1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef BLK_INTERNAL_H
3 #define BLK_INTERNAL_H
4
5 #include <linux/bio-integrity.h>
6 #include <linux/blk-crypto.h>
7 #include <linux/lockdep.h>
8 #include <linux/memblock.h> /* for max_pfn/max_low_pfn */
9 #include <linux/sched/sysctl.h>
10 #include <linux/timekeeping.h>
11 #include <xen/xen.h>
12 #include "blk-crypto-internal.h"
13
14 struct elevator_type;
15 struct elevator_tags;
16
17 /*
18 * Default upper limit for the software max_sectors limit used for regular I/Os.
19 * This can be increased through sysfs.
20 *
21 * This should not be confused with the max_hw_sector limit that is entirely
22 * controlled by the block device driver, usually based on hardware limits.
23 */
24 #define BLK_DEF_MAX_SECTORS_CAP (SZ_4M >> SECTOR_SHIFT)
25
26 #define BLK_DEV_MAX_SECTORS (LLONG_MAX >> 9)
27 #define BLK_MIN_SEGMENT_SIZE 4096
28
29 /* Max future timer expiry for timeouts */
30 #define BLK_MAX_TIMEOUT (5 * HZ)
31
32 extern const struct kobj_type blk_queue_ktype;
33 extern struct dentry *blk_debugfs_root;
34
35 struct blk_flush_queue {
36 spinlock_t mq_flush_lock;
37 unsigned int flush_pending_idx:1;
38 unsigned int flush_running_idx:1;
39 blk_status_t rq_status;
40 unsigned long flush_pending_since;
41 struct list_head flush_queue[2];
42 unsigned long flush_data_in_flight;
43 struct request *flush_rq;
44 };
45
46 bool is_flush_rq(struct request *req);
47
48 struct blk_flush_queue *blk_alloc_flush_queue(int node, int cmd_size,
49 gfp_t flags);
50 void blk_free_flush_queue(struct blk_flush_queue *q);
51
52 bool __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic);
53 bool blk_queue_start_drain(struct request_queue *q);
54 bool __blk_freeze_queue_start(struct request_queue *q,
55 struct task_struct *owner);
56 int __bio_queue_enter(struct request_queue *q, struct bio *bio);
57 void submit_bio_noacct_nocheck(struct bio *bio);
58 void bio_await_chain(struct bio *bio);
59
blk_try_enter_queue(struct request_queue * q,bool pm)60 static inline bool blk_try_enter_queue(struct request_queue *q, bool pm)
61 {
62 rcu_read_lock();
63 if (!percpu_ref_tryget_live_rcu(&q->q_usage_counter))
64 goto fail;
65
66 /*
67 * The code that increments the pm_only counter must ensure that the
68 * counter is globally visible before the queue is unfrozen.
69 */
70 if (blk_queue_pm_only(q) &&
71 (!pm || queue_rpm_status(q) == RPM_SUSPENDED))
72 goto fail_put;
73
74 rcu_read_unlock();
75 return true;
76
77 fail_put:
78 blk_queue_exit(q);
79 fail:
80 rcu_read_unlock();
81 return false;
82 }
83
bio_queue_enter(struct bio * bio)84 static inline int bio_queue_enter(struct bio *bio)
85 {
86 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
87
88 if (blk_try_enter_queue(q, false)) {
89 rwsem_acquire_read(&q->io_lockdep_map, 0, 0, _RET_IP_);
90 rwsem_release(&q->io_lockdep_map, _RET_IP_);
91 return 0;
92 }
93 return __bio_queue_enter(q, bio);
94 }
95
blk_wait_io(struct completion * done)96 static inline void blk_wait_io(struct completion *done)
97 {
98 /* Prevent hang_check timer from firing at us during very long I/O */
99 unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2;
100
101 if (timeout)
102 while (!wait_for_completion_io_timeout(done, timeout))
103 ;
104 else
105 wait_for_completion_io(done);
106 }
107
108 struct block_device *blkdev_get_no_open(dev_t dev, bool autoload);
109 void blkdev_put_no_open(struct block_device *bdev);
110
111 #define BIO_INLINE_VECS 4
112 struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs,
113 gfp_t gfp_mask);
114 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs);
115
116 bool bvec_try_merge_hw_page(struct request_queue *q, struct bio_vec *bv,
117 struct page *page, unsigned len, unsigned offset);
118
biovec_phys_mergeable(struct request_queue * q,struct bio_vec * vec1,struct bio_vec * vec2)119 static inline bool biovec_phys_mergeable(struct request_queue *q,
120 struct bio_vec *vec1, struct bio_vec *vec2)
121 {
122 unsigned long mask = queue_segment_boundary(q);
123 phys_addr_t addr1 = bvec_phys(vec1);
124 phys_addr_t addr2 = bvec_phys(vec2);
125
126 /*
127 * Merging adjacent physical pages may not work correctly under KMSAN
128 * if their metadata pages aren't adjacent. Just disable merging.
129 */
130 if (IS_ENABLED(CONFIG_KMSAN))
131 return false;
132
133 if (addr1 + vec1->bv_len != addr2)
134 return false;
135 if (xen_domain() && !xen_biovec_phys_mergeable(vec1, vec2->bv_page))
136 return false;
137 if ((addr1 | mask) != ((addr2 + vec2->bv_len - 1) | mask))
138 return false;
139 return true;
140 }
141
__bvec_gap_to_prev(const struct queue_limits * lim,struct bio_vec * bprv,unsigned int offset)142 static inline bool __bvec_gap_to_prev(const struct queue_limits *lim,
143 struct bio_vec *bprv, unsigned int offset)
144 {
145 return (offset & lim->virt_boundary_mask) ||
146 ((bprv->bv_offset + bprv->bv_len) & lim->virt_boundary_mask);
147 }
148
149 /*
150 * Check if adding a bio_vec after bprv with offset would create a gap in
151 * the SG list. Most drivers don't care about this, but some do.
152 */
bvec_gap_to_prev(const struct queue_limits * lim,struct bio_vec * bprv,unsigned int offset)153 static inline bool bvec_gap_to_prev(const struct queue_limits *lim,
154 struct bio_vec *bprv, unsigned int offset)
155 {
156 if (!lim->virt_boundary_mask)
157 return false;
158 return __bvec_gap_to_prev(lim, bprv, offset);
159 }
160
rq_mergeable(struct request * rq)161 static inline bool rq_mergeable(struct request *rq)
162 {
163 if (blk_rq_is_passthrough(rq))
164 return false;
165
166 if (req_op(rq) == REQ_OP_FLUSH)
167 return false;
168
169 if (req_op(rq) == REQ_OP_WRITE_ZEROES)
170 return false;
171
172 if (req_op(rq) == REQ_OP_ZONE_APPEND)
173 return false;
174
175 if (rq->cmd_flags & REQ_NOMERGE_FLAGS)
176 return false;
177 if (rq->rq_flags & RQF_NOMERGE_FLAGS)
178 return false;
179
180 return true;
181 }
182
183 /*
184 * There are two different ways to handle DISCARD merges:
185 * 1) If max_discard_segments > 1, the driver treats every bio as a range and
186 * send the bios to controller together. The ranges don't need to be
187 * contiguous.
188 * 2) Otherwise, the request will be normal read/write requests. The ranges
189 * need to be contiguous.
190 */
blk_discard_mergable(struct request * req)191 static inline bool blk_discard_mergable(struct request *req)
192 {
193 if (req_op(req) == REQ_OP_DISCARD &&
194 queue_max_discard_segments(req->q) > 1)
195 return true;
196 return false;
197 }
198
blk_rq_get_max_segments(struct request * rq)199 static inline unsigned int blk_rq_get_max_segments(struct request *rq)
200 {
201 if (req_op(rq) == REQ_OP_DISCARD)
202 return queue_max_discard_segments(rq->q);
203 return queue_max_segments(rq->q);
204 }
205
blk_queue_get_max_sectors(struct request * rq)206 static inline unsigned int blk_queue_get_max_sectors(struct request *rq)
207 {
208 struct request_queue *q = rq->q;
209 enum req_op op = req_op(rq);
210
211 if (unlikely(op == REQ_OP_DISCARD || op == REQ_OP_SECURE_ERASE))
212 return min(q->limits.max_discard_sectors,
213 UINT_MAX >> SECTOR_SHIFT);
214
215 if (unlikely(op == REQ_OP_WRITE_ZEROES))
216 return q->limits.max_write_zeroes_sectors;
217
218 if (rq->cmd_flags & REQ_ATOMIC)
219 return q->limits.atomic_write_max_sectors;
220
221 return q->limits.max_sectors;
222 }
223
224 #ifdef CONFIG_BLK_DEV_INTEGRITY
225 void blk_flush_integrity(void);
226 void bio_integrity_free(struct bio *bio);
227
228 /*
229 * Integrity payloads can either be owned by the submitter, in which case
230 * bio_uninit will free them, or owned and generated by the block layer,
231 * in which case we'll verify them here (for reads) and free them before
232 * the bio is handed back to the submitted.
233 */
234 bool __bio_integrity_endio(struct bio *bio);
bio_integrity_endio(struct bio * bio)235 static inline bool bio_integrity_endio(struct bio *bio)
236 {
237 struct bio_integrity_payload *bip = bio_integrity(bio);
238
239 if (bip && (bip->bip_flags & BIP_BLOCK_INTEGRITY))
240 return __bio_integrity_endio(bio);
241 return true;
242 }
243
244 bool blk_integrity_merge_rq(struct request_queue *, struct request *,
245 struct request *);
246 bool blk_integrity_merge_bio(struct request_queue *, struct request *,
247 struct bio *);
248
integrity_req_gap_back_merge(struct request * req,struct bio * next)249 static inline bool integrity_req_gap_back_merge(struct request *req,
250 struct bio *next)
251 {
252 struct bio_integrity_payload *bip = bio_integrity(req->bio);
253 struct bio_integrity_payload *bip_next = bio_integrity(next);
254
255 return bvec_gap_to_prev(&req->q->limits,
256 &bip->bip_vec[bip->bip_vcnt - 1],
257 bip_next->bip_vec[0].bv_offset);
258 }
259
integrity_req_gap_front_merge(struct request * req,struct bio * bio)260 static inline bool integrity_req_gap_front_merge(struct request *req,
261 struct bio *bio)
262 {
263 struct bio_integrity_payload *bip = bio_integrity(bio);
264 struct bio_integrity_payload *bip_next = bio_integrity(req->bio);
265
266 return bvec_gap_to_prev(&req->q->limits,
267 &bip->bip_vec[bip->bip_vcnt - 1],
268 bip_next->bip_vec[0].bv_offset);
269 }
270
271 extern const struct attribute_group blk_integrity_attr_group;
272 #else /* CONFIG_BLK_DEV_INTEGRITY */
blk_integrity_merge_rq(struct request_queue * rq,struct request * r1,struct request * r2)273 static inline bool blk_integrity_merge_rq(struct request_queue *rq,
274 struct request *r1, struct request *r2)
275 {
276 return true;
277 }
blk_integrity_merge_bio(struct request_queue * rq,struct request * r,struct bio * b)278 static inline bool blk_integrity_merge_bio(struct request_queue *rq,
279 struct request *r, struct bio *b)
280 {
281 return true;
282 }
integrity_req_gap_back_merge(struct request * req,struct bio * next)283 static inline bool integrity_req_gap_back_merge(struct request *req,
284 struct bio *next)
285 {
286 return false;
287 }
integrity_req_gap_front_merge(struct request * req,struct bio * bio)288 static inline bool integrity_req_gap_front_merge(struct request *req,
289 struct bio *bio)
290 {
291 return false;
292 }
293
blk_flush_integrity(void)294 static inline void blk_flush_integrity(void)
295 {
296 }
bio_integrity_endio(struct bio * bio)297 static inline bool bio_integrity_endio(struct bio *bio)
298 {
299 return true;
300 }
bio_integrity_free(struct bio * bio)301 static inline void bio_integrity_free(struct bio *bio)
302 {
303 }
304 #endif /* CONFIG_BLK_DEV_INTEGRITY */
305
306 unsigned long blk_rq_timeout(unsigned long timeout);
307 void blk_add_timer(struct request *req);
308
309 enum bio_merge_status {
310 BIO_MERGE_OK,
311 BIO_MERGE_NONE,
312 BIO_MERGE_FAILED,
313 };
314
315 enum bio_merge_status bio_attempt_back_merge(struct request *req,
316 struct bio *bio, unsigned int nr_segs);
317 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
318 unsigned int nr_segs);
319 bool blk_bio_list_merge(struct request_queue *q, struct list_head *list,
320 struct bio *bio, unsigned int nr_segs);
321
322 /*
323 * Plug flush limits
324 */
325 #define BLK_MAX_REQUEST_COUNT 32
326 #define BLK_PLUG_FLUSH_SIZE (128 * 1024)
327
328 /*
329 * Internal elevator interface
330 */
331 #define ELV_ON_HASH(rq) ((rq)->rq_flags & RQF_HASHED)
332
333 bool blk_insert_flush(struct request *rq);
334
335 void elv_update_nr_hw_queues(struct request_queue *q, struct elevator_type *e,
336 struct elevator_tags *t);
337 void elevator_set_default(struct request_queue *q);
338 void elevator_set_none(struct request_queue *q);
339
340 ssize_t part_size_show(struct device *dev, struct device_attribute *attr,
341 char *buf);
342 ssize_t part_stat_show(struct device *dev, struct device_attribute *attr,
343 char *buf);
344 ssize_t part_inflight_show(struct device *dev, struct device_attribute *attr,
345 char *buf);
346 ssize_t part_fail_show(struct device *dev, struct device_attribute *attr,
347 char *buf);
348 ssize_t part_fail_store(struct device *dev, struct device_attribute *attr,
349 const char *buf, size_t count);
350 ssize_t part_timeout_show(struct device *, struct device_attribute *, char *);
351 ssize_t part_timeout_store(struct device *, struct device_attribute *,
352 const char *, size_t);
353
354 struct bio *bio_split_discard(struct bio *bio, const struct queue_limits *lim,
355 unsigned *nsegs);
356 struct bio *bio_split_write_zeroes(struct bio *bio,
357 const struct queue_limits *lim, unsigned *nsegs);
358 struct bio *bio_split_rw(struct bio *bio, const struct queue_limits *lim,
359 unsigned *nr_segs);
360 struct bio *bio_split_zone_append(struct bio *bio,
361 const struct queue_limits *lim, unsigned *nr_segs);
362
363 /*
364 * All drivers must accept single-segments bios that are smaller than PAGE_SIZE.
365 *
366 * This is a quick and dirty check that relies on the fact that bi_io_vec[0] is
367 * always valid if a bio has data. The check might lead to occasional false
368 * positives when bios are cloned, but compared to the performance impact of
369 * cloned bios themselves the loop below doesn't matter anyway.
370 */
bio_may_need_split(struct bio * bio,const struct queue_limits * lim)371 static inline bool bio_may_need_split(struct bio *bio,
372 const struct queue_limits *lim)
373 {
374 if (lim->chunk_sectors)
375 return true;
376 if (bio->bi_vcnt != 1)
377 return true;
378 return bio->bi_io_vec->bv_len + bio->bi_io_vec->bv_offset >
379 lim->min_segment_size;
380 }
381
382 /**
383 * __bio_split_to_limits - split a bio to fit the queue limits
384 * @bio: bio to be split
385 * @lim: queue limits to split based on
386 * @nr_segs: returns the number of segments in the returned bio
387 *
388 * Check if @bio needs splitting based on the queue limits, and if so split off
389 * a bio fitting the limits from the beginning of @bio and return it. @bio is
390 * shortened to the remainder and re-submitted.
391 *
392 * The split bio is allocated from @q->bio_split, which is provided by the
393 * block layer.
394 */
__bio_split_to_limits(struct bio * bio,const struct queue_limits * lim,unsigned int * nr_segs)395 static inline struct bio *__bio_split_to_limits(struct bio *bio,
396 const struct queue_limits *lim, unsigned int *nr_segs)
397 {
398 switch (bio_op(bio)) {
399 case REQ_OP_READ:
400 case REQ_OP_WRITE:
401 if (bio_may_need_split(bio, lim))
402 return bio_split_rw(bio, lim, nr_segs);
403 *nr_segs = 1;
404 return bio;
405 case REQ_OP_ZONE_APPEND:
406 return bio_split_zone_append(bio, lim, nr_segs);
407 case REQ_OP_DISCARD:
408 case REQ_OP_SECURE_ERASE:
409 return bio_split_discard(bio, lim, nr_segs);
410 case REQ_OP_WRITE_ZEROES:
411 return bio_split_write_zeroes(bio, lim, nr_segs);
412 default:
413 /* other operations can't be split */
414 *nr_segs = 0;
415 return bio;
416 }
417 }
418
419 /**
420 * get_max_segment_size() - maximum number of bytes to add as a single segment
421 * @lim: Request queue limits.
422 * @paddr: address of the range to add
423 * @len: maximum length available to add at @paddr
424 *
425 * Returns the maximum number of bytes of the range starting at @paddr that can
426 * be added to a single segment.
427 */
get_max_segment_size(const struct queue_limits * lim,phys_addr_t paddr,unsigned int len)428 static inline unsigned get_max_segment_size(const struct queue_limits *lim,
429 phys_addr_t paddr, unsigned int len)
430 {
431 /*
432 * Prevent an overflow if mask = ULONG_MAX and offset = 0 by adding 1
433 * after having calculated the minimum.
434 */
435 return min_t(unsigned long, len,
436 min(lim->seg_boundary_mask - (lim->seg_boundary_mask & paddr),
437 (unsigned long)lim->max_segment_size - 1) + 1);
438 }
439
440 int ll_back_merge_fn(struct request *req, struct bio *bio,
441 unsigned int nr_segs);
442 bool blk_attempt_req_merge(struct request_queue *q, struct request *rq,
443 struct request *next);
444 unsigned int blk_recalc_rq_segments(struct request *rq);
445 bool blk_rq_merge_ok(struct request *rq, struct bio *bio);
446 enum elv_merge blk_try_merge(struct request *rq, struct bio *bio);
447
448 int blk_set_default_limits(struct queue_limits *lim);
449 void blk_apply_bdi_limits(struct backing_dev_info *bdi,
450 struct queue_limits *lim);
451 int blk_dev_init(void);
452
453 void update_io_ticks(struct block_device *part, unsigned long now, bool end);
454
req_set_nomerge(struct request_queue * q,struct request * req)455 static inline void req_set_nomerge(struct request_queue *q, struct request *req)
456 {
457 req->cmd_flags |= REQ_NOMERGE;
458 if (req == q->last_merge)
459 q->last_merge = NULL;
460 }
461
462 /*
463 * Internal io_context interface
464 */
465 struct io_cq *ioc_find_get_icq(struct request_queue *q);
466 struct io_cq *ioc_lookup_icq(struct request_queue *q);
467 #ifdef CONFIG_BLK_ICQ
468 void ioc_clear_queue(struct request_queue *q);
469 #else
ioc_clear_queue(struct request_queue * q)470 static inline void ioc_clear_queue(struct request_queue *q)
471 {
472 }
473 #endif /* CONFIG_BLK_ICQ */
474
475 #ifdef CONFIG_BLK_DEV_ZONED
476 void disk_init_zone_resources(struct gendisk *disk);
477 void disk_free_zone_resources(struct gendisk *disk);
bio_zone_write_plugging(struct bio * bio)478 static inline bool bio_zone_write_plugging(struct bio *bio)
479 {
480 return bio_flagged(bio, BIO_ZONE_WRITE_PLUGGING);
481 }
blk_req_bio_is_zone_append(struct request * rq,struct bio * bio)482 static inline bool blk_req_bio_is_zone_append(struct request *rq,
483 struct bio *bio)
484 {
485 return req_op(rq) == REQ_OP_ZONE_APPEND ||
486 bio_flagged(bio, BIO_EMULATES_ZONE_APPEND);
487 }
488 void blk_zone_write_plug_bio_merged(struct bio *bio);
489 void blk_zone_write_plug_init_request(struct request *rq);
490 void blk_zone_append_update_request_bio(struct request *rq, struct bio *bio);
491 void blk_zone_write_plug_bio_endio(struct bio *bio);
blk_zone_bio_endio(struct bio * bio)492 static inline void blk_zone_bio_endio(struct bio *bio)
493 {
494 /*
495 * For write BIOs to zoned devices, signal the completion of the BIO so
496 * that the next write BIO can be submitted by zone write plugging.
497 */
498 if (bio_zone_write_plugging(bio))
499 blk_zone_write_plug_bio_endio(bio);
500 }
501
502 void blk_zone_write_plug_finish_request(struct request *rq);
blk_zone_finish_request(struct request * rq)503 static inline void blk_zone_finish_request(struct request *rq)
504 {
505 if (rq->rq_flags & RQF_ZONE_WRITE_PLUGGING)
506 blk_zone_write_plug_finish_request(rq);
507 }
508 int blkdev_report_zones_ioctl(struct block_device *bdev, unsigned int cmd,
509 unsigned long arg);
510 int blkdev_zone_mgmt_ioctl(struct block_device *bdev, blk_mode_t mode,
511 unsigned int cmd, unsigned long arg);
512 #else /* CONFIG_BLK_DEV_ZONED */
disk_init_zone_resources(struct gendisk * disk)513 static inline void disk_init_zone_resources(struct gendisk *disk)
514 {
515 }
disk_free_zone_resources(struct gendisk * disk)516 static inline void disk_free_zone_resources(struct gendisk *disk)
517 {
518 }
bio_zone_write_plugging(struct bio * bio)519 static inline bool bio_zone_write_plugging(struct bio *bio)
520 {
521 return false;
522 }
blk_req_bio_is_zone_append(struct request * req,struct bio * bio)523 static inline bool blk_req_bio_is_zone_append(struct request *req,
524 struct bio *bio)
525 {
526 return false;
527 }
blk_zone_write_plug_bio_merged(struct bio * bio)528 static inline void blk_zone_write_plug_bio_merged(struct bio *bio)
529 {
530 }
blk_zone_write_plug_init_request(struct request * rq)531 static inline void blk_zone_write_plug_init_request(struct request *rq)
532 {
533 }
blk_zone_append_update_request_bio(struct request * rq,struct bio * bio)534 static inline void blk_zone_append_update_request_bio(struct request *rq,
535 struct bio *bio)
536 {
537 }
blk_zone_bio_endio(struct bio * bio)538 static inline void blk_zone_bio_endio(struct bio *bio)
539 {
540 }
blk_zone_finish_request(struct request * rq)541 static inline void blk_zone_finish_request(struct request *rq)
542 {
543 }
blkdev_report_zones_ioctl(struct block_device * bdev,unsigned int cmd,unsigned long arg)544 static inline int blkdev_report_zones_ioctl(struct block_device *bdev,
545 unsigned int cmd, unsigned long arg)
546 {
547 return -ENOTTY;
548 }
blkdev_zone_mgmt_ioctl(struct block_device * bdev,blk_mode_t mode,unsigned int cmd,unsigned long arg)549 static inline int blkdev_zone_mgmt_ioctl(struct block_device *bdev,
550 blk_mode_t mode, unsigned int cmd, unsigned long arg)
551 {
552 return -ENOTTY;
553 }
554 #endif /* CONFIG_BLK_DEV_ZONED */
555
556 struct block_device *bdev_alloc(struct gendisk *disk, u8 partno);
557 void bdev_add(struct block_device *bdev, dev_t dev);
558 void bdev_unhash(struct block_device *bdev);
559 void bdev_drop(struct block_device *bdev);
560
561 int blk_alloc_ext_minor(void);
562 void blk_free_ext_minor(unsigned int minor);
563 #define ADDPART_FLAG_NONE 0
564 #define ADDPART_FLAG_RAID 1
565 #define ADDPART_FLAG_WHOLEDISK 2
566 #define ADDPART_FLAG_READONLY 4
567 int bdev_add_partition(struct gendisk *disk, int partno, sector_t start,
568 sector_t length);
569 int bdev_del_partition(struct gendisk *disk, int partno);
570 int bdev_resize_partition(struct gendisk *disk, int partno, sector_t start,
571 sector_t length);
572 void drop_partition(struct block_device *part);
573
574 void bdev_set_nr_sectors(struct block_device *bdev, sector_t sectors);
575
576 struct gendisk *__alloc_disk_node(struct request_queue *q, int node_id,
577 struct lock_class_key *lkclass);
578
579 /*
580 * Clean up a page appropriately, where the page may be pinned, may have a
581 * ref taken on it or neither.
582 */
bio_release_page(struct bio * bio,struct page * page)583 static inline void bio_release_page(struct bio *bio, struct page *page)
584 {
585 if (bio_flagged(bio, BIO_PAGE_PINNED))
586 unpin_user_page(page);
587 }
588
589 struct request_queue *blk_alloc_queue(struct queue_limits *lim, int node_id);
590
591 int disk_scan_partitions(struct gendisk *disk, blk_mode_t mode);
592
593 int disk_alloc_events(struct gendisk *disk);
594 void disk_add_events(struct gendisk *disk);
595 void disk_del_events(struct gendisk *disk);
596 void disk_release_events(struct gendisk *disk);
597 void disk_block_events(struct gendisk *disk);
598 void disk_unblock_events(struct gendisk *disk);
599 void disk_flush_events(struct gendisk *disk, unsigned int mask);
600 extern struct device_attribute dev_attr_events;
601 extern struct device_attribute dev_attr_events_async;
602 extern struct device_attribute dev_attr_events_poll_msecs;
603
604 extern struct attribute_group blk_trace_attr_group;
605
606 blk_mode_t file_to_blk_mode(struct file *file);
607 int truncate_bdev_range(struct block_device *bdev, blk_mode_t mode,
608 loff_t lstart, loff_t lend);
609 long blkdev_ioctl(struct file *file, unsigned cmd, unsigned long arg);
610 int blkdev_uring_cmd(struct io_uring_cmd *cmd, unsigned int issue_flags);
611 long compat_blkdev_ioctl(struct file *file, unsigned cmd, unsigned long arg);
612
613 extern const struct address_space_operations def_blk_aops;
614
615 int disk_register_independent_access_ranges(struct gendisk *disk);
616 void disk_unregister_independent_access_ranges(struct gendisk *disk);
617
618 #ifdef CONFIG_FAIL_MAKE_REQUEST
619 bool should_fail_request(struct block_device *part, unsigned int bytes);
620 #else /* CONFIG_FAIL_MAKE_REQUEST */
should_fail_request(struct block_device * part,unsigned int bytes)621 static inline bool should_fail_request(struct block_device *part,
622 unsigned int bytes)
623 {
624 return false;
625 }
626 #endif /* CONFIG_FAIL_MAKE_REQUEST */
627
628 /*
629 * Optimized request reference counting. Ideally we'd make timeouts be more
630 * clever, as that's the only reason we need references at all... But until
631 * this happens, this is faster than using refcount_t. Also see:
632 *
633 * abc54d634334 ("io_uring: switch to atomic_t for io_kiocb reference count")
634 */
635 #define req_ref_zero_or_close_to_overflow(req) \
636 ((unsigned int) atomic_read(&(req->ref)) + 127u <= 127u)
637
req_ref_inc_not_zero(struct request * req)638 static inline bool req_ref_inc_not_zero(struct request *req)
639 {
640 return atomic_inc_not_zero(&req->ref);
641 }
642
req_ref_put_and_test(struct request * req)643 static inline bool req_ref_put_and_test(struct request *req)
644 {
645 WARN_ON_ONCE(req_ref_zero_or_close_to_overflow(req));
646 return atomic_dec_and_test(&req->ref);
647 }
648
req_ref_set(struct request * req,int value)649 static inline void req_ref_set(struct request *req, int value)
650 {
651 atomic_set(&req->ref, value);
652 }
653
req_ref_read(struct request * req)654 static inline int req_ref_read(struct request *req)
655 {
656 return atomic_read(&req->ref);
657 }
658
blk_time_get_ns(void)659 static inline u64 blk_time_get_ns(void)
660 {
661 struct blk_plug *plug = current->plug;
662
663 if (!plug || !in_task())
664 return ktime_get_ns();
665
666 /*
667 * 0 could very well be a valid time, but rather than flag "this is
668 * a valid timestamp" separately, just accept that we'll do an extra
669 * ktime_get_ns() if we just happen to get 0 as the current time.
670 */
671 if (!plug->cur_ktime) {
672 plug->cur_ktime = ktime_get_ns();
673 current->flags |= PF_BLOCK_TS;
674 }
675 return plug->cur_ktime;
676 }
677
blk_time_get(void)678 static inline ktime_t blk_time_get(void)
679 {
680 return ns_to_ktime(blk_time_get_ns());
681 }
682
683 /*
684 * From most significant bit:
685 * 1 bit: reserved for other usage, see below
686 * 12 bits: original size of bio
687 * 51 bits: issue time of bio
688 */
689 #define BIO_ISSUE_RES_BITS 1
690 #define BIO_ISSUE_SIZE_BITS 12
691 #define BIO_ISSUE_RES_SHIFT (64 - BIO_ISSUE_RES_BITS)
692 #define BIO_ISSUE_SIZE_SHIFT (BIO_ISSUE_RES_SHIFT - BIO_ISSUE_SIZE_BITS)
693 #define BIO_ISSUE_TIME_MASK ((1ULL << BIO_ISSUE_SIZE_SHIFT) - 1)
694 #define BIO_ISSUE_SIZE_MASK \
695 (((1ULL << BIO_ISSUE_SIZE_BITS) - 1) << BIO_ISSUE_SIZE_SHIFT)
696 #define BIO_ISSUE_RES_MASK (~((1ULL << BIO_ISSUE_RES_SHIFT) - 1))
697
698 /* Reserved bit for blk-throtl */
699 #define BIO_ISSUE_THROTL_SKIP_LATENCY (1ULL << 63)
700
__bio_issue_time(u64 time)701 static inline u64 __bio_issue_time(u64 time)
702 {
703 return time & BIO_ISSUE_TIME_MASK;
704 }
705
bio_issue_time(struct bio_issue * issue)706 static inline u64 bio_issue_time(struct bio_issue *issue)
707 {
708 return __bio_issue_time(issue->value);
709 }
710
bio_issue_size(struct bio_issue * issue)711 static inline sector_t bio_issue_size(struct bio_issue *issue)
712 {
713 return ((issue->value & BIO_ISSUE_SIZE_MASK) >> BIO_ISSUE_SIZE_SHIFT);
714 }
715
bio_issue_init(struct bio_issue * issue,sector_t size)716 static inline void bio_issue_init(struct bio_issue *issue,
717 sector_t size)
718 {
719 size &= (1ULL << BIO_ISSUE_SIZE_BITS) - 1;
720 issue->value = ((issue->value & BIO_ISSUE_RES_MASK) |
721 (blk_time_get_ns() & BIO_ISSUE_TIME_MASK) |
722 ((u64)size << BIO_ISSUE_SIZE_SHIFT));
723 }
724
725 void bdev_release(struct file *bdev_file);
726 int bdev_open(struct block_device *bdev, blk_mode_t mode, void *holder,
727 const struct blk_holder_ops *hops, struct file *bdev_file);
728 int bdev_permission(dev_t dev, blk_mode_t mode, void *holder);
729
730 void blk_integrity_generate(struct bio *bio);
731 void blk_integrity_verify_iter(struct bio *bio, struct bvec_iter *saved_iter);
732 void blk_integrity_prepare(struct request *rq);
733 void blk_integrity_complete(struct request *rq, unsigned int nr_bytes);
734
735 #ifdef CONFIG_LOCKDEP
blk_freeze_acquire_lock(struct request_queue * q)736 static inline void blk_freeze_acquire_lock(struct request_queue *q)
737 {
738 if (!q->mq_freeze_disk_dead)
739 rwsem_acquire(&q->io_lockdep_map, 0, 1, _RET_IP_);
740 if (!q->mq_freeze_queue_dying)
741 rwsem_acquire(&q->q_lockdep_map, 0, 1, _RET_IP_);
742 }
743
blk_unfreeze_release_lock(struct request_queue * q)744 static inline void blk_unfreeze_release_lock(struct request_queue *q)
745 {
746 if (!q->mq_freeze_queue_dying)
747 rwsem_release(&q->q_lockdep_map, _RET_IP_);
748 if (!q->mq_freeze_disk_dead)
749 rwsem_release(&q->io_lockdep_map, _RET_IP_);
750 }
751 #else
blk_freeze_acquire_lock(struct request_queue * q)752 static inline void blk_freeze_acquire_lock(struct request_queue *q)
753 {
754 }
blk_unfreeze_release_lock(struct request_queue * q)755 static inline void blk_unfreeze_release_lock(struct request_queue *q)
756 {
757 }
758 #endif
759
760 #endif /* BLK_INTERNAL_H */
761