xref: /linux/fs/btrfs/tree-log.c (revision 0074281bb6316108e0cff094bd4db78ab3eee236)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2008 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/blkdev.h>
9 #include <linux/list_sort.h>
10 #include <linux/iversion.h>
11 #include "misc.h"
12 #include "ctree.h"
13 #include "tree-log.h"
14 #include "disk-io.h"
15 #include "locking.h"
16 #include "backref.h"
17 #include "compression.h"
18 #include "qgroup.h"
19 #include "block-group.h"
20 #include "space-info.h"
21 #include "inode-item.h"
22 #include "fs.h"
23 #include "accessors.h"
24 #include "extent-tree.h"
25 #include "root-tree.h"
26 #include "dir-item.h"
27 #include "file-item.h"
28 #include "file.h"
29 #include "orphan.h"
30 #include "tree-checker.h"
31 
32 #define MAX_CONFLICT_INODES 10
33 
34 /* magic values for the inode_only field in btrfs_log_inode:
35  *
36  * LOG_INODE_ALL means to log everything
37  * LOG_INODE_EXISTS means to log just enough to recreate the inode
38  * during log replay
39  */
40 enum {
41 	LOG_INODE_ALL,
42 	LOG_INODE_EXISTS,
43 };
44 
45 /*
46  * directory trouble cases
47  *
48  * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
49  * log, we must force a full commit before doing an fsync of the directory
50  * where the unlink was done.
51  * ---> record transid of last unlink/rename per directory
52  *
53  * mkdir foo/some_dir
54  * normal commit
55  * rename foo/some_dir foo2/some_dir
56  * mkdir foo/some_dir
57  * fsync foo/some_dir/some_file
58  *
59  * The fsync above will unlink the original some_dir without recording
60  * it in its new location (foo2).  After a crash, some_dir will be gone
61  * unless the fsync of some_file forces a full commit
62  *
63  * 2) we must log any new names for any file or dir that is in the fsync
64  * log. ---> check inode while renaming/linking.
65  *
66  * 2a) we must log any new names for any file or dir during rename
67  * when the directory they are being removed from was logged.
68  * ---> check inode and old parent dir during rename
69  *
70  *  2a is actually the more important variant.  With the extra logging
71  *  a crash might unlink the old name without recreating the new one
72  *
73  * 3) after a crash, we must go through any directories with a link count
74  * of zero and redo the rm -rf
75  *
76  * mkdir f1/foo
77  * normal commit
78  * rm -rf f1/foo
79  * fsync(f1)
80  *
81  * The directory f1 was fully removed from the FS, but fsync was never
82  * called on f1, only its parent dir.  After a crash the rm -rf must
83  * be replayed.  This must be able to recurse down the entire
84  * directory tree.  The inode link count fixup code takes care of the
85  * ugly details.
86  */
87 
88 /*
89  * stages for the tree walking.  The first
90  * stage (0) is to only pin down the blocks we find
91  * the second stage (1) is to make sure that all the inodes
92  * we find in the log are created in the subvolume.
93  *
94  * The last stage is to deal with directories and links and extents
95  * and all the other fun semantics
96  */
97 enum {
98 	LOG_WALK_PIN_ONLY,
99 	LOG_WALK_REPLAY_INODES,
100 	LOG_WALK_REPLAY_DIR_INDEX,
101 	LOG_WALK_REPLAY_ALL,
102 };
103 
104 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
105 			   struct btrfs_inode *inode,
106 			   int inode_only,
107 			   struct btrfs_log_ctx *ctx);
108 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
109 			     struct btrfs_root *root,
110 			     struct btrfs_path *path, u64 objectid);
111 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
112 				       struct btrfs_root *root,
113 				       struct btrfs_root *log,
114 				       struct btrfs_path *path,
115 				       u64 dirid, bool del_all);
116 static void wait_log_commit(struct btrfs_root *root, int transid);
117 
118 /*
119  * tree logging is a special write ahead log used to make sure that
120  * fsyncs and O_SYNCs can happen without doing full tree commits.
121  *
122  * Full tree commits are expensive because they require commonly
123  * modified blocks to be recowed, creating many dirty pages in the
124  * extent tree an 4x-6x higher write load than ext3.
125  *
126  * Instead of doing a tree commit on every fsync, we use the
127  * key ranges and transaction ids to find items for a given file or directory
128  * that have changed in this transaction.  Those items are copied into
129  * a special tree (one per subvolume root), that tree is written to disk
130  * and then the fsync is considered complete.
131  *
132  * After a crash, items are copied out of the log-tree back into the
133  * subvolume tree.  Any file data extents found are recorded in the extent
134  * allocation tree, and the log-tree freed.
135  *
136  * The log tree is read three times, once to pin down all the extents it is
137  * using in ram and once, once to create all the inodes logged in the tree
138  * and once to do all the other items.
139  */
140 
btrfs_iget_logging(u64 objectid,struct btrfs_root * root)141 static struct btrfs_inode *btrfs_iget_logging(u64 objectid, struct btrfs_root *root)
142 {
143 	unsigned int nofs_flag;
144 	struct btrfs_inode *inode;
145 
146 	/* Only meant to be called for subvolume roots and not for log roots. */
147 	ASSERT(btrfs_is_fstree(btrfs_root_id(root)));
148 
149 	/*
150 	 * We're holding a transaction handle whether we are logging or
151 	 * replaying a log tree, so we must make sure NOFS semantics apply
152 	 * because btrfs_alloc_inode() may be triggered and it uses GFP_KERNEL
153 	 * to allocate an inode, which can recurse back into the filesystem and
154 	 * attempt a transaction commit, resulting in a deadlock.
155 	 */
156 	nofs_flag = memalloc_nofs_save();
157 	inode = btrfs_iget(objectid, root);
158 	memalloc_nofs_restore(nofs_flag);
159 
160 	return inode;
161 }
162 
163 /*
164  * start a sub transaction and setup the log tree
165  * this increments the log tree writer count to make the people
166  * syncing the tree wait for us to finish
167  */
start_log_trans(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_log_ctx * ctx)168 static int start_log_trans(struct btrfs_trans_handle *trans,
169 			   struct btrfs_root *root,
170 			   struct btrfs_log_ctx *ctx)
171 {
172 	struct btrfs_fs_info *fs_info = root->fs_info;
173 	struct btrfs_root *tree_root = fs_info->tree_root;
174 	const bool zoned = btrfs_is_zoned(fs_info);
175 	int ret = 0;
176 	bool created = false;
177 
178 	/*
179 	 * First check if the log root tree was already created. If not, create
180 	 * it before locking the root's log_mutex, just to keep lockdep happy.
181 	 */
182 	if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state)) {
183 		mutex_lock(&tree_root->log_mutex);
184 		if (!fs_info->log_root_tree) {
185 			ret = btrfs_init_log_root_tree(trans, fs_info);
186 			if (!ret) {
187 				set_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state);
188 				created = true;
189 			}
190 		}
191 		mutex_unlock(&tree_root->log_mutex);
192 		if (ret)
193 			return ret;
194 	}
195 
196 	mutex_lock(&root->log_mutex);
197 
198 again:
199 	if (root->log_root) {
200 		int index = (root->log_transid + 1) % 2;
201 
202 		if (btrfs_need_log_full_commit(trans)) {
203 			ret = BTRFS_LOG_FORCE_COMMIT;
204 			goto out;
205 		}
206 
207 		if (zoned && atomic_read(&root->log_commit[index])) {
208 			wait_log_commit(root, root->log_transid - 1);
209 			goto again;
210 		}
211 
212 		if (!root->log_start_pid) {
213 			clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
214 			root->log_start_pid = current->pid;
215 		} else if (root->log_start_pid != current->pid) {
216 			set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
217 		}
218 	} else {
219 		/*
220 		 * This means fs_info->log_root_tree was already created
221 		 * for some other FS trees. Do the full commit not to mix
222 		 * nodes from multiple log transactions to do sequential
223 		 * writing.
224 		 */
225 		if (zoned && !created) {
226 			ret = BTRFS_LOG_FORCE_COMMIT;
227 			goto out;
228 		}
229 
230 		ret = btrfs_add_log_tree(trans, root);
231 		if (ret)
232 			goto out;
233 
234 		set_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
235 		clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
236 		root->log_start_pid = current->pid;
237 	}
238 
239 	atomic_inc(&root->log_writers);
240 	if (!ctx->logging_new_name) {
241 		int index = root->log_transid % 2;
242 		list_add_tail(&ctx->list, &root->log_ctxs[index]);
243 		ctx->log_transid = root->log_transid;
244 	}
245 
246 out:
247 	mutex_unlock(&root->log_mutex);
248 	return ret;
249 }
250 
251 /*
252  * returns 0 if there was a log transaction running and we were able
253  * to join, or returns -ENOENT if there were not transactions
254  * in progress
255  */
join_running_log_trans(struct btrfs_root * root)256 static int join_running_log_trans(struct btrfs_root *root)
257 {
258 	const bool zoned = btrfs_is_zoned(root->fs_info);
259 	int ret = -ENOENT;
260 
261 	if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state))
262 		return ret;
263 
264 	mutex_lock(&root->log_mutex);
265 again:
266 	if (root->log_root) {
267 		int index = (root->log_transid + 1) % 2;
268 
269 		ret = 0;
270 		if (zoned && atomic_read(&root->log_commit[index])) {
271 			wait_log_commit(root, root->log_transid - 1);
272 			goto again;
273 		}
274 		atomic_inc(&root->log_writers);
275 	}
276 	mutex_unlock(&root->log_mutex);
277 	return ret;
278 }
279 
280 /*
281  * This either makes the current running log transaction wait
282  * until you call btrfs_end_log_trans() or it makes any future
283  * log transactions wait until you call btrfs_end_log_trans()
284  */
btrfs_pin_log_trans(struct btrfs_root * root)285 void btrfs_pin_log_trans(struct btrfs_root *root)
286 {
287 	atomic_inc(&root->log_writers);
288 }
289 
290 /*
291  * indicate we're done making changes to the log tree
292  * and wake up anyone waiting to do a sync
293  */
btrfs_end_log_trans(struct btrfs_root * root)294 void btrfs_end_log_trans(struct btrfs_root *root)
295 {
296 	if (atomic_dec_and_test(&root->log_writers)) {
297 		/* atomic_dec_and_test implies a barrier */
298 		cond_wake_up_nomb(&root->log_writer_wait);
299 	}
300 }
301 
302 /*
303  * the walk control struct is used to pass state down the chain when
304  * processing the log tree.  The stage field tells us which part
305  * of the log tree processing we are currently doing.  The others
306  * are state fields used for that specific part
307  */
308 struct walk_control {
309 	/* should we free the extent on disk when done?  This is used
310 	 * at transaction commit time while freeing a log tree
311 	 */
312 	int free;
313 
314 	/* pin only walk, we record which extents on disk belong to the
315 	 * log trees
316 	 */
317 	int pin;
318 
319 	/* what stage of the replay code we're currently in */
320 	int stage;
321 
322 	/*
323 	 * Ignore any items from the inode currently being processed. Needs
324 	 * to be set every time we find a BTRFS_INODE_ITEM_KEY.
325 	 */
326 	bool ignore_cur_inode;
327 
328 	/* the root we are currently replaying */
329 	struct btrfs_root *replay_dest;
330 
331 	/* the trans handle for the current replay */
332 	struct btrfs_trans_handle *trans;
333 
334 	/* the function that gets used to process blocks we find in the
335 	 * tree.  Note the extent_buffer might not be up to date when it is
336 	 * passed in, and it must be checked or read if you need the data
337 	 * inside it
338 	 */
339 	int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
340 			    struct walk_control *wc, u64 gen, int level);
341 };
342 
343 /*
344  * process_func used to pin down extents, write them or wait on them
345  */
process_one_buffer(struct btrfs_root * log,struct extent_buffer * eb,struct walk_control * wc,u64 gen,int level)346 static int process_one_buffer(struct btrfs_root *log,
347 			      struct extent_buffer *eb,
348 			      struct walk_control *wc, u64 gen, int level)
349 {
350 	struct btrfs_fs_info *fs_info = log->fs_info;
351 	int ret = 0;
352 
353 	/*
354 	 * If this fs is mixed then we need to be able to process the leaves to
355 	 * pin down any logged extents, so we have to read the block.
356 	 */
357 	if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
358 		struct btrfs_tree_parent_check check = {
359 			.level = level,
360 			.transid = gen
361 		};
362 
363 		ret = btrfs_read_extent_buffer(eb, &check);
364 		if (ret)
365 			return ret;
366 	}
367 
368 	if (wc->pin) {
369 		ret = btrfs_pin_extent_for_log_replay(wc->trans, eb);
370 		if (ret)
371 			return ret;
372 
373 		if (btrfs_buffer_uptodate(eb, gen, 0) &&
374 		    btrfs_header_level(eb) == 0)
375 			ret = btrfs_exclude_logged_extents(eb);
376 	}
377 	return ret;
378 }
379 
380 /*
381  * Item overwrite used by log replay. The given eb, slot and key all refer to
382  * the source data we are copying out.
383  *
384  * The given root is for the tree we are copying into, and path is a scratch
385  * path for use in this function (it should be released on entry and will be
386  * released on exit).
387  *
388  * If the key is already in the destination tree the existing item is
389  * overwritten.  If the existing item isn't big enough, it is extended.
390  * If it is too large, it is truncated.
391  *
392  * If the key isn't in the destination yet, a new item is inserted.
393  */
overwrite_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * eb,int slot,struct btrfs_key * key)394 static int overwrite_item(struct btrfs_trans_handle *trans,
395 			  struct btrfs_root *root,
396 			  struct btrfs_path *path,
397 			  struct extent_buffer *eb, int slot,
398 			  struct btrfs_key *key)
399 {
400 	int ret;
401 	u32 item_size;
402 	u64 saved_i_size = 0;
403 	int save_old_i_size = 0;
404 	unsigned long src_ptr;
405 	unsigned long dst_ptr;
406 	struct extent_buffer *dst_eb;
407 	int dst_slot;
408 	bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
409 
410 	/*
411 	 * This is only used during log replay, so the root is always from a
412 	 * fs/subvolume tree. In case we ever need to support a log root, then
413 	 * we'll have to clone the leaf in the path, release the path and use
414 	 * the leaf before writing into the log tree. See the comments at
415 	 * copy_items() for more details.
416 	 */
417 	ASSERT(btrfs_root_id(root) != BTRFS_TREE_LOG_OBJECTID);
418 
419 	item_size = btrfs_item_size(eb, slot);
420 	src_ptr = btrfs_item_ptr_offset(eb, slot);
421 
422 	/* Look for the key in the destination tree. */
423 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
424 	if (ret < 0)
425 		return ret;
426 
427 	dst_eb = path->nodes[0];
428 	dst_slot = path->slots[0];
429 
430 	if (ret == 0) {
431 		char *src_copy;
432 		const u32 dst_size = btrfs_item_size(dst_eb, dst_slot);
433 
434 		if (dst_size != item_size)
435 			goto insert;
436 
437 		if (item_size == 0) {
438 			btrfs_release_path(path);
439 			return 0;
440 		}
441 		src_copy = kmalloc(item_size, GFP_NOFS);
442 		if (!src_copy) {
443 			btrfs_release_path(path);
444 			return -ENOMEM;
445 		}
446 
447 		read_extent_buffer(eb, src_copy, src_ptr, item_size);
448 		dst_ptr = btrfs_item_ptr_offset(dst_eb, dst_slot);
449 		ret = memcmp_extent_buffer(dst_eb, src_copy, dst_ptr, item_size);
450 
451 		kfree(src_copy);
452 		/*
453 		 * they have the same contents, just return, this saves
454 		 * us from cowing blocks in the destination tree and doing
455 		 * extra writes that may not have been done by a previous
456 		 * sync
457 		 */
458 		if (ret == 0) {
459 			btrfs_release_path(path);
460 			return 0;
461 		}
462 
463 		/*
464 		 * We need to load the old nbytes into the inode so when we
465 		 * replay the extents we've logged we get the right nbytes.
466 		 */
467 		if (inode_item) {
468 			struct btrfs_inode_item *item;
469 			u64 nbytes;
470 			u32 mode;
471 
472 			item = btrfs_item_ptr(dst_eb, dst_slot,
473 					      struct btrfs_inode_item);
474 			nbytes = btrfs_inode_nbytes(dst_eb, item);
475 			item = btrfs_item_ptr(eb, slot,
476 					      struct btrfs_inode_item);
477 			btrfs_set_inode_nbytes(eb, item, nbytes);
478 
479 			/*
480 			 * If this is a directory we need to reset the i_size to
481 			 * 0 so that we can set it up properly when replaying
482 			 * the rest of the items in this log.
483 			 */
484 			mode = btrfs_inode_mode(eb, item);
485 			if (S_ISDIR(mode))
486 				btrfs_set_inode_size(eb, item, 0);
487 		}
488 	} else if (inode_item) {
489 		struct btrfs_inode_item *item;
490 		u32 mode;
491 
492 		/*
493 		 * New inode, set nbytes to 0 so that the nbytes comes out
494 		 * properly when we replay the extents.
495 		 */
496 		item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
497 		btrfs_set_inode_nbytes(eb, item, 0);
498 
499 		/*
500 		 * If this is a directory we need to reset the i_size to 0 so
501 		 * that we can set it up properly when replaying the rest of
502 		 * the items in this log.
503 		 */
504 		mode = btrfs_inode_mode(eb, item);
505 		if (S_ISDIR(mode))
506 			btrfs_set_inode_size(eb, item, 0);
507 	}
508 insert:
509 	btrfs_release_path(path);
510 	/* try to insert the key into the destination tree */
511 	path->skip_release_on_error = 1;
512 	ret = btrfs_insert_empty_item(trans, root, path,
513 				      key, item_size);
514 	path->skip_release_on_error = 0;
515 
516 	dst_eb = path->nodes[0];
517 	dst_slot = path->slots[0];
518 
519 	/* make sure any existing item is the correct size */
520 	if (ret == -EEXIST || ret == -EOVERFLOW) {
521 		const u32 found_size = btrfs_item_size(dst_eb, dst_slot);
522 
523 		if (found_size > item_size)
524 			btrfs_truncate_item(trans, path, item_size, 1);
525 		else if (found_size < item_size)
526 			btrfs_extend_item(trans, path, item_size - found_size);
527 	} else if (ret) {
528 		return ret;
529 	}
530 	dst_ptr = btrfs_item_ptr_offset(dst_eb, dst_slot);
531 
532 	/* don't overwrite an existing inode if the generation number
533 	 * was logged as zero.  This is done when the tree logging code
534 	 * is just logging an inode to make sure it exists after recovery.
535 	 *
536 	 * Also, don't overwrite i_size on directories during replay.
537 	 * log replay inserts and removes directory items based on the
538 	 * state of the tree found in the subvolume, and i_size is modified
539 	 * as it goes
540 	 */
541 	if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
542 		struct btrfs_inode_item *src_item;
543 		struct btrfs_inode_item *dst_item;
544 
545 		src_item = (struct btrfs_inode_item *)src_ptr;
546 		dst_item = (struct btrfs_inode_item *)dst_ptr;
547 
548 		if (btrfs_inode_generation(eb, src_item) == 0) {
549 			const u64 ino_size = btrfs_inode_size(eb, src_item);
550 
551 			/*
552 			 * For regular files an ino_size == 0 is used only when
553 			 * logging that an inode exists, as part of a directory
554 			 * fsync, and the inode wasn't fsynced before. In this
555 			 * case don't set the size of the inode in the fs/subvol
556 			 * tree, otherwise we would be throwing valid data away.
557 			 */
558 			if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
559 			    S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
560 			    ino_size != 0)
561 				btrfs_set_inode_size(dst_eb, dst_item, ino_size);
562 			goto no_copy;
563 		}
564 
565 		if (S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
566 		    S_ISDIR(btrfs_inode_mode(dst_eb, dst_item))) {
567 			save_old_i_size = 1;
568 			saved_i_size = btrfs_inode_size(dst_eb, dst_item);
569 		}
570 	}
571 
572 	copy_extent_buffer(dst_eb, eb, dst_ptr, src_ptr, item_size);
573 
574 	if (save_old_i_size) {
575 		struct btrfs_inode_item *dst_item;
576 
577 		dst_item = (struct btrfs_inode_item *)dst_ptr;
578 		btrfs_set_inode_size(dst_eb, dst_item, saved_i_size);
579 	}
580 
581 	/* make sure the generation is filled in */
582 	if (key->type == BTRFS_INODE_ITEM_KEY) {
583 		struct btrfs_inode_item *dst_item;
584 
585 		dst_item = (struct btrfs_inode_item *)dst_ptr;
586 		if (btrfs_inode_generation(dst_eb, dst_item) == 0)
587 			btrfs_set_inode_generation(dst_eb, dst_item, trans->transid);
588 	}
589 no_copy:
590 	btrfs_release_path(path);
591 	return 0;
592 }
593 
read_alloc_one_name(struct extent_buffer * eb,void * start,int len,struct fscrypt_str * name)594 static int read_alloc_one_name(struct extent_buffer *eb, void *start, int len,
595 			       struct fscrypt_str *name)
596 {
597 	char *buf;
598 
599 	buf = kmalloc(len, GFP_NOFS);
600 	if (!buf)
601 		return -ENOMEM;
602 
603 	read_extent_buffer(eb, buf, (unsigned long)start, len);
604 	name->name = buf;
605 	name->len = len;
606 	return 0;
607 }
608 
609 /* replays a single extent in 'eb' at 'slot' with 'key' into the
610  * subvolume 'root'.  path is released on entry and should be released
611  * on exit.
612  *
613  * extents in the log tree have not been allocated out of the extent
614  * tree yet.  So, this completes the allocation, taking a reference
615  * as required if the extent already exists or creating a new extent
616  * if it isn't in the extent allocation tree yet.
617  *
618  * The extent is inserted into the file, dropping any existing extents
619  * from the file that overlap the new one.
620  */
replay_one_extent(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * eb,int slot,struct btrfs_key * key)621 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
622 				      struct btrfs_root *root,
623 				      struct btrfs_path *path,
624 				      struct extent_buffer *eb, int slot,
625 				      struct btrfs_key *key)
626 {
627 	struct btrfs_drop_extents_args drop_args = { 0 };
628 	struct btrfs_fs_info *fs_info = root->fs_info;
629 	int found_type;
630 	u64 extent_end;
631 	u64 start = key->offset;
632 	u64 nbytes = 0;
633 	struct btrfs_file_extent_item *item;
634 	struct btrfs_inode *inode = NULL;
635 	unsigned long size;
636 	int ret = 0;
637 
638 	item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
639 	found_type = btrfs_file_extent_type(eb, item);
640 
641 	if (found_type == BTRFS_FILE_EXTENT_REG ||
642 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
643 		nbytes = btrfs_file_extent_num_bytes(eb, item);
644 		extent_end = start + nbytes;
645 
646 		/*
647 		 * We don't add to the inodes nbytes if we are prealloc or a
648 		 * hole.
649 		 */
650 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
651 			nbytes = 0;
652 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
653 		size = btrfs_file_extent_ram_bytes(eb, item);
654 		nbytes = btrfs_file_extent_ram_bytes(eb, item);
655 		extent_end = ALIGN(start + size,
656 				   fs_info->sectorsize);
657 	} else {
658 		btrfs_err(fs_info,
659 		  "unexpected extent type=%d root=%llu inode=%llu offset=%llu",
660 			  found_type, btrfs_root_id(root), key->objectid, key->offset);
661 		return -EUCLEAN;
662 	}
663 
664 	inode = btrfs_iget_logging(key->objectid, root);
665 	if (IS_ERR(inode))
666 		return PTR_ERR(inode);
667 
668 	/*
669 	 * first check to see if we already have this extent in the
670 	 * file.  This must be done before the btrfs_drop_extents run
671 	 * so we don't try to drop this extent.
672 	 */
673 	ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode), start, 0);
674 
675 	if (ret == 0 &&
676 	    (found_type == BTRFS_FILE_EXTENT_REG ||
677 	     found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
678 		struct btrfs_file_extent_item existing;
679 		unsigned long ptr;
680 
681 		ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
682 		read_extent_buffer(path->nodes[0], &existing, ptr, sizeof(existing));
683 
684 		/*
685 		 * we already have a pointer to this exact extent,
686 		 * we don't have to do anything
687 		 */
688 		if (memcmp_extent_buffer(eb, &existing, (unsigned long)item,
689 					 sizeof(existing)) == 0) {
690 			btrfs_release_path(path);
691 			goto out;
692 		}
693 	}
694 	btrfs_release_path(path);
695 
696 	/* drop any overlapping extents */
697 	drop_args.start = start;
698 	drop_args.end = extent_end;
699 	drop_args.drop_cache = true;
700 	ret = btrfs_drop_extents(trans, root, inode, &drop_args);
701 	if (ret)
702 		goto out;
703 
704 	if (found_type == BTRFS_FILE_EXTENT_REG ||
705 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
706 		u64 offset;
707 		unsigned long dest_offset;
708 		struct btrfs_key ins;
709 
710 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
711 		    btrfs_fs_incompat(fs_info, NO_HOLES))
712 			goto update_inode;
713 
714 		ret = btrfs_insert_empty_item(trans, root, path, key,
715 					      sizeof(*item));
716 		if (ret)
717 			goto out;
718 		dest_offset = btrfs_item_ptr_offset(path->nodes[0],
719 						    path->slots[0]);
720 		copy_extent_buffer(path->nodes[0], eb, dest_offset,
721 				(unsigned long)item,  sizeof(*item));
722 
723 		ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
724 		ins.type = BTRFS_EXTENT_ITEM_KEY;
725 		ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
726 		offset = key->offset - btrfs_file_extent_offset(eb, item);
727 
728 		/*
729 		 * Manually record dirty extent, as here we did a shallow
730 		 * file extent item copy and skip normal backref update,
731 		 * but modifying extent tree all by ourselves.
732 		 * So need to manually record dirty extent for qgroup,
733 		 * as the owner of the file extent changed from log tree
734 		 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
735 		 */
736 		ret = btrfs_qgroup_trace_extent(trans,
737 				btrfs_file_extent_disk_bytenr(eb, item),
738 				btrfs_file_extent_disk_num_bytes(eb, item));
739 		if (ret < 0)
740 			goto out;
741 
742 		if (ins.objectid > 0) {
743 			u64 csum_start;
744 			u64 csum_end;
745 			LIST_HEAD(ordered_sums);
746 
747 			/*
748 			 * is this extent already allocated in the extent
749 			 * allocation tree?  If so, just add a reference
750 			 */
751 			ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
752 						ins.offset);
753 			if (ret < 0) {
754 				goto out;
755 			} else if (ret == 0) {
756 				struct btrfs_ref ref = {
757 					.action = BTRFS_ADD_DELAYED_REF,
758 					.bytenr = ins.objectid,
759 					.num_bytes = ins.offset,
760 					.owning_root = btrfs_root_id(root),
761 					.ref_root = btrfs_root_id(root),
762 				};
763 				btrfs_init_data_ref(&ref, key->objectid, offset,
764 						    0, false);
765 				ret = btrfs_inc_extent_ref(trans, &ref);
766 				if (ret)
767 					goto out;
768 			} else {
769 				/*
770 				 * insert the extent pointer in the extent
771 				 * allocation tree
772 				 */
773 				ret = btrfs_alloc_logged_file_extent(trans,
774 						btrfs_root_id(root),
775 						key->objectid, offset, &ins);
776 				if (ret)
777 					goto out;
778 			}
779 			btrfs_release_path(path);
780 
781 			if (btrfs_file_extent_compression(eb, item)) {
782 				csum_start = ins.objectid;
783 				csum_end = csum_start + ins.offset;
784 			} else {
785 				csum_start = ins.objectid +
786 					btrfs_file_extent_offset(eb, item);
787 				csum_end = csum_start +
788 					btrfs_file_extent_num_bytes(eb, item);
789 			}
790 
791 			ret = btrfs_lookup_csums_list(root->log_root,
792 						csum_start, csum_end - 1,
793 						&ordered_sums, false);
794 			if (ret < 0)
795 				goto out;
796 			ret = 0;
797 			/*
798 			 * Now delete all existing cums in the csum root that
799 			 * cover our range. We do this because we can have an
800 			 * extent that is completely referenced by one file
801 			 * extent item and partially referenced by another
802 			 * file extent item (like after using the clone or
803 			 * extent_same ioctls). In this case if we end up doing
804 			 * the replay of the one that partially references the
805 			 * extent first, and we do not do the csum deletion
806 			 * below, we can get 2 csum items in the csum tree that
807 			 * overlap each other. For example, imagine our log has
808 			 * the two following file extent items:
809 			 *
810 			 * key (257 EXTENT_DATA 409600)
811 			 *     extent data disk byte 12845056 nr 102400
812 			 *     extent data offset 20480 nr 20480 ram 102400
813 			 *
814 			 * key (257 EXTENT_DATA 819200)
815 			 *     extent data disk byte 12845056 nr 102400
816 			 *     extent data offset 0 nr 102400 ram 102400
817 			 *
818 			 * Where the second one fully references the 100K extent
819 			 * that starts at disk byte 12845056, and the log tree
820 			 * has a single csum item that covers the entire range
821 			 * of the extent:
822 			 *
823 			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
824 			 *
825 			 * After the first file extent item is replayed, the
826 			 * csum tree gets the following csum item:
827 			 *
828 			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
829 			 *
830 			 * Which covers the 20K sub-range starting at offset 20K
831 			 * of our extent. Now when we replay the second file
832 			 * extent item, if we do not delete existing csum items
833 			 * that cover any of its blocks, we end up getting two
834 			 * csum items in our csum tree that overlap each other:
835 			 *
836 			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
837 			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
838 			 *
839 			 * Which is a problem, because after this anyone trying
840 			 * to lookup up for the checksum of any block of our
841 			 * extent starting at an offset of 40K or higher, will
842 			 * end up looking at the second csum item only, which
843 			 * does not contain the checksum for any block starting
844 			 * at offset 40K or higher of our extent.
845 			 */
846 			while (!list_empty(&ordered_sums)) {
847 				struct btrfs_ordered_sum *sums;
848 				struct btrfs_root *csum_root;
849 
850 				sums = list_first_entry(&ordered_sums,
851 							struct btrfs_ordered_sum,
852 							list);
853 				csum_root = btrfs_csum_root(fs_info,
854 							    sums->logical);
855 				if (!ret)
856 					ret = btrfs_del_csums(trans, csum_root,
857 							      sums->logical,
858 							      sums->len);
859 				if (!ret)
860 					ret = btrfs_csum_file_blocks(trans,
861 								     csum_root,
862 								     sums);
863 				list_del(&sums->list);
864 				kfree(sums);
865 			}
866 			if (ret)
867 				goto out;
868 		} else {
869 			btrfs_release_path(path);
870 		}
871 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
872 		/* inline extents are easy, we just overwrite them */
873 		ret = overwrite_item(trans, root, path, eb, slot, key);
874 		if (ret)
875 			goto out;
876 	}
877 
878 	ret = btrfs_inode_set_file_extent_range(inode, start, extent_end - start);
879 	if (ret)
880 		goto out;
881 
882 update_inode:
883 	btrfs_update_inode_bytes(inode, nbytes, drop_args.bytes_found);
884 	ret = btrfs_update_inode(trans, inode);
885 out:
886 	iput(&inode->vfs_inode);
887 	return ret;
888 }
889 
unlink_inode_for_log_replay(struct btrfs_trans_handle * trans,struct btrfs_inode * dir,struct btrfs_inode * inode,const struct fscrypt_str * name)890 static int unlink_inode_for_log_replay(struct btrfs_trans_handle *trans,
891 				       struct btrfs_inode *dir,
892 				       struct btrfs_inode *inode,
893 				       const struct fscrypt_str *name)
894 {
895 	int ret;
896 
897 	ret = btrfs_unlink_inode(trans, dir, inode, name);
898 	if (ret)
899 		return ret;
900 	/*
901 	 * Whenever we need to check if a name exists or not, we check the
902 	 * fs/subvolume tree. So after an unlink we must run delayed items, so
903 	 * that future checks for a name during log replay see that the name
904 	 * does not exists anymore.
905 	 */
906 	return btrfs_run_delayed_items(trans);
907 }
908 
909 /*
910  * when cleaning up conflicts between the directory names in the
911  * subvolume, directory names in the log and directory names in the
912  * inode back references, we may have to unlink inodes from directories.
913  *
914  * This is a helper function to do the unlink of a specific directory
915  * item
916  */
drop_one_dir_item(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_inode * dir,struct btrfs_dir_item * di)917 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
918 				      struct btrfs_path *path,
919 				      struct btrfs_inode *dir,
920 				      struct btrfs_dir_item *di)
921 {
922 	struct btrfs_root *root = dir->root;
923 	struct btrfs_inode *inode;
924 	struct fscrypt_str name;
925 	struct extent_buffer *leaf;
926 	struct btrfs_key location;
927 	int ret;
928 
929 	leaf = path->nodes[0];
930 
931 	btrfs_dir_item_key_to_cpu(leaf, di, &location);
932 	ret = read_alloc_one_name(leaf, di + 1, btrfs_dir_name_len(leaf, di), &name);
933 	if (ret)
934 		return -ENOMEM;
935 
936 	btrfs_release_path(path);
937 
938 	inode = btrfs_iget_logging(location.objectid, root);
939 	if (IS_ERR(inode)) {
940 		ret = PTR_ERR(inode);
941 		inode = NULL;
942 		goto out;
943 	}
944 
945 	ret = link_to_fixup_dir(trans, root, path, location.objectid);
946 	if (ret)
947 		goto out;
948 
949 	ret = unlink_inode_for_log_replay(trans, dir, inode, &name);
950 out:
951 	kfree(name.name);
952 	if (inode)
953 		iput(&inode->vfs_inode);
954 	return ret;
955 }
956 
957 /*
958  * See if a given name and sequence number found in an inode back reference are
959  * already in a directory and correctly point to this inode.
960  *
961  * Returns: < 0 on error, 0 if the directory entry does not exists and 1 if it
962  * exists.
963  */
inode_in_dir(struct btrfs_root * root,struct btrfs_path * path,u64 dirid,u64 objectid,u64 index,struct fscrypt_str * name)964 static noinline int inode_in_dir(struct btrfs_root *root,
965 				 struct btrfs_path *path,
966 				 u64 dirid, u64 objectid, u64 index,
967 				 struct fscrypt_str *name)
968 {
969 	struct btrfs_dir_item *di;
970 	struct btrfs_key location;
971 	int ret = 0;
972 
973 	di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
974 					 index, name, 0);
975 	if (IS_ERR(di)) {
976 		ret = PTR_ERR(di);
977 		goto out;
978 	} else if (di) {
979 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
980 		if (location.objectid != objectid)
981 			goto out;
982 	} else {
983 		goto out;
984 	}
985 
986 	btrfs_release_path(path);
987 	di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, 0);
988 	if (IS_ERR(di)) {
989 		ret = PTR_ERR(di);
990 		goto out;
991 	} else if (di) {
992 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
993 		if (location.objectid == objectid)
994 			ret = 1;
995 	}
996 out:
997 	btrfs_release_path(path);
998 	return ret;
999 }
1000 
1001 /*
1002  * helper function to check a log tree for a named back reference in
1003  * an inode.  This is used to decide if a back reference that is
1004  * found in the subvolume conflicts with what we find in the log.
1005  *
1006  * inode backreferences may have multiple refs in a single item,
1007  * during replay we process one reference at a time, and we don't
1008  * want to delete valid links to a file from the subvolume if that
1009  * link is also in the log.
1010  */
backref_in_log(struct btrfs_root * log,struct btrfs_key * key,u64 ref_objectid,const struct fscrypt_str * name)1011 static noinline int backref_in_log(struct btrfs_root *log,
1012 				   struct btrfs_key *key,
1013 				   u64 ref_objectid,
1014 				   const struct fscrypt_str *name)
1015 {
1016 	struct btrfs_path *path;
1017 	int ret;
1018 
1019 	path = btrfs_alloc_path();
1020 	if (!path)
1021 		return -ENOMEM;
1022 
1023 	ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
1024 	if (ret < 0) {
1025 		goto out;
1026 	} else if (ret == 1) {
1027 		ret = 0;
1028 		goto out;
1029 	}
1030 
1031 	if (key->type == BTRFS_INODE_EXTREF_KEY)
1032 		ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
1033 						       path->slots[0],
1034 						       ref_objectid, name);
1035 	else
1036 		ret = !!btrfs_find_name_in_backref(path->nodes[0],
1037 						   path->slots[0], name);
1038 out:
1039 	btrfs_free_path(path);
1040 	return ret;
1041 }
1042 
unlink_refs_not_in_log(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_root * log_root,struct btrfs_key * search_key,struct btrfs_inode * dir,struct btrfs_inode * inode,u64 parent_objectid)1043 static int unlink_refs_not_in_log(struct btrfs_trans_handle *trans,
1044 				  struct btrfs_path *path,
1045 				  struct btrfs_root *log_root,
1046 				  struct btrfs_key *search_key,
1047 				  struct btrfs_inode *dir,
1048 				  struct btrfs_inode *inode,
1049 				  u64 parent_objectid)
1050 {
1051 	struct extent_buffer *leaf = path->nodes[0];
1052 	unsigned long ptr;
1053 	unsigned long ptr_end;
1054 
1055 	/*
1056 	 * Check all the names in this back reference to see if they are in the
1057 	 * log. If so, we allow them to stay otherwise they must be unlinked as
1058 	 * a conflict.
1059 	 */
1060 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1061 	ptr_end = ptr + btrfs_item_size(leaf, path->slots[0]);
1062 	while (ptr < ptr_end) {
1063 		struct fscrypt_str victim_name;
1064 		struct btrfs_inode_ref *victim_ref;
1065 		int ret;
1066 
1067 		victim_ref = (struct btrfs_inode_ref *)ptr;
1068 		ret = read_alloc_one_name(leaf, (victim_ref + 1),
1069 					  btrfs_inode_ref_name_len(leaf, victim_ref),
1070 					  &victim_name);
1071 		if (ret)
1072 			return ret;
1073 
1074 		ret = backref_in_log(log_root, search_key, parent_objectid, &victim_name);
1075 		if (ret) {
1076 			kfree(victim_name.name);
1077 			if (ret < 0)
1078 				return ret;
1079 			ptr = (unsigned long)(victim_ref + 1) + victim_name.len;
1080 			continue;
1081 		}
1082 
1083 		inc_nlink(&inode->vfs_inode);
1084 		btrfs_release_path(path);
1085 
1086 		ret = unlink_inode_for_log_replay(trans, dir, inode, &victim_name);
1087 		kfree(victim_name.name);
1088 		if (ret)
1089 			return ret;
1090 		return -EAGAIN;
1091 	}
1092 
1093 	return 0;
1094 }
1095 
unlink_extrefs_not_in_log(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_root * root,struct btrfs_root * log_root,struct btrfs_key * search_key,struct btrfs_inode * inode,u64 inode_objectid,u64 parent_objectid)1096 static int unlink_extrefs_not_in_log(struct btrfs_trans_handle *trans,
1097 				     struct btrfs_path *path,
1098 				     struct btrfs_root *root,
1099 				     struct btrfs_root *log_root,
1100 				     struct btrfs_key *search_key,
1101 				     struct btrfs_inode *inode,
1102 				     u64 inode_objectid,
1103 				     u64 parent_objectid)
1104 {
1105 	struct extent_buffer *leaf = path->nodes[0];
1106 	const unsigned long base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1107 	const u32 item_size = btrfs_item_size(leaf, path->slots[0]);
1108 	u32 cur_offset = 0;
1109 
1110 	while (cur_offset < item_size) {
1111 		struct btrfs_inode_extref *extref;
1112 		struct btrfs_inode *victim_parent;
1113 		struct fscrypt_str victim_name;
1114 		int ret;
1115 
1116 		extref = (struct btrfs_inode_extref *)(base + cur_offset);
1117 		victim_name.len = btrfs_inode_extref_name_len(leaf, extref);
1118 
1119 		if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1120 			goto next;
1121 
1122 		ret = read_alloc_one_name(leaf, &extref->name, victim_name.len,
1123 					  &victim_name);
1124 		if (ret)
1125 			return ret;
1126 
1127 		search_key->objectid = inode_objectid;
1128 		search_key->type = BTRFS_INODE_EXTREF_KEY;
1129 		search_key->offset = btrfs_extref_hash(parent_objectid,
1130 						       victim_name.name,
1131 						       victim_name.len);
1132 		ret = backref_in_log(log_root, search_key, parent_objectid, &victim_name);
1133 		if (ret) {
1134 			kfree(victim_name.name);
1135 			if (ret < 0)
1136 				return ret;
1137 next:
1138 			cur_offset += victim_name.len + sizeof(*extref);
1139 			continue;
1140 		}
1141 
1142 		victim_parent = btrfs_iget_logging(parent_objectid, root);
1143 		if (IS_ERR(victim_parent)) {
1144 			kfree(victim_name.name);
1145 			return PTR_ERR(victim_parent);
1146 		}
1147 
1148 		inc_nlink(&inode->vfs_inode);
1149 		btrfs_release_path(path);
1150 
1151 		ret = unlink_inode_for_log_replay(trans, victim_parent, inode,
1152 						  &victim_name);
1153 		iput(&victim_parent->vfs_inode);
1154 		kfree(victim_name.name);
1155 		if (ret)
1156 			return ret;
1157 		return -EAGAIN;
1158 	}
1159 
1160 	return 0;
1161 }
1162 
__add_inode_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_root * log_root,struct btrfs_inode * dir,struct btrfs_inode * inode,u64 inode_objectid,u64 parent_objectid,u64 ref_index,struct fscrypt_str * name)1163 static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
1164 				  struct btrfs_root *root,
1165 				  struct btrfs_path *path,
1166 				  struct btrfs_root *log_root,
1167 				  struct btrfs_inode *dir,
1168 				  struct btrfs_inode *inode,
1169 				  u64 inode_objectid, u64 parent_objectid,
1170 				  u64 ref_index, struct fscrypt_str *name)
1171 {
1172 	int ret;
1173 	struct btrfs_dir_item *di;
1174 	struct btrfs_key search_key;
1175 	struct btrfs_inode_extref *extref;
1176 
1177 again:
1178 	/* Search old style refs */
1179 	search_key.objectid = inode_objectid;
1180 	search_key.type = BTRFS_INODE_REF_KEY;
1181 	search_key.offset = parent_objectid;
1182 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
1183 	if (ret < 0) {
1184 		return ret;
1185 	} else if (ret == 0) {
1186 		/*
1187 		 * Are we trying to overwrite a back ref for the root directory?
1188 		 * If so, we're done.
1189 		 */
1190 		if (search_key.objectid == search_key.offset)
1191 			return 1;
1192 
1193 		ret = unlink_refs_not_in_log(trans, path, log_root, &search_key,
1194 					     dir, inode, parent_objectid);
1195 		if (ret == -EAGAIN)
1196 			goto again;
1197 		else if (ret)
1198 			return ret;
1199 	}
1200 	btrfs_release_path(path);
1201 
1202 	/* Same search but for extended refs */
1203 	extref = btrfs_lookup_inode_extref(root, path, name, inode_objectid, parent_objectid);
1204 	if (IS_ERR(extref)) {
1205 		return PTR_ERR(extref);
1206 	} else if (extref) {
1207 		ret = unlink_extrefs_not_in_log(trans, path, root, log_root,
1208 						&search_key, inode,
1209 						inode_objectid, parent_objectid);
1210 		if (ret == -EAGAIN)
1211 			goto again;
1212 		else if (ret)
1213 			return ret;
1214 	}
1215 	btrfs_release_path(path);
1216 
1217 	/* look for a conflicting sequence number */
1218 	di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1219 					 ref_index, name, 0);
1220 	if (IS_ERR(di)) {
1221 		return PTR_ERR(di);
1222 	} else if (di) {
1223 		ret = drop_one_dir_item(trans, path, dir, di);
1224 		if (ret)
1225 			return ret;
1226 	}
1227 	btrfs_release_path(path);
1228 
1229 	/* look for a conflicting name */
1230 	di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir), name, 0);
1231 	if (IS_ERR(di)) {
1232 		return PTR_ERR(di);
1233 	} else if (di) {
1234 		ret = drop_one_dir_item(trans, path, dir, di);
1235 		if (ret)
1236 			return ret;
1237 	}
1238 	btrfs_release_path(path);
1239 
1240 	return 0;
1241 }
1242 
extref_get_fields(struct extent_buffer * eb,unsigned long ref_ptr,struct fscrypt_str * name,u64 * index,u64 * parent_objectid)1243 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1244 			     struct fscrypt_str *name, u64 *index,
1245 			     u64 *parent_objectid)
1246 {
1247 	struct btrfs_inode_extref *extref;
1248 	int ret;
1249 
1250 	extref = (struct btrfs_inode_extref *)ref_ptr;
1251 
1252 	ret = read_alloc_one_name(eb, &extref->name,
1253 				  btrfs_inode_extref_name_len(eb, extref), name);
1254 	if (ret)
1255 		return ret;
1256 
1257 	if (index)
1258 		*index = btrfs_inode_extref_index(eb, extref);
1259 	if (parent_objectid)
1260 		*parent_objectid = btrfs_inode_extref_parent(eb, extref);
1261 
1262 	return 0;
1263 }
1264 
ref_get_fields(struct extent_buffer * eb,unsigned long ref_ptr,struct fscrypt_str * name,u64 * index)1265 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1266 			  struct fscrypt_str *name, u64 *index)
1267 {
1268 	struct btrfs_inode_ref *ref;
1269 	int ret;
1270 
1271 	ref = (struct btrfs_inode_ref *)ref_ptr;
1272 
1273 	ret = read_alloc_one_name(eb, ref + 1, btrfs_inode_ref_name_len(eb, ref),
1274 				  name);
1275 	if (ret)
1276 		return ret;
1277 
1278 	if (index)
1279 		*index = btrfs_inode_ref_index(eb, ref);
1280 
1281 	return 0;
1282 }
1283 
1284 /*
1285  * Take an inode reference item from the log tree and iterate all names from the
1286  * inode reference item in the subvolume tree with the same key (if it exists).
1287  * For any name that is not in the inode reference item from the log tree, do a
1288  * proper unlink of that name (that is, remove its entry from the inode
1289  * reference item and both dir index keys).
1290  */
unlink_old_inode_refs(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_inode * inode,struct extent_buffer * log_eb,int log_slot,struct btrfs_key * key)1291 static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1292 				 struct btrfs_root *root,
1293 				 struct btrfs_path *path,
1294 				 struct btrfs_inode *inode,
1295 				 struct extent_buffer *log_eb,
1296 				 int log_slot,
1297 				 struct btrfs_key *key)
1298 {
1299 	int ret;
1300 	unsigned long ref_ptr;
1301 	unsigned long ref_end;
1302 	struct extent_buffer *eb;
1303 
1304 again:
1305 	btrfs_release_path(path);
1306 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1307 	if (ret > 0) {
1308 		ret = 0;
1309 		goto out;
1310 	}
1311 	if (ret < 0)
1312 		goto out;
1313 
1314 	eb = path->nodes[0];
1315 	ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
1316 	ref_end = ref_ptr + btrfs_item_size(eb, path->slots[0]);
1317 	while (ref_ptr < ref_end) {
1318 		struct fscrypt_str name;
1319 		u64 parent_id;
1320 
1321 		if (key->type == BTRFS_INODE_EXTREF_KEY) {
1322 			ret = extref_get_fields(eb, ref_ptr, &name,
1323 						NULL, &parent_id);
1324 		} else {
1325 			parent_id = key->offset;
1326 			ret = ref_get_fields(eb, ref_ptr, &name, NULL);
1327 		}
1328 		if (ret)
1329 			goto out;
1330 
1331 		if (key->type == BTRFS_INODE_EXTREF_KEY)
1332 			ret = !!btrfs_find_name_in_ext_backref(log_eb, log_slot,
1333 							       parent_id, &name);
1334 		else
1335 			ret = !!btrfs_find_name_in_backref(log_eb, log_slot, &name);
1336 
1337 		if (!ret) {
1338 			struct btrfs_inode *dir;
1339 
1340 			btrfs_release_path(path);
1341 			dir = btrfs_iget_logging(parent_id, root);
1342 			if (IS_ERR(dir)) {
1343 				ret = PTR_ERR(dir);
1344 				kfree(name.name);
1345 				goto out;
1346 			}
1347 			ret = unlink_inode_for_log_replay(trans, dir, inode, &name);
1348 			kfree(name.name);
1349 			iput(&dir->vfs_inode);
1350 			if (ret)
1351 				goto out;
1352 			goto again;
1353 		}
1354 
1355 		kfree(name.name);
1356 		ref_ptr += name.len;
1357 		if (key->type == BTRFS_INODE_EXTREF_KEY)
1358 			ref_ptr += sizeof(struct btrfs_inode_extref);
1359 		else
1360 			ref_ptr += sizeof(struct btrfs_inode_ref);
1361 	}
1362 	ret = 0;
1363  out:
1364 	btrfs_release_path(path);
1365 	return ret;
1366 }
1367 
1368 /*
1369  * replay one inode back reference item found in the log tree.
1370  * eb, slot and key refer to the buffer and key found in the log tree.
1371  * root is the destination we are replaying into, and path is for temp
1372  * use by this function.  (it should be released on return).
1373  */
add_inode_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_root * log,struct btrfs_path * path,struct extent_buffer * eb,int slot,struct btrfs_key * key)1374 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1375 				  struct btrfs_root *root,
1376 				  struct btrfs_root *log,
1377 				  struct btrfs_path *path,
1378 				  struct extent_buffer *eb, int slot,
1379 				  struct btrfs_key *key)
1380 {
1381 	struct btrfs_inode *dir = NULL;
1382 	struct btrfs_inode *inode = NULL;
1383 	unsigned long ref_ptr;
1384 	unsigned long ref_end;
1385 	struct fscrypt_str name = { 0 };
1386 	int ret;
1387 	const bool is_extref_item = (key->type == BTRFS_INODE_EXTREF_KEY);
1388 	u64 parent_objectid;
1389 	u64 inode_objectid;
1390 	u64 ref_index = 0;
1391 	int ref_struct_size;
1392 
1393 	ref_ptr = btrfs_item_ptr_offset(eb, slot);
1394 	ref_end = ref_ptr + btrfs_item_size(eb, slot);
1395 
1396 	if (is_extref_item) {
1397 		struct btrfs_inode_extref *r;
1398 
1399 		ref_struct_size = sizeof(struct btrfs_inode_extref);
1400 		r = (struct btrfs_inode_extref *)ref_ptr;
1401 		parent_objectid = btrfs_inode_extref_parent(eb, r);
1402 	} else {
1403 		ref_struct_size = sizeof(struct btrfs_inode_ref);
1404 		parent_objectid = key->offset;
1405 	}
1406 	inode_objectid = key->objectid;
1407 
1408 	/*
1409 	 * it is possible that we didn't log all the parent directories
1410 	 * for a given inode.  If we don't find the dir, just don't
1411 	 * copy the back ref in.  The link count fixup code will take
1412 	 * care of the rest
1413 	 */
1414 	dir = btrfs_iget_logging(parent_objectid, root);
1415 	if (IS_ERR(dir)) {
1416 		ret = PTR_ERR(dir);
1417 		if (ret == -ENOENT)
1418 			ret = 0;
1419 		dir = NULL;
1420 		goto out;
1421 	}
1422 
1423 	inode = btrfs_iget_logging(inode_objectid, root);
1424 	if (IS_ERR(inode)) {
1425 		ret = PTR_ERR(inode);
1426 		inode = NULL;
1427 		goto out;
1428 	}
1429 
1430 	while (ref_ptr < ref_end) {
1431 		if (is_extref_item) {
1432 			ret = extref_get_fields(eb, ref_ptr, &name,
1433 						&ref_index, &parent_objectid);
1434 			if (ret)
1435 				goto out;
1436 			/*
1437 			 * parent object can change from one array
1438 			 * item to another.
1439 			 */
1440 			if (!dir) {
1441 				dir = btrfs_iget_logging(parent_objectid, root);
1442 				if (IS_ERR(dir)) {
1443 					ret = PTR_ERR(dir);
1444 					dir = NULL;
1445 					/*
1446 					 * A new parent dir may have not been
1447 					 * logged and not exist in the subvolume
1448 					 * tree, see the comment above before
1449 					 * the loop when getting the first
1450 					 * parent dir.
1451 					 */
1452 					if (ret == -ENOENT) {
1453 						/*
1454 						 * The next extref may refer to
1455 						 * another parent dir that
1456 						 * exists, so continue.
1457 						 */
1458 						ret = 0;
1459 						goto next;
1460 					}
1461 					goto out;
1462 				}
1463 			}
1464 		} else {
1465 			ret = ref_get_fields(eb, ref_ptr, &name, &ref_index);
1466 			if (ret)
1467 				goto out;
1468 		}
1469 
1470 		ret = inode_in_dir(root, path, btrfs_ino(dir), btrfs_ino(inode),
1471 				   ref_index, &name);
1472 		if (ret < 0) {
1473 			goto out;
1474 		} else if (ret == 0) {
1475 			/*
1476 			 * look for a conflicting back reference in the
1477 			 * metadata. if we find one we have to unlink that name
1478 			 * of the file before we add our new link.  Later on, we
1479 			 * overwrite any existing back reference, and we don't
1480 			 * want to create dangling pointers in the directory.
1481 			 */
1482 			ret = __add_inode_ref(trans, root, path, log, dir, inode,
1483 					      inode_objectid, parent_objectid,
1484 					      ref_index, &name);
1485 			if (ret) {
1486 				if (ret == 1)
1487 					ret = 0;
1488 				goto out;
1489 			}
1490 
1491 			/* insert our name */
1492 			ret = btrfs_add_link(trans, dir, inode, &name, 0, ref_index);
1493 			if (ret)
1494 				goto out;
1495 
1496 			ret = btrfs_update_inode(trans, inode);
1497 			if (ret)
1498 				goto out;
1499 		}
1500 		/* Else, ret == 1, we already have a perfect match, we're done. */
1501 
1502 next:
1503 		ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + name.len;
1504 		kfree(name.name);
1505 		name.name = NULL;
1506 		if (is_extref_item && dir) {
1507 			iput(&dir->vfs_inode);
1508 			dir = NULL;
1509 		}
1510 	}
1511 
1512 	/*
1513 	 * Before we overwrite the inode reference item in the subvolume tree
1514 	 * with the item from the log tree, we must unlink all names from the
1515 	 * parent directory that are in the subvolume's tree inode reference
1516 	 * item, otherwise we end up with an inconsistent subvolume tree where
1517 	 * dir index entries exist for a name but there is no inode reference
1518 	 * item with the same name.
1519 	 */
1520 	ret = unlink_old_inode_refs(trans, root, path, inode, eb, slot, key);
1521 	if (ret)
1522 		goto out;
1523 
1524 	/* finally write the back reference in the inode */
1525 	ret = overwrite_item(trans, root, path, eb, slot, key);
1526 out:
1527 	btrfs_release_path(path);
1528 	kfree(name.name);
1529 	if (dir)
1530 		iput(&dir->vfs_inode);
1531 	if (inode)
1532 		iput(&inode->vfs_inode);
1533 	return ret;
1534 }
1535 
count_inode_extrefs(struct btrfs_inode * inode,struct btrfs_path * path)1536 static int count_inode_extrefs(struct btrfs_inode *inode, struct btrfs_path *path)
1537 {
1538 	int ret = 0;
1539 	int name_len;
1540 	unsigned int nlink = 0;
1541 	u32 item_size;
1542 	u32 cur_offset = 0;
1543 	u64 inode_objectid = btrfs_ino(inode);
1544 	u64 offset = 0;
1545 	unsigned long ptr;
1546 	struct btrfs_inode_extref *extref;
1547 	struct extent_buffer *leaf;
1548 
1549 	while (1) {
1550 		ret = btrfs_find_one_extref(inode->root, inode_objectid, offset,
1551 					    path, &extref, &offset);
1552 		if (ret)
1553 			break;
1554 
1555 		leaf = path->nodes[0];
1556 		item_size = btrfs_item_size(leaf, path->slots[0]);
1557 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1558 		cur_offset = 0;
1559 
1560 		while (cur_offset < item_size) {
1561 			extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1562 			name_len = btrfs_inode_extref_name_len(leaf, extref);
1563 
1564 			nlink++;
1565 
1566 			cur_offset += name_len + sizeof(*extref);
1567 		}
1568 
1569 		offset++;
1570 		btrfs_release_path(path);
1571 	}
1572 	btrfs_release_path(path);
1573 
1574 	if (ret < 0 && ret != -ENOENT)
1575 		return ret;
1576 	return nlink;
1577 }
1578 
count_inode_refs(struct btrfs_inode * inode,struct btrfs_path * path)1579 static int count_inode_refs(struct btrfs_inode *inode, struct btrfs_path *path)
1580 {
1581 	int ret;
1582 	struct btrfs_key key;
1583 	unsigned int nlink = 0;
1584 	unsigned long ptr;
1585 	unsigned long ptr_end;
1586 	int name_len;
1587 	u64 ino = btrfs_ino(inode);
1588 
1589 	key.objectid = ino;
1590 	key.type = BTRFS_INODE_REF_KEY;
1591 	key.offset = (u64)-1;
1592 
1593 	while (1) {
1594 		ret = btrfs_search_slot(NULL, inode->root, &key, path, 0, 0);
1595 		if (ret < 0)
1596 			break;
1597 		if (ret > 0) {
1598 			if (path->slots[0] == 0)
1599 				break;
1600 			path->slots[0]--;
1601 		}
1602 process_slot:
1603 		btrfs_item_key_to_cpu(path->nodes[0], &key,
1604 				      path->slots[0]);
1605 		if (key.objectid != ino ||
1606 		    key.type != BTRFS_INODE_REF_KEY)
1607 			break;
1608 		ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1609 		ptr_end = ptr + btrfs_item_size(path->nodes[0],
1610 						   path->slots[0]);
1611 		while (ptr < ptr_end) {
1612 			struct btrfs_inode_ref *ref;
1613 
1614 			ref = (struct btrfs_inode_ref *)ptr;
1615 			name_len = btrfs_inode_ref_name_len(path->nodes[0],
1616 							    ref);
1617 			ptr = (unsigned long)(ref + 1) + name_len;
1618 			nlink++;
1619 		}
1620 
1621 		if (key.offset == 0)
1622 			break;
1623 		if (path->slots[0] > 0) {
1624 			path->slots[0]--;
1625 			goto process_slot;
1626 		}
1627 		key.offset--;
1628 		btrfs_release_path(path);
1629 	}
1630 	btrfs_release_path(path);
1631 
1632 	return nlink;
1633 }
1634 
1635 /*
1636  * There are a few corners where the link count of the file can't
1637  * be properly maintained during replay.  So, instead of adding
1638  * lots of complexity to the log code, we just scan the backrefs
1639  * for any file that has been through replay.
1640  *
1641  * The scan will update the link count on the inode to reflect the
1642  * number of back refs found.  If it goes down to zero, the iput
1643  * will free the inode.
1644  */
fixup_inode_link_count(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)1645 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1646 					   struct btrfs_inode *inode)
1647 {
1648 	struct btrfs_root *root = inode->root;
1649 	struct btrfs_path *path;
1650 	int ret;
1651 	u64 nlink = 0;
1652 	const u64 ino = btrfs_ino(inode);
1653 
1654 	path = btrfs_alloc_path();
1655 	if (!path)
1656 		return -ENOMEM;
1657 
1658 	ret = count_inode_refs(inode, path);
1659 	if (ret < 0)
1660 		goto out;
1661 
1662 	nlink = ret;
1663 
1664 	ret = count_inode_extrefs(inode, path);
1665 	if (ret < 0)
1666 		goto out;
1667 
1668 	nlink += ret;
1669 
1670 	ret = 0;
1671 
1672 	if (nlink != inode->vfs_inode.i_nlink) {
1673 		set_nlink(&inode->vfs_inode, nlink);
1674 		ret = btrfs_update_inode(trans, inode);
1675 		if (ret)
1676 			goto out;
1677 	}
1678 	if (S_ISDIR(inode->vfs_inode.i_mode))
1679 		inode->index_cnt = (u64)-1;
1680 
1681 	if (inode->vfs_inode.i_nlink == 0) {
1682 		if (S_ISDIR(inode->vfs_inode.i_mode)) {
1683 			ret = replay_dir_deletes(trans, root, NULL, path, ino, true);
1684 			if (ret)
1685 				goto out;
1686 		}
1687 		ret = btrfs_insert_orphan_item(trans, root, ino);
1688 		if (ret == -EEXIST)
1689 			ret = 0;
1690 	}
1691 
1692 out:
1693 	btrfs_free_path(path);
1694 	return ret;
1695 }
1696 
fixup_inode_link_counts(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path)1697 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1698 					    struct btrfs_root *root,
1699 					    struct btrfs_path *path)
1700 {
1701 	int ret;
1702 	struct btrfs_key key;
1703 
1704 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1705 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1706 	key.offset = (u64)-1;
1707 	while (1) {
1708 		struct btrfs_inode *inode;
1709 
1710 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1711 		if (ret < 0)
1712 			break;
1713 
1714 		if (ret == 1) {
1715 			ret = 0;
1716 			if (path->slots[0] == 0)
1717 				break;
1718 			path->slots[0]--;
1719 		}
1720 
1721 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1722 		if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1723 		    key.type != BTRFS_ORPHAN_ITEM_KEY)
1724 			break;
1725 
1726 		ret = btrfs_del_item(trans, root, path);
1727 		if (ret)
1728 			break;
1729 
1730 		btrfs_release_path(path);
1731 		inode = btrfs_iget_logging(key.offset, root);
1732 		if (IS_ERR(inode)) {
1733 			ret = PTR_ERR(inode);
1734 			break;
1735 		}
1736 
1737 		ret = fixup_inode_link_count(trans, inode);
1738 		iput(&inode->vfs_inode);
1739 		if (ret)
1740 			break;
1741 
1742 		/*
1743 		 * fixup on a directory may create new entries,
1744 		 * make sure we always look for the highset possible
1745 		 * offset
1746 		 */
1747 		key.offset = (u64)-1;
1748 	}
1749 	btrfs_release_path(path);
1750 	return ret;
1751 }
1752 
1753 
1754 /*
1755  * record a given inode in the fixup dir so we can check its link
1756  * count when replay is done.  The link count is incremented here
1757  * so the inode won't go away until we check it
1758  */
link_to_fixup_dir(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,u64 objectid)1759 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1760 				      struct btrfs_root *root,
1761 				      struct btrfs_path *path,
1762 				      u64 objectid)
1763 {
1764 	struct btrfs_key key;
1765 	int ret = 0;
1766 	struct btrfs_inode *inode;
1767 	struct inode *vfs_inode;
1768 
1769 	inode = btrfs_iget_logging(objectid, root);
1770 	if (IS_ERR(inode))
1771 		return PTR_ERR(inode);
1772 
1773 	vfs_inode = &inode->vfs_inode;
1774 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1775 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1776 	key.offset = objectid;
1777 
1778 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1779 
1780 	btrfs_release_path(path);
1781 	if (ret == 0) {
1782 		if (!vfs_inode->i_nlink)
1783 			set_nlink(vfs_inode, 1);
1784 		else
1785 			inc_nlink(vfs_inode);
1786 		ret = btrfs_update_inode(trans, inode);
1787 	} else if (ret == -EEXIST) {
1788 		ret = 0;
1789 	}
1790 	iput(vfs_inode);
1791 
1792 	return ret;
1793 }
1794 
1795 /*
1796  * when replaying the log for a directory, we only insert names
1797  * for inodes that actually exist.  This means an fsync on a directory
1798  * does not implicitly fsync all the new files in it
1799  */
insert_one_name(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 dirid,u64 index,const struct fscrypt_str * name,struct btrfs_key * location)1800 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1801 				    struct btrfs_root *root,
1802 				    u64 dirid, u64 index,
1803 				    const struct fscrypt_str *name,
1804 				    struct btrfs_key *location)
1805 {
1806 	struct btrfs_inode *inode;
1807 	struct btrfs_inode *dir;
1808 	int ret;
1809 
1810 	inode = btrfs_iget_logging(location->objectid, root);
1811 	if (IS_ERR(inode))
1812 		return PTR_ERR(inode);
1813 
1814 	dir = btrfs_iget_logging(dirid, root);
1815 	if (IS_ERR(dir)) {
1816 		iput(&inode->vfs_inode);
1817 		return PTR_ERR(dir);
1818 	}
1819 
1820 	ret = btrfs_add_link(trans, dir, inode, name, 1, index);
1821 
1822 	/* FIXME, put inode into FIXUP list */
1823 
1824 	iput(&inode->vfs_inode);
1825 	iput(&dir->vfs_inode);
1826 	return ret;
1827 }
1828 
delete_conflicting_dir_entry(struct btrfs_trans_handle * trans,struct btrfs_inode * dir,struct btrfs_path * path,struct btrfs_dir_item * dst_di,const struct btrfs_key * log_key,u8 log_flags,bool exists)1829 static int delete_conflicting_dir_entry(struct btrfs_trans_handle *trans,
1830 					struct btrfs_inode *dir,
1831 					struct btrfs_path *path,
1832 					struct btrfs_dir_item *dst_di,
1833 					const struct btrfs_key *log_key,
1834 					u8 log_flags,
1835 					bool exists)
1836 {
1837 	struct btrfs_key found_key;
1838 
1839 	btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1840 	/* The existing dentry points to the same inode, don't delete it. */
1841 	if (found_key.objectid == log_key->objectid &&
1842 	    found_key.type == log_key->type &&
1843 	    found_key.offset == log_key->offset &&
1844 	    btrfs_dir_flags(path->nodes[0], dst_di) == log_flags)
1845 		return 1;
1846 
1847 	/*
1848 	 * Don't drop the conflicting directory entry if the inode for the new
1849 	 * entry doesn't exist.
1850 	 */
1851 	if (!exists)
1852 		return 0;
1853 
1854 	return drop_one_dir_item(trans, path, dir, dst_di);
1855 }
1856 
1857 /*
1858  * take a single entry in a log directory item and replay it into
1859  * the subvolume.
1860  *
1861  * if a conflicting item exists in the subdirectory already,
1862  * the inode it points to is unlinked and put into the link count
1863  * fix up tree.
1864  *
1865  * If a name from the log points to a file or directory that does
1866  * not exist in the FS, it is skipped.  fsyncs on directories
1867  * do not force down inodes inside that directory, just changes to the
1868  * names or unlinks in a directory.
1869  *
1870  * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1871  * non-existing inode) and 1 if the name was replayed.
1872  */
replay_one_name(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * eb,struct btrfs_dir_item * di,struct btrfs_key * key)1873 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1874 				    struct btrfs_root *root,
1875 				    struct btrfs_path *path,
1876 				    struct extent_buffer *eb,
1877 				    struct btrfs_dir_item *di,
1878 				    struct btrfs_key *key)
1879 {
1880 	struct fscrypt_str name = { 0 };
1881 	struct btrfs_dir_item *dir_dst_di;
1882 	struct btrfs_dir_item *index_dst_di;
1883 	bool dir_dst_matches = false;
1884 	bool index_dst_matches = false;
1885 	struct btrfs_key log_key;
1886 	struct btrfs_key search_key;
1887 	struct btrfs_inode *dir;
1888 	u8 log_flags;
1889 	bool exists;
1890 	int ret;
1891 	bool update_size = true;
1892 	bool name_added = false;
1893 
1894 	dir = btrfs_iget_logging(key->objectid, root);
1895 	if (IS_ERR(dir))
1896 		return PTR_ERR(dir);
1897 
1898 	ret = read_alloc_one_name(eb, di + 1, btrfs_dir_name_len(eb, di), &name);
1899 	if (ret)
1900 		goto out;
1901 
1902 	log_flags = btrfs_dir_flags(eb, di);
1903 	btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1904 	ret = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1905 	btrfs_release_path(path);
1906 	if (ret < 0)
1907 		goto out;
1908 	exists = (ret == 0);
1909 	ret = 0;
1910 
1911 	dir_dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1912 					   &name, 1);
1913 	if (IS_ERR(dir_dst_di)) {
1914 		ret = PTR_ERR(dir_dst_di);
1915 		goto out;
1916 	} else if (dir_dst_di) {
1917 		ret = delete_conflicting_dir_entry(trans, dir, path, dir_dst_di,
1918 						   &log_key, log_flags, exists);
1919 		if (ret < 0)
1920 			goto out;
1921 		dir_dst_matches = (ret == 1);
1922 	}
1923 
1924 	btrfs_release_path(path);
1925 
1926 	index_dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1927 						   key->objectid, key->offset,
1928 						   &name, 1);
1929 	if (IS_ERR(index_dst_di)) {
1930 		ret = PTR_ERR(index_dst_di);
1931 		goto out;
1932 	} else if (index_dst_di) {
1933 		ret = delete_conflicting_dir_entry(trans, dir, path, index_dst_di,
1934 						   &log_key, log_flags, exists);
1935 		if (ret < 0)
1936 			goto out;
1937 		index_dst_matches = (ret == 1);
1938 	}
1939 
1940 	btrfs_release_path(path);
1941 
1942 	if (dir_dst_matches && index_dst_matches) {
1943 		ret = 0;
1944 		update_size = false;
1945 		goto out;
1946 	}
1947 
1948 	/*
1949 	 * Check if the inode reference exists in the log for the given name,
1950 	 * inode and parent inode
1951 	 */
1952 	search_key.objectid = log_key.objectid;
1953 	search_key.type = BTRFS_INODE_REF_KEY;
1954 	search_key.offset = key->objectid;
1955 	ret = backref_in_log(root->log_root, &search_key, 0, &name);
1956 	if (ret < 0) {
1957 	        goto out;
1958 	} else if (ret) {
1959 	        /* The dentry will be added later. */
1960 	        ret = 0;
1961 	        update_size = false;
1962 	        goto out;
1963 	}
1964 
1965 	search_key.objectid = log_key.objectid;
1966 	search_key.type = BTRFS_INODE_EXTREF_KEY;
1967 	search_key.offset = key->objectid;
1968 	ret = backref_in_log(root->log_root, &search_key, key->objectid, &name);
1969 	if (ret < 0) {
1970 		goto out;
1971 	} else if (ret) {
1972 		/* The dentry will be added later. */
1973 		ret = 0;
1974 		update_size = false;
1975 		goto out;
1976 	}
1977 	btrfs_release_path(path);
1978 	ret = insert_one_name(trans, root, key->objectid, key->offset,
1979 			      &name, &log_key);
1980 	if (ret && ret != -ENOENT && ret != -EEXIST)
1981 		goto out;
1982 	if (!ret)
1983 		name_added = true;
1984 	update_size = false;
1985 	ret = 0;
1986 
1987 out:
1988 	if (!ret && update_size) {
1989 		btrfs_i_size_write(dir, dir->vfs_inode.i_size + name.len * 2);
1990 		ret = btrfs_update_inode(trans, dir);
1991 	}
1992 	kfree(name.name);
1993 	iput(&dir->vfs_inode);
1994 	if (!ret && name_added)
1995 		ret = 1;
1996 	return ret;
1997 }
1998 
1999 /* Replay one dir item from a BTRFS_DIR_INDEX_KEY key. */
replay_one_dir_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * eb,int slot,struct btrfs_key * key)2000 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
2001 					struct btrfs_root *root,
2002 					struct btrfs_path *path,
2003 					struct extent_buffer *eb, int slot,
2004 					struct btrfs_key *key)
2005 {
2006 	int ret;
2007 	struct btrfs_dir_item *di;
2008 
2009 	/* We only log dir index keys, which only contain a single dir item. */
2010 	ASSERT(key->type == BTRFS_DIR_INDEX_KEY);
2011 
2012 	di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2013 	ret = replay_one_name(trans, root, path, eb, di, key);
2014 	if (ret < 0)
2015 		return ret;
2016 
2017 	/*
2018 	 * If this entry refers to a non-directory (directories can not have a
2019 	 * link count > 1) and it was added in the transaction that was not
2020 	 * committed, make sure we fixup the link count of the inode the entry
2021 	 * points to. Otherwise something like the following would result in a
2022 	 * directory pointing to an inode with a wrong link that does not account
2023 	 * for this dir entry:
2024 	 *
2025 	 * mkdir testdir
2026 	 * touch testdir/foo
2027 	 * touch testdir/bar
2028 	 * sync
2029 	 *
2030 	 * ln testdir/bar testdir/bar_link
2031 	 * ln testdir/foo testdir/foo_link
2032 	 * xfs_io -c "fsync" testdir/bar
2033 	 *
2034 	 * <power failure>
2035 	 *
2036 	 * mount fs, log replay happens
2037 	 *
2038 	 * File foo would remain with a link count of 1 when it has two entries
2039 	 * pointing to it in the directory testdir. This would make it impossible
2040 	 * to ever delete the parent directory has it would result in stale
2041 	 * dentries that can never be deleted.
2042 	 */
2043 	if (ret == 1 && btrfs_dir_ftype(eb, di) != BTRFS_FT_DIR) {
2044 		struct btrfs_path *fixup_path;
2045 		struct btrfs_key di_key;
2046 
2047 		fixup_path = btrfs_alloc_path();
2048 		if (!fixup_path)
2049 			return -ENOMEM;
2050 
2051 		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2052 		ret = link_to_fixup_dir(trans, root, fixup_path, di_key.objectid);
2053 		btrfs_free_path(fixup_path);
2054 	}
2055 
2056 	return ret;
2057 }
2058 
2059 /*
2060  * directory replay has two parts.  There are the standard directory
2061  * items in the log copied from the subvolume, and range items
2062  * created in the log while the subvolume was logged.
2063  *
2064  * The range items tell us which parts of the key space the log
2065  * is authoritative for.  During replay, if a key in the subvolume
2066  * directory is in a logged range item, but not actually in the log
2067  * that means it was deleted from the directory before the fsync
2068  * and should be removed.
2069  */
find_dir_range(struct btrfs_root * root,struct btrfs_path * path,u64 dirid,u64 * start_ret,u64 * end_ret)2070 static noinline int find_dir_range(struct btrfs_root *root,
2071 				   struct btrfs_path *path,
2072 				   u64 dirid,
2073 				   u64 *start_ret, u64 *end_ret)
2074 {
2075 	struct btrfs_key key;
2076 	u64 found_end;
2077 	struct btrfs_dir_log_item *item;
2078 	int ret;
2079 	int nritems;
2080 
2081 	if (*start_ret == (u64)-1)
2082 		return 1;
2083 
2084 	key.objectid = dirid;
2085 	key.type = BTRFS_DIR_LOG_INDEX_KEY;
2086 	key.offset = *start_ret;
2087 
2088 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2089 	if (ret < 0)
2090 		goto out;
2091 	if (ret > 0) {
2092 		if (path->slots[0] == 0)
2093 			goto out;
2094 		path->slots[0]--;
2095 	}
2096 	if (ret != 0)
2097 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2098 
2099 	if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) {
2100 		ret = 1;
2101 		goto next;
2102 	}
2103 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2104 			      struct btrfs_dir_log_item);
2105 	found_end = btrfs_dir_log_end(path->nodes[0], item);
2106 
2107 	if (*start_ret >= key.offset && *start_ret <= found_end) {
2108 		ret = 0;
2109 		*start_ret = key.offset;
2110 		*end_ret = found_end;
2111 		goto out;
2112 	}
2113 	ret = 1;
2114 next:
2115 	/* check the next slot in the tree to see if it is a valid item */
2116 	nritems = btrfs_header_nritems(path->nodes[0]);
2117 	path->slots[0]++;
2118 	if (path->slots[0] >= nritems) {
2119 		ret = btrfs_next_leaf(root, path);
2120 		if (ret)
2121 			goto out;
2122 	}
2123 
2124 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2125 
2126 	if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) {
2127 		ret = 1;
2128 		goto out;
2129 	}
2130 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2131 			      struct btrfs_dir_log_item);
2132 	found_end = btrfs_dir_log_end(path->nodes[0], item);
2133 	*start_ret = key.offset;
2134 	*end_ret = found_end;
2135 	ret = 0;
2136 out:
2137 	btrfs_release_path(path);
2138 	return ret;
2139 }
2140 
2141 /*
2142  * this looks for a given directory item in the log.  If the directory
2143  * item is not in the log, the item is removed and the inode it points
2144  * to is unlinked
2145  */
check_item_in_log(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * path,struct btrfs_path * log_path,struct btrfs_inode * dir,struct btrfs_key * dir_key)2146 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
2147 				      struct btrfs_root *log,
2148 				      struct btrfs_path *path,
2149 				      struct btrfs_path *log_path,
2150 				      struct btrfs_inode *dir,
2151 				      struct btrfs_key *dir_key)
2152 {
2153 	struct btrfs_root *root = dir->root;
2154 	int ret;
2155 	struct extent_buffer *eb;
2156 	int slot;
2157 	struct btrfs_dir_item *di;
2158 	struct fscrypt_str name = { 0 };
2159 	struct btrfs_inode *inode = NULL;
2160 	struct btrfs_key location;
2161 
2162 	/*
2163 	 * Currently we only log dir index keys. Even if we replay a log created
2164 	 * by an older kernel that logged both dir index and dir item keys, all
2165 	 * we need to do is process the dir index keys, we (and our caller) can
2166 	 * safely ignore dir item keys (key type BTRFS_DIR_ITEM_KEY).
2167 	 */
2168 	ASSERT(dir_key->type == BTRFS_DIR_INDEX_KEY);
2169 
2170 	eb = path->nodes[0];
2171 	slot = path->slots[0];
2172 	di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2173 	ret = read_alloc_one_name(eb, di + 1, btrfs_dir_name_len(eb, di), &name);
2174 	if (ret)
2175 		goto out;
2176 
2177 	if (log) {
2178 		struct btrfs_dir_item *log_di;
2179 
2180 		log_di = btrfs_lookup_dir_index_item(trans, log, log_path,
2181 						     dir_key->objectid,
2182 						     dir_key->offset, &name, 0);
2183 		if (IS_ERR(log_di)) {
2184 			ret = PTR_ERR(log_di);
2185 			goto out;
2186 		} else if (log_di) {
2187 			/* The dentry exists in the log, we have nothing to do. */
2188 			ret = 0;
2189 			goto out;
2190 		}
2191 	}
2192 
2193 	btrfs_dir_item_key_to_cpu(eb, di, &location);
2194 	btrfs_release_path(path);
2195 	btrfs_release_path(log_path);
2196 	inode = btrfs_iget_logging(location.objectid, root);
2197 	if (IS_ERR(inode)) {
2198 		ret = PTR_ERR(inode);
2199 		inode = NULL;
2200 		goto out;
2201 	}
2202 
2203 	ret = link_to_fixup_dir(trans, root, path, location.objectid);
2204 	if (ret)
2205 		goto out;
2206 
2207 	inc_nlink(&inode->vfs_inode);
2208 	ret = unlink_inode_for_log_replay(trans, dir, inode, &name);
2209 	/*
2210 	 * Unlike dir item keys, dir index keys can only have one name (entry) in
2211 	 * them, as there are no key collisions since each key has a unique offset
2212 	 * (an index number), so we're done.
2213 	 */
2214 out:
2215 	btrfs_release_path(path);
2216 	btrfs_release_path(log_path);
2217 	kfree(name.name);
2218 	if (inode)
2219 		iput(&inode->vfs_inode);
2220 	return ret;
2221 }
2222 
replay_xattr_deletes(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_root * log,struct btrfs_path * path,const u64 ino)2223 static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2224 			      struct btrfs_root *root,
2225 			      struct btrfs_root *log,
2226 			      struct btrfs_path *path,
2227 			      const u64 ino)
2228 {
2229 	struct btrfs_key search_key;
2230 	struct btrfs_path *log_path;
2231 	int i;
2232 	int nritems;
2233 	int ret;
2234 
2235 	log_path = btrfs_alloc_path();
2236 	if (!log_path)
2237 		return -ENOMEM;
2238 
2239 	search_key.objectid = ino;
2240 	search_key.type = BTRFS_XATTR_ITEM_KEY;
2241 	search_key.offset = 0;
2242 again:
2243 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2244 	if (ret < 0)
2245 		goto out;
2246 process_leaf:
2247 	nritems = btrfs_header_nritems(path->nodes[0]);
2248 	for (i = path->slots[0]; i < nritems; i++) {
2249 		struct btrfs_key key;
2250 		struct btrfs_dir_item *di;
2251 		struct btrfs_dir_item *log_di;
2252 		u32 total_size;
2253 		u32 cur;
2254 
2255 		btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2256 		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2257 			ret = 0;
2258 			goto out;
2259 		}
2260 
2261 		di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2262 		total_size = btrfs_item_size(path->nodes[0], i);
2263 		cur = 0;
2264 		while (cur < total_size) {
2265 			u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2266 			u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2267 			u32 this_len = sizeof(*di) + name_len + data_len;
2268 			char *name;
2269 
2270 			name = kmalloc(name_len, GFP_NOFS);
2271 			if (!name) {
2272 				ret = -ENOMEM;
2273 				goto out;
2274 			}
2275 			read_extent_buffer(path->nodes[0], name,
2276 					   (unsigned long)(di + 1), name_len);
2277 
2278 			log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2279 						    name, name_len, 0);
2280 			btrfs_release_path(log_path);
2281 			if (!log_di) {
2282 				/* Doesn't exist in log tree, so delete it. */
2283 				btrfs_release_path(path);
2284 				di = btrfs_lookup_xattr(trans, root, path, ino,
2285 							name, name_len, -1);
2286 				kfree(name);
2287 				if (IS_ERR(di)) {
2288 					ret = PTR_ERR(di);
2289 					goto out;
2290 				}
2291 				ASSERT(di);
2292 				ret = btrfs_delete_one_dir_name(trans, root,
2293 								path, di);
2294 				if (ret)
2295 					goto out;
2296 				btrfs_release_path(path);
2297 				search_key = key;
2298 				goto again;
2299 			}
2300 			kfree(name);
2301 			if (IS_ERR(log_di)) {
2302 				ret = PTR_ERR(log_di);
2303 				goto out;
2304 			}
2305 			cur += this_len;
2306 			di = (struct btrfs_dir_item *)((char *)di + this_len);
2307 		}
2308 	}
2309 	ret = btrfs_next_leaf(root, path);
2310 	if (ret > 0)
2311 		ret = 0;
2312 	else if (ret == 0)
2313 		goto process_leaf;
2314 out:
2315 	btrfs_free_path(log_path);
2316 	btrfs_release_path(path);
2317 	return ret;
2318 }
2319 
2320 
2321 /*
2322  * deletion replay happens before we copy any new directory items
2323  * out of the log or out of backreferences from inodes.  It
2324  * scans the log to find ranges of keys that log is authoritative for,
2325  * and then scans the directory to find items in those ranges that are
2326  * not present in the log.
2327  *
2328  * Anything we don't find in the log is unlinked and removed from the
2329  * directory.
2330  */
replay_dir_deletes(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_root * log,struct btrfs_path * path,u64 dirid,bool del_all)2331 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2332 				       struct btrfs_root *root,
2333 				       struct btrfs_root *log,
2334 				       struct btrfs_path *path,
2335 				       u64 dirid, bool del_all)
2336 {
2337 	u64 range_start;
2338 	u64 range_end;
2339 	int ret = 0;
2340 	struct btrfs_key dir_key;
2341 	struct btrfs_key found_key;
2342 	struct btrfs_path *log_path;
2343 	struct btrfs_inode *dir;
2344 
2345 	dir_key.objectid = dirid;
2346 	dir_key.type = BTRFS_DIR_INDEX_KEY;
2347 	log_path = btrfs_alloc_path();
2348 	if (!log_path)
2349 		return -ENOMEM;
2350 
2351 	dir = btrfs_iget_logging(dirid, root);
2352 	/*
2353 	 * It isn't an error if the inode isn't there, that can happen because
2354 	 * we replay the deletes before we copy in the inode item from the log.
2355 	 */
2356 	if (IS_ERR(dir)) {
2357 		btrfs_free_path(log_path);
2358 		ret = PTR_ERR(dir);
2359 		if (ret == -ENOENT)
2360 			ret = 0;
2361 		return ret;
2362 	}
2363 
2364 	range_start = 0;
2365 	range_end = 0;
2366 	while (1) {
2367 		if (del_all)
2368 			range_end = (u64)-1;
2369 		else {
2370 			ret = find_dir_range(log, path, dirid,
2371 					     &range_start, &range_end);
2372 			if (ret < 0)
2373 				goto out;
2374 			else if (ret > 0)
2375 				break;
2376 		}
2377 
2378 		dir_key.offset = range_start;
2379 		while (1) {
2380 			int nritems;
2381 			ret = btrfs_search_slot(NULL, root, &dir_key, path,
2382 						0, 0);
2383 			if (ret < 0)
2384 				goto out;
2385 
2386 			nritems = btrfs_header_nritems(path->nodes[0]);
2387 			if (path->slots[0] >= nritems) {
2388 				ret = btrfs_next_leaf(root, path);
2389 				if (ret == 1)
2390 					break;
2391 				else if (ret < 0)
2392 					goto out;
2393 			}
2394 			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2395 					      path->slots[0]);
2396 			if (found_key.objectid != dirid ||
2397 			    found_key.type != dir_key.type) {
2398 				ret = 0;
2399 				goto out;
2400 			}
2401 
2402 			if (found_key.offset > range_end)
2403 				break;
2404 
2405 			ret = check_item_in_log(trans, log, path,
2406 						log_path, dir,
2407 						&found_key);
2408 			if (ret)
2409 				goto out;
2410 			if (found_key.offset == (u64)-1)
2411 				break;
2412 			dir_key.offset = found_key.offset + 1;
2413 		}
2414 		btrfs_release_path(path);
2415 		if (range_end == (u64)-1)
2416 			break;
2417 		range_start = range_end + 1;
2418 	}
2419 	ret = 0;
2420 out:
2421 	btrfs_release_path(path);
2422 	btrfs_free_path(log_path);
2423 	iput(&dir->vfs_inode);
2424 	return ret;
2425 }
2426 
2427 /*
2428  * the process_func used to replay items from the log tree.  This
2429  * gets called in two different stages.  The first stage just looks
2430  * for inodes and makes sure they are all copied into the subvolume.
2431  *
2432  * The second stage copies all the other item types from the log into
2433  * the subvolume.  The two stage approach is slower, but gets rid of
2434  * lots of complexity around inodes referencing other inodes that exist
2435  * only in the log (references come from either directory items or inode
2436  * back refs).
2437  */
replay_one_buffer(struct btrfs_root * log,struct extent_buffer * eb,struct walk_control * wc,u64 gen,int level)2438 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2439 			     struct walk_control *wc, u64 gen, int level)
2440 {
2441 	int nritems;
2442 	struct btrfs_tree_parent_check check = {
2443 		.transid = gen,
2444 		.level = level
2445 	};
2446 	struct btrfs_path *path;
2447 	struct btrfs_root *root = wc->replay_dest;
2448 	struct btrfs_key key;
2449 	int i;
2450 	int ret;
2451 
2452 	ret = btrfs_read_extent_buffer(eb, &check);
2453 	if (ret)
2454 		return ret;
2455 
2456 	level = btrfs_header_level(eb);
2457 
2458 	if (level != 0)
2459 		return 0;
2460 
2461 	path = btrfs_alloc_path();
2462 	if (!path)
2463 		return -ENOMEM;
2464 
2465 	nritems = btrfs_header_nritems(eb);
2466 	for (i = 0; i < nritems; i++) {
2467 		struct btrfs_inode_item *inode_item;
2468 
2469 		btrfs_item_key_to_cpu(eb, &key, i);
2470 
2471 		if (key.type == BTRFS_INODE_ITEM_KEY) {
2472 			inode_item = btrfs_item_ptr(eb, i, struct btrfs_inode_item);
2473 			/*
2474 			 * An inode with no links is either:
2475 			 *
2476 			 * 1) A tmpfile (O_TMPFILE) that got fsync'ed and never
2477 			 *    got linked before the fsync, skip it, as replaying
2478 			 *    it is pointless since it would be deleted later.
2479 			 *    We skip logging tmpfiles, but it's always possible
2480 			 *    we are replaying a log created with a kernel that
2481 			 *    used to log tmpfiles;
2482 			 *
2483 			 * 2) A non-tmpfile which got its last link deleted
2484 			 *    while holding an open fd on it and later got
2485 			 *    fsynced through that fd. We always log the
2486 			 *    parent inodes when inode->last_unlink_trans is
2487 			 *    set to the current transaction, so ignore all the
2488 			 *    inode items for this inode. We will delete the
2489 			 *    inode when processing the parent directory with
2490 			 *    replay_dir_deletes().
2491 			 */
2492 			if (btrfs_inode_nlink(eb, inode_item) == 0) {
2493 				wc->ignore_cur_inode = true;
2494 				continue;
2495 			} else {
2496 				wc->ignore_cur_inode = false;
2497 			}
2498 		}
2499 
2500 		/* Inode keys are done during the first stage. */
2501 		if (key.type == BTRFS_INODE_ITEM_KEY &&
2502 		    wc->stage == LOG_WALK_REPLAY_INODES) {
2503 			u32 mode;
2504 
2505 			ret = replay_xattr_deletes(wc->trans, root, log, path, key.objectid);
2506 			if (ret)
2507 				break;
2508 			mode = btrfs_inode_mode(eb, inode_item);
2509 			if (S_ISDIR(mode)) {
2510 				ret = replay_dir_deletes(wc->trans, root, log, path,
2511 							 key.objectid, false);
2512 				if (ret)
2513 					break;
2514 			}
2515 			ret = overwrite_item(wc->trans, root, path,
2516 					     eb, i, &key);
2517 			if (ret)
2518 				break;
2519 
2520 			/*
2521 			 * Before replaying extents, truncate the inode to its
2522 			 * size. We need to do it now and not after log replay
2523 			 * because before an fsync we can have prealloc extents
2524 			 * added beyond the inode's i_size. If we did it after,
2525 			 * through orphan cleanup for example, we would drop
2526 			 * those prealloc extents just after replaying them.
2527 			 */
2528 			if (S_ISREG(mode)) {
2529 				struct btrfs_drop_extents_args drop_args = { 0 };
2530 				struct btrfs_inode *inode;
2531 				u64 from;
2532 
2533 				inode = btrfs_iget_logging(key.objectid, root);
2534 				if (IS_ERR(inode)) {
2535 					ret = PTR_ERR(inode);
2536 					break;
2537 				}
2538 				from = ALIGN(i_size_read(&inode->vfs_inode),
2539 					     root->fs_info->sectorsize);
2540 				drop_args.start = from;
2541 				drop_args.end = (u64)-1;
2542 				drop_args.drop_cache = true;
2543 				ret = btrfs_drop_extents(wc->trans, root, inode,
2544 							 &drop_args);
2545 				if (!ret) {
2546 					inode_sub_bytes(&inode->vfs_inode,
2547 							drop_args.bytes_found);
2548 					/* Update the inode's nbytes. */
2549 					ret = btrfs_update_inode(wc->trans, inode);
2550 				}
2551 				iput(&inode->vfs_inode);
2552 				if (ret)
2553 					break;
2554 			}
2555 
2556 			ret = link_to_fixup_dir(wc->trans, root,
2557 						path, key.objectid);
2558 			if (ret)
2559 				break;
2560 		}
2561 
2562 		if (wc->ignore_cur_inode)
2563 			continue;
2564 
2565 		if (key.type == BTRFS_DIR_INDEX_KEY &&
2566 		    wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2567 			ret = replay_one_dir_item(wc->trans, root, path,
2568 						  eb, i, &key);
2569 			if (ret)
2570 				break;
2571 		}
2572 
2573 		if (wc->stage < LOG_WALK_REPLAY_ALL)
2574 			continue;
2575 
2576 		/* these keys are simply copied */
2577 		if (key.type == BTRFS_XATTR_ITEM_KEY) {
2578 			ret = overwrite_item(wc->trans, root, path,
2579 					     eb, i, &key);
2580 			if (ret)
2581 				break;
2582 		} else if (key.type == BTRFS_INODE_REF_KEY ||
2583 			   key.type == BTRFS_INODE_EXTREF_KEY) {
2584 			ret = add_inode_ref(wc->trans, root, log, path,
2585 					    eb, i, &key);
2586 			if (ret)
2587 				break;
2588 		} else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2589 			ret = replay_one_extent(wc->trans, root, path,
2590 						eb, i, &key);
2591 			if (ret)
2592 				break;
2593 		}
2594 		/*
2595 		 * We don't log BTRFS_DIR_ITEM_KEY keys anymore, only the
2596 		 * BTRFS_DIR_INDEX_KEY items which we use to derive the
2597 		 * BTRFS_DIR_ITEM_KEY items. If we are replaying a log from an
2598 		 * older kernel with such keys, ignore them.
2599 		 */
2600 	}
2601 	btrfs_free_path(path);
2602 	return ret;
2603 }
2604 
2605 /*
2606  * Correctly adjust the reserved bytes occupied by a log tree extent buffer
2607  */
unaccount_log_buffer(struct btrfs_fs_info * fs_info,u64 start)2608 static void unaccount_log_buffer(struct btrfs_fs_info *fs_info, u64 start)
2609 {
2610 	struct btrfs_block_group *cache;
2611 
2612 	cache = btrfs_lookup_block_group(fs_info, start);
2613 	if (!cache) {
2614 		btrfs_err(fs_info, "unable to find block group for %llu", start);
2615 		return;
2616 	}
2617 
2618 	spin_lock(&cache->space_info->lock);
2619 	spin_lock(&cache->lock);
2620 	cache->reserved -= fs_info->nodesize;
2621 	cache->space_info->bytes_reserved -= fs_info->nodesize;
2622 	spin_unlock(&cache->lock);
2623 	spin_unlock(&cache->space_info->lock);
2624 
2625 	btrfs_put_block_group(cache);
2626 }
2627 
clean_log_buffer(struct btrfs_trans_handle * trans,struct extent_buffer * eb)2628 static int clean_log_buffer(struct btrfs_trans_handle *trans,
2629 			    struct extent_buffer *eb)
2630 {
2631 	int ret;
2632 
2633 	btrfs_tree_lock(eb);
2634 	btrfs_clear_buffer_dirty(trans, eb);
2635 	wait_on_extent_buffer_writeback(eb);
2636 	btrfs_tree_unlock(eb);
2637 
2638 	if (trans) {
2639 		ret = btrfs_pin_reserved_extent(trans, eb);
2640 		if (ret)
2641 			return ret;
2642 	} else {
2643 		unaccount_log_buffer(eb->fs_info, eb->start);
2644 	}
2645 
2646 	return 0;
2647 }
2648 
walk_down_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int * level,struct walk_control * wc)2649 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2650 				   struct btrfs_root *root,
2651 				   struct btrfs_path *path, int *level,
2652 				   struct walk_control *wc)
2653 {
2654 	struct btrfs_fs_info *fs_info = root->fs_info;
2655 	u64 bytenr;
2656 	u64 ptr_gen;
2657 	struct extent_buffer *next;
2658 	struct extent_buffer *cur;
2659 	int ret = 0;
2660 
2661 	while (*level > 0) {
2662 		struct btrfs_tree_parent_check check = { 0 };
2663 
2664 		cur = path->nodes[*level];
2665 
2666 		WARN_ON(btrfs_header_level(cur) != *level);
2667 
2668 		if (path->slots[*level] >=
2669 		    btrfs_header_nritems(cur))
2670 			break;
2671 
2672 		bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2673 		ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2674 		check.transid = ptr_gen;
2675 		check.level = *level - 1;
2676 		check.has_first_key = true;
2677 		btrfs_node_key_to_cpu(cur, &check.first_key, path->slots[*level]);
2678 
2679 		next = btrfs_find_create_tree_block(fs_info, bytenr,
2680 						    btrfs_header_owner(cur),
2681 						    *level - 1);
2682 		if (IS_ERR(next))
2683 			return PTR_ERR(next);
2684 
2685 		if (*level == 1) {
2686 			ret = wc->process_func(root, next, wc, ptr_gen,
2687 					       *level - 1);
2688 			if (ret) {
2689 				free_extent_buffer(next);
2690 				return ret;
2691 			}
2692 
2693 			path->slots[*level]++;
2694 			if (wc->free) {
2695 				ret = btrfs_read_extent_buffer(next, &check);
2696 				if (ret) {
2697 					free_extent_buffer(next);
2698 					return ret;
2699 				}
2700 
2701 				ret = clean_log_buffer(trans, next);
2702 				if (ret) {
2703 					free_extent_buffer(next);
2704 					return ret;
2705 				}
2706 			}
2707 			free_extent_buffer(next);
2708 			continue;
2709 		}
2710 		ret = btrfs_read_extent_buffer(next, &check);
2711 		if (ret) {
2712 			free_extent_buffer(next);
2713 			return ret;
2714 		}
2715 
2716 		if (path->nodes[*level-1])
2717 			free_extent_buffer(path->nodes[*level-1]);
2718 		path->nodes[*level-1] = next;
2719 		*level = btrfs_header_level(next);
2720 		path->slots[*level] = 0;
2721 		cond_resched();
2722 	}
2723 	path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2724 
2725 	cond_resched();
2726 	return 0;
2727 }
2728 
walk_up_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int * level,struct walk_control * wc)2729 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2730 				 struct btrfs_root *root,
2731 				 struct btrfs_path *path, int *level,
2732 				 struct walk_control *wc)
2733 {
2734 	int i;
2735 	int slot;
2736 	int ret;
2737 
2738 	for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2739 		slot = path->slots[i];
2740 		if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2741 			path->slots[i]++;
2742 			*level = i;
2743 			WARN_ON(*level == 0);
2744 			return 0;
2745 		} else {
2746 			ret = wc->process_func(root, path->nodes[*level], wc,
2747 				 btrfs_header_generation(path->nodes[*level]),
2748 				 *level);
2749 			if (ret)
2750 				return ret;
2751 
2752 			if (wc->free) {
2753 				ret = clean_log_buffer(trans, path->nodes[*level]);
2754 				if (ret)
2755 					return ret;
2756 			}
2757 			free_extent_buffer(path->nodes[*level]);
2758 			path->nodes[*level] = NULL;
2759 			*level = i + 1;
2760 		}
2761 	}
2762 	return 1;
2763 }
2764 
2765 /*
2766  * drop the reference count on the tree rooted at 'snap'.  This traverses
2767  * the tree freeing any blocks that have a ref count of zero after being
2768  * decremented.
2769  */
walk_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct walk_control * wc)2770 static int walk_log_tree(struct btrfs_trans_handle *trans,
2771 			 struct btrfs_root *log, struct walk_control *wc)
2772 {
2773 	int ret = 0;
2774 	int wret;
2775 	int level;
2776 	struct btrfs_path *path;
2777 	int orig_level;
2778 
2779 	path = btrfs_alloc_path();
2780 	if (!path)
2781 		return -ENOMEM;
2782 
2783 	level = btrfs_header_level(log->node);
2784 	orig_level = level;
2785 	path->nodes[level] = log->node;
2786 	refcount_inc(&log->node->refs);
2787 	path->slots[level] = 0;
2788 
2789 	while (1) {
2790 		wret = walk_down_log_tree(trans, log, path, &level, wc);
2791 		if (wret > 0)
2792 			break;
2793 		if (wret < 0) {
2794 			ret = wret;
2795 			goto out;
2796 		}
2797 
2798 		wret = walk_up_log_tree(trans, log, path, &level, wc);
2799 		if (wret > 0)
2800 			break;
2801 		if (wret < 0) {
2802 			ret = wret;
2803 			goto out;
2804 		}
2805 	}
2806 
2807 	/* was the root node processed? if not, catch it here */
2808 	if (path->nodes[orig_level]) {
2809 		ret = wc->process_func(log, path->nodes[orig_level], wc,
2810 			 btrfs_header_generation(path->nodes[orig_level]),
2811 			 orig_level);
2812 		if (ret)
2813 			goto out;
2814 		if (wc->free)
2815 			ret = clean_log_buffer(trans, path->nodes[orig_level]);
2816 	}
2817 
2818 out:
2819 	btrfs_free_path(path);
2820 	return ret;
2821 }
2822 
2823 /*
2824  * helper function to update the item for a given subvolumes log root
2825  * in the tree of log roots
2826  */
update_log_root(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_root_item * root_item)2827 static int update_log_root(struct btrfs_trans_handle *trans,
2828 			   struct btrfs_root *log,
2829 			   struct btrfs_root_item *root_item)
2830 {
2831 	struct btrfs_fs_info *fs_info = log->fs_info;
2832 	int ret;
2833 
2834 	if (log->log_transid == 1) {
2835 		/* insert root item on the first sync */
2836 		ret = btrfs_insert_root(trans, fs_info->log_root_tree,
2837 				&log->root_key, root_item);
2838 	} else {
2839 		ret = btrfs_update_root(trans, fs_info->log_root_tree,
2840 				&log->root_key, root_item);
2841 	}
2842 	return ret;
2843 }
2844 
wait_log_commit(struct btrfs_root * root,int transid)2845 static void wait_log_commit(struct btrfs_root *root, int transid)
2846 {
2847 	DEFINE_WAIT(wait);
2848 	int index = transid % 2;
2849 
2850 	/*
2851 	 * we only allow two pending log transactions at a time,
2852 	 * so we know that if ours is more than 2 older than the
2853 	 * current transaction, we're done
2854 	 */
2855 	for (;;) {
2856 		prepare_to_wait(&root->log_commit_wait[index],
2857 				&wait, TASK_UNINTERRUPTIBLE);
2858 
2859 		if (!(root->log_transid_committed < transid &&
2860 		      atomic_read(&root->log_commit[index])))
2861 			break;
2862 
2863 		mutex_unlock(&root->log_mutex);
2864 		schedule();
2865 		mutex_lock(&root->log_mutex);
2866 	}
2867 	finish_wait(&root->log_commit_wait[index], &wait);
2868 }
2869 
wait_for_writer(struct btrfs_root * root)2870 static void wait_for_writer(struct btrfs_root *root)
2871 {
2872 	DEFINE_WAIT(wait);
2873 
2874 	for (;;) {
2875 		prepare_to_wait(&root->log_writer_wait, &wait,
2876 				TASK_UNINTERRUPTIBLE);
2877 		if (!atomic_read(&root->log_writers))
2878 			break;
2879 
2880 		mutex_unlock(&root->log_mutex);
2881 		schedule();
2882 		mutex_lock(&root->log_mutex);
2883 	}
2884 	finish_wait(&root->log_writer_wait, &wait);
2885 }
2886 
btrfs_init_log_ctx(struct btrfs_log_ctx * ctx,struct btrfs_inode * inode)2887 void btrfs_init_log_ctx(struct btrfs_log_ctx *ctx, struct btrfs_inode *inode)
2888 {
2889 	ctx->log_ret = 0;
2890 	ctx->log_transid = 0;
2891 	ctx->log_new_dentries = false;
2892 	ctx->logging_new_name = false;
2893 	ctx->logging_new_delayed_dentries = false;
2894 	ctx->logged_before = false;
2895 	ctx->inode = inode;
2896 	INIT_LIST_HEAD(&ctx->list);
2897 	INIT_LIST_HEAD(&ctx->ordered_extents);
2898 	INIT_LIST_HEAD(&ctx->conflict_inodes);
2899 	ctx->num_conflict_inodes = 0;
2900 	ctx->logging_conflict_inodes = false;
2901 	ctx->scratch_eb = NULL;
2902 }
2903 
btrfs_init_log_ctx_scratch_eb(struct btrfs_log_ctx * ctx)2904 void btrfs_init_log_ctx_scratch_eb(struct btrfs_log_ctx *ctx)
2905 {
2906 	struct btrfs_inode *inode = ctx->inode;
2907 
2908 	if (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) &&
2909 	    !test_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags))
2910 		return;
2911 
2912 	/*
2913 	 * Don't care about allocation failure. This is just for optimization,
2914 	 * if we fail to allocate here, we will try again later if needed.
2915 	 */
2916 	ctx->scratch_eb = alloc_dummy_extent_buffer(inode->root->fs_info, 0);
2917 }
2918 
btrfs_release_log_ctx_extents(struct btrfs_log_ctx * ctx)2919 void btrfs_release_log_ctx_extents(struct btrfs_log_ctx *ctx)
2920 {
2921 	struct btrfs_ordered_extent *ordered;
2922 	struct btrfs_ordered_extent *tmp;
2923 
2924 	btrfs_assert_inode_locked(ctx->inode);
2925 
2926 	list_for_each_entry_safe(ordered, tmp, &ctx->ordered_extents, log_list) {
2927 		list_del_init(&ordered->log_list);
2928 		btrfs_put_ordered_extent(ordered);
2929 	}
2930 }
2931 
2932 
btrfs_remove_log_ctx(struct btrfs_root * root,struct btrfs_log_ctx * ctx)2933 static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2934 					struct btrfs_log_ctx *ctx)
2935 {
2936 	mutex_lock(&root->log_mutex);
2937 	list_del_init(&ctx->list);
2938 	mutex_unlock(&root->log_mutex);
2939 }
2940 
2941 /*
2942  * Invoked in log mutex context, or be sure there is no other task which
2943  * can access the list.
2944  */
btrfs_remove_all_log_ctxs(struct btrfs_root * root,int index,int error)2945 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2946 					     int index, int error)
2947 {
2948 	struct btrfs_log_ctx *ctx;
2949 	struct btrfs_log_ctx *safe;
2950 
2951 	list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
2952 		list_del_init(&ctx->list);
2953 		ctx->log_ret = error;
2954 	}
2955 }
2956 
2957 /*
2958  * Sends a given tree log down to the disk and updates the super blocks to
2959  * record it.  When this call is done, you know that any inodes previously
2960  * logged are safely on disk only if it returns 0.
2961  *
2962  * Any other return value means you need to call btrfs_commit_transaction.
2963  * Some of the edge cases for fsyncing directories that have had unlinks
2964  * or renames done in the past mean that sometimes the only safe
2965  * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN,
2966  * that has happened.
2967  */
btrfs_sync_log(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_log_ctx * ctx)2968 int btrfs_sync_log(struct btrfs_trans_handle *trans,
2969 		   struct btrfs_root *root, struct btrfs_log_ctx *ctx)
2970 {
2971 	int index1;
2972 	int index2;
2973 	int mark;
2974 	int ret;
2975 	struct btrfs_fs_info *fs_info = root->fs_info;
2976 	struct btrfs_root *log = root->log_root;
2977 	struct btrfs_root *log_root_tree = fs_info->log_root_tree;
2978 	struct btrfs_root_item new_root_item;
2979 	int log_transid = 0;
2980 	struct btrfs_log_ctx root_log_ctx;
2981 	struct blk_plug plug;
2982 	u64 log_root_start;
2983 	u64 log_root_level;
2984 
2985 	mutex_lock(&root->log_mutex);
2986 	log_transid = ctx->log_transid;
2987 	if (root->log_transid_committed >= log_transid) {
2988 		mutex_unlock(&root->log_mutex);
2989 		return ctx->log_ret;
2990 	}
2991 
2992 	index1 = log_transid % 2;
2993 	if (atomic_read(&root->log_commit[index1])) {
2994 		wait_log_commit(root, log_transid);
2995 		mutex_unlock(&root->log_mutex);
2996 		return ctx->log_ret;
2997 	}
2998 	ASSERT(log_transid == root->log_transid);
2999 	atomic_set(&root->log_commit[index1], 1);
3000 
3001 	/* wait for previous tree log sync to complete */
3002 	if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
3003 		wait_log_commit(root, log_transid - 1);
3004 
3005 	while (1) {
3006 		int batch = atomic_read(&root->log_batch);
3007 		/* when we're on an ssd, just kick the log commit out */
3008 		if (!btrfs_test_opt(fs_info, SSD) &&
3009 		    test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
3010 			mutex_unlock(&root->log_mutex);
3011 			schedule_timeout_uninterruptible(1);
3012 			mutex_lock(&root->log_mutex);
3013 		}
3014 		wait_for_writer(root);
3015 		if (batch == atomic_read(&root->log_batch))
3016 			break;
3017 	}
3018 
3019 	/* bail out if we need to do a full commit */
3020 	if (btrfs_need_log_full_commit(trans)) {
3021 		ret = BTRFS_LOG_FORCE_COMMIT;
3022 		mutex_unlock(&root->log_mutex);
3023 		goto out;
3024 	}
3025 
3026 	if (log_transid % 2 == 0)
3027 		mark = EXTENT_DIRTY_LOG1;
3028 	else
3029 		mark = EXTENT_DIRTY_LOG2;
3030 
3031 	/* we start IO on  all the marked extents here, but we don't actually
3032 	 * wait for them until later.
3033 	 */
3034 	blk_start_plug(&plug);
3035 	ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
3036 	/*
3037 	 * -EAGAIN happens when someone, e.g., a concurrent transaction
3038 	 *  commit, writes a dirty extent in this tree-log commit. This
3039 	 *  concurrent write will create a hole writing out the extents,
3040 	 *  and we cannot proceed on a zoned filesystem, requiring
3041 	 *  sequential writing. While we can bail out to a full commit
3042 	 *  here, but we can continue hoping the concurrent writing fills
3043 	 *  the hole.
3044 	 */
3045 	if (ret == -EAGAIN && btrfs_is_zoned(fs_info))
3046 		ret = 0;
3047 	if (ret) {
3048 		blk_finish_plug(&plug);
3049 		btrfs_set_log_full_commit(trans);
3050 		mutex_unlock(&root->log_mutex);
3051 		goto out;
3052 	}
3053 
3054 	/*
3055 	 * We _must_ update under the root->log_mutex in order to make sure we
3056 	 * have a consistent view of the log root we are trying to commit at
3057 	 * this moment.
3058 	 *
3059 	 * We _must_ copy this into a local copy, because we are not holding the
3060 	 * log_root_tree->log_mutex yet.  This is important because when we
3061 	 * commit the log_root_tree we must have a consistent view of the
3062 	 * log_root_tree when we update the super block to point at the
3063 	 * log_root_tree bytenr.  If we update the log_root_tree here we'll race
3064 	 * with the commit and possibly point at the new block which we may not
3065 	 * have written out.
3066 	 */
3067 	btrfs_set_root_node(&log->root_item, log->node);
3068 	memcpy(&new_root_item, &log->root_item, sizeof(new_root_item));
3069 
3070 	btrfs_set_root_log_transid(root, root->log_transid + 1);
3071 	log->log_transid = root->log_transid;
3072 	root->log_start_pid = 0;
3073 	/*
3074 	 * IO has been started, blocks of the log tree have WRITTEN flag set
3075 	 * in their headers. new modifications of the log will be written to
3076 	 * new positions. so it's safe to allow log writers to go in.
3077 	 */
3078 	mutex_unlock(&root->log_mutex);
3079 
3080 	if (btrfs_is_zoned(fs_info)) {
3081 		mutex_lock(&fs_info->tree_root->log_mutex);
3082 		if (!log_root_tree->node) {
3083 			ret = btrfs_alloc_log_tree_node(trans, log_root_tree);
3084 			if (ret) {
3085 				mutex_unlock(&fs_info->tree_root->log_mutex);
3086 				blk_finish_plug(&plug);
3087 				goto out;
3088 			}
3089 		}
3090 		mutex_unlock(&fs_info->tree_root->log_mutex);
3091 	}
3092 
3093 	btrfs_init_log_ctx(&root_log_ctx, NULL);
3094 
3095 	mutex_lock(&log_root_tree->log_mutex);
3096 
3097 	index2 = log_root_tree->log_transid % 2;
3098 	list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
3099 	root_log_ctx.log_transid = log_root_tree->log_transid;
3100 
3101 	/*
3102 	 * Now we are safe to update the log_root_tree because we're under the
3103 	 * log_mutex, and we're a current writer so we're holding the commit
3104 	 * open until we drop the log_mutex.
3105 	 */
3106 	ret = update_log_root(trans, log, &new_root_item);
3107 	if (ret) {
3108 		list_del_init(&root_log_ctx.list);
3109 		blk_finish_plug(&plug);
3110 		btrfs_set_log_full_commit(trans);
3111 		if (ret != -ENOSPC)
3112 			btrfs_err(fs_info,
3113 				  "failed to update log for root %llu ret %d",
3114 				  btrfs_root_id(root), ret);
3115 		btrfs_wait_tree_log_extents(log, mark);
3116 		mutex_unlock(&log_root_tree->log_mutex);
3117 		goto out;
3118 	}
3119 
3120 	if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3121 		blk_finish_plug(&plug);
3122 		list_del_init(&root_log_ctx.list);
3123 		mutex_unlock(&log_root_tree->log_mutex);
3124 		ret = root_log_ctx.log_ret;
3125 		goto out;
3126 	}
3127 
3128 	if (atomic_read(&log_root_tree->log_commit[index2])) {
3129 		blk_finish_plug(&plug);
3130 		ret = btrfs_wait_tree_log_extents(log, mark);
3131 		wait_log_commit(log_root_tree,
3132 				root_log_ctx.log_transid);
3133 		mutex_unlock(&log_root_tree->log_mutex);
3134 		if (!ret)
3135 			ret = root_log_ctx.log_ret;
3136 		goto out;
3137 	}
3138 	ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
3139 	atomic_set(&log_root_tree->log_commit[index2], 1);
3140 
3141 	if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
3142 		wait_log_commit(log_root_tree,
3143 				root_log_ctx.log_transid - 1);
3144 	}
3145 
3146 	/*
3147 	 * now that we've moved on to the tree of log tree roots,
3148 	 * check the full commit flag again
3149 	 */
3150 	if (btrfs_need_log_full_commit(trans)) {
3151 		blk_finish_plug(&plug);
3152 		btrfs_wait_tree_log_extents(log, mark);
3153 		mutex_unlock(&log_root_tree->log_mutex);
3154 		ret = BTRFS_LOG_FORCE_COMMIT;
3155 		goto out_wake_log_root;
3156 	}
3157 
3158 	ret = btrfs_write_marked_extents(fs_info,
3159 					 &log_root_tree->dirty_log_pages,
3160 					 EXTENT_DIRTY_LOG1 | EXTENT_DIRTY_LOG2);
3161 	blk_finish_plug(&plug);
3162 	/*
3163 	 * As described above, -EAGAIN indicates a hole in the extents. We
3164 	 * cannot wait for these write outs since the waiting cause a
3165 	 * deadlock. Bail out to the full commit instead.
3166 	 */
3167 	if (ret == -EAGAIN && btrfs_is_zoned(fs_info)) {
3168 		btrfs_set_log_full_commit(trans);
3169 		btrfs_wait_tree_log_extents(log, mark);
3170 		mutex_unlock(&log_root_tree->log_mutex);
3171 		goto out_wake_log_root;
3172 	} else if (ret) {
3173 		btrfs_set_log_full_commit(trans);
3174 		mutex_unlock(&log_root_tree->log_mutex);
3175 		goto out_wake_log_root;
3176 	}
3177 	ret = btrfs_wait_tree_log_extents(log, mark);
3178 	if (!ret)
3179 		ret = btrfs_wait_tree_log_extents(log_root_tree,
3180 						  EXTENT_DIRTY_LOG1 | EXTENT_DIRTY_LOG2);
3181 	if (ret) {
3182 		btrfs_set_log_full_commit(trans);
3183 		mutex_unlock(&log_root_tree->log_mutex);
3184 		goto out_wake_log_root;
3185 	}
3186 
3187 	log_root_start = log_root_tree->node->start;
3188 	log_root_level = btrfs_header_level(log_root_tree->node);
3189 	log_root_tree->log_transid++;
3190 	mutex_unlock(&log_root_tree->log_mutex);
3191 
3192 	/*
3193 	 * Here we are guaranteed that nobody is going to write the superblock
3194 	 * for the current transaction before us and that neither we do write
3195 	 * our superblock before the previous transaction finishes its commit
3196 	 * and writes its superblock, because:
3197 	 *
3198 	 * 1) We are holding a handle on the current transaction, so no body
3199 	 *    can commit it until we release the handle;
3200 	 *
3201 	 * 2) Before writing our superblock we acquire the tree_log_mutex, so
3202 	 *    if the previous transaction is still committing, and hasn't yet
3203 	 *    written its superblock, we wait for it to do it, because a
3204 	 *    transaction commit acquires the tree_log_mutex when the commit
3205 	 *    begins and releases it only after writing its superblock.
3206 	 */
3207 	mutex_lock(&fs_info->tree_log_mutex);
3208 
3209 	/*
3210 	 * The previous transaction writeout phase could have failed, and thus
3211 	 * marked the fs in an error state.  We must not commit here, as we
3212 	 * could have updated our generation in the super_for_commit and
3213 	 * writing the super here would result in transid mismatches.  If there
3214 	 * is an error here just bail.
3215 	 */
3216 	if (BTRFS_FS_ERROR(fs_info)) {
3217 		ret = -EIO;
3218 		btrfs_set_log_full_commit(trans);
3219 		btrfs_abort_transaction(trans, ret);
3220 		mutex_unlock(&fs_info->tree_log_mutex);
3221 		goto out_wake_log_root;
3222 	}
3223 
3224 	btrfs_set_super_log_root(fs_info->super_for_commit, log_root_start);
3225 	btrfs_set_super_log_root_level(fs_info->super_for_commit, log_root_level);
3226 	ret = write_all_supers(fs_info, 1);
3227 	mutex_unlock(&fs_info->tree_log_mutex);
3228 	if (ret) {
3229 		btrfs_set_log_full_commit(trans);
3230 		btrfs_abort_transaction(trans, ret);
3231 		goto out_wake_log_root;
3232 	}
3233 
3234 	/*
3235 	 * We know there can only be one task here, since we have not yet set
3236 	 * root->log_commit[index1] to 0 and any task attempting to sync the
3237 	 * log must wait for the previous log transaction to commit if it's
3238 	 * still in progress or wait for the current log transaction commit if
3239 	 * someone else already started it. We use <= and not < because the
3240 	 * first log transaction has an ID of 0.
3241 	 */
3242 	ASSERT(btrfs_get_root_last_log_commit(root) <= log_transid);
3243 	btrfs_set_root_last_log_commit(root, log_transid);
3244 
3245 out_wake_log_root:
3246 	mutex_lock(&log_root_tree->log_mutex);
3247 	btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3248 
3249 	log_root_tree->log_transid_committed++;
3250 	atomic_set(&log_root_tree->log_commit[index2], 0);
3251 	mutex_unlock(&log_root_tree->log_mutex);
3252 
3253 	/*
3254 	 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3255 	 * all the updates above are seen by the woken threads. It might not be
3256 	 * necessary, but proving that seems to be hard.
3257 	 */
3258 	cond_wake_up(&log_root_tree->log_commit_wait[index2]);
3259 out:
3260 	mutex_lock(&root->log_mutex);
3261 	btrfs_remove_all_log_ctxs(root, index1, ret);
3262 	root->log_transid_committed++;
3263 	atomic_set(&root->log_commit[index1], 0);
3264 	mutex_unlock(&root->log_mutex);
3265 
3266 	/*
3267 	 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3268 	 * all the updates above are seen by the woken threads. It might not be
3269 	 * necessary, but proving that seems to be hard.
3270 	 */
3271 	cond_wake_up(&root->log_commit_wait[index1]);
3272 	return ret;
3273 }
3274 
free_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * log)3275 static void free_log_tree(struct btrfs_trans_handle *trans,
3276 			  struct btrfs_root *log)
3277 {
3278 	int ret;
3279 	struct walk_control wc = {
3280 		.free = 1,
3281 		.process_func = process_one_buffer
3282 	};
3283 
3284 	if (log->node) {
3285 		ret = walk_log_tree(trans, log, &wc);
3286 		if (ret) {
3287 			/*
3288 			 * We weren't able to traverse the entire log tree, the
3289 			 * typical scenario is getting an -EIO when reading an
3290 			 * extent buffer of the tree, due to a previous writeback
3291 			 * failure of it.
3292 			 */
3293 			set_bit(BTRFS_FS_STATE_LOG_CLEANUP_ERROR,
3294 				&log->fs_info->fs_state);
3295 
3296 			/*
3297 			 * Some extent buffers of the log tree may still be dirty
3298 			 * and not yet written back to storage, because we may
3299 			 * have updates to a log tree without syncing a log tree,
3300 			 * such as during rename and link operations. So flush
3301 			 * them out and wait for their writeback to complete, so
3302 			 * that we properly cleanup their state and pages.
3303 			 */
3304 			btrfs_write_marked_extents(log->fs_info,
3305 						   &log->dirty_log_pages,
3306 						   EXTENT_DIRTY_LOG1 | EXTENT_DIRTY_LOG2);
3307 			btrfs_wait_tree_log_extents(log,
3308 						    EXTENT_DIRTY_LOG1 | EXTENT_DIRTY_LOG2);
3309 
3310 			if (trans)
3311 				btrfs_abort_transaction(trans, ret);
3312 			else
3313 				btrfs_handle_fs_error(log->fs_info, ret, NULL);
3314 		}
3315 	}
3316 
3317 	btrfs_extent_io_tree_release(&log->dirty_log_pages);
3318 	btrfs_extent_io_tree_release(&log->log_csum_range);
3319 
3320 	btrfs_put_root(log);
3321 }
3322 
3323 /*
3324  * free all the extents used by the tree log.  This should be called
3325  * at commit time of the full transaction
3326  */
btrfs_free_log(struct btrfs_trans_handle * trans,struct btrfs_root * root)3327 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3328 {
3329 	if (root->log_root) {
3330 		free_log_tree(trans, root->log_root);
3331 		root->log_root = NULL;
3332 		clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
3333 	}
3334 	return 0;
3335 }
3336 
btrfs_free_log_root_tree(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)3337 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3338 			     struct btrfs_fs_info *fs_info)
3339 {
3340 	if (fs_info->log_root_tree) {
3341 		free_log_tree(trans, fs_info->log_root_tree);
3342 		fs_info->log_root_tree = NULL;
3343 		clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &fs_info->tree_root->state);
3344 	}
3345 	return 0;
3346 }
3347 
3348 /*
3349  * Check if an inode was logged in the current transaction. This correctly deals
3350  * with the case where the inode was logged but has a logged_trans of 0, which
3351  * happens if the inode is evicted and loaded again, as logged_trans is an in
3352  * memory only field (not persisted).
3353  *
3354  * Returns 1 if the inode was logged before in the transaction, 0 if it was not,
3355  * and < 0 on error.
3356  */
inode_logged(const struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path_in)3357 static int inode_logged(const struct btrfs_trans_handle *trans,
3358 			struct btrfs_inode *inode,
3359 			struct btrfs_path *path_in)
3360 {
3361 	struct btrfs_path *path = path_in;
3362 	struct btrfs_key key;
3363 	int ret;
3364 
3365 	if (inode->logged_trans == trans->transid)
3366 		return 1;
3367 
3368 	/*
3369 	 * If logged_trans is not 0, then we know the inode logged was not logged
3370 	 * in this transaction, so we can return false right away.
3371 	 */
3372 	if (inode->logged_trans > 0)
3373 		return 0;
3374 
3375 	/*
3376 	 * If no log tree was created for this root in this transaction, then
3377 	 * the inode can not have been logged in this transaction. In that case
3378 	 * set logged_trans to anything greater than 0 and less than the current
3379 	 * transaction's ID, to avoid the search below in a future call in case
3380 	 * a log tree gets created after this.
3381 	 */
3382 	if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &inode->root->state)) {
3383 		inode->logged_trans = trans->transid - 1;
3384 		return 0;
3385 	}
3386 
3387 	/*
3388 	 * We have a log tree and the inode's logged_trans is 0. We can't tell
3389 	 * for sure if the inode was logged before in this transaction by looking
3390 	 * only at logged_trans. We could be pessimistic and assume it was, but
3391 	 * that can lead to unnecessarily logging an inode during rename and link
3392 	 * operations, and then further updating the log in followup rename and
3393 	 * link operations, specially if it's a directory, which adds latency
3394 	 * visible to applications doing a series of rename or link operations.
3395 	 *
3396 	 * A logged_trans of 0 here can mean several things:
3397 	 *
3398 	 * 1) The inode was never logged since the filesystem was mounted, and may
3399 	 *    or may have not been evicted and loaded again;
3400 	 *
3401 	 * 2) The inode was logged in a previous transaction, then evicted and
3402 	 *    then loaded again;
3403 	 *
3404 	 * 3) The inode was logged in the current transaction, then evicted and
3405 	 *    then loaded again.
3406 	 *
3407 	 * For cases 1) and 2) we don't want to return true, but we need to detect
3408 	 * case 3) and return true. So we do a search in the log root for the inode
3409 	 * item.
3410 	 */
3411 	key.objectid = btrfs_ino(inode);
3412 	key.type = BTRFS_INODE_ITEM_KEY;
3413 	key.offset = 0;
3414 
3415 	if (!path) {
3416 		path = btrfs_alloc_path();
3417 		if (!path)
3418 			return -ENOMEM;
3419 	}
3420 
3421 	ret = btrfs_search_slot(NULL, inode->root->log_root, &key, path, 0, 0);
3422 
3423 	if (path_in)
3424 		btrfs_release_path(path);
3425 	else
3426 		btrfs_free_path(path);
3427 
3428 	/*
3429 	 * Logging an inode always results in logging its inode item. So if we
3430 	 * did not find the item we know the inode was not logged for sure.
3431 	 */
3432 	if (ret < 0) {
3433 		return ret;
3434 	} else if (ret > 0) {
3435 		/*
3436 		 * Set logged_trans to a value greater than 0 and less then the
3437 		 * current transaction to avoid doing the search in future calls.
3438 		 */
3439 		inode->logged_trans = trans->transid - 1;
3440 		return 0;
3441 	}
3442 
3443 	/*
3444 	 * The inode was previously logged and then evicted, set logged_trans to
3445 	 * the current transacion's ID, to avoid future tree searches as long as
3446 	 * the inode is not evicted again.
3447 	 */
3448 	inode->logged_trans = trans->transid;
3449 
3450 	/*
3451 	 * If it's a directory, then we must set last_dir_index_offset to the
3452 	 * maximum possible value, so that the next attempt to log the inode does
3453 	 * not skip checking if dir index keys found in modified subvolume tree
3454 	 * leaves have been logged before, otherwise it would result in attempts
3455 	 * to insert duplicate dir index keys in the log tree. This must be done
3456 	 * because last_dir_index_offset is an in-memory only field, not persisted
3457 	 * in the inode item or any other on-disk structure, so its value is lost
3458 	 * once the inode is evicted.
3459 	 */
3460 	if (S_ISDIR(inode->vfs_inode.i_mode))
3461 		inode->last_dir_index_offset = (u64)-1;
3462 
3463 	return 1;
3464 }
3465 
3466 /*
3467  * Delete a directory entry from the log if it exists.
3468  *
3469  * Returns < 0 on error
3470  *           1 if the entry does not exists
3471  *           0 if the entry existed and was successfully deleted
3472  */
del_logged_dentry(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * path,u64 dir_ino,const struct fscrypt_str * name,u64 index)3473 static int del_logged_dentry(struct btrfs_trans_handle *trans,
3474 			     struct btrfs_root *log,
3475 			     struct btrfs_path *path,
3476 			     u64 dir_ino,
3477 			     const struct fscrypt_str *name,
3478 			     u64 index)
3479 {
3480 	struct btrfs_dir_item *di;
3481 
3482 	/*
3483 	 * We only log dir index items of a directory, so we don't need to look
3484 	 * for dir item keys.
3485 	 */
3486 	di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3487 					 index, name, -1);
3488 	if (IS_ERR(di))
3489 		return PTR_ERR(di);
3490 	else if (!di)
3491 		return 1;
3492 
3493 	/*
3494 	 * We do not need to update the size field of the directory's
3495 	 * inode item because on log replay we update the field to reflect
3496 	 * all existing entries in the directory (see overwrite_item()).
3497 	 */
3498 	return btrfs_del_item(trans, log, path);
3499 }
3500 
3501 /*
3502  * If both a file and directory are logged, and unlinks or renames are
3503  * mixed in, we have a few interesting corners:
3504  *
3505  * create file X in dir Y
3506  * link file X to X.link in dir Y
3507  * fsync file X
3508  * unlink file X but leave X.link
3509  * fsync dir Y
3510  *
3511  * After a crash we would expect only X.link to exist.  But file X
3512  * didn't get fsync'd again so the log has back refs for X and X.link.
3513  *
3514  * We solve this by removing directory entries and inode backrefs from the
3515  * log when a file that was logged in the current transaction is
3516  * unlinked.  Any later fsync will include the updated log entries, and
3517  * we'll be able to reconstruct the proper directory items from backrefs.
3518  *
3519  * This optimizations allows us to avoid relogging the entire inode
3520  * or the entire directory.
3521  */
btrfs_del_dir_entries_in_log(struct btrfs_trans_handle * trans,struct btrfs_root * root,const struct fscrypt_str * name,struct btrfs_inode * dir,u64 index)3522 void btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3523 				  struct btrfs_root *root,
3524 				  const struct fscrypt_str *name,
3525 				  struct btrfs_inode *dir, u64 index)
3526 {
3527 	struct btrfs_path *path;
3528 	int ret;
3529 
3530 	ret = inode_logged(trans, dir, NULL);
3531 	if (ret == 0)
3532 		return;
3533 	else if (ret < 0) {
3534 		btrfs_set_log_full_commit(trans);
3535 		return;
3536 	}
3537 
3538 	path = btrfs_alloc_path();
3539 	if (!path) {
3540 		btrfs_set_log_full_commit(trans);
3541 		return;
3542 	}
3543 
3544 	ret = join_running_log_trans(root);
3545 	ASSERT(ret == 0, "join_running_log_trans() ret=%d", ret);
3546 	if (WARN_ON(ret))
3547 		goto out;
3548 
3549 	mutex_lock(&dir->log_mutex);
3550 
3551 	ret = del_logged_dentry(trans, root->log_root, path, btrfs_ino(dir),
3552 				name, index);
3553 	mutex_unlock(&dir->log_mutex);
3554 	if (ret < 0)
3555 		btrfs_set_log_full_commit(trans);
3556 	btrfs_end_log_trans(root);
3557 out:
3558 	btrfs_free_path(path);
3559 }
3560 
3561 /* see comments for btrfs_del_dir_entries_in_log */
btrfs_del_inode_ref_in_log(struct btrfs_trans_handle * trans,struct btrfs_root * root,const struct fscrypt_str * name,struct btrfs_inode * inode,u64 dirid)3562 void btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3563 				struct btrfs_root *root,
3564 				const struct fscrypt_str *name,
3565 				struct btrfs_inode *inode, u64 dirid)
3566 {
3567 	struct btrfs_root *log;
3568 	int ret;
3569 
3570 	ret = inode_logged(trans, inode, NULL);
3571 	if (ret == 0)
3572 		return;
3573 	else if (ret < 0) {
3574 		btrfs_set_log_full_commit(trans);
3575 		return;
3576 	}
3577 
3578 	ret = join_running_log_trans(root);
3579 	ASSERT(ret == 0, "join_running_log_trans() ret=%d", ret);
3580 	if (WARN_ON(ret))
3581 		return;
3582 	log = root->log_root;
3583 	mutex_lock(&inode->log_mutex);
3584 
3585 	ret = btrfs_del_inode_ref(trans, log, name, btrfs_ino(inode), dirid, NULL);
3586 	mutex_unlock(&inode->log_mutex);
3587 	if (ret < 0 && ret != -ENOENT)
3588 		btrfs_set_log_full_commit(trans);
3589 	btrfs_end_log_trans(root);
3590 }
3591 
3592 /*
3593  * creates a range item in the log for 'dirid'.  first_offset and
3594  * last_offset tell us which parts of the key space the log should
3595  * be considered authoritative for.
3596  */
insert_dir_log_key(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * path,u64 dirid,u64 first_offset,u64 last_offset)3597 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3598 				       struct btrfs_root *log,
3599 				       struct btrfs_path *path,
3600 				       u64 dirid,
3601 				       u64 first_offset, u64 last_offset)
3602 {
3603 	int ret;
3604 	struct btrfs_key key;
3605 	struct btrfs_dir_log_item *item;
3606 
3607 	key.objectid = dirid;
3608 	key.type = BTRFS_DIR_LOG_INDEX_KEY;
3609 	key.offset = first_offset;
3610 	ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3611 	/*
3612 	 * -EEXIST is fine and can happen sporadically when we are logging a
3613 	 * directory and have concurrent insertions in the subvolume's tree for
3614 	 * items from other inodes and that result in pushing off some dir items
3615 	 * from one leaf to another in order to accommodate for the new items.
3616 	 * This results in logging the same dir index range key.
3617 	 */
3618 	if (ret && ret != -EEXIST)
3619 		return ret;
3620 
3621 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3622 			      struct btrfs_dir_log_item);
3623 	if (ret == -EEXIST) {
3624 		const u64 curr_end = btrfs_dir_log_end(path->nodes[0], item);
3625 
3626 		/*
3627 		 * btrfs_del_dir_entries_in_log() might have been called during
3628 		 * an unlink between the initial insertion of this key and the
3629 		 * current update, or we might be logging a single entry deletion
3630 		 * during a rename, so set the new last_offset to the max value.
3631 		 */
3632 		last_offset = max(last_offset, curr_end);
3633 	}
3634 	btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3635 	btrfs_release_path(path);
3636 	return 0;
3637 }
3638 
flush_dir_items_batch(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct extent_buffer * src,struct btrfs_path * dst_path,int start_slot,int count)3639 static int flush_dir_items_batch(struct btrfs_trans_handle *trans,
3640 				 struct btrfs_inode *inode,
3641 				 struct extent_buffer *src,
3642 				 struct btrfs_path *dst_path,
3643 				 int start_slot,
3644 				 int count)
3645 {
3646 	struct btrfs_root *log = inode->root->log_root;
3647 	char *ins_data = NULL;
3648 	struct btrfs_item_batch batch;
3649 	struct extent_buffer *dst;
3650 	unsigned long src_offset;
3651 	unsigned long dst_offset;
3652 	u64 last_index;
3653 	struct btrfs_key key;
3654 	u32 item_size;
3655 	int ret;
3656 	int i;
3657 
3658 	ASSERT(count > 0);
3659 	batch.nr = count;
3660 
3661 	if (count == 1) {
3662 		btrfs_item_key_to_cpu(src, &key, start_slot);
3663 		item_size = btrfs_item_size(src, start_slot);
3664 		batch.keys = &key;
3665 		batch.data_sizes = &item_size;
3666 		batch.total_data_size = item_size;
3667 	} else {
3668 		struct btrfs_key *ins_keys;
3669 		u32 *ins_sizes;
3670 
3671 		ins_data = kmalloc(count * sizeof(u32) +
3672 				   count * sizeof(struct btrfs_key), GFP_NOFS);
3673 		if (!ins_data)
3674 			return -ENOMEM;
3675 
3676 		ins_sizes = (u32 *)ins_data;
3677 		ins_keys = (struct btrfs_key *)(ins_data + count * sizeof(u32));
3678 		batch.keys = ins_keys;
3679 		batch.data_sizes = ins_sizes;
3680 		batch.total_data_size = 0;
3681 
3682 		for (i = 0; i < count; i++) {
3683 			const int slot = start_slot + i;
3684 
3685 			btrfs_item_key_to_cpu(src, &ins_keys[i], slot);
3686 			ins_sizes[i] = btrfs_item_size(src, slot);
3687 			batch.total_data_size += ins_sizes[i];
3688 		}
3689 	}
3690 
3691 	ret = btrfs_insert_empty_items(trans, log, dst_path, &batch);
3692 	if (ret)
3693 		goto out;
3694 
3695 	dst = dst_path->nodes[0];
3696 	/*
3697 	 * Copy all the items in bulk, in a single copy operation. Item data is
3698 	 * organized such that it's placed at the end of a leaf and from right
3699 	 * to left. For example, the data for the second item ends at an offset
3700 	 * that matches the offset where the data for the first item starts, the
3701 	 * data for the third item ends at an offset that matches the offset
3702 	 * where the data of the second items starts, and so on.
3703 	 * Therefore our source and destination start offsets for copy match the
3704 	 * offsets of the last items (highest slots).
3705 	 */
3706 	dst_offset = btrfs_item_ptr_offset(dst, dst_path->slots[0] + count - 1);
3707 	src_offset = btrfs_item_ptr_offset(src, start_slot + count - 1);
3708 	copy_extent_buffer(dst, src, dst_offset, src_offset, batch.total_data_size);
3709 	btrfs_release_path(dst_path);
3710 
3711 	last_index = batch.keys[count - 1].offset;
3712 	ASSERT(last_index > inode->last_dir_index_offset);
3713 
3714 	/*
3715 	 * If for some unexpected reason the last item's index is not greater
3716 	 * than the last index we logged, warn and force a transaction commit.
3717 	 */
3718 	if (WARN_ON(last_index <= inode->last_dir_index_offset))
3719 		ret = BTRFS_LOG_FORCE_COMMIT;
3720 	else
3721 		inode->last_dir_index_offset = last_index;
3722 
3723 	if (btrfs_get_first_dir_index_to_log(inode) == 0)
3724 		btrfs_set_first_dir_index_to_log(inode, batch.keys[0].offset);
3725 out:
3726 	kfree(ins_data);
3727 
3728 	return ret;
3729 }
3730 
clone_leaf(struct btrfs_path * path,struct btrfs_log_ctx * ctx)3731 static int clone_leaf(struct btrfs_path *path, struct btrfs_log_ctx *ctx)
3732 {
3733 	const int slot = path->slots[0];
3734 
3735 	if (ctx->scratch_eb) {
3736 		copy_extent_buffer_full(ctx->scratch_eb, path->nodes[0]);
3737 	} else {
3738 		ctx->scratch_eb = btrfs_clone_extent_buffer(path->nodes[0]);
3739 		if (!ctx->scratch_eb)
3740 			return -ENOMEM;
3741 	}
3742 
3743 	btrfs_release_path(path);
3744 	path->nodes[0] = ctx->scratch_eb;
3745 	path->slots[0] = slot;
3746 	/*
3747 	 * Add extra ref to scratch eb so that it is not freed when callers
3748 	 * release the path, so we can reuse it later if needed.
3749 	 */
3750 	refcount_inc(&ctx->scratch_eb->refs);
3751 
3752 	return 0;
3753 }
3754 
process_dir_items_leaf(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_path * dst_path,struct btrfs_log_ctx * ctx,u64 * last_old_dentry_offset)3755 static int process_dir_items_leaf(struct btrfs_trans_handle *trans,
3756 				  struct btrfs_inode *inode,
3757 				  struct btrfs_path *path,
3758 				  struct btrfs_path *dst_path,
3759 				  struct btrfs_log_ctx *ctx,
3760 				  u64 *last_old_dentry_offset)
3761 {
3762 	struct btrfs_root *log = inode->root->log_root;
3763 	struct extent_buffer *src;
3764 	const int nritems = btrfs_header_nritems(path->nodes[0]);
3765 	const u64 ino = btrfs_ino(inode);
3766 	bool last_found = false;
3767 	int batch_start = 0;
3768 	int batch_size = 0;
3769 	int ret;
3770 
3771 	/*
3772 	 * We need to clone the leaf, release the read lock on it, and use the
3773 	 * clone before modifying the log tree. See the comment at copy_items()
3774 	 * about why we need to do this.
3775 	 */
3776 	ret = clone_leaf(path, ctx);
3777 	if (ret < 0)
3778 		return ret;
3779 
3780 	src = path->nodes[0];
3781 
3782 	for (int i = path->slots[0]; i < nritems; i++) {
3783 		struct btrfs_dir_item *di;
3784 		struct btrfs_key key;
3785 		int ret;
3786 
3787 		btrfs_item_key_to_cpu(src, &key, i);
3788 
3789 		if (key.objectid != ino || key.type != BTRFS_DIR_INDEX_KEY) {
3790 			last_found = true;
3791 			break;
3792 		}
3793 
3794 		di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3795 
3796 		/*
3797 		 * Skip ranges of items that consist only of dir item keys created
3798 		 * in past transactions. However if we find a gap, we must log a
3799 		 * dir index range item for that gap, so that index keys in that
3800 		 * gap are deleted during log replay.
3801 		 */
3802 		if (btrfs_dir_transid(src, di) < trans->transid) {
3803 			if (key.offset > *last_old_dentry_offset + 1) {
3804 				ret = insert_dir_log_key(trans, log, dst_path,
3805 						 ino, *last_old_dentry_offset + 1,
3806 						 key.offset - 1);
3807 				if (ret < 0)
3808 					return ret;
3809 			}
3810 
3811 			*last_old_dentry_offset = key.offset;
3812 			continue;
3813 		}
3814 
3815 		/* If we logged this dir index item before, we can skip it. */
3816 		if (key.offset <= inode->last_dir_index_offset)
3817 			continue;
3818 
3819 		/*
3820 		 * We must make sure that when we log a directory entry, the
3821 		 * corresponding inode, after log replay, has a matching link
3822 		 * count. For example:
3823 		 *
3824 		 * touch foo
3825 		 * mkdir mydir
3826 		 * sync
3827 		 * ln foo mydir/bar
3828 		 * xfs_io -c "fsync" mydir
3829 		 * <crash>
3830 		 * <mount fs and log replay>
3831 		 *
3832 		 * Would result in a fsync log that when replayed, our file inode
3833 		 * would have a link count of 1, but we get two directory entries
3834 		 * pointing to the same inode. After removing one of the names,
3835 		 * it would not be possible to remove the other name, which
3836 		 * resulted always in stale file handle errors, and would not be
3837 		 * possible to rmdir the parent directory, since its i_size could
3838 		 * never be decremented to the value BTRFS_EMPTY_DIR_SIZE,
3839 		 * resulting in -ENOTEMPTY errors.
3840 		 */
3841 		if (!ctx->log_new_dentries) {
3842 			struct btrfs_key di_key;
3843 
3844 			btrfs_dir_item_key_to_cpu(src, di, &di_key);
3845 			if (di_key.type != BTRFS_ROOT_ITEM_KEY)
3846 				ctx->log_new_dentries = true;
3847 		}
3848 
3849 		if (batch_size == 0)
3850 			batch_start = i;
3851 		batch_size++;
3852 	}
3853 
3854 	if (batch_size > 0) {
3855 		int ret;
3856 
3857 		ret = flush_dir_items_batch(trans, inode, src, dst_path,
3858 					    batch_start, batch_size);
3859 		if (ret < 0)
3860 			return ret;
3861 	}
3862 
3863 	return last_found ? 1 : 0;
3864 }
3865 
3866 /*
3867  * log all the items included in the current transaction for a given
3868  * directory.  This also creates the range items in the log tree required
3869  * to replay anything deleted before the fsync
3870  */
log_dir_items(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_path * dst_path,struct btrfs_log_ctx * ctx,u64 min_offset,u64 * last_offset_ret)3871 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3872 			  struct btrfs_inode *inode,
3873 			  struct btrfs_path *path,
3874 			  struct btrfs_path *dst_path,
3875 			  struct btrfs_log_ctx *ctx,
3876 			  u64 min_offset, u64 *last_offset_ret)
3877 {
3878 	struct btrfs_key min_key;
3879 	struct btrfs_root *root = inode->root;
3880 	struct btrfs_root *log = root->log_root;
3881 	int ret;
3882 	u64 last_old_dentry_offset = min_offset - 1;
3883 	u64 last_offset = (u64)-1;
3884 	u64 ino = btrfs_ino(inode);
3885 
3886 	min_key.objectid = ino;
3887 	min_key.type = BTRFS_DIR_INDEX_KEY;
3888 	min_key.offset = min_offset;
3889 
3890 	ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3891 
3892 	/*
3893 	 * we didn't find anything from this transaction, see if there
3894 	 * is anything at all
3895 	 */
3896 	if (ret != 0 || min_key.objectid != ino ||
3897 	    min_key.type != BTRFS_DIR_INDEX_KEY) {
3898 		min_key.objectid = ino;
3899 		min_key.type = BTRFS_DIR_INDEX_KEY;
3900 		min_key.offset = (u64)-1;
3901 		btrfs_release_path(path);
3902 		ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3903 		if (ret < 0) {
3904 			btrfs_release_path(path);
3905 			return ret;
3906 		}
3907 		ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY);
3908 
3909 		/* if ret == 0 there are items for this type,
3910 		 * create a range to tell us the last key of this type.
3911 		 * otherwise, there are no items in this directory after
3912 		 * *min_offset, and we create a range to indicate that.
3913 		 */
3914 		if (ret == 0) {
3915 			struct btrfs_key tmp;
3916 
3917 			btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3918 					      path->slots[0]);
3919 			if (tmp.type == BTRFS_DIR_INDEX_KEY)
3920 				last_old_dentry_offset = tmp.offset;
3921 		} else if (ret > 0) {
3922 			ret = 0;
3923 		}
3924 
3925 		goto done;
3926 	}
3927 
3928 	/* go backward to find any previous key */
3929 	ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY);
3930 	if (ret == 0) {
3931 		struct btrfs_key tmp;
3932 
3933 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3934 		/*
3935 		 * The dir index key before the first one we found that needs to
3936 		 * be logged might be in a previous leaf, and there might be a
3937 		 * gap between these keys, meaning that we had deletions that
3938 		 * happened. So the key range item we log (key type
3939 		 * BTRFS_DIR_LOG_INDEX_KEY) must cover a range that starts at the
3940 		 * previous key's offset plus 1, so that those deletes are replayed.
3941 		 */
3942 		if (tmp.type == BTRFS_DIR_INDEX_KEY)
3943 			last_old_dentry_offset = tmp.offset;
3944 	} else if (ret < 0) {
3945 		goto done;
3946 	}
3947 
3948 	btrfs_release_path(path);
3949 
3950 	/*
3951 	 * Find the first key from this transaction again or the one we were at
3952 	 * in the loop below in case we had to reschedule. We may be logging the
3953 	 * directory without holding its VFS lock, which happen when logging new
3954 	 * dentries (through log_new_dir_dentries()) or in some cases when we
3955 	 * need to log the parent directory of an inode. This means a dir index
3956 	 * key might be deleted from the inode's root, and therefore we may not
3957 	 * find it anymore. If we can't find it, just move to the next key. We
3958 	 * can not bail out and ignore, because if we do that we will simply
3959 	 * not log dir index keys that come after the one that was just deleted
3960 	 * and we can end up logging a dir index range that ends at (u64)-1
3961 	 * (@last_offset is initialized to that), resulting in removing dir
3962 	 * entries we should not remove at log replay time.
3963 	 */
3964 search:
3965 	ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3966 	if (ret > 0) {
3967 		ret = btrfs_next_item(root, path);
3968 		if (ret > 0) {
3969 			/* There are no more keys in the inode's root. */
3970 			ret = 0;
3971 			goto done;
3972 		}
3973 	}
3974 	if (ret < 0)
3975 		goto done;
3976 
3977 	/*
3978 	 * we have a block from this transaction, log every item in it
3979 	 * from our directory
3980 	 */
3981 	while (1) {
3982 		ret = process_dir_items_leaf(trans, inode, path, dst_path, ctx,
3983 					     &last_old_dentry_offset);
3984 		if (ret != 0) {
3985 			if (ret > 0)
3986 				ret = 0;
3987 			goto done;
3988 		}
3989 		path->slots[0] = btrfs_header_nritems(path->nodes[0]);
3990 
3991 		/*
3992 		 * look ahead to the next item and see if it is also
3993 		 * from this directory and from this transaction
3994 		 */
3995 		ret = btrfs_next_leaf(root, path);
3996 		if (ret) {
3997 			if (ret == 1) {
3998 				last_offset = (u64)-1;
3999 				ret = 0;
4000 			}
4001 			goto done;
4002 		}
4003 		btrfs_item_key_to_cpu(path->nodes[0], &min_key, path->slots[0]);
4004 		if (min_key.objectid != ino || min_key.type != BTRFS_DIR_INDEX_KEY) {
4005 			last_offset = (u64)-1;
4006 			goto done;
4007 		}
4008 		if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
4009 			/*
4010 			 * The next leaf was not changed in the current transaction
4011 			 * and has at least one dir index key.
4012 			 * We check for the next key because there might have been
4013 			 * one or more deletions between the last key we logged and
4014 			 * that next key. So the key range item we log (key type
4015 			 * BTRFS_DIR_LOG_INDEX_KEY) must end at the next key's
4016 			 * offset minus 1, so that those deletes are replayed.
4017 			 */
4018 			last_offset = min_key.offset - 1;
4019 			goto done;
4020 		}
4021 		if (need_resched()) {
4022 			btrfs_release_path(path);
4023 			cond_resched();
4024 			goto search;
4025 		}
4026 	}
4027 done:
4028 	btrfs_release_path(path);
4029 	btrfs_release_path(dst_path);
4030 
4031 	if (ret == 0) {
4032 		*last_offset_ret = last_offset;
4033 		/*
4034 		 * In case the leaf was changed in the current transaction but
4035 		 * all its dir items are from a past transaction, the last item
4036 		 * in the leaf is a dir item and there's no gap between that last
4037 		 * dir item and the first one on the next leaf (which did not
4038 		 * change in the current transaction), then we don't need to log
4039 		 * a range, last_old_dentry_offset is == to last_offset.
4040 		 */
4041 		ASSERT(last_old_dentry_offset <= last_offset);
4042 		if (last_old_dentry_offset < last_offset)
4043 			ret = insert_dir_log_key(trans, log, path, ino,
4044 						 last_old_dentry_offset + 1,
4045 						 last_offset);
4046 	}
4047 
4048 	return ret;
4049 }
4050 
4051 /*
4052  * If the inode was logged before and it was evicted, then its
4053  * last_dir_index_offset is (u64)-1, so we don't the value of the last index
4054  * key offset. If that's the case, search for it and update the inode. This
4055  * is to avoid lookups in the log tree every time we try to insert a dir index
4056  * key from a leaf changed in the current transaction, and to allow us to always
4057  * do batch insertions of dir index keys.
4058  */
update_last_dir_index_offset(struct btrfs_inode * inode,struct btrfs_path * path,const struct btrfs_log_ctx * ctx)4059 static int update_last_dir_index_offset(struct btrfs_inode *inode,
4060 					struct btrfs_path *path,
4061 					const struct btrfs_log_ctx *ctx)
4062 {
4063 	const u64 ino = btrfs_ino(inode);
4064 	struct btrfs_key key;
4065 	int ret;
4066 
4067 	lockdep_assert_held(&inode->log_mutex);
4068 
4069 	if (inode->last_dir_index_offset != (u64)-1)
4070 		return 0;
4071 
4072 	if (!ctx->logged_before) {
4073 		inode->last_dir_index_offset = BTRFS_DIR_START_INDEX - 1;
4074 		return 0;
4075 	}
4076 
4077 	key.objectid = ino;
4078 	key.type = BTRFS_DIR_INDEX_KEY;
4079 	key.offset = (u64)-1;
4080 
4081 	ret = btrfs_search_slot(NULL, inode->root->log_root, &key, path, 0, 0);
4082 	/*
4083 	 * An error happened or we actually have an index key with an offset
4084 	 * value of (u64)-1. Bail out, we're done.
4085 	 */
4086 	if (ret <= 0)
4087 		goto out;
4088 
4089 	ret = 0;
4090 	inode->last_dir_index_offset = BTRFS_DIR_START_INDEX - 1;
4091 
4092 	/*
4093 	 * No dir index items, bail out and leave last_dir_index_offset with
4094 	 * the value right before the first valid index value.
4095 	 */
4096 	if (path->slots[0] == 0)
4097 		goto out;
4098 
4099 	/*
4100 	 * btrfs_search_slot() left us at one slot beyond the slot with the last
4101 	 * index key, or beyond the last key of the directory that is not an
4102 	 * index key. If we have an index key before, set last_dir_index_offset
4103 	 * to its offset value, otherwise leave it with a value right before the
4104 	 * first valid index value, as it means we have an empty directory.
4105 	 */
4106 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
4107 	if (key.objectid == ino && key.type == BTRFS_DIR_INDEX_KEY)
4108 		inode->last_dir_index_offset = key.offset;
4109 
4110 out:
4111 	btrfs_release_path(path);
4112 
4113 	return ret;
4114 }
4115 
4116 /*
4117  * logging directories is very similar to logging inodes, We find all the items
4118  * from the current transaction and write them to the log.
4119  *
4120  * The recovery code scans the directory in the subvolume, and if it finds a
4121  * key in the range logged that is not present in the log tree, then it means
4122  * that dir entry was unlinked during the transaction.
4123  *
4124  * In order for that scan to work, we must include one key smaller than
4125  * the smallest logged by this transaction and one key larger than the largest
4126  * key logged by this transaction.
4127  */
log_directory_changes(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_path * dst_path,struct btrfs_log_ctx * ctx)4128 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
4129 			  struct btrfs_inode *inode,
4130 			  struct btrfs_path *path,
4131 			  struct btrfs_path *dst_path,
4132 			  struct btrfs_log_ctx *ctx)
4133 {
4134 	u64 min_key;
4135 	u64 max_key;
4136 	int ret;
4137 
4138 	ret = update_last_dir_index_offset(inode, path, ctx);
4139 	if (ret)
4140 		return ret;
4141 
4142 	min_key = BTRFS_DIR_START_INDEX;
4143 	max_key = 0;
4144 
4145 	while (1) {
4146 		ret = log_dir_items(trans, inode, path, dst_path,
4147 				ctx, min_key, &max_key);
4148 		if (ret)
4149 			return ret;
4150 		if (max_key == (u64)-1)
4151 			break;
4152 		min_key = max_key + 1;
4153 	}
4154 
4155 	return 0;
4156 }
4157 
4158 /*
4159  * a helper function to drop items from the log before we relog an
4160  * inode.  max_key_type indicates the highest item type to remove.
4161  * This cannot be run for file data extents because it does not
4162  * free the extents they point to.
4163  */
drop_inode_items(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * path,struct btrfs_inode * inode,int max_key_type)4164 static int drop_inode_items(struct btrfs_trans_handle *trans,
4165 				  struct btrfs_root *log,
4166 				  struct btrfs_path *path,
4167 				  struct btrfs_inode *inode,
4168 				  int max_key_type)
4169 {
4170 	int ret;
4171 	struct btrfs_key key;
4172 	struct btrfs_key found_key;
4173 	int start_slot;
4174 
4175 	key.objectid = btrfs_ino(inode);
4176 	key.type = max_key_type;
4177 	key.offset = (u64)-1;
4178 
4179 	while (1) {
4180 		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
4181 		if (ret < 0) {
4182 			break;
4183 		} else if (ret > 0) {
4184 			if (path->slots[0] == 0)
4185 				break;
4186 			path->slots[0]--;
4187 		}
4188 
4189 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
4190 				      path->slots[0]);
4191 
4192 		if (found_key.objectid != key.objectid)
4193 			break;
4194 
4195 		found_key.offset = 0;
4196 		found_key.type = 0;
4197 		ret = btrfs_bin_search(path->nodes[0], 0, &found_key, &start_slot);
4198 		if (ret < 0)
4199 			break;
4200 
4201 		ret = btrfs_del_items(trans, log, path, start_slot,
4202 				      path->slots[0] - start_slot + 1);
4203 		/*
4204 		 * If start slot isn't 0 then we don't need to re-search, we've
4205 		 * found the last guy with the objectid in this tree.
4206 		 */
4207 		if (ret || start_slot != 0)
4208 			break;
4209 		btrfs_release_path(path);
4210 	}
4211 	btrfs_release_path(path);
4212 	if (ret > 0)
4213 		ret = 0;
4214 	return ret;
4215 }
4216 
truncate_inode_items(struct btrfs_trans_handle * trans,struct btrfs_root * log_root,struct btrfs_inode * inode,u64 new_size,u32 min_type)4217 static int truncate_inode_items(struct btrfs_trans_handle *trans,
4218 				struct btrfs_root *log_root,
4219 				struct btrfs_inode *inode,
4220 				u64 new_size, u32 min_type)
4221 {
4222 	struct btrfs_truncate_control control = {
4223 		.new_size = new_size,
4224 		.ino = btrfs_ino(inode),
4225 		.min_type = min_type,
4226 		.skip_ref_updates = true,
4227 	};
4228 
4229 	return btrfs_truncate_inode_items(trans, log_root, &control);
4230 }
4231 
fill_inode_item(struct btrfs_trans_handle * trans,struct extent_buffer * leaf,struct btrfs_inode_item * item,struct inode * inode,int log_inode_only,u64 logged_isize)4232 static void fill_inode_item(struct btrfs_trans_handle *trans,
4233 			    struct extent_buffer *leaf,
4234 			    struct btrfs_inode_item *item,
4235 			    struct inode *inode, int log_inode_only,
4236 			    u64 logged_isize)
4237 {
4238 	u64 flags;
4239 
4240 	if (log_inode_only) {
4241 		/* set the generation to zero so the recover code
4242 		 * can tell the difference between an logging
4243 		 * just to say 'this inode exists' and a logging
4244 		 * to say 'update this inode with these values'
4245 		 */
4246 		btrfs_set_inode_generation(leaf, item, 0);
4247 		btrfs_set_inode_size(leaf, item, logged_isize);
4248 	} else {
4249 		btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
4250 		btrfs_set_inode_size(leaf, item, inode->i_size);
4251 	}
4252 
4253 	btrfs_set_inode_uid(leaf, item, i_uid_read(inode));
4254 	btrfs_set_inode_gid(leaf, item, i_gid_read(inode));
4255 	btrfs_set_inode_mode(leaf, item, inode->i_mode);
4256 	btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
4257 
4258 	btrfs_set_timespec_sec(leaf, &item->atime, inode_get_atime_sec(inode));
4259 	btrfs_set_timespec_nsec(leaf, &item->atime, inode_get_atime_nsec(inode));
4260 
4261 	btrfs_set_timespec_sec(leaf, &item->mtime, inode_get_mtime_sec(inode));
4262 	btrfs_set_timespec_nsec(leaf, &item->mtime, inode_get_mtime_nsec(inode));
4263 
4264 	btrfs_set_timespec_sec(leaf, &item->ctime, inode_get_ctime_sec(inode));
4265 	btrfs_set_timespec_nsec(leaf, &item->ctime, inode_get_ctime_nsec(inode));
4266 
4267 	btrfs_set_timespec_sec(leaf, &item->otime, BTRFS_I(inode)->i_otime_sec);
4268 	btrfs_set_timespec_nsec(leaf, &item->otime, BTRFS_I(inode)->i_otime_nsec);
4269 
4270 	/*
4271 	 * We do not need to set the nbytes field, in fact during a fast fsync
4272 	 * its value may not even be correct, since a fast fsync does not wait
4273 	 * for ordered extent completion, which is where we update nbytes, it
4274 	 * only waits for writeback to complete. During log replay as we find
4275 	 * file extent items and replay them, we adjust the nbytes field of the
4276 	 * inode item in subvolume tree as needed (see overwrite_item()).
4277 	 */
4278 
4279 	btrfs_set_inode_sequence(leaf, item, inode_peek_iversion(inode));
4280 	btrfs_set_inode_transid(leaf, item, trans->transid);
4281 	btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
4282 	flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
4283 					  BTRFS_I(inode)->ro_flags);
4284 	btrfs_set_inode_flags(leaf, item, flags);
4285 	btrfs_set_inode_block_group(leaf, item, 0);
4286 }
4287 
log_inode_item(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * path,struct btrfs_inode * inode,bool inode_item_dropped)4288 static int log_inode_item(struct btrfs_trans_handle *trans,
4289 			  struct btrfs_root *log, struct btrfs_path *path,
4290 			  struct btrfs_inode *inode, bool inode_item_dropped)
4291 {
4292 	struct btrfs_inode_item *inode_item;
4293 	struct btrfs_key key;
4294 	int ret;
4295 
4296 	btrfs_get_inode_key(inode, &key);
4297 	/*
4298 	 * If we are doing a fast fsync and the inode was logged before in the
4299 	 * current transaction, then we know the inode was previously logged and
4300 	 * it exists in the log tree. For performance reasons, in this case use
4301 	 * btrfs_search_slot() directly with ins_len set to 0 so that we never
4302 	 * attempt a write lock on the leaf's parent, which adds unnecessary lock
4303 	 * contention in case there are concurrent fsyncs for other inodes of the
4304 	 * same subvolume. Using btrfs_insert_empty_item() when the inode item
4305 	 * already exists can also result in unnecessarily splitting a leaf.
4306 	 */
4307 	if (!inode_item_dropped && inode->logged_trans == trans->transid) {
4308 		ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
4309 		ASSERT(ret <= 0);
4310 		if (ret > 0)
4311 			ret = -ENOENT;
4312 	} else {
4313 		/*
4314 		 * This means it is the first fsync in the current transaction,
4315 		 * so the inode item is not in the log and we need to insert it.
4316 		 * We can never get -EEXIST because we are only called for a fast
4317 		 * fsync and in case an inode eviction happens after the inode was
4318 		 * logged before in the current transaction, when we load again
4319 		 * the inode, we set BTRFS_INODE_NEEDS_FULL_SYNC on its runtime
4320 		 * flags and set ->logged_trans to 0.
4321 		 */
4322 		ret = btrfs_insert_empty_item(trans, log, path, &key,
4323 					      sizeof(*inode_item));
4324 		ASSERT(ret != -EEXIST);
4325 	}
4326 	if (ret)
4327 		return ret;
4328 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4329 				    struct btrfs_inode_item);
4330 	fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
4331 			0, 0);
4332 	btrfs_release_path(path);
4333 	return 0;
4334 }
4335 
log_csums(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_root * log_root,struct btrfs_ordered_sum * sums)4336 static int log_csums(struct btrfs_trans_handle *trans,
4337 		     struct btrfs_inode *inode,
4338 		     struct btrfs_root *log_root,
4339 		     struct btrfs_ordered_sum *sums)
4340 {
4341 	const u64 lock_end = sums->logical + sums->len - 1;
4342 	struct extent_state *cached_state = NULL;
4343 	int ret;
4344 
4345 	/*
4346 	 * If this inode was not used for reflink operations in the current
4347 	 * transaction with new extents, then do the fast path, no need to
4348 	 * worry about logging checksum items with overlapping ranges.
4349 	 */
4350 	if (inode->last_reflink_trans < trans->transid)
4351 		return btrfs_csum_file_blocks(trans, log_root, sums);
4352 
4353 	/*
4354 	 * Serialize logging for checksums. This is to avoid racing with the
4355 	 * same checksum being logged by another task that is logging another
4356 	 * file which happens to refer to the same extent as well. Such races
4357 	 * can leave checksum items in the log with overlapping ranges.
4358 	 */
4359 	ret = btrfs_lock_extent(&log_root->log_csum_range, sums->logical, lock_end,
4360 				&cached_state);
4361 	if (ret)
4362 		return ret;
4363 	/*
4364 	 * Due to extent cloning, we might have logged a csum item that covers a
4365 	 * subrange of a cloned extent, and later we can end up logging a csum
4366 	 * item for a larger subrange of the same extent or the entire range.
4367 	 * This would leave csum items in the log tree that cover the same range
4368 	 * and break the searches for checksums in the log tree, resulting in
4369 	 * some checksums missing in the fs/subvolume tree. So just delete (or
4370 	 * trim and adjust) any existing csum items in the log for this range.
4371 	 */
4372 	ret = btrfs_del_csums(trans, log_root, sums->logical, sums->len);
4373 	if (!ret)
4374 		ret = btrfs_csum_file_blocks(trans, log_root, sums);
4375 
4376 	btrfs_unlock_extent(&log_root->log_csum_range, sums->logical, lock_end,
4377 			    &cached_state);
4378 
4379 	return ret;
4380 }
4381 
copy_items(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * dst_path,struct btrfs_path * src_path,int start_slot,int nr,int inode_only,u64 logged_isize,struct btrfs_log_ctx * ctx)4382 static noinline int copy_items(struct btrfs_trans_handle *trans,
4383 			       struct btrfs_inode *inode,
4384 			       struct btrfs_path *dst_path,
4385 			       struct btrfs_path *src_path,
4386 			       int start_slot, int nr, int inode_only,
4387 			       u64 logged_isize, struct btrfs_log_ctx *ctx)
4388 {
4389 	struct btrfs_root *log = inode->root->log_root;
4390 	struct btrfs_file_extent_item *extent;
4391 	struct extent_buffer *src;
4392 	int ret;
4393 	struct btrfs_key *ins_keys;
4394 	u32 *ins_sizes;
4395 	struct btrfs_item_batch batch;
4396 	char *ins_data;
4397 	int dst_index;
4398 	const bool skip_csum = (inode->flags & BTRFS_INODE_NODATASUM);
4399 	const u64 i_size = i_size_read(&inode->vfs_inode);
4400 
4401 	/*
4402 	 * To keep lockdep happy and avoid deadlocks, clone the source leaf and
4403 	 * use the clone. This is because otherwise we would be changing the log
4404 	 * tree, to insert items from the subvolume tree or insert csum items,
4405 	 * while holding a read lock on a leaf from the subvolume tree, which
4406 	 * creates a nasty lock dependency when COWing log tree nodes/leaves:
4407 	 *
4408 	 * 1) Modifying the log tree triggers an extent buffer allocation while
4409 	 *    holding a write lock on a parent extent buffer from the log tree.
4410 	 *    Allocating the pages for an extent buffer, or the extent buffer
4411 	 *    struct, can trigger inode eviction and finally the inode eviction
4412 	 *    will trigger a release/remove of a delayed node, which requires
4413 	 *    taking the delayed node's mutex;
4414 	 *
4415 	 * 2) Allocating a metadata extent for a log tree can trigger the async
4416 	 *    reclaim thread and make us wait for it to release enough space and
4417 	 *    unblock our reservation ticket. The reclaim thread can start
4418 	 *    flushing delayed items, and that in turn results in the need to
4419 	 *    lock delayed node mutexes and in the need to write lock extent
4420 	 *    buffers of a subvolume tree - all this while holding a write lock
4421 	 *    on the parent extent buffer in the log tree.
4422 	 *
4423 	 * So one task in scenario 1) running in parallel with another task in
4424 	 * scenario 2) could lead to a deadlock, one wanting to lock a delayed
4425 	 * node mutex while having a read lock on a leaf from the subvolume,
4426 	 * while the other is holding the delayed node's mutex and wants to
4427 	 * write lock the same subvolume leaf for flushing delayed items.
4428 	 */
4429 	ret = clone_leaf(src_path, ctx);
4430 	if (ret < 0)
4431 		return ret;
4432 
4433 	src = src_path->nodes[0];
4434 
4435 	ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
4436 			   nr * sizeof(u32), GFP_NOFS);
4437 	if (!ins_data)
4438 		return -ENOMEM;
4439 
4440 	ins_sizes = (u32 *)ins_data;
4441 	ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
4442 	batch.keys = ins_keys;
4443 	batch.data_sizes = ins_sizes;
4444 	batch.total_data_size = 0;
4445 	batch.nr = 0;
4446 
4447 	dst_index = 0;
4448 	for (int i = 0; i < nr; i++) {
4449 		const int src_slot = start_slot + i;
4450 		struct btrfs_root *csum_root;
4451 		struct btrfs_ordered_sum *sums;
4452 		struct btrfs_ordered_sum *sums_next;
4453 		LIST_HEAD(ordered_sums);
4454 		u64 disk_bytenr;
4455 		u64 disk_num_bytes;
4456 		u64 extent_offset;
4457 		u64 extent_num_bytes;
4458 		bool is_old_extent;
4459 
4460 		btrfs_item_key_to_cpu(src, &ins_keys[dst_index], src_slot);
4461 
4462 		if (ins_keys[dst_index].type != BTRFS_EXTENT_DATA_KEY)
4463 			goto add_to_batch;
4464 
4465 		extent = btrfs_item_ptr(src, src_slot,
4466 					struct btrfs_file_extent_item);
4467 
4468 		is_old_extent = (btrfs_file_extent_generation(src, extent) <
4469 				 trans->transid);
4470 
4471 		/*
4472 		 * Don't copy extents from past generations. That would make us
4473 		 * log a lot more metadata for common cases like doing only a
4474 		 * few random writes into a file and then fsync it for the first
4475 		 * time or after the full sync flag is set on the inode. We can
4476 		 * get leaves full of extent items, most of which are from past
4477 		 * generations, so we can skip them - as long as the inode has
4478 		 * not been the target of a reflink operation in this transaction,
4479 		 * as in that case it might have had file extent items with old
4480 		 * generations copied into it. We also must always log prealloc
4481 		 * extents that start at or beyond eof, otherwise we would lose
4482 		 * them on log replay.
4483 		 */
4484 		if (is_old_extent &&
4485 		    ins_keys[dst_index].offset < i_size &&
4486 		    inode->last_reflink_trans < trans->transid)
4487 			continue;
4488 
4489 		if (skip_csum)
4490 			goto add_to_batch;
4491 
4492 		/* Only regular extents have checksums. */
4493 		if (btrfs_file_extent_type(src, extent) != BTRFS_FILE_EXTENT_REG)
4494 			goto add_to_batch;
4495 
4496 		/*
4497 		 * If it's an extent created in a past transaction, then its
4498 		 * checksums are already accessible from the committed csum tree,
4499 		 * no need to log them.
4500 		 */
4501 		if (is_old_extent)
4502 			goto add_to_batch;
4503 
4504 		disk_bytenr = btrfs_file_extent_disk_bytenr(src, extent);
4505 		/* If it's an explicit hole, there are no checksums. */
4506 		if (disk_bytenr == 0)
4507 			goto add_to_batch;
4508 
4509 		disk_num_bytes = btrfs_file_extent_disk_num_bytes(src, extent);
4510 
4511 		if (btrfs_file_extent_compression(src, extent)) {
4512 			extent_offset = 0;
4513 			extent_num_bytes = disk_num_bytes;
4514 		} else {
4515 			extent_offset = btrfs_file_extent_offset(src, extent);
4516 			extent_num_bytes = btrfs_file_extent_num_bytes(src, extent);
4517 		}
4518 
4519 		csum_root = btrfs_csum_root(trans->fs_info, disk_bytenr);
4520 		disk_bytenr += extent_offset;
4521 		ret = btrfs_lookup_csums_list(csum_root, disk_bytenr,
4522 					      disk_bytenr + extent_num_bytes - 1,
4523 					      &ordered_sums, false);
4524 		if (ret < 0)
4525 			goto out;
4526 		ret = 0;
4527 
4528 		list_for_each_entry_safe(sums, sums_next, &ordered_sums, list) {
4529 			if (!ret)
4530 				ret = log_csums(trans, inode, log, sums);
4531 			list_del(&sums->list);
4532 			kfree(sums);
4533 		}
4534 		if (ret)
4535 			goto out;
4536 
4537 add_to_batch:
4538 		ins_sizes[dst_index] = btrfs_item_size(src, src_slot);
4539 		batch.total_data_size += ins_sizes[dst_index];
4540 		batch.nr++;
4541 		dst_index++;
4542 	}
4543 
4544 	/*
4545 	 * We have a leaf full of old extent items that don't need to be logged,
4546 	 * so we don't need to do anything.
4547 	 */
4548 	if (batch.nr == 0)
4549 		goto out;
4550 
4551 	ret = btrfs_insert_empty_items(trans, log, dst_path, &batch);
4552 	if (ret)
4553 		goto out;
4554 
4555 	dst_index = 0;
4556 	for (int i = 0; i < nr; i++) {
4557 		const int src_slot = start_slot + i;
4558 		const int dst_slot = dst_path->slots[0] + dst_index;
4559 		struct btrfs_key key;
4560 		unsigned long src_offset;
4561 		unsigned long dst_offset;
4562 
4563 		/*
4564 		 * We're done, all the remaining items in the source leaf
4565 		 * correspond to old file extent items.
4566 		 */
4567 		if (dst_index >= batch.nr)
4568 			break;
4569 
4570 		btrfs_item_key_to_cpu(src, &key, src_slot);
4571 
4572 		if (key.type != BTRFS_EXTENT_DATA_KEY)
4573 			goto copy_item;
4574 
4575 		extent = btrfs_item_ptr(src, src_slot,
4576 					struct btrfs_file_extent_item);
4577 
4578 		/* See the comment in the previous loop, same logic. */
4579 		if (btrfs_file_extent_generation(src, extent) < trans->transid &&
4580 		    key.offset < i_size &&
4581 		    inode->last_reflink_trans < trans->transid)
4582 			continue;
4583 
4584 copy_item:
4585 		dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0], dst_slot);
4586 		src_offset = btrfs_item_ptr_offset(src, src_slot);
4587 
4588 		if (key.type == BTRFS_INODE_ITEM_KEY) {
4589 			struct btrfs_inode_item *inode_item;
4590 
4591 			inode_item = btrfs_item_ptr(dst_path->nodes[0], dst_slot,
4592 						    struct btrfs_inode_item);
4593 			fill_inode_item(trans, dst_path->nodes[0], inode_item,
4594 					&inode->vfs_inode,
4595 					inode_only == LOG_INODE_EXISTS,
4596 					logged_isize);
4597 		} else {
4598 			copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
4599 					   src_offset, ins_sizes[dst_index]);
4600 		}
4601 
4602 		dst_index++;
4603 	}
4604 
4605 	btrfs_release_path(dst_path);
4606 out:
4607 	kfree(ins_data);
4608 
4609 	return ret;
4610 }
4611 
extent_cmp(void * priv,const struct list_head * a,const struct list_head * b)4612 static int extent_cmp(void *priv, const struct list_head *a,
4613 		      const struct list_head *b)
4614 {
4615 	const struct extent_map *em1, *em2;
4616 
4617 	em1 = list_entry(a, struct extent_map, list);
4618 	em2 = list_entry(b, struct extent_map, list);
4619 
4620 	if (em1->start < em2->start)
4621 		return -1;
4622 	else if (em1->start > em2->start)
4623 		return 1;
4624 	return 0;
4625 }
4626 
log_extent_csums(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_root * log_root,const struct extent_map * em,struct btrfs_log_ctx * ctx)4627 static int log_extent_csums(struct btrfs_trans_handle *trans,
4628 			    struct btrfs_inode *inode,
4629 			    struct btrfs_root *log_root,
4630 			    const struct extent_map *em,
4631 			    struct btrfs_log_ctx *ctx)
4632 {
4633 	struct btrfs_ordered_extent *ordered;
4634 	struct btrfs_root *csum_root;
4635 	u64 block_start;
4636 	u64 csum_offset;
4637 	u64 csum_len;
4638 	u64 mod_start = em->start;
4639 	u64 mod_len = em->len;
4640 	LIST_HEAD(ordered_sums);
4641 	int ret = 0;
4642 
4643 	if (inode->flags & BTRFS_INODE_NODATASUM ||
4644 	    (em->flags & EXTENT_FLAG_PREALLOC) ||
4645 	    em->disk_bytenr == EXTENT_MAP_HOLE)
4646 		return 0;
4647 
4648 	list_for_each_entry(ordered, &ctx->ordered_extents, log_list) {
4649 		const u64 ordered_end = ordered->file_offset + ordered->num_bytes;
4650 		const u64 mod_end = mod_start + mod_len;
4651 		struct btrfs_ordered_sum *sums;
4652 
4653 		if (mod_len == 0)
4654 			break;
4655 
4656 		if (ordered_end <= mod_start)
4657 			continue;
4658 		if (mod_end <= ordered->file_offset)
4659 			break;
4660 
4661 		/*
4662 		 * We are going to copy all the csums on this ordered extent, so
4663 		 * go ahead and adjust mod_start and mod_len in case this ordered
4664 		 * extent has already been logged.
4665 		 */
4666 		if (ordered->file_offset > mod_start) {
4667 			if (ordered_end >= mod_end)
4668 				mod_len = ordered->file_offset - mod_start;
4669 			/*
4670 			 * If we have this case
4671 			 *
4672 			 * |--------- logged extent ---------|
4673 			 *       |----- ordered extent ----|
4674 			 *
4675 			 * Just don't mess with mod_start and mod_len, we'll
4676 			 * just end up logging more csums than we need and it
4677 			 * will be ok.
4678 			 */
4679 		} else {
4680 			if (ordered_end < mod_end) {
4681 				mod_len = mod_end - ordered_end;
4682 				mod_start = ordered_end;
4683 			} else {
4684 				mod_len = 0;
4685 			}
4686 		}
4687 
4688 		/*
4689 		 * To keep us from looping for the above case of an ordered
4690 		 * extent that falls inside of the logged extent.
4691 		 */
4692 		if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM, &ordered->flags))
4693 			continue;
4694 
4695 		list_for_each_entry(sums, &ordered->list, list) {
4696 			ret = log_csums(trans, inode, log_root, sums);
4697 			if (ret)
4698 				return ret;
4699 		}
4700 	}
4701 
4702 	/* We're done, found all csums in the ordered extents. */
4703 	if (mod_len == 0)
4704 		return 0;
4705 
4706 	/* If we're compressed we have to save the entire range of csums. */
4707 	if (btrfs_extent_map_is_compressed(em)) {
4708 		csum_offset = 0;
4709 		csum_len = em->disk_num_bytes;
4710 	} else {
4711 		csum_offset = mod_start - em->start;
4712 		csum_len = mod_len;
4713 	}
4714 
4715 	/* block start is already adjusted for the file extent offset. */
4716 	block_start = btrfs_extent_map_block_start(em);
4717 	csum_root = btrfs_csum_root(trans->fs_info, block_start);
4718 	ret = btrfs_lookup_csums_list(csum_root, block_start + csum_offset,
4719 				      block_start + csum_offset + csum_len - 1,
4720 				      &ordered_sums, false);
4721 	if (ret < 0)
4722 		return ret;
4723 	ret = 0;
4724 
4725 	while (!list_empty(&ordered_sums)) {
4726 		struct btrfs_ordered_sum *sums = list_first_entry(&ordered_sums,
4727 								  struct btrfs_ordered_sum,
4728 								  list);
4729 		if (!ret)
4730 			ret = log_csums(trans, inode, log_root, sums);
4731 		list_del(&sums->list);
4732 		kfree(sums);
4733 	}
4734 
4735 	return ret;
4736 }
4737 
log_one_extent(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,const struct extent_map * em,struct btrfs_path * path,struct btrfs_log_ctx * ctx)4738 static int log_one_extent(struct btrfs_trans_handle *trans,
4739 			  struct btrfs_inode *inode,
4740 			  const struct extent_map *em,
4741 			  struct btrfs_path *path,
4742 			  struct btrfs_log_ctx *ctx)
4743 {
4744 	struct btrfs_drop_extents_args drop_args = { 0 };
4745 	struct btrfs_root *log = inode->root->log_root;
4746 	struct btrfs_file_extent_item fi = { 0 };
4747 	struct extent_buffer *leaf;
4748 	struct btrfs_key key;
4749 	enum btrfs_compression_type compress_type;
4750 	u64 extent_offset = em->offset;
4751 	u64 block_start = btrfs_extent_map_block_start(em);
4752 	u64 block_len;
4753 	int ret;
4754 
4755 	btrfs_set_stack_file_extent_generation(&fi, trans->transid);
4756 	if (em->flags & EXTENT_FLAG_PREALLOC)
4757 		btrfs_set_stack_file_extent_type(&fi, BTRFS_FILE_EXTENT_PREALLOC);
4758 	else
4759 		btrfs_set_stack_file_extent_type(&fi, BTRFS_FILE_EXTENT_REG);
4760 
4761 	block_len = em->disk_num_bytes;
4762 	compress_type = btrfs_extent_map_compression(em);
4763 	if (compress_type != BTRFS_COMPRESS_NONE) {
4764 		btrfs_set_stack_file_extent_disk_bytenr(&fi, block_start);
4765 		btrfs_set_stack_file_extent_disk_num_bytes(&fi, block_len);
4766 	} else if (em->disk_bytenr < EXTENT_MAP_LAST_BYTE) {
4767 		btrfs_set_stack_file_extent_disk_bytenr(&fi, block_start - extent_offset);
4768 		btrfs_set_stack_file_extent_disk_num_bytes(&fi, block_len);
4769 	}
4770 
4771 	btrfs_set_stack_file_extent_offset(&fi, extent_offset);
4772 	btrfs_set_stack_file_extent_num_bytes(&fi, em->len);
4773 	btrfs_set_stack_file_extent_ram_bytes(&fi, em->ram_bytes);
4774 	btrfs_set_stack_file_extent_compression(&fi, compress_type);
4775 
4776 	ret = log_extent_csums(trans, inode, log, em, ctx);
4777 	if (ret)
4778 		return ret;
4779 
4780 	/*
4781 	 * If this is the first time we are logging the inode in the current
4782 	 * transaction, we can avoid btrfs_drop_extents(), which is expensive
4783 	 * because it does a deletion search, which always acquires write locks
4784 	 * for extent buffers at levels 2, 1 and 0. This not only wastes time
4785 	 * but also adds significant contention in a log tree, since log trees
4786 	 * are small, with a root at level 2 or 3 at most, due to their short
4787 	 * life span.
4788 	 */
4789 	if (ctx->logged_before) {
4790 		drop_args.path = path;
4791 		drop_args.start = em->start;
4792 		drop_args.end = em->start + em->len;
4793 		drop_args.replace_extent = true;
4794 		drop_args.extent_item_size = sizeof(fi);
4795 		ret = btrfs_drop_extents(trans, log, inode, &drop_args);
4796 		if (ret)
4797 			return ret;
4798 	}
4799 
4800 	if (!drop_args.extent_inserted) {
4801 		key.objectid = btrfs_ino(inode);
4802 		key.type = BTRFS_EXTENT_DATA_KEY;
4803 		key.offset = em->start;
4804 
4805 		ret = btrfs_insert_empty_item(trans, log, path, &key,
4806 					      sizeof(fi));
4807 		if (ret)
4808 			return ret;
4809 	}
4810 	leaf = path->nodes[0];
4811 	write_extent_buffer(leaf, &fi,
4812 			    btrfs_item_ptr_offset(leaf, path->slots[0]),
4813 			    sizeof(fi));
4814 
4815 	btrfs_release_path(path);
4816 
4817 	return ret;
4818 }
4819 
4820 /*
4821  * Log all prealloc extents beyond the inode's i_size to make sure we do not
4822  * lose them after doing a full/fast fsync and replaying the log. We scan the
4823  * subvolume's root instead of iterating the inode's extent map tree because
4824  * otherwise we can log incorrect extent items based on extent map conversion.
4825  * That can happen due to the fact that extent maps are merged when they
4826  * are not in the extent map tree's list of modified extents.
4827  */
btrfs_log_prealloc_extents(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_log_ctx * ctx)4828 static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans,
4829 				      struct btrfs_inode *inode,
4830 				      struct btrfs_path *path,
4831 				      struct btrfs_log_ctx *ctx)
4832 {
4833 	struct btrfs_root *root = inode->root;
4834 	struct btrfs_key key;
4835 	const u64 i_size = i_size_read(&inode->vfs_inode);
4836 	const u64 ino = btrfs_ino(inode);
4837 	struct btrfs_path *dst_path = NULL;
4838 	bool dropped_extents = false;
4839 	u64 truncate_offset = i_size;
4840 	struct extent_buffer *leaf;
4841 	int slot;
4842 	int ins_nr = 0;
4843 	int start_slot = 0;
4844 	int ret;
4845 
4846 	if (!(inode->flags & BTRFS_INODE_PREALLOC))
4847 		return 0;
4848 
4849 	key.objectid = ino;
4850 	key.type = BTRFS_EXTENT_DATA_KEY;
4851 	key.offset = i_size;
4852 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4853 	if (ret < 0)
4854 		goto out;
4855 
4856 	/*
4857 	 * We must check if there is a prealloc extent that starts before the
4858 	 * i_size and crosses the i_size boundary. This is to ensure later we
4859 	 * truncate down to the end of that extent and not to the i_size, as
4860 	 * otherwise we end up losing part of the prealloc extent after a log
4861 	 * replay and with an implicit hole if there is another prealloc extent
4862 	 * that starts at an offset beyond i_size.
4863 	 */
4864 	ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
4865 	if (ret < 0)
4866 		goto out;
4867 
4868 	if (ret == 0) {
4869 		struct btrfs_file_extent_item *ei;
4870 
4871 		leaf = path->nodes[0];
4872 		slot = path->slots[0];
4873 		ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4874 
4875 		if (btrfs_file_extent_type(leaf, ei) ==
4876 		    BTRFS_FILE_EXTENT_PREALLOC) {
4877 			u64 extent_end;
4878 
4879 			btrfs_item_key_to_cpu(leaf, &key, slot);
4880 			extent_end = key.offset +
4881 				btrfs_file_extent_num_bytes(leaf, ei);
4882 
4883 			if (extent_end > i_size)
4884 				truncate_offset = extent_end;
4885 		}
4886 	} else {
4887 		ret = 0;
4888 	}
4889 
4890 	while (true) {
4891 		leaf = path->nodes[0];
4892 		slot = path->slots[0];
4893 
4894 		if (slot >= btrfs_header_nritems(leaf)) {
4895 			if (ins_nr > 0) {
4896 				ret = copy_items(trans, inode, dst_path, path,
4897 						 start_slot, ins_nr, 1, 0, ctx);
4898 				if (ret < 0)
4899 					goto out;
4900 				ins_nr = 0;
4901 			}
4902 			ret = btrfs_next_leaf(root, path);
4903 			if (ret < 0)
4904 				goto out;
4905 			if (ret > 0) {
4906 				ret = 0;
4907 				break;
4908 			}
4909 			continue;
4910 		}
4911 
4912 		btrfs_item_key_to_cpu(leaf, &key, slot);
4913 		if (key.objectid > ino)
4914 			break;
4915 		if (WARN_ON_ONCE(key.objectid < ino) ||
4916 		    key.type < BTRFS_EXTENT_DATA_KEY ||
4917 		    key.offset < i_size) {
4918 			path->slots[0]++;
4919 			continue;
4920 		}
4921 		/*
4922 		 * Avoid overlapping items in the log tree. The first time we
4923 		 * get here, get rid of everything from a past fsync. After
4924 		 * that, if the current extent starts before the end of the last
4925 		 * extent we copied, truncate the last one. This can happen if
4926 		 * an ordered extent completion modifies the subvolume tree
4927 		 * while btrfs_next_leaf() has the tree unlocked.
4928 		 */
4929 		if (!dropped_extents || key.offset < truncate_offset) {
4930 			ret = truncate_inode_items(trans, root->log_root, inode,
4931 						   min(key.offset, truncate_offset),
4932 						   BTRFS_EXTENT_DATA_KEY);
4933 			if (ret)
4934 				goto out;
4935 			dropped_extents = true;
4936 		}
4937 		truncate_offset = btrfs_file_extent_end(path);
4938 		if (ins_nr == 0)
4939 			start_slot = slot;
4940 		ins_nr++;
4941 		path->slots[0]++;
4942 		if (!dst_path) {
4943 			dst_path = btrfs_alloc_path();
4944 			if (!dst_path) {
4945 				ret = -ENOMEM;
4946 				goto out;
4947 			}
4948 		}
4949 	}
4950 	if (ins_nr > 0)
4951 		ret = copy_items(trans, inode, dst_path, path,
4952 				 start_slot, ins_nr, 1, 0, ctx);
4953 out:
4954 	btrfs_release_path(path);
4955 	btrfs_free_path(dst_path);
4956 	return ret;
4957 }
4958 
btrfs_log_changed_extents(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_log_ctx * ctx)4959 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4960 				     struct btrfs_inode *inode,
4961 				     struct btrfs_path *path,
4962 				     struct btrfs_log_ctx *ctx)
4963 {
4964 	struct btrfs_ordered_extent *ordered;
4965 	struct btrfs_ordered_extent *tmp;
4966 	struct extent_map *em, *n;
4967 	LIST_HEAD(extents);
4968 	struct extent_map_tree *tree = &inode->extent_tree;
4969 	int ret = 0;
4970 	int num = 0;
4971 
4972 	write_lock(&tree->lock);
4973 
4974 	list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4975 		list_del_init(&em->list);
4976 		/*
4977 		 * Just an arbitrary number, this can be really CPU intensive
4978 		 * once we start getting a lot of extents, and really once we
4979 		 * have a bunch of extents we just want to commit since it will
4980 		 * be faster.
4981 		 */
4982 		if (++num > 32768) {
4983 			list_del_init(&tree->modified_extents);
4984 			ret = -EFBIG;
4985 			goto process;
4986 		}
4987 
4988 		if (em->generation < trans->transid)
4989 			continue;
4990 
4991 		/* We log prealloc extents beyond eof later. */
4992 		if ((em->flags & EXTENT_FLAG_PREALLOC) &&
4993 		    em->start >= i_size_read(&inode->vfs_inode))
4994 			continue;
4995 
4996 		/* Need a ref to keep it from getting evicted from cache */
4997 		refcount_inc(&em->refs);
4998 		em->flags |= EXTENT_FLAG_LOGGING;
4999 		list_add_tail(&em->list, &extents);
5000 		num++;
5001 	}
5002 
5003 	list_sort(NULL, &extents, extent_cmp);
5004 process:
5005 	while (!list_empty(&extents)) {
5006 		em = list_first_entry(&extents, struct extent_map, list);
5007 
5008 		list_del_init(&em->list);
5009 
5010 		/*
5011 		 * If we had an error we just need to delete everybody from our
5012 		 * private list.
5013 		 */
5014 		if (ret) {
5015 			btrfs_clear_em_logging(inode, em);
5016 			btrfs_free_extent_map(em);
5017 			continue;
5018 		}
5019 
5020 		write_unlock(&tree->lock);
5021 
5022 		ret = log_one_extent(trans, inode, em, path, ctx);
5023 		write_lock(&tree->lock);
5024 		btrfs_clear_em_logging(inode, em);
5025 		btrfs_free_extent_map(em);
5026 	}
5027 	WARN_ON(!list_empty(&extents));
5028 	write_unlock(&tree->lock);
5029 
5030 	if (!ret)
5031 		ret = btrfs_log_prealloc_extents(trans, inode, path, ctx);
5032 	if (ret)
5033 		return ret;
5034 
5035 	/*
5036 	 * We have logged all extents successfully, now make sure the commit of
5037 	 * the current transaction waits for the ordered extents to complete
5038 	 * before it commits and wipes out the log trees, otherwise we would
5039 	 * lose data if an ordered extents completes after the transaction
5040 	 * commits and a power failure happens after the transaction commit.
5041 	 */
5042 	list_for_each_entry_safe(ordered, tmp, &ctx->ordered_extents, log_list) {
5043 		list_del_init(&ordered->log_list);
5044 		set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags);
5045 
5046 		if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
5047 			spin_lock_irq(&inode->ordered_tree_lock);
5048 			if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
5049 				set_bit(BTRFS_ORDERED_PENDING, &ordered->flags);
5050 				atomic_inc(&trans->transaction->pending_ordered);
5051 			}
5052 			spin_unlock_irq(&inode->ordered_tree_lock);
5053 		}
5054 		btrfs_put_ordered_extent(ordered);
5055 	}
5056 
5057 	return 0;
5058 }
5059 
logged_inode_size(struct btrfs_root * log,struct btrfs_inode * inode,struct btrfs_path * path,u64 * size_ret)5060 static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
5061 			     struct btrfs_path *path, u64 *size_ret)
5062 {
5063 	struct btrfs_key key;
5064 	int ret;
5065 
5066 	key.objectid = btrfs_ino(inode);
5067 	key.type = BTRFS_INODE_ITEM_KEY;
5068 	key.offset = 0;
5069 
5070 	ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
5071 	if (ret < 0) {
5072 		return ret;
5073 	} else if (ret > 0) {
5074 		*size_ret = 0;
5075 	} else {
5076 		struct btrfs_inode_item *item;
5077 
5078 		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5079 				      struct btrfs_inode_item);
5080 		*size_ret = btrfs_inode_size(path->nodes[0], item);
5081 		/*
5082 		 * If the in-memory inode's i_size is smaller then the inode
5083 		 * size stored in the btree, return the inode's i_size, so
5084 		 * that we get a correct inode size after replaying the log
5085 		 * when before a power failure we had a shrinking truncate
5086 		 * followed by addition of a new name (rename / new hard link).
5087 		 * Otherwise return the inode size from the btree, to avoid
5088 		 * data loss when replaying a log due to previously doing a
5089 		 * write that expands the inode's size and logging a new name
5090 		 * immediately after.
5091 		 */
5092 		if (*size_ret > inode->vfs_inode.i_size)
5093 			*size_ret = inode->vfs_inode.i_size;
5094 	}
5095 
5096 	btrfs_release_path(path);
5097 	return 0;
5098 }
5099 
5100 /*
5101  * At the moment we always log all xattrs. This is to figure out at log replay
5102  * time which xattrs must have their deletion replayed. If a xattr is missing
5103  * in the log tree and exists in the fs/subvol tree, we delete it. This is
5104  * because if a xattr is deleted, the inode is fsynced and a power failure
5105  * happens, causing the log to be replayed the next time the fs is mounted,
5106  * we want the xattr to not exist anymore (same behaviour as other filesystems
5107  * with a journal, ext3/4, xfs, f2fs, etc).
5108  */
btrfs_log_all_xattrs(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_path * dst_path,struct btrfs_log_ctx * ctx)5109 static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
5110 				struct btrfs_inode *inode,
5111 				struct btrfs_path *path,
5112 				struct btrfs_path *dst_path,
5113 				struct btrfs_log_ctx *ctx)
5114 {
5115 	struct btrfs_root *root = inode->root;
5116 	int ret;
5117 	struct btrfs_key key;
5118 	const u64 ino = btrfs_ino(inode);
5119 	int ins_nr = 0;
5120 	int start_slot = 0;
5121 	bool found_xattrs = false;
5122 
5123 	if (test_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags))
5124 		return 0;
5125 
5126 	key.objectid = ino;
5127 	key.type = BTRFS_XATTR_ITEM_KEY;
5128 	key.offset = 0;
5129 
5130 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5131 	if (ret < 0)
5132 		return ret;
5133 
5134 	while (true) {
5135 		int slot = path->slots[0];
5136 		struct extent_buffer *leaf = path->nodes[0];
5137 		int nritems = btrfs_header_nritems(leaf);
5138 
5139 		if (slot >= nritems) {
5140 			if (ins_nr > 0) {
5141 				ret = copy_items(trans, inode, dst_path, path,
5142 						 start_slot, ins_nr, 1, 0, ctx);
5143 				if (ret < 0)
5144 					return ret;
5145 				ins_nr = 0;
5146 			}
5147 			ret = btrfs_next_leaf(root, path);
5148 			if (ret < 0)
5149 				return ret;
5150 			else if (ret > 0)
5151 				break;
5152 			continue;
5153 		}
5154 
5155 		btrfs_item_key_to_cpu(leaf, &key, slot);
5156 		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
5157 			break;
5158 
5159 		if (ins_nr == 0)
5160 			start_slot = slot;
5161 		ins_nr++;
5162 		path->slots[0]++;
5163 		found_xattrs = true;
5164 		cond_resched();
5165 	}
5166 	if (ins_nr > 0) {
5167 		ret = copy_items(trans, inode, dst_path, path,
5168 				 start_slot, ins_nr, 1, 0, ctx);
5169 		if (ret < 0)
5170 			return ret;
5171 	}
5172 
5173 	if (!found_xattrs)
5174 		set_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags);
5175 
5176 	return 0;
5177 }
5178 
5179 /*
5180  * When using the NO_HOLES feature if we punched a hole that causes the
5181  * deletion of entire leafs or all the extent items of the first leaf (the one
5182  * that contains the inode item and references) we may end up not processing
5183  * any extents, because there are no leafs with a generation matching the
5184  * current transaction that have extent items for our inode. So we need to find
5185  * if any holes exist and then log them. We also need to log holes after any
5186  * truncate operation that changes the inode's size.
5187  */
btrfs_log_holes(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path)5188 static int btrfs_log_holes(struct btrfs_trans_handle *trans,
5189 			   struct btrfs_inode *inode,
5190 			   struct btrfs_path *path)
5191 {
5192 	struct btrfs_root *root = inode->root;
5193 	struct btrfs_fs_info *fs_info = root->fs_info;
5194 	struct btrfs_key key;
5195 	const u64 ino = btrfs_ino(inode);
5196 	const u64 i_size = i_size_read(&inode->vfs_inode);
5197 	u64 prev_extent_end = 0;
5198 	int ret;
5199 
5200 	if (!btrfs_fs_incompat(fs_info, NO_HOLES) || i_size == 0)
5201 		return 0;
5202 
5203 	key.objectid = ino;
5204 	key.type = BTRFS_EXTENT_DATA_KEY;
5205 	key.offset = 0;
5206 
5207 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5208 	if (ret < 0)
5209 		return ret;
5210 
5211 	while (true) {
5212 		struct extent_buffer *leaf = path->nodes[0];
5213 
5214 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
5215 			ret = btrfs_next_leaf(root, path);
5216 			if (ret < 0)
5217 				return ret;
5218 			if (ret > 0) {
5219 				ret = 0;
5220 				break;
5221 			}
5222 			leaf = path->nodes[0];
5223 		}
5224 
5225 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5226 		if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
5227 			break;
5228 
5229 		/* We have a hole, log it. */
5230 		if (prev_extent_end < key.offset) {
5231 			const u64 hole_len = key.offset - prev_extent_end;
5232 
5233 			/*
5234 			 * Release the path to avoid deadlocks with other code
5235 			 * paths that search the root while holding locks on
5236 			 * leafs from the log root.
5237 			 */
5238 			btrfs_release_path(path);
5239 			ret = btrfs_insert_hole_extent(trans, root->log_root,
5240 						       ino, prev_extent_end,
5241 						       hole_len);
5242 			if (ret < 0)
5243 				return ret;
5244 
5245 			/*
5246 			 * Search for the same key again in the root. Since it's
5247 			 * an extent item and we are holding the inode lock, the
5248 			 * key must still exist. If it doesn't just emit warning
5249 			 * and return an error to fall back to a transaction
5250 			 * commit.
5251 			 */
5252 			ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5253 			if (ret < 0)
5254 				return ret;
5255 			if (WARN_ON(ret > 0))
5256 				return -ENOENT;
5257 			leaf = path->nodes[0];
5258 		}
5259 
5260 		prev_extent_end = btrfs_file_extent_end(path);
5261 		path->slots[0]++;
5262 		cond_resched();
5263 	}
5264 
5265 	if (prev_extent_end < i_size) {
5266 		u64 hole_len;
5267 
5268 		btrfs_release_path(path);
5269 		hole_len = ALIGN(i_size - prev_extent_end, fs_info->sectorsize);
5270 		ret = btrfs_insert_hole_extent(trans, root->log_root, ino,
5271 					       prev_extent_end, hole_len);
5272 		if (ret < 0)
5273 			return ret;
5274 	}
5275 
5276 	return 0;
5277 }
5278 
5279 /*
5280  * When we are logging a new inode X, check if it doesn't have a reference that
5281  * matches the reference from some other inode Y created in a past transaction
5282  * and that was renamed in the current transaction. If we don't do this, then at
5283  * log replay time we can lose inode Y (and all its files if it's a directory):
5284  *
5285  * mkdir /mnt/x
5286  * echo "hello world" > /mnt/x/foobar
5287  * sync
5288  * mv /mnt/x /mnt/y
5289  * mkdir /mnt/x                 # or touch /mnt/x
5290  * xfs_io -c fsync /mnt/x
5291  * <power fail>
5292  * mount fs, trigger log replay
5293  *
5294  * After the log replay procedure, we would lose the first directory and all its
5295  * files (file foobar).
5296  * For the case where inode Y is not a directory we simply end up losing it:
5297  *
5298  * echo "123" > /mnt/foo
5299  * sync
5300  * mv /mnt/foo /mnt/bar
5301  * echo "abc" > /mnt/foo
5302  * xfs_io -c fsync /mnt/foo
5303  * <power fail>
5304  *
5305  * We also need this for cases where a snapshot entry is replaced by some other
5306  * entry (file or directory) otherwise we end up with an unreplayable log due to
5307  * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
5308  * if it were a regular entry:
5309  *
5310  * mkdir /mnt/x
5311  * btrfs subvolume snapshot /mnt /mnt/x/snap
5312  * btrfs subvolume delete /mnt/x/snap
5313  * rmdir /mnt/x
5314  * mkdir /mnt/x
5315  * fsync /mnt/x or fsync some new file inside it
5316  * <power fail>
5317  *
5318  * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
5319  * the same transaction.
5320  */
btrfs_check_ref_name_override(struct extent_buffer * eb,const int slot,const struct btrfs_key * key,struct btrfs_inode * inode,u64 * other_ino,u64 * other_parent)5321 static int btrfs_check_ref_name_override(struct extent_buffer *eb,
5322 					 const int slot,
5323 					 const struct btrfs_key *key,
5324 					 struct btrfs_inode *inode,
5325 					 u64 *other_ino, u64 *other_parent)
5326 {
5327 	int ret;
5328 	struct btrfs_path *search_path;
5329 	char *name = NULL;
5330 	u32 name_len = 0;
5331 	u32 item_size = btrfs_item_size(eb, slot);
5332 	u32 cur_offset = 0;
5333 	unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
5334 
5335 	search_path = btrfs_alloc_path();
5336 	if (!search_path)
5337 		return -ENOMEM;
5338 	search_path->search_commit_root = 1;
5339 	search_path->skip_locking = 1;
5340 
5341 	while (cur_offset < item_size) {
5342 		u64 parent;
5343 		u32 this_name_len;
5344 		u32 this_len;
5345 		unsigned long name_ptr;
5346 		struct btrfs_dir_item *di;
5347 		struct fscrypt_str name_str;
5348 
5349 		if (key->type == BTRFS_INODE_REF_KEY) {
5350 			struct btrfs_inode_ref *iref;
5351 
5352 			iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
5353 			parent = key->offset;
5354 			this_name_len = btrfs_inode_ref_name_len(eb, iref);
5355 			name_ptr = (unsigned long)(iref + 1);
5356 			this_len = sizeof(*iref) + this_name_len;
5357 		} else {
5358 			struct btrfs_inode_extref *extref;
5359 
5360 			extref = (struct btrfs_inode_extref *)(ptr +
5361 							       cur_offset);
5362 			parent = btrfs_inode_extref_parent(eb, extref);
5363 			this_name_len = btrfs_inode_extref_name_len(eb, extref);
5364 			name_ptr = (unsigned long)&extref->name;
5365 			this_len = sizeof(*extref) + this_name_len;
5366 		}
5367 
5368 		if (this_name_len > name_len) {
5369 			char *new_name;
5370 
5371 			new_name = krealloc(name, this_name_len, GFP_NOFS);
5372 			if (!new_name) {
5373 				ret = -ENOMEM;
5374 				goto out;
5375 			}
5376 			name_len = this_name_len;
5377 			name = new_name;
5378 		}
5379 
5380 		read_extent_buffer(eb, name, name_ptr, this_name_len);
5381 
5382 		name_str.name = name;
5383 		name_str.len = this_name_len;
5384 		di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
5385 				parent, &name_str, 0);
5386 		if (di && !IS_ERR(di)) {
5387 			struct btrfs_key di_key;
5388 
5389 			btrfs_dir_item_key_to_cpu(search_path->nodes[0],
5390 						  di, &di_key);
5391 			if (di_key.type == BTRFS_INODE_ITEM_KEY) {
5392 				if (di_key.objectid != key->objectid) {
5393 					ret = 1;
5394 					*other_ino = di_key.objectid;
5395 					*other_parent = parent;
5396 				} else {
5397 					ret = 0;
5398 				}
5399 			} else {
5400 				ret = -EAGAIN;
5401 			}
5402 			goto out;
5403 		} else if (IS_ERR(di)) {
5404 			ret = PTR_ERR(di);
5405 			goto out;
5406 		}
5407 		btrfs_release_path(search_path);
5408 
5409 		cur_offset += this_len;
5410 	}
5411 	ret = 0;
5412 out:
5413 	btrfs_free_path(search_path);
5414 	kfree(name);
5415 	return ret;
5416 }
5417 
5418 /*
5419  * Check if we need to log an inode. This is used in contexts where while
5420  * logging an inode we need to log another inode (either that it exists or in
5421  * full mode). This is used instead of btrfs_inode_in_log() because the later
5422  * requires the inode to be in the log and have the log transaction committed,
5423  * while here we do not care if the log transaction was already committed - our
5424  * caller will commit the log later - and we want to avoid logging an inode
5425  * multiple times when multiple tasks have joined the same log transaction.
5426  */
need_log_inode(const struct btrfs_trans_handle * trans,struct btrfs_inode * inode)5427 static bool need_log_inode(const struct btrfs_trans_handle *trans,
5428 			   struct btrfs_inode *inode)
5429 {
5430 	/*
5431 	 * If a directory was not modified, no dentries added or removed, we can
5432 	 * and should avoid logging it.
5433 	 */
5434 	if (S_ISDIR(inode->vfs_inode.i_mode) && inode->last_trans < trans->transid)
5435 		return false;
5436 
5437 	/*
5438 	 * If this inode does not have new/updated/deleted xattrs since the last
5439 	 * time it was logged and is flagged as logged in the current transaction,
5440 	 * we can skip logging it. As for new/deleted names, those are updated in
5441 	 * the log by link/unlink/rename operations.
5442 	 * In case the inode was logged and then evicted and reloaded, its
5443 	 * logged_trans will be 0, in which case we have to fully log it since
5444 	 * logged_trans is a transient field, not persisted.
5445 	 */
5446 	if (inode_logged(trans, inode, NULL) == 1 &&
5447 	    !test_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags))
5448 		return false;
5449 
5450 	return true;
5451 }
5452 
5453 struct btrfs_dir_list {
5454 	u64 ino;
5455 	struct list_head list;
5456 };
5457 
5458 /*
5459  * Log the inodes of the new dentries of a directory.
5460  * See process_dir_items_leaf() for details about why it is needed.
5461  * This is a recursive operation - if an existing dentry corresponds to a
5462  * directory, that directory's new entries are logged too (same behaviour as
5463  * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5464  * the dentries point to we do not acquire their VFS lock, otherwise lockdep
5465  * complains about the following circular lock dependency / possible deadlock:
5466  *
5467  *        CPU0                                        CPU1
5468  *        ----                                        ----
5469  * lock(&type->i_mutex_dir_key#3/2);
5470  *                                            lock(sb_internal#2);
5471  *                                            lock(&type->i_mutex_dir_key#3/2);
5472  * lock(&sb->s_type->i_mutex_key#14);
5473  *
5474  * Where sb_internal is the lock (a counter that works as a lock) acquired by
5475  * sb_start_intwrite() in btrfs_start_transaction().
5476  * Not acquiring the VFS lock of the inodes is still safe because:
5477  *
5478  * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5479  *    that while logging the inode new references (names) are added or removed
5480  *    from the inode, leaving the logged inode item with a link count that does
5481  *    not match the number of logged inode reference items. This is fine because
5482  *    at log replay time we compute the real number of links and correct the
5483  *    link count in the inode item (see replay_one_buffer() and
5484  *    link_to_fixup_dir());
5485  *
5486  * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5487  *    while logging the inode's items new index items (key type
5488  *    BTRFS_DIR_INDEX_KEY) are added to fs/subvol tree and the logged inode item
5489  *    has a size that doesn't match the sum of the lengths of all the logged
5490  *    names - this is ok, not a problem, because at log replay time we set the
5491  *    directory's i_size to the correct value (see replay_one_name() and
5492  *    overwrite_item()).
5493  */
log_new_dir_dentries(struct btrfs_trans_handle * trans,struct btrfs_inode * start_inode,struct btrfs_log_ctx * ctx)5494 static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5495 				struct btrfs_inode *start_inode,
5496 				struct btrfs_log_ctx *ctx)
5497 {
5498 	struct btrfs_root *root = start_inode->root;
5499 	struct btrfs_path *path;
5500 	LIST_HEAD(dir_list);
5501 	struct btrfs_dir_list *dir_elem;
5502 	u64 ino = btrfs_ino(start_inode);
5503 	struct btrfs_inode *curr_inode = start_inode;
5504 	int ret = 0;
5505 
5506 	/*
5507 	 * If we are logging a new name, as part of a link or rename operation,
5508 	 * don't bother logging new dentries, as we just want to log the names
5509 	 * of an inode and that any new parents exist.
5510 	 */
5511 	if (ctx->logging_new_name)
5512 		return 0;
5513 
5514 	path = btrfs_alloc_path();
5515 	if (!path)
5516 		return -ENOMEM;
5517 
5518 	/* Pairs with btrfs_add_delayed_iput below. */
5519 	ihold(&curr_inode->vfs_inode);
5520 
5521 	while (true) {
5522 		struct btrfs_key key;
5523 		struct btrfs_key found_key;
5524 		u64 next_index;
5525 		bool continue_curr_inode = true;
5526 		int iter_ret;
5527 
5528 		key.objectid = ino;
5529 		key.type = BTRFS_DIR_INDEX_KEY;
5530 		key.offset = btrfs_get_first_dir_index_to_log(curr_inode);
5531 		next_index = key.offset;
5532 again:
5533 		btrfs_for_each_slot(root->log_root, &key, &found_key, path, iter_ret) {
5534 			struct extent_buffer *leaf = path->nodes[0];
5535 			struct btrfs_dir_item *di;
5536 			struct btrfs_key di_key;
5537 			struct btrfs_inode *di_inode;
5538 			int log_mode = LOG_INODE_EXISTS;
5539 			int type;
5540 
5541 			if (found_key.objectid != ino ||
5542 			    found_key.type != BTRFS_DIR_INDEX_KEY) {
5543 				continue_curr_inode = false;
5544 				break;
5545 			}
5546 
5547 			next_index = found_key.offset + 1;
5548 
5549 			di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item);
5550 			type = btrfs_dir_ftype(leaf, di);
5551 			if (btrfs_dir_transid(leaf, di) < trans->transid)
5552 				continue;
5553 			btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5554 			if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5555 				continue;
5556 
5557 			btrfs_release_path(path);
5558 			di_inode = btrfs_iget_logging(di_key.objectid, root);
5559 			if (IS_ERR(di_inode)) {
5560 				ret = PTR_ERR(di_inode);
5561 				goto out;
5562 			}
5563 
5564 			if (!need_log_inode(trans, di_inode)) {
5565 				btrfs_add_delayed_iput(di_inode);
5566 				break;
5567 			}
5568 
5569 			ctx->log_new_dentries = false;
5570 			if (type == BTRFS_FT_DIR)
5571 				log_mode = LOG_INODE_ALL;
5572 			ret = btrfs_log_inode(trans, di_inode, log_mode, ctx);
5573 			btrfs_add_delayed_iput(di_inode);
5574 			if (ret)
5575 				goto out;
5576 			if (ctx->log_new_dentries) {
5577 				dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5578 				if (!dir_elem) {
5579 					ret = -ENOMEM;
5580 					goto out;
5581 				}
5582 				dir_elem->ino = di_key.objectid;
5583 				list_add_tail(&dir_elem->list, &dir_list);
5584 			}
5585 			break;
5586 		}
5587 
5588 		btrfs_release_path(path);
5589 
5590 		if (iter_ret < 0) {
5591 			ret = iter_ret;
5592 			goto out;
5593 		} else if (iter_ret > 0) {
5594 			continue_curr_inode = false;
5595 		} else {
5596 			key = found_key;
5597 		}
5598 
5599 		if (continue_curr_inode && key.offset < (u64)-1) {
5600 			key.offset++;
5601 			goto again;
5602 		}
5603 
5604 		btrfs_set_first_dir_index_to_log(curr_inode, next_index);
5605 
5606 		if (list_empty(&dir_list))
5607 			break;
5608 
5609 		dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list, list);
5610 		ino = dir_elem->ino;
5611 		list_del(&dir_elem->list);
5612 		kfree(dir_elem);
5613 
5614 		btrfs_add_delayed_iput(curr_inode);
5615 
5616 		curr_inode = btrfs_iget_logging(ino, root);
5617 		if (IS_ERR(curr_inode)) {
5618 			ret = PTR_ERR(curr_inode);
5619 			curr_inode = NULL;
5620 			break;
5621 		}
5622 	}
5623 out:
5624 	btrfs_free_path(path);
5625 	if (curr_inode)
5626 		btrfs_add_delayed_iput(curr_inode);
5627 
5628 	if (ret) {
5629 		struct btrfs_dir_list *next;
5630 
5631 		list_for_each_entry_safe(dir_elem, next, &dir_list, list)
5632 			kfree(dir_elem);
5633 	}
5634 
5635 	return ret;
5636 }
5637 
5638 struct btrfs_ino_list {
5639 	u64 ino;
5640 	u64 parent;
5641 	struct list_head list;
5642 };
5643 
free_conflicting_inodes(struct btrfs_log_ctx * ctx)5644 static void free_conflicting_inodes(struct btrfs_log_ctx *ctx)
5645 {
5646 	struct btrfs_ino_list *curr;
5647 	struct btrfs_ino_list *next;
5648 
5649 	list_for_each_entry_safe(curr, next, &ctx->conflict_inodes, list) {
5650 		list_del(&curr->list);
5651 		kfree(curr);
5652 	}
5653 }
5654 
conflicting_inode_is_dir(struct btrfs_root * root,u64 ino,struct btrfs_path * path)5655 static int conflicting_inode_is_dir(struct btrfs_root *root, u64 ino,
5656 				    struct btrfs_path *path)
5657 {
5658 	struct btrfs_key key;
5659 	int ret;
5660 
5661 	key.objectid = ino;
5662 	key.type = BTRFS_INODE_ITEM_KEY;
5663 	key.offset = 0;
5664 
5665 	path->search_commit_root = 1;
5666 	path->skip_locking = 1;
5667 
5668 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5669 	if (WARN_ON_ONCE(ret > 0)) {
5670 		/*
5671 		 * We have previously found the inode through the commit root
5672 		 * so this should not happen. If it does, just error out and
5673 		 * fallback to a transaction commit.
5674 		 */
5675 		ret = -ENOENT;
5676 	} else if (ret == 0) {
5677 		struct btrfs_inode_item *item;
5678 
5679 		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5680 				      struct btrfs_inode_item);
5681 		if (S_ISDIR(btrfs_inode_mode(path->nodes[0], item)))
5682 			ret = 1;
5683 	}
5684 
5685 	btrfs_release_path(path);
5686 	path->search_commit_root = 0;
5687 	path->skip_locking = 0;
5688 
5689 	return ret;
5690 }
5691 
add_conflicting_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,u64 ino,u64 parent,struct btrfs_log_ctx * ctx)5692 static int add_conflicting_inode(struct btrfs_trans_handle *trans,
5693 				 struct btrfs_root *root,
5694 				 struct btrfs_path *path,
5695 				 u64 ino, u64 parent,
5696 				 struct btrfs_log_ctx *ctx)
5697 {
5698 	struct btrfs_ino_list *ino_elem;
5699 	struct btrfs_inode *inode;
5700 
5701 	/*
5702 	 * It's rare to have a lot of conflicting inodes, in practice it is not
5703 	 * common to have more than 1 or 2. We don't want to collect too many,
5704 	 * as we could end up logging too many inodes (even if only in
5705 	 * LOG_INODE_EXISTS mode) and slow down other fsyncs or transaction
5706 	 * commits.
5707 	 */
5708 	if (ctx->num_conflict_inodes >= MAX_CONFLICT_INODES)
5709 		return BTRFS_LOG_FORCE_COMMIT;
5710 
5711 	inode = btrfs_iget_logging(ino, root);
5712 	/*
5713 	 * If the other inode that had a conflicting dir entry was deleted in
5714 	 * the current transaction then we either:
5715 	 *
5716 	 * 1) Log the parent directory (later after adding it to the list) if
5717 	 *    the inode is a directory. This is because it may be a deleted
5718 	 *    subvolume/snapshot or it may be a regular directory that had
5719 	 *    deleted subvolumes/snapshots (or subdirectories that had them),
5720 	 *    and at the moment we can't deal with dropping subvolumes/snapshots
5721 	 *    during log replay. So we just log the parent, which will result in
5722 	 *    a fallback to a transaction commit if we are dealing with those
5723 	 *    cases (last_unlink_trans will match the current transaction);
5724 	 *
5725 	 * 2) Do nothing if it's not a directory. During log replay we simply
5726 	 *    unlink the conflicting dentry from the parent directory and then
5727 	 *    add the dentry for our inode. Like this we can avoid logging the
5728 	 *    parent directory (and maybe fallback to a transaction commit in
5729 	 *    case it has a last_unlink_trans == trans->transid, due to moving
5730 	 *    some inode from it to some other directory).
5731 	 */
5732 	if (IS_ERR(inode)) {
5733 		int ret = PTR_ERR(inode);
5734 
5735 		if (ret != -ENOENT)
5736 			return ret;
5737 
5738 		ret = conflicting_inode_is_dir(root, ino, path);
5739 		/* Not a directory or we got an error. */
5740 		if (ret <= 0)
5741 			return ret;
5742 
5743 		/* Conflicting inode is a directory, so we'll log its parent. */
5744 		ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5745 		if (!ino_elem)
5746 			return -ENOMEM;
5747 		ino_elem->ino = ino;
5748 		ino_elem->parent = parent;
5749 		list_add_tail(&ino_elem->list, &ctx->conflict_inodes);
5750 		ctx->num_conflict_inodes++;
5751 
5752 		return 0;
5753 	}
5754 
5755 	/*
5756 	 * If the inode was already logged skip it - otherwise we can hit an
5757 	 * infinite loop. Example:
5758 	 *
5759 	 * From the commit root (previous transaction) we have the following
5760 	 * inodes:
5761 	 *
5762 	 * inode 257 a directory
5763 	 * inode 258 with references "zz" and "zz_link" on inode 257
5764 	 * inode 259 with reference "a" on inode 257
5765 	 *
5766 	 * And in the current (uncommitted) transaction we have:
5767 	 *
5768 	 * inode 257 a directory, unchanged
5769 	 * inode 258 with references "a" and "a2" on inode 257
5770 	 * inode 259 with reference "zz_link" on inode 257
5771 	 * inode 261 with reference "zz" on inode 257
5772 	 *
5773 	 * When logging inode 261 the following infinite loop could
5774 	 * happen if we don't skip already logged inodes:
5775 	 *
5776 	 * - we detect inode 258 as a conflicting inode, with inode 261
5777 	 *   on reference "zz", and log it;
5778 	 *
5779 	 * - we detect inode 259 as a conflicting inode, with inode 258
5780 	 *   on reference "a", and log it;
5781 	 *
5782 	 * - we detect inode 258 as a conflicting inode, with inode 259
5783 	 *   on reference "zz_link", and log it - again! After this we
5784 	 *   repeat the above steps forever.
5785 	 *
5786 	 * Here we can use need_log_inode() because we only need to log the
5787 	 * inode in LOG_INODE_EXISTS mode and rename operations update the log,
5788 	 * so that the log ends up with the new name and without the old name.
5789 	 */
5790 	if (!need_log_inode(trans, inode)) {
5791 		btrfs_add_delayed_iput(inode);
5792 		return 0;
5793 	}
5794 
5795 	btrfs_add_delayed_iput(inode);
5796 
5797 	ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5798 	if (!ino_elem)
5799 		return -ENOMEM;
5800 	ino_elem->ino = ino;
5801 	ino_elem->parent = parent;
5802 	list_add_tail(&ino_elem->list, &ctx->conflict_inodes);
5803 	ctx->num_conflict_inodes++;
5804 
5805 	return 0;
5806 }
5807 
log_conflicting_inodes(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_log_ctx * ctx)5808 static int log_conflicting_inodes(struct btrfs_trans_handle *trans,
5809 				  struct btrfs_root *root,
5810 				  struct btrfs_log_ctx *ctx)
5811 {
5812 	int ret = 0;
5813 
5814 	/*
5815 	 * Conflicting inodes are logged by the first call to btrfs_log_inode(),
5816 	 * otherwise we could have unbounded recursion of btrfs_log_inode()
5817 	 * calls. This check guarantees we can have only 1 level of recursion.
5818 	 */
5819 	if (ctx->logging_conflict_inodes)
5820 		return 0;
5821 
5822 	ctx->logging_conflict_inodes = true;
5823 
5824 	/*
5825 	 * New conflicting inodes may be found and added to the list while we
5826 	 * are logging a conflicting inode, so keep iterating while the list is
5827 	 * not empty.
5828 	 */
5829 	while (!list_empty(&ctx->conflict_inodes)) {
5830 		struct btrfs_ino_list *curr;
5831 		struct btrfs_inode *inode;
5832 		u64 ino;
5833 		u64 parent;
5834 
5835 		curr = list_first_entry(&ctx->conflict_inodes,
5836 					struct btrfs_ino_list, list);
5837 		ino = curr->ino;
5838 		parent = curr->parent;
5839 		list_del(&curr->list);
5840 		kfree(curr);
5841 
5842 		inode = btrfs_iget_logging(ino, root);
5843 		/*
5844 		 * If the other inode that had a conflicting dir entry was
5845 		 * deleted in the current transaction, we need to log its parent
5846 		 * directory. See the comment at add_conflicting_inode().
5847 		 */
5848 		if (IS_ERR(inode)) {
5849 			ret = PTR_ERR(inode);
5850 			if (ret != -ENOENT)
5851 				break;
5852 
5853 			inode = btrfs_iget_logging(parent, root);
5854 			if (IS_ERR(inode)) {
5855 				ret = PTR_ERR(inode);
5856 				break;
5857 			}
5858 
5859 			/*
5860 			 * Always log the directory, we cannot make this
5861 			 * conditional on need_log_inode() because the directory
5862 			 * might have been logged in LOG_INODE_EXISTS mode or
5863 			 * the dir index of the conflicting inode is not in a
5864 			 * dir index key range logged for the directory. So we
5865 			 * must make sure the deletion is recorded.
5866 			 */
5867 			ret = btrfs_log_inode(trans, inode, LOG_INODE_ALL, ctx);
5868 			btrfs_add_delayed_iput(inode);
5869 			if (ret)
5870 				break;
5871 			continue;
5872 		}
5873 
5874 		/*
5875 		 * Here we can use need_log_inode() because we only need to log
5876 		 * the inode in LOG_INODE_EXISTS mode and rename operations
5877 		 * update the log, so that the log ends up with the new name and
5878 		 * without the old name.
5879 		 *
5880 		 * We did this check at add_conflicting_inode(), but here we do
5881 		 * it again because if some other task logged the inode after
5882 		 * that, we can avoid doing it again.
5883 		 */
5884 		if (!need_log_inode(trans, inode)) {
5885 			btrfs_add_delayed_iput(inode);
5886 			continue;
5887 		}
5888 
5889 		/*
5890 		 * We are safe logging the other inode without acquiring its
5891 		 * lock as long as we log with the LOG_INODE_EXISTS mode. We
5892 		 * are safe against concurrent renames of the other inode as
5893 		 * well because during a rename we pin the log and update the
5894 		 * log with the new name before we unpin it.
5895 		 */
5896 		ret = btrfs_log_inode(trans, inode, LOG_INODE_EXISTS, ctx);
5897 		btrfs_add_delayed_iput(inode);
5898 		if (ret)
5899 			break;
5900 	}
5901 
5902 	ctx->logging_conflict_inodes = false;
5903 	if (ret)
5904 		free_conflicting_inodes(ctx);
5905 
5906 	return ret;
5907 }
5908 
copy_inode_items_to_log(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_key * min_key,const struct btrfs_key * max_key,struct btrfs_path * path,struct btrfs_path * dst_path,const u64 logged_isize,const int inode_only,struct btrfs_log_ctx * ctx,bool * need_log_inode_item)5909 static int copy_inode_items_to_log(struct btrfs_trans_handle *trans,
5910 				   struct btrfs_inode *inode,
5911 				   struct btrfs_key *min_key,
5912 				   const struct btrfs_key *max_key,
5913 				   struct btrfs_path *path,
5914 				   struct btrfs_path *dst_path,
5915 				   const u64 logged_isize,
5916 				   const int inode_only,
5917 				   struct btrfs_log_ctx *ctx,
5918 				   bool *need_log_inode_item)
5919 {
5920 	const u64 i_size = i_size_read(&inode->vfs_inode);
5921 	struct btrfs_root *root = inode->root;
5922 	int ins_start_slot = 0;
5923 	int ins_nr = 0;
5924 	int ret;
5925 
5926 	while (1) {
5927 		ret = btrfs_search_forward(root, min_key, path, trans->transid);
5928 		if (ret < 0)
5929 			return ret;
5930 		if (ret > 0) {
5931 			ret = 0;
5932 			break;
5933 		}
5934 again:
5935 		/* Note, ins_nr might be > 0 here, cleanup outside the loop */
5936 		if (min_key->objectid != max_key->objectid)
5937 			break;
5938 		if (min_key->type > max_key->type)
5939 			break;
5940 
5941 		if (min_key->type == BTRFS_INODE_ITEM_KEY) {
5942 			*need_log_inode_item = false;
5943 		} else if (min_key->type == BTRFS_EXTENT_DATA_KEY &&
5944 			   min_key->offset >= i_size) {
5945 			/*
5946 			 * Extents at and beyond eof are logged with
5947 			 * btrfs_log_prealloc_extents().
5948 			 * Only regular files have BTRFS_EXTENT_DATA_KEY keys,
5949 			 * and no keys greater than that, so bail out.
5950 			 */
5951 			break;
5952 		} else if ((min_key->type == BTRFS_INODE_REF_KEY ||
5953 			    min_key->type == BTRFS_INODE_EXTREF_KEY) &&
5954 			   (inode->generation == trans->transid ||
5955 			    ctx->logging_conflict_inodes)) {
5956 			u64 other_ino = 0;
5957 			u64 other_parent = 0;
5958 
5959 			ret = btrfs_check_ref_name_override(path->nodes[0],
5960 					path->slots[0], min_key, inode,
5961 					&other_ino, &other_parent);
5962 			if (ret < 0) {
5963 				return ret;
5964 			} else if (ret > 0 &&
5965 				   other_ino != btrfs_ino(ctx->inode)) {
5966 				if (ins_nr > 0) {
5967 					ins_nr++;
5968 				} else {
5969 					ins_nr = 1;
5970 					ins_start_slot = path->slots[0];
5971 				}
5972 				ret = copy_items(trans, inode, dst_path, path,
5973 						 ins_start_slot, ins_nr,
5974 						 inode_only, logged_isize, ctx);
5975 				if (ret < 0)
5976 					return ret;
5977 				ins_nr = 0;
5978 
5979 				btrfs_release_path(path);
5980 				ret = add_conflicting_inode(trans, root, path,
5981 							    other_ino,
5982 							    other_parent, ctx);
5983 				if (ret)
5984 					return ret;
5985 				goto next_key;
5986 			}
5987 		} else if (min_key->type == BTRFS_XATTR_ITEM_KEY) {
5988 			/* Skip xattrs, logged later with btrfs_log_all_xattrs() */
5989 			if (ins_nr == 0)
5990 				goto next_slot;
5991 			ret = copy_items(trans, inode, dst_path, path,
5992 					 ins_start_slot,
5993 					 ins_nr, inode_only, logged_isize, ctx);
5994 			if (ret < 0)
5995 				return ret;
5996 			ins_nr = 0;
5997 			goto next_slot;
5998 		}
5999 
6000 		if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
6001 			ins_nr++;
6002 			goto next_slot;
6003 		} else if (!ins_nr) {
6004 			ins_start_slot = path->slots[0];
6005 			ins_nr = 1;
6006 			goto next_slot;
6007 		}
6008 
6009 		ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
6010 				 ins_nr, inode_only, logged_isize, ctx);
6011 		if (ret < 0)
6012 			return ret;
6013 		ins_nr = 1;
6014 		ins_start_slot = path->slots[0];
6015 next_slot:
6016 		path->slots[0]++;
6017 		if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
6018 			btrfs_item_key_to_cpu(path->nodes[0], min_key,
6019 					      path->slots[0]);
6020 			goto again;
6021 		}
6022 		if (ins_nr) {
6023 			ret = copy_items(trans, inode, dst_path, path,
6024 					 ins_start_slot, ins_nr, inode_only,
6025 					 logged_isize, ctx);
6026 			if (ret < 0)
6027 				return ret;
6028 			ins_nr = 0;
6029 		}
6030 		btrfs_release_path(path);
6031 next_key:
6032 		if (min_key->offset < (u64)-1) {
6033 			min_key->offset++;
6034 		} else if (min_key->type < max_key->type) {
6035 			min_key->type++;
6036 			min_key->offset = 0;
6037 		} else {
6038 			break;
6039 		}
6040 
6041 		/*
6042 		 * We may process many leaves full of items for our inode, so
6043 		 * avoid monopolizing a cpu for too long by rescheduling while
6044 		 * not holding locks on any tree.
6045 		 */
6046 		cond_resched();
6047 	}
6048 	if (ins_nr) {
6049 		ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
6050 				 ins_nr, inode_only, logged_isize, ctx);
6051 		if (ret)
6052 			return ret;
6053 	}
6054 
6055 	if (inode_only == LOG_INODE_ALL && S_ISREG(inode->vfs_inode.i_mode)) {
6056 		/*
6057 		 * Release the path because otherwise we might attempt to double
6058 		 * lock the same leaf with btrfs_log_prealloc_extents() below.
6059 		 */
6060 		btrfs_release_path(path);
6061 		ret = btrfs_log_prealloc_extents(trans, inode, dst_path, ctx);
6062 	}
6063 
6064 	return ret;
6065 }
6066 
insert_delayed_items_batch(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * path,const struct btrfs_item_batch * batch,const struct btrfs_delayed_item * first_item)6067 static int insert_delayed_items_batch(struct btrfs_trans_handle *trans,
6068 				      struct btrfs_root *log,
6069 				      struct btrfs_path *path,
6070 				      const struct btrfs_item_batch *batch,
6071 				      const struct btrfs_delayed_item *first_item)
6072 {
6073 	const struct btrfs_delayed_item *curr = first_item;
6074 	int ret;
6075 
6076 	ret = btrfs_insert_empty_items(trans, log, path, batch);
6077 	if (ret)
6078 		return ret;
6079 
6080 	for (int i = 0; i < batch->nr; i++) {
6081 		char *data_ptr;
6082 
6083 		data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char);
6084 		write_extent_buffer(path->nodes[0], &curr->data,
6085 				    (unsigned long)data_ptr, curr->data_len);
6086 		curr = list_next_entry(curr, log_list);
6087 		path->slots[0]++;
6088 	}
6089 
6090 	btrfs_release_path(path);
6091 
6092 	return 0;
6093 }
6094 
log_delayed_insertion_items(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,const struct list_head * delayed_ins_list,struct btrfs_log_ctx * ctx)6095 static int log_delayed_insertion_items(struct btrfs_trans_handle *trans,
6096 				       struct btrfs_inode *inode,
6097 				       struct btrfs_path *path,
6098 				       const struct list_head *delayed_ins_list,
6099 				       struct btrfs_log_ctx *ctx)
6100 {
6101 	/* 195 (4095 bytes of keys and sizes) fits in a single 4K page. */
6102 	const int max_batch_size = 195;
6103 	const int leaf_data_size = BTRFS_LEAF_DATA_SIZE(trans->fs_info);
6104 	const u64 ino = btrfs_ino(inode);
6105 	struct btrfs_root *log = inode->root->log_root;
6106 	struct btrfs_item_batch batch = {
6107 		.nr = 0,
6108 		.total_data_size = 0,
6109 	};
6110 	const struct btrfs_delayed_item *first = NULL;
6111 	const struct btrfs_delayed_item *curr;
6112 	char *ins_data;
6113 	struct btrfs_key *ins_keys;
6114 	u32 *ins_sizes;
6115 	u64 curr_batch_size = 0;
6116 	int batch_idx = 0;
6117 	int ret;
6118 
6119 	/* We are adding dir index items to the log tree. */
6120 	lockdep_assert_held(&inode->log_mutex);
6121 
6122 	/*
6123 	 * We collect delayed items before copying index keys from the subvolume
6124 	 * to the log tree. However just after we collected them, they may have
6125 	 * been flushed (all of them or just some of them), and therefore we
6126 	 * could have copied them from the subvolume tree to the log tree.
6127 	 * So find the first delayed item that was not yet logged (they are
6128 	 * sorted by index number).
6129 	 */
6130 	list_for_each_entry(curr, delayed_ins_list, log_list) {
6131 		if (curr->index > inode->last_dir_index_offset) {
6132 			first = curr;
6133 			break;
6134 		}
6135 	}
6136 
6137 	/* Empty list or all delayed items were already logged. */
6138 	if (!first)
6139 		return 0;
6140 
6141 	ins_data = kmalloc(max_batch_size * sizeof(u32) +
6142 			   max_batch_size * sizeof(struct btrfs_key), GFP_NOFS);
6143 	if (!ins_data)
6144 		return -ENOMEM;
6145 	ins_sizes = (u32 *)ins_data;
6146 	batch.data_sizes = ins_sizes;
6147 	ins_keys = (struct btrfs_key *)(ins_data + max_batch_size * sizeof(u32));
6148 	batch.keys = ins_keys;
6149 
6150 	curr = first;
6151 	while (!list_entry_is_head(curr, delayed_ins_list, log_list)) {
6152 		const u32 curr_size = curr->data_len + sizeof(struct btrfs_item);
6153 
6154 		if (curr_batch_size + curr_size > leaf_data_size ||
6155 		    batch.nr == max_batch_size) {
6156 			ret = insert_delayed_items_batch(trans, log, path,
6157 							 &batch, first);
6158 			if (ret)
6159 				goto out;
6160 			batch_idx = 0;
6161 			batch.nr = 0;
6162 			batch.total_data_size = 0;
6163 			curr_batch_size = 0;
6164 			first = curr;
6165 		}
6166 
6167 		ins_sizes[batch_idx] = curr->data_len;
6168 		ins_keys[batch_idx].objectid = ino;
6169 		ins_keys[batch_idx].type = BTRFS_DIR_INDEX_KEY;
6170 		ins_keys[batch_idx].offset = curr->index;
6171 		curr_batch_size += curr_size;
6172 		batch.total_data_size += curr->data_len;
6173 		batch.nr++;
6174 		batch_idx++;
6175 		curr = list_next_entry(curr, log_list);
6176 	}
6177 
6178 	ASSERT(batch.nr >= 1);
6179 	ret = insert_delayed_items_batch(trans, log, path, &batch, first);
6180 
6181 	curr = list_last_entry(delayed_ins_list, struct btrfs_delayed_item,
6182 			       log_list);
6183 	inode->last_dir_index_offset = curr->index;
6184 out:
6185 	kfree(ins_data);
6186 
6187 	return ret;
6188 }
6189 
log_delayed_deletions_full(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,const struct list_head * delayed_del_list,struct btrfs_log_ctx * ctx)6190 static int log_delayed_deletions_full(struct btrfs_trans_handle *trans,
6191 				      struct btrfs_inode *inode,
6192 				      struct btrfs_path *path,
6193 				      const struct list_head *delayed_del_list,
6194 				      struct btrfs_log_ctx *ctx)
6195 {
6196 	const u64 ino = btrfs_ino(inode);
6197 	const struct btrfs_delayed_item *curr;
6198 
6199 	curr = list_first_entry(delayed_del_list, struct btrfs_delayed_item,
6200 				log_list);
6201 
6202 	while (!list_entry_is_head(curr, delayed_del_list, log_list)) {
6203 		u64 first_dir_index = curr->index;
6204 		u64 last_dir_index;
6205 		const struct btrfs_delayed_item *next;
6206 		int ret;
6207 
6208 		/*
6209 		 * Find a range of consecutive dir index items to delete. Like
6210 		 * this we log a single dir range item spanning several contiguous
6211 		 * dir items instead of logging one range item per dir index item.
6212 		 */
6213 		next = list_next_entry(curr, log_list);
6214 		while (!list_entry_is_head(next, delayed_del_list, log_list)) {
6215 			if (next->index != curr->index + 1)
6216 				break;
6217 			curr = next;
6218 			next = list_next_entry(next, log_list);
6219 		}
6220 
6221 		last_dir_index = curr->index;
6222 		ASSERT(last_dir_index >= first_dir_index);
6223 
6224 		ret = insert_dir_log_key(trans, inode->root->log_root, path,
6225 					 ino, first_dir_index, last_dir_index);
6226 		if (ret)
6227 			return ret;
6228 		curr = list_next_entry(curr, log_list);
6229 	}
6230 
6231 	return 0;
6232 }
6233 
batch_delete_dir_index_items(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,const struct list_head * delayed_del_list,const struct btrfs_delayed_item * first,const struct btrfs_delayed_item ** last_ret)6234 static int batch_delete_dir_index_items(struct btrfs_trans_handle *trans,
6235 					struct btrfs_inode *inode,
6236 					struct btrfs_path *path,
6237 					const struct list_head *delayed_del_list,
6238 					const struct btrfs_delayed_item *first,
6239 					const struct btrfs_delayed_item **last_ret)
6240 {
6241 	const struct btrfs_delayed_item *next;
6242 	struct extent_buffer *leaf = path->nodes[0];
6243 	const int last_slot = btrfs_header_nritems(leaf) - 1;
6244 	int slot = path->slots[0] + 1;
6245 	const u64 ino = btrfs_ino(inode);
6246 
6247 	next = list_next_entry(first, log_list);
6248 
6249 	while (slot < last_slot &&
6250 	       !list_entry_is_head(next, delayed_del_list, log_list)) {
6251 		struct btrfs_key key;
6252 
6253 		btrfs_item_key_to_cpu(leaf, &key, slot);
6254 		if (key.objectid != ino ||
6255 		    key.type != BTRFS_DIR_INDEX_KEY ||
6256 		    key.offset != next->index)
6257 			break;
6258 
6259 		slot++;
6260 		*last_ret = next;
6261 		next = list_next_entry(next, log_list);
6262 	}
6263 
6264 	return btrfs_del_items(trans, inode->root->log_root, path,
6265 			       path->slots[0], slot - path->slots[0]);
6266 }
6267 
log_delayed_deletions_incremental(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,const struct list_head * delayed_del_list,struct btrfs_log_ctx * ctx)6268 static int log_delayed_deletions_incremental(struct btrfs_trans_handle *trans,
6269 					     struct btrfs_inode *inode,
6270 					     struct btrfs_path *path,
6271 					     const struct list_head *delayed_del_list,
6272 					     struct btrfs_log_ctx *ctx)
6273 {
6274 	struct btrfs_root *log = inode->root->log_root;
6275 	const struct btrfs_delayed_item *curr;
6276 	u64 last_range_start = 0;
6277 	u64 last_range_end = 0;
6278 	struct btrfs_key key;
6279 
6280 	key.objectid = btrfs_ino(inode);
6281 	key.type = BTRFS_DIR_INDEX_KEY;
6282 	curr = list_first_entry(delayed_del_list, struct btrfs_delayed_item,
6283 				log_list);
6284 
6285 	while (!list_entry_is_head(curr, delayed_del_list, log_list)) {
6286 		const struct btrfs_delayed_item *last = curr;
6287 		u64 first_dir_index = curr->index;
6288 		u64 last_dir_index;
6289 		bool deleted_items = false;
6290 		int ret;
6291 
6292 		key.offset = curr->index;
6293 		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
6294 		if (ret < 0) {
6295 			return ret;
6296 		} else if (ret == 0) {
6297 			ret = batch_delete_dir_index_items(trans, inode, path,
6298 							   delayed_del_list, curr,
6299 							   &last);
6300 			if (ret)
6301 				return ret;
6302 			deleted_items = true;
6303 		}
6304 
6305 		btrfs_release_path(path);
6306 
6307 		/*
6308 		 * If we deleted items from the leaf, it means we have a range
6309 		 * item logging their range, so no need to add one or update an
6310 		 * existing one. Otherwise we have to log a dir range item.
6311 		 */
6312 		if (deleted_items)
6313 			goto next_batch;
6314 
6315 		last_dir_index = last->index;
6316 		ASSERT(last_dir_index >= first_dir_index);
6317 		/*
6318 		 * If this range starts right after where the previous one ends,
6319 		 * then we want to reuse the previous range item and change its
6320 		 * end offset to the end of this range. This is just to minimize
6321 		 * leaf space usage, by avoiding adding a new range item.
6322 		 */
6323 		if (last_range_end != 0 && first_dir_index == last_range_end + 1)
6324 			first_dir_index = last_range_start;
6325 
6326 		ret = insert_dir_log_key(trans, log, path, key.objectid,
6327 					 first_dir_index, last_dir_index);
6328 		if (ret)
6329 			return ret;
6330 
6331 		last_range_start = first_dir_index;
6332 		last_range_end = last_dir_index;
6333 next_batch:
6334 		curr = list_next_entry(last, log_list);
6335 	}
6336 
6337 	return 0;
6338 }
6339 
log_delayed_deletion_items(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,const struct list_head * delayed_del_list,struct btrfs_log_ctx * ctx)6340 static int log_delayed_deletion_items(struct btrfs_trans_handle *trans,
6341 				      struct btrfs_inode *inode,
6342 				      struct btrfs_path *path,
6343 				      const struct list_head *delayed_del_list,
6344 				      struct btrfs_log_ctx *ctx)
6345 {
6346 	/*
6347 	 * We are deleting dir index items from the log tree or adding range
6348 	 * items to it.
6349 	 */
6350 	lockdep_assert_held(&inode->log_mutex);
6351 
6352 	if (list_empty(delayed_del_list))
6353 		return 0;
6354 
6355 	if (ctx->logged_before)
6356 		return log_delayed_deletions_incremental(trans, inode, path,
6357 							 delayed_del_list, ctx);
6358 
6359 	return log_delayed_deletions_full(trans, inode, path, delayed_del_list,
6360 					  ctx);
6361 }
6362 
6363 /*
6364  * Similar logic as for log_new_dir_dentries(), but it iterates over the delayed
6365  * items instead of the subvolume tree.
6366  */
log_new_delayed_dentries(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,const struct list_head * delayed_ins_list,struct btrfs_log_ctx * ctx)6367 static int log_new_delayed_dentries(struct btrfs_trans_handle *trans,
6368 				    struct btrfs_inode *inode,
6369 				    const struct list_head *delayed_ins_list,
6370 				    struct btrfs_log_ctx *ctx)
6371 {
6372 	const bool orig_log_new_dentries = ctx->log_new_dentries;
6373 	struct btrfs_delayed_item *item;
6374 	int ret = 0;
6375 
6376 	/*
6377 	 * No need for the log mutex, plus to avoid potential deadlocks or
6378 	 * lockdep annotations due to nesting of delayed inode mutexes and log
6379 	 * mutexes.
6380 	 */
6381 	lockdep_assert_not_held(&inode->log_mutex);
6382 
6383 	ASSERT(!ctx->logging_new_delayed_dentries);
6384 	ctx->logging_new_delayed_dentries = true;
6385 
6386 	list_for_each_entry(item, delayed_ins_list, log_list) {
6387 		struct btrfs_dir_item *dir_item;
6388 		struct btrfs_inode *di_inode;
6389 		struct btrfs_key key;
6390 		int log_mode = LOG_INODE_EXISTS;
6391 
6392 		dir_item = (struct btrfs_dir_item *)item->data;
6393 		btrfs_disk_key_to_cpu(&key, &dir_item->location);
6394 
6395 		if (key.type == BTRFS_ROOT_ITEM_KEY)
6396 			continue;
6397 
6398 		di_inode = btrfs_iget_logging(key.objectid, inode->root);
6399 		if (IS_ERR(di_inode)) {
6400 			ret = PTR_ERR(di_inode);
6401 			break;
6402 		}
6403 
6404 		if (!need_log_inode(trans, di_inode)) {
6405 			btrfs_add_delayed_iput(di_inode);
6406 			continue;
6407 		}
6408 
6409 		if (btrfs_stack_dir_ftype(dir_item) == BTRFS_FT_DIR)
6410 			log_mode = LOG_INODE_ALL;
6411 
6412 		ctx->log_new_dentries = false;
6413 		ret = btrfs_log_inode(trans, di_inode, log_mode, ctx);
6414 
6415 		if (!ret && ctx->log_new_dentries)
6416 			ret = log_new_dir_dentries(trans, di_inode, ctx);
6417 
6418 		btrfs_add_delayed_iput(di_inode);
6419 
6420 		if (ret)
6421 			break;
6422 	}
6423 
6424 	ctx->log_new_dentries = orig_log_new_dentries;
6425 	ctx->logging_new_delayed_dentries = false;
6426 
6427 	return ret;
6428 }
6429 
6430 /* log a single inode in the tree log.
6431  * At least one parent directory for this inode must exist in the tree
6432  * or be logged already.
6433  *
6434  * Any items from this inode changed by the current transaction are copied
6435  * to the log tree.  An extra reference is taken on any extents in this
6436  * file, allowing us to avoid a whole pile of corner cases around logging
6437  * blocks that have been removed from the tree.
6438  *
6439  * See LOG_INODE_ALL and related defines for a description of what inode_only
6440  * does.
6441  *
6442  * This handles both files and directories.
6443  */
btrfs_log_inode(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,int inode_only,struct btrfs_log_ctx * ctx)6444 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
6445 			   struct btrfs_inode *inode,
6446 			   int inode_only,
6447 			   struct btrfs_log_ctx *ctx)
6448 {
6449 	struct btrfs_path *path;
6450 	struct btrfs_path *dst_path;
6451 	struct btrfs_key min_key;
6452 	struct btrfs_key max_key;
6453 	struct btrfs_root *log = inode->root->log_root;
6454 	int ret;
6455 	bool fast_search = false;
6456 	u64 ino = btrfs_ino(inode);
6457 	struct extent_map_tree *em_tree = &inode->extent_tree;
6458 	u64 logged_isize = 0;
6459 	bool need_log_inode_item = true;
6460 	bool xattrs_logged = false;
6461 	bool inode_item_dropped = true;
6462 	bool full_dir_logging = false;
6463 	LIST_HEAD(delayed_ins_list);
6464 	LIST_HEAD(delayed_del_list);
6465 
6466 	path = btrfs_alloc_path();
6467 	if (!path)
6468 		return -ENOMEM;
6469 	dst_path = btrfs_alloc_path();
6470 	if (!dst_path) {
6471 		btrfs_free_path(path);
6472 		return -ENOMEM;
6473 	}
6474 
6475 	min_key.objectid = ino;
6476 	min_key.type = BTRFS_INODE_ITEM_KEY;
6477 	min_key.offset = 0;
6478 
6479 	max_key.objectid = ino;
6480 
6481 
6482 	/* today the code can only do partial logging of directories */
6483 	if (S_ISDIR(inode->vfs_inode.i_mode) ||
6484 	    (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
6485 		       &inode->runtime_flags) &&
6486 	     inode_only >= LOG_INODE_EXISTS))
6487 		max_key.type = BTRFS_XATTR_ITEM_KEY;
6488 	else
6489 		max_key.type = (u8)-1;
6490 	max_key.offset = (u64)-1;
6491 
6492 	if (S_ISDIR(inode->vfs_inode.i_mode) && inode_only == LOG_INODE_ALL)
6493 		full_dir_logging = true;
6494 
6495 	/*
6496 	 * If we are logging a directory while we are logging dentries of the
6497 	 * delayed items of some other inode, then we need to flush the delayed
6498 	 * items of this directory and not log the delayed items directly. This
6499 	 * is to prevent more than one level of recursion into btrfs_log_inode()
6500 	 * by having something like this:
6501 	 *
6502 	 *     $ mkdir -p a/b/c/d/e/f/g/h/...
6503 	 *     $ xfs_io -c "fsync" a
6504 	 *
6505 	 * Where all directories in the path did not exist before and are
6506 	 * created in the current transaction.
6507 	 * So in such a case we directly log the delayed items of the main
6508 	 * directory ("a") without flushing them first, while for each of its
6509 	 * subdirectories we flush their delayed items before logging them.
6510 	 * This prevents a potential unbounded recursion like this:
6511 	 *
6512 	 * btrfs_log_inode()
6513 	 *   log_new_delayed_dentries()
6514 	 *      btrfs_log_inode()
6515 	 *        log_new_delayed_dentries()
6516 	 *          btrfs_log_inode()
6517 	 *            log_new_delayed_dentries()
6518 	 *              (...)
6519 	 *
6520 	 * We have thresholds for the maximum number of delayed items to have in
6521 	 * memory, and once they are hit, the items are flushed asynchronously.
6522 	 * However the limit is quite high, so lets prevent deep levels of
6523 	 * recursion to happen by limiting the maximum depth to be 1.
6524 	 */
6525 	if (full_dir_logging && ctx->logging_new_delayed_dentries) {
6526 		ret = btrfs_commit_inode_delayed_items(trans, inode);
6527 		if (ret)
6528 			goto out;
6529 	}
6530 
6531 	mutex_lock(&inode->log_mutex);
6532 
6533 	/*
6534 	 * For symlinks, we must always log their content, which is stored in an
6535 	 * inline extent, otherwise we could end up with an empty symlink after
6536 	 * log replay, which is invalid on linux (symlink(2) returns -ENOENT if
6537 	 * one attempts to create an empty symlink).
6538 	 * We don't need to worry about flushing delalloc, because when we create
6539 	 * the inline extent when the symlink is created (we never have delalloc
6540 	 * for symlinks).
6541 	 */
6542 	if (S_ISLNK(inode->vfs_inode.i_mode))
6543 		inode_only = LOG_INODE_ALL;
6544 
6545 	/*
6546 	 * Before logging the inode item, cache the value returned by
6547 	 * inode_logged(), because after that we have the need to figure out if
6548 	 * the inode was previously logged in this transaction.
6549 	 */
6550 	ret = inode_logged(trans, inode, path);
6551 	if (ret < 0)
6552 		goto out_unlock;
6553 	ctx->logged_before = (ret == 1);
6554 	ret = 0;
6555 
6556 	/*
6557 	 * This is for cases where logging a directory could result in losing a
6558 	 * a file after replaying the log. For example, if we move a file from a
6559 	 * directory A to a directory B, then fsync directory A, we have no way
6560 	 * to known the file was moved from A to B, so logging just A would
6561 	 * result in losing the file after a log replay.
6562 	 */
6563 	if (full_dir_logging && inode->last_unlink_trans >= trans->transid) {
6564 		ret = BTRFS_LOG_FORCE_COMMIT;
6565 		goto out_unlock;
6566 	}
6567 
6568 	/*
6569 	 * a brute force approach to making sure we get the most uptodate
6570 	 * copies of everything.
6571 	 */
6572 	if (S_ISDIR(inode->vfs_inode.i_mode)) {
6573 		clear_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags);
6574 		if (ctx->logged_before)
6575 			ret = drop_inode_items(trans, log, path, inode,
6576 					       BTRFS_XATTR_ITEM_KEY);
6577 	} else {
6578 		if (inode_only == LOG_INODE_EXISTS && ctx->logged_before) {
6579 			/*
6580 			 * Make sure the new inode item we write to the log has
6581 			 * the same isize as the current one (if it exists).
6582 			 * This is necessary to prevent data loss after log
6583 			 * replay, and also to prevent doing a wrong expanding
6584 			 * truncate - for e.g. create file, write 4K into offset
6585 			 * 0, fsync, write 4K into offset 4096, add hard link,
6586 			 * fsync some other file (to sync log), power fail - if
6587 			 * we use the inode's current i_size, after log replay
6588 			 * we get a 8Kb file, with the last 4Kb extent as a hole
6589 			 * (zeroes), as if an expanding truncate happened,
6590 			 * instead of getting a file of 4Kb only.
6591 			 */
6592 			ret = logged_inode_size(log, inode, path, &logged_isize);
6593 			if (ret)
6594 				goto out_unlock;
6595 		}
6596 		if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
6597 			     &inode->runtime_flags)) {
6598 			if (inode_only == LOG_INODE_EXISTS) {
6599 				max_key.type = BTRFS_XATTR_ITEM_KEY;
6600 				if (ctx->logged_before)
6601 					ret = drop_inode_items(trans, log, path,
6602 							       inode, max_key.type);
6603 			} else {
6604 				clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
6605 					  &inode->runtime_flags);
6606 				clear_bit(BTRFS_INODE_COPY_EVERYTHING,
6607 					  &inode->runtime_flags);
6608 				if (ctx->logged_before)
6609 					ret = truncate_inode_items(trans, log,
6610 								   inode, 0, 0);
6611 			}
6612 		} else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
6613 					      &inode->runtime_flags) ||
6614 			   inode_only == LOG_INODE_EXISTS) {
6615 			if (inode_only == LOG_INODE_ALL)
6616 				fast_search = true;
6617 			max_key.type = BTRFS_XATTR_ITEM_KEY;
6618 			if (ctx->logged_before)
6619 				ret = drop_inode_items(trans, log, path, inode,
6620 						       max_key.type);
6621 		} else {
6622 			if (inode_only == LOG_INODE_ALL)
6623 				fast_search = true;
6624 			inode_item_dropped = false;
6625 			goto log_extents;
6626 		}
6627 
6628 	}
6629 	if (ret)
6630 		goto out_unlock;
6631 
6632 	/*
6633 	 * If we are logging a directory in full mode, collect the delayed items
6634 	 * before iterating the subvolume tree, so that we don't miss any new
6635 	 * dir index items in case they get flushed while or right after we are
6636 	 * iterating the subvolume tree.
6637 	 */
6638 	if (full_dir_logging && !ctx->logging_new_delayed_dentries)
6639 		btrfs_log_get_delayed_items(inode, &delayed_ins_list,
6640 					    &delayed_del_list);
6641 
6642 	/*
6643 	 * If we are fsyncing a file with 0 hard links, then commit the delayed
6644 	 * inode because the last inode ref (or extref) item may still be in the
6645 	 * subvolume tree and if we log it the file will still exist after a log
6646 	 * replay. So commit the delayed inode to delete that last ref and we
6647 	 * skip logging it.
6648 	 */
6649 	if (inode->vfs_inode.i_nlink == 0) {
6650 		ret = btrfs_commit_inode_delayed_inode(inode);
6651 		if (ret)
6652 			goto out_unlock;
6653 	}
6654 
6655 	ret = copy_inode_items_to_log(trans, inode, &min_key, &max_key,
6656 				      path, dst_path, logged_isize,
6657 				      inode_only, ctx,
6658 				      &need_log_inode_item);
6659 	if (ret)
6660 		goto out_unlock;
6661 
6662 	btrfs_release_path(path);
6663 	btrfs_release_path(dst_path);
6664 	ret = btrfs_log_all_xattrs(trans, inode, path, dst_path, ctx);
6665 	if (ret)
6666 		goto out_unlock;
6667 	xattrs_logged = true;
6668 	if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
6669 		btrfs_release_path(path);
6670 		btrfs_release_path(dst_path);
6671 		ret = btrfs_log_holes(trans, inode, path);
6672 		if (ret)
6673 			goto out_unlock;
6674 	}
6675 log_extents:
6676 	btrfs_release_path(path);
6677 	btrfs_release_path(dst_path);
6678 	if (need_log_inode_item) {
6679 		ret = log_inode_item(trans, log, dst_path, inode, inode_item_dropped);
6680 		if (ret)
6681 			goto out_unlock;
6682 		/*
6683 		 * If we are doing a fast fsync and the inode was logged before
6684 		 * in this transaction, we don't need to log the xattrs because
6685 		 * they were logged before. If xattrs were added, changed or
6686 		 * deleted since the last time we logged the inode, then we have
6687 		 * already logged them because the inode had the runtime flag
6688 		 * BTRFS_INODE_COPY_EVERYTHING set.
6689 		 */
6690 		if (!xattrs_logged && inode->logged_trans < trans->transid) {
6691 			ret = btrfs_log_all_xattrs(trans, inode, path, dst_path, ctx);
6692 			if (ret)
6693 				goto out_unlock;
6694 			btrfs_release_path(path);
6695 		}
6696 	}
6697 	if (fast_search) {
6698 		ret = btrfs_log_changed_extents(trans, inode, dst_path, ctx);
6699 		if (ret)
6700 			goto out_unlock;
6701 	} else if (inode_only == LOG_INODE_ALL) {
6702 		struct extent_map *em, *n;
6703 
6704 		write_lock(&em_tree->lock);
6705 		list_for_each_entry_safe(em, n, &em_tree->modified_extents, list)
6706 			list_del_init(&em->list);
6707 		write_unlock(&em_tree->lock);
6708 	}
6709 
6710 	if (full_dir_logging) {
6711 		ret = log_directory_changes(trans, inode, path, dst_path, ctx);
6712 		if (ret)
6713 			goto out_unlock;
6714 		ret = log_delayed_insertion_items(trans, inode, path,
6715 						  &delayed_ins_list, ctx);
6716 		if (ret)
6717 			goto out_unlock;
6718 		ret = log_delayed_deletion_items(trans, inode, path,
6719 						 &delayed_del_list, ctx);
6720 		if (ret)
6721 			goto out_unlock;
6722 	}
6723 
6724 	spin_lock(&inode->lock);
6725 	inode->logged_trans = trans->transid;
6726 	/*
6727 	 * Don't update last_log_commit if we logged that an inode exists.
6728 	 * We do this for three reasons:
6729 	 *
6730 	 * 1) We might have had buffered writes to this inode that were
6731 	 *    flushed and had their ordered extents completed in this
6732 	 *    transaction, but we did not previously log the inode with
6733 	 *    LOG_INODE_ALL. Later the inode was evicted and after that
6734 	 *    it was loaded again and this LOG_INODE_EXISTS log operation
6735 	 *    happened. We must make sure that if an explicit fsync against
6736 	 *    the inode is performed later, it logs the new extents, an
6737 	 *    updated inode item, etc, and syncs the log. The same logic
6738 	 *    applies to direct IO writes instead of buffered writes.
6739 	 *
6740 	 * 2) When we log the inode with LOG_INODE_EXISTS, its inode item
6741 	 *    is logged with an i_size of 0 or whatever value was logged
6742 	 *    before. If later the i_size of the inode is increased by a
6743 	 *    truncate operation, the log is synced through an fsync of
6744 	 *    some other inode and then finally an explicit fsync against
6745 	 *    this inode is made, we must make sure this fsync logs the
6746 	 *    inode with the new i_size, the hole between old i_size and
6747 	 *    the new i_size, and syncs the log.
6748 	 *
6749 	 * 3) If we are logging that an ancestor inode exists as part of
6750 	 *    logging a new name from a link or rename operation, don't update
6751 	 *    its last_log_commit - otherwise if an explicit fsync is made
6752 	 *    against an ancestor, the fsync considers the inode in the log
6753 	 *    and doesn't sync the log, resulting in the ancestor missing after
6754 	 *    a power failure unless the log was synced as part of an fsync
6755 	 *    against any other unrelated inode.
6756 	 */
6757 	if (inode_only != LOG_INODE_EXISTS)
6758 		inode->last_log_commit = inode->last_sub_trans;
6759 	spin_unlock(&inode->lock);
6760 
6761 	/*
6762 	 * Reset the last_reflink_trans so that the next fsync does not need to
6763 	 * go through the slower path when logging extents and their checksums.
6764 	 */
6765 	if (inode_only == LOG_INODE_ALL)
6766 		inode->last_reflink_trans = 0;
6767 
6768 out_unlock:
6769 	mutex_unlock(&inode->log_mutex);
6770 out:
6771 	btrfs_free_path(path);
6772 	btrfs_free_path(dst_path);
6773 
6774 	if (ret)
6775 		free_conflicting_inodes(ctx);
6776 	else
6777 		ret = log_conflicting_inodes(trans, inode->root, ctx);
6778 
6779 	if (full_dir_logging && !ctx->logging_new_delayed_dentries) {
6780 		if (!ret)
6781 			ret = log_new_delayed_dentries(trans, inode,
6782 						       &delayed_ins_list, ctx);
6783 
6784 		btrfs_log_put_delayed_items(inode, &delayed_ins_list,
6785 					    &delayed_del_list);
6786 	}
6787 
6788 	return ret;
6789 }
6790 
btrfs_log_all_parents(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_log_ctx * ctx)6791 static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
6792 				 struct btrfs_inode *inode,
6793 				 struct btrfs_log_ctx *ctx)
6794 {
6795 	int ret;
6796 	struct btrfs_path *path;
6797 	struct btrfs_key key;
6798 	struct btrfs_root *root = inode->root;
6799 	const u64 ino = btrfs_ino(inode);
6800 
6801 	path = btrfs_alloc_path();
6802 	if (!path)
6803 		return -ENOMEM;
6804 	path->skip_locking = 1;
6805 	path->search_commit_root = 1;
6806 
6807 	key.objectid = ino;
6808 	key.type = BTRFS_INODE_REF_KEY;
6809 	key.offset = 0;
6810 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6811 	if (ret < 0)
6812 		goto out;
6813 
6814 	while (true) {
6815 		struct extent_buffer *leaf = path->nodes[0];
6816 		int slot = path->slots[0];
6817 		u32 cur_offset = 0;
6818 		u32 item_size;
6819 		unsigned long ptr;
6820 
6821 		if (slot >= btrfs_header_nritems(leaf)) {
6822 			ret = btrfs_next_leaf(root, path);
6823 			if (ret < 0)
6824 				goto out;
6825 			else if (ret > 0)
6826 				break;
6827 			continue;
6828 		}
6829 
6830 		btrfs_item_key_to_cpu(leaf, &key, slot);
6831 		/* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
6832 		if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
6833 			break;
6834 
6835 		item_size = btrfs_item_size(leaf, slot);
6836 		ptr = btrfs_item_ptr_offset(leaf, slot);
6837 		while (cur_offset < item_size) {
6838 			struct btrfs_key inode_key;
6839 			struct btrfs_inode *dir_inode;
6840 
6841 			inode_key.type = BTRFS_INODE_ITEM_KEY;
6842 			inode_key.offset = 0;
6843 
6844 			if (key.type == BTRFS_INODE_EXTREF_KEY) {
6845 				struct btrfs_inode_extref *extref;
6846 
6847 				extref = (struct btrfs_inode_extref *)
6848 					(ptr + cur_offset);
6849 				inode_key.objectid = btrfs_inode_extref_parent(
6850 					leaf, extref);
6851 				cur_offset += sizeof(*extref);
6852 				cur_offset += btrfs_inode_extref_name_len(leaf,
6853 					extref);
6854 			} else {
6855 				inode_key.objectid = key.offset;
6856 				cur_offset = item_size;
6857 			}
6858 
6859 			dir_inode = btrfs_iget_logging(inode_key.objectid, root);
6860 			/*
6861 			 * If the parent inode was deleted, return an error to
6862 			 * fallback to a transaction commit. This is to prevent
6863 			 * getting an inode that was moved from one parent A to
6864 			 * a parent B, got its former parent A deleted and then
6865 			 * it got fsync'ed, from existing at both parents after
6866 			 * a log replay (and the old parent still existing).
6867 			 * Example:
6868 			 *
6869 			 * mkdir /mnt/A
6870 			 * mkdir /mnt/B
6871 			 * touch /mnt/B/bar
6872 			 * sync
6873 			 * mv /mnt/B/bar /mnt/A/bar
6874 			 * mv -T /mnt/A /mnt/B
6875 			 * fsync /mnt/B/bar
6876 			 * <power fail>
6877 			 *
6878 			 * If we ignore the old parent B which got deleted,
6879 			 * after a log replay we would have file bar linked
6880 			 * at both parents and the old parent B would still
6881 			 * exist.
6882 			 */
6883 			if (IS_ERR(dir_inode)) {
6884 				ret = PTR_ERR(dir_inode);
6885 				goto out;
6886 			}
6887 
6888 			if (!need_log_inode(trans, dir_inode)) {
6889 				btrfs_add_delayed_iput(dir_inode);
6890 				continue;
6891 			}
6892 
6893 			ctx->log_new_dentries = false;
6894 			ret = btrfs_log_inode(trans, dir_inode, LOG_INODE_ALL, ctx);
6895 			if (!ret && ctx->log_new_dentries)
6896 				ret = log_new_dir_dentries(trans, dir_inode, ctx);
6897 			btrfs_add_delayed_iput(dir_inode);
6898 			if (ret)
6899 				goto out;
6900 		}
6901 		path->slots[0]++;
6902 	}
6903 	ret = 0;
6904 out:
6905 	btrfs_free_path(path);
6906 	return ret;
6907 }
6908 
log_new_ancestors(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_log_ctx * ctx)6909 static int log_new_ancestors(struct btrfs_trans_handle *trans,
6910 			     struct btrfs_root *root,
6911 			     struct btrfs_path *path,
6912 			     struct btrfs_log_ctx *ctx)
6913 {
6914 	struct btrfs_key found_key;
6915 
6916 	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
6917 
6918 	while (true) {
6919 		struct extent_buffer *leaf;
6920 		int slot;
6921 		struct btrfs_key search_key;
6922 		struct btrfs_inode *inode;
6923 		u64 ino;
6924 		int ret = 0;
6925 
6926 		btrfs_release_path(path);
6927 
6928 		ino = found_key.offset;
6929 
6930 		search_key.objectid = found_key.offset;
6931 		search_key.type = BTRFS_INODE_ITEM_KEY;
6932 		search_key.offset = 0;
6933 		inode = btrfs_iget_logging(ino, root);
6934 		if (IS_ERR(inode))
6935 			return PTR_ERR(inode);
6936 
6937 		if (inode->generation >= trans->transid &&
6938 		    need_log_inode(trans, inode))
6939 			ret = btrfs_log_inode(trans, inode, LOG_INODE_EXISTS, ctx);
6940 		btrfs_add_delayed_iput(inode);
6941 		if (ret)
6942 			return ret;
6943 
6944 		if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID)
6945 			break;
6946 
6947 		search_key.type = BTRFS_INODE_REF_KEY;
6948 		ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
6949 		if (ret < 0)
6950 			return ret;
6951 
6952 		leaf = path->nodes[0];
6953 		slot = path->slots[0];
6954 		if (slot >= btrfs_header_nritems(leaf)) {
6955 			ret = btrfs_next_leaf(root, path);
6956 			if (ret < 0)
6957 				return ret;
6958 			else if (ret > 0)
6959 				return -ENOENT;
6960 			leaf = path->nodes[0];
6961 			slot = path->slots[0];
6962 		}
6963 
6964 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
6965 		if (found_key.objectid != search_key.objectid ||
6966 		    found_key.type != BTRFS_INODE_REF_KEY)
6967 			return -ENOENT;
6968 	}
6969 	return 0;
6970 }
6971 
log_new_ancestors_fast(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct dentry * parent,struct btrfs_log_ctx * ctx)6972 static int log_new_ancestors_fast(struct btrfs_trans_handle *trans,
6973 				  struct btrfs_inode *inode,
6974 				  struct dentry *parent,
6975 				  struct btrfs_log_ctx *ctx)
6976 {
6977 	struct btrfs_root *root = inode->root;
6978 	struct dentry *old_parent = NULL;
6979 	struct super_block *sb = inode->vfs_inode.i_sb;
6980 	int ret = 0;
6981 
6982 	while (true) {
6983 		if (!parent || d_really_is_negative(parent) ||
6984 		    sb != parent->d_sb)
6985 			break;
6986 
6987 		inode = BTRFS_I(d_inode(parent));
6988 		if (root != inode->root)
6989 			break;
6990 
6991 		if (inode->generation >= trans->transid &&
6992 		    need_log_inode(trans, inode)) {
6993 			ret = btrfs_log_inode(trans, inode,
6994 					      LOG_INODE_EXISTS, ctx);
6995 			if (ret)
6996 				break;
6997 		}
6998 		if (IS_ROOT(parent))
6999 			break;
7000 
7001 		parent = dget_parent(parent);
7002 		dput(old_parent);
7003 		old_parent = parent;
7004 	}
7005 	dput(old_parent);
7006 
7007 	return ret;
7008 }
7009 
log_all_new_ancestors(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct dentry * parent,struct btrfs_log_ctx * ctx)7010 static int log_all_new_ancestors(struct btrfs_trans_handle *trans,
7011 				 struct btrfs_inode *inode,
7012 				 struct dentry *parent,
7013 				 struct btrfs_log_ctx *ctx)
7014 {
7015 	struct btrfs_root *root = inode->root;
7016 	const u64 ino = btrfs_ino(inode);
7017 	struct btrfs_path *path;
7018 	struct btrfs_key search_key;
7019 	int ret;
7020 
7021 	/*
7022 	 * For a single hard link case, go through a fast path that does not
7023 	 * need to iterate the fs/subvolume tree.
7024 	 */
7025 	if (inode->vfs_inode.i_nlink < 2)
7026 		return log_new_ancestors_fast(trans, inode, parent, ctx);
7027 
7028 	path = btrfs_alloc_path();
7029 	if (!path)
7030 		return -ENOMEM;
7031 
7032 	search_key.objectid = ino;
7033 	search_key.type = BTRFS_INODE_REF_KEY;
7034 	search_key.offset = 0;
7035 again:
7036 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
7037 	if (ret < 0)
7038 		goto out;
7039 	if (ret == 0)
7040 		path->slots[0]++;
7041 
7042 	while (true) {
7043 		struct extent_buffer *leaf = path->nodes[0];
7044 		int slot = path->slots[0];
7045 		struct btrfs_key found_key;
7046 
7047 		if (slot >= btrfs_header_nritems(leaf)) {
7048 			ret = btrfs_next_leaf(root, path);
7049 			if (ret < 0)
7050 				goto out;
7051 			else if (ret > 0)
7052 				break;
7053 			continue;
7054 		}
7055 
7056 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
7057 		if (found_key.objectid != ino ||
7058 		    found_key.type > BTRFS_INODE_EXTREF_KEY)
7059 			break;
7060 
7061 		/*
7062 		 * Don't deal with extended references because they are rare
7063 		 * cases and too complex to deal with (we would need to keep
7064 		 * track of which subitem we are processing for each item in
7065 		 * this loop, etc). So just return some error to fallback to
7066 		 * a transaction commit.
7067 		 */
7068 		if (found_key.type == BTRFS_INODE_EXTREF_KEY) {
7069 			ret = -EMLINK;
7070 			goto out;
7071 		}
7072 
7073 		/*
7074 		 * Logging ancestors needs to do more searches on the fs/subvol
7075 		 * tree, so it releases the path as needed to avoid deadlocks.
7076 		 * Keep track of the last inode ref key and resume from that key
7077 		 * after logging all new ancestors for the current hard link.
7078 		 */
7079 		memcpy(&search_key, &found_key, sizeof(search_key));
7080 
7081 		ret = log_new_ancestors(trans, root, path, ctx);
7082 		if (ret)
7083 			goto out;
7084 		btrfs_release_path(path);
7085 		goto again;
7086 	}
7087 	ret = 0;
7088 out:
7089 	btrfs_free_path(path);
7090 	return ret;
7091 }
7092 
7093 /*
7094  * helper function around btrfs_log_inode to make sure newly created
7095  * parent directories also end up in the log.  A minimal inode and backref
7096  * only logging is done of any parent directories that are older than
7097  * the last committed transaction
7098  */
btrfs_log_inode_parent(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct dentry * parent,int inode_only,struct btrfs_log_ctx * ctx)7099 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
7100 				  struct btrfs_inode *inode,
7101 				  struct dentry *parent,
7102 				  int inode_only,
7103 				  struct btrfs_log_ctx *ctx)
7104 {
7105 	struct btrfs_root *root = inode->root;
7106 	struct btrfs_fs_info *fs_info = root->fs_info;
7107 	int ret = 0;
7108 	bool log_dentries;
7109 
7110 	if (btrfs_test_opt(fs_info, NOTREELOG))
7111 		return BTRFS_LOG_FORCE_COMMIT;
7112 
7113 	if (btrfs_root_refs(&root->root_item) == 0)
7114 		return BTRFS_LOG_FORCE_COMMIT;
7115 
7116 	/*
7117 	 * If we're logging an inode from a subvolume created in the current
7118 	 * transaction we must force a commit since the root is not persisted.
7119 	 */
7120 	if (btrfs_root_generation(&root->root_item) == trans->transid)
7121 		return BTRFS_LOG_FORCE_COMMIT;
7122 
7123 	/* Skip already logged inodes and without new extents. */
7124 	if (btrfs_inode_in_log(inode, trans->transid) &&
7125 	    list_empty(&ctx->ordered_extents))
7126 		return BTRFS_NO_LOG_SYNC;
7127 
7128 	ret = start_log_trans(trans, root, ctx);
7129 	if (ret)
7130 		return ret;
7131 
7132 	ret = btrfs_log_inode(trans, inode, inode_only, ctx);
7133 	if (ret)
7134 		goto end_trans;
7135 
7136 	/*
7137 	 * for regular files, if its inode is already on disk, we don't
7138 	 * have to worry about the parents at all.  This is because
7139 	 * we can use the last_unlink_trans field to record renames
7140 	 * and other fun in this file.
7141 	 */
7142 	if (S_ISREG(inode->vfs_inode.i_mode) &&
7143 	    inode->generation < trans->transid &&
7144 	    inode->last_unlink_trans < trans->transid) {
7145 		ret = 0;
7146 		goto end_trans;
7147 	}
7148 
7149 	/*
7150 	 * Track if we need to log dentries because ctx->log_new_dentries can
7151 	 * be modified in the call chains below.
7152 	 */
7153 	log_dentries = ctx->log_new_dentries;
7154 
7155 	/*
7156 	 * On unlink we must make sure all our current and old parent directory
7157 	 * inodes are fully logged. This is to prevent leaving dangling
7158 	 * directory index entries in directories that were our parents but are
7159 	 * not anymore. Not doing this results in old parent directory being
7160 	 * impossible to delete after log replay (rmdir will always fail with
7161 	 * error -ENOTEMPTY).
7162 	 *
7163 	 * Example 1:
7164 	 *
7165 	 * mkdir testdir
7166 	 * touch testdir/foo
7167 	 * ln testdir/foo testdir/bar
7168 	 * sync
7169 	 * unlink testdir/bar
7170 	 * xfs_io -c fsync testdir/foo
7171 	 * <power failure>
7172 	 * mount fs, triggers log replay
7173 	 *
7174 	 * If we don't log the parent directory (testdir), after log replay the
7175 	 * directory still has an entry pointing to the file inode using the bar
7176 	 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
7177 	 * the file inode has a link count of 1.
7178 	 *
7179 	 * Example 2:
7180 	 *
7181 	 * mkdir testdir
7182 	 * touch foo
7183 	 * ln foo testdir/foo2
7184 	 * ln foo testdir/foo3
7185 	 * sync
7186 	 * unlink testdir/foo3
7187 	 * xfs_io -c fsync foo
7188 	 * <power failure>
7189 	 * mount fs, triggers log replay
7190 	 *
7191 	 * Similar as the first example, after log replay the parent directory
7192 	 * testdir still has an entry pointing to the inode file with name foo3
7193 	 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
7194 	 * and has a link count of 2.
7195 	 */
7196 	if (inode->last_unlink_trans >= trans->transid) {
7197 		ret = btrfs_log_all_parents(trans, inode, ctx);
7198 		if (ret)
7199 			goto end_trans;
7200 	}
7201 
7202 	ret = log_all_new_ancestors(trans, inode, parent, ctx);
7203 	if (ret)
7204 		goto end_trans;
7205 
7206 	if (log_dentries)
7207 		ret = log_new_dir_dentries(trans, inode, ctx);
7208 end_trans:
7209 	if (ret < 0) {
7210 		btrfs_set_log_full_commit(trans);
7211 		ret = BTRFS_LOG_FORCE_COMMIT;
7212 	}
7213 
7214 	if (ret)
7215 		btrfs_remove_log_ctx(root, ctx);
7216 	btrfs_end_log_trans(root);
7217 
7218 	return ret;
7219 }
7220 
7221 /*
7222  * it is not safe to log dentry if the chunk root has added new
7223  * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
7224  * If this returns 1, you must commit the transaction to safely get your
7225  * data on disk.
7226  */
btrfs_log_dentry_safe(struct btrfs_trans_handle * trans,struct dentry * dentry,struct btrfs_log_ctx * ctx)7227 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
7228 			  struct dentry *dentry,
7229 			  struct btrfs_log_ctx *ctx)
7230 {
7231 	struct dentry *parent = dget_parent(dentry);
7232 	int ret;
7233 
7234 	ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent,
7235 				     LOG_INODE_ALL, ctx);
7236 	dput(parent);
7237 
7238 	return ret;
7239 }
7240 
7241 /*
7242  * should be called during mount to recover any replay any log trees
7243  * from the FS
7244  */
btrfs_recover_log_trees(struct btrfs_root * log_root_tree)7245 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
7246 {
7247 	int ret;
7248 	struct btrfs_path *path;
7249 	struct btrfs_trans_handle *trans;
7250 	struct btrfs_key key;
7251 	struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
7252 	struct walk_control wc = {
7253 		.process_func = process_one_buffer,
7254 		.stage = LOG_WALK_PIN_ONLY,
7255 	};
7256 
7257 	path = btrfs_alloc_path();
7258 	if (!path)
7259 		return -ENOMEM;
7260 
7261 	set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
7262 
7263 	trans = btrfs_start_transaction(fs_info->tree_root, 0);
7264 	if (IS_ERR(trans)) {
7265 		ret = PTR_ERR(trans);
7266 		goto error;
7267 	}
7268 
7269 	wc.trans = trans;
7270 	wc.pin = 1;
7271 
7272 	ret = walk_log_tree(trans, log_root_tree, &wc);
7273 	if (ret) {
7274 		btrfs_abort_transaction(trans, ret);
7275 		goto error;
7276 	}
7277 
7278 again:
7279 	key.objectid = BTRFS_TREE_LOG_OBJECTID;
7280 	key.type = BTRFS_ROOT_ITEM_KEY;
7281 	key.offset = (u64)-1;
7282 
7283 	while (1) {
7284 		struct btrfs_root *log;
7285 		struct btrfs_key found_key;
7286 
7287 		ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
7288 
7289 		if (ret < 0) {
7290 			btrfs_abort_transaction(trans, ret);
7291 			goto error;
7292 		}
7293 		if (ret > 0) {
7294 			if (path->slots[0] == 0)
7295 				break;
7296 			path->slots[0]--;
7297 		}
7298 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
7299 				      path->slots[0]);
7300 		btrfs_release_path(path);
7301 		if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
7302 			break;
7303 
7304 		log = btrfs_read_tree_root(log_root_tree, &found_key);
7305 		if (IS_ERR(log)) {
7306 			ret = PTR_ERR(log);
7307 			btrfs_abort_transaction(trans, ret);
7308 			goto error;
7309 		}
7310 
7311 		wc.replay_dest = btrfs_get_fs_root(fs_info, found_key.offset,
7312 						   true);
7313 		if (IS_ERR(wc.replay_dest)) {
7314 			ret = PTR_ERR(wc.replay_dest);
7315 			wc.replay_dest = NULL;
7316 			if (ret != -ENOENT) {
7317 				btrfs_put_root(log);
7318 				btrfs_abort_transaction(trans, ret);
7319 				goto error;
7320 			}
7321 
7322 			/*
7323 			 * We didn't find the subvol, likely because it was
7324 			 * deleted.  This is ok, simply skip this log and go to
7325 			 * the next one.
7326 			 *
7327 			 * We need to exclude the root because we can't have
7328 			 * other log replays overwriting this log as we'll read
7329 			 * it back in a few more times.  This will keep our
7330 			 * block from being modified, and we'll just bail for
7331 			 * each subsequent pass.
7332 			 */
7333 			ret = btrfs_pin_extent_for_log_replay(trans, log->node);
7334 			if (ret) {
7335 				btrfs_put_root(log);
7336 				btrfs_abort_transaction(trans, ret);
7337 				goto error;
7338 			}
7339 			goto next;
7340 		}
7341 
7342 		wc.replay_dest->log_root = log;
7343 		ret = btrfs_record_root_in_trans(trans, wc.replay_dest);
7344 		if (ret) {
7345 			btrfs_abort_transaction(trans, ret);
7346 			goto next;
7347 		}
7348 
7349 		ret = walk_log_tree(trans, log, &wc);
7350 		if (ret) {
7351 			btrfs_abort_transaction(trans, ret);
7352 			goto next;
7353 		}
7354 
7355 		if (wc.stage == LOG_WALK_REPLAY_ALL) {
7356 			struct btrfs_root *root = wc.replay_dest;
7357 
7358 			ret = fixup_inode_link_counts(trans, wc.replay_dest, path);
7359 			if (ret) {
7360 				btrfs_abort_transaction(trans, ret);
7361 				goto next;
7362 			}
7363 			/*
7364 			 * We have just replayed everything, and the highest
7365 			 * objectid of fs roots probably has changed in case
7366 			 * some inode_item's got replayed.
7367 			 *
7368 			 * root->objectid_mutex is not acquired as log replay
7369 			 * could only happen during mount.
7370 			 */
7371 			ret = btrfs_init_root_free_objectid(root);
7372 			if (ret) {
7373 				btrfs_abort_transaction(trans, ret);
7374 				goto next;
7375 			}
7376 		}
7377 next:
7378 		if (wc.replay_dest) {
7379 			wc.replay_dest->log_root = NULL;
7380 			btrfs_put_root(wc.replay_dest);
7381 		}
7382 		btrfs_put_root(log);
7383 
7384 		if (ret)
7385 			goto error;
7386 		if (found_key.offset == 0)
7387 			break;
7388 		key.offset = found_key.offset - 1;
7389 	}
7390 	btrfs_release_path(path);
7391 
7392 	/* step one is to pin it all, step two is to replay just inodes */
7393 	if (wc.pin) {
7394 		wc.pin = 0;
7395 		wc.process_func = replay_one_buffer;
7396 		wc.stage = LOG_WALK_REPLAY_INODES;
7397 		goto again;
7398 	}
7399 	/* step three is to replay everything */
7400 	if (wc.stage < LOG_WALK_REPLAY_ALL) {
7401 		wc.stage++;
7402 		goto again;
7403 	}
7404 
7405 	btrfs_free_path(path);
7406 
7407 	/* step 4: commit the transaction, which also unpins the blocks */
7408 	ret = btrfs_commit_transaction(trans);
7409 	if (ret)
7410 		return ret;
7411 
7412 	log_root_tree->log_root = NULL;
7413 	clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
7414 	btrfs_put_root(log_root_tree);
7415 
7416 	return 0;
7417 error:
7418 	if (wc.trans)
7419 		btrfs_end_transaction(wc.trans);
7420 	clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
7421 	btrfs_free_path(path);
7422 	return ret;
7423 }
7424 
7425 /*
7426  * there are some corner cases where we want to force a full
7427  * commit instead of allowing a directory to be logged.
7428  *
7429  * They revolve around files there were unlinked from the directory, and
7430  * this function updates the parent directory so that a full commit is
7431  * properly done if it is fsync'd later after the unlinks are done.
7432  *
7433  * Must be called before the unlink operations (updates to the subvolume tree,
7434  * inodes, etc) are done.
7435  */
btrfs_record_unlink_dir(struct btrfs_trans_handle * trans,struct btrfs_inode * dir,struct btrfs_inode * inode,bool for_rename)7436 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
7437 			     struct btrfs_inode *dir, struct btrfs_inode *inode,
7438 			     bool for_rename)
7439 {
7440 	/*
7441 	 * when we're logging a file, if it hasn't been renamed
7442 	 * or unlinked, and its inode is fully committed on disk,
7443 	 * we don't have to worry about walking up the directory chain
7444 	 * to log its parents.
7445 	 *
7446 	 * So, we use the last_unlink_trans field to put this transid
7447 	 * into the file.  When the file is logged we check it and
7448 	 * don't log the parents if the file is fully on disk.
7449 	 */
7450 	mutex_lock(&inode->log_mutex);
7451 	inode->last_unlink_trans = trans->transid;
7452 	mutex_unlock(&inode->log_mutex);
7453 
7454 	if (!for_rename)
7455 		return;
7456 
7457 	/*
7458 	 * If this directory was already logged, any new names will be logged
7459 	 * with btrfs_log_new_name() and old names will be deleted from the log
7460 	 * tree with btrfs_del_dir_entries_in_log() or with
7461 	 * btrfs_del_inode_ref_in_log().
7462 	 */
7463 	if (inode_logged(trans, dir, NULL) == 1)
7464 		return;
7465 
7466 	/*
7467 	 * If the inode we're about to unlink was logged before, the log will be
7468 	 * properly updated with the new name with btrfs_log_new_name() and the
7469 	 * old name removed with btrfs_del_dir_entries_in_log() or with
7470 	 * btrfs_del_inode_ref_in_log().
7471 	 */
7472 	if (inode_logged(trans, inode, NULL) == 1)
7473 		return;
7474 
7475 	/*
7476 	 * when renaming files across directories, if the directory
7477 	 * there we're unlinking from gets fsync'd later on, there's
7478 	 * no way to find the destination directory later and fsync it
7479 	 * properly.  So, we have to be conservative and force commits
7480 	 * so the new name gets discovered.
7481 	 */
7482 	mutex_lock(&dir->log_mutex);
7483 	dir->last_unlink_trans = trans->transid;
7484 	mutex_unlock(&dir->log_mutex);
7485 }
7486 
7487 /*
7488  * Make sure that if someone attempts to fsync the parent directory of a deleted
7489  * snapshot, it ends up triggering a transaction commit. This is to guarantee
7490  * that after replaying the log tree of the parent directory's root we will not
7491  * see the snapshot anymore and at log replay time we will not see any log tree
7492  * corresponding to the deleted snapshot's root, which could lead to replaying
7493  * it after replaying the log tree of the parent directory (which would replay
7494  * the snapshot delete operation).
7495  *
7496  * Must be called before the actual snapshot destroy operation (updates to the
7497  * parent root and tree of tree roots trees, etc) are done.
7498  */
btrfs_record_snapshot_destroy(struct btrfs_trans_handle * trans,struct btrfs_inode * dir)7499 void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
7500 				   struct btrfs_inode *dir)
7501 {
7502 	mutex_lock(&dir->log_mutex);
7503 	dir->last_unlink_trans = trans->transid;
7504 	mutex_unlock(&dir->log_mutex);
7505 }
7506 
7507 /*
7508  * Call this when creating a subvolume in a directory.
7509  * Because we don't commit a transaction when creating a subvolume, we can't
7510  * allow the directory pointing to the subvolume to be logged with an entry that
7511  * points to an unpersisted root if we are still in the transaction used to
7512  * create the subvolume, so make any attempt to log the directory to result in a
7513  * full log sync.
7514  * Also we don't need to worry with renames, since btrfs_rename() marks the log
7515  * for full commit when renaming a subvolume.
7516  *
7517  * Must be called before creating the subvolume entry in its parent directory.
7518  */
btrfs_record_new_subvolume(const struct btrfs_trans_handle * trans,struct btrfs_inode * dir)7519 void btrfs_record_new_subvolume(const struct btrfs_trans_handle *trans,
7520 				struct btrfs_inode *dir)
7521 {
7522 	mutex_lock(&dir->log_mutex);
7523 	dir->last_unlink_trans = trans->transid;
7524 	mutex_unlock(&dir->log_mutex);
7525 }
7526 
7527 /*
7528  * Update the log after adding a new name for an inode.
7529  *
7530  * @trans:              Transaction handle.
7531  * @old_dentry:         The dentry associated with the old name and the old
7532  *                      parent directory.
7533  * @old_dir:            The inode of the previous parent directory for the case
7534  *                      of a rename. For a link operation, it must be NULL.
7535  * @old_dir_index:      The index number associated with the old name, meaningful
7536  *                      only for rename operations (when @old_dir is not NULL).
7537  *                      Ignored for link operations.
7538  * @parent:             The dentry associated with the directory under which the
7539  *                      new name is located.
7540  *
7541  * Call this after adding a new name for an inode, as a result of a link or
7542  * rename operation, and it will properly update the log to reflect the new name.
7543  */
btrfs_log_new_name(struct btrfs_trans_handle * trans,struct dentry * old_dentry,struct btrfs_inode * old_dir,u64 old_dir_index,struct dentry * parent)7544 void btrfs_log_new_name(struct btrfs_trans_handle *trans,
7545 			struct dentry *old_dentry, struct btrfs_inode *old_dir,
7546 			u64 old_dir_index, struct dentry *parent)
7547 {
7548 	struct btrfs_inode *inode = BTRFS_I(d_inode(old_dentry));
7549 	struct btrfs_root *root = inode->root;
7550 	struct btrfs_log_ctx ctx;
7551 	bool log_pinned = false;
7552 	int ret;
7553 
7554 	btrfs_init_log_ctx(&ctx, inode);
7555 	ctx.logging_new_name = true;
7556 
7557 	/*
7558 	 * this will force the logging code to walk the dentry chain
7559 	 * up for the file
7560 	 */
7561 	if (!S_ISDIR(inode->vfs_inode.i_mode))
7562 		inode->last_unlink_trans = trans->transid;
7563 
7564 	/*
7565 	 * if this inode hasn't been logged and directory we're renaming it
7566 	 * from hasn't been logged, we don't need to log it
7567 	 */
7568 	ret = inode_logged(trans, inode, NULL);
7569 	if (ret < 0) {
7570 		goto out;
7571 	} else if (ret == 0) {
7572 		if (!old_dir)
7573 			return;
7574 		/*
7575 		 * If the inode was not logged and we are doing a rename (old_dir is not
7576 		 * NULL), check if old_dir was logged - if it was not we can return and
7577 		 * do nothing.
7578 		 */
7579 		ret = inode_logged(trans, old_dir, NULL);
7580 		if (ret < 0)
7581 			goto out;
7582 		else if (ret == 0)
7583 			return;
7584 	}
7585 	ret = 0;
7586 
7587 	/*
7588 	 * Now that we know we need to update the log, allocate the scratch eb
7589 	 * for the context before joining a log transaction below, as this can
7590 	 * take time and therefore we could delay log commits from other tasks.
7591 	 */
7592 	btrfs_init_log_ctx_scratch_eb(&ctx);
7593 
7594 	/*
7595 	 * If we are doing a rename (old_dir is not NULL) from a directory that
7596 	 * was previously logged, make sure that on log replay we get the old
7597 	 * dir entry deleted. This is needed because we will also log the new
7598 	 * name of the renamed inode, so we need to make sure that after log
7599 	 * replay we don't end up with both the new and old dir entries existing.
7600 	 */
7601 	if (old_dir && old_dir->logged_trans == trans->transid) {
7602 		struct btrfs_root *log = old_dir->root->log_root;
7603 		struct btrfs_path *path;
7604 		struct fscrypt_name fname;
7605 
7606 		ASSERT(old_dir_index >= BTRFS_DIR_START_INDEX);
7607 
7608 		ret = fscrypt_setup_filename(&old_dir->vfs_inode,
7609 					     &old_dentry->d_name, 0, &fname);
7610 		if (ret)
7611 			goto out;
7612 
7613 		path = btrfs_alloc_path();
7614 		if (!path) {
7615 			ret = -ENOMEM;
7616 			fscrypt_free_filename(&fname);
7617 			goto out;
7618 		}
7619 
7620 		/*
7621 		 * We have two inodes to update in the log, the old directory and
7622 		 * the inode that got renamed, so we must pin the log to prevent
7623 		 * anyone from syncing the log until we have updated both inodes
7624 		 * in the log.
7625 		 */
7626 		ret = join_running_log_trans(root);
7627 		/*
7628 		 * At least one of the inodes was logged before, so this should
7629 		 * not fail, but if it does, it's not serious, just bail out and
7630 		 * mark the log for a full commit.
7631 		 */
7632 		if (WARN_ON_ONCE(ret < 0)) {
7633 			btrfs_free_path(path);
7634 			fscrypt_free_filename(&fname);
7635 			goto out;
7636 		}
7637 
7638 		log_pinned = true;
7639 
7640 		/*
7641 		 * Other concurrent task might be logging the old directory,
7642 		 * as it can be triggered when logging other inode that had or
7643 		 * still has a dentry in the old directory. We lock the old
7644 		 * directory's log_mutex to ensure the deletion of the old
7645 		 * name is persisted, because during directory logging we
7646 		 * delete all BTRFS_DIR_LOG_INDEX_KEY keys and the deletion of
7647 		 * the old name's dir index item is in the delayed items, so
7648 		 * it could be missed by an in progress directory logging.
7649 		 */
7650 		mutex_lock(&old_dir->log_mutex);
7651 		ret = del_logged_dentry(trans, log, path, btrfs_ino(old_dir),
7652 					&fname.disk_name, old_dir_index);
7653 		if (ret > 0) {
7654 			/*
7655 			 * The dentry does not exist in the log, so record its
7656 			 * deletion.
7657 			 */
7658 			btrfs_release_path(path);
7659 			ret = insert_dir_log_key(trans, log, path,
7660 						 btrfs_ino(old_dir),
7661 						 old_dir_index, old_dir_index);
7662 		}
7663 		mutex_unlock(&old_dir->log_mutex);
7664 
7665 		btrfs_free_path(path);
7666 		fscrypt_free_filename(&fname);
7667 		if (ret < 0)
7668 			goto out;
7669 	}
7670 
7671 	/*
7672 	 * We don't care about the return value. If we fail to log the new name
7673 	 * then we know the next attempt to sync the log will fallback to a full
7674 	 * transaction commit (due to a call to btrfs_set_log_full_commit()), so
7675 	 * we don't need to worry about getting a log committed that has an
7676 	 * inconsistent state after a rename operation.
7677 	 */
7678 	btrfs_log_inode_parent(trans, inode, parent, LOG_INODE_EXISTS, &ctx);
7679 	ASSERT(list_empty(&ctx.conflict_inodes));
7680 out:
7681 	/*
7682 	 * If an error happened mark the log for a full commit because it's not
7683 	 * consistent and up to date or we couldn't find out if one of the
7684 	 * inodes was logged before in this transaction. Do it before unpinning
7685 	 * the log, to avoid any races with someone else trying to commit it.
7686 	 */
7687 	if (ret < 0)
7688 		btrfs_set_log_full_commit(trans);
7689 	if (log_pinned)
7690 		btrfs_end_log_trans(root);
7691 	free_extent_buffer(ctx.scratch_eb);
7692 }
7693 
7694