xref: /linux/drivers/gpu/drm/panthor/panthor_device.h (revision ab93e0dd72c37d378dd936f031ffb83ff2bd87ce)
1 /* SPDX-License-Identifier: GPL-2.0 or MIT */
2 /* Copyright 2018 Marty E. Plummer <hanetzer@startmail.com> */
3 /* Copyright 2019 Linaro, Ltd, Rob Herring <robh@kernel.org> */
4 /* Copyright 2023 Collabora ltd. */
5 
6 #ifndef __PANTHOR_DEVICE_H__
7 #define __PANTHOR_DEVICE_H__
8 
9 #include <linux/atomic.h>
10 #include <linux/io-pgtable.h>
11 #include <linux/regulator/consumer.h>
12 #include <linux/pm_runtime.h>
13 #include <linux/sched.h>
14 #include <linux/spinlock.h>
15 
16 #include <drm/drm_device.h>
17 #include <drm/drm_mm.h>
18 #include <drm/gpu_scheduler.h>
19 #include <drm/panthor_drm.h>
20 
21 struct panthor_csf;
22 struct panthor_csf_ctx;
23 struct panthor_device;
24 struct panthor_gpu;
25 struct panthor_group_pool;
26 struct panthor_heap_pool;
27 struct panthor_job;
28 struct panthor_mmu;
29 struct panthor_fw;
30 struct panthor_perfcnt;
31 struct panthor_vm;
32 struct panthor_vm_pool;
33 
34 /**
35  * enum panthor_device_pm_state - PM state
36  */
37 enum panthor_device_pm_state {
38 	/** @PANTHOR_DEVICE_PM_STATE_SUSPENDED: Device is suspended. */
39 	PANTHOR_DEVICE_PM_STATE_SUSPENDED = 0,
40 
41 	/** @PANTHOR_DEVICE_PM_STATE_RESUMING: Device is being resumed. */
42 	PANTHOR_DEVICE_PM_STATE_RESUMING,
43 
44 	/** @PANTHOR_DEVICE_PM_STATE_ACTIVE: Device is active. */
45 	PANTHOR_DEVICE_PM_STATE_ACTIVE,
46 
47 	/** @PANTHOR_DEVICE_PM_STATE_SUSPENDING: Device is being suspended. */
48 	PANTHOR_DEVICE_PM_STATE_SUSPENDING,
49 };
50 
51 /**
52  * struct panthor_irq - IRQ data
53  *
54  * Used to automate IRQ handling for the 3 different IRQs we have in this driver.
55  */
56 struct panthor_irq {
57 	/** @ptdev: Panthor device */
58 	struct panthor_device *ptdev;
59 
60 	/** @irq: IRQ number. */
61 	int irq;
62 
63 	/** @mask: Current mask being applied to xxx_INT_MASK. */
64 	u32 mask;
65 
66 	/** @suspended: Set to true when the IRQ is suspended. */
67 	atomic_t suspended;
68 };
69 
70 /**
71  * enum panthor_device_profiling_mode - Profiling state
72  */
73 enum panthor_device_profiling_flags {
74 	/** @PANTHOR_DEVICE_PROFILING_DISABLED: Profiling is disabled. */
75 	PANTHOR_DEVICE_PROFILING_DISABLED = 0,
76 
77 	/** @PANTHOR_DEVICE_PROFILING_CYCLES: Sampling job cycles. */
78 	PANTHOR_DEVICE_PROFILING_CYCLES = BIT(0),
79 
80 	/** @PANTHOR_DEVICE_PROFILING_TIMESTAMP: Sampling job timestamp. */
81 	PANTHOR_DEVICE_PROFILING_TIMESTAMP = BIT(1),
82 
83 	/** @PANTHOR_DEVICE_PROFILING_ALL: Sampling everything. */
84 	PANTHOR_DEVICE_PROFILING_ALL =
85 	PANTHOR_DEVICE_PROFILING_CYCLES |
86 	PANTHOR_DEVICE_PROFILING_TIMESTAMP,
87 };
88 
89 /**
90  * struct panthor_device - Panthor device
91  */
92 struct panthor_device {
93 	/** @base: Base drm_device. */
94 	struct drm_device base;
95 
96 	/** @phys_addr: Physical address of the iomem region. */
97 	phys_addr_t phys_addr;
98 
99 	/** @iomem: CPU mapping of the IOMEM region. */
100 	void __iomem *iomem;
101 
102 	/** @clks: GPU clocks. */
103 	struct {
104 		/** @core: Core clock. */
105 		struct clk *core;
106 
107 		/** @stacks: Stacks clock. This clock is optional. */
108 		struct clk *stacks;
109 
110 		/** @coregroup: Core group clock. This clock is optional. */
111 		struct clk *coregroup;
112 	} clks;
113 
114 	/** @coherent: True if the CPU/GPU are memory coherent. */
115 	bool coherent;
116 
117 	/** @gpu_info: GPU information. */
118 	struct drm_panthor_gpu_info gpu_info;
119 
120 	/** @csif_info: Command stream interface information. */
121 	struct drm_panthor_csif_info csif_info;
122 
123 	/** @gpu: GPU management data. */
124 	struct panthor_gpu *gpu;
125 
126 	/** @fw: FW management data. */
127 	struct panthor_fw *fw;
128 
129 	/** @mmu: MMU management data. */
130 	struct panthor_mmu *mmu;
131 
132 	/** @scheduler: Scheduler management data. */
133 	struct panthor_scheduler *scheduler;
134 
135 	/** @devfreq: Device frequency scaling management data. */
136 	struct panthor_devfreq *devfreq;
137 
138 	/** @unplug: Device unplug related fields. */
139 	struct {
140 		/** @lock: Lock used to serialize unplug operations. */
141 		struct mutex lock;
142 
143 		/**
144 		 * @done: Completion object signaled when the unplug
145 		 * operation is done.
146 		 */
147 		struct completion done;
148 	} unplug;
149 
150 	/** @reset: Reset related fields. */
151 	struct {
152 		/** @wq: Ordered worqueud used to schedule reset operations. */
153 		struct workqueue_struct *wq;
154 
155 		/** @work: Reset work. */
156 		struct work_struct work;
157 
158 		/** @pending: Set to true if a reset is pending. */
159 		atomic_t pending;
160 
161 		/**
162 		 * @fast: True if the post_reset logic can proceed with a fast reset.
163 		 *
164 		 * A fast reset is just a reset where the driver doesn't reload the FW sections.
165 		 *
166 		 * Any time the firmware is properly suspended, a fast reset can take place.
167 		 * On the other hand, if the halt operation failed, the driver will reload
168 		 * all FW sections to make sure we start from a fresh state.
169 		 */
170 		bool fast;
171 	} reset;
172 
173 	/** @pm: Power management related data. */
174 	struct {
175 		/** @state: Power state. */
176 		atomic_t state;
177 
178 		/**
179 		 * @mmio_lock: Lock protecting MMIO userspace CPU mappings.
180 		 *
181 		 * This is needed to ensure we map the dummy IO pages when
182 		 * the device is being suspended, and the real IO pages when
183 		 * the device is being resumed. We can't just do with the
184 		 * state atomicity to deal with this race.
185 		 */
186 		struct mutex mmio_lock;
187 
188 		/**
189 		 * @dummy_latest_flush: Dummy LATEST_FLUSH page.
190 		 *
191 		 * Used to replace the real LATEST_FLUSH page when the GPU
192 		 * is suspended.
193 		 */
194 		struct page *dummy_latest_flush;
195 
196 		/** @recovery_needed: True when a resume attempt failed. */
197 		atomic_t recovery_needed;
198 	} pm;
199 
200 	/** @profile_mask: User-set profiling flags for job accounting. */
201 	u32 profile_mask;
202 
203 	/** @current_frequency: Device clock frequency at present. Set by DVFS*/
204 	unsigned long current_frequency;
205 
206 	/** @fast_rate: Maximum device clock frequency. Set by DVFS */
207 	unsigned long fast_rate;
208 
209 #ifdef CONFIG_DEBUG_FS
210 	/** @gems: Device-wide list of GEM objects owned by at least one file. */
211 	struct {
212 		/** @gems.lock: Protects the device-wide list of GEM objects. */
213 		struct mutex lock;
214 
215 		/** @node: Used to keep track of all the device's DRM objects */
216 		struct list_head node;
217 	} gems;
218 #endif
219 };
220 
221 struct panthor_gpu_usage {
222 	u64 time;
223 	u64 cycles;
224 };
225 
226 /**
227  * struct panthor_file - Panthor file
228  */
229 struct panthor_file {
230 	/** @ptdev: Device attached to this file. */
231 	struct panthor_device *ptdev;
232 
233 	/** @user_mmio: User MMIO related fields. */
234 	struct {
235 		/**
236 		 * @offset: Offset used for user MMIO mappings.
237 		 *
238 		 * This offset should not be used to check the type of mapping
239 		 * except in panthor_mmap(). After that point, MMIO mapping
240 		 * offsets have been adjusted to match
241 		 * DRM_PANTHOR_USER_MMIO_OFFSET and that macro should be used
242 		 * instead.
243 		 * Make sure this rule is followed at all times, because
244 		 * userspace is in control of the offset, and can change the
245 		 * value behind our back. Otherwise it can lead to erroneous
246 		 * branching happening in kernel space.
247 		 */
248 		u64 offset;
249 	} user_mmio;
250 
251 	/** @vms: VM pool attached to this file. */
252 	struct panthor_vm_pool *vms;
253 
254 	/** @groups: Scheduling group pool attached to this file. */
255 	struct panthor_group_pool *groups;
256 
257 	/** @stats: cycle and timestamp measures for job execution. */
258 	struct panthor_gpu_usage stats;
259 };
260 
261 int panthor_device_init(struct panthor_device *ptdev);
262 void panthor_device_unplug(struct panthor_device *ptdev);
263 
264 /**
265  * panthor_device_schedule_reset() - Schedules a reset operation
266  */
panthor_device_schedule_reset(struct panthor_device * ptdev)267 static inline void panthor_device_schedule_reset(struct panthor_device *ptdev)
268 {
269 	if (!atomic_cmpxchg(&ptdev->reset.pending, 0, 1) &&
270 	    atomic_read(&ptdev->pm.state) == PANTHOR_DEVICE_PM_STATE_ACTIVE)
271 		queue_work(ptdev->reset.wq, &ptdev->reset.work);
272 }
273 
274 /**
275  * panthor_device_reset_is_pending() - Checks if a reset is pending.
276  *
277  * Return: true if a reset is pending, false otherwise.
278  */
panthor_device_reset_is_pending(struct panthor_device * ptdev)279 static inline bool panthor_device_reset_is_pending(struct panthor_device *ptdev)
280 {
281 	return atomic_read(&ptdev->reset.pending) != 0;
282 }
283 
284 int panthor_device_mmap_io(struct panthor_device *ptdev,
285 			   struct vm_area_struct *vma);
286 
287 int panthor_device_resume(struct device *dev);
288 int panthor_device_suspend(struct device *dev);
289 
panthor_device_resume_and_get(struct panthor_device * ptdev)290 static inline int panthor_device_resume_and_get(struct panthor_device *ptdev)
291 {
292 	int ret = pm_runtime_resume_and_get(ptdev->base.dev);
293 
294 	/* If the resume failed, we need to clear the runtime_error, which
295 	 * can done by forcing the RPM state to suspended. If multiple
296 	 * threads called panthor_device_resume_and_get(), we only want
297 	 * one of them to update the state, hence the cmpxchg. Note that a
298 	 * thread might enter panthor_device_resume_and_get() and call
299 	 * pm_runtime_resume_and_get() after another thread had attempted
300 	 * to resume and failed. This means we will end up with an error
301 	 * without even attempting a resume ourselves. The only risk here
302 	 * is to report an error when the second resume attempt might have
303 	 * succeeded. Given resume errors are not expected, this is probably
304 	 * something we can live with.
305 	 */
306 	if (ret && atomic_cmpxchg(&ptdev->pm.recovery_needed, 1, 0) == 1)
307 		pm_runtime_set_suspended(ptdev->base.dev);
308 
309 	return ret;
310 }
311 
312 enum drm_panthor_exception_type {
313 	DRM_PANTHOR_EXCEPTION_OK = 0x00,
314 	DRM_PANTHOR_EXCEPTION_TERMINATED = 0x04,
315 	DRM_PANTHOR_EXCEPTION_KABOOM = 0x05,
316 	DRM_PANTHOR_EXCEPTION_EUREKA = 0x06,
317 	DRM_PANTHOR_EXCEPTION_ACTIVE = 0x08,
318 	DRM_PANTHOR_EXCEPTION_CS_RES_TERM = 0x0f,
319 	DRM_PANTHOR_EXCEPTION_MAX_NON_FAULT = 0x3f,
320 	DRM_PANTHOR_EXCEPTION_CS_CONFIG_FAULT = 0x40,
321 	DRM_PANTHOR_EXCEPTION_CS_UNRECOVERABLE = 0x41,
322 	DRM_PANTHOR_EXCEPTION_CS_ENDPOINT_FAULT = 0x44,
323 	DRM_PANTHOR_EXCEPTION_CS_BUS_FAULT = 0x48,
324 	DRM_PANTHOR_EXCEPTION_CS_INSTR_INVALID = 0x49,
325 	DRM_PANTHOR_EXCEPTION_CS_CALL_STACK_OVERFLOW = 0x4a,
326 	DRM_PANTHOR_EXCEPTION_CS_INHERIT_FAULT = 0x4b,
327 	DRM_PANTHOR_EXCEPTION_INSTR_INVALID_PC = 0x50,
328 	DRM_PANTHOR_EXCEPTION_INSTR_INVALID_ENC = 0x51,
329 	DRM_PANTHOR_EXCEPTION_INSTR_BARRIER_FAULT = 0x55,
330 	DRM_PANTHOR_EXCEPTION_DATA_INVALID_FAULT = 0x58,
331 	DRM_PANTHOR_EXCEPTION_TILE_RANGE_FAULT = 0x59,
332 	DRM_PANTHOR_EXCEPTION_ADDR_RANGE_FAULT = 0x5a,
333 	DRM_PANTHOR_EXCEPTION_IMPRECISE_FAULT = 0x5b,
334 	DRM_PANTHOR_EXCEPTION_OOM = 0x60,
335 	DRM_PANTHOR_EXCEPTION_CSF_FW_INTERNAL_ERROR = 0x68,
336 	DRM_PANTHOR_EXCEPTION_CSF_RES_EVICTION_TIMEOUT = 0x69,
337 	DRM_PANTHOR_EXCEPTION_GPU_BUS_FAULT = 0x80,
338 	DRM_PANTHOR_EXCEPTION_GPU_SHAREABILITY_FAULT = 0x88,
339 	DRM_PANTHOR_EXCEPTION_SYS_SHAREABILITY_FAULT = 0x89,
340 	DRM_PANTHOR_EXCEPTION_GPU_CACHEABILITY_FAULT = 0x8a,
341 	DRM_PANTHOR_EXCEPTION_TRANSLATION_FAULT_0 = 0xc0,
342 	DRM_PANTHOR_EXCEPTION_TRANSLATION_FAULT_1 = 0xc1,
343 	DRM_PANTHOR_EXCEPTION_TRANSLATION_FAULT_2 = 0xc2,
344 	DRM_PANTHOR_EXCEPTION_TRANSLATION_FAULT_3 = 0xc3,
345 	DRM_PANTHOR_EXCEPTION_TRANSLATION_FAULT_4 = 0xc4,
346 	DRM_PANTHOR_EXCEPTION_PERM_FAULT_0 = 0xc8,
347 	DRM_PANTHOR_EXCEPTION_PERM_FAULT_1 = 0xc9,
348 	DRM_PANTHOR_EXCEPTION_PERM_FAULT_2 = 0xca,
349 	DRM_PANTHOR_EXCEPTION_PERM_FAULT_3 = 0xcb,
350 	DRM_PANTHOR_EXCEPTION_ACCESS_FLAG_1 = 0xd9,
351 	DRM_PANTHOR_EXCEPTION_ACCESS_FLAG_2 = 0xda,
352 	DRM_PANTHOR_EXCEPTION_ACCESS_FLAG_3 = 0xdb,
353 	DRM_PANTHOR_EXCEPTION_ADDR_SIZE_FAULT_IN = 0xe0,
354 	DRM_PANTHOR_EXCEPTION_ADDR_SIZE_FAULT_OUT0 = 0xe4,
355 	DRM_PANTHOR_EXCEPTION_ADDR_SIZE_FAULT_OUT1 = 0xe5,
356 	DRM_PANTHOR_EXCEPTION_ADDR_SIZE_FAULT_OUT2 = 0xe6,
357 	DRM_PANTHOR_EXCEPTION_ADDR_SIZE_FAULT_OUT3 = 0xe7,
358 	DRM_PANTHOR_EXCEPTION_MEM_ATTR_FAULT_0 = 0xe8,
359 	DRM_PANTHOR_EXCEPTION_MEM_ATTR_FAULT_1 = 0xe9,
360 	DRM_PANTHOR_EXCEPTION_MEM_ATTR_FAULT_2 = 0xea,
361 	DRM_PANTHOR_EXCEPTION_MEM_ATTR_FAULT_3 = 0xeb,
362 };
363 
364 /**
365  * panthor_exception_is_fault() - Checks if an exception is a fault.
366  *
367  * Return: true if the exception is a fault, false otherwise.
368  */
369 static inline bool
panthor_exception_is_fault(u32 exception_code)370 panthor_exception_is_fault(u32 exception_code)
371 {
372 	return exception_code > DRM_PANTHOR_EXCEPTION_MAX_NON_FAULT;
373 }
374 
375 const char *panthor_exception_name(struct panthor_device *ptdev,
376 				   u32 exception_code);
377 
378 /**
379  * PANTHOR_IRQ_HANDLER() - Define interrupt handlers and the interrupt
380  * registration function.
381  *
382  * The boiler-plate to gracefully deal with shared interrupts is
383  * auto-generated. All you have to do is call PANTHOR_IRQ_HANDLER()
384  * just after the actual handler. The handler prototype is:
385  *
386  * void (*handler)(struct panthor_device *, u32 status);
387  */
388 #define PANTHOR_IRQ_HANDLER(__name, __reg_prefix, __handler)					\
389 static irqreturn_t panthor_ ## __name ## _irq_raw_handler(int irq, void *data)			\
390 {												\
391 	struct panthor_irq *pirq = data;							\
392 	struct panthor_device *ptdev = pirq->ptdev;						\
393 												\
394 	if (atomic_read(&pirq->suspended))							\
395 		return IRQ_NONE;								\
396 	if (!gpu_read(ptdev, __reg_prefix ## _INT_STAT))					\
397 		return IRQ_NONE;								\
398 												\
399 	gpu_write(ptdev, __reg_prefix ## _INT_MASK, 0);						\
400 	return IRQ_WAKE_THREAD;									\
401 }												\
402 												\
403 static irqreturn_t panthor_ ## __name ## _irq_threaded_handler(int irq, void *data)		\
404 {												\
405 	struct panthor_irq *pirq = data;							\
406 	struct panthor_device *ptdev = pirq->ptdev;						\
407 	irqreturn_t ret = IRQ_NONE;								\
408 												\
409 	while (true) {										\
410 		u32 status = gpu_read(ptdev, __reg_prefix ## _INT_RAWSTAT) & pirq->mask;	\
411 												\
412 		if (!status)									\
413 			break;									\
414 												\
415 		__handler(ptdev, status);							\
416 		ret = IRQ_HANDLED;								\
417 	}											\
418 												\
419 	if (!atomic_read(&pirq->suspended))							\
420 		gpu_write(ptdev, __reg_prefix ## _INT_MASK, pirq->mask);			\
421 												\
422 	return ret;										\
423 }												\
424 												\
425 static inline void panthor_ ## __name ## _irq_suspend(struct panthor_irq *pirq)			\
426 {												\
427 	pirq->mask = 0;										\
428 	gpu_write(pirq->ptdev, __reg_prefix ## _INT_MASK, 0);					\
429 	synchronize_irq(pirq->irq);								\
430 	atomic_set(&pirq->suspended, true);							\
431 }												\
432 												\
433 static inline void panthor_ ## __name ## _irq_resume(struct panthor_irq *pirq, u32 mask)	\
434 {												\
435 	atomic_set(&pirq->suspended, false);							\
436 	pirq->mask = mask;									\
437 	gpu_write(pirq->ptdev, __reg_prefix ## _INT_CLEAR, mask);				\
438 	gpu_write(pirq->ptdev, __reg_prefix ## _INT_MASK, mask);				\
439 }												\
440 												\
441 static int panthor_request_ ## __name ## _irq(struct panthor_device *ptdev,			\
442 					      struct panthor_irq *pirq,				\
443 					      int irq, u32 mask)				\
444 {												\
445 	pirq->ptdev = ptdev;									\
446 	pirq->irq = irq;									\
447 	panthor_ ## __name ## _irq_resume(pirq, mask);						\
448 												\
449 	return devm_request_threaded_irq(ptdev->base.dev, irq,					\
450 					 panthor_ ## __name ## _irq_raw_handler,		\
451 					 panthor_ ## __name ## _irq_threaded_handler,		\
452 					 IRQF_SHARED, KBUILD_MODNAME "-" # __name,		\
453 					 pirq);							\
454 }
455 
456 extern struct workqueue_struct *panthor_cleanup_wq;
457 
gpu_write(struct panthor_device * ptdev,u32 reg,u32 data)458 static inline void gpu_write(struct panthor_device *ptdev, u32 reg, u32 data)
459 {
460 	writel(data, ptdev->iomem + reg);
461 }
462 
gpu_read(struct panthor_device * ptdev,u32 reg)463 static inline u32 gpu_read(struct panthor_device *ptdev, u32 reg)
464 {
465 	return readl(ptdev->iomem + reg);
466 }
467 
gpu_read_relaxed(struct panthor_device * ptdev,u32 reg)468 static inline u32 gpu_read_relaxed(struct panthor_device *ptdev, u32 reg)
469 {
470 	return readl_relaxed(ptdev->iomem + reg);
471 }
472 
gpu_write64(struct panthor_device * ptdev,u32 reg,u64 data)473 static inline void gpu_write64(struct panthor_device *ptdev, u32 reg, u64 data)
474 {
475 	gpu_write(ptdev, reg, lower_32_bits(data));
476 	gpu_write(ptdev, reg + 4, upper_32_bits(data));
477 }
478 
gpu_read64(struct panthor_device * ptdev,u32 reg)479 static inline u64 gpu_read64(struct panthor_device *ptdev, u32 reg)
480 {
481 	return (gpu_read(ptdev, reg) | ((u64)gpu_read(ptdev, reg + 4) << 32));
482 }
483 
gpu_read64_relaxed(struct panthor_device * ptdev,u32 reg)484 static inline u64 gpu_read64_relaxed(struct panthor_device *ptdev, u32 reg)
485 {
486 	return (gpu_read_relaxed(ptdev, reg) |
487 		((u64)gpu_read_relaxed(ptdev, reg + 4) << 32));
488 }
489 
gpu_read64_counter(struct panthor_device * ptdev,u32 reg)490 static inline u64 gpu_read64_counter(struct panthor_device *ptdev, u32 reg)
491 {
492 	u32 lo, hi1, hi2;
493 	do {
494 		hi1 = gpu_read(ptdev, reg + 4);
495 		lo = gpu_read(ptdev, reg);
496 		hi2 = gpu_read(ptdev, reg + 4);
497 	} while (hi1 != hi2);
498 	return lo | ((u64)hi2 << 32);
499 }
500 
501 #define gpu_read_poll_timeout(dev, reg, val, cond, delay_us, timeout_us)	\
502 	read_poll_timeout(gpu_read, val, cond, delay_us, timeout_us, false,	\
503 			  dev, reg)
504 
505 #define gpu_read_poll_timeout_atomic(dev, reg, val, cond, delay_us,		\
506 				     timeout_us)				\
507 	read_poll_timeout_atomic(gpu_read, val, cond, delay_us, timeout_us,	\
508 				 false, dev, reg)
509 
510 #define gpu_read64_poll_timeout(dev, reg, val, cond, delay_us, timeout_us)	\
511 	read_poll_timeout(gpu_read64, val, cond, delay_us, timeout_us, false,	\
512 			  dev, reg)
513 
514 #define gpu_read64_poll_timeout_atomic(dev, reg, val, cond, delay_us,		\
515 				       timeout_us)				\
516 	read_poll_timeout_atomic(gpu_read64, val, cond, delay_us, timeout_us,	\
517 				 false, dev, reg)
518 
519 #define gpu_read_relaxed_poll_timeout_atomic(dev, reg, val, cond, delay_us,	\
520 					     timeout_us)			\
521 	read_poll_timeout_atomic(gpu_read_relaxed, val, cond, delay_us,		\
522 				 timeout_us, false, dev, reg)
523 
524 #define gpu_read64_relaxed_poll_timeout(dev, reg, val, cond, delay_us,		\
525 					timeout_us)				\
526 	read_poll_timeout(gpu_read64_relaxed, val, cond, delay_us, timeout_us,	\
527 			  false, dev, reg)
528 
529 #endif
530