xref: /linux/arch/x86/events/intel/p4.c (revision ab93e0dd72c37d378dd936f031ffb83ff2bd87ce)
1 /*
2  * Netburst Performance Events (P4, old Xeon)
3  *
4  *  Copyright (C) 2010 Parallels, Inc., Cyrill Gorcunov <gorcunov@openvz.org>
5  *  Copyright (C) 2010 Intel Corporation, Lin Ming <ming.m.lin@intel.com>
6  *
7  *  For licencing details see kernel-base/COPYING
8  */
9 
10 #include <linux/perf_event.h>
11 
12 #include <asm/perf_event_p4.h>
13 #include <asm/cpu_device_id.h>
14 #include <asm/hardirq.h>
15 #include <asm/apic.h>
16 #include <asm/msr.h>
17 
18 #include "../perf_event.h"
19 
20 #define P4_CNTR_LIMIT 3
21 /*
22  * array indices: 0,1 - HT threads, used with HT enabled cpu
23  */
24 struct p4_event_bind {
25 	unsigned int opcode;			/* Event code and ESCR selector */
26 	unsigned int escr_msr[2];		/* ESCR MSR for this event */
27 	unsigned int escr_emask;		/* valid ESCR EventMask bits */
28 	unsigned int shared;			/* event is shared across threads */
29 	signed char cntr[2][P4_CNTR_LIMIT];	/* counter index (offset), -1 on absence */
30 };
31 
32 struct p4_pebs_bind {
33 	unsigned int metric_pebs;
34 	unsigned int metric_vert;
35 };
36 
37 /* it sets P4_PEBS_ENABLE_UOP_TAG as well */
38 #define P4_GEN_PEBS_BIND(name, pebs, vert)			\
39 	[P4_PEBS_METRIC__##name] = {				\
40 		.metric_pebs = pebs | P4_PEBS_ENABLE_UOP_TAG,	\
41 		.metric_vert = vert,				\
42 	}
43 
44 /*
45  * note we have P4_PEBS_ENABLE_UOP_TAG always set here
46  *
47  * it's needed for mapping P4_PEBS_CONFIG_METRIC_MASK bits of
48  * event configuration to find out which values are to be
49  * written into MSR_IA32_PEBS_ENABLE and MSR_P4_PEBS_MATRIX_VERT
50  * registers
51  */
52 static struct p4_pebs_bind p4_pebs_bind_map[] = {
53 	P4_GEN_PEBS_BIND(1stl_cache_load_miss_retired,	0x0000001, 0x0000001),
54 	P4_GEN_PEBS_BIND(2ndl_cache_load_miss_retired,	0x0000002, 0x0000001),
55 	P4_GEN_PEBS_BIND(dtlb_load_miss_retired,	0x0000004, 0x0000001),
56 	P4_GEN_PEBS_BIND(dtlb_store_miss_retired,	0x0000004, 0x0000002),
57 	P4_GEN_PEBS_BIND(dtlb_all_miss_retired,		0x0000004, 0x0000003),
58 	P4_GEN_PEBS_BIND(tagged_mispred_branch,		0x0018000, 0x0000010),
59 	P4_GEN_PEBS_BIND(mob_load_replay_retired,	0x0000200, 0x0000001),
60 	P4_GEN_PEBS_BIND(split_load_retired,		0x0000400, 0x0000001),
61 	P4_GEN_PEBS_BIND(split_store_retired,		0x0000400, 0x0000002),
62 };
63 
64 /*
65  * Note that we don't use CCCR1 here, there is an
66  * exception for P4_BSQ_ALLOCATION but we just have
67  * no workaround
68  *
69  * consider this binding as resources which particular
70  * event may borrow, it doesn't contain EventMask,
71  * Tags and friends -- they are left to a caller
72  */
73 static struct p4_event_bind p4_event_bind_map[] = {
74 	[P4_EVENT_TC_DELIVER_MODE] = {
75 		.opcode		= P4_OPCODE(P4_EVENT_TC_DELIVER_MODE),
76 		.escr_msr	= { MSR_P4_TC_ESCR0, MSR_P4_TC_ESCR1 },
77 		.escr_emask	=
78 			P4_ESCR_EMASK_BIT(P4_EVENT_TC_DELIVER_MODE, DD)			|
79 			P4_ESCR_EMASK_BIT(P4_EVENT_TC_DELIVER_MODE, DB)			|
80 			P4_ESCR_EMASK_BIT(P4_EVENT_TC_DELIVER_MODE, DI)			|
81 			P4_ESCR_EMASK_BIT(P4_EVENT_TC_DELIVER_MODE, BD)			|
82 			P4_ESCR_EMASK_BIT(P4_EVENT_TC_DELIVER_MODE, BB)			|
83 			P4_ESCR_EMASK_BIT(P4_EVENT_TC_DELIVER_MODE, BI)			|
84 			P4_ESCR_EMASK_BIT(P4_EVENT_TC_DELIVER_MODE, ID),
85 		.shared		= 1,
86 		.cntr		= { {4, 5, -1}, {6, 7, -1} },
87 	},
88 	[P4_EVENT_BPU_FETCH_REQUEST] = {
89 		.opcode		= P4_OPCODE(P4_EVENT_BPU_FETCH_REQUEST),
90 		.escr_msr	= { MSR_P4_BPU_ESCR0, MSR_P4_BPU_ESCR1 },
91 		.escr_emask	=
92 			P4_ESCR_EMASK_BIT(P4_EVENT_BPU_FETCH_REQUEST, TCMISS),
93 		.cntr		= { {0, -1, -1}, {2, -1, -1} },
94 	},
95 	[P4_EVENT_ITLB_REFERENCE] = {
96 		.opcode		= P4_OPCODE(P4_EVENT_ITLB_REFERENCE),
97 		.escr_msr	= { MSR_P4_ITLB_ESCR0, MSR_P4_ITLB_ESCR1 },
98 		.escr_emask	=
99 			P4_ESCR_EMASK_BIT(P4_EVENT_ITLB_REFERENCE, HIT)			|
100 			P4_ESCR_EMASK_BIT(P4_EVENT_ITLB_REFERENCE, MISS)		|
101 			P4_ESCR_EMASK_BIT(P4_EVENT_ITLB_REFERENCE, HIT_UK),
102 		.cntr		= { {0, -1, -1}, {2, -1, -1} },
103 	},
104 	[P4_EVENT_MEMORY_CANCEL] = {
105 		.opcode		= P4_OPCODE(P4_EVENT_MEMORY_CANCEL),
106 		.escr_msr	= { MSR_P4_DAC_ESCR0, MSR_P4_DAC_ESCR1 },
107 		.escr_emask	=
108 			P4_ESCR_EMASK_BIT(P4_EVENT_MEMORY_CANCEL, ST_RB_FULL)		|
109 			P4_ESCR_EMASK_BIT(P4_EVENT_MEMORY_CANCEL, 64K_CONF),
110 		.cntr		= { {8, 9, -1}, {10, 11, -1} },
111 	},
112 	[P4_EVENT_MEMORY_COMPLETE] = {
113 		.opcode		= P4_OPCODE(P4_EVENT_MEMORY_COMPLETE),
114 		.escr_msr	= { MSR_P4_SAAT_ESCR0 , MSR_P4_SAAT_ESCR1 },
115 		.escr_emask	=
116 			P4_ESCR_EMASK_BIT(P4_EVENT_MEMORY_COMPLETE, LSC)		|
117 			P4_ESCR_EMASK_BIT(P4_EVENT_MEMORY_COMPLETE, SSC),
118 		.cntr		= { {8, 9, -1}, {10, 11, -1} },
119 	},
120 	[P4_EVENT_LOAD_PORT_REPLAY] = {
121 		.opcode		= P4_OPCODE(P4_EVENT_LOAD_PORT_REPLAY),
122 		.escr_msr	= { MSR_P4_SAAT_ESCR0, MSR_P4_SAAT_ESCR1 },
123 		.escr_emask	=
124 			P4_ESCR_EMASK_BIT(P4_EVENT_LOAD_PORT_REPLAY, SPLIT_LD),
125 		.cntr		= { {8, 9, -1}, {10, 11, -1} },
126 	},
127 	[P4_EVENT_STORE_PORT_REPLAY] = {
128 		.opcode		= P4_OPCODE(P4_EVENT_STORE_PORT_REPLAY),
129 		.escr_msr	= { MSR_P4_SAAT_ESCR0 ,  MSR_P4_SAAT_ESCR1 },
130 		.escr_emask	=
131 			P4_ESCR_EMASK_BIT(P4_EVENT_STORE_PORT_REPLAY, SPLIT_ST),
132 		.cntr		= { {8, 9, -1}, {10, 11, -1} },
133 	},
134 	[P4_EVENT_MOB_LOAD_REPLAY] = {
135 		.opcode		= P4_OPCODE(P4_EVENT_MOB_LOAD_REPLAY),
136 		.escr_msr	= { MSR_P4_MOB_ESCR0, MSR_P4_MOB_ESCR1 },
137 		.escr_emask	=
138 			P4_ESCR_EMASK_BIT(P4_EVENT_MOB_LOAD_REPLAY, NO_STA)		|
139 			P4_ESCR_EMASK_BIT(P4_EVENT_MOB_LOAD_REPLAY, NO_STD)		|
140 			P4_ESCR_EMASK_BIT(P4_EVENT_MOB_LOAD_REPLAY, PARTIAL_DATA)	|
141 			P4_ESCR_EMASK_BIT(P4_EVENT_MOB_LOAD_REPLAY, UNALGN_ADDR),
142 		.cntr		= { {0, -1, -1}, {2, -1, -1} },
143 	},
144 	[P4_EVENT_PAGE_WALK_TYPE] = {
145 		.opcode		= P4_OPCODE(P4_EVENT_PAGE_WALK_TYPE),
146 		.escr_msr	= { MSR_P4_PMH_ESCR0, MSR_P4_PMH_ESCR1 },
147 		.escr_emask	=
148 			P4_ESCR_EMASK_BIT(P4_EVENT_PAGE_WALK_TYPE, DTMISS)		|
149 			P4_ESCR_EMASK_BIT(P4_EVENT_PAGE_WALK_TYPE, ITMISS),
150 		.shared		= 1,
151 		.cntr		= { {0, -1, -1}, {2, -1, -1} },
152 	},
153 	[P4_EVENT_BSQ_CACHE_REFERENCE] = {
154 		.opcode		= P4_OPCODE(P4_EVENT_BSQ_CACHE_REFERENCE),
155 		.escr_msr	= { MSR_P4_BSU_ESCR0, MSR_P4_BSU_ESCR1 },
156 		.escr_emask	=
157 			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_2ndL_HITS)	|
158 			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_2ndL_HITE)	|
159 			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_2ndL_HITM)	|
160 			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_3rdL_HITS)	|
161 			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_3rdL_HITE)	|
162 			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_3rdL_HITM)	|
163 			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_2ndL_MISS)	|
164 			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_3rdL_MISS)	|
165 			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, WR_2ndL_MISS),
166 		.cntr		= { {0, -1, -1}, {2, -1, -1} },
167 	},
168 	[P4_EVENT_IOQ_ALLOCATION] = {
169 		.opcode		= P4_OPCODE(P4_EVENT_IOQ_ALLOCATION),
170 		.escr_msr	= { MSR_P4_FSB_ESCR0, MSR_P4_FSB_ESCR1 },
171 		.escr_emask	=
172 			P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ALLOCATION, DEFAULT)		|
173 			P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ALLOCATION, ALL_READ)		|
174 			P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ALLOCATION, ALL_WRITE)		|
175 			P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ALLOCATION, MEM_UC)		|
176 			P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ALLOCATION, MEM_WC)		|
177 			P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ALLOCATION, MEM_WT)		|
178 			P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ALLOCATION, MEM_WP)		|
179 			P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ALLOCATION, MEM_WB)		|
180 			P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ALLOCATION, OWN)			|
181 			P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ALLOCATION, OTHER)		|
182 			P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ALLOCATION, PREFETCH),
183 		.cntr		= { {0, -1, -1}, {2, -1, -1} },
184 	},
185 	[P4_EVENT_IOQ_ACTIVE_ENTRIES] = {	/* shared ESCR */
186 		.opcode		= P4_OPCODE(P4_EVENT_IOQ_ACTIVE_ENTRIES),
187 		.escr_msr	= { MSR_P4_FSB_ESCR1,  MSR_P4_FSB_ESCR1 },
188 		.escr_emask	=
189 			P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ACTIVE_ENTRIES, DEFAULT)		|
190 			P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ACTIVE_ENTRIES, ALL_READ)	|
191 			P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ACTIVE_ENTRIES, ALL_WRITE)	|
192 			P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ACTIVE_ENTRIES, MEM_UC)		|
193 			P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ACTIVE_ENTRIES, MEM_WC)		|
194 			P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ACTIVE_ENTRIES, MEM_WT)		|
195 			P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ACTIVE_ENTRIES, MEM_WP)		|
196 			P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ACTIVE_ENTRIES, MEM_WB)		|
197 			P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ACTIVE_ENTRIES, OWN)		|
198 			P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ACTIVE_ENTRIES, OTHER)		|
199 			P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ACTIVE_ENTRIES, PREFETCH),
200 		.cntr		= { {2, -1, -1}, {3, -1, -1} },
201 	},
202 	[P4_EVENT_FSB_DATA_ACTIVITY] = {
203 		.opcode		= P4_OPCODE(P4_EVENT_FSB_DATA_ACTIVITY),
204 		.escr_msr	= { MSR_P4_FSB_ESCR0, MSR_P4_FSB_ESCR1 },
205 		.escr_emask	=
206 			P4_ESCR_EMASK_BIT(P4_EVENT_FSB_DATA_ACTIVITY, DRDY_DRV)		|
207 			P4_ESCR_EMASK_BIT(P4_EVENT_FSB_DATA_ACTIVITY, DRDY_OWN)		|
208 			P4_ESCR_EMASK_BIT(P4_EVENT_FSB_DATA_ACTIVITY, DRDY_OTHER)	|
209 			P4_ESCR_EMASK_BIT(P4_EVENT_FSB_DATA_ACTIVITY, DBSY_DRV)		|
210 			P4_ESCR_EMASK_BIT(P4_EVENT_FSB_DATA_ACTIVITY, DBSY_OWN)		|
211 			P4_ESCR_EMASK_BIT(P4_EVENT_FSB_DATA_ACTIVITY, DBSY_OTHER),
212 		.shared		= 1,
213 		.cntr		= { {0, -1, -1}, {2, -1, -1} },
214 	},
215 	[P4_EVENT_BSQ_ALLOCATION] = {		/* shared ESCR, broken CCCR1 */
216 		.opcode		= P4_OPCODE(P4_EVENT_BSQ_ALLOCATION),
217 		.escr_msr	= { MSR_P4_BSU_ESCR0, MSR_P4_BSU_ESCR0 },
218 		.escr_emask	=
219 			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, REQ_TYPE0)		|
220 			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, REQ_TYPE1)		|
221 			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, REQ_LEN0)		|
222 			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, REQ_LEN1)		|
223 			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, REQ_IO_TYPE)		|
224 			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, REQ_LOCK_TYPE)	|
225 			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, REQ_CACHE_TYPE)	|
226 			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, REQ_SPLIT_TYPE)	|
227 			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, REQ_DEM_TYPE)	|
228 			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, REQ_ORD_TYPE)	|
229 			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, MEM_TYPE0)		|
230 			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, MEM_TYPE1)		|
231 			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, MEM_TYPE2),
232 		.cntr		= { {0, -1, -1}, {1, -1, -1} },
233 	},
234 	[P4_EVENT_BSQ_ACTIVE_ENTRIES] = {	/* shared ESCR */
235 		.opcode		= P4_OPCODE(P4_EVENT_BSQ_ACTIVE_ENTRIES),
236 		.escr_msr	= { MSR_P4_BSU_ESCR1 , MSR_P4_BSU_ESCR1 },
237 		.escr_emask	=
238 			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, REQ_TYPE0)	|
239 			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, REQ_TYPE1)	|
240 			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, REQ_LEN0)	|
241 			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, REQ_LEN1)	|
242 			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, REQ_IO_TYPE)	|
243 			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, REQ_LOCK_TYPE)	|
244 			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, REQ_CACHE_TYPE)	|
245 			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, REQ_SPLIT_TYPE)	|
246 			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, REQ_DEM_TYPE)	|
247 			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, REQ_ORD_TYPE)	|
248 			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, MEM_TYPE0)	|
249 			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, MEM_TYPE1)	|
250 			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, MEM_TYPE2),
251 		.cntr		= { {2, -1, -1}, {3, -1, -1} },
252 	},
253 	[P4_EVENT_SSE_INPUT_ASSIST] = {
254 		.opcode		= P4_OPCODE(P4_EVENT_SSE_INPUT_ASSIST),
255 		.escr_msr	= { MSR_P4_FIRM_ESCR0, MSR_P4_FIRM_ESCR1 },
256 		.escr_emask	=
257 			P4_ESCR_EMASK_BIT(P4_EVENT_SSE_INPUT_ASSIST, ALL),
258 		.shared		= 1,
259 		.cntr		= { {8, 9, -1}, {10, 11, -1} },
260 	},
261 	[P4_EVENT_PACKED_SP_UOP] = {
262 		.opcode		= P4_OPCODE(P4_EVENT_PACKED_SP_UOP),
263 		.escr_msr	= { MSR_P4_FIRM_ESCR0, MSR_P4_FIRM_ESCR1 },
264 		.escr_emask	=
265 			P4_ESCR_EMASK_BIT(P4_EVENT_PACKED_SP_UOP, ALL),
266 		.shared		= 1,
267 		.cntr		= { {8, 9, -1}, {10, 11, -1} },
268 	},
269 	[P4_EVENT_PACKED_DP_UOP] = {
270 		.opcode		= P4_OPCODE(P4_EVENT_PACKED_DP_UOP),
271 		.escr_msr	= { MSR_P4_FIRM_ESCR0, MSR_P4_FIRM_ESCR1 },
272 		.escr_emask	=
273 			P4_ESCR_EMASK_BIT(P4_EVENT_PACKED_DP_UOP, ALL),
274 		.shared		= 1,
275 		.cntr		= { {8, 9, -1}, {10, 11, -1} },
276 	},
277 	[P4_EVENT_SCALAR_SP_UOP] = {
278 		.opcode		= P4_OPCODE(P4_EVENT_SCALAR_SP_UOP),
279 		.escr_msr	= { MSR_P4_FIRM_ESCR0, MSR_P4_FIRM_ESCR1 },
280 		.escr_emask	=
281 			P4_ESCR_EMASK_BIT(P4_EVENT_SCALAR_SP_UOP, ALL),
282 		.shared		= 1,
283 		.cntr		= { {8, 9, -1}, {10, 11, -1} },
284 	},
285 	[P4_EVENT_SCALAR_DP_UOP] = {
286 		.opcode		= P4_OPCODE(P4_EVENT_SCALAR_DP_UOP),
287 		.escr_msr	= { MSR_P4_FIRM_ESCR0, MSR_P4_FIRM_ESCR1 },
288 		.escr_emask	=
289 			P4_ESCR_EMASK_BIT(P4_EVENT_SCALAR_DP_UOP, ALL),
290 		.shared		= 1,
291 		.cntr		= { {8, 9, -1}, {10, 11, -1} },
292 	},
293 	[P4_EVENT_64BIT_MMX_UOP] = {
294 		.opcode		= P4_OPCODE(P4_EVENT_64BIT_MMX_UOP),
295 		.escr_msr	= { MSR_P4_FIRM_ESCR0, MSR_P4_FIRM_ESCR1 },
296 		.escr_emask	=
297 			P4_ESCR_EMASK_BIT(P4_EVENT_64BIT_MMX_UOP, ALL),
298 		.shared		= 1,
299 		.cntr		= { {8, 9, -1}, {10, 11, -1} },
300 	},
301 	[P4_EVENT_128BIT_MMX_UOP] = {
302 		.opcode		= P4_OPCODE(P4_EVENT_128BIT_MMX_UOP),
303 		.escr_msr	= { MSR_P4_FIRM_ESCR0, MSR_P4_FIRM_ESCR1 },
304 		.escr_emask	=
305 			P4_ESCR_EMASK_BIT(P4_EVENT_128BIT_MMX_UOP, ALL),
306 		.shared		= 1,
307 		.cntr		= { {8, 9, -1}, {10, 11, -1} },
308 	},
309 	[P4_EVENT_X87_FP_UOP] = {
310 		.opcode		= P4_OPCODE(P4_EVENT_X87_FP_UOP),
311 		.escr_msr	= { MSR_P4_FIRM_ESCR0, MSR_P4_FIRM_ESCR1 },
312 		.escr_emask	=
313 			P4_ESCR_EMASK_BIT(P4_EVENT_X87_FP_UOP, ALL),
314 		.shared		= 1,
315 		.cntr		= { {8, 9, -1}, {10, 11, -1} },
316 	},
317 	[P4_EVENT_TC_MISC] = {
318 		.opcode		= P4_OPCODE(P4_EVENT_TC_MISC),
319 		.escr_msr	= { MSR_P4_TC_ESCR0, MSR_P4_TC_ESCR1 },
320 		.escr_emask	=
321 			P4_ESCR_EMASK_BIT(P4_EVENT_TC_MISC, FLUSH),
322 		.cntr		= { {4, 5, -1}, {6, 7, -1} },
323 	},
324 	[P4_EVENT_GLOBAL_POWER_EVENTS] = {
325 		.opcode		= P4_OPCODE(P4_EVENT_GLOBAL_POWER_EVENTS),
326 		.escr_msr	= { MSR_P4_FSB_ESCR0, MSR_P4_FSB_ESCR1 },
327 		.escr_emask	=
328 			P4_ESCR_EMASK_BIT(P4_EVENT_GLOBAL_POWER_EVENTS, RUNNING),
329 		.cntr		= { {0, -1, -1}, {2, -1, -1} },
330 	},
331 	[P4_EVENT_TC_MS_XFER] = {
332 		.opcode		= P4_OPCODE(P4_EVENT_TC_MS_XFER),
333 		.escr_msr	= { MSR_P4_MS_ESCR0, MSR_P4_MS_ESCR1 },
334 		.escr_emask	=
335 			P4_ESCR_EMASK_BIT(P4_EVENT_TC_MS_XFER, CISC),
336 		.cntr		= { {4, 5, -1}, {6, 7, -1} },
337 	},
338 	[P4_EVENT_UOP_QUEUE_WRITES] = {
339 		.opcode		= P4_OPCODE(P4_EVENT_UOP_QUEUE_WRITES),
340 		.escr_msr	= { MSR_P4_MS_ESCR0, MSR_P4_MS_ESCR1 },
341 		.escr_emask	=
342 			P4_ESCR_EMASK_BIT(P4_EVENT_UOP_QUEUE_WRITES, FROM_TC_BUILD)	|
343 			P4_ESCR_EMASK_BIT(P4_EVENT_UOP_QUEUE_WRITES, FROM_TC_DELIVER)	|
344 			P4_ESCR_EMASK_BIT(P4_EVENT_UOP_QUEUE_WRITES, FROM_ROM),
345 		.cntr		= { {4, 5, -1}, {6, 7, -1} },
346 	},
347 	[P4_EVENT_RETIRED_MISPRED_BRANCH_TYPE] = {
348 		.opcode		= P4_OPCODE(P4_EVENT_RETIRED_MISPRED_BRANCH_TYPE),
349 		.escr_msr	= { MSR_P4_TBPU_ESCR0 , MSR_P4_TBPU_ESCR0 },
350 		.escr_emask	=
351 			P4_ESCR_EMASK_BIT(P4_EVENT_RETIRED_MISPRED_BRANCH_TYPE, CONDITIONAL)	|
352 			P4_ESCR_EMASK_BIT(P4_EVENT_RETIRED_MISPRED_BRANCH_TYPE, CALL)		|
353 			P4_ESCR_EMASK_BIT(P4_EVENT_RETIRED_MISPRED_BRANCH_TYPE, RETURN)		|
354 			P4_ESCR_EMASK_BIT(P4_EVENT_RETIRED_MISPRED_BRANCH_TYPE, INDIRECT),
355 		.cntr		= { {4, 5, -1}, {6, 7, -1} },
356 	},
357 	[P4_EVENT_RETIRED_BRANCH_TYPE] = {
358 		.opcode		= P4_OPCODE(P4_EVENT_RETIRED_BRANCH_TYPE),
359 		.escr_msr	= { MSR_P4_TBPU_ESCR0 , MSR_P4_TBPU_ESCR1 },
360 		.escr_emask	=
361 			P4_ESCR_EMASK_BIT(P4_EVENT_RETIRED_BRANCH_TYPE, CONDITIONAL)	|
362 			P4_ESCR_EMASK_BIT(P4_EVENT_RETIRED_BRANCH_TYPE, CALL)		|
363 			P4_ESCR_EMASK_BIT(P4_EVENT_RETIRED_BRANCH_TYPE, RETURN)		|
364 			P4_ESCR_EMASK_BIT(P4_EVENT_RETIRED_BRANCH_TYPE, INDIRECT),
365 		.cntr		= { {4, 5, -1}, {6, 7, -1} },
366 	},
367 	[P4_EVENT_RESOURCE_STALL] = {
368 		.opcode		= P4_OPCODE(P4_EVENT_RESOURCE_STALL),
369 		.escr_msr	= { MSR_P4_ALF_ESCR0, MSR_P4_ALF_ESCR1 },
370 		.escr_emask	=
371 			P4_ESCR_EMASK_BIT(P4_EVENT_RESOURCE_STALL, SBFULL),
372 		.cntr		= { {12, 13, 16}, {14, 15, 17} },
373 	},
374 	[P4_EVENT_WC_BUFFER] = {
375 		.opcode		= P4_OPCODE(P4_EVENT_WC_BUFFER),
376 		.escr_msr	= { MSR_P4_DAC_ESCR0, MSR_P4_DAC_ESCR1 },
377 		.escr_emask	=
378 			P4_ESCR_EMASK_BIT(P4_EVENT_WC_BUFFER, WCB_EVICTS)		|
379 			P4_ESCR_EMASK_BIT(P4_EVENT_WC_BUFFER, WCB_FULL_EVICTS),
380 		.shared		= 1,
381 		.cntr		= { {8, 9, -1}, {10, 11, -1} },
382 	},
383 	[P4_EVENT_B2B_CYCLES] = {
384 		.opcode		= P4_OPCODE(P4_EVENT_B2B_CYCLES),
385 		.escr_msr	= { MSR_P4_FSB_ESCR0, MSR_P4_FSB_ESCR1 },
386 		.escr_emask	= 0,
387 		.cntr		= { {0, -1, -1}, {2, -1, -1} },
388 	},
389 	[P4_EVENT_BNR] = {
390 		.opcode		= P4_OPCODE(P4_EVENT_BNR),
391 		.escr_msr	= { MSR_P4_FSB_ESCR0, MSR_P4_FSB_ESCR1 },
392 		.escr_emask	= 0,
393 		.cntr		= { {0, -1, -1}, {2, -1, -1} },
394 	},
395 	[P4_EVENT_SNOOP] = {
396 		.opcode		= P4_OPCODE(P4_EVENT_SNOOP),
397 		.escr_msr	= { MSR_P4_FSB_ESCR0, MSR_P4_FSB_ESCR1 },
398 		.escr_emask	= 0,
399 		.cntr		= { {0, -1, -1}, {2, -1, -1} },
400 	},
401 	[P4_EVENT_RESPONSE] = {
402 		.opcode		= P4_OPCODE(P4_EVENT_RESPONSE),
403 		.escr_msr	= { MSR_P4_FSB_ESCR0, MSR_P4_FSB_ESCR1 },
404 		.escr_emask	= 0,
405 		.cntr		= { {0, -1, -1}, {2, -1, -1} },
406 	},
407 	[P4_EVENT_FRONT_END_EVENT] = {
408 		.opcode		= P4_OPCODE(P4_EVENT_FRONT_END_EVENT),
409 		.escr_msr	= { MSR_P4_CRU_ESCR2, MSR_P4_CRU_ESCR3 },
410 		.escr_emask	=
411 			P4_ESCR_EMASK_BIT(P4_EVENT_FRONT_END_EVENT, NBOGUS)		|
412 			P4_ESCR_EMASK_BIT(P4_EVENT_FRONT_END_EVENT, BOGUS),
413 		.cntr		= { {12, 13, 16}, {14, 15, 17} },
414 	},
415 	[P4_EVENT_EXECUTION_EVENT] = {
416 		.opcode		= P4_OPCODE(P4_EVENT_EXECUTION_EVENT),
417 		.escr_msr	= { MSR_P4_CRU_ESCR2, MSR_P4_CRU_ESCR3 },
418 		.escr_emask	=
419 			P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, NBOGUS0)		|
420 			P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, NBOGUS1)		|
421 			P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, NBOGUS2)		|
422 			P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, NBOGUS3)		|
423 			P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, BOGUS0)		|
424 			P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, BOGUS1)		|
425 			P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, BOGUS2)		|
426 			P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, BOGUS3),
427 		.cntr		= { {12, 13, 16}, {14, 15, 17} },
428 	},
429 	[P4_EVENT_REPLAY_EVENT] = {
430 		.opcode		= P4_OPCODE(P4_EVENT_REPLAY_EVENT),
431 		.escr_msr	= { MSR_P4_CRU_ESCR2, MSR_P4_CRU_ESCR3 },
432 		.escr_emask	=
433 			P4_ESCR_EMASK_BIT(P4_EVENT_REPLAY_EVENT, NBOGUS)		|
434 			P4_ESCR_EMASK_BIT(P4_EVENT_REPLAY_EVENT, BOGUS),
435 		.cntr		= { {12, 13, 16}, {14, 15, 17} },
436 	},
437 	[P4_EVENT_INSTR_RETIRED] = {
438 		.opcode		= P4_OPCODE(P4_EVENT_INSTR_RETIRED),
439 		.escr_msr	= { MSR_P4_CRU_ESCR0, MSR_P4_CRU_ESCR1 },
440 		.escr_emask	=
441 			P4_ESCR_EMASK_BIT(P4_EVENT_INSTR_RETIRED, NBOGUSNTAG)		|
442 			P4_ESCR_EMASK_BIT(P4_EVENT_INSTR_RETIRED, NBOGUSTAG)		|
443 			P4_ESCR_EMASK_BIT(P4_EVENT_INSTR_RETIRED, BOGUSNTAG)		|
444 			P4_ESCR_EMASK_BIT(P4_EVENT_INSTR_RETIRED, BOGUSTAG),
445 		.cntr		= { {12, 13, 16}, {14, 15, 17} },
446 	},
447 	[P4_EVENT_UOPS_RETIRED] = {
448 		.opcode		= P4_OPCODE(P4_EVENT_UOPS_RETIRED),
449 		.escr_msr	= { MSR_P4_CRU_ESCR0, MSR_P4_CRU_ESCR1 },
450 		.escr_emask	=
451 			P4_ESCR_EMASK_BIT(P4_EVENT_UOPS_RETIRED, NBOGUS)		|
452 			P4_ESCR_EMASK_BIT(P4_EVENT_UOPS_RETIRED, BOGUS),
453 		.cntr		= { {12, 13, 16}, {14, 15, 17} },
454 	},
455 	[P4_EVENT_UOP_TYPE] = {
456 		.opcode		= P4_OPCODE(P4_EVENT_UOP_TYPE),
457 		.escr_msr	= { MSR_P4_RAT_ESCR0, MSR_P4_RAT_ESCR1 },
458 		.escr_emask	=
459 			P4_ESCR_EMASK_BIT(P4_EVENT_UOP_TYPE, TAGLOADS)			|
460 			P4_ESCR_EMASK_BIT(P4_EVENT_UOP_TYPE, TAGSTORES),
461 		.cntr		= { {12, 13, 16}, {14, 15, 17} },
462 	},
463 	[P4_EVENT_BRANCH_RETIRED] = {
464 		.opcode		= P4_OPCODE(P4_EVENT_BRANCH_RETIRED),
465 		.escr_msr	= { MSR_P4_CRU_ESCR2, MSR_P4_CRU_ESCR3 },
466 		.escr_emask	=
467 			P4_ESCR_EMASK_BIT(P4_EVENT_BRANCH_RETIRED, MMNP)		|
468 			P4_ESCR_EMASK_BIT(P4_EVENT_BRANCH_RETIRED, MMNM)		|
469 			P4_ESCR_EMASK_BIT(P4_EVENT_BRANCH_RETIRED, MMTP)		|
470 			P4_ESCR_EMASK_BIT(P4_EVENT_BRANCH_RETIRED, MMTM),
471 		.cntr		= { {12, 13, 16}, {14, 15, 17} },
472 	},
473 	[P4_EVENT_MISPRED_BRANCH_RETIRED] = {
474 		.opcode		= P4_OPCODE(P4_EVENT_MISPRED_BRANCH_RETIRED),
475 		.escr_msr	= { MSR_P4_CRU_ESCR0, MSR_P4_CRU_ESCR1 },
476 		.escr_emask	=
477 			P4_ESCR_EMASK_BIT(P4_EVENT_MISPRED_BRANCH_RETIRED, NBOGUS),
478 		.cntr		= { {12, 13, 16}, {14, 15, 17} },
479 	},
480 	[P4_EVENT_X87_ASSIST] = {
481 		.opcode		= P4_OPCODE(P4_EVENT_X87_ASSIST),
482 		.escr_msr	= { MSR_P4_CRU_ESCR2, MSR_P4_CRU_ESCR3 },
483 		.escr_emask	=
484 			P4_ESCR_EMASK_BIT(P4_EVENT_X87_ASSIST, FPSU)			|
485 			P4_ESCR_EMASK_BIT(P4_EVENT_X87_ASSIST, FPSO)			|
486 			P4_ESCR_EMASK_BIT(P4_EVENT_X87_ASSIST, POAO)			|
487 			P4_ESCR_EMASK_BIT(P4_EVENT_X87_ASSIST, POAU)			|
488 			P4_ESCR_EMASK_BIT(P4_EVENT_X87_ASSIST, PREA),
489 		.cntr		= { {12, 13, 16}, {14, 15, 17} },
490 	},
491 	[P4_EVENT_MACHINE_CLEAR] = {
492 		.opcode		= P4_OPCODE(P4_EVENT_MACHINE_CLEAR),
493 		.escr_msr	= { MSR_P4_CRU_ESCR2, MSR_P4_CRU_ESCR3 },
494 		.escr_emask	=
495 			P4_ESCR_EMASK_BIT(P4_EVENT_MACHINE_CLEAR, CLEAR)		|
496 			P4_ESCR_EMASK_BIT(P4_EVENT_MACHINE_CLEAR, MOCLEAR)		|
497 			P4_ESCR_EMASK_BIT(P4_EVENT_MACHINE_CLEAR, SMCLEAR),
498 		.cntr		= { {12, 13, 16}, {14, 15, 17} },
499 	},
500 	[P4_EVENT_INSTR_COMPLETED] = {
501 		.opcode		= P4_OPCODE(P4_EVENT_INSTR_COMPLETED),
502 		.escr_msr	= { MSR_P4_CRU_ESCR0, MSR_P4_CRU_ESCR1 },
503 		.escr_emask	=
504 			P4_ESCR_EMASK_BIT(P4_EVENT_INSTR_COMPLETED, NBOGUS)		|
505 			P4_ESCR_EMASK_BIT(P4_EVENT_INSTR_COMPLETED, BOGUS),
506 		.cntr		= { {12, 13, 16}, {14, 15, 17} },
507 	},
508 };
509 
510 #define P4_GEN_CACHE_EVENT(event, bit, metric)				  \
511 	p4_config_pack_escr(P4_ESCR_EVENT(event)			| \
512 			    P4_ESCR_EMASK_BIT(event, bit))		| \
513 	p4_config_pack_cccr(metric					| \
514 			    P4_CCCR_ESEL(P4_OPCODE_ESEL(P4_OPCODE(event))))
515 
516 static __initconst const u64 p4_hw_cache_event_ids
517 				[PERF_COUNT_HW_CACHE_MAX]
518 				[PERF_COUNT_HW_CACHE_OP_MAX]
519 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
520 {
521  [ C(L1D ) ] = {
522 	[ C(OP_READ) ] = {
523 		[ C(RESULT_ACCESS) ] = 0x0,
524 		[ C(RESULT_MISS)   ] = P4_GEN_CACHE_EVENT(P4_EVENT_REPLAY_EVENT, NBOGUS,
525 						P4_PEBS_METRIC__1stl_cache_load_miss_retired),
526 	},
527  },
528  [ C(LL  ) ] = {
529 	[ C(OP_READ) ] = {
530 		[ C(RESULT_ACCESS) ] = 0x0,
531 		[ C(RESULT_MISS)   ] = P4_GEN_CACHE_EVENT(P4_EVENT_REPLAY_EVENT, NBOGUS,
532 						P4_PEBS_METRIC__2ndl_cache_load_miss_retired),
533 	},
534 },
535  [ C(DTLB) ] = {
536 	[ C(OP_READ) ] = {
537 		[ C(RESULT_ACCESS) ] = 0x0,
538 		[ C(RESULT_MISS)   ] = P4_GEN_CACHE_EVENT(P4_EVENT_REPLAY_EVENT, NBOGUS,
539 						P4_PEBS_METRIC__dtlb_load_miss_retired),
540 	},
541 	[ C(OP_WRITE) ] = {
542 		[ C(RESULT_ACCESS) ] = 0x0,
543 		[ C(RESULT_MISS)   ] = P4_GEN_CACHE_EVENT(P4_EVENT_REPLAY_EVENT, NBOGUS,
544 						P4_PEBS_METRIC__dtlb_store_miss_retired),
545 	},
546  },
547  [ C(ITLB) ] = {
548 	[ C(OP_READ) ] = {
549 		[ C(RESULT_ACCESS) ] = P4_GEN_CACHE_EVENT(P4_EVENT_ITLB_REFERENCE, HIT,
550 						P4_PEBS_METRIC__none),
551 		[ C(RESULT_MISS)   ] = P4_GEN_CACHE_EVENT(P4_EVENT_ITLB_REFERENCE, MISS,
552 						P4_PEBS_METRIC__none),
553 	},
554 	[ C(OP_WRITE) ] = {
555 		[ C(RESULT_ACCESS) ] = -1,
556 		[ C(RESULT_MISS)   ] = -1,
557 	},
558 	[ C(OP_PREFETCH) ] = {
559 		[ C(RESULT_ACCESS) ] = -1,
560 		[ C(RESULT_MISS)   ] = -1,
561 	},
562  },
563  [ C(NODE) ] = {
564 	[ C(OP_READ) ] = {
565 		[ C(RESULT_ACCESS) ] = -1,
566 		[ C(RESULT_MISS)   ] = -1,
567 	},
568 	[ C(OP_WRITE) ] = {
569 		[ C(RESULT_ACCESS) ] = -1,
570 		[ C(RESULT_MISS)   ] = -1,
571 	},
572 	[ C(OP_PREFETCH) ] = {
573 		[ C(RESULT_ACCESS) ] = -1,
574 		[ C(RESULT_MISS)   ] = -1,
575 	},
576  },
577 };
578 
579 /*
580  * Because of Netburst being quite restricted in how many
581  * identical events may run simultaneously, we introduce event aliases,
582  * ie the different events which have the same functionality but
583  * utilize non-intersected resources (ESCR/CCCR/counter registers).
584  *
585  * This allow us to relax restrictions a bit and run two or more
586  * identical events together.
587  *
588  * Never set any custom internal bits such as P4_CONFIG_HT,
589  * P4_CONFIG_ALIASABLE or bits for P4_PEBS_METRIC, they are
590  * either up to date automatically or not applicable at all.
591  */
592 static struct p4_event_alias {
593 	u64 original;
594 	u64 alternative;
595 } p4_event_aliases[] = {
596 	{
597 		/*
598 		 * Non-halted cycles can be substituted with non-sleeping cycles (see
599 		 * Intel SDM Vol3b for details). We need this alias to be able
600 		 * to run nmi-watchdog and 'perf top' (or any other user space tool
601 		 * which is interested in running PERF_COUNT_HW_CPU_CYCLES)
602 		 * simultaneously.
603 		 */
604 	.original	=
605 		p4_config_pack_escr(P4_ESCR_EVENT(P4_EVENT_GLOBAL_POWER_EVENTS)		|
606 				    P4_ESCR_EMASK_BIT(P4_EVENT_GLOBAL_POWER_EVENTS, RUNNING)),
607 	.alternative	=
608 		p4_config_pack_escr(P4_ESCR_EVENT(P4_EVENT_EXECUTION_EVENT)		|
609 				    P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, NBOGUS0)|
610 				    P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, NBOGUS1)|
611 				    P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, NBOGUS2)|
612 				    P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, NBOGUS3)|
613 				    P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, BOGUS0)	|
614 				    P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, BOGUS1)	|
615 				    P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, BOGUS2)	|
616 				    P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, BOGUS3))|
617 		p4_config_pack_cccr(P4_CCCR_THRESHOLD(15) | P4_CCCR_COMPLEMENT		|
618 				    P4_CCCR_COMPARE),
619 	},
620 };
621 
p4_get_alias_event(u64 config)622 static u64 p4_get_alias_event(u64 config)
623 {
624 	u64 config_match;
625 	int i;
626 
627 	/*
628 	 * Only event with special mark is allowed,
629 	 * we're to be sure it didn't come as malformed
630 	 * RAW event.
631 	 */
632 	if (!(config & P4_CONFIG_ALIASABLE))
633 		return 0;
634 
635 	config_match = config & P4_CONFIG_EVENT_ALIAS_MASK;
636 
637 	for (i = 0; i < ARRAY_SIZE(p4_event_aliases); i++) {
638 		if (config_match == p4_event_aliases[i].original) {
639 			config_match = p4_event_aliases[i].alternative;
640 			break;
641 		} else if (config_match == p4_event_aliases[i].alternative) {
642 			config_match = p4_event_aliases[i].original;
643 			break;
644 		}
645 	}
646 
647 	if (i >= ARRAY_SIZE(p4_event_aliases))
648 		return 0;
649 
650 	return config_match | (config & P4_CONFIG_EVENT_ALIAS_IMMUTABLE_BITS);
651 }
652 
653 static u64 p4_general_events[PERF_COUNT_HW_MAX] = {
654   /* non-halted CPU clocks */
655   [PERF_COUNT_HW_CPU_CYCLES] =
656 	p4_config_pack_escr(P4_ESCR_EVENT(P4_EVENT_GLOBAL_POWER_EVENTS)		|
657 		P4_ESCR_EMASK_BIT(P4_EVENT_GLOBAL_POWER_EVENTS, RUNNING))	|
658 		P4_CONFIG_ALIASABLE,
659 
660   /*
661    * retired instructions
662    * in a sake of simplicity we don't use the FSB tagging
663    */
664   [PERF_COUNT_HW_INSTRUCTIONS] =
665 	p4_config_pack_escr(P4_ESCR_EVENT(P4_EVENT_INSTR_RETIRED)		|
666 		P4_ESCR_EMASK_BIT(P4_EVENT_INSTR_RETIRED, NBOGUSNTAG)		|
667 		P4_ESCR_EMASK_BIT(P4_EVENT_INSTR_RETIRED, BOGUSNTAG)),
668 
669   /* cache hits */
670   [PERF_COUNT_HW_CACHE_REFERENCES] =
671 	p4_config_pack_escr(P4_ESCR_EVENT(P4_EVENT_BSQ_CACHE_REFERENCE)		|
672 		P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_2ndL_HITS)	|
673 		P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_2ndL_HITE)	|
674 		P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_2ndL_HITM)	|
675 		P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_3rdL_HITS)	|
676 		P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_3rdL_HITE)	|
677 		P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_3rdL_HITM)),
678 
679   /* cache misses */
680   [PERF_COUNT_HW_CACHE_MISSES] =
681 	p4_config_pack_escr(P4_ESCR_EVENT(P4_EVENT_BSQ_CACHE_REFERENCE)		|
682 		P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_2ndL_MISS)	|
683 		P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_3rdL_MISS)	|
684 		P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, WR_2ndL_MISS)),
685 
686   /* branch instructions retired */
687   [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] =
688 	p4_config_pack_escr(P4_ESCR_EVENT(P4_EVENT_RETIRED_BRANCH_TYPE)		|
689 		P4_ESCR_EMASK_BIT(P4_EVENT_RETIRED_BRANCH_TYPE, CONDITIONAL)	|
690 		P4_ESCR_EMASK_BIT(P4_EVENT_RETIRED_BRANCH_TYPE, CALL)		|
691 		P4_ESCR_EMASK_BIT(P4_EVENT_RETIRED_BRANCH_TYPE, RETURN)		|
692 		P4_ESCR_EMASK_BIT(P4_EVENT_RETIRED_BRANCH_TYPE, INDIRECT)),
693 
694   /* mispredicted branches retired */
695   [PERF_COUNT_HW_BRANCH_MISSES]	=
696 	p4_config_pack_escr(P4_ESCR_EVENT(P4_EVENT_MISPRED_BRANCH_RETIRED)	|
697 		P4_ESCR_EMASK_BIT(P4_EVENT_MISPRED_BRANCH_RETIRED, NBOGUS)),
698 
699   /* bus ready clocks (cpu is driving #DRDY_DRV\#DRDY_OWN):  */
700   [PERF_COUNT_HW_BUS_CYCLES] =
701 	p4_config_pack_escr(P4_ESCR_EVENT(P4_EVENT_FSB_DATA_ACTIVITY)		|
702 		P4_ESCR_EMASK_BIT(P4_EVENT_FSB_DATA_ACTIVITY, DRDY_DRV)		|
703 		P4_ESCR_EMASK_BIT(P4_EVENT_FSB_DATA_ACTIVITY, DRDY_OWN))	|
704 	p4_config_pack_cccr(P4_CCCR_EDGE | P4_CCCR_COMPARE),
705 };
706 
p4_config_get_bind(u64 config)707 static struct p4_event_bind *p4_config_get_bind(u64 config)
708 {
709 	unsigned int evnt = p4_config_unpack_event(config);
710 	struct p4_event_bind *bind = NULL;
711 
712 	if (evnt < ARRAY_SIZE(p4_event_bind_map))
713 		bind = &p4_event_bind_map[evnt];
714 
715 	return bind;
716 }
717 
p4_pmu_event_map(int hw_event)718 static u64 p4_pmu_event_map(int hw_event)
719 {
720 	struct p4_event_bind *bind;
721 	unsigned int esel;
722 	u64 config;
723 
724 	config = p4_general_events[hw_event];
725 	bind = p4_config_get_bind(config);
726 	esel = P4_OPCODE_ESEL(bind->opcode);
727 	config |= p4_config_pack_cccr(P4_CCCR_ESEL(esel));
728 
729 	return config;
730 }
731 
732 /* check cpu model specifics */
p4_event_match_cpu_model(unsigned int event_idx)733 static bool p4_event_match_cpu_model(unsigned int event_idx)
734 {
735 	/* INSTR_COMPLETED event only exist for model 3, 4, 6 (Prescott) */
736 	if (event_idx == P4_EVENT_INSTR_COMPLETED) {
737 		if (boot_cpu_data.x86_vfm != INTEL_P4_PRESCOTT &&
738 		    boot_cpu_data.x86_vfm != INTEL_P4_PRESCOTT_2M &&
739 		    boot_cpu_data.x86_vfm != INTEL_P4_CEDARMILL)
740 			return false;
741 	}
742 
743 	/*
744 	 * For info
745 	 * - IQ_ESCR0, IQ_ESCR1 only for models 1 and 2
746 	 */
747 
748 	return true;
749 }
750 
p4_validate_raw_event(struct perf_event * event)751 static int p4_validate_raw_event(struct perf_event *event)
752 {
753 	unsigned int v, emask;
754 
755 	/* User data may have out-of-bound event index */
756 	v = p4_config_unpack_event(event->attr.config);
757 	if (v >= ARRAY_SIZE(p4_event_bind_map))
758 		return -EINVAL;
759 
760 	/* It may be unsupported: */
761 	if (!p4_event_match_cpu_model(v))
762 		return -EINVAL;
763 
764 	/*
765 	 * NOTE: P4_CCCR_THREAD_ANY has not the same meaning as
766 	 * in Architectural Performance Monitoring, it means not
767 	 * on _which_ logical cpu to count but rather _when_, ie it
768 	 * depends on logical cpu state -- count event if one cpu active,
769 	 * none, both or any, so we just allow user to pass any value
770 	 * desired.
771 	 *
772 	 * In turn we always set Tx_OS/Tx_USR bits bound to logical
773 	 * cpu without their propagation to another cpu
774 	 */
775 
776 	/*
777 	 * if an event is shared across the logical threads
778 	 * the user needs special permissions to be able to use it
779 	 */
780 	if (p4_ht_active() && p4_event_bind_map[v].shared) {
781 		v = perf_allow_cpu();
782 		if (v)
783 			return v;
784 	}
785 
786 	/* ESCR EventMask bits may be invalid */
787 	emask = p4_config_unpack_escr(event->attr.config) & P4_ESCR_EVENTMASK_MASK;
788 	if (emask & ~p4_event_bind_map[v].escr_emask)
789 		return -EINVAL;
790 
791 	/*
792 	 * it may have some invalid PEBS bits
793 	 */
794 	if (p4_config_pebs_has(event->attr.config, P4_PEBS_CONFIG_ENABLE))
795 		return -EINVAL;
796 
797 	v = p4_config_unpack_metric(event->attr.config);
798 	if (v >= ARRAY_SIZE(p4_pebs_bind_map))
799 		return -EINVAL;
800 
801 	return 0;
802 }
803 
p4_hw_config(struct perf_event * event)804 static int p4_hw_config(struct perf_event *event)
805 {
806 	int cpu = get_cpu();
807 	int rc = 0;
808 	u32 escr, cccr;
809 
810 	/*
811 	 * the reason we use cpu that early is that: if we get scheduled
812 	 * first time on the same cpu -- we will not need swap thread
813 	 * specific flags in config (and will save some cpu cycles)
814 	 */
815 
816 	cccr = p4_default_cccr_conf(cpu);
817 	escr = p4_default_escr_conf(cpu, event->attr.exclude_kernel,
818 					 event->attr.exclude_user);
819 	event->hw.config = p4_config_pack_escr(escr) |
820 			   p4_config_pack_cccr(cccr);
821 
822 	if (p4_ht_active() && p4_ht_thread(cpu))
823 		event->hw.config = p4_set_ht_bit(event->hw.config);
824 
825 	if (event->attr.type == PERF_TYPE_RAW) {
826 		struct p4_event_bind *bind;
827 		unsigned int esel;
828 		/*
829 		 * Clear bits we reserve to be managed by kernel itself
830 		 * and never allowed from a user space
831 		 */
832 		event->attr.config &= P4_CONFIG_MASK;
833 
834 		rc = p4_validate_raw_event(event);
835 		if (rc)
836 			goto out;
837 
838 		/*
839 		 * Note that for RAW events we allow user to use P4_CCCR_RESERVED
840 		 * bits since we keep additional info here (for cache events and etc)
841 		 */
842 		event->hw.config |= event->attr.config;
843 		bind = p4_config_get_bind(event->attr.config);
844 		if (!bind) {
845 			rc = -EINVAL;
846 			goto out;
847 		}
848 		esel = P4_OPCODE_ESEL(bind->opcode);
849 		event->hw.config |= p4_config_pack_cccr(P4_CCCR_ESEL(esel));
850 	}
851 
852 	rc = x86_setup_perfctr(event);
853 out:
854 	put_cpu();
855 	return rc;
856 }
857 
p4_pmu_clear_cccr_ovf(struct hw_perf_event * hwc)858 static inline int p4_pmu_clear_cccr_ovf(struct hw_perf_event *hwc)
859 {
860 	u64 v;
861 
862 	/* an official way for overflow indication */
863 	rdmsrq(hwc->config_base, v);
864 	if (v & P4_CCCR_OVF) {
865 		wrmsrq(hwc->config_base, v & ~P4_CCCR_OVF);
866 		return 1;
867 	}
868 
869 	/*
870 	 * In some circumstances the overflow might issue an NMI but did
871 	 * not set P4_CCCR_OVF bit. Because a counter holds a negative value
872 	 * we simply check for high bit being set, if it's cleared it means
873 	 * the counter has reached zero value and continued counting before
874 	 * real NMI signal was received:
875 	 */
876 	rdmsrq(hwc->event_base, v);
877 	if (!(v & ARCH_P4_UNFLAGGED_BIT))
878 		return 1;
879 
880 	return 0;
881 }
882 
p4_pmu_disable_pebs(void)883 static void p4_pmu_disable_pebs(void)
884 {
885 	/*
886 	 * FIXME
887 	 *
888 	 * It's still allowed that two threads setup same cache
889 	 * events so we can't simply clear metrics until we knew
890 	 * no one is depending on us, so we need kind of counter
891 	 * for "ReplayEvent" users.
892 	 *
893 	 * What is more complex -- RAW events, if user (for some
894 	 * reason) will pass some cache event metric with improper
895 	 * event opcode -- it's fine from hardware point of view
896 	 * but completely nonsense from "meaning" of such action.
897 	 *
898 	 * So at moment let leave metrics turned on forever -- it's
899 	 * ok for now but need to be revisited!
900 	 *
901 	 * (void)wrmsrq_safe(MSR_IA32_PEBS_ENABLE, 0);
902 	 * (void)wrmsrq_safe(MSR_P4_PEBS_MATRIX_VERT, 0);
903 	 */
904 }
905 
p4_pmu_disable_event(struct perf_event * event)906 static inline void p4_pmu_disable_event(struct perf_event *event)
907 {
908 	struct hw_perf_event *hwc = &event->hw;
909 
910 	/*
911 	 * If event gets disabled while counter is in overflowed
912 	 * state we need to clear P4_CCCR_OVF, otherwise interrupt get
913 	 * asserted again and again
914 	 */
915 	(void)wrmsrq_safe(hwc->config_base,
916 		p4_config_unpack_cccr(hwc->config) & ~P4_CCCR_ENABLE & ~P4_CCCR_OVF & ~P4_CCCR_RESERVED);
917 }
918 
p4_pmu_disable_all(void)919 static void p4_pmu_disable_all(void)
920 {
921 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
922 	int idx;
923 
924 	for_each_set_bit(idx, x86_pmu.cntr_mask, X86_PMC_IDX_MAX) {
925 		struct perf_event *event = cpuc->events[idx];
926 		if (!test_bit(idx, cpuc->active_mask))
927 			continue;
928 		p4_pmu_disable_event(event);
929 	}
930 
931 	p4_pmu_disable_pebs();
932 }
933 
934 /* configuration must be valid */
p4_pmu_enable_pebs(u64 config)935 static void p4_pmu_enable_pebs(u64 config)
936 {
937 	struct p4_pebs_bind *bind;
938 	unsigned int idx;
939 
940 	BUILD_BUG_ON(P4_PEBS_METRIC__max > P4_PEBS_CONFIG_METRIC_MASK);
941 
942 	idx = p4_config_unpack_metric(config);
943 	if (idx == P4_PEBS_METRIC__none)
944 		return;
945 
946 	bind = &p4_pebs_bind_map[idx];
947 
948 	(void)wrmsrq_safe(MSR_IA32_PEBS_ENABLE,	(u64)bind->metric_pebs);
949 	(void)wrmsrq_safe(MSR_P4_PEBS_MATRIX_VERT,	(u64)bind->metric_vert);
950 }
951 
__p4_pmu_enable_event(struct perf_event * event)952 static void __p4_pmu_enable_event(struct perf_event *event)
953 {
954 	struct hw_perf_event *hwc = &event->hw;
955 	int thread = p4_ht_config_thread(hwc->config);
956 	u64 escr_conf = p4_config_unpack_escr(p4_clear_ht_bit(hwc->config));
957 	unsigned int idx = p4_config_unpack_event(hwc->config);
958 	struct p4_event_bind *bind;
959 	u64 escr_addr, cccr;
960 
961 	bind = &p4_event_bind_map[idx];
962 	escr_addr = bind->escr_msr[thread];
963 
964 	/*
965 	 * - we dont support cascaded counters yet
966 	 * - and counter 1 is broken (erratum)
967 	 */
968 	WARN_ON_ONCE(p4_is_event_cascaded(hwc->config));
969 	WARN_ON_ONCE(hwc->idx == 1);
970 
971 	/* we need a real Event value */
972 	escr_conf &= ~P4_ESCR_EVENT_MASK;
973 	escr_conf |= P4_ESCR_EVENT(P4_OPCODE_EVNT(bind->opcode));
974 
975 	cccr = p4_config_unpack_cccr(hwc->config);
976 
977 	/*
978 	 * it could be Cache event so we need to write metrics
979 	 * into additional MSRs
980 	 */
981 	p4_pmu_enable_pebs(hwc->config);
982 
983 	(void)wrmsrq_safe(escr_addr, escr_conf);
984 	(void)wrmsrq_safe(hwc->config_base,
985 				(cccr & ~P4_CCCR_RESERVED) | P4_CCCR_ENABLE);
986 }
987 
988 static DEFINE_PER_CPU(unsigned long [BITS_TO_LONGS(X86_PMC_IDX_MAX)], p4_running);
989 
p4_pmu_enable_event(struct perf_event * event)990 static void p4_pmu_enable_event(struct perf_event *event)
991 {
992 	int idx = event->hw.idx;
993 
994 	__set_bit(idx, per_cpu(p4_running, smp_processor_id()));
995 	__p4_pmu_enable_event(event);
996 }
997 
p4_pmu_enable_all(int added)998 static void p4_pmu_enable_all(int added)
999 {
1000 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1001 	int idx;
1002 
1003 	for_each_set_bit(idx, x86_pmu.cntr_mask, X86_PMC_IDX_MAX) {
1004 		struct perf_event *event = cpuc->events[idx];
1005 		if (!test_bit(idx, cpuc->active_mask))
1006 			continue;
1007 		__p4_pmu_enable_event(event);
1008 	}
1009 }
1010 
p4_pmu_set_period(struct perf_event * event)1011 static int p4_pmu_set_period(struct perf_event *event)
1012 {
1013 	struct hw_perf_event *hwc = &event->hw;
1014 	s64 left = this_cpu_read(pmc_prev_left[hwc->idx]);
1015 	int ret;
1016 
1017 	ret = x86_perf_event_set_period(event);
1018 
1019 	if (hwc->event_base) {
1020 		/*
1021 		 * This handles erratum N15 in intel doc 249199-029,
1022 		 * the counter may not be updated correctly on write
1023 		 * so we need a second write operation to do the trick
1024 		 * (the official workaround didn't work)
1025 		 *
1026 		 * the former idea is taken from OProfile code
1027 		 */
1028 		wrmsrq(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
1029 	}
1030 
1031 	return ret;
1032 }
1033 
p4_pmu_handle_irq(struct pt_regs * regs)1034 static int p4_pmu_handle_irq(struct pt_regs *regs)
1035 {
1036 	struct perf_sample_data data;
1037 	struct cpu_hw_events *cpuc;
1038 	struct perf_event *event;
1039 	struct hw_perf_event *hwc;
1040 	int idx, handled = 0;
1041 	u64 val;
1042 
1043 	cpuc = this_cpu_ptr(&cpu_hw_events);
1044 
1045 	for_each_set_bit(idx, x86_pmu.cntr_mask, X86_PMC_IDX_MAX) {
1046 		int overflow;
1047 
1048 		if (!test_bit(idx, cpuc->active_mask)) {
1049 			/* catch in-flight IRQs */
1050 			if (__test_and_clear_bit(idx, per_cpu(p4_running, smp_processor_id())))
1051 				handled++;
1052 			continue;
1053 		}
1054 
1055 		event = cpuc->events[idx];
1056 		hwc = &event->hw;
1057 
1058 		WARN_ON_ONCE(hwc->idx != idx);
1059 
1060 		/* it might be unflagged overflow */
1061 		overflow = p4_pmu_clear_cccr_ovf(hwc);
1062 
1063 		val = x86_perf_event_update(event);
1064 		if (!overflow && (val & (1ULL << (x86_pmu.cntval_bits - 1))))
1065 			continue;
1066 
1067 		handled += overflow;
1068 
1069 		/* event overflow for sure */
1070 		perf_sample_data_init(&data, 0, hwc->last_period);
1071 
1072 		if (!static_call(x86_pmu_set_period)(event))
1073 			continue;
1074 
1075 
1076 		perf_event_overflow(event, &data, regs);
1077 	}
1078 
1079 	if (handled)
1080 		inc_irq_stat(apic_perf_irqs);
1081 
1082 	/*
1083 	 * When dealing with the unmasking of the LVTPC on P4 perf hw, it has
1084 	 * been observed that the OVF bit flag has to be cleared first _before_
1085 	 * the LVTPC can be unmasked.
1086 	 *
1087 	 * The reason is the NMI line will continue to be asserted while the OVF
1088 	 * bit is set.  This causes a second NMI to generate if the LVTPC is
1089 	 * unmasked before the OVF bit is cleared, leading to unknown NMI
1090 	 * messages.
1091 	 */
1092 	apic_write(APIC_LVTPC, APIC_DM_NMI);
1093 
1094 	return handled;
1095 }
1096 
1097 /*
1098  * swap thread specific fields according to a thread
1099  * we are going to run on
1100  */
p4_pmu_swap_config_ts(struct hw_perf_event * hwc,int cpu)1101 static void p4_pmu_swap_config_ts(struct hw_perf_event *hwc, int cpu)
1102 {
1103 	u32 escr, cccr;
1104 
1105 	/*
1106 	 * we either lucky and continue on same cpu or no HT support
1107 	 */
1108 	if (!p4_should_swap_ts(hwc->config, cpu))
1109 		return;
1110 
1111 	/*
1112 	 * the event is migrated from an another logical
1113 	 * cpu, so we need to swap thread specific flags
1114 	 */
1115 
1116 	escr = p4_config_unpack_escr(hwc->config);
1117 	cccr = p4_config_unpack_cccr(hwc->config);
1118 
1119 	if (p4_ht_thread(cpu)) {
1120 		cccr &= ~P4_CCCR_OVF_PMI_T0;
1121 		cccr |= P4_CCCR_OVF_PMI_T1;
1122 		if (escr & P4_ESCR_T0_OS) {
1123 			escr &= ~P4_ESCR_T0_OS;
1124 			escr |= P4_ESCR_T1_OS;
1125 		}
1126 		if (escr & P4_ESCR_T0_USR) {
1127 			escr &= ~P4_ESCR_T0_USR;
1128 			escr |= P4_ESCR_T1_USR;
1129 		}
1130 		hwc->config  = p4_config_pack_escr(escr);
1131 		hwc->config |= p4_config_pack_cccr(cccr);
1132 		hwc->config |= P4_CONFIG_HT;
1133 	} else {
1134 		cccr &= ~P4_CCCR_OVF_PMI_T1;
1135 		cccr |= P4_CCCR_OVF_PMI_T0;
1136 		if (escr & P4_ESCR_T1_OS) {
1137 			escr &= ~P4_ESCR_T1_OS;
1138 			escr |= P4_ESCR_T0_OS;
1139 		}
1140 		if (escr & P4_ESCR_T1_USR) {
1141 			escr &= ~P4_ESCR_T1_USR;
1142 			escr |= P4_ESCR_T0_USR;
1143 		}
1144 		hwc->config  = p4_config_pack_escr(escr);
1145 		hwc->config |= p4_config_pack_cccr(cccr);
1146 		hwc->config &= ~P4_CONFIG_HT;
1147 	}
1148 }
1149 
1150 /*
1151  * ESCR address hashing is tricky, ESCRs are not sequential
1152  * in memory but all starts from MSR_P4_BSU_ESCR0 (0x03a0) and
1153  * the metric between any ESCRs is laid in range [0xa0,0xe1]
1154  *
1155  * so we make ~70% filled hashtable
1156  */
1157 
1158 #define P4_ESCR_MSR_BASE		0x000003a0
1159 #define P4_ESCR_MSR_MAX			0x000003e1
1160 #define P4_ESCR_MSR_TABLE_SIZE		(P4_ESCR_MSR_MAX - P4_ESCR_MSR_BASE + 1)
1161 #define P4_ESCR_MSR_IDX(msr)		(msr - P4_ESCR_MSR_BASE)
1162 #define P4_ESCR_MSR_TABLE_ENTRY(msr)	[P4_ESCR_MSR_IDX(msr)] = msr
1163 
1164 static const unsigned int p4_escr_table[P4_ESCR_MSR_TABLE_SIZE] = {
1165 	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_ALF_ESCR0),
1166 	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_ALF_ESCR1),
1167 	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_BPU_ESCR0),
1168 	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_BPU_ESCR1),
1169 	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_BSU_ESCR0),
1170 	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_BSU_ESCR1),
1171 	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_CRU_ESCR0),
1172 	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_CRU_ESCR1),
1173 	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_CRU_ESCR2),
1174 	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_CRU_ESCR3),
1175 	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_CRU_ESCR4),
1176 	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_CRU_ESCR5),
1177 	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_DAC_ESCR0),
1178 	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_DAC_ESCR1),
1179 	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_FIRM_ESCR0),
1180 	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_FIRM_ESCR1),
1181 	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_FLAME_ESCR0),
1182 	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_FLAME_ESCR1),
1183 	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_FSB_ESCR0),
1184 	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_FSB_ESCR1),
1185 	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_IQ_ESCR0),
1186 	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_IQ_ESCR1),
1187 	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_IS_ESCR0),
1188 	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_IS_ESCR1),
1189 	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_ITLB_ESCR0),
1190 	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_ITLB_ESCR1),
1191 	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_IX_ESCR0),
1192 	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_IX_ESCR1),
1193 	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_MOB_ESCR0),
1194 	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_MOB_ESCR1),
1195 	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_MS_ESCR0),
1196 	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_MS_ESCR1),
1197 	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_PMH_ESCR0),
1198 	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_PMH_ESCR1),
1199 	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_RAT_ESCR0),
1200 	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_RAT_ESCR1),
1201 	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_SAAT_ESCR0),
1202 	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_SAAT_ESCR1),
1203 	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_SSU_ESCR0),
1204 	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_SSU_ESCR1),
1205 	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_TBPU_ESCR0),
1206 	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_TBPU_ESCR1),
1207 	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_TC_ESCR0),
1208 	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_TC_ESCR1),
1209 	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_U2L_ESCR0),
1210 	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_U2L_ESCR1),
1211 };
1212 
p4_get_escr_idx(unsigned int addr)1213 static int p4_get_escr_idx(unsigned int addr)
1214 {
1215 	unsigned int idx = P4_ESCR_MSR_IDX(addr);
1216 
1217 	if (unlikely(idx >= P4_ESCR_MSR_TABLE_SIZE	||
1218 			!p4_escr_table[idx]		||
1219 			p4_escr_table[idx] != addr)) {
1220 		WARN_ONCE(1, "P4 PMU: Wrong address passed: %x\n", addr);
1221 		return -1;
1222 	}
1223 
1224 	return idx;
1225 }
1226 
p4_next_cntr(int thread,unsigned long * used_mask,struct p4_event_bind * bind)1227 static int p4_next_cntr(int thread, unsigned long *used_mask,
1228 			struct p4_event_bind *bind)
1229 {
1230 	int i, j;
1231 
1232 	for (i = 0; i < P4_CNTR_LIMIT; i++) {
1233 		j = bind->cntr[thread][i];
1234 		if (j != -1 && !test_bit(j, used_mask))
1235 			return j;
1236 	}
1237 
1238 	return -1;
1239 }
1240 
p4_pmu_schedule_events(struct cpu_hw_events * cpuc,int n,int * assign)1241 static int p4_pmu_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
1242 {
1243 	unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
1244 	unsigned long escr_mask[BITS_TO_LONGS(P4_ESCR_MSR_TABLE_SIZE)];
1245 	int cpu = smp_processor_id();
1246 	struct hw_perf_event *hwc;
1247 	struct p4_event_bind *bind;
1248 	unsigned int i, thread, num;
1249 	int cntr_idx, escr_idx;
1250 	u64 config_alias;
1251 	int pass;
1252 
1253 	bitmap_zero(used_mask, X86_PMC_IDX_MAX);
1254 	bitmap_zero(escr_mask, P4_ESCR_MSR_TABLE_SIZE);
1255 
1256 	for (i = 0, num = n; i < n; i++, num--) {
1257 
1258 		hwc = &cpuc->event_list[i]->hw;
1259 		thread = p4_ht_thread(cpu);
1260 		pass = 0;
1261 
1262 again:
1263 		/*
1264 		 * It's possible to hit a circular lock
1265 		 * between original and alternative events
1266 		 * if both are scheduled already.
1267 		 */
1268 		if (pass > 2)
1269 			goto done;
1270 
1271 		bind = p4_config_get_bind(hwc->config);
1272 		escr_idx = p4_get_escr_idx(bind->escr_msr[thread]);
1273 		if (unlikely(escr_idx == -1))
1274 			goto done;
1275 
1276 		if (hwc->idx != -1 && !p4_should_swap_ts(hwc->config, cpu)) {
1277 			cntr_idx = hwc->idx;
1278 			if (assign)
1279 				assign[i] = hwc->idx;
1280 			goto reserve;
1281 		}
1282 
1283 		cntr_idx = p4_next_cntr(thread, used_mask, bind);
1284 		if (cntr_idx == -1 || test_bit(escr_idx, escr_mask)) {
1285 			/*
1286 			 * Check whether an event alias is still available.
1287 			 */
1288 			config_alias = p4_get_alias_event(hwc->config);
1289 			if (!config_alias)
1290 				goto done;
1291 			hwc->config = config_alias;
1292 			pass++;
1293 			goto again;
1294 		}
1295 		/*
1296 		 * Perf does test runs to see if a whole group can be assigned
1297 		 * together successfully.  There can be multiple rounds of this.
1298 		 * Unfortunately, p4_pmu_swap_config_ts touches the hwc->config
1299 		 * bits, such that the next round of group assignments will
1300 		 * cause the above p4_should_swap_ts to pass instead of fail.
1301 		 * This leads to counters exclusive to thread0 being used by
1302 		 * thread1.
1303 		 *
1304 		 * Solve this with a cheap hack, reset the idx back to -1 to
1305 		 * force a new lookup (p4_next_cntr) to get the right counter
1306 		 * for the right thread.
1307 		 *
1308 		 * This probably doesn't comply with the general spirit of how
1309 		 * perf wants to work, but P4 is special. :-(
1310 		 */
1311 		if (p4_should_swap_ts(hwc->config, cpu))
1312 			hwc->idx = -1;
1313 		p4_pmu_swap_config_ts(hwc, cpu);
1314 		if (assign)
1315 			assign[i] = cntr_idx;
1316 reserve:
1317 		set_bit(cntr_idx, used_mask);
1318 		set_bit(escr_idx, escr_mask);
1319 	}
1320 
1321 done:
1322 	return num ? -EINVAL : 0;
1323 }
1324 
1325 PMU_FORMAT_ATTR(cccr, "config:0-31" );
1326 PMU_FORMAT_ATTR(escr, "config:32-62");
1327 PMU_FORMAT_ATTR(ht,   "config:63"   );
1328 
1329 static struct attribute *intel_p4_formats_attr[] = {
1330 	&format_attr_cccr.attr,
1331 	&format_attr_escr.attr,
1332 	&format_attr_ht.attr,
1333 	NULL,
1334 };
1335 
1336 static __initconst const struct x86_pmu p4_pmu = {
1337 	.name			= "Netburst P4/Xeon",
1338 	.handle_irq		= p4_pmu_handle_irq,
1339 	.disable_all		= p4_pmu_disable_all,
1340 	.enable_all		= p4_pmu_enable_all,
1341 	.enable			= p4_pmu_enable_event,
1342 	.disable		= p4_pmu_disable_event,
1343 
1344 	.set_period		= p4_pmu_set_period,
1345 
1346 	.eventsel		= MSR_P4_BPU_CCCR0,
1347 	.perfctr		= MSR_P4_BPU_PERFCTR0,
1348 	.event_map		= p4_pmu_event_map,
1349 	.max_events		= ARRAY_SIZE(p4_general_events),
1350 	.get_event_constraints	= x86_get_event_constraints,
1351 	/*
1352 	 * IF HT disabled we may need to use all
1353 	 * ARCH_P4_MAX_CCCR counters simultaneously
1354 	 * though leave it restricted at moment assuming
1355 	 * HT is on
1356 	 */
1357 	.cntr_mask64		= GENMASK_ULL(ARCH_P4_MAX_CCCR - 1, 0),
1358 	.apic			= 1,
1359 	.cntval_bits		= ARCH_P4_CNTRVAL_BITS,
1360 	.cntval_mask		= ARCH_P4_CNTRVAL_MASK,
1361 	.max_period		= (1ULL << (ARCH_P4_CNTRVAL_BITS - 1)) - 1,
1362 	.hw_config		= p4_hw_config,
1363 	.schedule_events	= p4_pmu_schedule_events,
1364 
1365 	.format_attrs		= intel_p4_formats_attr,
1366 };
1367 
p4_pmu_init(void)1368 __init int p4_pmu_init(void)
1369 {
1370 	unsigned int low, high;
1371 	int i, reg;
1372 
1373 	/* If we get stripped -- indexing fails */
1374 	BUILD_BUG_ON(ARCH_P4_MAX_CCCR > INTEL_PMC_MAX_GENERIC);
1375 
1376 	rdmsr(MSR_IA32_MISC_ENABLE, low, high);
1377 	if (!(low & (1 << 7))) {
1378 		pr_cont("unsupported Netburst CPU model %d ",
1379 			boot_cpu_data.x86_model);
1380 		return -ENODEV;
1381 	}
1382 
1383 	memcpy(hw_cache_event_ids, p4_hw_cache_event_ids,
1384 		sizeof(hw_cache_event_ids));
1385 
1386 	pr_cont("Netburst events, ");
1387 
1388 	x86_pmu = p4_pmu;
1389 
1390 	/*
1391 	 * Even though the counters are configured to interrupt a particular
1392 	 * logical processor when an overflow happens, testing has shown that
1393 	 * on kdump kernels (which uses a single cpu), thread1's counter
1394 	 * continues to run and will report an NMI on thread0.  Due to the
1395 	 * overflow bug, this leads to a stream of unknown NMIs.
1396 	 *
1397 	 * Solve this by zero'ing out the registers to mimic a reset.
1398 	 */
1399 	for_each_set_bit(i, x86_pmu.cntr_mask, X86_PMC_IDX_MAX) {
1400 		reg = x86_pmu_config_addr(i);
1401 		wrmsrq_safe(reg, 0ULL);
1402 	}
1403 
1404 	return 0;
1405 }
1406