1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * corePWM driver for Microchip "soft" FPGA IP cores.
4 *
5 * Copyright (c) 2021-2023 Microchip Corporation. All rights reserved.
6 * Author: Conor Dooley <conor.dooley@microchip.com>
7 * Documentation:
8 * https://www.microsemi.com/document-portal/doc_download/1245275-corepwm-hb
9 *
10 * Limitations:
11 * - If the IP block is configured without "shadow registers", all register
12 * writes will take effect immediately, causing glitches on the output.
13 * If shadow registers *are* enabled, setting the "SYNC_UPDATE" register
14 * notifies the core that it needs to update the registers defining the
15 * waveform from the contents of the "shadow registers". Otherwise, changes
16 * will take effective immediately, even for those channels.
17 * As setting the period/duty cycle takes 4 register writes, there is a window
18 * in which this races against the start of a new period.
19 * - The IP block has no concept of a duty cycle, only rising/falling edges of
20 * the waveform. Unfortunately, if the rising & falling edges registers have
21 * the same value written to them the IP block will do whichever of a rising
22 * or a falling edge is possible. I.E. a 50% waveform at twice the requested
23 * period. Therefore to get a 0% waveform, the output is set the max high/low
24 * time depending on polarity.
25 * If the duty cycle is 0%, and the requested period is less than the
26 * available period resolution, this will manifest as a ~100% waveform (with
27 * some output glitches) rather than 50%.
28 * - The PWM period is set for the whole IP block not per channel. The driver
29 * will only change the period if no other PWM output is enabled.
30 */
31
32 #include <linux/clk.h>
33 #include <linux/delay.h>
34 #include <linux/err.h>
35 #include <linux/io.h>
36 #include <linux/ktime.h>
37 #include <linux/math.h>
38 #include <linux/module.h>
39 #include <linux/of.h>
40 #include <linux/platform_device.h>
41 #include <linux/pwm.h>
42
43 #define MCHPCOREPWM_PRESCALE_MAX 0xff
44 #define MCHPCOREPWM_PERIOD_STEPS_MAX 0xfe
45 #define MCHPCOREPWM_PERIOD_MAX 0xff00
46
47 #define MCHPCOREPWM_PRESCALE 0x00
48 #define MCHPCOREPWM_PERIOD 0x04
49 #define MCHPCOREPWM_EN(i) (0x08 + 0x04 * (i)) /* 0x08, 0x0c */
50 #define MCHPCOREPWM_POSEDGE(i) (0x10 + 0x08 * (i)) /* 0x10, 0x18, ..., 0x88 */
51 #define MCHPCOREPWM_NEGEDGE(i) (0x14 + 0x08 * (i)) /* 0x14, 0x1c, ..., 0x8c */
52 #define MCHPCOREPWM_SYNC_UPD 0xe4
53 #define MCHPCOREPWM_TIMEOUT_MS 100u
54
55 struct mchp_core_pwm_chip {
56 struct clk *clk;
57 void __iomem *base;
58 ktime_t update_timestamp;
59 u32 sync_update_mask;
60 u16 channel_enabled;
61 };
62
to_mchp_core_pwm(struct pwm_chip * chip)63 static inline struct mchp_core_pwm_chip *to_mchp_core_pwm(struct pwm_chip *chip)
64 {
65 return pwmchip_get_drvdata(chip);
66 }
67
mchp_core_pwm_enable(struct pwm_chip * chip,struct pwm_device * pwm,bool enable,u64 period)68 static void mchp_core_pwm_enable(struct pwm_chip *chip, struct pwm_device *pwm,
69 bool enable, u64 period)
70 {
71 struct mchp_core_pwm_chip *mchp_core_pwm = to_mchp_core_pwm(chip);
72 u8 channel_enable, reg_offset, shift;
73
74 /*
75 * There are two adjacent 8 bit control regs, the lower reg controls
76 * 0-7 and the upper reg 8-15. Check if the pwm is in the upper reg
77 * and if so, offset by the bus width.
78 */
79 reg_offset = MCHPCOREPWM_EN(pwm->hwpwm >> 3);
80 shift = pwm->hwpwm & 7;
81
82 channel_enable = readb_relaxed(mchp_core_pwm->base + reg_offset);
83 channel_enable &= ~(1 << shift);
84 channel_enable |= (enable << shift);
85
86 writel_relaxed(channel_enable, mchp_core_pwm->base + reg_offset);
87 mchp_core_pwm->channel_enabled &= ~BIT(pwm->hwpwm);
88 mchp_core_pwm->channel_enabled |= enable << pwm->hwpwm;
89
90 /*
91 * The updated values will not appear on the bus until they have been
92 * applied to the waveform at the beginning of the next period.
93 * This is a NO-OP if the channel does not have shadow registers.
94 */
95 if (mchp_core_pwm->sync_update_mask & (1 << pwm->hwpwm))
96 mchp_core_pwm->update_timestamp = ktime_add_ns(ktime_get(), period);
97 }
98
mchp_core_pwm_wait_for_sync_update(struct mchp_core_pwm_chip * mchp_core_pwm,unsigned int channel)99 static void mchp_core_pwm_wait_for_sync_update(struct mchp_core_pwm_chip *mchp_core_pwm,
100 unsigned int channel)
101 {
102 /*
103 * If a shadow register is used for this PWM channel, and iff there is
104 * a pending update to the waveform, we must wait for it to be applied
105 * before attempting to read its state. Reading the registers yields
106 * the currently implemented settings & the new ones are only readable
107 * once the current period has ended.
108 */
109
110 if (mchp_core_pwm->sync_update_mask & (1 << channel)) {
111 ktime_t current_time = ktime_get();
112 s64 remaining_ns;
113 u32 delay_us;
114
115 remaining_ns = ktime_to_ns(ktime_sub(mchp_core_pwm->update_timestamp,
116 current_time));
117
118 /*
119 * If the update has gone through, don't bother waiting for
120 * obvious reasons. Otherwise wait around for an appropriate
121 * amount of time for the update to go through.
122 */
123 if (remaining_ns <= 0)
124 return;
125
126 delay_us = DIV_ROUND_UP_ULL(remaining_ns, NSEC_PER_USEC);
127 fsleep(delay_us);
128 }
129 }
130
mchp_core_pwm_calc_duty(const struct pwm_state * state,u64 clk_rate,u8 prescale,u8 period_steps)131 static u64 mchp_core_pwm_calc_duty(const struct pwm_state *state, u64 clk_rate,
132 u8 prescale, u8 period_steps)
133 {
134 u64 duty_steps, tmp;
135
136 /*
137 * Calculate the duty cycle in multiples of the prescaled period:
138 * duty_steps = duty_in_ns / step_in_ns
139 * step_in_ns = (prescale * NSEC_PER_SEC) / clk_rate
140 * The code below is rearranged slightly to only divide once.
141 */
142 tmp = (((u64)prescale) + 1) * NSEC_PER_SEC;
143 duty_steps = mul_u64_u64_div_u64(state->duty_cycle, clk_rate, tmp);
144
145 return duty_steps;
146 }
147
mchp_core_pwm_apply_duty(struct pwm_chip * chip,struct pwm_device * pwm,const struct pwm_state * state,u64 duty_steps,u16 period_steps)148 static void mchp_core_pwm_apply_duty(struct pwm_chip *chip, struct pwm_device *pwm,
149 const struct pwm_state *state, u64 duty_steps,
150 u16 period_steps)
151 {
152 struct mchp_core_pwm_chip *mchp_core_pwm = to_mchp_core_pwm(chip);
153 u8 posedge, negedge;
154 u8 first_edge = 0, second_edge = duty_steps;
155
156 /*
157 * Setting posedge == negedge doesn't yield a constant output,
158 * so that's an unsuitable setting to model duty_steps = 0.
159 * In that case set the unwanted edge to a value that never
160 * triggers.
161 */
162 if (duty_steps == 0)
163 first_edge = period_steps + 1;
164
165 if (state->polarity == PWM_POLARITY_INVERSED) {
166 negedge = first_edge;
167 posedge = second_edge;
168 } else {
169 posedge = first_edge;
170 negedge = second_edge;
171 }
172
173 /*
174 * Set the sync bit which ensures that periods that already started are
175 * completed unaltered. At each counter reset event the values are
176 * updated from the shadow registers.
177 */
178 writel_relaxed(posedge, mchp_core_pwm->base + MCHPCOREPWM_POSEDGE(pwm->hwpwm));
179 writel_relaxed(negedge, mchp_core_pwm->base + MCHPCOREPWM_NEGEDGE(pwm->hwpwm));
180 }
181
mchp_core_pwm_calc_period(const struct pwm_state * state,unsigned long clk_rate,u16 * prescale,u16 * period_steps)182 static int mchp_core_pwm_calc_period(const struct pwm_state *state, unsigned long clk_rate,
183 u16 *prescale, u16 *period_steps)
184 {
185 u64 tmp;
186
187 /*
188 * Calculate the period cycles and prescale values.
189 * The registers are each 8 bits wide & multiplied to compute the period
190 * using the formula:
191 * (prescale + 1) * (period_steps + 1)
192 * period = -------------------------------------
193 * clk_rate
194 * so the maximum period that can be generated is 0x10000 times the
195 * period of the input clock.
196 * However, due to the design of the "hardware", it is not possible to
197 * attain a 100% duty cycle if the full range of period_steps is used.
198 * Therefore period_steps is restricted to 0xfe and the maximum multiple
199 * of the clock period attainable is (0xff + 1) * (0xfe + 1) = 0xff00
200 *
201 * The prescale and period_steps registers operate similarly to
202 * CLK_DIVIDER_ONE_BASED, where the value used by the hardware is that
203 * in the register plus one.
204 * It's therefore not possible to set a period lower than 1/clk_rate, so
205 * if tmp is 0, abort. Without aborting, we will set a period that is
206 * greater than that requested and, more importantly, will trigger the
207 * neg-/pos-edge issue described in the limitations.
208 */
209 tmp = mul_u64_u64_div_u64(state->period, clk_rate, NSEC_PER_SEC);
210 if (tmp >= MCHPCOREPWM_PERIOD_MAX) {
211 *prescale = MCHPCOREPWM_PRESCALE_MAX;
212 *period_steps = MCHPCOREPWM_PERIOD_STEPS_MAX;
213
214 return 0;
215 }
216
217 /*
218 * There are multiple strategies that could be used to choose the
219 * prescale & period_steps values.
220 * Here the idea is to pick values so that the selection of duty cycles
221 * is as finegrain as possible, while also keeping the period less than
222 * that requested.
223 *
224 * A simple way to satisfy the first condition is to always set
225 * period_steps to its maximum value. This neatly also satisfies the
226 * second condition too, since using the maximum value of period_steps
227 * to calculate prescale actually calculates its upper bound.
228 * Integer division will ensure a round down, so the period will thereby
229 * always be less than that requested.
230 *
231 * The downside of this approach is a significant degree of inaccuracy,
232 * especially as tmp approaches integer multiples of
233 * MCHPCOREPWM_PERIOD_STEPS_MAX.
234 *
235 * As we must produce a period less than that requested, and for the
236 * sake of creating a simple algorithm, disallow small values of tmp
237 * that would need special handling.
238 */
239 if (tmp < MCHPCOREPWM_PERIOD_STEPS_MAX + 1)
240 return -EINVAL;
241
242 /*
243 * This "optimal" value for prescale is be calculated using the maximum
244 * permitted value of period_steps, 0xfe.
245 *
246 * period * clk_rate
247 * prescale = ------------------------- - 1
248 * NSEC_PER_SEC * (0xfe + 1)
249 *
250 *
251 * period * clk_rate
252 * ------------------- was precomputed as `tmp`
253 * NSEC_PER_SEC
254 */
255 *prescale = ((u16)tmp) / (MCHPCOREPWM_PERIOD_STEPS_MAX + 1) - 1;
256
257 /*
258 * period_steps can be computed from prescale:
259 * period * clk_rate
260 * period_steps = ----------------------------- - 1
261 * NSEC_PER_SEC * (prescale + 1)
262 *
263 * However, in this approximation, we simply use the maximum value that
264 * was used to compute prescale.
265 */
266 *period_steps = MCHPCOREPWM_PERIOD_STEPS_MAX;
267
268 return 0;
269 }
270
mchp_core_pwm_apply_locked(struct pwm_chip * chip,struct pwm_device * pwm,const struct pwm_state * state)271 static int mchp_core_pwm_apply_locked(struct pwm_chip *chip, struct pwm_device *pwm,
272 const struct pwm_state *state)
273 {
274 struct mchp_core_pwm_chip *mchp_core_pwm = to_mchp_core_pwm(chip);
275 bool period_locked;
276 unsigned long clk_rate;
277 u64 duty_steps;
278 u16 prescale, period_steps;
279 int ret;
280
281 if (!state->enabled) {
282 mchp_core_pwm_enable(chip, pwm, false, pwm->state.period);
283 return 0;
284 }
285
286 /*
287 * If clk_rate is too big, the following multiplication might overflow.
288 * However this is implausible, as the fabric of current FPGAs cannot
289 * provide clocks at a rate high enough.
290 */
291 clk_rate = clk_get_rate(mchp_core_pwm->clk);
292 if (clk_rate >= NSEC_PER_SEC)
293 return -EINVAL;
294
295 ret = mchp_core_pwm_calc_period(state, clk_rate, &prescale, &period_steps);
296 if (ret)
297 return ret;
298
299 /*
300 * If the only thing that has changed is the duty cycle or the polarity,
301 * we can shortcut the calculations and just compute/apply the new duty
302 * cycle pos & neg edges
303 * As all the channels share the same period, do not allow it to be
304 * changed if any other channels are enabled.
305 * If the period is locked, it may not be possible to use a period
306 * less than that requested. In that case, we just abort.
307 */
308 period_locked = mchp_core_pwm->channel_enabled & ~(1 << pwm->hwpwm);
309
310 if (period_locked) {
311 u16 hw_prescale;
312 u16 hw_period_steps;
313
314 hw_prescale = readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_PRESCALE);
315 hw_period_steps = readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_PERIOD);
316
317 if ((period_steps + 1) * (prescale + 1) <
318 (hw_period_steps + 1) * (hw_prescale + 1))
319 return -EINVAL;
320
321 /*
322 * It is possible that something could have set the period_steps
323 * register to 0xff, which would prevent us from setting a 100%
324 * or 0% relative duty cycle, as explained above in
325 * mchp_core_pwm_calc_period().
326 * The period is locked and we cannot change this, so we abort.
327 */
328 if (hw_period_steps > MCHPCOREPWM_PERIOD_STEPS_MAX)
329 return -EINVAL;
330
331 prescale = hw_prescale;
332 period_steps = hw_period_steps;
333 }
334
335 duty_steps = mchp_core_pwm_calc_duty(state, clk_rate, prescale, period_steps);
336
337 /*
338 * Because the period is not per channel, it is possible that the
339 * requested duty cycle is longer than the period, in which case cap it
340 * to the period, IOW a 100% duty cycle.
341 */
342 if (duty_steps > period_steps)
343 duty_steps = period_steps + 1;
344
345 if (!period_locked) {
346 writel_relaxed(prescale, mchp_core_pwm->base + MCHPCOREPWM_PRESCALE);
347 writel_relaxed(period_steps, mchp_core_pwm->base + MCHPCOREPWM_PERIOD);
348 }
349
350 mchp_core_pwm_apply_duty(chip, pwm, state, duty_steps, period_steps);
351
352 mchp_core_pwm_enable(chip, pwm, true, pwm->state.period);
353
354 return 0;
355 }
356
mchp_core_pwm_apply(struct pwm_chip * chip,struct pwm_device * pwm,const struct pwm_state * state)357 static int mchp_core_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
358 const struct pwm_state *state)
359 {
360 struct mchp_core_pwm_chip *mchp_core_pwm = to_mchp_core_pwm(chip);
361
362 mchp_core_pwm_wait_for_sync_update(mchp_core_pwm, pwm->hwpwm);
363
364 return mchp_core_pwm_apply_locked(chip, pwm, state);
365 }
366
mchp_core_pwm_get_state(struct pwm_chip * chip,struct pwm_device * pwm,struct pwm_state * state)367 static int mchp_core_pwm_get_state(struct pwm_chip *chip, struct pwm_device *pwm,
368 struct pwm_state *state)
369 {
370 struct mchp_core_pwm_chip *mchp_core_pwm = to_mchp_core_pwm(chip);
371 u64 rate;
372 u16 prescale, period_steps;
373 u8 duty_steps, posedge, negedge;
374
375 mchp_core_pwm_wait_for_sync_update(mchp_core_pwm, pwm->hwpwm);
376
377 if (mchp_core_pwm->channel_enabled & (1 << pwm->hwpwm))
378 state->enabled = true;
379 else
380 state->enabled = false;
381
382 rate = clk_get_rate(mchp_core_pwm->clk);
383
384 /*
385 * Calculating the period:
386 * The registers are each 8 bits wide & multiplied to compute the period
387 * using the formula:
388 * (prescale + 1) * (period_steps + 1)
389 * period = -------------------------------------
390 * clk_rate
391 *
392 * Note:
393 * The prescale and period_steps registers operate similarly to
394 * CLK_DIVIDER_ONE_BASED, where the value used by the hardware is that
395 * in the register plus one.
396 */
397 prescale = readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_PRESCALE);
398 period_steps = readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_PERIOD);
399
400 state->period = (period_steps + 1) * (prescale + 1);
401 state->period *= NSEC_PER_SEC;
402 state->period = DIV64_U64_ROUND_UP(state->period, rate);
403
404 posedge = readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_POSEDGE(pwm->hwpwm));
405 negedge = readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_NEGEDGE(pwm->hwpwm));
406
407 if (negedge == posedge) {
408 state->duty_cycle = state->period;
409 state->period *= 2;
410 } else {
411 duty_steps = abs((s16)posedge - (s16)negedge);
412 state->duty_cycle = duty_steps * (prescale + 1) * NSEC_PER_SEC;
413 state->duty_cycle = DIV64_U64_ROUND_UP(state->duty_cycle, rate);
414 }
415
416 state->polarity = negedge < posedge ? PWM_POLARITY_INVERSED : PWM_POLARITY_NORMAL;
417
418 return 0;
419 }
420
421 static const struct pwm_ops mchp_core_pwm_ops = {
422 .apply = mchp_core_pwm_apply,
423 .get_state = mchp_core_pwm_get_state,
424 };
425
426 static const struct of_device_id mchp_core_of_match[] = {
427 {
428 .compatible = "microchip,corepwm-rtl-v4",
429 },
430 { /* sentinel */ }
431 };
432 MODULE_DEVICE_TABLE(of, mchp_core_of_match);
433
mchp_core_pwm_probe(struct platform_device * pdev)434 static int mchp_core_pwm_probe(struct platform_device *pdev)
435 {
436 struct pwm_chip *chip;
437 struct mchp_core_pwm_chip *mchp_core_pwm;
438 struct resource *regs;
439 int ret;
440
441 chip = devm_pwmchip_alloc(&pdev->dev, 16, sizeof(*mchp_core_pwm));
442 if (IS_ERR(chip))
443 return PTR_ERR(chip);
444 mchp_core_pwm = to_mchp_core_pwm(chip);
445
446 mchp_core_pwm->base = devm_platform_get_and_ioremap_resource(pdev, 0, ®s);
447 if (IS_ERR(mchp_core_pwm->base))
448 return PTR_ERR(mchp_core_pwm->base);
449
450 mchp_core_pwm->clk = devm_clk_get_enabled(&pdev->dev, NULL);
451 if (IS_ERR(mchp_core_pwm->clk))
452 return dev_err_probe(&pdev->dev, PTR_ERR(mchp_core_pwm->clk),
453 "failed to get PWM clock\n");
454
455 if (of_property_read_u32(pdev->dev.of_node, "microchip,sync-update-mask",
456 &mchp_core_pwm->sync_update_mask))
457 mchp_core_pwm->sync_update_mask = 0;
458
459 chip->ops = &mchp_core_pwm_ops;
460
461 mchp_core_pwm->channel_enabled = readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_EN(0));
462 mchp_core_pwm->channel_enabled |=
463 readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_EN(1)) << 8;
464
465 /*
466 * Enable synchronous update mode for all channels for which shadow
467 * registers have been synthesised.
468 */
469 writel_relaxed(1U, mchp_core_pwm->base + MCHPCOREPWM_SYNC_UPD);
470 mchp_core_pwm->update_timestamp = ktime_get();
471
472 ret = devm_pwmchip_add(&pdev->dev, chip);
473 if (ret)
474 return dev_err_probe(&pdev->dev, ret, "Failed to add pwmchip\n");
475
476 return 0;
477 }
478
479 static struct platform_driver mchp_core_pwm_driver = {
480 .driver = {
481 .name = "mchp-core-pwm",
482 .of_match_table = mchp_core_of_match,
483 },
484 .probe = mchp_core_pwm_probe,
485 };
486 module_platform_driver(mchp_core_pwm_driver);
487
488 MODULE_LICENSE("GPL");
489 MODULE_AUTHOR("Conor Dooley <conor.dooley@microchip.com>");
490 MODULE_DESCRIPTION("corePWM driver for Microchip FPGAs");
491