xref: /linux/net/sunrpc/svcsock.c (revision 53e760d8949895390e256e723e7ee46618310361)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * linux/net/sunrpc/svcsock.c
4  *
5  * These are the RPC server socket internals.
6  *
7  * The server scheduling algorithm does not always distribute the load
8  * evenly when servicing a single client. May need to modify the
9  * svc_xprt_enqueue procedure...
10  *
11  * TCP support is largely untested and may be a little slow. The problem
12  * is that we currently do two separate recvfrom's, one for the 4-byte
13  * record length, and the second for the actual record. This could possibly
14  * be improved by always reading a minimum size of around 100 bytes and
15  * tucking any superfluous bytes away in a temporary store. Still, that
16  * leaves write requests out in the rain. An alternative may be to peek at
17  * the first skb in the queue, and if it matches the next TCP sequence
18  * number, to extract the record marker. Yuck.
19  *
20  * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
21  */
22 
23 #include <linux/kernel.h>
24 #include <linux/sched.h>
25 #include <linux/module.h>
26 #include <linux/errno.h>
27 #include <linux/fcntl.h>
28 #include <linux/net.h>
29 #include <linux/in.h>
30 #include <linux/inet.h>
31 #include <linux/udp.h>
32 #include <linux/tcp.h>
33 #include <linux/unistd.h>
34 #include <linux/slab.h>
35 #include <linux/netdevice.h>
36 #include <linux/skbuff.h>
37 #include <linux/file.h>
38 #include <linux/freezer.h>
39 #include <linux/bvec.h>
40 
41 #include <net/sock.h>
42 #include <net/checksum.h>
43 #include <net/ip.h>
44 #include <net/ipv6.h>
45 #include <net/udp.h>
46 #include <net/tcp.h>
47 #include <net/tcp_states.h>
48 #include <net/tls_prot.h>
49 #include <net/handshake.h>
50 #include <linux/uaccess.h>
51 #include <linux/highmem.h>
52 #include <asm/ioctls.h>
53 #include <linux/key.h>
54 
55 #include <linux/sunrpc/types.h>
56 #include <linux/sunrpc/clnt.h>
57 #include <linux/sunrpc/xdr.h>
58 #include <linux/sunrpc/msg_prot.h>
59 #include <linux/sunrpc/svcsock.h>
60 #include <linux/sunrpc/stats.h>
61 #include <linux/sunrpc/xprt.h>
62 
63 #include <trace/events/sock.h>
64 #include <trace/events/sunrpc.h>
65 
66 #include "socklib.h"
67 #include "sunrpc.h"
68 
69 #define RPCDBG_FACILITY	RPCDBG_SVCXPRT
70 
71 /* To-do: to avoid tying up an nfsd thread while waiting for a
72  * handshake request, the request could instead be deferred.
73  */
74 enum {
75 	SVC_HANDSHAKE_TO	= 5U * HZ
76 };
77 
78 static struct svc_sock *svc_setup_socket(struct svc_serv *, struct socket *,
79 					 int flags);
80 static int		svc_udp_recvfrom(struct svc_rqst *);
81 static int		svc_udp_sendto(struct svc_rqst *);
82 static void		svc_sock_detach(struct svc_xprt *);
83 static void		svc_tcp_sock_detach(struct svc_xprt *);
84 static void		svc_sock_free(struct svc_xprt *);
85 
86 static struct svc_xprt *svc_create_socket(struct svc_serv *, int,
87 					  struct net *, struct sockaddr *,
88 					  int, int);
89 #ifdef CONFIG_DEBUG_LOCK_ALLOC
90 static struct lock_class_key svc_key[2];
91 static struct lock_class_key svc_slock_key[2];
92 
svc_reclassify_socket(struct socket * sock)93 static void svc_reclassify_socket(struct socket *sock)
94 {
95 	struct sock *sk = sock->sk;
96 
97 	if (WARN_ON_ONCE(!sock_allow_reclassification(sk)))
98 		return;
99 
100 	switch (sk->sk_family) {
101 	case AF_INET:
102 		sock_lock_init_class_and_name(sk, "slock-AF_INET-NFSD",
103 					      &svc_slock_key[0],
104 					      "sk_xprt.xpt_lock-AF_INET-NFSD",
105 					      &svc_key[0]);
106 		break;
107 
108 	case AF_INET6:
109 		sock_lock_init_class_and_name(sk, "slock-AF_INET6-NFSD",
110 					      &svc_slock_key[1],
111 					      "sk_xprt.xpt_lock-AF_INET6-NFSD",
112 					      &svc_key[1]);
113 		break;
114 
115 	default:
116 		BUG();
117 	}
118 }
119 #else
svc_reclassify_socket(struct socket * sock)120 static void svc_reclassify_socket(struct socket *sock)
121 {
122 }
123 #endif
124 
125 /**
126  * svc_tcp_release_ctxt - Release transport-related resources
127  * @xprt: the transport which owned the context
128  * @ctxt: the context from rqstp->rq_xprt_ctxt or dr->xprt_ctxt
129  *
130  */
svc_tcp_release_ctxt(struct svc_xprt * xprt,void * ctxt)131 static void svc_tcp_release_ctxt(struct svc_xprt *xprt, void *ctxt)
132 {
133 }
134 
135 /**
136  * svc_udp_release_ctxt - Release transport-related resources
137  * @xprt: the transport which owned the context
138  * @ctxt: the context from rqstp->rq_xprt_ctxt or dr->xprt_ctxt
139  *
140  */
svc_udp_release_ctxt(struct svc_xprt * xprt,void * ctxt)141 static void svc_udp_release_ctxt(struct svc_xprt *xprt, void *ctxt)
142 {
143 	struct sk_buff *skb = ctxt;
144 
145 	if (skb)
146 		consume_skb(skb);
147 }
148 
149 union svc_pktinfo_u {
150 	struct in_pktinfo pkti;
151 	struct in6_pktinfo pkti6;
152 };
153 #define SVC_PKTINFO_SPACE \
154 	CMSG_SPACE(sizeof(union svc_pktinfo_u))
155 
svc_set_cmsg_data(struct svc_rqst * rqstp,struct cmsghdr * cmh)156 static void svc_set_cmsg_data(struct svc_rqst *rqstp, struct cmsghdr *cmh)
157 {
158 	struct svc_sock *svsk =
159 		container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt);
160 	switch (svsk->sk_sk->sk_family) {
161 	case AF_INET: {
162 			struct in_pktinfo *pki = CMSG_DATA(cmh);
163 
164 			cmh->cmsg_level = SOL_IP;
165 			cmh->cmsg_type = IP_PKTINFO;
166 			pki->ipi_ifindex = 0;
167 			pki->ipi_spec_dst.s_addr =
168 				 svc_daddr_in(rqstp)->sin_addr.s_addr;
169 			cmh->cmsg_len = CMSG_LEN(sizeof(*pki));
170 		}
171 		break;
172 
173 	case AF_INET6: {
174 			struct in6_pktinfo *pki = CMSG_DATA(cmh);
175 			struct sockaddr_in6 *daddr = svc_daddr_in6(rqstp);
176 
177 			cmh->cmsg_level = SOL_IPV6;
178 			cmh->cmsg_type = IPV6_PKTINFO;
179 			pki->ipi6_ifindex = daddr->sin6_scope_id;
180 			pki->ipi6_addr = daddr->sin6_addr;
181 			cmh->cmsg_len = CMSG_LEN(sizeof(*pki));
182 		}
183 		break;
184 	}
185 }
186 
svc_sock_result_payload(struct svc_rqst * rqstp,unsigned int offset,unsigned int length)187 static int svc_sock_result_payload(struct svc_rqst *rqstp, unsigned int offset,
188 				   unsigned int length)
189 {
190 	return 0;
191 }
192 
193 /*
194  * Report socket names for nfsdfs
195  */
svc_one_sock_name(struct svc_sock * svsk,char * buf,int remaining)196 static int svc_one_sock_name(struct svc_sock *svsk, char *buf, int remaining)
197 {
198 	const struct sock *sk = svsk->sk_sk;
199 	const char *proto_name = sk->sk_protocol == IPPROTO_UDP ?
200 							"udp" : "tcp";
201 	int len;
202 
203 	switch (sk->sk_family) {
204 	case PF_INET:
205 		len = snprintf(buf, remaining, "ipv4 %s %pI4 %d\n",
206 				proto_name,
207 				&inet_sk(sk)->inet_rcv_saddr,
208 				inet_sk(sk)->inet_num);
209 		break;
210 #if IS_ENABLED(CONFIG_IPV6)
211 	case PF_INET6:
212 		len = snprintf(buf, remaining, "ipv6 %s %pI6 %d\n",
213 				proto_name,
214 				&sk->sk_v6_rcv_saddr,
215 				inet_sk(sk)->inet_num);
216 		break;
217 #endif
218 	default:
219 		len = snprintf(buf, remaining, "*unknown-%d*\n",
220 				sk->sk_family);
221 	}
222 
223 	if (len >= remaining) {
224 		*buf = '\0';
225 		return -ENAMETOOLONG;
226 	}
227 	return len;
228 }
229 
230 static int
svc_tcp_sock_process_cmsg(struct socket * sock,struct msghdr * msg,struct cmsghdr * cmsg,int ret)231 svc_tcp_sock_process_cmsg(struct socket *sock, struct msghdr *msg,
232 			  struct cmsghdr *cmsg, int ret)
233 {
234 	u8 content_type = tls_get_record_type(sock->sk, cmsg);
235 	u8 level, description;
236 
237 	switch (content_type) {
238 	case 0:
239 		break;
240 	case TLS_RECORD_TYPE_DATA:
241 		/* TLS sets EOR at the end of each application data
242 		 * record, even though there might be more frames
243 		 * waiting to be decrypted.
244 		 */
245 		msg->msg_flags &= ~MSG_EOR;
246 		break;
247 	case TLS_RECORD_TYPE_ALERT:
248 		tls_alert_recv(sock->sk, msg, &level, &description);
249 		ret = (level == TLS_ALERT_LEVEL_FATAL) ?
250 			-ENOTCONN : -EAGAIN;
251 		break;
252 	default:
253 		/* discard this record type */
254 		ret = -EAGAIN;
255 	}
256 	return ret;
257 }
258 
259 static int
svc_tcp_sock_recv_cmsg(struct socket * sock,unsigned int * msg_flags)260 svc_tcp_sock_recv_cmsg(struct socket *sock, unsigned int *msg_flags)
261 {
262 	union {
263 		struct cmsghdr	cmsg;
264 		u8		buf[CMSG_SPACE(sizeof(u8))];
265 	} u;
266 	u8 alert[2];
267 	struct kvec alert_kvec = {
268 		.iov_base = alert,
269 		.iov_len = sizeof(alert),
270 	};
271 	struct msghdr msg = {
272 		.msg_flags = *msg_flags,
273 		.msg_control = &u,
274 		.msg_controllen = sizeof(u),
275 	};
276 	int ret;
277 
278 	iov_iter_kvec(&msg.msg_iter, ITER_DEST, &alert_kvec, 1,
279 		      alert_kvec.iov_len);
280 	ret = sock_recvmsg(sock, &msg, MSG_DONTWAIT);
281 	if (ret > 0 &&
282 	    tls_get_record_type(sock->sk, &u.cmsg) == TLS_RECORD_TYPE_ALERT) {
283 		iov_iter_revert(&msg.msg_iter, ret);
284 		ret = svc_tcp_sock_process_cmsg(sock, &msg, &u.cmsg, -EAGAIN);
285 	}
286 	return ret;
287 }
288 
289 static int
svc_tcp_sock_recvmsg(struct svc_sock * svsk,struct msghdr * msg)290 svc_tcp_sock_recvmsg(struct svc_sock *svsk, struct msghdr *msg)
291 {
292 	int ret;
293 	struct socket *sock = svsk->sk_sock;
294 
295 	ret = sock_recvmsg(sock, msg, MSG_DONTWAIT);
296 	if (msg->msg_flags & MSG_CTRUNC) {
297 		msg->msg_flags &= ~(MSG_CTRUNC | MSG_EOR);
298 		if (ret == 0 || ret == -EIO)
299 			ret = svc_tcp_sock_recv_cmsg(sock, &msg->msg_flags);
300 	}
301 	return ret;
302 }
303 
304 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
svc_flush_bvec(const struct bio_vec * bvec,size_t size,size_t seek)305 static void svc_flush_bvec(const struct bio_vec *bvec, size_t size, size_t seek)
306 {
307 	struct bvec_iter bi = {
308 		.bi_size	= size + seek,
309 	};
310 	struct bio_vec bv;
311 
312 	bvec_iter_advance(bvec, &bi, seek & PAGE_MASK);
313 	for_each_bvec(bv, bvec, bi, bi)
314 		flush_dcache_page(bv.bv_page);
315 }
316 #else
svc_flush_bvec(const struct bio_vec * bvec,size_t size,size_t seek)317 static inline void svc_flush_bvec(const struct bio_vec *bvec, size_t size,
318 				  size_t seek)
319 {
320 }
321 #endif
322 
323 /*
324  * Read from @rqstp's transport socket. The incoming message fills whole
325  * pages in @rqstp's rq_pages array until the last page of the message
326  * has been received into a partial page.
327  */
svc_tcp_read_msg(struct svc_rqst * rqstp,size_t buflen,size_t seek)328 static ssize_t svc_tcp_read_msg(struct svc_rqst *rqstp, size_t buflen,
329 				size_t seek)
330 {
331 	struct svc_sock *svsk =
332 		container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt);
333 	struct bio_vec *bvec = rqstp->rq_bvec;
334 	struct msghdr msg = { NULL };
335 	unsigned int i;
336 	ssize_t len;
337 	size_t t;
338 
339 	clear_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
340 
341 	for (i = 0, t = 0; t < buflen; i++, t += PAGE_SIZE)
342 		bvec_set_page(&bvec[i], rqstp->rq_pages[i], PAGE_SIZE, 0);
343 	rqstp->rq_respages = &rqstp->rq_pages[i];
344 	rqstp->rq_next_page = rqstp->rq_respages + 1;
345 
346 	iov_iter_bvec(&msg.msg_iter, ITER_DEST, bvec, i, buflen);
347 	if (seek) {
348 		iov_iter_advance(&msg.msg_iter, seek);
349 		buflen -= seek;
350 	}
351 	len = svc_tcp_sock_recvmsg(svsk, &msg);
352 	if (len > 0)
353 		svc_flush_bvec(bvec, len, seek);
354 
355 	/* If we read a full record, then assume there may be more
356 	 * data to read (stream based sockets only!)
357 	 */
358 	if (len == buflen)
359 		set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
360 
361 	return len;
362 }
363 
364 /*
365  * Set socket snd and rcv buffer lengths
366  */
svc_sock_setbufsize(struct svc_sock * svsk,unsigned int nreqs)367 static void svc_sock_setbufsize(struct svc_sock *svsk, unsigned int nreqs)
368 {
369 	unsigned int max_mesg = svsk->sk_xprt.xpt_server->sv_max_mesg;
370 	struct socket *sock = svsk->sk_sock;
371 
372 	nreqs = min(nreqs, INT_MAX / 2 / max_mesg);
373 
374 	lock_sock(sock->sk);
375 	sock->sk->sk_sndbuf = nreqs * max_mesg * 2;
376 	sock->sk->sk_rcvbuf = nreqs * max_mesg * 2;
377 	sock->sk->sk_write_space(sock->sk);
378 	release_sock(sock->sk);
379 }
380 
svc_sock_secure_port(struct svc_rqst * rqstp)381 static void svc_sock_secure_port(struct svc_rqst *rqstp)
382 {
383 	if (svc_port_is_privileged(svc_addr(rqstp)))
384 		set_bit(RQ_SECURE, &rqstp->rq_flags);
385 	else
386 		clear_bit(RQ_SECURE, &rqstp->rq_flags);
387 }
388 
389 /*
390  * INET callback when data has been received on the socket.
391  */
svc_data_ready(struct sock * sk)392 static void svc_data_ready(struct sock *sk)
393 {
394 	struct svc_sock	*svsk = (struct svc_sock *)sk->sk_user_data;
395 
396 	trace_sk_data_ready(sk);
397 
398 	if (svsk) {
399 		/* Refer to svc_setup_socket() for details. */
400 		rmb();
401 		svsk->sk_odata(sk);
402 		trace_svcsock_data_ready(&svsk->sk_xprt, 0);
403 		if (test_bit(XPT_HANDSHAKE, &svsk->sk_xprt.xpt_flags))
404 			return;
405 		if (!test_and_set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags))
406 			svc_xprt_enqueue(&svsk->sk_xprt);
407 	}
408 }
409 
410 /*
411  * INET callback when space is newly available on the socket.
412  */
svc_write_space(struct sock * sk)413 static void svc_write_space(struct sock *sk)
414 {
415 	struct svc_sock	*svsk = (struct svc_sock *)(sk->sk_user_data);
416 
417 	if (svsk) {
418 		/* Refer to svc_setup_socket() for details. */
419 		rmb();
420 		trace_svcsock_write_space(&svsk->sk_xprt, 0);
421 		svsk->sk_owspace(sk);
422 		svc_xprt_enqueue(&svsk->sk_xprt);
423 	}
424 }
425 
svc_tcp_has_wspace(struct svc_xprt * xprt)426 static int svc_tcp_has_wspace(struct svc_xprt *xprt)
427 {
428 	struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
429 
430 	if (test_bit(XPT_LISTENER, &xprt->xpt_flags))
431 		return 1;
432 	return !test_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
433 }
434 
svc_tcp_kill_temp_xprt(struct svc_xprt * xprt)435 static void svc_tcp_kill_temp_xprt(struct svc_xprt *xprt)
436 {
437 	struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
438 
439 	sock_no_linger(svsk->sk_sock->sk);
440 }
441 
442 /**
443  * svc_tcp_handshake_done - Handshake completion handler
444  * @data: address of xprt to wake
445  * @status: status of handshake
446  * @peerid: serial number of key containing the remote peer's identity
447  *
448  * If a security policy is specified as an export option, we don't
449  * have a specific export here to check. So we set a "TLS session
450  * is present" flag on the xprt and let an upper layer enforce local
451  * security policy.
452  */
svc_tcp_handshake_done(void * data,int status,key_serial_t peerid)453 static void svc_tcp_handshake_done(void *data, int status, key_serial_t peerid)
454 {
455 	struct svc_xprt *xprt = data;
456 	struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
457 
458 	if (!status) {
459 		if (peerid != TLS_NO_PEERID)
460 			set_bit(XPT_PEER_AUTH, &xprt->xpt_flags);
461 		set_bit(XPT_TLS_SESSION, &xprt->xpt_flags);
462 	}
463 	clear_bit(XPT_HANDSHAKE, &xprt->xpt_flags);
464 	complete_all(&svsk->sk_handshake_done);
465 }
466 
467 /**
468  * svc_tcp_handshake - Perform a transport-layer security handshake
469  * @xprt: connected transport endpoint
470  *
471  */
svc_tcp_handshake(struct svc_xprt * xprt)472 static void svc_tcp_handshake(struct svc_xprt *xprt)
473 {
474 	struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
475 	struct sock *sk = svsk->sk_sock->sk;
476 	struct tls_handshake_args args = {
477 		.ta_sock	= svsk->sk_sock,
478 		.ta_done	= svc_tcp_handshake_done,
479 		.ta_data	= xprt,
480 	};
481 	int ret;
482 
483 	trace_svc_tls_upcall(xprt);
484 
485 	clear_bit(XPT_TLS_SESSION, &xprt->xpt_flags);
486 	init_completion(&svsk->sk_handshake_done);
487 
488 	ret = tls_server_hello_x509(&args, GFP_KERNEL);
489 	if (ret) {
490 		trace_svc_tls_not_started(xprt);
491 		goto out_failed;
492 	}
493 
494 	ret = wait_for_completion_interruptible_timeout(&svsk->sk_handshake_done,
495 							SVC_HANDSHAKE_TO);
496 	if (ret <= 0) {
497 		if (tls_handshake_cancel(sk)) {
498 			trace_svc_tls_timed_out(xprt);
499 			goto out_close;
500 		}
501 	}
502 
503 	if (!test_bit(XPT_TLS_SESSION, &xprt->xpt_flags)) {
504 		trace_svc_tls_unavailable(xprt);
505 		goto out_close;
506 	}
507 
508 	/* Mark the transport ready in case the remote sent RPC
509 	 * traffic before the kernel received the handshake
510 	 * completion downcall.
511 	 */
512 	set_bit(XPT_DATA, &xprt->xpt_flags);
513 	svc_xprt_enqueue(xprt);
514 	return;
515 
516 out_close:
517 	set_bit(XPT_CLOSE, &xprt->xpt_flags);
518 out_failed:
519 	clear_bit(XPT_HANDSHAKE, &xprt->xpt_flags);
520 	set_bit(XPT_DATA, &xprt->xpt_flags);
521 	svc_xprt_enqueue(xprt);
522 }
523 
524 /*
525  * See net/ipv6/ip_sockglue.c : ip_cmsg_recv_pktinfo
526  */
svc_udp_get_dest_address4(struct svc_rqst * rqstp,struct cmsghdr * cmh)527 static int svc_udp_get_dest_address4(struct svc_rqst *rqstp,
528 				     struct cmsghdr *cmh)
529 {
530 	struct in_pktinfo *pki = CMSG_DATA(cmh);
531 	struct sockaddr_in *daddr = svc_daddr_in(rqstp);
532 
533 	if (cmh->cmsg_type != IP_PKTINFO)
534 		return 0;
535 
536 	daddr->sin_family = AF_INET;
537 	daddr->sin_addr.s_addr = pki->ipi_spec_dst.s_addr;
538 	return 1;
539 }
540 
541 /*
542  * See net/ipv6/datagram.c : ip6_datagram_recv_ctl
543  */
svc_udp_get_dest_address6(struct svc_rqst * rqstp,struct cmsghdr * cmh)544 static int svc_udp_get_dest_address6(struct svc_rqst *rqstp,
545 				     struct cmsghdr *cmh)
546 {
547 	struct in6_pktinfo *pki = CMSG_DATA(cmh);
548 	struct sockaddr_in6 *daddr = svc_daddr_in6(rqstp);
549 
550 	if (cmh->cmsg_type != IPV6_PKTINFO)
551 		return 0;
552 
553 	daddr->sin6_family = AF_INET6;
554 	daddr->sin6_addr = pki->ipi6_addr;
555 	daddr->sin6_scope_id = pki->ipi6_ifindex;
556 	return 1;
557 }
558 
559 /*
560  * Copy the UDP datagram's destination address to the rqstp structure.
561  * The 'destination' address in this case is the address to which the
562  * peer sent the datagram, i.e. our local address. For multihomed
563  * hosts, this can change from msg to msg. Note that only the IP
564  * address changes, the port number should remain the same.
565  */
svc_udp_get_dest_address(struct svc_rqst * rqstp,struct cmsghdr * cmh)566 static int svc_udp_get_dest_address(struct svc_rqst *rqstp,
567 				    struct cmsghdr *cmh)
568 {
569 	switch (cmh->cmsg_level) {
570 	case SOL_IP:
571 		return svc_udp_get_dest_address4(rqstp, cmh);
572 	case SOL_IPV6:
573 		return svc_udp_get_dest_address6(rqstp, cmh);
574 	}
575 
576 	return 0;
577 }
578 
579 /**
580  * svc_udp_recvfrom - Receive a datagram from a UDP socket.
581  * @rqstp: request structure into which to receive an RPC Call
582  *
583  * Called in a loop when XPT_DATA has been set.
584  *
585  * Returns:
586  *   On success, the number of bytes in a received RPC Call, or
587  *   %0 if a complete RPC Call message was not ready to return
588  */
svc_udp_recvfrom(struct svc_rqst * rqstp)589 static int svc_udp_recvfrom(struct svc_rqst *rqstp)
590 {
591 	struct svc_sock	*svsk =
592 		container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt);
593 	struct svc_serv	*serv = svsk->sk_xprt.xpt_server;
594 	struct sk_buff	*skb;
595 	union {
596 		struct cmsghdr	hdr;
597 		long		all[SVC_PKTINFO_SPACE / sizeof(long)];
598 	} buffer;
599 	struct cmsghdr *cmh = &buffer.hdr;
600 	struct msghdr msg = {
601 		.msg_name = svc_addr(rqstp),
602 		.msg_control = cmh,
603 		.msg_controllen = sizeof(buffer),
604 		.msg_flags = MSG_DONTWAIT,
605 	};
606 	size_t len;
607 	int err;
608 
609 	if (test_and_clear_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags))
610 	    /* udp sockets need large rcvbuf as all pending
611 	     * requests are still in that buffer.  sndbuf must
612 	     * also be large enough that there is enough space
613 	     * for one reply per thread.  We count all threads
614 	     * rather than threads in a particular pool, which
615 	     * provides an upper bound on the number of threads
616 	     * which will access the socket.
617 	     */
618 	    svc_sock_setbufsize(svsk, serv->sv_nrthreads + 3);
619 
620 	clear_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
621 	err = kernel_recvmsg(svsk->sk_sock, &msg, NULL,
622 			     0, 0, MSG_PEEK | MSG_DONTWAIT);
623 	if (err < 0)
624 		goto out_recv_err;
625 	skb = skb_recv_udp(svsk->sk_sk, MSG_DONTWAIT, &err);
626 	if (!skb)
627 		goto out_recv_err;
628 
629 	len = svc_addr_len(svc_addr(rqstp));
630 	rqstp->rq_addrlen = len;
631 	if (skb->tstamp == 0) {
632 		skb->tstamp = ktime_get_real();
633 		/* Don't enable netstamp, sunrpc doesn't
634 		   need that much accuracy */
635 	}
636 	sock_write_timestamp(svsk->sk_sk, skb->tstamp);
637 	set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); /* there may be more data... */
638 
639 	len = skb->len;
640 	rqstp->rq_arg.len = len;
641 	trace_svcsock_udp_recv(&svsk->sk_xprt, len);
642 
643 	rqstp->rq_prot = IPPROTO_UDP;
644 
645 	if (!svc_udp_get_dest_address(rqstp, cmh))
646 		goto out_cmsg_err;
647 	rqstp->rq_daddrlen = svc_addr_len(svc_daddr(rqstp));
648 
649 	if (skb_is_nonlinear(skb)) {
650 		/* we have to copy */
651 		local_bh_disable();
652 		if (csum_partial_copy_to_xdr(&rqstp->rq_arg, skb))
653 			goto out_bh_enable;
654 		local_bh_enable();
655 		consume_skb(skb);
656 	} else {
657 		/* we can use it in-place */
658 		rqstp->rq_arg.head[0].iov_base = skb->data;
659 		rqstp->rq_arg.head[0].iov_len = len;
660 		if (skb_checksum_complete(skb))
661 			goto out_free;
662 		rqstp->rq_xprt_ctxt = skb;
663 	}
664 
665 	rqstp->rq_arg.page_base = 0;
666 	if (len <= rqstp->rq_arg.head[0].iov_len) {
667 		rqstp->rq_arg.head[0].iov_len = len;
668 		rqstp->rq_arg.page_len = 0;
669 		rqstp->rq_respages = rqstp->rq_pages+1;
670 	} else {
671 		rqstp->rq_arg.page_len = len - rqstp->rq_arg.head[0].iov_len;
672 		rqstp->rq_respages = rqstp->rq_pages + 1 +
673 			DIV_ROUND_UP(rqstp->rq_arg.page_len, PAGE_SIZE);
674 	}
675 	rqstp->rq_next_page = rqstp->rq_respages+1;
676 
677 	if (serv->sv_stats)
678 		serv->sv_stats->netudpcnt++;
679 
680 	svc_sock_secure_port(rqstp);
681 	svc_xprt_received(rqstp->rq_xprt);
682 	return len;
683 
684 out_recv_err:
685 	if (err != -EAGAIN) {
686 		/* possibly an icmp error */
687 		set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
688 	}
689 	trace_svcsock_udp_recv_err(&svsk->sk_xprt, err);
690 	goto out_clear_busy;
691 out_cmsg_err:
692 	net_warn_ratelimited("svc: received unknown control message %d/%d; dropping RPC reply datagram\n",
693 			     cmh->cmsg_level, cmh->cmsg_type);
694 	goto out_free;
695 out_bh_enable:
696 	local_bh_enable();
697 out_free:
698 	kfree_skb(skb);
699 out_clear_busy:
700 	svc_xprt_received(rqstp->rq_xprt);
701 	return 0;
702 }
703 
704 /**
705  * svc_udp_sendto - Send out a reply on a UDP socket
706  * @rqstp: completed svc_rqst
707  *
708  * xpt_mutex ensures @rqstp's whole message is written to the socket
709  * without interruption.
710  *
711  * Returns the number of bytes sent, or a negative errno.
712  */
svc_udp_sendto(struct svc_rqst * rqstp)713 static int svc_udp_sendto(struct svc_rqst *rqstp)
714 {
715 	struct svc_xprt *xprt = rqstp->rq_xprt;
716 	struct svc_sock	*svsk = container_of(xprt, struct svc_sock, sk_xprt);
717 	struct xdr_buf *xdr = &rqstp->rq_res;
718 	union {
719 		struct cmsghdr	hdr;
720 		long		all[SVC_PKTINFO_SPACE / sizeof(long)];
721 	} buffer;
722 	struct cmsghdr *cmh = &buffer.hdr;
723 	struct msghdr msg = {
724 		.msg_name	= &rqstp->rq_addr,
725 		.msg_namelen	= rqstp->rq_addrlen,
726 		.msg_control	= cmh,
727 		.msg_flags	= MSG_SPLICE_PAGES,
728 		.msg_controllen	= sizeof(buffer),
729 	};
730 	unsigned int count;
731 	int err;
732 
733 	svc_udp_release_ctxt(xprt, rqstp->rq_xprt_ctxt);
734 	rqstp->rq_xprt_ctxt = NULL;
735 
736 	svc_set_cmsg_data(rqstp, cmh);
737 
738 	mutex_lock(&xprt->xpt_mutex);
739 
740 	if (svc_xprt_is_dead(xprt))
741 		goto out_notconn;
742 
743 	count = xdr_buf_to_bvec(rqstp->rq_bvec, rqstp->rq_maxpages, xdr);
744 
745 	iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, rqstp->rq_bvec,
746 		      count, rqstp->rq_res.len);
747 	err = sock_sendmsg(svsk->sk_sock, &msg);
748 	if (err == -ECONNREFUSED) {
749 		/* ICMP error on earlier request. */
750 		iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, rqstp->rq_bvec,
751 			      count, rqstp->rq_res.len);
752 		err = sock_sendmsg(svsk->sk_sock, &msg);
753 	}
754 
755 	trace_svcsock_udp_send(xprt, err);
756 
757 	mutex_unlock(&xprt->xpt_mutex);
758 	return err;
759 
760 out_notconn:
761 	mutex_unlock(&xprt->xpt_mutex);
762 	return -ENOTCONN;
763 }
764 
svc_udp_has_wspace(struct svc_xprt * xprt)765 static int svc_udp_has_wspace(struct svc_xprt *xprt)
766 {
767 	struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
768 	struct svc_serv	*serv = xprt->xpt_server;
769 	unsigned long required;
770 
771 	/*
772 	 * Set the SOCK_NOSPACE flag before checking the available
773 	 * sock space.
774 	 */
775 	set_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
776 	required = atomic_read(&svsk->sk_xprt.xpt_reserved) + serv->sv_max_mesg;
777 	if (required*2 > sock_wspace(svsk->sk_sk))
778 		return 0;
779 	clear_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
780 	return 1;
781 }
782 
svc_udp_accept(struct svc_xprt * xprt)783 static struct svc_xprt *svc_udp_accept(struct svc_xprt *xprt)
784 {
785 	BUG();
786 	return NULL;
787 }
788 
svc_udp_kill_temp_xprt(struct svc_xprt * xprt)789 static void svc_udp_kill_temp_xprt(struct svc_xprt *xprt)
790 {
791 }
792 
svc_udp_create(struct svc_serv * serv,struct net * net,struct sockaddr * sa,int salen,int flags)793 static struct svc_xprt *svc_udp_create(struct svc_serv *serv,
794 				       struct net *net,
795 				       struct sockaddr *sa, int salen,
796 				       int flags)
797 {
798 	return svc_create_socket(serv, IPPROTO_UDP, net, sa, salen, flags);
799 }
800 
801 static const struct svc_xprt_ops svc_udp_ops = {
802 	.xpo_create = svc_udp_create,
803 	.xpo_recvfrom = svc_udp_recvfrom,
804 	.xpo_sendto = svc_udp_sendto,
805 	.xpo_result_payload = svc_sock_result_payload,
806 	.xpo_release_ctxt = svc_udp_release_ctxt,
807 	.xpo_detach = svc_sock_detach,
808 	.xpo_free = svc_sock_free,
809 	.xpo_has_wspace = svc_udp_has_wspace,
810 	.xpo_accept = svc_udp_accept,
811 	.xpo_kill_temp_xprt = svc_udp_kill_temp_xprt,
812 };
813 
814 static struct svc_xprt_class svc_udp_class = {
815 	.xcl_name = "udp",
816 	.xcl_owner = THIS_MODULE,
817 	.xcl_ops = &svc_udp_ops,
818 	.xcl_max_payload = RPCSVC_MAXPAYLOAD_UDP,
819 	.xcl_ident = XPRT_TRANSPORT_UDP,
820 };
821 
svc_udp_init(struct svc_sock * svsk,struct svc_serv * serv)822 static void svc_udp_init(struct svc_sock *svsk, struct svc_serv *serv)
823 {
824 	svc_xprt_init(sock_net(svsk->sk_sock->sk), &svc_udp_class,
825 		      &svsk->sk_xprt, serv);
826 	clear_bit(XPT_CACHE_AUTH, &svsk->sk_xprt.xpt_flags);
827 	svsk->sk_sk->sk_data_ready = svc_data_ready;
828 	svsk->sk_sk->sk_write_space = svc_write_space;
829 
830 	/* initialise setting must have enough space to
831 	 * receive and respond to one request.
832 	 * svc_udp_recvfrom will re-adjust if necessary
833 	 */
834 	svc_sock_setbufsize(svsk, 3);
835 
836 	/* data might have come in before data_ready set up */
837 	set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
838 	set_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags);
839 
840 	/* make sure we get destination address info */
841 	switch (svsk->sk_sk->sk_family) {
842 	case AF_INET:
843 		ip_sock_set_pktinfo(svsk->sk_sock->sk);
844 		break;
845 	case AF_INET6:
846 		ip6_sock_set_recvpktinfo(svsk->sk_sock->sk);
847 		break;
848 	default:
849 		BUG();
850 	}
851 }
852 
853 /*
854  * A data_ready event on a listening socket means there's a connection
855  * pending. Do not use state_change as a substitute for it.
856  */
svc_tcp_listen_data_ready(struct sock * sk)857 static void svc_tcp_listen_data_ready(struct sock *sk)
858 {
859 	struct svc_sock	*svsk = (struct svc_sock *)sk->sk_user_data;
860 
861 	trace_sk_data_ready(sk);
862 
863 	/*
864 	 * This callback may called twice when a new connection
865 	 * is established as a child socket inherits everything
866 	 * from a parent LISTEN socket.
867 	 * 1) data_ready method of the parent socket will be called
868 	 *    when one of child sockets become ESTABLISHED.
869 	 * 2) data_ready method of the child socket may be called
870 	 *    when it receives data before the socket is accepted.
871 	 * In case of 2, we should ignore it silently and DO NOT
872 	 * dereference svsk.
873 	 */
874 	if (sk->sk_state != TCP_LISTEN)
875 		return;
876 
877 	if (svsk) {
878 		/* Refer to svc_setup_socket() for details. */
879 		rmb();
880 		svsk->sk_odata(sk);
881 		set_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags);
882 		svc_xprt_enqueue(&svsk->sk_xprt);
883 	}
884 }
885 
886 /*
887  * A state change on a connected socket means it's dying or dead.
888  */
svc_tcp_state_change(struct sock * sk)889 static void svc_tcp_state_change(struct sock *sk)
890 {
891 	struct svc_sock	*svsk = (struct svc_sock *)sk->sk_user_data;
892 
893 	if (svsk) {
894 		/* Refer to svc_setup_socket() for details. */
895 		rmb();
896 		svsk->sk_ostate(sk);
897 		trace_svcsock_tcp_state(&svsk->sk_xprt, svsk->sk_sock);
898 		if (sk->sk_state != TCP_ESTABLISHED)
899 			svc_xprt_deferred_close(&svsk->sk_xprt);
900 	}
901 }
902 
903 /*
904  * Accept a TCP connection
905  */
svc_tcp_accept(struct svc_xprt * xprt)906 static struct svc_xprt *svc_tcp_accept(struct svc_xprt *xprt)
907 {
908 	struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
909 	struct sockaddr_storage addr;
910 	struct sockaddr	*sin = (struct sockaddr *) &addr;
911 	struct svc_serv	*serv = svsk->sk_xprt.xpt_server;
912 	struct socket	*sock = svsk->sk_sock;
913 	struct socket	*newsock;
914 	struct svc_sock	*newsvsk;
915 	int		err, slen;
916 
917 	if (!sock)
918 		return NULL;
919 
920 	clear_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags);
921 	err = kernel_accept(sock, &newsock, O_NONBLOCK);
922 	if (err < 0) {
923 		if (err != -EAGAIN)
924 			trace_svcsock_accept_err(xprt, serv->sv_name, err);
925 		return NULL;
926 	}
927 	if (IS_ERR(sock_alloc_file(newsock, O_NONBLOCK, NULL)))
928 		return NULL;
929 
930 	set_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags);
931 
932 	err = kernel_getpeername(newsock, sin);
933 	if (err < 0) {
934 		trace_svcsock_getpeername_err(xprt, serv->sv_name, err);
935 		goto failed;		/* aborted connection or whatever */
936 	}
937 	slen = err;
938 
939 	/* Reset the inherited callbacks before calling svc_setup_socket */
940 	newsock->sk->sk_state_change = svsk->sk_ostate;
941 	newsock->sk->sk_data_ready = svsk->sk_odata;
942 	newsock->sk->sk_write_space = svsk->sk_owspace;
943 
944 	/* make sure that a write doesn't block forever when
945 	 * low on memory
946 	 */
947 	newsock->sk->sk_sndtimeo = HZ*30;
948 
949 	newsvsk = svc_setup_socket(serv, newsock,
950 				 (SVC_SOCK_ANONYMOUS | SVC_SOCK_TEMPORARY));
951 	if (IS_ERR(newsvsk))
952 		goto failed;
953 	svc_xprt_set_remote(&newsvsk->sk_xprt, sin, slen);
954 	err = kernel_getsockname(newsock, sin);
955 	slen = err;
956 	if (unlikely(err < 0))
957 		slen = offsetof(struct sockaddr, sa_data);
958 	svc_xprt_set_local(&newsvsk->sk_xprt, sin, slen);
959 
960 	if (sock_is_loopback(newsock->sk))
961 		set_bit(XPT_LOCAL, &newsvsk->sk_xprt.xpt_flags);
962 	else
963 		clear_bit(XPT_LOCAL, &newsvsk->sk_xprt.xpt_flags);
964 	if (serv->sv_stats)
965 		serv->sv_stats->nettcpconn++;
966 
967 	return &newsvsk->sk_xprt;
968 
969 failed:
970 	sockfd_put(newsock);
971 	return NULL;
972 }
973 
svc_tcp_restore_pages(struct svc_sock * svsk,struct svc_rqst * rqstp)974 static size_t svc_tcp_restore_pages(struct svc_sock *svsk,
975 				    struct svc_rqst *rqstp)
976 {
977 	size_t len = svsk->sk_datalen;
978 	unsigned int i, npages;
979 
980 	if (!len)
981 		return 0;
982 	npages = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
983 	for (i = 0; i < npages; i++) {
984 		if (rqstp->rq_pages[i] != NULL)
985 			put_page(rqstp->rq_pages[i]);
986 		BUG_ON(svsk->sk_pages[i] == NULL);
987 		rqstp->rq_pages[i] = svsk->sk_pages[i];
988 		svsk->sk_pages[i] = NULL;
989 	}
990 	rqstp->rq_arg.head[0].iov_base = page_address(rqstp->rq_pages[0]);
991 	return len;
992 }
993 
svc_tcp_save_pages(struct svc_sock * svsk,struct svc_rqst * rqstp)994 static void svc_tcp_save_pages(struct svc_sock *svsk, struct svc_rqst *rqstp)
995 {
996 	unsigned int i, len, npages;
997 
998 	if (svsk->sk_datalen == 0)
999 		return;
1000 	len = svsk->sk_datalen;
1001 	npages = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1002 	for (i = 0; i < npages; i++) {
1003 		svsk->sk_pages[i] = rqstp->rq_pages[i];
1004 		rqstp->rq_pages[i] = NULL;
1005 	}
1006 }
1007 
svc_tcp_clear_pages(struct svc_sock * svsk)1008 static void svc_tcp_clear_pages(struct svc_sock *svsk)
1009 {
1010 	unsigned int i, len, npages;
1011 
1012 	if (svsk->sk_datalen == 0)
1013 		goto out;
1014 	len = svsk->sk_datalen;
1015 	npages = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1016 	for (i = 0; i < npages; i++) {
1017 		if (svsk->sk_pages[i] == NULL) {
1018 			WARN_ON_ONCE(1);
1019 			continue;
1020 		}
1021 		put_page(svsk->sk_pages[i]);
1022 		svsk->sk_pages[i] = NULL;
1023 	}
1024 out:
1025 	svsk->sk_tcplen = 0;
1026 	svsk->sk_datalen = 0;
1027 }
1028 
1029 /*
1030  * Receive fragment record header into sk_marker.
1031  */
svc_tcp_read_marker(struct svc_sock * svsk,struct svc_rqst * rqstp)1032 static ssize_t svc_tcp_read_marker(struct svc_sock *svsk,
1033 				   struct svc_rqst *rqstp)
1034 {
1035 	ssize_t want, len;
1036 
1037 	/* If we haven't gotten the record length yet,
1038 	 * get the next four bytes.
1039 	 */
1040 	if (svsk->sk_tcplen < sizeof(rpc_fraghdr)) {
1041 		struct msghdr	msg = { NULL };
1042 		struct kvec	iov;
1043 
1044 		want = sizeof(rpc_fraghdr) - svsk->sk_tcplen;
1045 		iov.iov_base = ((char *)&svsk->sk_marker) + svsk->sk_tcplen;
1046 		iov.iov_len  = want;
1047 		iov_iter_kvec(&msg.msg_iter, ITER_DEST, &iov, 1, want);
1048 		len = svc_tcp_sock_recvmsg(svsk, &msg);
1049 		if (len < 0)
1050 			return len;
1051 		svsk->sk_tcplen += len;
1052 		if (len < want) {
1053 			/* call again to read the remaining bytes */
1054 			goto err_short;
1055 		}
1056 		trace_svcsock_marker(&svsk->sk_xprt, svsk->sk_marker);
1057 		if (svc_sock_reclen(svsk) + svsk->sk_datalen >
1058 		    svsk->sk_xprt.xpt_server->sv_max_mesg)
1059 			goto err_too_large;
1060 	}
1061 	return svc_sock_reclen(svsk);
1062 
1063 err_too_large:
1064 	net_notice_ratelimited("svc: %s %s RPC fragment too large: %d\n",
1065 			       __func__, svsk->sk_xprt.xpt_server->sv_name,
1066 			       svc_sock_reclen(svsk));
1067 	svc_xprt_deferred_close(&svsk->sk_xprt);
1068 err_short:
1069 	return -EAGAIN;
1070 }
1071 
receive_cb_reply(struct svc_sock * svsk,struct svc_rqst * rqstp)1072 static int receive_cb_reply(struct svc_sock *svsk, struct svc_rqst *rqstp)
1073 {
1074 	struct rpc_xprt *bc_xprt = svsk->sk_xprt.xpt_bc_xprt;
1075 	struct rpc_rqst *req = NULL;
1076 	struct kvec *src, *dst;
1077 	__be32 *p = (__be32 *)rqstp->rq_arg.head[0].iov_base;
1078 	__be32 xid = *p;
1079 
1080 	if (!bc_xprt)
1081 		return -EAGAIN;
1082 	spin_lock(&bc_xprt->queue_lock);
1083 	req = xprt_lookup_rqst(bc_xprt, xid);
1084 	if (!req)
1085 		goto unlock_eagain;
1086 
1087 	memcpy(&req->rq_private_buf, &req->rq_rcv_buf, sizeof(struct xdr_buf));
1088 	/*
1089 	 * XXX!: cheating for now!  Only copying HEAD.
1090 	 * But we know this is good enough for now (in fact, for any
1091 	 * callback reply in the forseeable future).
1092 	 */
1093 	dst = &req->rq_private_buf.head[0];
1094 	src = &rqstp->rq_arg.head[0];
1095 	if (dst->iov_len < src->iov_len)
1096 		goto unlock_eagain; /* whatever; just giving up. */
1097 	memcpy(dst->iov_base, src->iov_base, src->iov_len);
1098 	xprt_complete_rqst(req->rq_task, rqstp->rq_arg.len);
1099 	rqstp->rq_arg.len = 0;
1100 	spin_unlock(&bc_xprt->queue_lock);
1101 	return 0;
1102 unlock_eagain:
1103 	spin_unlock(&bc_xprt->queue_lock);
1104 	return -EAGAIN;
1105 }
1106 
svc_tcp_fragment_received(struct svc_sock * svsk)1107 static void svc_tcp_fragment_received(struct svc_sock *svsk)
1108 {
1109 	/* If we have more data, signal svc_xprt_enqueue() to try again */
1110 	svsk->sk_tcplen = 0;
1111 	svsk->sk_marker = xdr_zero;
1112 }
1113 
1114 /**
1115  * svc_tcp_recvfrom - Receive data from a TCP socket
1116  * @rqstp: request structure into which to receive an RPC Call
1117  *
1118  * Called in a loop when XPT_DATA has been set.
1119  *
1120  * Read the 4-byte stream record marker, then use the record length
1121  * in that marker to set up exactly the resources needed to receive
1122  * the next RPC message into @rqstp.
1123  *
1124  * Returns:
1125  *   On success, the number of bytes in a received RPC Call, or
1126  *   %0 if a complete RPC Call message was not ready to return
1127  *
1128  * The zero return case handles partial receives and callback Replies.
1129  * The state of a partial receive is preserved in the svc_sock for
1130  * the next call to svc_tcp_recvfrom.
1131  */
svc_tcp_recvfrom(struct svc_rqst * rqstp)1132 static int svc_tcp_recvfrom(struct svc_rqst *rqstp)
1133 {
1134 	struct svc_sock	*svsk =
1135 		container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt);
1136 	struct svc_serv	*serv = svsk->sk_xprt.xpt_server;
1137 	size_t want, base;
1138 	ssize_t len;
1139 	__be32 *p;
1140 	__be32 calldir;
1141 
1142 	clear_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
1143 	len = svc_tcp_read_marker(svsk, rqstp);
1144 	if (len < 0)
1145 		goto error;
1146 
1147 	base = svc_tcp_restore_pages(svsk, rqstp);
1148 	want = len - (svsk->sk_tcplen - sizeof(rpc_fraghdr));
1149 	len = svc_tcp_read_msg(rqstp, base + want, base);
1150 	if (len >= 0) {
1151 		trace_svcsock_tcp_recv(&svsk->sk_xprt, len);
1152 		svsk->sk_tcplen += len;
1153 		svsk->sk_datalen += len;
1154 	}
1155 	if (len != want || !svc_sock_final_rec(svsk))
1156 		goto err_incomplete;
1157 	if (svsk->sk_datalen < 8)
1158 		goto err_nuts;
1159 
1160 	rqstp->rq_arg.len = svsk->sk_datalen;
1161 	rqstp->rq_arg.page_base = 0;
1162 	if (rqstp->rq_arg.len <= rqstp->rq_arg.head[0].iov_len) {
1163 		rqstp->rq_arg.head[0].iov_len = rqstp->rq_arg.len;
1164 		rqstp->rq_arg.page_len = 0;
1165 	} else
1166 		rqstp->rq_arg.page_len = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1167 
1168 	rqstp->rq_xprt_ctxt   = NULL;
1169 	rqstp->rq_prot	      = IPPROTO_TCP;
1170 	if (test_bit(XPT_LOCAL, &svsk->sk_xprt.xpt_flags))
1171 		set_bit(RQ_LOCAL, &rqstp->rq_flags);
1172 	else
1173 		clear_bit(RQ_LOCAL, &rqstp->rq_flags);
1174 
1175 	p = (__be32 *)rqstp->rq_arg.head[0].iov_base;
1176 	calldir = p[1];
1177 	if (calldir)
1178 		len = receive_cb_reply(svsk, rqstp);
1179 
1180 	/* Reset TCP read info */
1181 	svsk->sk_datalen = 0;
1182 	svc_tcp_fragment_received(svsk);
1183 
1184 	if (len < 0)
1185 		goto error;
1186 
1187 	svc_xprt_copy_addrs(rqstp, &svsk->sk_xprt);
1188 	if (serv->sv_stats)
1189 		serv->sv_stats->nettcpcnt++;
1190 
1191 	svc_sock_secure_port(rqstp);
1192 	svc_xprt_received(rqstp->rq_xprt);
1193 	return rqstp->rq_arg.len;
1194 
1195 err_incomplete:
1196 	svc_tcp_save_pages(svsk, rqstp);
1197 	if (len < 0 && len != -EAGAIN)
1198 		goto err_delete;
1199 	if (len == want)
1200 		svc_tcp_fragment_received(svsk);
1201 	else
1202 		trace_svcsock_tcp_recv_short(&svsk->sk_xprt,
1203 				svc_sock_reclen(svsk),
1204 				svsk->sk_tcplen - sizeof(rpc_fraghdr));
1205 	goto err_noclose;
1206 error:
1207 	if (len != -EAGAIN)
1208 		goto err_delete;
1209 	trace_svcsock_tcp_recv_eagain(&svsk->sk_xprt, 0);
1210 	goto err_noclose;
1211 err_nuts:
1212 	svsk->sk_datalen = 0;
1213 err_delete:
1214 	trace_svcsock_tcp_recv_err(&svsk->sk_xprt, len);
1215 	svc_xprt_deferred_close(&svsk->sk_xprt);
1216 err_noclose:
1217 	svc_xprt_received(rqstp->rq_xprt);
1218 	return 0;	/* record not complete */
1219 }
1220 
1221 /*
1222  * MSG_SPLICE_PAGES is used exclusively to reduce the number of
1223  * copy operations in this path. Therefore the caller must ensure
1224  * that the pages backing @xdr are unchanging.
1225  */
svc_tcp_sendmsg(struct svc_sock * svsk,struct svc_rqst * rqstp,rpc_fraghdr marker,int * sentp)1226 static int svc_tcp_sendmsg(struct svc_sock *svsk, struct svc_rqst *rqstp,
1227 			   rpc_fraghdr marker, int *sentp)
1228 {
1229 	struct msghdr msg = {
1230 		.msg_flags	= MSG_SPLICE_PAGES,
1231 	};
1232 	unsigned int count;
1233 	void *buf;
1234 	int ret;
1235 
1236 	*sentp = 0;
1237 
1238 	/* The stream record marker is copied into a temporary page
1239 	 * fragment buffer so that it can be included in rq_bvec.
1240 	 */
1241 	buf = page_frag_alloc(&svsk->sk_frag_cache, sizeof(marker),
1242 			      GFP_KERNEL);
1243 	if (!buf)
1244 		return -ENOMEM;
1245 	memcpy(buf, &marker, sizeof(marker));
1246 	bvec_set_virt(rqstp->rq_bvec, buf, sizeof(marker));
1247 
1248 	count = xdr_buf_to_bvec(rqstp->rq_bvec + 1, rqstp->rq_maxpages,
1249 				&rqstp->rq_res);
1250 
1251 	iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, rqstp->rq_bvec,
1252 		      1 + count, sizeof(marker) + rqstp->rq_res.len);
1253 	ret = sock_sendmsg(svsk->sk_sock, &msg);
1254 	page_frag_free(buf);
1255 	if (ret < 0)
1256 		return ret;
1257 	*sentp += ret;
1258 	return 0;
1259 }
1260 
1261 /**
1262  * svc_tcp_sendto - Send out a reply on a TCP socket
1263  * @rqstp: completed svc_rqst
1264  *
1265  * xpt_mutex ensures @rqstp's whole message is written to the socket
1266  * without interruption.
1267  *
1268  * Returns the number of bytes sent, or a negative errno.
1269  */
svc_tcp_sendto(struct svc_rqst * rqstp)1270 static int svc_tcp_sendto(struct svc_rqst *rqstp)
1271 {
1272 	struct svc_xprt *xprt = rqstp->rq_xprt;
1273 	struct svc_sock	*svsk = container_of(xprt, struct svc_sock, sk_xprt);
1274 	struct xdr_buf *xdr = &rqstp->rq_res;
1275 	rpc_fraghdr marker = cpu_to_be32(RPC_LAST_STREAM_FRAGMENT |
1276 					 (u32)xdr->len);
1277 	int sent, err;
1278 
1279 	svc_tcp_release_ctxt(xprt, rqstp->rq_xprt_ctxt);
1280 	rqstp->rq_xprt_ctxt = NULL;
1281 
1282 	mutex_lock(&xprt->xpt_mutex);
1283 	if (svc_xprt_is_dead(xprt))
1284 		goto out_notconn;
1285 	err = svc_tcp_sendmsg(svsk, rqstp, marker, &sent);
1286 	trace_svcsock_tcp_send(xprt, err < 0 ? (long)err : sent);
1287 	if (err < 0 || sent != (xdr->len + sizeof(marker)))
1288 		goto out_close;
1289 	mutex_unlock(&xprt->xpt_mutex);
1290 	return sent;
1291 
1292 out_notconn:
1293 	mutex_unlock(&xprt->xpt_mutex);
1294 	return -ENOTCONN;
1295 out_close:
1296 	pr_notice("rpc-srv/tcp: %s: %s %d when sending %d bytes - shutting down socket\n",
1297 		  xprt->xpt_server->sv_name,
1298 		  (err < 0) ? "got error" : "sent",
1299 		  (err < 0) ? err : sent, xdr->len);
1300 	svc_xprt_deferred_close(xprt);
1301 	mutex_unlock(&xprt->xpt_mutex);
1302 	return -EAGAIN;
1303 }
1304 
svc_tcp_create(struct svc_serv * serv,struct net * net,struct sockaddr * sa,int salen,int flags)1305 static struct svc_xprt *svc_tcp_create(struct svc_serv *serv,
1306 				       struct net *net,
1307 				       struct sockaddr *sa, int salen,
1308 				       int flags)
1309 {
1310 	return svc_create_socket(serv, IPPROTO_TCP, net, sa, salen, flags);
1311 }
1312 
1313 static const struct svc_xprt_ops svc_tcp_ops = {
1314 	.xpo_create = svc_tcp_create,
1315 	.xpo_recvfrom = svc_tcp_recvfrom,
1316 	.xpo_sendto = svc_tcp_sendto,
1317 	.xpo_result_payload = svc_sock_result_payload,
1318 	.xpo_release_ctxt = svc_tcp_release_ctxt,
1319 	.xpo_detach = svc_tcp_sock_detach,
1320 	.xpo_free = svc_sock_free,
1321 	.xpo_has_wspace = svc_tcp_has_wspace,
1322 	.xpo_accept = svc_tcp_accept,
1323 	.xpo_kill_temp_xprt = svc_tcp_kill_temp_xprt,
1324 	.xpo_handshake = svc_tcp_handshake,
1325 };
1326 
1327 static struct svc_xprt_class svc_tcp_class = {
1328 	.xcl_name = "tcp",
1329 	.xcl_owner = THIS_MODULE,
1330 	.xcl_ops = &svc_tcp_ops,
1331 	.xcl_max_payload = RPCSVC_MAXPAYLOAD_TCP,
1332 	.xcl_ident = XPRT_TRANSPORT_TCP,
1333 };
1334 
svc_init_xprt_sock(void)1335 void svc_init_xprt_sock(void)
1336 {
1337 	svc_reg_xprt_class(&svc_tcp_class);
1338 	svc_reg_xprt_class(&svc_udp_class);
1339 }
1340 
svc_cleanup_xprt_sock(void)1341 void svc_cleanup_xprt_sock(void)
1342 {
1343 	svc_unreg_xprt_class(&svc_tcp_class);
1344 	svc_unreg_xprt_class(&svc_udp_class);
1345 }
1346 
svc_tcp_init(struct svc_sock * svsk,struct svc_serv * serv)1347 static void svc_tcp_init(struct svc_sock *svsk, struct svc_serv *serv)
1348 {
1349 	struct sock	*sk = svsk->sk_sk;
1350 
1351 	svc_xprt_init(sock_net(svsk->sk_sock->sk), &svc_tcp_class,
1352 		      &svsk->sk_xprt, serv);
1353 	set_bit(XPT_CACHE_AUTH, &svsk->sk_xprt.xpt_flags);
1354 	set_bit(XPT_CONG_CTRL, &svsk->sk_xprt.xpt_flags);
1355 	if (sk->sk_state == TCP_LISTEN) {
1356 		strcpy(svsk->sk_xprt.xpt_remotebuf, "listener");
1357 		set_bit(XPT_LISTENER, &svsk->sk_xprt.xpt_flags);
1358 		sk->sk_data_ready = svc_tcp_listen_data_ready;
1359 		set_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags);
1360 	} else {
1361 		sk->sk_state_change = svc_tcp_state_change;
1362 		sk->sk_data_ready = svc_data_ready;
1363 		sk->sk_write_space = svc_write_space;
1364 
1365 		svsk->sk_marker = xdr_zero;
1366 		svsk->sk_tcplen = 0;
1367 		svsk->sk_datalen = 0;
1368 		memset(&svsk->sk_pages[0], 0,
1369 		       svsk->sk_maxpages * sizeof(struct page *));
1370 
1371 		tcp_sock_set_nodelay(sk);
1372 
1373 		set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
1374 		switch (sk->sk_state) {
1375 		case TCP_SYN_RECV:
1376 		case TCP_ESTABLISHED:
1377 			break;
1378 		default:
1379 			svc_xprt_deferred_close(&svsk->sk_xprt);
1380 		}
1381 	}
1382 }
1383 
svc_sock_update_bufs(struct svc_serv * serv)1384 void svc_sock_update_bufs(struct svc_serv *serv)
1385 {
1386 	/*
1387 	 * The number of server threads has changed. Update
1388 	 * rcvbuf and sndbuf accordingly on all sockets
1389 	 */
1390 	struct svc_sock *svsk;
1391 
1392 	spin_lock_bh(&serv->sv_lock);
1393 	list_for_each_entry(svsk, &serv->sv_permsocks, sk_xprt.xpt_list)
1394 		set_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags);
1395 	spin_unlock_bh(&serv->sv_lock);
1396 }
1397 
1398 /*
1399  * Initialize socket for RPC use and create svc_sock struct
1400  */
svc_setup_socket(struct svc_serv * serv,struct socket * sock,int flags)1401 static struct svc_sock *svc_setup_socket(struct svc_serv *serv,
1402 						struct socket *sock,
1403 						int flags)
1404 {
1405 	struct svc_sock	*svsk;
1406 	struct sock	*inet;
1407 	int		pmap_register = !(flags & SVC_SOCK_ANONYMOUS);
1408 	unsigned long	pages;
1409 
1410 	pages = svc_serv_maxpages(serv);
1411 	svsk = kzalloc(struct_size(svsk, sk_pages, pages), GFP_KERNEL);
1412 	if (!svsk)
1413 		return ERR_PTR(-ENOMEM);
1414 	svsk->sk_maxpages = pages;
1415 
1416 	inet = sock->sk;
1417 
1418 	if (pmap_register) {
1419 		int err;
1420 
1421 		err = svc_register(serv, sock_net(sock->sk), inet->sk_family,
1422 				     inet->sk_protocol,
1423 				     ntohs(inet_sk(inet)->inet_sport));
1424 		if (err < 0) {
1425 			kfree(svsk);
1426 			return ERR_PTR(err);
1427 		}
1428 	}
1429 
1430 	svsk->sk_sock = sock;
1431 	svsk->sk_sk = inet;
1432 	svsk->sk_ostate = inet->sk_state_change;
1433 	svsk->sk_odata = inet->sk_data_ready;
1434 	svsk->sk_owspace = inet->sk_write_space;
1435 	/*
1436 	 * This barrier is necessary in order to prevent race condition
1437 	 * with svc_data_ready(), svc_tcp_listen_data_ready(), and others
1438 	 * when calling callbacks above.
1439 	 */
1440 	wmb();
1441 	inet->sk_user_data = svsk;
1442 
1443 	/* Initialize the socket */
1444 	if (sock->type == SOCK_DGRAM)
1445 		svc_udp_init(svsk, serv);
1446 	else
1447 		svc_tcp_init(svsk, serv);
1448 
1449 	trace_svcsock_new(svsk, sock);
1450 	return svsk;
1451 }
1452 
1453 /**
1454  * svc_addsock - add a listener socket to an RPC service
1455  * @serv: pointer to RPC service to which to add a new listener
1456  * @net: caller's network namespace
1457  * @fd: file descriptor of the new listener
1458  * @name_return: pointer to buffer to fill in with name of listener
1459  * @len: size of the buffer
1460  * @cred: credential
1461  *
1462  * Fills in socket name and returns positive length of name if successful.
1463  * Name is terminated with '\n'.  On error, returns a negative errno
1464  * value.
1465  */
svc_addsock(struct svc_serv * serv,struct net * net,const int fd,char * name_return,const size_t len,const struct cred * cred)1466 int svc_addsock(struct svc_serv *serv, struct net *net, const int fd,
1467 		char *name_return, const size_t len, const struct cred *cred)
1468 {
1469 	int err = 0;
1470 	struct socket *so = sockfd_lookup(fd, &err);
1471 	struct svc_sock *svsk = NULL;
1472 	struct sockaddr_storage addr;
1473 	struct sockaddr *sin = (struct sockaddr *)&addr;
1474 	int salen;
1475 
1476 	if (!so)
1477 		return err;
1478 	err = -EINVAL;
1479 	if (sock_net(so->sk) != net)
1480 		goto out;
1481 	err = -EAFNOSUPPORT;
1482 	if ((so->sk->sk_family != PF_INET) && (so->sk->sk_family != PF_INET6))
1483 		goto out;
1484 	err =  -EPROTONOSUPPORT;
1485 	if (so->sk->sk_protocol != IPPROTO_TCP &&
1486 	    so->sk->sk_protocol != IPPROTO_UDP)
1487 		goto out;
1488 	err = -EISCONN;
1489 	if (so->state > SS_UNCONNECTED)
1490 		goto out;
1491 	err = -ENOENT;
1492 	if (!try_module_get(THIS_MODULE))
1493 		goto out;
1494 	svsk = svc_setup_socket(serv, so, SVC_SOCK_DEFAULTS);
1495 	if (IS_ERR(svsk)) {
1496 		module_put(THIS_MODULE);
1497 		err = PTR_ERR(svsk);
1498 		goto out;
1499 	}
1500 	salen = kernel_getsockname(svsk->sk_sock, sin);
1501 	if (salen >= 0)
1502 		svc_xprt_set_local(&svsk->sk_xprt, sin, salen);
1503 	svsk->sk_xprt.xpt_cred = get_cred(cred);
1504 	svc_add_new_perm_xprt(serv, &svsk->sk_xprt);
1505 	return svc_one_sock_name(svsk, name_return, len);
1506 out:
1507 	sockfd_put(so);
1508 	return err;
1509 }
1510 EXPORT_SYMBOL_GPL(svc_addsock);
1511 
1512 /*
1513  * Create socket for RPC service.
1514  */
svc_create_socket(struct svc_serv * serv,int protocol,struct net * net,struct sockaddr * sin,int len,int flags)1515 static struct svc_xprt *svc_create_socket(struct svc_serv *serv,
1516 					  int protocol,
1517 					  struct net *net,
1518 					  struct sockaddr *sin, int len,
1519 					  int flags)
1520 {
1521 	struct svc_sock	*svsk;
1522 	struct socket	*sock;
1523 	int		error;
1524 	int		type;
1525 	struct sockaddr_storage addr;
1526 	struct sockaddr *newsin = (struct sockaddr *)&addr;
1527 	int		newlen;
1528 	int		family;
1529 
1530 	if (protocol != IPPROTO_UDP && protocol != IPPROTO_TCP) {
1531 		printk(KERN_WARNING "svc: only UDP and TCP "
1532 				"sockets supported\n");
1533 		return ERR_PTR(-EINVAL);
1534 	}
1535 
1536 	type = (protocol == IPPROTO_UDP)? SOCK_DGRAM : SOCK_STREAM;
1537 	switch (sin->sa_family) {
1538 	case AF_INET6:
1539 		family = PF_INET6;
1540 		break;
1541 	case AF_INET:
1542 		family = PF_INET;
1543 		break;
1544 	default:
1545 		return ERR_PTR(-EINVAL);
1546 	}
1547 
1548 	error = __sock_create(net, family, type, protocol, &sock, 1);
1549 	if (error < 0)
1550 		return ERR_PTR(error);
1551 
1552 	svc_reclassify_socket(sock);
1553 
1554 	/*
1555 	 * If this is an PF_INET6 listener, we want to avoid
1556 	 * getting requests from IPv4 remotes.  Those should
1557 	 * be shunted to a PF_INET listener via rpcbind.
1558 	 */
1559 	if (family == PF_INET6)
1560 		ip6_sock_set_v6only(sock->sk);
1561 	if (type == SOCK_STREAM)
1562 		sock->sk->sk_reuse = SK_CAN_REUSE; /* allow address reuse */
1563 	error = kernel_bind(sock, sin, len);
1564 	if (error < 0)
1565 		goto bummer;
1566 
1567 	error = kernel_getsockname(sock, newsin);
1568 	if (error < 0)
1569 		goto bummer;
1570 	newlen = error;
1571 
1572 	if (protocol == IPPROTO_TCP) {
1573 		sk_net_refcnt_upgrade(sock->sk);
1574 		if ((error = kernel_listen(sock, SOMAXCONN)) < 0)
1575 			goto bummer;
1576 	}
1577 
1578 	svsk = svc_setup_socket(serv, sock, flags);
1579 	if (IS_ERR(svsk)) {
1580 		error = PTR_ERR(svsk);
1581 		goto bummer;
1582 	}
1583 	svc_xprt_set_local(&svsk->sk_xprt, newsin, newlen);
1584 	return (struct svc_xprt *)svsk;
1585 bummer:
1586 	sock_release(sock);
1587 	return ERR_PTR(error);
1588 }
1589 
1590 /*
1591  * Detach the svc_sock from the socket so that no
1592  * more callbacks occur.
1593  */
svc_sock_detach(struct svc_xprt * xprt)1594 static void svc_sock_detach(struct svc_xprt *xprt)
1595 {
1596 	struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
1597 	struct sock *sk = svsk->sk_sk;
1598 
1599 	/* put back the old socket callbacks */
1600 	lock_sock(sk);
1601 	sk->sk_state_change = svsk->sk_ostate;
1602 	sk->sk_data_ready = svsk->sk_odata;
1603 	sk->sk_write_space = svsk->sk_owspace;
1604 	sk->sk_user_data = NULL;
1605 	release_sock(sk);
1606 }
1607 
1608 /*
1609  * Disconnect the socket, and reset the callbacks
1610  */
svc_tcp_sock_detach(struct svc_xprt * xprt)1611 static void svc_tcp_sock_detach(struct svc_xprt *xprt)
1612 {
1613 	struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
1614 
1615 	tls_handshake_close(svsk->sk_sock);
1616 
1617 	svc_sock_detach(xprt);
1618 
1619 	if (!test_bit(XPT_LISTENER, &xprt->xpt_flags)) {
1620 		svc_tcp_clear_pages(svsk);
1621 		kernel_sock_shutdown(svsk->sk_sock, SHUT_RDWR);
1622 	}
1623 }
1624 
1625 /*
1626  * Free the svc_sock's socket resources and the svc_sock itself.
1627  */
svc_sock_free(struct svc_xprt * xprt)1628 static void svc_sock_free(struct svc_xprt *xprt)
1629 {
1630 	struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
1631 	struct socket *sock = svsk->sk_sock;
1632 
1633 	trace_svcsock_free(svsk, sock);
1634 
1635 	tls_handshake_cancel(sock->sk);
1636 	if (sock->file)
1637 		sockfd_put(sock);
1638 	else
1639 		sock_release(sock);
1640 
1641 	page_frag_cache_drain(&svsk->sk_frag_cache);
1642 	kfree(svsk);
1643 }
1644