1 // SPDX-License-Identifier: GPL-2.0
2 #include "bpf_misc.h"
3 #include "bpf_experimental.h"
4 
5 struct {
6 	__uint(type, BPF_MAP_TYPE_ARRAY);
7 	__uint(max_entries, 8);
8 	__type(key, __u32);
9 	__type(value, __u64);
10 } map SEC(".maps");
11 
12 struct {
13 	__uint(type, BPF_MAP_TYPE_USER_RINGBUF);
14 	__uint(max_entries, 8);
15 } ringbuf SEC(".maps");
16 
17 struct vm_area_struct;
18 struct bpf_map;
19 
20 struct buf_context {
21 	char *buf;
22 };
23 
24 struct num_context {
25 	__u64 i;
26 	__u64 j;
27 };
28 
29 __u8 choice_arr[2] = { 0, 1 };
30 
unsafe_on_2nd_iter_cb(__u32 idx,struct buf_context * ctx)31 static int unsafe_on_2nd_iter_cb(__u32 idx, struct buf_context *ctx)
32 {
33 	if (idx == 0) {
34 		ctx->buf = (char *)(0xDEAD);
35 		return 0;
36 	}
37 
38 	if (bpf_probe_read_user(ctx->buf, 8, (void *)(0xBADC0FFEE)))
39 		return 1;
40 
41 	return 0;
42 }
43 
44 SEC("?raw_tp")
45 __failure __msg("R1 type=scalar expected=fp")
unsafe_on_2nd_iter(void * unused)46 int unsafe_on_2nd_iter(void *unused)
47 {
48 	char buf[4];
49 	struct buf_context loop_ctx = { .buf = buf };
50 
51 	bpf_loop(100, unsafe_on_2nd_iter_cb, &loop_ctx, 0);
52 	return 0;
53 }
54 
unsafe_on_zero_iter_cb(__u32 idx,struct num_context * ctx)55 static int unsafe_on_zero_iter_cb(__u32 idx, struct num_context *ctx)
56 {
57 	ctx->i = 0;
58 	return 0;
59 }
60 
61 SEC("?raw_tp")
62 __failure __msg("invalid access to map value, value_size=2 off=32 size=1")
unsafe_on_zero_iter(void * unused)63 int unsafe_on_zero_iter(void *unused)
64 {
65 	struct num_context loop_ctx = { .i = 32 };
66 
67 	bpf_loop(100, unsafe_on_zero_iter_cb, &loop_ctx, 0);
68 	return choice_arr[loop_ctx.i];
69 }
70 
widening_cb(__u32 idx,struct num_context * ctx)71 static int widening_cb(__u32 idx, struct num_context *ctx)
72 {
73 	++ctx->i;
74 	return 0;
75 }
76 
77 SEC("?raw_tp")
78 __success
widening(void * unused)79 int widening(void *unused)
80 {
81 	struct num_context loop_ctx = { .i = 0, .j = 1 };
82 
83 	bpf_loop(100, widening_cb, &loop_ctx, 0);
84 	/* loop_ctx.j is not changed during callback iteration,
85 	 * verifier should not apply widening to it.
86 	 */
87 	return choice_arr[loop_ctx.j];
88 }
89 
loop_detection_cb(__u32 idx,struct num_context * ctx)90 static int loop_detection_cb(__u32 idx, struct num_context *ctx)
91 {
92 	for (;;) {}
93 	return 0;
94 }
95 
96 SEC("?raw_tp")
97 __failure __msg("infinite loop detected")
loop_detection(void * unused)98 int loop_detection(void *unused)
99 {
100 	struct num_context loop_ctx = { .i = 0 };
101 
102 	bpf_loop(100, loop_detection_cb, &loop_ctx, 0);
103 	return 0;
104 }
105 
oob_state_machine(struct num_context * ctx)106 static __always_inline __u64 oob_state_machine(struct num_context *ctx)
107 {
108 	switch (ctx->i) {
109 	case 0:
110 		ctx->i = 1;
111 		break;
112 	case 1:
113 		ctx->i = 32;
114 		break;
115 	}
116 	return 0;
117 }
118 
for_each_map_elem_cb(struct bpf_map * map,__u32 * key,__u64 * val,void * data)119 static __u64 for_each_map_elem_cb(struct bpf_map *map, __u32 *key, __u64 *val, void *data)
120 {
121 	return oob_state_machine(data);
122 }
123 
124 SEC("?raw_tp")
125 __failure __msg("invalid access to map value, value_size=2 off=32 size=1")
unsafe_for_each_map_elem(void * unused)126 int unsafe_for_each_map_elem(void *unused)
127 {
128 	struct num_context loop_ctx = { .i = 0 };
129 
130 	bpf_for_each_map_elem(&map, for_each_map_elem_cb, &loop_ctx, 0);
131 	return choice_arr[loop_ctx.i];
132 }
133 
ringbuf_drain_cb(struct bpf_dynptr * dynptr,void * data)134 static __u64 ringbuf_drain_cb(struct bpf_dynptr *dynptr, void *data)
135 {
136 	return oob_state_machine(data);
137 }
138 
139 SEC("?raw_tp")
140 __failure __msg("invalid access to map value, value_size=2 off=32 size=1")
unsafe_ringbuf_drain(void * unused)141 int unsafe_ringbuf_drain(void *unused)
142 {
143 	struct num_context loop_ctx = { .i = 0 };
144 
145 	bpf_user_ringbuf_drain(&ringbuf, ringbuf_drain_cb, &loop_ctx, 0);
146 	return choice_arr[loop_ctx.i];
147 }
148 
find_vma_cb(struct task_struct * task,struct vm_area_struct * vma,void * data)149 static __u64 find_vma_cb(struct task_struct *task, struct vm_area_struct *vma, void *data)
150 {
151 	return oob_state_machine(data);
152 }
153 
154 SEC("?raw_tp")
155 __failure __msg("invalid access to map value, value_size=2 off=32 size=1")
unsafe_find_vma(void * unused)156 int unsafe_find_vma(void *unused)
157 {
158 	struct task_struct *task = bpf_get_current_task_btf();
159 	struct num_context loop_ctx = { .i = 0 };
160 
161 	bpf_find_vma(task, 0, find_vma_cb, &loop_ctx, 0);
162 	return choice_arr[loop_ctx.i];
163 }
164 
iter_limit_cb(__u32 idx,struct num_context * ctx)165 static int iter_limit_cb(__u32 idx, struct num_context *ctx)
166 {
167 	ctx->i++;
168 	return 0;
169 }
170 
171 SEC("?raw_tp")
172 __success
bpf_loop_iter_limit_ok(void * unused)173 int bpf_loop_iter_limit_ok(void *unused)
174 {
175 	struct num_context ctx = { .i = 0 };
176 
177 	bpf_loop(1, iter_limit_cb, &ctx, 0);
178 	return choice_arr[ctx.i];
179 }
180 
181 SEC("?raw_tp")
182 __failure __msg("invalid access to map value, value_size=2 off=2 size=1")
bpf_loop_iter_limit_overflow(void * unused)183 int bpf_loop_iter_limit_overflow(void *unused)
184 {
185 	struct num_context ctx = { .i = 0 };
186 
187 	bpf_loop(2, iter_limit_cb, &ctx, 0);
188 	return choice_arr[ctx.i];
189 }
190 
iter_limit_level2a_cb(__u32 idx,struct num_context * ctx)191 static int iter_limit_level2a_cb(__u32 idx, struct num_context *ctx)
192 {
193 	ctx->i += 100;
194 	return 0;
195 }
196 
iter_limit_level2b_cb(__u32 idx,struct num_context * ctx)197 static int iter_limit_level2b_cb(__u32 idx, struct num_context *ctx)
198 {
199 	ctx->i += 10;
200 	return 0;
201 }
202 
iter_limit_level1_cb(__u32 idx,struct num_context * ctx)203 static int iter_limit_level1_cb(__u32 idx, struct num_context *ctx)
204 {
205 	ctx->i += 1;
206 	bpf_loop(1, iter_limit_level2a_cb, ctx, 0);
207 	bpf_loop(1, iter_limit_level2b_cb, ctx, 0);
208 	return 0;
209 }
210 
211 /* Check that path visiting every callback function once had been
212  * reached by verifier. Variables 'ctx{1,2}i' below serve as flags,
213  * with each decimal digit corresponding to a callback visit marker.
214  */
215 SEC("socket")
216 __success __retval(111111)
bpf_loop_iter_limit_nested(void * unused)217 int bpf_loop_iter_limit_nested(void *unused)
218 {
219 	struct num_context ctx1 = { .i = 0 };
220 	struct num_context ctx2 = { .i = 0 };
221 	__u64 a, b, c;
222 
223 	bpf_loop(1, iter_limit_level1_cb, &ctx1, 0);
224 	bpf_loop(1, iter_limit_level1_cb, &ctx2, 0);
225 	a = ctx1.i;
226 	b = ctx2.i;
227 	/* Force 'ctx1.i' and 'ctx2.i' precise. */
228 	c = choice_arr[(a + b) % 2];
229 	/* This makes 'c' zero, but neither clang nor verifier know it. */
230 	c /= 10;
231 	/* Make sure that verifier does not visit 'impossible' states:
232 	 * enumerate all possible callback visit masks.
233 	 */
234 	if (a != 0 && a != 1 && a != 11 && a != 101 && a != 111 &&
235 	    b != 0 && b != 1 && b != 11 && b != 101 && b != 111)
236 		asm volatile ("r0 /= 0;" ::: "r0");
237 	return 1000 * a + b + c;
238 }
239 
240 struct iter_limit_bug_ctx {
241 	__u64 a;
242 	__u64 b;
243 	__u64 c;
244 };
245 
iter_limit_bug_cb(void)246 static __naked void iter_limit_bug_cb(void)
247 {
248 	/* This is the same as C code below, but written
249 	 * in assembly to control which branches are fall-through.
250 	 *
251 	 *   switch (bpf_get_prandom_u32()) {
252 	 *   case 1:  ctx->a = 42; break;
253 	 *   case 2:  ctx->b = 42; break;
254 	 *   default: ctx->c = 42; break;
255 	 *   }
256 	 */
257 	asm volatile (
258 	"r9 = r2;"
259 	"call %[bpf_get_prandom_u32];"
260 	"r1 = r0;"
261 	"r2 = 42;"
262 	"r0 = 0;"
263 	"if r1 == 0x1 goto 1f;"
264 	"if r1 == 0x2 goto 2f;"
265 	"*(u64 *)(r9 + 16) = r2;"
266 	"exit;"
267 	"1: *(u64 *)(r9 + 0) = r2;"
268 	"exit;"
269 	"2: *(u64 *)(r9 + 8) = r2;"
270 	"exit;"
271 	:
272 	: __imm(bpf_get_prandom_u32)
273 	: __clobber_all
274 	);
275 }
276 
277 int tmp_var;
278 SEC("socket")
279 __failure __msg("infinite loop detected at insn 2")
jgt_imm64_and_may_goto(void)280 __naked void jgt_imm64_and_may_goto(void)
281 {
282 	asm volatile ("			\
283 	r0 = %[tmp_var] ll;		\
284 l0_%=:	.byte 0xe5; /* may_goto */	\
285 	.byte 0; /* regs */		\
286 	.short -3; /* off -3 */		\
287 	.long 0; /* imm */		\
288 	if r0 > 10 goto l0_%=;		\
289 	r0 = 0;				\
290 	exit;				\
291 "	:: __imm_addr(tmp_var)
292 	: __clobber_all);
293 }
294 
295 SEC("socket")
296 __failure __msg("infinite loop detected at insn 1")
may_goto_self(void)297 __naked void may_goto_self(void)
298 {
299 	asm volatile ("			\
300 	r0 = *(u32 *)(r10 - 4);		\
301 l0_%=:	.byte 0xe5; /* may_goto */	\
302 	.byte 0; /* regs */		\
303 	.short -1; /* off -1 */		\
304 	.long 0; /* imm */		\
305 	if r0 > 10 goto l0_%=;		\
306 	r0 = 0;				\
307 	exit;				\
308 "	::: __clobber_all);
309 }
310 
311 SEC("socket")
312 __success __retval(0)
may_goto_neg_off(void)313 __naked void may_goto_neg_off(void)
314 {
315 	asm volatile ("			\
316 	r0 = *(u32 *)(r10 - 4);		\
317 	goto l0_%=;			\
318 	goto l1_%=;			\
319 l0_%=:	.byte 0xe5; /* may_goto */	\
320 	.byte 0; /* regs */		\
321 	.short -2; /* off -2 */		\
322 	.long 0; /* imm */		\
323 	if r0 > 10 goto l0_%=;		\
324 l1_%=:	r0 = 0;				\
325 	exit;				\
326 "	::: __clobber_all);
327 }
328 
329 SEC("tc")
330 __failure
__flag(BPF_F_TEST_STATE_FREQ)331 __flag(BPF_F_TEST_STATE_FREQ)
332 int iter_limit_bug(struct __sk_buff *skb)
333 {
334 	struct iter_limit_bug_ctx ctx = { 7, 7, 7 };
335 
336 	bpf_loop(2, iter_limit_bug_cb, &ctx, 0);
337 
338 	/* This is the same as C code below,
339 	 * written in assembly to guarantee checks order.
340 	 *
341 	 *   if (ctx.a == 42 && ctx.b == 42 && ctx.c == 7)
342 	 *     asm volatile("r1 /= 0;":::"r1");
343 	 */
344 	asm volatile (
345 	"r1 = *(u64 *)%[ctx_a];"
346 	"if r1 != 42 goto 1f;"
347 	"r1 = *(u64 *)%[ctx_b];"
348 	"if r1 != 42 goto 1f;"
349 	"r1 = *(u64 *)%[ctx_c];"
350 	"if r1 != 7 goto 1f;"
351 	"r1 /= 0;"
352 	"1:"
353 	:
354 	: [ctx_a]"m"(ctx.a),
355 	  [ctx_b]"m"(ctx.b),
356 	  [ctx_c]"m"(ctx.c)
357 	: "r1"
358 	);
359 	return 0;
360 }
361 
362 SEC("socket")
363 __success __retval(0)
ja_and_may_goto(void)364 __naked void ja_and_may_goto(void)
365 {
366 	asm volatile ("			\
367 l0_%=:	.byte 0xe5; /* may_goto */	\
368 	.byte 0; /* regs */		\
369 	.short 1; /* off 1 */		\
370 	.long 0; /* imm */		\
371 	goto l0_%=;			\
372 	r0 = 0;				\
373 	exit;				\
374 "	::: __clobber_common);
375 }
376 
377 SEC("socket")
378 __success __retval(0)
ja_and_may_goto2(void)379 __naked void ja_and_may_goto2(void)
380 {
381 	asm volatile ("			\
382 l0_%=:	r0 = 0;				\
383 	.byte 0xe5; /* may_goto */	\
384 	.byte 0; /* regs */		\
385 	.short 1; /* off 1 */		\
386 	.long 0; /* imm */		\
387 	goto l0_%=;			\
388 	r0 = 0;				\
389 	exit;				\
390 "	::: __clobber_common);
391 }
392 
393 SEC("socket")
394 __success __retval(0)
jlt_and_may_goto(void)395 __naked void jlt_and_may_goto(void)
396 {
397 	asm volatile ("			\
398 l0_%=:	call %[bpf_jiffies64];		\
399 	.byte 0xe5; /* may_goto */	\
400 	.byte 0; /* regs */		\
401 	.short 1; /* off 1 */		\
402 	.long 0; /* imm */		\
403 	if r0 < 10 goto l0_%=;		\
404 	r0 = 0;				\
405 	exit;				\
406 "	:: __imm(bpf_jiffies64)
407 	: __clobber_all);
408 }
409 
410 #ifdef CAN_USE_GOTOL
411 SEC("socket")
412 __success __retval(0)
gotol_and_may_goto(void)413 __naked void gotol_and_may_goto(void)
414 {
415 	asm volatile ("			\
416 l0_%=:	r0 = 0;				\
417 	.byte 0xe5; /* may_goto */	\
418 	.byte 0; /* regs */		\
419 	.short 1; /* off 1 */		\
420 	.long 0; /* imm */		\
421 	gotol l0_%=;			\
422 	r0 = 0;				\
423 	exit;				\
424 "	::: __clobber_common);
425 }
426 #endif
427 
428 SEC("socket")
429 __success __retval(0)
ja_and_may_goto_subprog(void)430 __naked void ja_and_may_goto_subprog(void)
431 {
432 	asm volatile ("			\
433 	call subprog_with_may_goto;	\
434 	exit;				\
435 "	::: __clobber_all);
436 }
437 
438 static __naked __noinline __used
subprog_with_may_goto(void)439 void subprog_with_may_goto(void)
440 {
441 	asm volatile ("			\
442 l0_%=:	.byte 0xe5; /* may_goto */	\
443 	.byte 0; /* regs */		\
444 	.short 1; /* off 1 */		\
445 	.long 0; /* imm */		\
446 	goto l0_%=;			\
447 	r0 = 0;				\
448 	exit;				\
449 "	::: __clobber_all);
450 }
451 
452 #define ARR_SZ 1000000
453 int zero;
454 char arr[ARR_SZ];
455 
456 SEC("socket")
457 __success __retval(0xd495cdc0)
cond_break1(const void * ctx)458 int cond_break1(const void *ctx)
459 {
460 	unsigned long i;
461 	unsigned int sum = 0;
462 
463 	for (i = zero; i < ARR_SZ && can_loop; i++)
464 		sum += i;
465 	for (i = zero; i < ARR_SZ; i++) {
466 		barrier_var(i);
467 		sum += i + arr[i];
468 		cond_break;
469 	}
470 
471 	return sum;
472 }
473 
474 SEC("socket")
475 __success __retval(999000000)
cond_break2(const void * ctx)476 int cond_break2(const void *ctx)
477 {
478 	int i, j;
479 	int sum = 0;
480 
481 	for (i = zero; i < 1000 && can_loop; i++)
482 		for (j = zero; j < 1000; j++) {
483 			sum += i + j;
484 			cond_break;
485 	}
486 	return sum;
487 }
488 
loop(void)489 static __noinline int loop(void)
490 {
491 	int i, sum = 0;
492 
493 	for (i = zero; i <= 1000000 && can_loop; i++)
494 		sum += i;
495 
496 	return sum;
497 }
498 
499 SEC("socket")
500 __success __retval(0x6a5a2920)
cond_break3(const void * ctx)501 int cond_break3(const void *ctx)
502 {
503 	return loop();
504 }
505 
506 SEC("socket")
507 __success __retval(1)
cond_break4(const void * ctx)508 int cond_break4(const void *ctx)
509 {
510 	int cnt = zero;
511 
512 	for (;;) {
513 		/* should eventually break out of the loop */
514 		cond_break;
515 		cnt++;
516 	}
517 	/* if we looped a bit, it's a success */
518 	return cnt > 1 ? 1 : 0;
519 }
520 
static_subprog(void)521 static __noinline int static_subprog(void)
522 {
523 	int cnt = zero;
524 
525 	for (;;) {
526 		cond_break;
527 		cnt++;
528 	}
529 
530 	return cnt;
531 }
532 
533 SEC("socket")
534 __success __retval(1)
cond_break5(const void * ctx)535 int cond_break5(const void *ctx)
536 {
537 	int cnt1 = zero, cnt2;
538 
539 	for (;;) {
540 		cond_break;
541 		cnt1++;
542 	}
543 
544 	cnt2 = static_subprog();
545 
546 	/* main and subprog have to loop a bit */
547 	return cnt1 > 1 && cnt2 > 1 ? 1 : 0;
548 }
549 
550 #define ARR2_SZ 1000
551 SEC(".data.arr2")
552 char arr2[ARR2_SZ];
553 
554 SEC("socket")
__flag(BPF_F_TEST_STATE_FREQ)555 __success __flag(BPF_F_TEST_STATE_FREQ)
556 int loop_inside_iter(const void *ctx)
557 {
558 	struct bpf_iter_num it;
559 	int *v, sum = 0;
560 	__u64 i = 0;
561 
562 	bpf_iter_num_new(&it, 0, ARR2_SZ);
563 	while ((v = bpf_iter_num_next(&it))) {
564 		if (i < ARR2_SZ)
565 			sum += arr2[i++];
566 	}
567 	bpf_iter_num_destroy(&it);
568 	return sum;
569 }
570 
571 SEC("socket")
__flag(BPF_F_TEST_STATE_FREQ)572 __success __flag(BPF_F_TEST_STATE_FREQ)
573 int loop_inside_iter_signed(const void *ctx)
574 {
575 	struct bpf_iter_num it;
576 	int *v, sum = 0;
577 	long i = 0;
578 
579 	bpf_iter_num_new(&it, 0, ARR2_SZ);
580 	while ((v = bpf_iter_num_next(&it))) {
581 		if (i < ARR2_SZ && i >= 0)
582 			sum += arr2[i++];
583 	}
584 	bpf_iter_num_destroy(&it);
585 	return sum;
586 }
587 
588 volatile const int limit = ARR2_SZ;
589 
590 SEC("socket")
__flag(BPF_F_TEST_STATE_FREQ)591 __success __flag(BPF_F_TEST_STATE_FREQ)
592 int loop_inside_iter_volatile_limit(const void *ctx)
593 {
594 	struct bpf_iter_num it;
595 	int *v, sum = 0;
596 	__u64 i = 0;
597 
598 	bpf_iter_num_new(&it, 0, ARR2_SZ);
599 	while ((v = bpf_iter_num_next(&it))) {
600 		if (i < limit)
601 			sum += arr2[i++];
602 	}
603 	bpf_iter_num_destroy(&it);
604 	return sum;
605 }
606 
607 #define ARR_LONG_SZ 1000
608 
609 SEC(".data.arr_long")
610 long arr_long[ARR_LONG_SZ];
611 
612 SEC("socket")
613 __success
test1(const void * ctx)614 int test1(const void *ctx)
615 {
616 	long i;
617 
618 	for (i = 0; i < ARR_LONG_SZ && can_loop; i++)
619 		arr_long[i] = i;
620 	return 0;
621 }
622 
623 SEC("socket")
624 __success
test2(const void * ctx)625 int test2(const void *ctx)
626 {
627 	__u64 i;
628 
629 	for (i = zero; i < ARR_LONG_SZ && can_loop; i++) {
630 		barrier_var(i);
631 		arr_long[i] = i;
632 	}
633 	return 0;
634 }
635 
636 SEC(".data.arr_foo")
637 struct {
638 	int a;
639 	int b;
640 } arr_foo[ARR_LONG_SZ];
641 
642 SEC("socket")
643 __success
test3(const void * ctx)644 int test3(const void *ctx)
645 {
646 	__u64 i;
647 
648 	for (i = zero; i < ARR_LONG_SZ && can_loop; i++) {
649 		barrier_var(i);
650 		arr_foo[i].a = i;
651 		arr_foo[i].b = i;
652 	}
653 	return 0;
654 }
655 
656 SEC("socket")
657 __success
test4(const void * ctx)658 int test4(const void *ctx)
659 {
660 	long i;
661 
662 	for (i = zero + ARR_LONG_SZ - 1; i < ARR_LONG_SZ && i >= 0 && can_loop; i--) {
663 		barrier_var(i);
664 		arr_foo[i].a = i;
665 		arr_foo[i].b = i;
666 	}
667 	return 0;
668 }
669 
670 char buf[10] SEC(".data.buf");
671 
672 SEC("socket")
673 __description("check add const")
674 __success
check_add_const(void)675 __naked void check_add_const(void)
676 {
677 	/* typical LLVM generated loop with may_goto */
678 	asm volatile ("			\
679 	call %[bpf_ktime_get_ns];	\
680 	if r0 > 9 goto l1_%=;		\
681 l0_%=:	r1 = %[buf];			\
682 	r2 = r0;			\
683 	r1 += r2;			\
684 	r3 = *(u8 *)(r1 +0);		\
685 	.byte 0xe5; /* may_goto */	\
686 	.byte 0; /* regs */		\
687 	.short 4; /* off of l1_%=: */	\
688 	.long 0; /* imm */		\
689 	r0 = r2;			\
690 	r0 += 1;			\
691 	if r2 < 9 goto l0_%=;		\
692 	exit;				\
693 l1_%=:	r0 = 0;				\
694 	exit;				\
695 "	:
696 	: __imm(bpf_ktime_get_ns),
697 	  __imm_ptr(buf)
698 	: __clobber_common);
699 }
700 
701 SEC("socket")
702 __failure
703 __msg("*(u8 *)(r7 +0) = r0")
704 __msg("invalid access to map value, value_size=10 off=10 size=1")
check_add_const_3regs(void)705 __naked void check_add_const_3regs(void)
706 {
707 	asm volatile (
708 	"r6 = %[buf];"
709 	"r7 = %[buf];"
710 	"call %[bpf_ktime_get_ns];"
711 	"r1 = r0;"              /* link r0.id == r1.id == r2.id */
712 	"r2 = r0;"
713 	"r1 += 1;"              /* r1 == r0+1 */
714 	"r2 += 2;"              /* r2 == r0+2 */
715 	"if r0 > 8 goto 1f;"    /* r0 range [0, 8]  */
716 	"r6 += r1;"             /* r1 range [1, 9]  */
717 	"r7 += r2;"             /* r2 range [2, 10] */
718 	"*(u8 *)(r6 +0) = r0;"  /* safe, within bounds   */
719 	"*(u8 *)(r7 +0) = r0;"  /* unsafe, out of bounds */
720 	"1: exit;"
721 	:
722 	: __imm(bpf_ktime_get_ns),
723 	  __imm_ptr(buf)
724 	: __clobber_common);
725 }
726 
727 SEC("socket")
728 __failure
729 __msg("*(u8 *)(r8 -1) = r0")
730 __msg("invalid access to map value, value_size=10 off=10 size=1")
check_add_const_3regs_2if(void)731 __naked void check_add_const_3regs_2if(void)
732 {
733 	asm volatile (
734 	"r6 = %[buf];"
735 	"r7 = %[buf];"
736 	"r8 = %[buf];"
737 	"call %[bpf_ktime_get_ns];"
738 	"if r0 < 2 goto 1f;"
739 	"r1 = r0;"              /* link r0.id == r1.id == r2.id */
740 	"r2 = r0;"
741 	"r1 += 1;"              /* r1 == r0+1 */
742 	"r2 += 2;"              /* r2 == r0+2 */
743 	"if r2 > 11 goto 1f;"   /* r2 range [0, 11] -> r0 range [-2, 9]; r1 range [-1, 10] */
744 	"if r0 s< 0 goto 1f;"   /* r0 range [0, 9] -> r1 range [1, 10]; r2 range [2, 11]; */
745 	"r6 += r0;"             /* r0 range [0, 9]  */
746 	"r7 += r1;"             /* r1 range [1, 10] */
747 	"r8 += r2;"             /* r2 range [2, 11] */
748 	"*(u8 *)(r6 +0) = r0;"  /* safe, within bounds   */
749 	"*(u8 *)(r7 -1) = r0;"  /* safe */
750 	"*(u8 *)(r8 -1) = r0;"  /* unsafe */
751 	"1: exit;"
752 	:
753 	: __imm(bpf_ktime_get_ns),
754 	  __imm_ptr(buf)
755 	: __clobber_common);
756 }
757 
758 SEC("socket")
759 __failure
__flag(BPF_F_TEST_STATE_FREQ)760 __flag(BPF_F_TEST_STATE_FREQ)
761 __naked void check_add_const_regsafe_off(void)
762 {
763 	asm volatile (
764 	"r8 = %[buf];"
765 	"call %[bpf_ktime_get_ns];"
766 	"r6 = r0;"
767 	"call %[bpf_ktime_get_ns];"
768 	"r7 = r0;"
769 	"call %[bpf_ktime_get_ns];"
770 	"r1 = r0;"              /* same ids for r1 and r0 */
771 	"if r6 > r7 goto 1f;"   /* this jump can't be predicted */
772 	"r1 += 1;"              /* r1.off == +1 */
773 	"goto 2f;"
774 	"1: r1 += 100;"         /* r1.off == +100 */
775 	"goto +0;"              /* verify r1.off in regsafe() after this insn */
776 	"2: if r0 > 8 goto 3f;" /* r0 range [0,8], r1 range either [1,9] or [100,108]*/
777 	"r8 += r1;"
778 	"*(u8 *)(r8 +0) = r0;"  /* potentially unsafe, buf size is 10 */
779 	"3: exit;"
780 	:
781 	: __imm(bpf_ktime_get_ns),
782 	  __imm_ptr(buf)
783 	: __clobber_common);
784 }
785 
786 char _license[] SEC("license") = "GPL";
787