xref: /linux/mm/percpu-stats.c (revision beace86e61e465dba204a268ab3f3377153a4973)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *
4  * Copyright (C) 2017		Facebook Inc.
5  * Copyright (C) 2017		Dennis Zhou <dennis@kernel.org>
6  *
7  * Prints statistics about the percpu allocator and backing chunks.
8  */
9 #include <linux/debugfs.h>
10 #include <linux/list.h>
11 #include <linux/percpu.h>
12 #include <linux/seq_file.h>
13 #include <linux/sort.h>
14 #include <linux/vmalloc.h>
15 
16 #include "percpu-internal.h"
17 
18 #define P(X, Y) \
19 	seq_printf(m, "  %-20s: %12lld\n", X, (long long int)Y)
20 
21 struct percpu_stats pcpu_stats;
22 struct pcpu_alloc_info pcpu_stats_ai;
23 
cmpint(const void * a,const void * b)24 static int cmpint(const void *a, const void *b)
25 {
26 	return *(int *)a - *(int *)b;
27 }
28 
29 /*
30  * Iterates over all chunks to find the max nr_alloc entries.
31  */
find_max_nr_alloc(void)32 static int find_max_nr_alloc(void)
33 {
34 	struct pcpu_chunk *chunk;
35 	int slot, max_nr_alloc;
36 
37 	max_nr_alloc = 0;
38 	for (slot = 0; slot < pcpu_nr_slots; slot++)
39 		list_for_each_entry(chunk, &pcpu_chunk_lists[slot], list)
40 			max_nr_alloc = max(max_nr_alloc, chunk->nr_alloc);
41 
42 	return max_nr_alloc;
43 }
44 
45 /*
46  * Prints out chunk state. Fragmentation is considered between
47  * the beginning of the chunk to the last allocation.
48  *
49  * All statistics are in bytes unless stated otherwise.
50  */
chunk_map_stats(struct seq_file * m,struct pcpu_chunk * chunk,int * buffer)51 static void chunk_map_stats(struct seq_file *m, struct pcpu_chunk *chunk,
52 			    int *buffer)
53 {
54 	struct pcpu_block_md *chunk_md = &chunk->chunk_md;
55 	int i, last_alloc, as_len, start, end;
56 	int *alloc_sizes, *p;
57 	/* statistics */
58 	int sum_frag = 0, max_frag = 0;
59 	int cur_min_alloc = 0, cur_med_alloc = 0, cur_max_alloc = 0;
60 
61 	alloc_sizes = buffer;
62 
63 	/*
64 	 * find_last_bit returns the start value if nothing found.
65 	 * Therefore, we must determine if it is a failure of find_last_bit
66 	 * and set the appropriate value.
67 	 */
68 	last_alloc = find_last_bit(chunk->alloc_map,
69 				   pcpu_chunk_map_bits(chunk) -
70 				   chunk->end_offset / PCPU_MIN_ALLOC_SIZE - 1);
71 	last_alloc = test_bit(last_alloc, chunk->alloc_map) ?
72 		     last_alloc + 1 : 0;
73 
74 	as_len = 0;
75 	start = chunk->start_offset / PCPU_MIN_ALLOC_SIZE;
76 
77 	/*
78 	 * If a bit is set in the allocation map, the bound_map identifies
79 	 * where the allocation ends.  If the allocation is not set, the
80 	 * bound_map does not identify free areas as it is only kept accurate
81 	 * on allocation, not free.
82 	 *
83 	 * Positive values are allocations and negative values are free
84 	 * fragments.
85 	 */
86 	while (start < last_alloc) {
87 		if (test_bit(start, chunk->alloc_map)) {
88 			end = find_next_bit(chunk->bound_map, last_alloc,
89 					    start + 1);
90 			alloc_sizes[as_len] = 1;
91 		} else {
92 			end = find_next_bit(chunk->alloc_map, last_alloc,
93 					    start + 1);
94 			alloc_sizes[as_len] = -1;
95 		}
96 
97 		alloc_sizes[as_len++] *= (end - start) * PCPU_MIN_ALLOC_SIZE;
98 
99 		start = end;
100 	}
101 
102 	/*
103 	 * The negative values are free fragments and thus sorting gives the
104 	 * free fragments at the beginning in largest first order.
105 	 */
106 	if (as_len > 0) {
107 		sort(alloc_sizes, as_len, sizeof(int), cmpint, NULL);
108 
109 		/* iterate through the unallocated fragments */
110 		for (i = 0, p = alloc_sizes; *p < 0 && i < as_len; i++, p++) {
111 			sum_frag -= *p;
112 			max_frag = max(max_frag, -1 * (*p));
113 		}
114 
115 		cur_min_alloc = alloc_sizes[i];
116 		cur_med_alloc = alloc_sizes[(i + as_len - 1) / 2];
117 		cur_max_alloc = alloc_sizes[as_len - 1];
118 	}
119 
120 	P("nr_alloc", chunk->nr_alloc);
121 	P("max_alloc_size", chunk->max_alloc_size);
122 	P("empty_pop_pages", chunk->nr_empty_pop_pages);
123 	P("first_bit", chunk_md->first_free);
124 	P("free_bytes", chunk->free_bytes);
125 	P("contig_bytes", chunk_md->contig_hint * PCPU_MIN_ALLOC_SIZE);
126 	P("sum_frag", sum_frag);
127 	P("max_frag", max_frag);
128 	P("cur_min_alloc", cur_min_alloc);
129 	P("cur_med_alloc", cur_med_alloc);
130 	P("cur_max_alloc", cur_max_alloc);
131 	seq_putc(m, '\n');
132 }
133 
percpu_stats_show(struct seq_file * m,void * v)134 static int percpu_stats_show(struct seq_file *m, void *v)
135 {
136 	struct pcpu_chunk *chunk;
137 	int slot, max_nr_alloc;
138 	int *buffer;
139 
140 alloc_buffer:
141 	spin_lock_irq(&pcpu_lock);
142 	max_nr_alloc = find_max_nr_alloc();
143 	spin_unlock_irq(&pcpu_lock);
144 
145 	/* there can be at most this many free and allocated fragments */
146 	buffer = vmalloc_array(2 * max_nr_alloc + 1, sizeof(int));
147 	if (!buffer)
148 		return -ENOMEM;
149 
150 	spin_lock_irq(&pcpu_lock);
151 
152 	/* if the buffer allocated earlier is too small */
153 	if (max_nr_alloc < find_max_nr_alloc()) {
154 		spin_unlock_irq(&pcpu_lock);
155 		vfree(buffer);
156 		goto alloc_buffer;
157 	}
158 
159 #define PL(X)								\
160 	seq_printf(m, "  %-20s: %12lld\n", #X, (long long int)pcpu_stats_ai.X)
161 
162 	seq_printf(m,
163 			"Percpu Memory Statistics\n"
164 			"Allocation Info:\n"
165 			"----------------------------------------\n");
166 	PL(unit_size);
167 	PL(static_size);
168 	PL(reserved_size);
169 	PL(dyn_size);
170 	PL(atom_size);
171 	PL(alloc_size);
172 	seq_putc(m, '\n');
173 
174 #undef PL
175 
176 #define PU(X) \
177 	seq_printf(m, "  %-20s: %12llu\n", #X, (unsigned long long)pcpu_stats.X)
178 
179 	seq_printf(m,
180 			"Global Stats:\n"
181 			"----------------------------------------\n");
182 	PU(nr_alloc);
183 	PU(nr_dealloc);
184 	PU(nr_cur_alloc);
185 	PU(nr_max_alloc);
186 	PU(nr_chunks);
187 	PU(nr_max_chunks);
188 	PU(min_alloc_size);
189 	PU(max_alloc_size);
190 	P("empty_pop_pages", pcpu_nr_empty_pop_pages);
191 	seq_putc(m, '\n');
192 
193 #undef PU
194 
195 	seq_printf(m,
196 			"Per Chunk Stats:\n"
197 			"----------------------------------------\n");
198 
199 	if (pcpu_reserved_chunk) {
200 		seq_puts(m, "Chunk: <- Reserved Chunk\n");
201 		chunk_map_stats(m, pcpu_reserved_chunk, buffer);
202 	}
203 
204 	for (slot = 0; slot < pcpu_nr_slots; slot++) {
205 		list_for_each_entry(chunk, &pcpu_chunk_lists[slot], list) {
206 			if (chunk == pcpu_first_chunk)
207 				seq_puts(m, "Chunk: <- First Chunk\n");
208 			else if (slot == pcpu_to_depopulate_slot)
209 				seq_puts(m, "Chunk (to_depopulate)\n");
210 			else if (slot == pcpu_sidelined_slot)
211 				seq_puts(m, "Chunk (sidelined):\n");
212 			else
213 				seq_puts(m, "Chunk:\n");
214 			chunk_map_stats(m, chunk, buffer);
215 		}
216 	}
217 
218 	spin_unlock_irq(&pcpu_lock);
219 
220 	vfree(buffer);
221 
222 	return 0;
223 }
224 DEFINE_SHOW_ATTRIBUTE(percpu_stats);
225 
init_percpu_stats_debugfs(void)226 static int __init init_percpu_stats_debugfs(void)
227 {
228 	debugfs_create_file("percpu_stats", 0444, NULL, NULL,
229 			&percpu_stats_fops);
230 
231 	return 0;
232 }
233 
234 late_initcall(init_percpu_stats_debugfs);
235