xref: /linux/drivers/pwm/pwm-microchip-core.c (revision f38b7512903a50eaeb300e9c8d9448187dd3959c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * corePWM driver for Microchip "soft" FPGA IP cores.
4  *
5  * Copyright (c) 2021-2023 Microchip Corporation. All rights reserved.
6  * Author: Conor Dooley <conor.dooley@microchip.com>
7  * Documentation:
8  * https://www.microsemi.com/document-portal/doc_download/1245275-corepwm-hb
9  *
10  * Limitations:
11  * - If the IP block is configured without "shadow registers", all register
12  *   writes will take effect immediately, causing glitches on the output.
13  *   If shadow registers *are* enabled, setting the "SYNC_UPDATE" register
14  *   notifies the core that it needs to update the registers defining the
15  *   waveform from the contents of the "shadow registers". Otherwise, changes
16  *   will take effective immediately, even for those channels.
17  *   As setting the period/duty cycle takes 4 register writes, there is a window
18  *   in which this races against the start of a new period.
19  * - The IP block has no concept of a duty cycle, only rising/falling edges of
20  *   the waveform. Unfortunately, if the rising & falling edges registers have
21  *   the same value written to them the IP block will do whichever of a rising
22  *   or a falling edge is possible. I.E. a 50% waveform at twice the requested
23  *   period. Therefore to get a 0% waveform, the output is set the max high/low
24  *   time depending on polarity.
25  *   If the duty cycle is 0%, and the requested period is less than the
26  *   available period resolution, this will manifest as a ~100% waveform (with
27  *   some output glitches) rather than 50%.
28  * - The PWM period is set for the whole IP block not per channel. The driver
29  *   will only change the period if no other PWM output is enabled.
30  */
31 
32 #include <linux/clk.h>
33 #include <linux/delay.h>
34 #include <linux/err.h>
35 #include <linux/io.h>
36 #include <linux/ktime.h>
37 #include <linux/math.h>
38 #include <linux/module.h>
39 #include <linux/of.h>
40 #include <linux/platform_device.h>
41 #include <linux/pwm.h>
42 
43 #define MCHPCOREPWM_PRESCALE_MAX	0xff
44 #define MCHPCOREPWM_PERIOD_STEPS_MAX	0xfe
45 #define MCHPCOREPWM_PERIOD_MAX		0xff00
46 
47 #define MCHPCOREPWM_PRESCALE	0x00
48 #define MCHPCOREPWM_PERIOD	0x04
49 #define MCHPCOREPWM_EN(i)	(0x08 + 0x04 * (i)) /* 0x08, 0x0c */
50 #define MCHPCOREPWM_POSEDGE(i)	(0x10 + 0x08 * (i)) /* 0x10, 0x18, ..., 0x88 */
51 #define MCHPCOREPWM_NEGEDGE(i)	(0x14 + 0x08 * (i)) /* 0x14, 0x1c, ..., 0x8c */
52 #define MCHPCOREPWM_SYNC_UPD	0xe4
53 #define MCHPCOREPWM_TIMEOUT_MS	100u
54 
55 struct mchp_core_pwm_chip {
56 	struct clk *clk;
57 	void __iomem *base;
58 	ktime_t update_timestamp;
59 	u32 sync_update_mask;
60 	u16 channel_enabled;
61 };
62 
to_mchp_core_pwm(struct pwm_chip * chip)63 static inline struct mchp_core_pwm_chip *to_mchp_core_pwm(struct pwm_chip *chip)
64 {
65 	return pwmchip_get_drvdata(chip);
66 }
67 
mchp_core_pwm_enable(struct pwm_chip * chip,struct pwm_device * pwm,bool enable,u64 period)68 static void mchp_core_pwm_enable(struct pwm_chip *chip, struct pwm_device *pwm,
69 				 bool enable, u64 period)
70 {
71 	struct mchp_core_pwm_chip *mchp_core_pwm = to_mchp_core_pwm(chip);
72 	u8 channel_enable, reg_offset, shift;
73 
74 	/*
75 	 * There are two adjacent 8 bit control regs, the lower reg controls
76 	 * 0-7 and the upper reg 8-15. Check if the pwm is in the upper reg
77 	 * and if so, offset by the bus width.
78 	 */
79 	reg_offset = MCHPCOREPWM_EN(pwm->hwpwm >> 3);
80 	shift = pwm->hwpwm & 7;
81 
82 	channel_enable = readb_relaxed(mchp_core_pwm->base + reg_offset);
83 	channel_enable &= ~(1 << shift);
84 	channel_enable |= (enable << shift);
85 
86 	writel_relaxed(channel_enable, mchp_core_pwm->base + reg_offset);
87 	mchp_core_pwm->channel_enabled &= ~BIT(pwm->hwpwm);
88 	mchp_core_pwm->channel_enabled |= enable << pwm->hwpwm;
89 
90 	/*
91 	 * The updated values will not appear on the bus until they have been
92 	 * applied to the waveform at the beginning of the next period.
93 	 * This is a NO-OP if the channel does not have shadow registers.
94 	 */
95 	if (mchp_core_pwm->sync_update_mask & (1 << pwm->hwpwm))
96 		mchp_core_pwm->update_timestamp = ktime_add_ns(ktime_get(), period);
97 }
98 
mchp_core_pwm_wait_for_sync_update(struct mchp_core_pwm_chip * mchp_core_pwm,unsigned int channel)99 static void mchp_core_pwm_wait_for_sync_update(struct mchp_core_pwm_chip *mchp_core_pwm,
100 					       unsigned int channel)
101 {
102 	/*
103 	 * If a shadow register is used for this PWM channel, and iff there is
104 	 * a pending update to the waveform, we must wait for it to be applied
105 	 * before attempting to read its state. Reading the registers yields
106 	 * the currently implemented settings & the new ones are only readable
107 	 * once the current period has ended.
108 	 */
109 
110 	if (mchp_core_pwm->sync_update_mask & (1 << channel)) {
111 		ktime_t current_time = ktime_get();
112 		s64 remaining_ns;
113 		u32 delay_us;
114 
115 		remaining_ns = ktime_to_ns(ktime_sub(mchp_core_pwm->update_timestamp,
116 						     current_time));
117 
118 		/*
119 		 * If the update has gone through, don't bother waiting for
120 		 * obvious reasons. Otherwise wait around for an appropriate
121 		 * amount of time for the update to go through.
122 		 */
123 		if (remaining_ns <= 0)
124 			return;
125 
126 		delay_us = DIV_ROUND_UP_ULL(remaining_ns, NSEC_PER_USEC);
127 		fsleep(delay_us);
128 	}
129 }
130 
mchp_core_pwm_calc_duty(const struct pwm_state * state,u64 clk_rate,u8 prescale,u8 period_steps)131 static u64 mchp_core_pwm_calc_duty(const struct pwm_state *state, u64 clk_rate,
132 				   u8 prescale, u8 period_steps)
133 {
134 	u64 duty_steps, tmp;
135 
136 	/*
137 	 * Calculate the duty cycle in multiples of the prescaled period:
138 	 * duty_steps = duty_in_ns / step_in_ns
139 	 * step_in_ns = (prescale * NSEC_PER_SEC) / clk_rate
140 	 * The code below is rearranged slightly to only divide once.
141 	 */
142 	tmp = (((u64)prescale) + 1) * NSEC_PER_SEC;
143 	duty_steps = mul_u64_u64_div_u64(state->duty_cycle, clk_rate, tmp);
144 
145 	return duty_steps;
146 }
147 
mchp_core_pwm_apply_duty(struct pwm_chip * chip,struct pwm_device * pwm,const struct pwm_state * state,u64 duty_steps,u16 period_steps)148 static void mchp_core_pwm_apply_duty(struct pwm_chip *chip, struct pwm_device *pwm,
149 				     const struct pwm_state *state, u64 duty_steps,
150 				     u16 period_steps)
151 {
152 	struct mchp_core_pwm_chip *mchp_core_pwm = to_mchp_core_pwm(chip);
153 	u8 posedge, negedge;
154 	u8 first_edge = 0, second_edge = duty_steps;
155 
156 	/*
157 	 * Setting posedge == negedge doesn't yield a constant output,
158 	 * so that's an unsuitable setting to model duty_steps = 0.
159 	 * In that case set the unwanted edge to a value that never
160 	 * triggers.
161 	 */
162 	if (duty_steps == 0)
163 		first_edge = period_steps + 1;
164 
165 	if (state->polarity == PWM_POLARITY_INVERSED) {
166 		negedge = first_edge;
167 		posedge = second_edge;
168 	} else {
169 		posedge = first_edge;
170 		negedge = second_edge;
171 	}
172 
173 	/*
174 	 * Set the sync bit which ensures that periods that already started are
175 	 * completed unaltered. At each counter reset event the values are
176 	 * updated from the shadow registers.
177 	 */
178 	writel_relaxed(posedge, mchp_core_pwm->base + MCHPCOREPWM_POSEDGE(pwm->hwpwm));
179 	writel_relaxed(negedge, mchp_core_pwm->base + MCHPCOREPWM_NEGEDGE(pwm->hwpwm));
180 }
181 
mchp_core_pwm_calc_period(const struct pwm_state * state,unsigned long clk_rate,u16 * prescale,u16 * period_steps)182 static int mchp_core_pwm_calc_period(const struct pwm_state *state, unsigned long clk_rate,
183 				     u16 *prescale, u16 *period_steps)
184 {
185 	u64 tmp;
186 
187 	/*
188 	 * Calculate the period cycles and prescale values.
189 	 * The registers are each 8 bits wide & multiplied to compute the period
190 	 * using the formula:
191 	 *           (prescale + 1) * (period_steps + 1)
192 	 * period = -------------------------------------
193 	 *                      clk_rate
194 	 * so the maximum period that can be generated is 0x10000 times the
195 	 * period of the input clock.
196 	 * However, due to the design of the "hardware", it is not possible to
197 	 * attain a 100% duty cycle if the full range of period_steps is used.
198 	 * Therefore period_steps is restricted to 0xfe and the maximum multiple
199 	 * of the clock period attainable is (0xff + 1) * (0xfe + 1) = 0xff00
200 	 *
201 	 * The prescale and period_steps registers operate similarly to
202 	 * CLK_DIVIDER_ONE_BASED, where the value used by the hardware is that
203 	 * in the register plus one.
204 	 * It's therefore not possible to set a period lower than 1/clk_rate, so
205 	 * if tmp is 0, abort. Without aborting, we will set a period that is
206 	 * greater than that requested and, more importantly, will trigger the
207 	 * neg-/pos-edge issue described in the limitations.
208 	 */
209 	tmp = mul_u64_u64_div_u64(state->period, clk_rate, NSEC_PER_SEC);
210 	if (tmp >= MCHPCOREPWM_PERIOD_MAX) {
211 		*prescale = MCHPCOREPWM_PRESCALE_MAX;
212 		*period_steps = MCHPCOREPWM_PERIOD_STEPS_MAX;
213 
214 		return 0;
215 	}
216 
217 	/*
218 	 * There are multiple strategies that could be used to choose the
219 	 * prescale & period_steps values.
220 	 * Here the idea is to pick values so that the selection of duty cycles
221 	 * is as finegrain as possible, while also keeping the period less than
222 	 * that requested.
223 	 *
224 	 * A simple way to satisfy the first condition is to always set
225 	 * period_steps to its maximum value. This neatly also satisfies the
226 	 * second condition too, since using the maximum value of period_steps
227 	 * to calculate prescale actually calculates its upper bound.
228 	 * Integer division will ensure a round down, so the period will thereby
229 	 * always be less than that requested.
230 	 *
231 	 * The downside of this approach is a significant degree of inaccuracy,
232 	 * especially as tmp approaches integer multiples of
233 	 * MCHPCOREPWM_PERIOD_STEPS_MAX.
234 	 *
235 	 * As we must produce a period less than that requested, and for the
236 	 * sake of creating a simple algorithm, disallow small values of tmp
237 	 * that would need special handling.
238 	 */
239 	if (tmp < MCHPCOREPWM_PERIOD_STEPS_MAX + 1)
240 		return -EINVAL;
241 
242 	/*
243 	 * This "optimal" value for prescale is be calculated using the maximum
244 	 * permitted value of period_steps, 0xfe.
245 	 *
246 	 *                period * clk_rate
247 	 * prescale = ------------------------- - 1
248 	 *            NSEC_PER_SEC * (0xfe + 1)
249 	 *
250 	 *
251 	 *  period * clk_rate
252 	 * ------------------- was precomputed as `tmp`
253 	 *    NSEC_PER_SEC
254 	 */
255 	*prescale = ((u16)tmp) / (MCHPCOREPWM_PERIOD_STEPS_MAX + 1) - 1;
256 
257 	/*
258 	 * period_steps can be computed from prescale:
259 	 *                      period * clk_rate
260 	 * period_steps = ----------------------------- - 1
261 	 *                NSEC_PER_SEC * (prescale + 1)
262 	 *
263 	 * However, in this approximation, we simply use the maximum value that
264 	 * was used to compute prescale.
265 	 */
266 	*period_steps = MCHPCOREPWM_PERIOD_STEPS_MAX;
267 
268 	return 0;
269 }
270 
mchp_core_pwm_apply_locked(struct pwm_chip * chip,struct pwm_device * pwm,const struct pwm_state * state)271 static int mchp_core_pwm_apply_locked(struct pwm_chip *chip, struct pwm_device *pwm,
272 				      const struct pwm_state *state)
273 {
274 	struct mchp_core_pwm_chip *mchp_core_pwm = to_mchp_core_pwm(chip);
275 	bool period_locked;
276 	unsigned long clk_rate;
277 	u64 duty_steps;
278 	u16 prescale, period_steps;
279 	int ret;
280 
281 	if (!state->enabled) {
282 		mchp_core_pwm_enable(chip, pwm, false, pwm->state.period);
283 		return 0;
284 	}
285 
286 	/*
287 	 * If clk_rate is too big, the following multiplication might overflow.
288 	 * However this is implausible, as the fabric of current FPGAs cannot
289 	 * provide clocks at a rate high enough.
290 	 */
291 	clk_rate = clk_get_rate(mchp_core_pwm->clk);
292 	if (clk_rate >= NSEC_PER_SEC)
293 		return -EINVAL;
294 
295 	ret = mchp_core_pwm_calc_period(state, clk_rate, &prescale, &period_steps);
296 	if (ret)
297 		return ret;
298 
299 	/*
300 	 * If the only thing that has changed is the duty cycle or the polarity,
301 	 * we can shortcut the calculations and just compute/apply the new duty
302 	 * cycle pos & neg edges
303 	 * As all the channels share the same period, do not allow it to be
304 	 * changed if any other channels are enabled.
305 	 * If the period is locked, it may not be possible to use a period
306 	 * less than that requested. In that case, we just abort.
307 	 */
308 	period_locked = mchp_core_pwm->channel_enabled & ~(1 << pwm->hwpwm);
309 
310 	if (period_locked) {
311 		u16 hw_prescale;
312 		u16 hw_period_steps;
313 
314 		hw_prescale = readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_PRESCALE);
315 		hw_period_steps = readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_PERIOD);
316 
317 		if ((period_steps + 1) * (prescale + 1) <
318 		    (hw_period_steps + 1) * (hw_prescale + 1))
319 			return -EINVAL;
320 
321 		/*
322 		 * It is possible that something could have set the period_steps
323 		 * register to 0xff, which would prevent us from setting a 100%
324 		 * or 0% relative duty cycle, as explained above in
325 		 * mchp_core_pwm_calc_period().
326 		 * The period is locked and we cannot change this, so we abort.
327 		 */
328 		if (hw_period_steps > MCHPCOREPWM_PERIOD_STEPS_MAX)
329 			return -EINVAL;
330 
331 		prescale = hw_prescale;
332 		period_steps = hw_period_steps;
333 	}
334 
335 	duty_steps = mchp_core_pwm_calc_duty(state, clk_rate, prescale, period_steps);
336 
337 	/*
338 	 * Because the period is not per channel, it is possible that the
339 	 * requested duty cycle is longer than the period, in which case cap it
340 	 * to the period, IOW a 100% duty cycle.
341 	 */
342 	if (duty_steps > period_steps)
343 		duty_steps = period_steps + 1;
344 
345 	if (!period_locked) {
346 		writel_relaxed(prescale, mchp_core_pwm->base + MCHPCOREPWM_PRESCALE);
347 		writel_relaxed(period_steps, mchp_core_pwm->base + MCHPCOREPWM_PERIOD);
348 	}
349 
350 	mchp_core_pwm_apply_duty(chip, pwm, state, duty_steps, period_steps);
351 
352 	mchp_core_pwm_enable(chip, pwm, true, pwm->state.period);
353 
354 	return 0;
355 }
356 
mchp_core_pwm_apply(struct pwm_chip * chip,struct pwm_device * pwm,const struct pwm_state * state)357 static int mchp_core_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
358 			       const struct pwm_state *state)
359 {
360 	struct mchp_core_pwm_chip *mchp_core_pwm = to_mchp_core_pwm(chip);
361 
362 	mchp_core_pwm_wait_for_sync_update(mchp_core_pwm, pwm->hwpwm);
363 
364 	return mchp_core_pwm_apply_locked(chip, pwm, state);
365 }
366 
mchp_core_pwm_get_state(struct pwm_chip * chip,struct pwm_device * pwm,struct pwm_state * state)367 static int mchp_core_pwm_get_state(struct pwm_chip *chip, struct pwm_device *pwm,
368 				   struct pwm_state *state)
369 {
370 	struct mchp_core_pwm_chip *mchp_core_pwm = to_mchp_core_pwm(chip);
371 	u64 rate;
372 	u16 prescale, period_steps;
373 	u8 duty_steps, posedge, negedge;
374 
375 	mchp_core_pwm_wait_for_sync_update(mchp_core_pwm, pwm->hwpwm);
376 
377 	if (mchp_core_pwm->channel_enabled & (1 << pwm->hwpwm))
378 		state->enabled = true;
379 	else
380 		state->enabled = false;
381 
382 	rate = clk_get_rate(mchp_core_pwm->clk);
383 
384 	/*
385 	 * Calculating the period:
386 	 * The registers are each 8 bits wide & multiplied to compute the period
387 	 * using the formula:
388 	 *           (prescale + 1) * (period_steps + 1)
389 	 * period = -------------------------------------
390 	 *                      clk_rate
391 	 *
392 	 * Note:
393 	 * The prescale and period_steps registers operate similarly to
394 	 * CLK_DIVIDER_ONE_BASED, where the value used by the hardware is that
395 	 * in the register plus one.
396 	 */
397 	prescale = readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_PRESCALE);
398 	period_steps = readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_PERIOD);
399 
400 	state->period = (period_steps + 1) * (prescale + 1);
401 	state->period *= NSEC_PER_SEC;
402 	state->period = DIV64_U64_ROUND_UP(state->period, rate);
403 
404 	posedge = readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_POSEDGE(pwm->hwpwm));
405 	negedge = readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_NEGEDGE(pwm->hwpwm));
406 
407 	if (negedge == posedge) {
408 		state->duty_cycle = state->period;
409 		state->period *= 2;
410 	} else {
411 		duty_steps = abs((s16)posedge - (s16)negedge);
412 		state->duty_cycle = duty_steps * (prescale + 1) * NSEC_PER_SEC;
413 		state->duty_cycle = DIV64_U64_ROUND_UP(state->duty_cycle, rate);
414 	}
415 
416 	state->polarity = negedge < posedge ? PWM_POLARITY_INVERSED : PWM_POLARITY_NORMAL;
417 
418 	return 0;
419 }
420 
421 static const struct pwm_ops mchp_core_pwm_ops = {
422 	.apply = mchp_core_pwm_apply,
423 	.get_state = mchp_core_pwm_get_state,
424 };
425 
426 static const struct of_device_id mchp_core_of_match[] = {
427 	{
428 		.compatible = "microchip,corepwm-rtl-v4",
429 	},
430 	{ /* sentinel */ }
431 };
432 MODULE_DEVICE_TABLE(of, mchp_core_of_match);
433 
mchp_core_pwm_probe(struct platform_device * pdev)434 static int mchp_core_pwm_probe(struct platform_device *pdev)
435 {
436 	struct pwm_chip *chip;
437 	struct mchp_core_pwm_chip *mchp_core_pwm;
438 	struct resource *regs;
439 	int ret;
440 
441 	chip = devm_pwmchip_alloc(&pdev->dev, 16, sizeof(*mchp_core_pwm));
442 	if (IS_ERR(chip))
443 		return PTR_ERR(chip);
444 	mchp_core_pwm = to_mchp_core_pwm(chip);
445 
446 	mchp_core_pwm->base = devm_platform_get_and_ioremap_resource(pdev, 0, &regs);
447 	if (IS_ERR(mchp_core_pwm->base))
448 		return PTR_ERR(mchp_core_pwm->base);
449 
450 	mchp_core_pwm->clk = devm_clk_get_enabled(&pdev->dev, NULL);
451 	if (IS_ERR(mchp_core_pwm->clk))
452 		return dev_err_probe(&pdev->dev, PTR_ERR(mchp_core_pwm->clk),
453 				     "failed to get PWM clock\n");
454 
455 	if (of_property_read_u32(pdev->dev.of_node, "microchip,sync-update-mask",
456 				 &mchp_core_pwm->sync_update_mask))
457 		mchp_core_pwm->sync_update_mask = 0;
458 
459 	chip->ops = &mchp_core_pwm_ops;
460 
461 	mchp_core_pwm->channel_enabled = readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_EN(0));
462 	mchp_core_pwm->channel_enabled |=
463 		readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_EN(1)) << 8;
464 
465 	/*
466 	 * Enable synchronous update mode for all channels for which shadow
467 	 * registers have been synthesised.
468 	 */
469 	writel_relaxed(1U, mchp_core_pwm->base + MCHPCOREPWM_SYNC_UPD);
470 	mchp_core_pwm->update_timestamp = ktime_get();
471 
472 	ret = devm_pwmchip_add(&pdev->dev, chip);
473 	if (ret)
474 		return dev_err_probe(&pdev->dev, ret, "Failed to add pwmchip\n");
475 
476 	return 0;
477 }
478 
479 static struct platform_driver mchp_core_pwm_driver = {
480 	.driver = {
481 		.name = "mchp-core-pwm",
482 		.of_match_table = mchp_core_of_match,
483 	},
484 	.probe = mchp_core_pwm_probe,
485 };
486 module_platform_driver(mchp_core_pwm_driver);
487 
488 MODULE_LICENSE("GPL");
489 MODULE_AUTHOR("Conor Dooley <conor.dooley@microchip.com>");
490 MODULE_DESCRIPTION("corePWM driver for Microchip FPGAs");
491