans_handle *trans,
4233 struct extent_buffer *leaf,
4234 struct btrfs_inode_item *item,
4235 struct inode *inode, int log_inode_only,
4236 u64 logged_isize)
4237 {
4238 u64 flags;
4239
4240 if (log_inode_only) {
4241 /* set the generation to zero so the recover code
4242 * can tell the difference between an logging
4243 * just to say 'this inode exists' and a logging
4244 * to say 'update this inode with these values'
4245 */
4246 btrfs_set_inode_generation(leaf, item, 0);
4247 btrfs_set_inode_size(leaf, item, logged_isize);
4248 } else {
4249 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
4250 btrfs_set_inode_size(leaf, item, inode->i_size);
4251 }
4252
4253 btrfs_set_inode_uid(leaf, item, i_uid_read(inode));
4254 btrfs_set_inode_gid(leaf, item, i_gid_read(inode));
4255 btrfs_set_inode_mode(leaf, item, inode->i_mode);
4256 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
4257
4258 btrfs_set_timespec_sec(leaf, &item->atime, inode_get_atime_sec(inode));
4259 btrfs_set_timespec_nsec(leaf, &item->atime, inode_get_atime_nsec(inode));
4260
4261 btrfs_set_timespec_sec(leaf, &item->mtime, inode_get_mtime_sec(inode));
4262 btrfs_set_timespec_nsec(leaf, &item->mtime, inode_get_mtime_nsec(inode));
4263
4264 btrfs_set_timespec_sec(leaf, &item->ctime, inode_get_ctime_sec(inode));
4265 btrfs_set_timespec_nsec(leaf, &item->ctime, inode_get_ctime_nsec(inode));
4266
4267 btrfs_set_timespec_sec(leaf, &item->otime, BTRFS_I(inode)->i_otime_sec);
4268 btrfs_set_timespec_nsec(leaf, &item->otime, BTRFS_I(inode)->i_otime_nsec);
4269
4270 /*
4271 * We do not need to set the nbytes field, in fact during a fast fsync
4272 * its value may not even be correct, since a fast fsync does not wait
4273 * for ordered extent completion, which is where we update nbytes, it
4274 * only waits for writeback to complete. During log replay as we find
4275 * file extent items and replay them, we adjust the nbytes field of the
4276 * inode item in subvolume tree as needed (see overwrite_item()).
4277 */
4278
4279 btrfs_set_inode_sequence(leaf, item, inode_peek_iversion(inode));
4280 btrfs_set_inode_transid(leaf, item, trans->transid);
4281 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
4282 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
4283 BTRFS_I(inode)->ro_flags);
4284 btrfs_set_inode_flags(leaf, item, flags);
4285 btrfs_set_inode_block_group(leaf, item, 0);
4286 }
4287
log_inode_item(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * path,struct btrfs_inode * inode,bool inode_item_dropped)4288 static int log_inode_item(struct btrfs_trans_handle *trans,
4289 struct btrfs_root *log, struct btrfs_path *path,
4290 struct btrfs_inode *inode, bool inode_item_dropped)
4291 {
4292 struct btrfs_inode_item *inode_item;
4293 struct btrfs_key key;
4294 int ret;
4295
4296 btrfs_get_inode_key(inode, &key);
4297 /*
4298 * If we are doing a fast fsync and the inode was logged before in the
4299 * current transaction, then we know the inode was previously logged and
4300 * it exists in the log tree. For performance reasons, in this case use
4301 * btrfs_search_slot() directly with ins_len set to 0 so that we never
4302 * attempt a write lock on the leaf's parent, which adds unnecessary lock
4303 * contention in case there are concurrent fsyncs for other inodes of the
4304 * same subvolume. Using btrfs_insert_empty_item() when the inode item
4305 * already exists can also result in unnecessarily splitting a leaf.
4306 */
4307 if (!inode_item_dropped && inode->logged_trans == trans->transid) {
4308 ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
4309 ASSERT(ret <= 0);
4310 if (ret > 0)
4311 ret = -ENOENT;
4312 } else {
4313 /*
4314 * This means it is the first fsync in the current transaction,
4315 * so the inode item is not in the log and we need to insert it.
4316 * We can never get -EEXIST because we are only called for a fast
4317 * fsync and in case an inode eviction happens after the inode was
4318 * logged before in the current transaction, when we load again
4319 * the inode, we set BTRFS_INODE_NEEDS_FULL_SYNC on its runtime
4320 * flags and set ->logged_trans to 0.
4321 */
4322 ret = btrfs_insert_empty_item(trans, log, path, &key,
4323 sizeof(*inode_item));
4324 ASSERT(ret != -EEXIST);
4325 }
4326 if (ret)
4327 return ret;
4328 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4329 struct btrfs_inode_item);
4330 fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
4331 0, 0);
4332 btrfs_release_path(path);
4333 return 0;
4334 }
4335
log_csums(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_root * log_root,struct btrfs_ordered_sum * sums)4336 static int log_csums(struct btrfs_trans_handle *trans,
4337 struct btrfs_inode *inode,
4338 struct btrfs_root *log_root,
4339 struct btrfs_ordered_sum *sums)
4340 {
4341 const u64 lock_end = sums->logical + sums->len - 1;
4342 struct extent_state *cached_state = NULL;
4343 int ret;
4344
4345 /*
4346 * If this inode was not used for reflink operations in the current
4347 * transaction with new extents, then do the fast path, no need to
4348 * worry about logging checksum items with overlapping ranges.
4349 */
4350 if (inode->last_reflink_trans < trans->transid)
4351 return btrfs_csum_file_blocks(trans, log_root, sums);
4352
4353 /*
4354 * Serialize logging for checksums. This is to avoid racing with the
4355 * same checksum being logged by another task that is logging another
4356 * file which happens to refer to the same extent as well. Such races
4357 * can leave checksum items in the log with overlapping ranges.
4358 */
4359 ret = btrfs_lock_extent(&log_root->log_csum_range, sums->logical, lock_end,
4360 &cached_state);
4361 if (ret)
4362 return ret;
4363 /*
4364 * Due to extent cloning, we might have logged a csum item that covers a
4365 * subrange of a cloned extent, and later we can end up logging a csum
4366 * item for a larger subrange of the same extent or the entire range.
4367 * This would leave csum items in the log tree that cover the same range
4368 * and break the searches for checksums in the log tree, resulting in
4369 * some checksums missing in the fs/subvolume tree. So just delete (or
4370 * trim and adjust) any existing csum items in the log for this range.
4371 */
4372 ret = btrfs_del_csums(trans, log_root, sums->logical, sums->len);
4373 if (!ret)
4374 ret = btrfs_csum_file_blocks(trans, log_root, sums);
4375
4376 btrfs_unlock_extent(&log_root->log_csum_range, sums->logical, lock_end,
4377 &cached_state);
4378
4379 return ret;
4380 }
4381
copy_items(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * dst_path,struct btrfs_path * src_path,int start_slot,int nr,int inode_only,u64 logged_isize,struct btrfs_log_ctx * ctx)4382 static noinline int copy_items(struct btrfs_trans_handle *trans,
4383 struct btrfs_inode *inode,
4384 struct btrfs_path *dst_path,
4385 struct btrfs_path *src_path,
4386 int start_slot, int nr, int inode_only,
4387 u64 logged_isize, struct btrfs_log_ctx *ctx)
4388 {
4389 struct btrfs_root *log = inode->root->log_root;
4390 struct btrfs_file_extent_item *extent;
4391 struct extent_buffer *src;
4392 int ret;
4393 struct btrfs_key *ins_keys;
4394 u32 *ins_sizes;
4395 struct btrfs_item_batch batch;
4396 char *ins_data;
4397 int dst_index;
4398 const bool skip_csum = (inode->flags & BTRFS_INODE_NODATASUM);
4399 const u64 i_size = i_size_read(&inode->vfs_inode);
4400
4401 /*
4402 * To keep lockdep happy and avoid deadlocks, clone the source leaf and
4403 * use the clone. This is because otherwise we would be changing the log
4404 * tree, to insert items from the subvolume tree or insert csum items,
4405 * while holding a read lock on a leaf from the subvolume tree, which
4406 * creates a nasty lock dependency when COWing log tree nodes/leaves:
4407 *
4408 * 1) Modifying the log tree triggers an extent buffer allocation while
4409 * holding a write lock on a parent extent buffer from the log tree.
4410 * Allocating the pages for an extent buffer, or the extent buffer
4411 * struct, can trigger inode eviction and finally the inode eviction
4412 * will trigger a release/remove of a delayed node, which requires
4413 * taking the delayed node's mutex;
4414 *
4415 * 2) Allocating a metadata extent for a log tree can trigger the async
4416 * reclaim thread and make us wait for it to release enough space and
4417 * unblock our reservation ticket. The reclaim thread can start
4418 * flushing delayed items, and that in turn results in the need to
4419 * lock delayed node mutexes and in the need to write lock extent
4420 * buffers of a subvolume tree - all this while holding a write lock
4421 * on the parent extent buffer in the log tree.
4422 *
4423 * So one task in scenario 1) running in parallel with another task in
4424 * scenario 2) could lead to a deadlock, one wanting to lock a delayed
4425 * node mutex while having a read lock on a leaf from the subvolume,
4426 * while the other is holding the delayed node's mutex and wants to
4427 * write lock the same subvolume leaf for flushing delayed items.
4428 */
4429 ret = clone_leaf(src_path, ctx);
4430 if (ret < 0)
4431 return ret;
4432
4433 src = src_path->nodes[0];
4434
4435 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
4436 nr * sizeof(u32), GFP_NOFS);
4437 if (!ins_data)
4438 return -ENOMEM;
4439
4440 ins_sizes = (u32 *)ins_data;
4441 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
4442 batch.keys = ins_keys;
4443 batch.data_sizes = ins_sizes;
4444 batch.total_data_size = 0;
4445 batch.nr = 0;
4446
4447 dst_index = 0;
4448 for (int i = 0; i < nr; i++) {
4449 const int src_slot = start_slot + i;
4450 struct btrfs_root *csum_root;
4451 struct btrfs_ordered_sum *sums;
4452 struct btrfs_ordered_sum *sums_next;
4453 LIST_HEAD(ordered_sums);
4454 u64 disk_bytenr;
4455 u64 disk_num_bytes;
4456 u64 extent_offset;
4457 u64 extent_num_bytes;
4458 bool is_old_extent;
4459
4460 btrfs_item_key_to_cpu(src, &ins_keys[dst_index], src_slot);
4461
4462 if (ins_keys[dst_index].type != BTRFS_EXTENT_DATA_KEY)
4463 goto add_to_batch;
4464
4465 extent = btrfs_item_ptr(src, src_slot,
4466 struct btrfs_file_extent_item);
4467
4468 is_old_extent = (btrfs_file_extent_generation(src, extent) <
4469 trans->transid);
4470
4471 /*
4472 * Don't copy extents from past generations. That would make us
4473 * log a lot more metadata for common cases like doing only a
4474 * few random writes into a file and then fsync it for the first
4475 * time or after the full sync flag is set on the inode. We can
4476 * get leaves full of extent items, most of which are from past
4477 * generations, so we can skip them - as long as the inode has
4478 * not been the target of a reflink operation in this transaction,
4479 * as in that case it might have had file extent items with old
4480 * generations copied into it. We also must always log prealloc
4481 * extents that start at or beyond eof, otherwise we would lose
4482 * them on log replay.
4483 */
4484 if (is_old_extent &&
4485 ins_keys[dst_index].offset < i_size &&
4486 inode->last_reflink_trans < trans->transid)
4487 continue;
4488
4489 if (skip_csum)
4490 goto add_to_batch;
4491
4492 /* Only regular extents have checksums. */
4493 if (btrfs_file_extent_type(src, extent) != BTRFS_FILE_EXTENT_REG)
4494 goto add_to_batch;
4495
4496 /*
4497 * If it's an extent created in a past transaction, then its
4498 * checksums are already accessible from the committed csum tree,
4499 * no need to log them.
4500 */
4501 if (is_old_extent)
4502 goto add_to_batch;
4503
4504 disk_bytenr = btrfs_file_extent_disk_bytenr(src, extent);
4505 /* If it's an explicit hole, there are no checksums. */
4506 if (disk_bytenr == 0)
4507 goto add_to_batch;
4508
4509 disk_num_bytes = btrfs_file_extent_disk_num_bytes(src, extent);
4510
4511 if (btrfs_file_extent_compression(src, extent)) {
4512 extent_offset = 0;
4513 extent_num_bytes = disk_num_bytes;
4514 } else {
4515 extent_offset = btrfs_file_extent_offset(src, extent);
4516 extent_num_bytes = btrfs_file_extent_num_bytes(src, extent);
4517 }
4518
4519 csum_root = btrfs_csum_root(trans->fs_info, disk_bytenr);
4520 disk_bytenr += extent_offset;
4521 ret = btrfs_lookup_csums_list(csum_root, disk_bytenr,
4522 disk_bytenr + extent_num_bytes - 1,
4523 &ordered_sums, false);
4524 if (ret < 0)
4525 goto out;
4526 ret = 0;
4527
4528 list_for_each_entry_safe(sums, sums_next, &ordered_sums, list) {
4529 if (!ret)
4530 ret = log_csums(trans, inode, log, sums);
4531 list_del(&sums->list);
4532 kfree(sums);
4533 }
4534 if (ret)
4535 goto out;
4536
4537 add_to_batch:
4538 ins_sizes[dst_index] = btrfs_item_size(src, src_slot);
4539 batch.total_data_size += ins_sizes[dst_index];
4540 batch.nr++;
4541 dst_index++;
4542 }
4543
4544 /*
4545 * We have a leaf full of old extent items that don't need to be logged,
4546 * so we don't need to do anything.
4547 */
4548 if (batch.nr == 0)
4549 goto out;
4550
4551 ret = btrfs_insert_empty_items(trans, log, dst_path, &batch);
4552 if (ret)
4553 goto out;
4554
4555 dst_index = 0;
4556 for (int i = 0; i < nr; i++) {
4557 const int src_slot = start_slot + i;
4558 const int dst_slot = dst_path->slots[0] + dst_index;
4559 struct btrfs_key key;
4560 unsigned long src_offset;
4561 unsigned long dst_offset;
4562
4563 /*
4564 * We're done, all the remaining items in the source leaf
4565 * correspond to old file extent items.
4566 */
4567 if (dst_index >= batch.nr)
4568 break;
4569
4570 btrfs_item_key_to_cpu(src, &key, src_slot);
4571
4572 if (key.type != BTRFS_EXTENT_DATA_KEY)
4573 goto copy_item;
4574
4575 extent = btrfs_item_ptr(src, src_slot,
4576 struct btrfs_file_extent_item);
4577
4578 /* See the comment in the previous loop, same logic. */
4579 if (btrfs_file_extent_generation(src, extent) < trans->transid &&
4580 key.offset < i_size &&
4581 inode->last_reflink_trans < trans->transid)
4582 continue;
4583
4584 copy_item:
4585 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0], dst_slot);
4586 src_offset = btrfs_item_ptr_offset(src, src_slot);
4587
4588 if (key.type == BTRFS_INODE_ITEM_KEY) {
4589 struct btrfs_inode_item *inode_item;
4590
4591 inode_item = btrfs_item_ptr(dst_path->nodes[0], dst_slot,
4592 struct btrfs_inode_item);
4593 fill_inode_item(trans, dst_path->nodes[0], inode_item,
4594 &inode->vfs_inode,
4595 inode_only == LOG_INODE_EXISTS,
4596 logged_isize);
4597 } else {
4598 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
4599 src_offset, ins_sizes[dst_index]);
4600 }
4601
4602 dst_index++;
4603 }
4604
4605 btrfs_release_path(dst_path);
4606 out:
4607 kfree(ins_data);
4608
4609 return ret;
4610 }
4611
extent_cmp(void * priv,const struct list_head * a,const struct list_head * b)4612 static int extent_cmp(void *priv, const struct list_head *a,
4613 const struct list_head *b)
4614 {
4615 const struct extent_map *em1, *em2;
4616
4617 em1 = list_entry(a, struct extent_map, list);
4618 em2 = list_entry(b, struct extent_map, list);
4619
4620 if (em1->start < em2->start)
4621 return -1;
4622 else if (em1->start > em2->start)
4623 return 1;
4624 return 0;
4625 }
4626
log_extent_csums(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_root * log_root,const struct extent_map * em,struct btrfs_log_ctx * ctx)4627 static int log_extent_csums(struct btrfs_trans_handle *trans,
4628 struct btrfs_inode *inode,
4629 struct btrfs_root *log_root,
4630 const struct extent_map *em,
4631 struct btrfs_log_ctx *ctx)
4632 {
4633 struct btrfs_ordered_extent *ordered;
4634 struct btrfs_root *csum_root;
4635 u64 block_start;
4636 u64 csum_offset;
4637 u64 csum_len;
4638 u64 mod_start = em->start;
4639 u64 mod_len = em->len;
4640 LIST_HEAD(ordered_sums);
4641 int ret = 0;
4642
4643 if (inode->flags & BTRFS_INODE_NODATASUM ||
4644 (em->flags & EXTENT_FLAG_PREALLOC) ||
4645 em->disk_bytenr == EXTENT_MAP_HOLE)
4646 return 0;
4647
4648 list_for_each_entry(ordered, &ctx->ordered_extents, log_list) {
4649 const u64 ordered_end = ordered->file_offset + ordered->num_bytes;
4650 const u64 mod_end = mod_start + mod_len;
4651 struct btrfs_ordered_sum *sums;
4652
4653 if (mod_len == 0)
4654 break;
4655
4656 if (ordered_end <= mod_start)
4657 continue;
4658 if (mod_end <= ordered->file_offset)
4659 break;
4660
4661 /*
4662 * We are going to copy all the csums on this ordered extent, so
4663 * go ahead and adjust mod_start and mod_len in case this ordered
4664 * extent has already been logged.
4665 */
4666 if (ordered->file_offset > mod_start) {
4667 if (ordered_end >= mod_end)
4668 mod_len = ordered->file_offset - mod_start;
4669 /*
4670 * If we have this case
4671 *
4672 * |--------- logged extent ---------|
4673 * |----- ordered extent ----|
4674 *
4675 * Just don't mess with mod_start and mod_len, we'll
4676 * just end up logging more csums than we need and it
4677 * will be ok.
4678 */
4679 } else {
4680 if (ordered_end < mod_end) {
4681 mod_len = mod_end - ordered_end;
4682 mod_start = ordered_end;
4683 } else {
4684 mod_len = 0;
4685 }
4686 }
4687
4688 /*
4689 * To keep us from looping for the above case of an ordered
4690 * extent that falls inside of the logged extent.
4691 */
4692 if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM, &ordered->flags))
4693 continue;
4694
4695 list_for_each_entry(sums, &ordered->list, list) {
4696 ret = log_csums(trans, inode, log_root, sums);
4697 if (ret)
4698 return ret;
4699 }
4700 }
4701
4702 /* We're done, found all csums in the ordered extents. */
4703 if (mod_len == 0)
4704 return 0;
4705
4706 /* If we're compressed we have to save the entire range of csums. */
4707 if (btrfs_extent_map_is_compressed(em)) {
4708 csum_offset = 0;
4709 csum_len = em->disk_num_bytes;
4710 } else {
4711 csum_offset = mod_start - em->start;
4712 csum_len = mod_len;
4713 }
4714
4715 /* block start is already adjusted for the file extent offset. */
4716 block_start = btrfs_extent_map_block_start(em);
4717 csum_root = btrfs_csum_root(trans->fs_info, block_start);
4718 ret = btrfs_lookup_csums_list(csum_root, block_start + csum_offset,
4719 block_start + csum_offset + csum_len - 1,
4720 &ordered_sums, false);
4721 if (ret < 0)
4722 return ret;
4723 ret = 0;
4724
4725 while (!list_empty(&ordered_sums)) {
4726 struct btrfs_ordered_sum *sums = list_first_entry(&ordered_sums,
4727 struct btrfs_ordered_sum,
4728 list);
4729 if (!ret)
4730 ret = log_csums(trans, inode, log_root, sums);
4731 list_del(&sums->list);
4732 kfree(sums);
4733 }
4734
4735 return ret;
4736 }
4737
log_one_extent(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,const struct extent_map * em,struct btrfs_path * path,struct btrfs_log_ctx * ctx)4738 static int log_one_extent(struct btrfs_trans_handle *trans,
4739 struct btrfs_inode *inode,
4740 const struct extent_map *em,
4741 struct btrfs_path *path,
4742 struct btrfs_log_ctx *ctx)
4743 {
4744 struct btrfs_drop_extents_args drop_args = { 0 };
4745 struct btrfs_root *log = inode->root->log_root;
4746 struct btrfs_file_extent_item fi = { 0 };
4747 struct extent_buffer *leaf;
4748 struct btrfs_key key;
4749 enum btrfs_compression_type compress_type;
4750 u64 extent_offset = em->offset;
4751 u64 block_start = btrfs_extent_map_block_start(em);
4752 u64 block_len;
4753 int ret;
4754
4755 btrfs_set_stack_file_extent_generation(&fi, trans->transid);
4756 if (em->flags & EXTENT_FLAG_PREALLOC)
4757 btrfs_set_stack_file_extent_type(&fi, BTRFS_FILE_EXTENT_PREALLOC);
4758 else
4759 btrfs_set_stack_file_extent_type(&fi, BTRFS_FILE_EXTENT_REG);
4760
4761 block_len = em->disk_num_bytes;
4762 compress_type = btrfs_extent_map_compression(em);
4763 if (compress_type != BTRFS_COMPRESS_NONE) {
4764 btrfs_set_stack_file_extent_disk_bytenr(&fi, block_start);
4765 btrfs_set_stack_file_extent_disk_num_bytes(&fi, block_len);
4766 } else if (em->disk_bytenr < EXTENT_MAP_LAST_BYTE) {
4767 btrfs_set_stack_file_extent_disk_bytenr(&fi, block_start - extent_offset);
4768 btrfs_set_stack_file_extent_disk_num_bytes(&fi, block_len);
4769 }
4770
4771 btrfs_set_stack_file_extent_offset(&fi, extent_offset);
4772 btrfs_set_stack_file_extent_num_bytes(&fi, em->len);
4773 btrfs_set_stack_file_extent_ram_bytes(&fi, em->ram_bytes);
4774 btrfs_set_stack_file_extent_compression(&fi, compress_type);
4775
4776 ret = log_extent_csums(trans, inode, log, em, ctx);
4777 if (ret)
4778 return ret;
4779
4780 /*
4781 * If this is the first time we are logging the inode in the current
4782 * transaction, we can avoid btrfs_drop_extents(), which is expensive
4783 * because it does a deletion search, which always acquires write locks
4784 * for extent buffers at levels 2, 1 and 0. This not only wastes time
4785 * but also adds significant contention in a log tree, since log trees
4786 * are small, with a root at level 2 or 3 at most, due to their short
4787 * life span.
4788 */
4789 if (ctx->logged_before) {
4790 drop_args.path = path;
4791 drop_args.start = em->start;
4792 drop_args.end = em->start + em->len;
4793 drop_args.replace_extent = true;
4794 drop_args.extent_item_size = sizeof(fi);
4795 ret = btrfs_drop_extents(trans, log, inode, &drop_args);
4796 if (ret)
4797 return ret;
4798 }
4799
4800 if (!drop_args.extent_inserted) {
4801 key.objectid = btrfs_ino(inode);
4802 key.type = BTRFS_EXTENT_DATA_KEY;
4803 key.offset = em->start;
4804
4805 ret = btrfs_insert_empty_item(trans, log, path, &key,
4806 sizeof(fi));
4807 if (ret)
4808 return ret;
4809 }
4810 leaf = path->nodes[0];
4811 write_extent_buffer(leaf, &fi,
4812 btrfs_item_ptr_offset(leaf, path->slots[0]),
4813 sizeof(fi));
4814
4815 btrfs_release_path(path);
4816
4817 return ret;
4818 }
4819
4820 /*
4821 * Log all prealloc extents beyond the inode's i_size to make sure we do not
4822 * lose them after doing a full/fast fsync and replaying the log. We scan the
4823 * subvolume's root instead of iterating the inode's extent map tree because
4824 * otherwise we can log incorrect extent items based on extent map conversion.
4825 * That can happen due to the fact that extent maps are merged when they
4826 * are not in the extent map tree's list of modified extents.
4827 */
btrfs_log_prealloc_extents(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_log_ctx * ctx)4828 static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans,
4829 struct btrfs_inode *inode,
4830 struct btrfs_path *path,
4831 struct btrfs_log_ctx *ctx)
4832 {
4833 struct btrfs_root *root = inode->root;
4834 struct btrfs_key key;
4835 const u64 i_size = i_size_read(&inode->vfs_inode);
4836 const u64 ino = btrfs_ino(inode);
4837 struct btrfs_path *dst_path = NULL;
4838 bool dropped_extents = false;
4839 u64 truncate_offset = i_size;
4840 struct extent_buffer *leaf;
4841 int slot;
4842 int ins_nr = 0;
4843 int start_slot = 0;
4844 int ret;
4845
4846 if (!(inode->flags & BTRFS_INODE_PREALLOC))
4847 return 0;
4848
4849 key.objectid = ino;
4850 key.type = BTRFS_EXTENT_DATA_KEY;
4851 key.offset = i_size;
4852 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4853 if (ret < 0)
4854 goto out;
4855
4856 /*
4857 * We must check if there is a prealloc extent that starts before the
4858 * i_size and crosses the i_size boundary. This is to ensure later we
4859 * truncate down to the end of that extent and not to the i_size, as
4860 * otherwise we end up losing part of the prealloc extent after a log
4861 * replay and with an implicit hole if there is another prealloc extent
4862 * that starts at an offset beyond i_size.
4863 */
4864 ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
4865 if (ret < 0)
4866 goto out;
4867
4868 if (ret == 0) {
4869 struct btrfs_file_extent_item *ei;
4870
4871 leaf = path->nodes[0];
4872 slot = path->slots[0];
4873 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4874
4875 if (btrfs_file_extent_type(leaf, ei) ==
4876 BTRFS_FILE_EXTENT_PREALLOC) {
4877 u64 extent_end;
4878
4879 btrfs_item_key_to_cpu(leaf, &key, slot);
4880 extent_end = key.offset +
4881 btrfs_file_extent_num_bytes(leaf, ei);
4882
4883 if (extent_end > i_size)
4884 truncate_offset = extent_end;
4885 }
4886 } else {
4887 ret = 0;
4888 }
4889
4890 while (true) {
4891 leaf = path->nodes[0];
4892 slot = path->slots[0];
4893
4894 if (slot >= btrfs_header_nritems(leaf)) {
4895 if (ins_nr > 0) {
4896 ret = copy_items(trans, inode, dst_path, path,
4897 start_slot, ins_nr, 1, 0, ctx);
4898 if (ret < 0)
4899 goto out;
4900 ins_nr = 0;
4901 }
4902 ret = btrfs_next_leaf(root, path);
4903 if (ret < 0)
4904 goto out;
4905 if (ret > 0) {
4906 ret = 0;
4907 break;
4908 }
4909 continue;
4910 }
4911
4912 btrfs_item_key_to_cpu(leaf, &key, slot);
4913 if (key.objectid > ino)
4914 break;
4915 if (WARN_ON_ONCE(key.objectid < ino) ||
4916 key.type < BTRFS_EXTENT_DATA_KEY ||
4917 key.offset < i_size) {
4918 path->slots[0]++;
4919 continue;
4920 }
4921 /*
4922 * Avoid overlapping items in the log tree. The first time we
4923 * get here, get rid of everything from a past fsync. After
4924 * that, if the current extent starts before the end of the last
4925 * extent we copied, truncate the last one. This can happen if
4926 * an ordered extent completion modifies the subvolume tree
4927 * while btrfs_next_leaf() has the tree unlocked.
4928 */
4929 if (!dropped_extents || key.offset < truncate_offset) {
4930 ret = truncate_inode_items(trans, root->log_root, inode,
4931 min(key.offset, truncate_offset),
4932 BTRFS_EXTENT_DATA_KEY);
4933 if (ret)
4934 goto out;
4935 dropped_extents = true;
4936 }
4937 truncate_offset = btrfs_file_extent_end(path);
4938 if (ins_nr == 0)
4939 start_slot = slot;
4940 ins_nr++;
4941 path->slots[0]++;
4942 if (!dst_path) {
4943 dst_path = btrfs_alloc_path();
4944 if (!dst_path) {
4945 ret = -ENOMEM;
4946 goto out;
4947 }
4948 }
4949 }
4950 if (ins_nr > 0)
4951 ret = copy_items(trans, inode, dst_path, path,
4952 start_slot, ins_nr, 1, 0, ctx);
4953 out:
4954 btrfs_release_path(path);
4955 btrfs_free_path(dst_path);
4956 return ret;
4957 }
4958
btrfs_log_changed_extents(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_log_ctx * ctx)4959 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4960 struct btrfs_inode *inode,
4961 struct btrfs_path *path,
4962 struct btrfs_log_ctx *ctx)
4963 {
4964 struct btrfs_ordered_extent *ordered;
4965 struct btrfs_ordered_extent *tmp;
4966 struct extent_map *em, *n;
4967 LIST_HEAD(extents);
4968 struct extent_map_tree *tree = &inode->extent_tree;
4969 int ret = 0;
4970 int num = 0;
4971
4972 write_lock(&tree->lock);
4973
4974 list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4975 list_del_init(&em->list);
4976 /*
4977 * Just an arbitrary number, this can be really CPU intensive
4978 * once we start getting a lot of extents, and really once we
4979 * have a bunch of extents we just want to commit since it will
4980 * be faster.
4981 */
4982 if (++num > 32768) {
4983 list_del_init(&tree->modified_extents);
4984 ret = -EFBIG;
4985 goto process;
4986 }
4987
4988 if (em->generation < trans->transid)
4989 continue;
4990
4991 /* We log prealloc extents beyond eof later. */
4992 if ((em->flags & EXTENT_FLAG_PREALLOC) &&
4993 em->start >= i_size_read(&inode->vfs_inode))
4994 continue;
4995
4996 /* Need a ref to keep it from getting evicted from cache */
4997 refcount_inc(&em->refs);
4998 em->flags |= EXTENT_FLAG_LOGGING;
4999 list_add_tail(&em->list, &extents);
5000 num++;
5001 }
5002
5003 list_sort(NULL, &extents, extent_cmp);
5004 process:
5005 while (!list_empty(&extents)) {
5006 em = list_first_entry(&extents, struct extent_map, list);
5007
5008 list_del_init(&em->list);
5009
5010 /*
5011 * If we had an error we just need to delete everybody from our
5012 * private list.
5013 */
5014 if (ret) {
5015 btrfs_clear_em_logging(inode, em);
5016 btrfs_free_extent_map(em);
5017 continue;
5018 }
5019
5020 write_unlock(&tree->lock);
5021
5022 ret = log_one_extent(trans, inode, em, path, ctx);
5023 write_lock(&tree->lock);
5024 btrfs_clear_em_logging(inode, em);
5025 btrfs_free_extent_map(em);
5026 }
5027 WARN_ON(!list_empty(&extents));
5028 write_unlock(&tree->lock);
5029
5030 if (!ret)
5031 ret = btrfs_log_prealloc_extents(trans, inode, path, ctx);
5032 if (ret)
5033 return ret;
5034
5035 /*
5036 * We have logged all extents successfully, now make sure the commit of
5037 * the current transaction waits for the ordered extents to complete
5038 * before it commits and wipes out the log trees, otherwise we would
5039 * lose data if an ordered extents completes after the transaction
5040 * commits and a power failure happens after the transaction commit.
5041 */
5042 list_for_each_entry_safe(ordered, tmp, &ctx->ordered_extents, log_list) {
5043 list_del_init(&ordered->log_list);
5044 set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags);
5045
5046 if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
5047 spin_lock_irq(&inode->ordered_tree_lock);
5048 if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
5049 set_bit(BTRFS_ORDERED_PENDING, &ordered->flags);
5050 atomic_inc(&trans->transaction->pending_ordered);
5051 }
5052 spin_unlock_irq(&inode->ordered_tree_lock);
5053 }
5054 btrfs_put_ordered_extent(ordered);
5055 }
5056
5057 return 0;
5058 }
5059
logged_inode_size(struct btrfs_root * log,struct btrfs_inode * inode,struct btrfs_path * path,u64 * size_ret)5060 static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
5061 struct btrfs_path *path, u64 *size_ret)
5062 {
5063 struct btrfs_key key;
5064 int ret;
5065
5066 key.objectid = btrfs_ino(inode);
5067 key.type = BTRFS_INODE_ITEM_KEY;
5068 key.offset = 0;
5069
5070 ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
5071 if (ret < 0) {
5072 return ret;
5073 } else if (ret > 0) {
5074 *size_ret = 0;
5075 } else {
5076 struct btrfs_inode_item *item;
5077
5078 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5079 struct btrfs_inode_item);
5080 *size_ret = btrfs_inode_size(path->nodes[0], item);
5081 /*
5082 * If the in-memory inode's i_size is smaller then the inode
5083 * size stored in the btree, return the inode's i_size, so
5084 * that we get a correct inode size after replaying the log
5085 * when before a power failure we had a shrinking truncate
5086 * followed by addition of a new name (rename / new hard link).
5087 * Otherwise return the inode size from the btree, to avoid
5088 * data loss when replaying a log due to previously doing a
5089 * write that expands the inode's size and logging a new name
5090 * immediately after.
5091 */
5092 if (*size_ret > inode->vfs_inode.i_size)
5093 *size_ret = inode->vfs_inode.i_size;
5094 }
5095
5096 btrfs_release_path(path);
5097 return 0;
5098 }
5099
5100 /*
5101 * At the moment we always log all xattrs. This is to figure out at log replay
5102 * time which xattrs must have their deletion replayed. If a xattr is missing
5103 * in the log tree and exists in the fs/subvol tree, we delete it. This is
5104 * because if a xattr is deleted, the inode is fsynced and a power failure
5105 * happens, causing the log to be replayed the next time the fs is mounted,
5106 * we want the xattr to not exist anymore (same behaviour as other filesystems
5107 * with a journal, ext3/4, xfs, f2fs, etc).
5108 */
btrfs_log_all_xattrs(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_path * dst_path,struct btrfs_log_ctx * ctx)5109 static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
5110 struct btrfs_inode *inode,
5111 struct btrfs_path *path,
5112 struct btrfs_path *dst_path,
5113 struct btrfs_log_ctx *ctx)
5114 {
5115 struct btrfs_root *root = inode->root;
5116 int ret;
5117 struct btrfs_key key;
5118 const u64 ino = btrfs_ino(inode);
5119 int ins_nr = 0;
5120 int start_slot = 0;
5121 bool found_xattrs = false;
5122
5123 if (test_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags))
5124 return 0;
5125
5126 key.objectid = ino;
5127 key.type = BTRFS_XATTR_ITEM_KEY;
5128 key.offset = 0;
5129
5130 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5131 if (ret < 0)
5132 return ret;
5133
5134 while (true) {
5135 int slot = path->slots[0];
5136 struct extent_buffer *leaf = path->nodes[0];
5137 int nritems = btrfs_header_nritems(leaf);
5138
5139 if (slot >= nritems) {
5140 if (ins_nr > 0) {
5141 ret = copy_items(trans, inode, dst_path, path,
5142 start_slot, ins_nr, 1, 0, ctx);
5143 if (ret < 0)
5144 return ret;
5145 ins_nr = 0;
5146 }
5147 ret = btrfs_next_leaf(root, path);
5148 if (ret < 0)
5149 return ret;
5150 else if (ret > 0)
5151 break;
5152 continue;
5153 }
5154
5155 btrfs_item_key_to_cpu(leaf, &key, slot);
5156 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
5157 break;
5158
5159 if (ins_nr == 0)
5160 start_slot = slot;
5161 ins_nr++;
5162 path->slots[0]++;
5163 found_xattrs = true;
5164 cond_resched();
5165 }
5166 if (ins_nr > 0) {
5167 ret = copy_items(trans, inode, dst_path, path,
5168 start_slot, ins_nr, 1, 0, ctx);
5169 if (ret < 0)
5170 return ret;
5171 }
5172
5173 if (!found_xattrs)
5174 set_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags);
5175
5176 return 0;
5177 }
5178
5179 /*
5180 * When using the NO_HOLES feature if we punched a hole that causes the
5181 * deletion of entire leafs or all the extent items of the first leaf (the one
5182 * that contains the inode item and references) we may end up not processing
5183 * any extents, because there are no leafs with a generation matching the
5184 * current transaction that have extent items for our inode. So we need to find
5185 * if any holes exist and then log them. We also need to log holes after any
5186 * truncate operation that changes the inode's size.
5187 */
btrfs_log_holes(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path)5188 static int btrfs_log_holes(struct btrfs_trans_handle *trans,
5189 struct btrfs_inode *inode,
5190 struct btrfs_path *path)
5191 {
5192 struct btrfs_root *root = inode->root;
5193 struct btrfs_fs_info *fs_info = root->fs_info;
5194 struct btrfs_key key;
5195 const u64 ino = btrfs_ino(inode);
5196 const u64 i_size = i_size_read(&inode->vfs_inode);
5197 u64 prev_extent_end = 0;
5198 int ret;
5199
5200 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || i_size == 0)
5201 return 0;
5202
5203 key.objectid = ino;
5204 key.type = BTRFS_EXTENT_DATA_KEY;
5205 key.offset = 0;
5206
5207 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5208 if (ret < 0)
5209 return ret;
5210
5211 while (true) {
5212 struct extent_buffer *leaf = path->nodes[0];
5213
5214 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
5215 ret = btrfs_next_leaf(root, path);
5216 if (ret < 0)
5217 return ret;
5218 if (ret > 0) {
5219 ret = 0;
5220 break;
5221 }
5222 leaf = path->nodes[0];
5223 }
5224
5225 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5226 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
5227 break;
5228
5229 /* We have a hole, log it. */
5230 if (prev_extent_end < key.offset) {
5231 const u64 hole_len = key.offset - prev_extent_end;
5232
5233 /*
5234 * Release the path to avoid deadlocks with other code
5235 * paths that search the root while holding locks on
5236 * leafs from the log root.
5237 */
5238 btrfs_release_path(path);
5239 ret = btrfs_insert_hole_extent(trans, root->log_root,
5240 ino, prev_extent_end,
5241 hole_len);
5242 if (ret < 0)
5243 return ret;
5244
5245 /*
5246 * Search for the same key again in the root. Since it's
5247 * an extent item and we are holding the inode lock, the
5248 * key must still exist. If it doesn't just emit warning
5249 * and return an error to fall back to a transaction
5250 * commit.
5251 */
5252 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5253 if (ret < 0)
5254 return ret;
5255 if (WARN_ON(ret > 0))
5256 return -ENOENT;
5257 leaf = path->nodes[0];
5258 }
5259
5260 prev_extent_end = btrfs_file_extent_end(path);
5261 path->slots[0]++;
5262 cond_resched();
5263 }
5264
5265 if (prev_extent_end < i_size) {
5266 u64 hole_len;
5267
5268 btrfs_release_path(path);
5269 hole_len = ALIGN(i_size - prev_extent_end, fs_info->sectorsize);
5270 ret = btrfs_insert_hole_extent(trans, root->log_root, ino,
5271 prev_extent_end, hole_len);
5272 if (ret < 0)
5273 return ret;
5274 }
5275
5276 return 0;
5277 }
5278
5279 /*
5280 * When we are logging a new inode X, check if it doesn't have a reference that
5281 * matches the reference from some other inode Y created in a past transaction
5282 * and that was renamed in the current transaction. If we don't do this, then at
5283 * log replay time we can lose inode Y (and all its files if it's a directory):
5284 *
5285 * mkdir /mnt/x
5286 * echo "hello world" > /mnt/x/foobar
5287 * sync
5288 * mv /mnt/x /mnt/y
5289 * mkdir /mnt/x # or touch /mnt/x
5290 * xfs_io -c fsync /mnt/x
5291 * <power fail>
5292 * mount fs, trigger log replay
5293 *
5294 * After the log replay procedure, we would lose the first directory and all its
5295 * files (file foobar).
5296 * For the case where inode Y is not a directory we simply end up losing it:
5297 *
5298 * echo "123" > /mnt/foo
5299 * sync
5300 * mv /mnt/foo /mnt/bar
5301 * echo "abc" > /mnt/foo
5302 * xfs_io -c fsync /mnt/foo
5303 * <power fail>
5304 *
5305 * We also need this for cases where a snapshot entry is replaced by some other
5306 * entry (file or directory) otherwise we end up with an unreplayable log due to
5307 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
5308 * if it were a regular entry:
5309 *
5310 * mkdir /mnt/x
5311 * btrfs subvolume snapshot /mnt /mnt/x/snap
5312 * btrfs subvolume delete /mnt/x/snap
5313 * rmdir /mnt/x
5314 * mkdir /mnt/x
5315 * fsync /mnt/x or fsync some new file inside it
5316 * <power fail>
5317 *
5318 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
5319 * the same transaction.
5320 */
btrfs_check_ref_name_override(struct extent_buffer * eb,const int slot,const struct btrfs_key * key,struct btrfs_inode * inode,u64 * other_ino,u64 * other_parent)5321 static int btrfs_check_ref_name_override(struct extent_buffer *eb,
5322 const int slot,
5323 const struct btrfs_key *key,
5324 struct btrfs_inode *inode,
5325 u64 *other_ino, u64 *other_parent)
5326 {
5327 int ret;
5328 struct btrfs_path *search_path;
5329 char *name = NULL;
5330 u32 name_len = 0;
5331 u32 item_size = btrfs_item_size(eb, slot);
5332 u32 cur_offset = 0;
5333 unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
5334
5335 search_path = btrfs_alloc_path();
5336 if (!search_path)
5337 return -ENOMEM;
5338 search_path->search_commit_root = 1;
5339 search_path->skip_locking = 1;
5340
5341 while (cur_offset < item_size) {
5342 u64 parent;
5343 u32 this_name_len;
5344 u32 this_len;
5345 unsigned long name_ptr;
5346 struct btrfs_dir_item *di;
5347 struct fscrypt_str name_str;
5348
5349 if (key->type == BTRFS_INODE_REF_KEY) {
5350 struct btrfs_inode_ref *iref;
5351
5352 iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
5353 parent = key->offset;
5354 this_name_len = btrfs_inode_ref_name_len(eb, iref);
5355 name_ptr = (unsigned long)(iref + 1);
5356 this_len = sizeof(*iref) + this_name_len;
5357 } else {
5358 struct btrfs_inode_extref *extref;
5359
5360 extref = (struct btrfs_inode_extref *)(ptr +
5361 cur_offset);
5362 parent = btrfs_inode_extref_parent(eb, extref);
5363 this_name_len = btrfs_inode_extref_name_len(eb, extref);
5364 name_ptr = (unsigned long)&extref->name;
5365 this_len = sizeof(*extref) + this_name_len;
5366 }
5367
5368 if (this_name_len > name_len) {
5369 char *new_name;
5370
5371 new_name = krealloc(name, this_name_len, GFP_NOFS);
5372 if (!new_name) {
5373 ret = -ENOMEM;
5374 goto out;
5375 }
5376 name_len = this_name_len;
5377 name = new_name;
5378 }
5379
5380 read_extent_buffer(eb, name, name_ptr, this_name_len);
5381
5382 name_str.name = name;
5383 name_str.len = this_name_len;
5384 di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
5385 parent, &name_str, 0);
5386 if (di && !IS_ERR(di)) {
5387 struct btrfs_key di_key;
5388
5389 btrfs_dir_item_key_to_cpu(search_path->nodes[0],
5390 di, &di_key);
5391 if (di_key.type == BTRFS_INODE_ITEM_KEY) {
5392 if (di_key.objectid != key->objectid) {
5393 ret = 1;
5394 *other_ino = di_key.objectid;
5395 *other_parent = parent;
5396 } else {
5397 ret = 0;
5398 }
5399 } else {
5400 ret = -EAGAIN;
5401 }
5402 goto out;
5403 } else if (IS_ERR(di)) {
5404 ret = PTR_ERR(di);
5405 goto out;
5406 }
5407 btrfs_release_path(search_path);
5408
5409 cur_offset += this_len;
5410 }
5411 ret = 0;
5412 out:
5413 btrfs_free_path(search_path);
5414 kfree(name);
5415 return ret;
5416 }
5417
5418 /*
5419 * Check if we need to log an inode. This is used in contexts where while
5420 * logging an inode we need to log another inode (either that it exists or in
5421 * full mode). This is used instead of btrfs_inode_in_log() because the later
5422 * requires the inode to be in the log and have the log transaction committed,
5423 * while here we do not care if the log transaction was already committed - our
5424 * caller will commit the log later - and we want to avoid logging an inode
5425 * multiple times when multiple tasks have joined the same log transaction.
5426 */
need_log_inode(const struct btrfs_trans_handle * trans,struct btrfs_inode * inode)5427 static bool need_log_inode(const struct btrfs_trans_handle *trans,
5428 struct btrfs_inode *inode)
5429 {
5430 /*
5431 * If a directory was not modified, no dentries added or removed, we can
5432 * and should avoid logging it.
5433 */
5434 if (S_ISDIR(inode->vfs_inode.i_mode) && inode->last_trans < trans->transid)
5435 return false;
5436
5437 /*
5438 * If this inode does not have new/updated/deleted xattrs since the last
5439 * time it was logged and is flagged as logged in the current transaction,
5440 * we can skip logging it. As for new/deleted names, those are updated in
5441 * the log by link/unlink/rename operations.
5442 * In case the inode was logged and then evicted and reloaded, its
5443 * logged_trans will be 0, in which case we have to fully log it since
5444 * logged_trans is a transient field, not persisted.
5445 */
5446 if (inode_logged(trans, inode, NULL) == 1 &&
5447 !test_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags))
5448 return false;
5449
5450 return true;
5451 }
5452
5453 struct btrfs_dir_list {
5454 u64 ino;
5455 struct list_head list;
5456 };
5457
5458 /*
5459 * Log the inodes of the new dentries of a directory.
5460 * See process_dir_items_leaf() for details about why it is needed.
5461 * This is a recursive operation - if an existing dentry corresponds to a
5462 * directory, that directory's new entries are logged too (same behaviour as
5463 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5464 * the dentries point to we do not acquire their VFS lock, otherwise lockdep
5465 * complains about the following circular lock dependency / possible deadlock:
5466 *
5467 * CPU0 CPU1
5468 * ---- ----
5469 * lock(&type->i_mutex_dir_key#3/2);
5470 * lock(sb_internal#2);
5471 * lock(&type->i_mutex_dir_key#3/2);
5472 * lock(&sb->s_type->i_mutex_key#14);
5473 *
5474 * Where sb_internal is the lock (a counter that works as a lock) acquired by
5475 * sb_start_intwrite() in btrfs_start_transaction().
5476 * Not acquiring the VFS lock of the inodes is still safe because:
5477 *
5478 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5479 * that while logging the inode new references (names) are added or removed
5480 * from the inode, leaving the logged inode item with a link count that does
5481 * not match the number of logged inode reference items. This is fine because
5482 * at log replay time we compute the real number of links and correct the
5483 * link count in the inode item (see replay_one_buffer() and
5484 * link_to_fixup_dir());
5485 *
5486 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5487 * while logging the inode's items new index items (key type
5488 * BTRFS_DIR_INDEX_KEY) are added to fs/subvol tree and the logged inode item
5489 * has a size that doesn't match the sum of the lengths of all the logged
5490 * names - this is ok, not a problem, because at log replay time we set the
5491 * directory's i_size to the correct value (see replay_one_name() and
5492 * overwrite_item()).
5493 */
log_new_dir_dentries(struct btrfs_trans_handle * trans,struct btrfs_inode * start_inode,struct btrfs_log_ctx * ctx)5494 static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5495 struct btrfs_inode *start_inode,
5496 struct btrfs_log_ctx *ctx)
5497 {
5498 struct btrfs_root *root = start_inode->root;
5499 struct btrfs_path *path;
5500 LIST_HEAD(dir_list);
5501 struct btrfs_dir_list *dir_elem;
5502 u64 ino = btrfs_ino(start_inode);
5503 struct btrfs_inode *curr_inode = start_inode;
5504 int ret = 0;
5505
5506 /*
5507 * If we are logging a new name, as part of a link or rename operation,
5508 * don't bother logging new dentries, as we just want to log the names
5509 * of an inode and that any new parents exist.
5510 */
5511 if (ctx->logging_new_name)
5512 return 0;
5513
5514 path = btrfs_alloc_path();
5515 if (!path)
5516 return -ENOMEM;
5517
5518 /* Pairs with btrfs_add_delayed_iput below. */
5519 ihold(&curr_inode->vfs_inode);
5520
5521 while (true) {
5522 struct btrfs_key key;
5523 struct btrfs_key found_key;
5524 u64 next_index;
5525 bool continue_curr_inode = true;
5526 int iter_ret;
5527
5528 key.objectid = ino;
5529 key.type = BTRFS_DIR_INDEX_KEY;
5530 key.offset = btrfs_get_first_dir_index_to_log(curr_inode);
5531 next_index = key.offset;
5532 again:
5533 btrfs_for_each_slot(root->log_root, &key, &found_key, path, iter_ret) {
5534 struct extent_buffer *leaf = path->nodes[0];
5535 struct btrfs_dir_item *di;
5536 struct btrfs_key di_key;
5537 struct btrfs_inode *di_inode;
5538 int log_mode = LOG_INODE_EXISTS;
5539 int type;
5540
5541 if (found_key.objectid != ino ||
5542 found_key.type != BTRFS_DIR_INDEX_KEY) {
5543 continue_curr_inode = false;
5544 break;
5545 }
5546
5547 next_index = found_key.offset + 1;
5548
5549 di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item);
5550 type = btrfs_dir_ftype(leaf, di);
5551 if (btrfs_dir_transid(leaf, di) < trans->transid)
5552 continue;
5553 btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5554 if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5555 continue;
5556
5557 btrfs_release_path(path);
5558 di_inode = btrfs_iget_logging(di_key.objectid, root);
5559 if (IS_ERR(di_inode)) {
5560 ret = PTR_ERR(di_inode);
5561 goto out;
5562 }
5563
5564 if (!need_log_inode(trans, di_inode)) {
5565 btrfs_add_delayed_iput(di_inode);
5566 break;
5567 }
5568
5569 ctx->log_new_dentries = false;
5570 if (type == BTRFS_FT_DIR)
5571 log_mode = LOG_INODE_ALL;
5572 ret = btrfs_log_inode(trans, di_inode, log_mode, ctx);
5573 btrfs_add_delayed_iput(di_inode);
5574 if (ret)
5575 goto out;
5576 if (ctx->log_new_dentries) {
5577 dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5578 if (!dir_elem) {
5579 ret = -ENOMEM;
5580 goto out;
5581 }
5582 dir_elem->ino = di_key.objectid;
5583 list_add_tail(&dir_elem->list, &dir_list);
5584 }
5585 break;
5586 }
5587
5588 btrfs_release_path(path);
5589
5590 if (iter_ret < 0) {
5591 ret = iter_ret;
5592 goto out;
5593 } else if (iter_ret > 0) {
5594 continue_curr_inode = false;
5595 } else {
5596 key = found_key;
5597 }
5598
5599 if (continue_curr_inode && key.offset < (u64)-1) {
5600 key.offset++;
5601 goto again;
5602 }
5603
5604 btrfs_set_first_dir_index_to_log(curr_inode, next_index);
5605
5606 if (list_empty(&dir_list))
5607 break;
5608
5609 dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list, list);
5610 ino = dir_elem->ino;
5611 list_del(&dir_elem->list);
5612 kfree(dir_elem);
5613
5614 btrfs_add_delayed_iput(curr_inode);
5615
5616 curr_inode = btrfs_iget_logging(ino, root);
5617 if (IS_ERR(curr_inode)) {
5618 ret = PTR_ERR(curr_inode);
5619 curr_inode = NULL;
5620 break;
5621 }
5622 }
5623 out:
5624 btrfs_free_path(path);
5625 if (curr_inode)
5626 btrfs_add_delayed_iput(curr_inode);
5627
5628 if (ret) {
5629 struct btrfs_dir_list *next;
5630
5631 list_for_each_entry_safe(dir_elem, next, &dir_list, list)
5632 kfree(dir_elem);
5633 }
5634
5635 return ret;
5636 }
5637
5638 struct btrfs_ino_list {
5639 u64 ino;
5640 u64 parent;
5641 struct list_head list;
5642 };
5643
free_conflicting_inodes(struct btrfs_log_ctx * ctx)5644 static void free_conflicting_inodes(struct btrfs_log_ctx *ctx)
5645 {
5646 struct btrfs_ino_list *curr;
5647 struct btrfs_ino_list *next;
5648
5649 list_for_each_entry_safe(curr, next, &ctx->conflict_inodes, list) {
5650 list_del(&curr->list);
5651 kfree(curr);
5652 }
5653 }
5654
conflicting_inode_is_dir(struct btrfs_root * root,u64 ino,struct btrfs_path * path)5655 static int conflicting_inode_is_dir(struct btrfs_root *root, u64 ino,
5656 struct btrfs_path *path)
5657 {
5658 struct btrfs_key key;
5659 int ret;
5660
5661 key.objectid = ino;
5662 key.type = BTRFS_INODE_ITEM_KEY;
5663 key.offset = 0;
5664
5665 path->search_commit_root = 1;
5666 path->skip_locking = 1;
5667
5668 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5669 if (WARN_ON_ONCE(ret > 0)) {
5670 /*
5671 * We have previously found the inode through the commit root
5672 * so this should not happen. If it does, just error out and
5673 * fallback to a transaction commit.
5674 */
5675 ret = -ENOENT;
5676 } else if (ret == 0) {
5677 struct btrfs_inode_item *item;
5678
5679 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5680 struct btrfs_inode_item);
5681 if (S_ISDIR(btrfs_inode_mode(path->nodes[0], item)))
5682 ret = 1;
5683 }
5684
5685 btrfs_release_path(path);
5686 path->search_commit_root = 0;
5687 path->skip_locking = 0;
5688
5689 return ret;
5690 }
5691
add_conflicting_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,u64 ino,u64 parent,struct btrfs_log_ctx * ctx)5692 static int add_conflicting_inode(struct btrfs_trans_handle *trans,
5693 struct btrfs_root *root,
5694 struct btrfs_path *path,
5695 u64 ino, u64 parent,
5696 struct btrfs_log_ctx *ctx)
5697 {
5698 struct btrfs_ino_list *ino_elem;
5699 struct btrfs_inode *inode;
5700
5701 /*
5702 * It's rare to have a lot of conflicting inodes, in practice it is not
5703 * common to have more than 1 or 2. We don't want to collect too many,
5704 * as we could end up logging too many inodes (even if only in
5705 * LOG_INODE_EXISTS mode) and slow down other fsyncs or transaction
5706 * commits.
5707 */
5708 if (ctx->num_conflict_inodes >= MAX_CONFLICT_INODES)
5709 return BTRFS_LOG_FORCE_COMMIT;
5710
5711 inode = btrfs_iget_logging(ino, root);
5712 /*
5713 * If the other inode that had a conflicting dir entry was deleted in
5714 * the current transaction then we either:
5715 *
5716 * 1) Log the parent directory (later after adding it to the list) if
5717 * the inode is a directory. This is because it may be a deleted
5718 * subvolume/snapshot or it may be a regular directory that had
5719 * deleted subvolumes/snapshots (or subdirectories that had them),
5720 * and at the moment we can't deal with dropping subvolumes/snapshots
5721 * during log replay. So we just log the parent, which will result in
5722 * a fallback to a transaction commit if we are dealing with those
5723 * cases (last_unlink_trans will match the current transaction);
5724 *
5725 * 2) Do nothing if it's not a directory. During log replay we simply
5726 * unlink the conflicting dentry from the parent directory and then
5727 * add the dentry for our inode. Like this we can avoid logging the
5728 * parent directory (and maybe fallback to a transaction commit in
5729 * case it has a last_unlink_trans == trans->transid, due to moving
5730 * some inode from it to some other directory).
5731 */
5732 if (IS_ERR(inode)) {
5733 int ret = PTR_ERR(inode);
5734
5735 if (ret != -ENOENT)
5736 return ret;
5737
5738 ret = conflicting_inode_is_dir(root, ino, path);
5739 /* Not a directory or we got an error. */
5740 if (ret <= 0)
5741 return ret;
5742
5743 /* Conflicting inode is a directory, so we'll log its parent. */
5744 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5745 if (!ino_elem)
5746 return -ENOMEM;
5747 ino_elem->ino = ino;
5748 ino_elem->parent = parent;
5749 list_add_tail(&ino_elem->list, &ctx->conflict_inodes);
5750 ctx->num_conflict_inodes++;
5751
5752 return 0;
5753 }
5754
5755 /*
5756 * If the inode was already logged skip it - otherwise we can hit an
5757 * infinite loop. Example:
5758 *
5759 * From the commit root (previous transaction) we have the following
5760 * inodes:
5761 *
5762 * inode 257 a directory
5763 * inode 258 with references "zz" and "zz_link" on inode 257
5764 * inode 259 with reference "a" on inode 257
5765 *
5766 * And in the current (uncommitted) transaction we have:
5767 *
5768 * inode 257 a directory, unchanged
5769 * inode 258 with references "a" and "a2" on inode 257
5770 * inode 259 with reference "zz_link" on inode 257
5771 * inode 261 with reference "zz" on inode 257
5772 *
5773 * When logging inode 261 the following infinite loop could
5774 * happen if we don't skip already logged inodes:
5775 *
5776 * - we detect inode 258 as a conflicting inode, with inode 261
5777 * on reference "zz", and log it;
5778 *
5779 * - we detect inode 259 as a conflicting inode, with inode 258
5780 * on reference "a", and log it;
5781 *
5782 * - we detect inode 258 as a conflicting inode, with inode 259
5783 * on reference "zz_link", and log it - again! After this we
5784 * repeat the above steps forever.
5785 *
5786 * Here we can use need_log_inode() because we only need to log the
5787 * inode in LOG_INODE_EXISTS mode and rename operations update the log,
5788 * so that the log ends up with the new name and without the old name.
5789 */
5790 if (!need_log_inode(trans, inode)) {
5791 btrfs_add_delayed_iput(inode);
5792 return 0;
5793 }
5794
5795 btrfs_add_delayed_iput(inode);
5796
5797 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5798 if (!ino_elem)
5799 return -ENOMEM;
5800 ino_elem->ino = ino;
5801 ino_elem->parent = parent;
5802 list_add_tail(&ino_elem->list, &ctx->conflict_inodes);
5803 ctx->num_conflict_inodes++;
5804
5805 return 0;
5806 }
5807
log_conflicting_inodes(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_log_ctx * ctx)5808 static int log_conflicting_inodes(struct btrfs_trans_handle *trans,
5809 struct btrfs_root *root,
5810 struct btrfs_log_ctx *ctx)
5811 {
5812 int ret = 0;
5813
5814 /*
5815 * Conflicting inodes are logged by the first call to btrfs_log_inode(),
5816 * otherwise we could have unbounded recursion of btrfs_log_inode()
5817 * calls. This check guarantees we can have only 1 level of recursion.
5818 */
5819 if (ctx->logging_conflict_inodes)
5820 return 0;
5821
5822 ctx->logging_conflict_inodes = true;
5823
5824 /*
5825 * New conflicting inodes may be found and added to the list while we
5826 * are logging a conflicting inode, so keep iterating while the list is
5827 * not empty.
5828 */
5829 while (!list_empty(&ctx->conflict_inodes)) {
5830 struct btrfs_ino_list *curr;
5831 struct btrfs_inode *inode;
5832 u64 ino;
5833 u64 parent;
5834
5835 curr = list_first_entry(&ctx->conflict_inodes,
5836 struct btrfs_ino_list, list);
5837 ino = curr->ino;
5838 parent = curr->parent;
5839 list_del(&curr->list);
5840 kfree(curr);
5841
5842 inode = btrfs_iget_logging(ino, root);
5843 /*
5844 * If the other inode that had a conflicting dir entry was
5845 * deleted in the current transaction, we need to log its parent
5846 * directory. See the comment at add_conflicting_inode().
5847 */
5848 if (IS_ERR(inode)) {
5849 ret = PTR_ERR(inode);
5850 if (ret != -ENOENT)
5851 break;
5852
5853 inode = btrfs_iget_logging(parent, root);
5854 if (IS_ERR(inode)) {
5855 ret = PTR_ERR(inode);
5856 break;
5857 }
5858
5859 /*
5860 * Always log the directory, we cannot make this
5861 * conditional on need_log_inode() because the directory
5862 * might have been logged in LOG_INODE_EXISTS mode or
5863 * the dir index of the conflicting inode is not in a
5864 * dir index key range logged for the directory. So we
5865 * must make sure the deletion is recorded.
5866 */
5867 ret = btrfs_log_inode(trans, inode, LOG_INODE_ALL, ctx);
5868 btrfs_add_delayed_iput(inode);
5869 if (ret)
5870 break;
5871 continue;
5872 }
5873
5874 /*
5875 * Here we can use need_log_inode() because we only need to log
5876 * the inode in LOG_INODE_EXISTS mode and rename operations
5877 * update the log, so that the log ends up with the new name and
5878 * without the old name.
5879 *
5880 * We did this check at add_conflicting_inode(), but here we do
5881 * it again because if some other task logged the inode after
5882 * that, we can avoid doing it again.
5883 */
5884 if (!need_log_inode(trans, inode)) {
5885 btrfs_add_delayed_iput(inode);
5886 continue;
5887 }
5888
5889 /*
5890 * We are safe logging the other inode without acquiring its
5891 * lock as long as we log with the LOG_INODE_EXISTS mode. We
5892 * are safe against concurrent renames of the other inode as
5893 * well because during a rename we pin the log and update the
5894 * log with the new name before we unpin it.
5895 */
5896 ret = btrfs_log_inode(trans, inode, LOG_INODE_EXISTS, ctx);
5897 btrfs_add_delayed_iput(inode);
5898 if (ret)
5899 break;
5900 }
5901
5902 ctx->logging_conflict_inodes = false;
5903 if (ret)
5904 free_conflicting_inodes(ctx);
5905
5906 return ret;
5907 }
5908
copy_inode_items_to_log(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_key * min_key,const struct btrfs_key * max_key,struct btrfs_path * path,struct btrfs_path * dst_path,const u64 logged_isize,const int inode_only,struct btrfs_log_ctx * ctx,bool * need_log_inode_item)5909 static int copy_inode_items_to_log(struct btrfs_trans_handle *trans,
5910 struct btrfs_inode *inode,
5911 struct btrfs_key *min_key,
5912 const struct btrfs_key *max_key,
5913 struct btrfs_path *path,
5914 struct btrfs_path *dst_path,
5915 const u64 logged_isize,
5916 const int inode_only,
5917 struct btrfs_log_ctx *ctx,
5918 bool *need_log_inode_item)
5919 {
5920 const u64 i_size = i_size_read(&inode->vfs_inode);
5921 struct btrfs_root *root = inode->root;
5922 int ins_start_slot = 0;
5923 int ins_nr = 0;
5924 int ret;
5925
5926 while (1) {
5927 ret = btrfs_search_forward(root, min_key, path, trans->transid);
5928 if (ret < 0)
5929 return ret;
5930 if (ret > 0) {
5931 ret = 0;
5932 break;
5933 }
5934 again:
5935 /* Note, ins_nr might be > 0 here, cleanup outside the loop */
5936 if (min_key->objectid != max_key->objectid)
5937 break;
5938 if (min_key->type > max_key->type)
5939 break;
5940
5941 if (min_key->type == BTRFS_INODE_ITEM_KEY) {
5942 *need_log_inode_item = false;
5943 } else if (min_key->type == BTRFS_EXTENT_DATA_KEY &&
5944 min_key->offset >= i_size) {
5945 /*
5946 * Extents at and beyond eof are logged with
5947 * btrfs_log_prealloc_extents().
5948 * Only regular files have BTRFS_EXTENT_DATA_KEY keys,
5949 * and no keys greater than that, so bail out.
5950 */
5951 break;
5952 } else if ((min_key->type == BTRFS_INODE_REF_KEY ||
5953 min_key->type == BTRFS_INODE_EXTREF_KEY) &&
5954 (inode->generation == trans->transid ||
5955 ctx->logging_conflict_inodes)) {
5956 u64 other_ino = 0;
5957 u64 other_parent = 0;
5958
5959 ret = btrfs_check_ref_name_override(path->nodes[0],
5960 path->slots[0], min_key, inode,
5961 &other_ino, &other_parent);
5962 if (ret < 0) {
5963 return ret;
5964 } else if (ret > 0 &&
5965 other_ino != btrfs_ino(ctx->inode)) {
5966 if (ins_nr > 0) {
5967 ins_nr++;
5968 } else {
5969 ins_nr = 1;
5970 ins_start_slot = path->slots[0];
5971 }
5972 ret = copy_items(trans, inode, dst_path, path,
5973 ins_start_slot, ins_nr,
5974 inode_only, logged_isize, ctx);
5975 if (ret < 0)
5976 return ret;
5977 ins_nr = 0;
5978
5979 btrfs_release_path(path);
5980 ret = add_conflicting_inode(trans, root, path,
5981 other_ino,
5982 other_parent, ctx);
5983 if (ret)
5984 return ret;
5985 goto next_key;
5986 }
5987 } else if (min_key->type == BTRFS_XATTR_ITEM_KEY) {
5988 /* Skip xattrs, logged later with btrfs_log_all_xattrs() */
5989 if (ins_nr == 0)
5990 goto next_slot;
5991 ret = copy_items(trans, inode, dst_path, path,
5992 ins_start_slot,
5993 ins_nr, inode_only, logged_isize, ctx);
5994 if (ret < 0)
5995 return ret;
5996 ins_nr = 0;
5997 goto next_slot;
5998 }
5999
6000 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
6001 ins_nr++;
6002 goto next_slot;
6003 } else if (!ins_nr) {
6004 ins_start_slot = path->slots[0];
6005 ins_nr = 1;
6006 goto next_slot;
6007 }
6008
6009 ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
6010 ins_nr, inode_only, logged_isize, ctx);
6011 if (ret < 0)
6012 return ret;
6013 ins_nr = 1;
6014 ins_start_slot = path->slots[0];
6015 next_slot:
6016 path->slots[0]++;
6017 if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
6018 btrfs_item_key_to_cpu(path->nodes[0], min_key,
6019 path->slots[0]);
6020 goto again;
6021 }
6022 if (ins_nr) {
6023 ret = copy_items(trans, inode, dst_path, path,
6024 ins_start_slot, ins_nr, inode_only,
6025 logged_isize, ctx);
6026 if (ret < 0)
6027 return ret;
6028 ins_nr = 0;
6029 }
6030 btrfs_release_path(path);
6031 next_key:
6032 if (min_key->offset < (u64)-1) {
6033 min_key->offset++;
6034 } else if (min_key->type < max_key->type) {
6035 min_key->type++;
6036 min_key->offset = 0;
6037 } else {
6038 break;
6039 }
6040
6041 /*
6042 * We may process many leaves full of items for our inode, so
6043 * avoid monopolizing a cpu for too long by rescheduling while
6044 * not holding locks on any tree.
6045 */
6046 cond_resched();
6047 }
6048 if (ins_nr) {
6049 ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
6050 ins_nr, inode_only, logged_isize, ctx);
6051 if (ret)
6052 return ret;
6053 }
6054
6055 if (inode_only == LOG_INODE_ALL && S_ISREG(inode->vfs_inode.i_mode)) {
6056 /*
6057 * Release the path because otherwise we might attempt to double
6058 * lock the same leaf with btrfs_log_prealloc_extents() below.
6059 */
6060 btrfs_release_path(path);
6061 ret = btrfs_log_prealloc_extents(trans, inode, dst_path, ctx);
6062 }
6063
6064 return ret;
6065 }
6066
insert_delayed_items_batch(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * path,const struct btrfs_item_batch * batch,const struct btrfs_delayed_item * first_item)6067 static int insert_delayed_items_batch(struct btrfs_trans_handle *trans,
6068 struct btrfs_root *log,
6069 struct btrfs_path *path,
6070 const struct btrfs_item_batch *batch,
6071 const struct btrfs_delayed_item *first_item)
6072 {
6073 const struct btrfs_delayed_item *curr = first_item;
6074 int ret;
6075
6076 ret = btrfs_insert_empty_items(trans, log, path, batch);
6077 if (ret)
6078 return ret;
6079
6080 for (int i = 0; i < batch->nr; i++) {
6081 char *data_ptr;
6082
6083 data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char);
6084 write_extent_buffer(path->nodes[0], &curr->data,
6085 (unsigned long)data_ptr, curr->data_len);
6086 curr = list_next_entry(curr, log_list);
6087 path->slots[0]++;
6088 }
6089
6090 btrfs_release_path(path);
6091
6092 return 0;
6093 }
6094
log_delayed_insertion_items(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,const struct list_head * delayed_ins_list,struct btrfs_log_ctx * ctx)6095 static int log_delayed_insertion_items(struct btrfs_trans_handle *trans,
6096 struct btrfs_inode *inode,
6097 struct btrfs_path *path,
6098 const struct list_head *delayed_ins_list,
6099 struct btrfs_log_ctx *ctx)
6100 {
6101 /* 195 (4095 bytes of keys and sizes) fits in a single 4K page. */
6102 const int max_batch_size = 195;
6103 const int leaf_data_size = BTRFS_LEAF_DATA_SIZE(trans->fs_info);
6104 const u64 ino = btrfs_ino(inode);
6105 struct btrfs_root *log = inode->root->log_root;
6106 struct btrfs_item_batch batch = {
6107 .nr = 0,
6108 .total_data_size = 0,
6109 };
6110 const struct btrfs_delayed_item *first = NULL;
6111 const struct btrfs_delayed_item *curr;
6112 char *ins_data;
6113 struct btrfs_key *ins_keys;
6114 u32 *ins_sizes;
6115 u64 curr_batch_size = 0;
6116 int batch_idx = 0;
6117 int ret;
6118
6119 /* We are adding dir index items to the log tree. */
6120 lockdep_assert_held(&inode->log_mutex);
6121
6122 /*
6123 * We collect delayed items before copying index keys from the subvolume
6124 * to the log tree. However just after we collected them, they may have
6125 * been flushed (all of them or just some of them), and therefore we
6126 * could have copied them from the subvolume tree to the log tree.
6127 * So find the first delayed item that was not yet logged (they are
6128 * sorted by index number).
6129 */
6130 list_for_each_entry(curr, delayed_ins_list, log_list) {
6131 if (curr->index > inode->last_dir_index_offset) {
6132 first = curr;
6133 break;
6134 }
6135 }
6136
6137 /* Empty list or all delayed items were already logged. */
6138 if (!first)
6139 return 0;
6140
6141 ins_data = kmalloc(max_batch_size * sizeof(u32) +
6142 max_batch_size * sizeof(struct btrfs_key), GFP_NOFS);
6143 if (!ins_data)
6144 return -ENOMEM;
6145 ins_sizes = (u32 *)ins_data;
6146 batch.data_sizes = ins_sizes;
6147 ins_keys = (struct btrfs_key *)(ins_data + max_batch_size * sizeof(u32));
6148 batch.keys = ins_keys;
6149
6150 curr = first;
6151 while (!list_entry_is_head(curr, delayed_ins_list, log_list)) {
6152 const u32 curr_size = curr->data_len + sizeof(struct btrfs_item);
6153
6154 if (curr_batch_size + curr_size > leaf_data_size ||
6155 batch.nr == max_batch_size) {
6156 ret = insert_delayed_items_batch(trans, log, path,
6157 &batch, first);
6158 if (ret)
6159 goto out;
6160 batch_idx = 0;
6161 batch.nr = 0;
6162 batch.total_data_size = 0;
6163 curr_batch_size = 0;
6164 first = curr;
6165 }
6166
6167 ins_sizes[batch_idx] = curr->data_len;
6168 ins_keys[batch_idx].objectid = ino;
6169 ins_keys[batch_idx].type = BTRFS_DIR_INDEX_KEY;
6170 ins_keys[batch_idx].offset = curr->index;
6171 curr_batch_size += curr_size;
6172 batch.total_data_size += curr->data_len;
6173 batch.nr++;
6174 batch_idx++;
6175 curr = list_next_entry(curr, log_list);
6176 }
6177
6178 ASSERT(batch.nr >= 1);
6179 ret = insert_delayed_items_batch(trans, log, path, &batch, first);
6180
6181 curr = list_last_entry(delayed_ins_list, struct btrfs_delayed_item,
6182 log_list);
6183 inode->last_dir_index_offset = curr->index;
6184 out:
6185 kfree(ins_data);
6186
6187 return ret;
6188 }
6189
log_delayed_deletions_full(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,const struct list_head * delayed_del_list,struct btrfs_log_ctx * ctx)6190 static int log_delayed_deletions_full(struct btrfs_trans_handle *trans,
6191 struct btrfs_inode *inode,
6192 struct btrfs_path *path,
6193 const struct list_head *delayed_del_list,
6194 struct btrfs_log_ctx *ctx)
6195 {
6196 const u64 ino = btrfs_ino(inode);
6197 const struct btrfs_delayed_item *curr;
6198
6199 curr = list_first_entry(delayed_del_list, struct btrfs_delayed_item,
6200 log_list);
6201
6202 while (!list_entry_is_head(curr, delayed_del_list, log_list)) {
6203 u64 first_dir_index = curr->index;
6204 u64 last_dir_index;
6205 const struct btrfs_delayed_item *next;
6206 int ret;
6207
6208 /*
6209 * Find a range of consecutive dir index items to delete. Like
6210 * this we log a single dir range item spanning several contiguous
6211 * dir items instead of logging one range item per dir index item.
6212 */
6213 next = list_next_entry(curr, log_list);
6214 while (!list_entry_is_head(next, delayed_del_list, log_list)) {
6215 if (next->index != curr->index + 1)
6216 break;
6217 curr = next;
6218 next = list_next_entry(next, log_list);
6219 }
6220
6221 last_dir_index = curr->index;
6222 ASSERT(last_dir_index >= first_dir_index);
6223
6224 ret = insert_dir_log_key(trans, inode->root->log_root, path,
6225 ino, first_dir_index, last_dir_index);
6226 if (ret)
6227 return ret;
6228 curr = list_next_entry(curr, log_list);
6229 }
6230
6231 return 0;
6232 }
6233
batch_delete_dir_index_items(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,const struct list_head * delayed_del_list,const struct btrfs_delayed_item * first,const struct btrfs_delayed_item ** last_ret)6234 static int batch_delete_dir_index_items(struct btrfs_trans_handle *trans,
6235 struct btrfs_inode *inode,
6236 struct btrfs_path *path,
6237 const struct list_head *delayed_del_list,
6238 const struct btrfs_delayed_item *first,
6239 const struct btrfs_delayed_item **last_ret)
6240 {
6241 const struct btrfs_delayed_item *next;
6242 struct extent_buffer *leaf = path->nodes[0];
6243 const int last_slot = btrfs_header_nritems(leaf) - 1;
6244 int slot = path->slots[0] + 1;
6245 const u64 ino = btrfs_ino(inode);
6246
6247 next = list_next_entry(first, log_list);
6248
6249 while (slot < last_slot &&
6250 !list_entry_is_head(next, delayed_del_list, log_list)) {
6251 struct btrfs_key key;
6252
6253 btrfs_item_key_to_cpu(leaf, &key, slot);
6254 if (key.objectid != ino ||
6255 key.type != BTRFS_DIR_INDEX_KEY ||
6256 key.offset != next->index)
6257 break;
6258
6259 slot++;
6260 *last_ret = next;
6261 next = list_next_entry(next, log_list);
6262 }
6263
6264 return btrfs_del_items(trans, inode->root->log_root, path,
6265 path->slots[0], slot - path->slots[0]);
6266 }
6267
log_delayed_deletions_incremental(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,const struct list_head * delayed_del_list,struct btrfs_log_ctx * ctx)6268 static int log_delayed_deletions_incremental(struct btrfs_trans_handle *trans,
6269 struct btrfs_inode *inode,
6270 struct btrfs_path *path,
6271 const struct list_head *delayed_del_list,
6272 struct btrfs_log_ctx *ctx)
6273 {
6274 struct btrfs_root *log = inode->root->log_root;
6275 const struct btrfs_delayed_item *curr;
6276 u64 last_range_start = 0;
6277 u64 last_range_end = 0;
6278 struct btrfs_key key;
6279
6280 key.objectid = btrfs_ino(inode);
6281 key.type = BTRFS_DIR_INDEX_KEY;
6282 curr = list_first_entry(delayed_del_list, struct btrfs_delayed_item,
6283 log_list);
6284
6285 while (!list_entry_is_head(curr, delayed_del_list, log_list)) {
6286 const struct btrfs_delayed_item *last = curr;
6287 u64 first_dir_index = curr->index;
6288 u64 last_dir_index;
6289 bool deleted_items = false;
6290 int ret;
6291
6292 key.offset = curr->index;
6293 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
6294 if (ret < 0) {
6295 return ret;
6296 } else if (ret == 0) {
6297 ret = batch_delete_dir_index_items(trans, inode, path,
6298 delayed_del_list, curr,
6299 &last);
6300 if (ret)
6301 return ret;
6302 deleted_items = true;
6303 }
6304
6305 btrfs_release_path(path);
6306
6307 /*
6308 * If we deleted items from the leaf, it means we have a range
6309 * item logging their range, so no need to add one or update an
6310 * existing one. Otherwise we have to log a dir range item.
6311 */
6312 if (deleted_items)
6313 goto next_batch;
6314
6315 last_dir_index = last->index;
6316 ASSERT(last_dir_index >= first_dir_index);
6317 /*
6318 * If this range starts right after where the previous one ends,
6319 * then we want to reuse the previous range item and change its
6320 * end offset to the end of this range. This is just to minimize
6321 * leaf space usage, by avoiding adding a new range item.
6322 */
6323 if (last_range_end != 0 && first_dir_index == last_range_end + 1)
6324 first_dir_index = last_range_start;
6325
6326 ret = insert_dir_log_key(trans, log, path, key.objectid,
6327 first_dir_index, last_dir_index);
6328 if (ret)
6329 return ret;
6330
6331 last_range_start = first_dir_index;
6332 last_range_end = last_dir_index;
6333 next_batch:
6334 curr = list_next_entry(last, log_list);
6335 }
6336
6337 return 0;
6338 }
6339
log_delayed_deletion_items(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,const struct list_head * delayed_del_list,struct btrfs_log_ctx * ctx)6340 static int log_delayed_deletion_items(struct btrfs_trans_handle *trans,
6341 struct btrfs_inode *inode,
6342 struct btrfs_path *path,
6343 const struct list_head *delayed_del_list,
6344 struct btrfs_log_ctx *ctx)
6345 {
6346 /*
6347 * We are deleting dir index items from the log tree or adding range
6348 * items to it.
6349 */
6350 lockdep_assert_held(&inode->log_mutex);
6351
6352 if (list_empty(delayed_del_list))
6353 return 0;
6354
6355 if (ctx->logged_before)
6356 return log_delayed_deletions_incremental(trans, inode, path,
6357 delayed_del_list, ctx);
6358
6359 return log_delayed_deletions_full(trans, inode, path, delayed_del_list,
6360 ctx);
6361 }
6362
6363 /*
6364 * Similar logic as for log_new_dir_dentries(), but it iterates over the delayed
6365 * items instead of the subvolume tree.
6366 */
log_new_delayed_dentries(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,const struct list_head * delayed_ins_list,struct btrfs_log_ctx * ctx)6367 static int log_new_delayed_dentries(struct btrfs_trans_handle *trans,
6368 struct btrfs_inode *inode,
6369 const struct list_head *delayed_ins_list,
6370 struct btrfs_log_ctx *ctx)
6371 {
6372 const bool orig_log_new_dentries = ctx->log_new_dentries;
6373 struct btrfs_delayed_item *item;
6374 int ret = 0;
6375
6376 /*
6377 * No need for the log mutex, plus to avoid potential deadlocks or
6378 * lockdep annotations due to nesting of delayed inode mutexes and log
6379 * mutexes.
6380 */
6381 lockdep_assert_not_held(&inode->log_mutex);
6382
6383 ASSERT(!ctx->logging_new_delayed_dentries);
6384 ctx->logging_new_delayed_dentries = true;
6385
6386 list_for_each_entry(item, delayed_ins_list, log_list) {
6387 struct btrfs_dir_item *dir_item;
6388 struct btrfs_inode *di_inode;
6389 struct btrfs_key key;
6390 int log_mode = LOG_INODE_EXISTS;
6391
6392 dir_item = (struct btrfs_dir_item *)item->data;
6393 btrfs_disk_key_to_cpu(&key, &dir_item->location);
6394
6395 if (key.type == BTRFS_ROOT_ITEM_KEY)
6396 continue;
6397
6398 di_inode = btrfs_iget_logging(key.objectid, inode->root);
6399 if (IS_ERR(di_inode)) {
6400 ret = PTR_ERR(di_inode);
6401 break;
6402 }
6403
6404 if (!need_log_inode(trans, di_inode)) {
6405 btrfs_add_delayed_iput(di_inode);
6406 continue;
6407 }
6408
6409 if (btrfs_stack_dir_ftype(dir_item) == BTRFS_FT_DIR)
6410 log_mode = LOG_INODE_ALL;
6411
6412 ctx->log_new_dentries = false;
6413 ret = btrfs_log_inode(trans, di_inode, log_mode, ctx);
6414
6415 if (!ret && ctx->log_new_dentries)
6416 ret = log_new_dir_dentries(trans, di_inode, ctx);
6417
6418 btrfs_add_delayed_iput(di_inode);
6419
6420 if (ret)
6421 break;
6422 }
6423
6424 ctx->log_new_dentries = orig_log_new_dentries;
6425 ctx->logging_new_delayed_dentries = false;
6426
6427 return ret;
6428 }
6429
6430 /* log a single inode in the tree log.
6431 * At least one parent directory for this inode must exist in the tree
6432 * or be logged already.
6433 *
6434 * Any items from this inode changed by the current transaction are copied
6435 * to the log tree. An extra reference is taken on any extents in this
6436 * file, allowing us to avoid a whole pile of corner cases around logging
6437 * blocks that have been removed from the tree.
6438 *
6439 * See LOG_INODE_ALL and related defines for a description of what inode_only
6440 * does.
6441 *
6442 * This handles both files and directories.
6443 */
btrfs_log_inode(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,int inode_only,struct btrfs_log_ctx * ctx)6444 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
6445 struct btrfs_inode *inode,
6446 int inode_only,
6447 struct btrfs_log_ctx *ctx)
6448 {
6449 struct btrfs_path *path;
6450 struct btrfs_path *dst_path;
6451 struct btrfs_key min_key;
6452 struct btrfs_key max_key;
6453 struct btrfs_root *log = inode->root->log_root;
6454 int ret;
6455 bool fast_search = false;
6456 u64 ino = btrfs_ino(inode);
6457 struct extent_map_tree *em_tree = &inode->extent_tree;
6458 u64 logged_isize = 0;
6459 bool need_log_inode_item = true;
6460 bool xattrs_logged = false;
6461 bool inode_item_dropped = true;
6462 bool full_dir_logging = false;
6463 LIST_HEAD(delayed_ins_list);
6464 LIST_HEAD(delayed_del_list);
6465
6466 path = btrfs_alloc_path();
6467 if (!path)
6468 return -ENOMEM;
6469 dst_path = btrfs_alloc_path();
6470 if (!dst_path) {
6471 btrfs_free_path(path);
6472 return -ENOMEM;
6473 }
6474
6475 min_key.objectid = ino;
6476 min_key.type = BTRFS_INODE_ITEM_KEY;
6477 min_key.offset = 0;
6478
6479 max_key.objectid = ino;
6480
6481
6482 /* today the code can only do partial logging of directories */
6483 if (S_ISDIR(inode->vfs_inode.i_mode) ||
6484 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
6485 &inode->runtime_flags) &&
6486 inode_only >= LOG_INODE_EXISTS))
6487 max_key.type = BTRFS_XATTR_ITEM_KEY;
6488 else
6489 max_key.type = (u8)-1;
6490 max_key.offset = (u64)-1;
6491
6492 if (S_ISDIR(inode->vfs_inode.i_mode) && inode_only == LOG_INODE_ALL)
6493 full_dir_logging = true;
6494
6495 /*
6496 * If we are logging a directory while we are logging dentries of the
6497 * delayed items of some other inode, then we need to flush the delayed
6498 * items of this directory and not log the delayed items directly. This
6499 * is to prevent more than one level of recursion into btrfs_log_inode()
6500 * by having something like this:
6501 *
6502 * $ mkdir -p a/b/c/d/e/f/g/h/...
6503 * $ xfs_io -c "fsync" a
6504 *
6505 * Where all directories in the path did not exist before and are
6506 * created in the current transaction.
6507 * So in such a case we directly log the delayed items of the main
6508 * directory ("a") without flushing them first, while for each of its
6509 * subdirectories we flush their delayed items before logging them.
6510 * This prevents a potential unbounded recursion like this:
6511 *
6512 * btrfs_log_inode()
6513 * log_new_delayed_dentries()
6514 * btrfs_log_inode()
6515 * log_new_delayed_dentries()
6516 * btrfs_log_inode()
6517 * log_new_delayed_dentries()
6518 * (...)
6519 *
6520 * We have thresholds for the maximum number of delayed items to have in
6521 * memory, and once they are hit, the items are flushed asynchronously.
6522 * However the limit is quite high, so lets prevent deep levels of
6523 * recursion to happen by limiting the maximum depth to be 1.
6524 */
6525 if (full_dir_logging && ctx->logging_new_delayed_dentries) {
6526 ret = btrfs_commit_inode_delayed_items(trans, inode);
6527 if (ret)
6528 goto out;
6529 }
6530
6531 mutex_lock(&inode->log_mutex);
6532
6533 /*
6534 * For symlinks, we must always log their content, which is stored in an
6535 * inline extent, otherwise we could end up with an empty symlink after
6536 * log replay, which is invalid on linux (symlink(2) returns -ENOENT if
6537 * one attempts to create an empty symlink).
6538 * We don't need to worry about flushing delalloc, because when we create
6539 * the inline extent when the symlink is created (we never have delalloc
6540 * for symlinks).
6541 */
6542 if (S_ISLNK(inode->vfs_inode.i_mode))
6543 inode_only = LOG_INODE_ALL;
6544
6545 /*
6546 * Before logging the inode item, cache the value returned by
6547 * inode_logged(), because after that we have the need to figure out if
6548 * the inode was previously logged in this transaction.
6549 */
6550 ret = inode_logged(trans, inode, path);
6551 if (ret < 0)
6552 goto out_unlock;
6553 ctx->logged_before = (ret == 1);
6554 ret = 0;
6555
6556 /*
6557 * This is for cases where logging a directory could result in losing a
6558 * a file after replaying the log. For example, if we move a file from a
6559 * directory A to a directory B, then fsync directory A, we have no way
6560 * to known the file was moved from A to B, so logging just A would
6561 * result in losing the file after a log replay.
6562 */
6563 if (full_dir_logging && inode->last_unlink_trans >= trans->transid) {
6564 ret = BTRFS_LOG_FORCE_COMMIT;
6565 goto out_unlock;
6566 }
6567
6568 /*
6569 * a brute force approach to making sure we get the most uptodate
6570 * copies of everything.
6571 */
6572 if (S_ISDIR(inode->vfs_inode.i_mode)) {
6573 clear_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags);
6574 if (ctx->logged_before)
6575 ret = drop_inode_items(trans, log, path, inode,
6576 BTRFS_XATTR_ITEM_KEY);
6577 } else {
6578 if (inode_only == LOG_INODE_EXISTS && ctx->logged_before) {
6579 /*
6580 * Make sure the new inode item we write to the log has
6581 * the same isize as the current one (if it exists).
6582 * This is necessary to prevent data loss after log
6583 * replay, and also to prevent doing a wrong expanding
6584 * truncate - for e.g. create file, write 4K into offset
6585 * 0, fsync, write 4K into offset 4096, add hard link,
6586 * fsync some other file (to sync log), power fail - if
6587 * we use the inode's current i_size, after log replay
6588 * we get a 8Kb file, with the last 4Kb extent as a hole
6589 * (zeroes), as if an expanding truncate happened,
6590 * instead of getting a file of 4Kb only.
6591 */
6592 ret = logged_inode_size(log, inode, path, &logged_isize);
6593 if (ret)
6594 goto out_unlock;
6595 }
6596 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
6597 &inode->runtime_flags)) {
6598 if (inode_only == LOG_INODE_EXISTS) {
6599 max_key.type = BTRFS_XATTR_ITEM_KEY;
6600 if (ctx->logged_before)
6601 ret = drop_inode_items(trans, log, path,
6602 inode, max_key.type);
6603 } else {
6604 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
6605 &inode->runtime_flags);
6606 clear_bit(BTRFS_INODE_COPY_EVERYTHING,
6607 &inode->runtime_flags);
6608 if (ctx->logged_before)
6609 ret = truncate_inode_items(trans, log,
6610 inode, 0, 0);
6611 }
6612 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
6613 &inode->runtime_flags) ||
6614 inode_only == LOG_INODE_EXISTS) {
6615 if (inode_only == LOG_INODE_ALL)
6616 fast_search = true;
6617 max_key.type = BTRFS_XATTR_ITEM_KEY;
6618 if (ctx->logged_before)
6619 ret = drop_inode_items(trans, log, path, inode,
6620 max_key.type);
6621 } else {
6622 if (inode_only == LOG_INODE_ALL)
6623 fast_search = true;
6624 inode_item_dropped = false;
6625 goto log_extents;
6626 }
6627
6628 }
6629 if (ret)
6630 goto out_unlock;
6631
6632 /*
6633 * If we are logging a directory in full mode, collect the delayed items
6634 * before iterating the subvolume tree, so that we don't miss any new
6635 * dir index items in case they get flushed while or right after we are
6636 * iterating the subvolume tree.
6637 */
6638 if (full_dir_logging && !ctx->logging_new_delayed_dentries)
6639 btrfs_log_get_delayed_items(inode, &delayed_ins_list,
6640 &delayed_del_list);
6641
6642 /*
6643 * If we are fsyncing a file with 0 hard links, then commit the delayed
6644 * inode because the last inode ref (or extref) item may still be in the
6645 * subvolume tree and if we log it the file will still exist after a log
6646 * replay. So commit the delayed inode to delete that last ref and we
6647 * skip logging it.
6648 */
6649 if (inode->vfs_inode.i_nlink == 0) {
6650 ret = btrfs_commit_inode_delayed_inode(inode);
6651 if (ret)
6652 goto out_unlock;
6653 }
6654
6655 ret = copy_inode_items_to_log(trans, inode, &min_key, &max_key,
6656 path, dst_path, logged_isize,
6657 inode_only, ctx,
6658 &need_log_inode_item);
6659 if (ret)
6660 goto out_unlock;
6661
6662 btrfs_release_path(path);
6663 btrfs_release_path(dst_path);
6664 ret = btrfs_log_all_xattrs(trans, inode, path, dst_path, ctx);
6665 if (ret)
6666 goto out_unlock;
6667 xattrs_logged = true;
6668 if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
6669 btrfs_release_path(path);
6670 btrfs_release_path(dst_path);
6671 ret = btrfs_log_holes(trans, inode, path);
6672 if (ret)
6673 goto out_unlock;
6674 }
6675 log_extents:
6676 btrfs_release_path(path);
6677 btrfs_release_path(dst_path);
6678 if (need_log_inode_item) {
6679 ret = log_inode_item(trans, log, dst_path, inode, inode_item_dropped);
6680 if (ret)
6681 goto out_unlock;
6682 /*
6683 * If we are doing a fast fsync and the inode was logged before
6684 * in this transaction, we don't need to log the xattrs because
6685 * they were logged before. If xattrs were added, changed or
6686 * deleted since the last time we logged the inode, then we have
6687 * already logged them because the inode had the runtime flag
6688 * BTRFS_INODE_COPY_EVERYTHING set.
6689 */
6690 if (!xattrs_logged && inode->logged_trans < trans->transid) {
6691 ret = btrfs_log_all_xattrs(trans, inode, path, dst_path, ctx);
6692 if (ret)
6693 goto out_unlock;
6694 btrfs_release_path(path);
6695 }
6696 }
6697 if (fast_search) {
6698 ret = btrfs_log_changed_extents(trans, inode, dst_path, ctx);
6699 if (ret)
6700 goto out_unlock;
6701 } else if (inode_only == LOG_INODE_ALL) {
6702 struct extent_map *em, *n;
6703
6704 write_lock(&em_tree->lock);
6705 list_for_each_entry_safe(em, n, &em_tree->modified_extents, list)
6706 list_del_init(&em->list);
6707 write_unlock(&em_tree->lock);
6708 }
6709
6710 if (full_dir_logging) {
6711 ret = log_directory_changes(trans, inode, path, dst_path, ctx);
6712 if (ret)
6713 goto out_unlock;
6714 ret = log_delayed_insertion_items(trans, inode, path,
6715 &delayed_ins_list, ctx);
6716 if (ret)
6717 goto out_unlock;
6718 ret = log_delayed_deletion_items(trans, inode, path,
6719 &delayed_del_list, ctx);
6720 if (ret)
6721 goto out_unlock;
6722 }
6723
6724 spin_lock(&inode->lock);
6725 inode->logged_trans = trans->transid;
6726 /*
6727 * Don't update last_log_commit if we logged that an inode exists.
6728 * We do this for three reasons:
6729 *
6730 * 1) We might have had buffered writes to this inode that were
6731 * flushed and had their ordered extents completed in this
6732 * transaction, but we did not previously log the inode with
6733 * LOG_INODE_ALL. Later the inode was evicted and after that
6734 * it was loaded again and this LOG_INODE_EXISTS log operation
6735 * happened. We must make sure that if an explicit fsync against
6736 * the inode is performed later, it logs the new extents, an
6737 * updated inode item, etc, and syncs the log. The same logic
6738 * applies to direct IO writes instead of buffered writes.
6739 *
6740 * 2) When we log the inode with LOG_INODE_EXISTS, its inode item
6741 * is logged with an i_size of 0 or whatever value was logged
6742 * before. If later the i_size of the inode is increased by a
6743 * truncate operation, the log is synced through an fsync of
6744 * some other inode and then finally an explicit fsync against
6745 * this inode is made, we must make sure this fsync logs the
6746 * inode with the new i_size, the hole between old i_size and
6747 * the new i_size, and syncs the log.
6748 *
6749 * 3) If we are logging that an ancestor inode exists as part of
6750 * logging a new name from a link or rename operation, don't update
6751 * its last_log_commit - otherwise if an explicit fsync is made
6752 * against an ancestor, the fsync considers the inode in the log
6753 * and doesn't sync the log, resulting in the ancestor missing after
6754 * a power failure unless the log was synced as part of an fsync
6755 * against any other unrelated inode.
6756 */
6757 if (inode_only != LOG_INODE_EXISTS)
6758 inode->last_log_commit = inode->last_sub_trans;
6759 spin_unlock(&inode->lock);
6760
6761 /*
6762 * Reset the last_reflink_trans so that the next fsync does not need to
6763 * go through the slower path when logging extents and their checksums.
6764 */
6765 if (inode_only == LOG_INODE_ALL)
6766 inode->last_reflink_trans = 0;
6767
6768 out_unlock:
6769 mutex_unlock(&inode->log_mutex);
6770 out:
6771 btrfs_free_path(path);
6772 btrfs_free_path(dst_path);
6773
6774 if (ret)
6775 free_conflicting_inodes(ctx);
6776 else
6777 ret = log_conflicting_inodes(trans, inode->root, ctx);
6778
6779 if (full_dir_logging && !ctx->logging_new_delayed_dentries) {
6780 if (!ret)
6781 ret = log_new_delayed_dentries(trans, inode,
6782 &delayed_ins_list, ctx);
6783
6784 btrfs_log_put_delayed_items(inode, &delayed_ins_list,
6785 &delayed_del_list);
6786 }
6787
6788 return ret;
6789 }
6790
btrfs_log_all_parents(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_log_ctx * ctx)6791 static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
6792 struct btrfs_inode *inode,
6793 struct btrfs_log_ctx *ctx)
6794 {
6795 int ret;
6796 struct btrfs_path *path;
6797 struct btrfs_key key;
6798 struct btrfs_root *root = inode->root;
6799 const u64 ino = btrfs_ino(inode);
6800
6801 path = btrfs_alloc_path();
6802 if (!path)
6803 return -ENOMEM;
6804 path->skip_locking = 1;
6805 path->search_commit_root = 1;
6806
6807 key.objectid = ino;
6808 key.type = BTRFS_INODE_REF_KEY;
6809 key.offset = 0;
6810 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6811 if (ret < 0)
6812 goto out;
6813
6814 while (true) {
6815 struct extent_buffer *leaf = path->nodes[0];
6816 int slot = path->slots[0];
6817 u32 cur_offset = 0;
6818 u32 item_size;
6819 unsigned long ptr;
6820
6821 if (slot >= btrfs_header_nritems(leaf)) {
6822 ret = btrfs_next_leaf(root, path);
6823 if (ret < 0)
6824 goto out;
6825 else if (ret > 0)
6826 break;
6827 continue;
6828 }
6829
6830 btrfs_item_key_to_cpu(leaf, &key, slot);
6831 /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
6832 if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
6833 break;
6834
6835 item_size = btrfs_item_size(leaf, slot);
6836 ptr = btrfs_item_ptr_offset(leaf, slot);
6837 while (cur_offset < item_size) {
6838 struct btrfs_key inode_key;
6839 struct btrfs_inode *dir_inode;
6840
6841 inode_key.type = BTRFS_INODE_ITEM_KEY;
6842 inode_key.offset = 0;
6843
6844 if (key.type == BTRFS_INODE_EXTREF_KEY) {
6845 struct btrfs_inode_extref *extref;
6846
6847 extref = (struct btrfs_inode_extref *)
6848 (ptr + cur_offset);
6849 inode_key.objectid = btrfs_inode_extref_parent(
6850 leaf, extref);
6851 cur_offset += sizeof(*extref);
6852 cur_offset += btrfs_inode_extref_name_len(leaf,
6853 extref);
6854 } else {
6855 inode_key.objectid = key.offset;
6856 cur_offset = item_size;
6857 }
6858
6859 dir_inode = btrfs_iget_logging(inode_key.objectid, root);
6860 /*
6861 * If the parent inode was deleted, return an error to
6862 * fallback to a transaction commit. This is to prevent
6863 * getting an inode that was moved from one parent A to
6864 * a parent B, got its former parent A deleted and then
6865 * it got fsync'ed, from existing at both parents after
6866 * a log replay (and the old parent still existing).
6867 * Example:
6868 *
6869 * mkdir /mnt/A
6870 * mkdir /mnt/B
6871 * touch /mnt/B/bar
6872 * sync
6873 * mv /mnt/B/bar /mnt/A/bar
6874 * mv -T /mnt/A /mnt/B
6875 * fsync /mnt/B/bar
6876 * <power fail>
6877 *
6878 * If we ignore the old parent B which got deleted,
6879 * after a log replay we would have file bar linked
6880 * at both parents and the old parent B would still
6881 * exist.
6882 */
6883 if (IS_ERR(dir_inode)) {
6884 ret = PTR_ERR(dir_inode);
6885 goto out;
6886 }
6887
6888 if (!need_log_inode(trans, dir_inode)) {
6889 btrfs_add_delayed_iput(dir_inode);
6890 continue;
6891 }
6892
6893 ctx->log_new_dentries = false;
6894 ret = btrfs_log_inode(trans, dir_inode, LOG_INODE_ALL, ctx);
6895 if (!ret && ctx->log_new_dentries)
6896 ret = log_new_dir_dentries(trans, dir_inode, ctx);
6897 btrfs_add_delayed_iput(dir_inode);
6898 if (ret)
6899 goto out;
6900 }
6901 path->slots[0]++;
6902 }
6903 ret = 0;
6904 out:
6905 btrfs_free_path(path);
6906 return ret;
6907 }
6908
log_new_ancestors(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_log_ctx * ctx)6909 static int log_new_ancestors(struct btrfs_trans_handle *trans,
6910 struct btrfs_root *root,
6911 struct btrfs_path *path,
6912 struct btrfs_log_ctx *ctx)
6913 {
6914 struct btrfs_key found_key;
6915
6916 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
6917
6918 while (true) {
6919 struct extent_buffer *leaf;
6920 int slot;
6921 struct btrfs_key search_key;
6922 struct btrfs_inode *inode;
6923 u64 ino;
6924 int ret = 0;
6925
6926 btrfs_release_path(path);
6927
6928 ino = found_key.offset;
6929
6930 search_key.objectid = found_key.offset;
6931 search_key.type = BTRFS_INODE_ITEM_KEY;
6932 search_key.offset = 0;
6933 inode = btrfs_iget_logging(ino, root);
6934 if (IS_ERR(inode))
6935 return PTR_ERR(inode);
6936
6937 if (inode->generation >= trans->transid &&
6938 need_log_inode(trans, inode))
6939 ret = btrfs_log_inode(trans, inode, LOG_INODE_EXISTS, ctx);
6940 btrfs_add_delayed_iput(inode);
6941 if (ret)
6942 return ret;
6943
6944 if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID)
6945 break;
6946
6947 search_key.type = BTRFS_INODE_REF_KEY;
6948 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
6949 if (ret < 0)
6950 return ret;
6951
6952 leaf = path->nodes[0];
6953 slot = path->slots[0];
6954 if (slot >= btrfs_header_nritems(leaf)) {
6955 ret = btrfs_next_leaf(root, path);
6956 if (ret < 0)
6957 return ret;
6958 else if (ret > 0)
6959 return -ENOENT;
6960 leaf = path->nodes[0];
6961 slot = path->slots[0];
6962 }
6963
6964 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6965 if (found_key.objectid != search_key.objectid ||
6966 found_key.type != BTRFS_INODE_REF_KEY)
6967 return -ENOENT;
6968 }
6969 return 0;
6970 }
6971
log_new_ancestors_fast(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct dentry * parent,struct btrfs_log_ctx * ctx)6972 static int log_new_ancestors_fast(struct btrfs_trans_handle *trans,
6973 struct btrfs_inode *inode,
6974 struct dentry *parent,
6975 struct btrfs_log_ctx *ctx)
6976 {
6977 struct btrfs_root *root = inode->root;
6978 struct dentry *old_parent = NULL;
6979 struct super_block *sb = inode->vfs_inode.i_sb;
6980 int ret = 0;
6981
6982 while (true) {
6983 if (!parent || d_really_is_negative(parent) ||
6984 sb != parent->d_sb)
6985 break;
6986
6987 inode = BTRFS_I(d_inode(parent));
6988 if (root != inode->root)
6989 break;
6990
6991 if (inode->generation >= trans->transid &&
6992 need_log_inode(trans, inode)) {
6993 ret = btrfs_log_inode(trans, inode,
6994 LOG_INODE_EXISTS, ctx);
6995 if (ret)
6996 break;
6997 }
6998 if (IS_ROOT(parent))
6999 break;
7000
7001 parent = dget_parent(parent);
7002 dput(old_parent);
7003 old_parent = parent;
7004 }
7005 dput(old_parent);
7006
7007 return ret;
7008 }
7009
log_all_new_ancestors(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct dentry * parent,struct btrfs_log_ctx * ctx)7010 static int log_all_new_ancestors(struct btrfs_trans_handle *trans,
7011 struct btrfs_inode *inode,
7012 struct dentry *parent,
7013 struct btrfs_log_ctx *ctx)
7014 {
7015 struct btrfs_root *root = inode->root;
7016 const u64 ino = btrfs_ino(inode);
7017 struct btrfs_path *path;
7018 struct btrfs_key search_key;
7019 int ret;
7020
7021 /*
7022 * For a single hard link case, go through a fast path that does not
7023 * need to iterate the fs/subvolume tree.
7024 */
7025 if (inode->vfs_inode.i_nlink < 2)
7026 return log_new_ancestors_fast(trans, inode, parent, ctx);
7027
7028 path = btrfs_alloc_path();
7029 if (!path)
7030 return -ENOMEM;
7031
7032 search_key.objectid = ino;
7033 search_key.type = BTRFS_INODE_REF_KEY;
7034 search_key.offset = 0;
7035 again:
7036 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
7037 if (ret < 0)
7038 goto out;
7039 if (ret == 0)
7040 path->slots[0]++;
7041
7042 while (true) {
7043 struct extent_buffer *leaf = path->nodes[0];
7044 int slot = path->slots[0];
7045 struct btrfs_key found_key;
7046
7047 if (slot >= btrfs_header_nritems(leaf)) {
7048 ret = btrfs_next_leaf(root, path);
7049 if (ret < 0)
7050 goto out;
7051 else if (ret > 0)
7052 break;
7053 continue;
7054 }
7055
7056 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7057 if (found_key.objectid != ino ||
7058 found_key.type > BTRFS_INODE_EXTREF_KEY)
7059 break;
7060
7061 /*
7062 * Don't deal with extended references because they are rare
7063 * cases and too complex to deal with (we would need to keep
7064 * track of which subitem we are processing for each item in
7065 * this loop, etc). So just return some error to fallback to
7066 * a transaction commit.
7067 */
7068 if (found_key.type == BTRFS_INODE_EXTREF_KEY) {
7069 ret = -EMLINK;
7070 goto out;
7071 }
7072
7073 /*
7074 * Logging ancestors needs to do more searches on the fs/subvol
7075 * tree, so it releases the path as needed to avoid deadlocks.
7076 * Keep track of the last inode ref key and resume from that key
7077 * after logging all new ancestors for the current hard link.
7078 */
7079 memcpy(&search_key, &found_key, sizeof(search_key));
7080
7081 ret = log_new_ancestors(trans, root, path, ctx);
7082 if (ret)
7083 goto out;
7084 btrfs_release_path(path);
7085 goto again;
7086 }
7087 ret = 0;
7088 out:
7089 btrfs_free_path(path);
7090 return ret;
7091 }
7092
7093 /*
7094 * helper function around btrfs_log_inode to make sure newly created
7095 * parent directories also end up in the log. A minimal inode and backref
7096 * only logging is done of any parent directories that are older than
7097 * the last committed transaction
7098 */
btrfs_log_inode_parent(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct dentry * parent,int inode_only,struct btrfs_log_ctx * ctx)7099 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
7100 struct btrfs_inode *inode,
7101 struct dentry *parent,
7102 int inode_only,
7103 struct btrfs_log_ctx *ctx)
7104 {
7105 struct btrfs_root *root = inode->root;
7106 struct btrfs_fs_info *fs_info = root->fs_info;
7107 int ret = 0;
7108 bool log_dentries;
7109
7110 if (btrfs_test_opt(fs_info, NOTREELOG))
7111 return BTRFS_LOG_FORCE_COMMIT;
7112
7113 if (btrfs_root_refs(&root->root_item) == 0)
7114 return BTRFS_LOG_FORCE_COMMIT;
7115
7116 /*
7117 * If we're logging an inode from a subvolume created in the current
7118 * transaction we must force a commit since the root is not persisted.
7119 */
7120 if (btrfs_root_generation(&root->root_item) == trans->transid)
7121 return BTRFS_LOG_FORCE_COMMIT;
7122
7123 /* Skip already logged inodes and without new extents. */
7124 if (btrfs_inode_in_log(inode, trans->transid) &&
7125 list_empty(&ctx->ordered_extents))
7126 return BTRFS_NO_LOG_SYNC;
7127
7128 ret = start_log_trans(trans, root, ctx);
7129 if (ret)
7130 return ret;
7131
7132 ret = btrfs_log_inode(trans, inode, inode_only, ctx);
7133 if (ret)
7134 goto end_trans;
7135
7136 /*
7137 * for regular files, if its inode is already on disk, we don't
7138 * have to worry about the parents at all. This is because
7139 * we can use the last_unlink_trans field to record renames
7140 * and other fun in this file.
7141 */
7142 if (S_ISREG(inode->vfs_inode.i_mode) &&
7143 inode->generation < trans->transid &&
7144 inode->last_unlink_trans < trans->transid) {
7145 ret = 0;
7146 goto end_trans;
7147 }
7148
7149 /*
7150 * Track if we need to log dentries because ctx->log_new_dentries can
7151 * be modified in the call chains below.
7152 */
7153 log_dentries = ctx->log_new_dentries;
7154
7155 /*
7156 * On unlink we must make sure all our current and old parent directory
7157 * inodes are fully logged. This is to prevent leaving dangling
7158 * directory index entries in directories that were our parents but are
7159 * not anymore. Not doing this results in old parent directory being
7160 * impossible to delete after log replay (rmdir will always fail with
7161 * error -ENOTEMPTY).
7162 *
7163 * Example 1:
7164 *
7165 * mkdir testdir
7166 * touch testdir/foo
7167 * ln testdir/foo testdir/bar
7168 * sync
7169 * unlink testdir/bar
7170 * xfs_io -c fsync testdir/foo
7171 * <power failure>
7172 * mount fs, triggers log replay
7173 *
7174 * If we don't log the parent directory (testdir), after log replay the
7175 * directory still has an entry pointing to the file inode using the bar
7176 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
7177 * the file inode has a link count of 1.
7178 *
7179 * Example 2:
7180 *
7181 * mkdir testdir
7182 * touch foo
7183 * ln foo testdir/foo2
7184 * ln foo testdir/foo3
7185 * sync
7186 * unlink testdir/foo3
7187 * xfs_io -c fsync foo
7188 * <power failure>
7189 * mount fs, triggers log replay
7190 *
7191 * Similar as the first example, after log replay the parent directory
7192 * testdir still has an entry pointing to the inode file with name foo3
7193 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
7194 * and has a link count of 2.
7195 */
7196 if (inode->last_unlink_trans >= trans->transid) {
7197 ret = btrfs_log_all_parents(trans, inode, ctx);
7198 if (ret)
7199 goto end_trans;
7200 }
7201
7202 ret = log_all_new_ancestors(trans, inode, parent, ctx);
7203 if (ret)
7204 goto end_trans;
7205
7206 if (log_dentries)
7207 ret = log_new_dir_dentries(trans, inode, ctx);
7208 end_trans:
7209 if (ret < 0) {
7210 btrfs_set_log_full_commit(trans);
7211 ret = BTRFS_LOG_FORCE_COMMIT;
7212 }
7213
7214 if (ret)
7215 btrfs_remove_log_ctx(root, ctx);
7216 btrfs_end_log_trans(root);
7217
7218 return ret;
7219 }
7220
7221 /*
7222 * it is not safe to log dentry if the chunk root has added new
7223 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
7224 * If this returns 1, you must commit the transaction to safely get your
7225 * data on disk.
7226 */
btrfs_log_dentry_safe(struct btrfs_trans_handle * trans,struct dentry * dentry,struct btrfs_log_ctx * ctx)7227 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
7228 struct dentry *dentry,
7229 struct btrfs_log_ctx *ctx)
7230 {
7231 struct dentry *parent = dget_parent(dentry);
7232 int ret;
7233
7234 ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent,
7235 LOG_INODE_ALL, ctx);
7236 dput(parent);
7237
7238 return ret;
7239 }
7240
7241 /*
7242 * should be called during mount to recover any replay any log trees
7243 * from the FS
7244 */
btrfs_recover_log_trees(struct btrfs_root * log_root_tree)7245 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
7246 {
7247 int ret;
7248 struct btrfs_path *path;
7249 struct btrfs_trans_handle *trans;
7250 struct btrfs_key key;
7251 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
7252 struct walk_control wc = {
7253 .process_func = process_one_buffer,
7254 .stage = LOG_WALK_PIN_ONLY,
7255 };
7256
7257 path = btrfs_alloc_path();
7258 if (!path)
7259 return -ENOMEM;
7260
7261 set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
7262
7263 trans = btrfs_start_transaction(fs_info->tree_root, 0);
7264 if (IS_ERR(trans)) {
7265 ret = PTR_ERR(trans);
7266 goto error;
7267 }
7268
7269 wc.trans = trans;
7270 wc.pin = 1;
7271
7272 ret = walk_log_tree(trans, log_root_tree, &wc);
7273 if (ret) {
7274 btrfs_abort_transaction(trans, ret);
7275 goto error;
7276 }
7277
7278 again:
7279 key.objectid = BTRFS_TREE_LOG_OBJECTID;
7280 key.type = BTRFS_ROOT_ITEM_KEY;
7281 key.offset = (u64)-1;
7282
7283 while (1) {
7284 struct btrfs_root *log;
7285 struct btrfs_key found_key;
7286
7287 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
7288
7289 if (ret < 0) {
7290 btrfs_abort_transaction(trans, ret);
7291 goto error;
7292 }
7293 if (ret > 0) {
7294 if (path->slots[0] == 0)
7295 break;
7296 path->slots[0]--;
7297 }
7298 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
7299 path->slots[0]);
7300 btrfs_release_path(path);
7301 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
7302 break;
7303
7304 log = btrfs_read_tree_root(log_root_tree, &found_key);
7305 if (IS_ERR(log)) {
7306 ret = PTR_ERR(log);
7307 btrfs_abort_transaction(trans, ret);
7308 goto error;
7309 }
7310
7311 wc.replay_dest = btrfs_get_fs_root(fs_info, found_key.offset,
7312 true);
7313 if (IS_ERR(wc.replay_dest)) {
7314 ret = PTR_ERR(wc.replay_dest);
7315 wc.replay_dest = NULL;
7316 if (ret != -ENOENT) {
7317 btrfs_put_root(log);
7318 btrfs_abort_transaction(trans, ret);
7319 goto error;
7320 }
7321
7322 /*
7323 * We didn't find the subvol, likely because it was
7324 * deleted. This is ok, simply skip this log and go to
7325 * the next one.
7326 *
7327 * We need to exclude the root because we can't have
7328 * other log replays overwriting this log as we'll read
7329 * it back in a few more times. This will keep our
7330 * block from being modified, and we'll just bail for
7331 * each subsequent pass.
7332 */
7333 ret = btrfs_pin_extent_for_log_replay(trans, log->node);
7334 if (ret) {
7335 btrfs_put_root(log);
7336 btrfs_abort_transaction(trans, ret);
7337 goto error;
7338 }
7339 goto next;
7340 }
7341
7342 wc.replay_dest->log_root = log;
7343 ret = btrfs_record_root_in_trans(trans, wc.replay_dest);
7344 if (ret) {
7345 btrfs_abort_transaction(trans, ret);
7346 goto next;
7347 }
7348
7349 ret = walk_log_tree(trans, log, &wc);
7350 if (ret) {
7351 btrfs_abort_transaction(trans, ret);
7352 goto next;
7353 }
7354
7355 if (wc.stage == LOG_WALK_REPLAY_ALL) {
7356 struct btrfs_root *root = wc.replay_dest;
7357
7358 ret = fixup_inode_link_counts(trans, wc.replay_dest, path);
7359 if (ret) {
7360 btrfs_abort_transaction(trans, ret);
7361 goto next;
7362 }
7363 /*
7364 * We have just replayed everything, and the highest
7365 * objectid of fs roots probably has changed in case
7366 * some inode_item's got replayed.
7367 *
7368 * root->objectid_mutex is not acquired as log replay
7369 * could only happen during mount.
7370 */
7371 ret = btrfs_init_root_free_objectid(root);
7372 if (ret) {
7373 btrfs_abort_transaction(trans, ret);
7374 goto next;
7375 }
7376 }
7377 next:
7378 if (wc.replay_dest) {
7379 wc.replay_dest->log_root = NULL;
7380 btrfs_put_root(wc.replay_dest);
7381 }
7382 btrfs_put_root(log);
7383
7384 if (ret)
7385 goto error;
7386 if (found_key.offset == 0)
7387 break;
7388 key.offset = found_key.offset - 1;
7389 }
7390 btrfs_release_path(path);
7391
7392 /* step one is to pin it all, step two is to replay just inodes */
7393 if (wc.pin) {
7394 wc.pin = 0;
7395 wc.process_func = replay_one_buffer;
7396 wc.stage = LOG_WALK_REPLAY_INODES;
7397 goto again;
7398 }
7399 /* step three is to replay everything */
7400 if (wc.stage < LOG_WALK_REPLAY_ALL) {
7401 wc.stage++;
7402 goto again;
7403 }
7404
7405 btrfs_free_path(path);
7406
7407 /* step 4: commit the transaction, which also unpins the blocks */
7408 ret = btrfs_commit_transaction(trans);
7409 if (ret)
7410 return ret;
7411
7412 log_root_tree->log_root = NULL;
7413 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
7414 btrfs_put_root(log_root_tree);
7415
7416 return 0;
7417 error:
7418 if (wc.trans)
7419 btrfs_end_transaction(wc.trans);
7420 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
7421 btrfs_free_path(path);
7422 return ret;
7423 }
7424
7425 /*
7426 * there are some corner cases where we want to force a full
7427 * commit instead of allowing a directory to be logged.
7428 *
7429 * They revolve around files there were unlinked from the directory, and
7430 * this function updates the parent directory so that a full commit is
7431 * properly done if it is fsync'd later after the unlinks are done.
7432 *
7433 * Must be called before the unlink operations (updates to the subvolume tree,
7434 * inodes, etc) are done.
7435 */
btrfs_record_unlink_dir(struct btrfs_trans_handle * trans,struct btrfs_inode * dir,struct btrfs_inode * inode,bool for_rename)7436 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
7437 struct btrfs_inode *dir, struct btrfs_inode *inode,
7438 bool for_rename)
7439 {
7440 /*
7441 * when we're logging a file, if it hasn't been renamed
7442 * or unlinked, and its inode is fully committed on disk,
7443 * we don't have to worry about walking up the directory chain
7444 * to log its parents.
7445 *
7446 * So, we use the last_unlink_trans field to put this transid
7447 * into the file. When the file is logged we check it and
7448 * don't log the parents if the file is fully on disk.
7449 */
7450 mutex_lock(&inode->log_mutex);
7451 inode->last_unlink_trans = trans->transid;
7452 mutex_unlock(&inode->log_mutex);
7453
7454 if (!for_rename)
7455 return;
7456
7457 /*
7458 * If this directory was already logged, any new names will be logged
7459 * with btrfs_log_new_name() and old names will be deleted from the log
7460 * tree with btrfs_del_dir_entries_in_log() or with
7461 * btrfs_del_inode_ref_in_log().
7462 */
7463 if (inode_logged(trans, dir, NULL) == 1)
7464 return;
7465
7466 /*
7467 * If the inode we're about to unlink was logged before, the log will be
7468 * properly updated with the new name with btrfs_log_new_name() and the
7469 * old name removed with btrfs_del_dir_entries_in_log() or with
7470 * btrfs_del_inode_ref_in_log().
7471 */
7472 if (inode_logged(trans, inode, NULL) == 1)
7473 return;
7474
7475 /*
7476 * when renaming files across directories, if the directory
7477 * there we're unlinking from gets fsync'd later on, there's
7478 * no way to find the destination directory later and fsync it
7479 * properly. So, we have to be conservative and force commits
7480 * so the new name gets discovered.
7481 */
7482 mutex_lock(&dir->log_mutex);
7483 dir->last_unlink_trans = trans->transid;
7484 mutex_unlock(&dir->log_mutex);
7485 }
7486
7487 /*
7488 * Make sure that if someone attempts to fsync the parent directory of a deleted
7489 * snapshot, it ends up triggering a transaction commit. This is to guarantee
7490 * that after replaying the log tree of the parent directory's root we will not
7491 * see the snapshot anymore and at log replay time we will not see any log tree
7492 * corresponding to the deleted snapshot's root, which could lead to replaying
7493 * it after replaying the log tree of the parent directory (which would replay
7494 * the snapshot delete operation).
7495 *
7496 * Must be called before the actual snapshot destroy operation (updates to the
7497 * parent root and tree of tree roots trees, etc) are done.
7498 */
btrfs_record_snapshot_destroy(struct btrfs_trans_handle * trans,struct btrfs_inode * dir)7499 void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
7500 struct btrfs_inode *dir)
7501 {
7502 mutex_lock(&dir->log_mutex);
7503 dir->last_unlink_trans = trans->transid;
7504 mutex_unlock(&dir->log_mutex);
7505 }
7506
7507 /*
7508 * Call this when creating a subvolume in a directory.
7509 * Because we don't commit a transaction when creating a subvolume, we can't
7510 * allow the directory pointing to the subvolume to be logged with an entry that
7511 * points to an unpersisted root if we are still in the transaction used to
7512 * create the subvolume, so make any attempt to log the directory to result in a
7513 * full log sync.
7514 * Also we don't need to worry with renames, since btrfs_rename() marks the log
7515 * for full commit when renaming a subvolume.
7516 *
7517 * Must be called before creating the subvolume entry in its parent directory.
7518 */
btrfs_record_new_subvolume(const struct btrfs_trans_handle * trans,struct btrfs_inode * dir)7519 void btrfs_record_new_subvolume(const struct btrfs_trans_handle *trans,
7520 struct btrfs_inode *dir)
7521 {
7522 mutex_lock(&dir->log_mutex);
7523 dir->last_unlink_trans = trans->transid;
7524 mutex_unlock(&dir->log_mutex);
7525 }
7526
7527 /*
7528 * Update the log after adding a new name for an inode.
7529 *
7530 * @trans: Transaction handle.
7531 * @old_dentry: The dentry associated with the old name and the old
7532 * parent directory.
7533 * @old_dir: The inode of the previous parent directory for the case
7534 * of a rename. For a link operation, it must be NULL.
7535 * @old_dir_index: The index number associated with the old name, meaningful
7536 * only for rename operations (when @old_dir is not NULL).
7537 * Ignored for link operations.
7538 * @parent: The dentry associated with the directory under which the
7539 * new name is located.
7540 *
7541 * Call this after adding a new name for an inode, as a result of a link or
7542 * rename operation, and it will properly update the log to reflect the new name.
7543 */
btrfs_log_new_name(struct btrfs_trans_handle * trans,struct dentry * old_dentry,struct btrfs_inode * old_dir,u64 old_dir_index,struct dentry * parent)7544 void btrfs_log_new_name(struct btrfs_trans_handle *trans,
7545 struct dentry *old_dentry, struct btrfs_inode *old_dir,
7546 u64 old_dir_index, struct dentry *parent)
7547 {
7548 struct btrfs_inode *inode = BTRFS_I(d_inode(old_dentry));
7549 struct btrfs_root *root = inode->root;
7550 struct btrfs_log_ctx ctx;
7551 bool log_pinned = false;
7552 int ret;
7553
7554 btrfs_init_log_ctx(&ctx, inode);
7555 ctx.logging_new_name = true;
7556
7557 /*
7558 * this will force the logging code to walk the dentry chain
7559 * up for the file
7560 */
7561 if (!S_ISDIR(inode->vfs_inode.i_mode))
7562 inode->last_unlink_trans = trans->transid;
7563
7564 /*
7565 * if this inode hasn't been logged and directory we're renaming it
7566 * from hasn't been logged, we don't need to log it
7567 */
7568 ret = inode_logged(trans, inode, NULL);
7569 if (ret < 0) {
7570 goto out;
7571 } else if (ret == 0) {
7572 if (!old_dir)
7573 return;
7574 /*
7575 * If the inode was not logged and we are doing a rename (old_dir is not
7576 * NULL), check if old_dir was logged - if it was not we can return and
7577 * do nothing.
7578 */
7579 ret = inode_logged(trans, old_dir, NULL);
7580 if (ret < 0)
7581 goto out;
7582 else if (ret == 0)
7583 return;
7584 }
7585 ret = 0;
7586
7587 /*
7588 * Now that we know we need to update the log, allocate the scratch eb
7589 * for the context before joining a log transaction below, as this can
7590 * take time and therefore we could delay log commits from other tasks.
7591 */
7592 btrfs_init_log_ctx_scratch_eb(&ctx);
7593
7594 /*
7595 * If we are doing a rename (old_dir is not NULL) from a directory that
7596 * was previously logged, make sure that on log replay we get the old
7597 * dir entry deleted. This is needed because we will also log the new
7598 * name of the renamed inode, so we need to make sure that after log
7599 * replay we don't end up with both the new and old dir entries existing.
7600 */
7601 if (old_dir && old_dir->logged_trans == trans->transid) {
7602 struct btrfs_root *log = old_dir->root->log_root;
7603 struct btrfs_path *path;
7604 struct fscrypt_name fname;
7605
7606 ASSERT(old_dir_index >= BTRFS_DIR_START_INDEX);
7607
7608 ret = fscrypt_setup_filename(&old_dir->vfs_inode,
7609 &old_dentry->d_name, 0, &fname);
7610 if (ret)
7611 goto out;
7612
7613 path = btrfs_alloc_path();
7614 if (!path) {
7615 ret = -ENOMEM;
7616 fscrypt_free_filename(&fname);
7617 goto out;
7618 }
7619
7620 /*
7621 * We have two inodes to update in the log, the old directory and
7622 * the inode that got renamed, so we must pin the log to prevent
7623 * anyone from syncing the log until we have updated both inodes
7624 * in the log.
7625 */
7626 ret = join_running_log_trans(root);
7627 /*
7628 * At least one of the inodes was logged before, so this should
7629 * not fail, but if it does, it's not serious, just bail out and
7630 * mark the log for a full commit.
7631 */
7632 if (WARN_ON_ONCE(ret < 0)) {
7633 btrfs_free_path(path);
7634 fscrypt_free_filename(&fname);
7635 goto out;
7636 }
7637
7638 log_pinned = true;
7639
7640 /*
7641 * Other concurrent task might be logging the old directory,
7642 * as it can be triggered when logging other inode that had or
7643 * still has a dentry in the old directory. We lock the old
7644 * directory's log_mutex to ensure the deletion of the old
7645 * name is persisted, because during directory logging we
7646 * delete all BTRFS_DIR_LOG_INDEX_KEY keys and the deletion of
7647 * the old name's dir index item is in the delayed items, so
7648 * it could be missed by an in progress directory logging.
7649 */
7650 mutex_lock(&old_dir->log_mutex);
7651 ret = del_logged_dentry(trans, log, path, btrfs_ino(old_dir),
7652 &fname.disk_name, old_dir_index);
7653 if (ret > 0) {
7654 /*
7655 * The dentry does not exist in the log, so record its
7656 * deletion.
7657 */
7658 btrfs_release_path(path);
7659 ret = insert_dir_log_key(trans, log, path,
7660 btrfs_ino(old_dir),
7661 old_dir_index, old_dir_index);
7662 }
7663 mutex_unlock(&old_dir->log_mutex);
7664
7665 btrfs_free_path(path);
7666 fscrypt_free_filename(&fname);
7667 if (ret < 0)
7668 goto out;
7669 }
7670
7671 /*
7672 * We don't care about the return value. If we fail to log the new name
7673 * then we know the next attempt to sync the log will fallback to a full
7674 * transaction commit (due to a call to btrfs_set_log_full_commit()), so
7675 * we don't need to worry about getting a log committed that has an
7676 * inconsistent state after a rename operation.
7677 */
7678 btrfs_log_inode_parent(trans, inode, parent, LOG_INODE_EXISTS, &ctx);
7679 ASSERT(list_empty(&ctx.conflict_inodes));
7680 out:
7681 /*
7682 * If an error happened mark the log for a full commit because it's not
7683 * consistent and up to date or we couldn't find out if one of the
7684 * inodes was logged before in this transaction. Do it before unpinning
7685 * the log, to avoid any races with someone else trying to commit it.
7686 */
7687 if (ret < 0)
7688 btrfs_set_log_full_commit(trans);
7689 if (log_pinned)
7690 btrfs_end_log_trans(root);
7691 free_extent_buffer(ctx.scratch_eb);
7692 }
7693
7694