1 // SPDX-License-Identifier: GPL-2.0-only
2 #include "cgroup-internal.h"
3
4 #include <linux/ctype.h>
5 #include <linux/kmod.h>
6 #include <linux/sort.h>
7 #include <linux/delay.h>
8 #include <linux/mm.h>
9 #include <linux/sched/signal.h>
10 #include <linux/sched/task.h>
11 #include <linux/magic.h>
12 #include <linux/slab.h>
13 #include <linux/vmalloc.h>
14 #include <linux/delayacct.h>
15 #include <linux/pid_namespace.h>
16 #include <linux/cgroupstats.h>
17 #include <linux/fs_parser.h>
18
19 #include <trace/events/cgroup.h>
20
21 /*
22 * pidlists linger the following amount before being destroyed. The goal
23 * is avoiding frequent destruction in the middle of consecutive read calls
24 * Expiring in the middle is a performance problem not a correctness one.
25 * 1 sec should be enough.
26 */
27 #define CGROUP_PIDLIST_DESTROY_DELAY HZ
28
29 /* Controllers blocked by the commandline in v1 */
30 static u16 cgroup_no_v1_mask;
31
32 /* disable named v1 mounts */
33 static bool cgroup_no_v1_named;
34
35 /* Show unavailable controllers in /proc/cgroups */
36 static bool proc_show_all;
37
38 /*
39 * pidlist destructions need to be flushed on cgroup destruction. Use a
40 * separate workqueue as flush domain.
41 */
42 static struct workqueue_struct *cgroup_pidlist_destroy_wq;
43
44 /* protects cgroup_subsys->release_agent_path */
45 static DEFINE_SPINLOCK(release_agent_path_lock);
46
cgroup1_ssid_disabled(int ssid)47 bool cgroup1_ssid_disabled(int ssid)
48 {
49 return cgroup_no_v1_mask & (1 << ssid);
50 }
51
cgroup1_subsys_absent(struct cgroup_subsys * ss)52 static bool cgroup1_subsys_absent(struct cgroup_subsys *ss)
53 {
54 /* Check also dfl_cftypes for file-less controllers, i.e. perf_event */
55 return ss->legacy_cftypes == NULL && ss->dfl_cftypes;
56 }
57
58 /**
59 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
60 * @from: attach to all cgroups of a given task
61 * @tsk: the task to be attached
62 *
63 * Return: %0 on success or a negative errno code on failure
64 */
cgroup_attach_task_all(struct task_struct * from,struct task_struct * tsk)65 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
66 {
67 struct cgroup_root *root;
68 int retval = 0;
69
70 cgroup_lock();
71 cgroup_attach_lock(true);
72 for_each_root(root) {
73 struct cgroup *from_cgrp;
74
75 spin_lock_irq(&css_set_lock);
76 from_cgrp = task_cgroup_from_root(from, root);
77 spin_unlock_irq(&css_set_lock);
78
79 retval = cgroup_attach_task(from_cgrp, tsk, false);
80 if (retval)
81 break;
82 }
83 cgroup_attach_unlock(true);
84 cgroup_unlock();
85
86 return retval;
87 }
88 EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
89
90 /**
91 * cgroup_transfer_tasks - move tasks from one cgroup to another
92 * @to: cgroup to which the tasks will be moved
93 * @from: cgroup in which the tasks currently reside
94 *
95 * Locking rules between cgroup_post_fork() and the migration path
96 * guarantee that, if a task is forking while being migrated, the new child
97 * is guaranteed to be either visible in the source cgroup after the
98 * parent's migration is complete or put into the target cgroup. No task
99 * can slip out of migration through forking.
100 *
101 * Return: %0 on success or a negative errno code on failure
102 */
cgroup_transfer_tasks(struct cgroup * to,struct cgroup * from)103 int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
104 {
105 DEFINE_CGROUP_MGCTX(mgctx);
106 struct cgrp_cset_link *link;
107 struct css_task_iter it;
108 struct task_struct *task;
109 int ret;
110
111 if (cgroup_on_dfl(to))
112 return -EINVAL;
113
114 ret = cgroup_migrate_vet_dst(to);
115 if (ret)
116 return ret;
117
118 cgroup_lock();
119
120 cgroup_attach_lock(true);
121
122 /* all tasks in @from are being moved, all csets are source */
123 spin_lock_irq(&css_set_lock);
124 list_for_each_entry(link, &from->cset_links, cset_link)
125 cgroup_migrate_add_src(link->cset, to, &mgctx);
126 spin_unlock_irq(&css_set_lock);
127
128 ret = cgroup_migrate_prepare_dst(&mgctx);
129 if (ret)
130 goto out_err;
131
132 /*
133 * Migrate tasks one-by-one until @from is empty. This fails iff
134 * ->can_attach() fails.
135 */
136 do {
137 css_task_iter_start(&from->self, 0, &it);
138
139 do {
140 task = css_task_iter_next(&it);
141 } while (task && (task->flags & PF_EXITING));
142
143 if (task)
144 get_task_struct(task);
145 css_task_iter_end(&it);
146
147 if (task) {
148 ret = cgroup_migrate(task, false, &mgctx);
149 if (!ret)
150 TRACE_CGROUP_PATH(transfer_tasks, to, task, false);
151 put_task_struct(task);
152 }
153 } while (task && !ret);
154 out_err:
155 cgroup_migrate_finish(&mgctx);
156 cgroup_attach_unlock(true);
157 cgroup_unlock();
158 return ret;
159 }
160
161 /*
162 * Stuff for reading the 'tasks'/'procs' files.
163 *
164 * Reading this file can return large amounts of data if a cgroup has
165 * *lots* of attached tasks. So it may need several calls to read(),
166 * but we cannot guarantee that the information we produce is correct
167 * unless we produce it entirely atomically.
168 *
169 */
170
171 /* which pidlist file are we talking about? */
172 enum cgroup_filetype {
173 CGROUP_FILE_PROCS,
174 CGROUP_FILE_TASKS,
175 };
176
177 /*
178 * A pidlist is a list of pids that virtually represents the contents of one
179 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
180 * a pair (one each for procs, tasks) for each pid namespace that's relevant
181 * to the cgroup.
182 */
183 struct cgroup_pidlist {
184 /*
185 * used to find which pidlist is wanted. doesn't change as long as
186 * this particular list stays in the list.
187 */
188 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
189 /* array of xids */
190 pid_t *list;
191 /* how many elements the above list has */
192 int length;
193 /* each of these stored in a list by its cgroup */
194 struct list_head links;
195 /* pointer to the cgroup we belong to, for list removal purposes */
196 struct cgroup *owner;
197 /* for delayed destruction */
198 struct delayed_work destroy_dwork;
199 };
200
201 /*
202 * Used to destroy all pidlists lingering waiting for destroy timer. None
203 * should be left afterwards.
204 */
cgroup1_pidlist_destroy_all(struct cgroup * cgrp)205 void cgroup1_pidlist_destroy_all(struct cgroup *cgrp)
206 {
207 struct cgroup_pidlist *l, *tmp_l;
208
209 mutex_lock(&cgrp->pidlist_mutex);
210 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
211 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
212 mutex_unlock(&cgrp->pidlist_mutex);
213
214 flush_workqueue(cgroup_pidlist_destroy_wq);
215 BUG_ON(!list_empty(&cgrp->pidlists));
216 }
217
cgroup_pidlist_destroy_work_fn(struct work_struct * work)218 static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
219 {
220 struct delayed_work *dwork = to_delayed_work(work);
221 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
222 destroy_dwork);
223 struct cgroup_pidlist *tofree = NULL;
224
225 mutex_lock(&l->owner->pidlist_mutex);
226
227 /*
228 * Destroy iff we didn't get queued again. The state won't change
229 * as destroy_dwork can only be queued while locked.
230 */
231 if (!delayed_work_pending(dwork)) {
232 list_del(&l->links);
233 kvfree(l->list);
234 put_pid_ns(l->key.ns);
235 tofree = l;
236 }
237
238 mutex_unlock(&l->owner->pidlist_mutex);
239 kfree(tofree);
240 }
241
242 /*
243 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
244 * Returns the number of unique elements.
245 */
pidlist_uniq(pid_t * list,int length)246 static int pidlist_uniq(pid_t *list, int length)
247 {
248 int src, dest = 1;
249
250 /*
251 * we presume the 0th element is unique, so i starts at 1. trivial
252 * edge cases first; no work needs to be done for either
253 */
254 if (length == 0 || length == 1)
255 return length;
256 /* src and dest walk down the list; dest counts unique elements */
257 for (src = 1; src < length; src++) {
258 /* find next unique element */
259 while (list[src] == list[src-1]) {
260 src++;
261 if (src == length)
262 goto after;
263 }
264 /* dest always points to where the next unique element goes */
265 list[dest] = list[src];
266 dest++;
267 }
268 after:
269 return dest;
270 }
271
272 /*
273 * The two pid files - task and cgroup.procs - guaranteed that the result
274 * is sorted, which forced this whole pidlist fiasco. As pid order is
275 * different per namespace, each namespace needs differently sorted list,
276 * making it impossible to use, for example, single rbtree of member tasks
277 * sorted by task pointer. As pidlists can be fairly large, allocating one
278 * per open file is dangerous, so cgroup had to implement shared pool of
279 * pidlists keyed by cgroup and namespace.
280 */
cmppid(const void * a,const void * b)281 static int cmppid(const void *a, const void *b)
282 {
283 return *(pid_t *)a - *(pid_t *)b;
284 }
285
cgroup_pidlist_find(struct cgroup * cgrp,enum cgroup_filetype type)286 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
287 enum cgroup_filetype type)
288 {
289 struct cgroup_pidlist *l;
290 /* don't need task_nsproxy() if we're looking at ourself */
291 struct pid_namespace *ns = task_active_pid_ns(current);
292
293 lockdep_assert_held(&cgrp->pidlist_mutex);
294
295 list_for_each_entry(l, &cgrp->pidlists, links)
296 if (l->key.type == type && l->key.ns == ns)
297 return l;
298 return NULL;
299 }
300
301 /*
302 * find the appropriate pidlist for our purpose (given procs vs tasks)
303 * returns with the lock on that pidlist already held, and takes care
304 * of the use count, or returns NULL with no locks held if we're out of
305 * memory.
306 */
cgroup_pidlist_find_create(struct cgroup * cgrp,enum cgroup_filetype type)307 static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
308 enum cgroup_filetype type)
309 {
310 struct cgroup_pidlist *l;
311
312 lockdep_assert_held(&cgrp->pidlist_mutex);
313
314 l = cgroup_pidlist_find(cgrp, type);
315 if (l)
316 return l;
317
318 /* entry not found; create a new one */
319 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
320 if (!l)
321 return l;
322
323 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
324 l->key.type = type;
325 /* don't need task_nsproxy() if we're looking at ourself */
326 l->key.ns = get_pid_ns(task_active_pid_ns(current));
327 l->owner = cgrp;
328 list_add(&l->links, &cgrp->pidlists);
329 return l;
330 }
331
332 /*
333 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
334 */
pidlist_array_load(struct cgroup * cgrp,enum cgroup_filetype type,struct cgroup_pidlist ** lp)335 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
336 struct cgroup_pidlist **lp)
337 {
338 pid_t *array;
339 int length;
340 int pid, n = 0; /* used for populating the array */
341 struct css_task_iter it;
342 struct task_struct *tsk;
343 struct cgroup_pidlist *l;
344
345 lockdep_assert_held(&cgrp->pidlist_mutex);
346
347 /*
348 * If cgroup gets more users after we read count, we won't have
349 * enough space - tough. This race is indistinguishable to the
350 * caller from the case that the additional cgroup users didn't
351 * show up until sometime later on.
352 */
353 length = cgroup_task_count(cgrp);
354 array = kvmalloc_array(length, sizeof(pid_t), GFP_KERNEL);
355 if (!array)
356 return -ENOMEM;
357 /* now, populate the array */
358 css_task_iter_start(&cgrp->self, 0, &it);
359 while ((tsk = css_task_iter_next(&it))) {
360 if (unlikely(n == length))
361 break;
362 /* get tgid or pid for procs or tasks file respectively */
363 if (type == CGROUP_FILE_PROCS)
364 pid = task_tgid_vnr(tsk);
365 else
366 pid = task_pid_vnr(tsk);
367 if (pid > 0) /* make sure to only use valid results */
368 array[n++] = pid;
369 }
370 css_task_iter_end(&it);
371 length = n;
372 /* now sort & strip out duplicates (tgids or recycled thread PIDs) */
373 sort(array, length, sizeof(pid_t), cmppid, NULL);
374 length = pidlist_uniq(array, length);
375
376 l = cgroup_pidlist_find_create(cgrp, type);
377 if (!l) {
378 kvfree(array);
379 return -ENOMEM;
380 }
381
382 /* store array, freeing old if necessary */
383 kvfree(l->list);
384 l->list = array;
385 l->length = length;
386 *lp = l;
387 return 0;
388 }
389
390 /*
391 * seq_file methods for the tasks/procs files. The seq_file position is the
392 * next pid to display; the seq_file iterator is a pointer to the pid
393 * in the cgroup->l->list array.
394 */
395
cgroup_pidlist_start(struct seq_file * s,loff_t * pos)396 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
397 {
398 /*
399 * Initially we receive a position value that corresponds to
400 * one more than the last pid shown (or 0 on the first call or
401 * after a seek to the start). Use a binary-search to find the
402 * next pid to display, if any
403 */
404 struct kernfs_open_file *of = s->private;
405 struct cgroup_file_ctx *ctx = of->priv;
406 struct cgroup *cgrp = seq_css(s)->cgroup;
407 struct cgroup_pidlist *l;
408 enum cgroup_filetype type = seq_cft(s)->private;
409 int index = 0, pid = *pos;
410 int *iter, ret;
411
412 mutex_lock(&cgrp->pidlist_mutex);
413
414 /*
415 * !NULL @ctx->procs1.pidlist indicates that this isn't the first
416 * start() after open. If the matching pidlist is around, we can use
417 * that. Look for it. Note that @ctx->procs1.pidlist can't be used
418 * directly. It could already have been destroyed.
419 */
420 if (ctx->procs1.pidlist)
421 ctx->procs1.pidlist = cgroup_pidlist_find(cgrp, type);
422
423 /*
424 * Either this is the first start() after open or the matching
425 * pidlist has been destroyed inbetween. Create a new one.
426 */
427 if (!ctx->procs1.pidlist) {
428 ret = pidlist_array_load(cgrp, type, &ctx->procs1.pidlist);
429 if (ret)
430 return ERR_PTR(ret);
431 }
432 l = ctx->procs1.pidlist;
433
434 if (pid) {
435 int end = l->length;
436
437 while (index < end) {
438 int mid = (index + end) / 2;
439 if (l->list[mid] == pid) {
440 index = mid;
441 break;
442 } else if (l->list[mid] < pid)
443 index = mid + 1;
444 else
445 end = mid;
446 }
447 }
448 /* If we're off the end of the array, we're done */
449 if (index >= l->length)
450 return NULL;
451 /* Update the abstract position to be the actual pid that we found */
452 iter = l->list + index;
453 *pos = *iter;
454 return iter;
455 }
456
cgroup_pidlist_stop(struct seq_file * s,void * v)457 static void cgroup_pidlist_stop(struct seq_file *s, void *v)
458 {
459 struct kernfs_open_file *of = s->private;
460 struct cgroup_file_ctx *ctx = of->priv;
461 struct cgroup_pidlist *l = ctx->procs1.pidlist;
462
463 if (l)
464 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
465 CGROUP_PIDLIST_DESTROY_DELAY);
466 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
467 }
468
cgroup_pidlist_next(struct seq_file * s,void * v,loff_t * pos)469 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
470 {
471 struct kernfs_open_file *of = s->private;
472 struct cgroup_file_ctx *ctx = of->priv;
473 struct cgroup_pidlist *l = ctx->procs1.pidlist;
474 pid_t *p = v;
475 pid_t *end = l->list + l->length;
476 /*
477 * Advance to the next pid in the array. If this goes off the
478 * end, we're done
479 */
480 p++;
481 if (p >= end) {
482 (*pos)++;
483 return NULL;
484 } else {
485 *pos = *p;
486 return p;
487 }
488 }
489
cgroup_pidlist_show(struct seq_file * s,void * v)490 static int cgroup_pidlist_show(struct seq_file *s, void *v)
491 {
492 seq_printf(s, "%d\n", *(int *)v);
493
494 return 0;
495 }
496
__cgroup1_procs_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off,bool threadgroup)497 static ssize_t __cgroup1_procs_write(struct kernfs_open_file *of,
498 char *buf, size_t nbytes, loff_t off,
499 bool threadgroup)
500 {
501 struct cgroup *cgrp;
502 struct task_struct *task;
503 const struct cred *cred, *tcred;
504 ssize_t ret;
505 bool locked;
506
507 cgrp = cgroup_kn_lock_live(of->kn, false);
508 if (!cgrp)
509 return -ENODEV;
510
511 task = cgroup_procs_write_start(buf, threadgroup, &locked);
512 ret = PTR_ERR_OR_ZERO(task);
513 if (ret)
514 goto out_unlock;
515
516 /*
517 * Even if we're attaching all tasks in the thread group, we only need
518 * to check permissions on one of them. Check permissions using the
519 * credentials from file open to protect against inherited fd attacks.
520 */
521 cred = of->file->f_cred;
522 tcred = get_task_cred(task);
523 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
524 !uid_eq(cred->euid, tcred->uid) &&
525 !uid_eq(cred->euid, tcred->suid))
526 ret = -EACCES;
527 put_cred(tcred);
528 if (ret)
529 goto out_finish;
530
531 ret = cgroup_attach_task(cgrp, task, threadgroup);
532
533 out_finish:
534 cgroup_procs_write_finish(task, locked);
535 out_unlock:
536 cgroup_kn_unlock(of->kn);
537
538 return ret ?: nbytes;
539 }
540
cgroup1_procs_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)541 static ssize_t cgroup1_procs_write(struct kernfs_open_file *of,
542 char *buf, size_t nbytes, loff_t off)
543 {
544 return __cgroup1_procs_write(of, buf, nbytes, off, true);
545 }
546
cgroup1_tasks_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)547 static ssize_t cgroup1_tasks_write(struct kernfs_open_file *of,
548 char *buf, size_t nbytes, loff_t off)
549 {
550 return __cgroup1_procs_write(of, buf, nbytes, off, false);
551 }
552
cgroup_release_agent_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)553 static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
554 char *buf, size_t nbytes, loff_t off)
555 {
556 struct cgroup *cgrp;
557 struct cgroup_file_ctx *ctx;
558
559 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
560
561 /*
562 * Release agent gets called with all capabilities,
563 * require capabilities to set release agent.
564 */
565 ctx = of->priv;
566 if ((ctx->ns->user_ns != &init_user_ns) ||
567 !file_ns_capable(of->file, &init_user_ns, CAP_SYS_ADMIN))
568 return -EPERM;
569
570 cgrp = cgroup_kn_lock_live(of->kn, false);
571 if (!cgrp)
572 return -ENODEV;
573 spin_lock(&release_agent_path_lock);
574 strscpy(cgrp->root->release_agent_path, strstrip(buf),
575 sizeof(cgrp->root->release_agent_path));
576 spin_unlock(&release_agent_path_lock);
577 cgroup_kn_unlock(of->kn);
578 return nbytes;
579 }
580
cgroup_release_agent_show(struct seq_file * seq,void * v)581 static int cgroup_release_agent_show(struct seq_file *seq, void *v)
582 {
583 struct cgroup *cgrp = seq_css(seq)->cgroup;
584
585 spin_lock(&release_agent_path_lock);
586 seq_puts(seq, cgrp->root->release_agent_path);
587 spin_unlock(&release_agent_path_lock);
588 seq_putc(seq, '\n');
589 return 0;
590 }
591
cgroup_sane_behavior_show(struct seq_file * seq,void * v)592 static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
593 {
594 seq_puts(seq, "0\n");
595 return 0;
596 }
597
cgroup_read_notify_on_release(struct cgroup_subsys_state * css,struct cftype * cft)598 static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
599 struct cftype *cft)
600 {
601 return notify_on_release(css->cgroup);
602 }
603
cgroup_write_notify_on_release(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)604 static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
605 struct cftype *cft, u64 val)
606 {
607 if (val)
608 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
609 else
610 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
611 return 0;
612 }
613
cgroup_clone_children_read(struct cgroup_subsys_state * css,struct cftype * cft)614 static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
615 struct cftype *cft)
616 {
617 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
618 }
619
cgroup_clone_children_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)620 static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
621 struct cftype *cft, u64 val)
622 {
623 if (val)
624 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
625 else
626 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
627 return 0;
628 }
629
630 /* cgroup core interface files for the legacy hierarchies */
631 struct cftype cgroup1_base_files[] = {
632 {
633 .name = "cgroup.procs",
634 .seq_start = cgroup_pidlist_start,
635 .seq_next = cgroup_pidlist_next,
636 .seq_stop = cgroup_pidlist_stop,
637 .seq_show = cgroup_pidlist_show,
638 .private = CGROUP_FILE_PROCS,
639 .write = cgroup1_procs_write,
640 },
641 {
642 .name = "cgroup.clone_children",
643 .read_u64 = cgroup_clone_children_read,
644 .write_u64 = cgroup_clone_children_write,
645 },
646 {
647 .name = "cgroup.sane_behavior",
648 .flags = CFTYPE_ONLY_ON_ROOT,
649 .seq_show = cgroup_sane_behavior_show,
650 },
651 {
652 .name = "tasks",
653 .seq_start = cgroup_pidlist_start,
654 .seq_next = cgroup_pidlist_next,
655 .seq_stop = cgroup_pidlist_stop,
656 .seq_show = cgroup_pidlist_show,
657 .private = CGROUP_FILE_TASKS,
658 .write = cgroup1_tasks_write,
659 },
660 {
661 .name = "notify_on_release",
662 .read_u64 = cgroup_read_notify_on_release,
663 .write_u64 = cgroup_write_notify_on_release,
664 },
665 {
666 .name = "release_agent",
667 .flags = CFTYPE_ONLY_ON_ROOT,
668 .seq_show = cgroup_release_agent_show,
669 .write = cgroup_release_agent_write,
670 .max_write_len = PATH_MAX - 1,
671 },
672 { } /* terminate */
673 };
674
675 /* Display information about each subsystem and each hierarchy */
proc_cgroupstats_show(struct seq_file * m,void * v)676 int proc_cgroupstats_show(struct seq_file *m, void *v)
677 {
678 struct cgroup_subsys *ss;
679 bool cgrp_v1_visible = false;
680 int i;
681
682 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
683 /*
684 * Grab the subsystems state racily. No need to add avenue to
685 * cgroup_mutex contention.
686 */
687
688 for_each_subsys(ss, i) {
689 cgrp_v1_visible |= ss->root != &cgrp_dfl_root;
690
691 if (!proc_show_all && cgroup1_subsys_absent(ss))
692 continue;
693
694 seq_printf(m, "%s\t%d\t%d\t%d\n",
695 ss->legacy_name, ss->root->hierarchy_id,
696 atomic_read(&ss->root->nr_cgrps),
697 cgroup_ssid_enabled(i));
698 }
699
700 if (cgrp_dfl_visible && !cgrp_v1_visible)
701 pr_info_once("/proc/cgroups lists only v1 controllers, use cgroup.controllers of root cgroup for v2 info\n");
702
703
704 return 0;
705 }
706
707 /**
708 * cgroupstats_build - build and fill cgroupstats
709 * @stats: cgroupstats to fill information into
710 * @dentry: A dentry entry belonging to the cgroup for which stats have
711 * been requested.
712 *
713 * Build and fill cgroupstats so that taskstats can export it to user
714 * space.
715 *
716 * Return: %0 on success or a negative errno code on failure
717 */
cgroupstats_build(struct cgroupstats * stats,struct dentry * dentry)718 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
719 {
720 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
721 struct cgroup *cgrp;
722 struct css_task_iter it;
723 struct task_struct *tsk;
724
725 /* it should be kernfs_node belonging to cgroupfs and is a directory */
726 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
727 kernfs_type(kn) != KERNFS_DIR)
728 return -EINVAL;
729
730 /*
731 * We aren't being called from kernfs and there's no guarantee on
732 * @kn->priv's validity. For this and css_tryget_online_from_dir(),
733 * @kn->priv is RCU safe. Let's do the RCU dancing.
734 */
735 rcu_read_lock();
736 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
737 if (!cgrp || !cgroup_tryget(cgrp)) {
738 rcu_read_unlock();
739 return -ENOENT;
740 }
741 rcu_read_unlock();
742
743 css_task_iter_start(&cgrp->self, 0, &it);
744 while ((tsk = css_task_iter_next(&it))) {
745 switch (READ_ONCE(tsk->__state)) {
746 case TASK_RUNNING:
747 stats->nr_running++;
748 break;
749 case TASK_INTERRUPTIBLE:
750 stats->nr_sleeping++;
751 break;
752 case TASK_UNINTERRUPTIBLE:
753 stats->nr_uninterruptible++;
754 break;
755 case TASK_STOPPED:
756 stats->nr_stopped++;
757 break;
758 default:
759 if (tsk->in_iowait)
760 stats->nr_io_wait++;
761 break;
762 }
763 }
764 css_task_iter_end(&it);
765
766 cgroup_put(cgrp);
767 return 0;
768 }
769
cgroup1_check_for_release(struct cgroup * cgrp)770 void cgroup1_check_for_release(struct cgroup *cgrp)
771 {
772 if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) &&
773 !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
774 schedule_work(&cgrp->release_agent_work);
775 }
776
777 /*
778 * Notify userspace when a cgroup is released, by running the
779 * configured release agent with the name of the cgroup (path
780 * relative to the root of cgroup file system) as the argument.
781 *
782 * Most likely, this user command will try to rmdir this cgroup.
783 *
784 * This races with the possibility that some other task will be
785 * attached to this cgroup before it is removed, or that some other
786 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
787 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
788 * unused, and this cgroup will be reprieved from its death sentence,
789 * to continue to serve a useful existence. Next time it's released,
790 * we will get notified again, if it still has 'notify_on_release' set.
791 *
792 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
793 * means only wait until the task is successfully execve()'d. The
794 * separate release agent task is forked by call_usermodehelper(),
795 * then control in this thread returns here, without waiting for the
796 * release agent task. We don't bother to wait because the caller of
797 * this routine has no use for the exit status of the release agent
798 * task, so no sense holding our caller up for that.
799 */
cgroup1_release_agent(struct work_struct * work)800 void cgroup1_release_agent(struct work_struct *work)
801 {
802 struct cgroup *cgrp =
803 container_of(work, struct cgroup, release_agent_work);
804 char *pathbuf, *agentbuf;
805 char *argv[3], *envp[3];
806 int ret;
807
808 /* snoop agent path and exit early if empty */
809 if (!cgrp->root->release_agent_path[0])
810 return;
811
812 /* prepare argument buffers */
813 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
814 agentbuf = kmalloc(PATH_MAX, GFP_KERNEL);
815 if (!pathbuf || !agentbuf)
816 goto out_free;
817
818 spin_lock(&release_agent_path_lock);
819 strscpy(agentbuf, cgrp->root->release_agent_path, PATH_MAX);
820 spin_unlock(&release_agent_path_lock);
821 if (!agentbuf[0])
822 goto out_free;
823
824 ret = cgroup_path_ns(cgrp, pathbuf, PATH_MAX, &init_cgroup_ns);
825 if (ret < 0)
826 goto out_free;
827
828 argv[0] = agentbuf;
829 argv[1] = pathbuf;
830 argv[2] = NULL;
831
832 /* minimal command environment */
833 envp[0] = "HOME=/";
834 envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
835 envp[2] = NULL;
836
837 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
838 out_free:
839 kfree(agentbuf);
840 kfree(pathbuf);
841 }
842
843 /*
844 * cgroup_rename - Only allow simple rename of directories in place.
845 */
cgroup1_rename(struct kernfs_node * kn,struct kernfs_node * new_parent,const char * new_name_str)846 static int cgroup1_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
847 const char *new_name_str)
848 {
849 struct cgroup *cgrp = kn->priv;
850 int ret;
851
852 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
853 if (strchr(new_name_str, '\n'))
854 return -EINVAL;
855
856 if (kernfs_type(kn) != KERNFS_DIR)
857 return -ENOTDIR;
858 if (rcu_access_pointer(kn->__parent) != new_parent)
859 return -EIO;
860
861 /*
862 * We're gonna grab cgroup_mutex which nests outside kernfs
863 * active_ref. kernfs_rename() doesn't require active_ref
864 * protection. Break them before grabbing cgroup_mutex.
865 */
866 kernfs_break_active_protection(new_parent);
867 kernfs_break_active_protection(kn);
868
869 cgroup_lock();
870
871 ret = kernfs_rename(kn, new_parent, new_name_str);
872 if (!ret)
873 TRACE_CGROUP_PATH(rename, cgrp);
874
875 cgroup_unlock();
876
877 kernfs_unbreak_active_protection(kn);
878 kernfs_unbreak_active_protection(new_parent);
879 return ret;
880 }
881
cgroup1_show_options(struct seq_file * seq,struct kernfs_root * kf_root)882 static int cgroup1_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
883 {
884 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
885 struct cgroup_subsys *ss;
886 int ssid;
887
888 for_each_subsys(ss, ssid)
889 if (root->subsys_mask & (1 << ssid))
890 seq_show_option(seq, ss->legacy_name, NULL);
891 if (root->flags & CGRP_ROOT_NOPREFIX)
892 seq_puts(seq, ",noprefix");
893 if (root->flags & CGRP_ROOT_XATTR)
894 seq_puts(seq, ",xattr");
895 if (root->flags & CGRP_ROOT_CPUSET_V2_MODE)
896 seq_puts(seq, ",cpuset_v2_mode");
897 if (root->flags & CGRP_ROOT_FAVOR_DYNMODS)
898 seq_puts(seq, ",favordynmods");
899
900 spin_lock(&release_agent_path_lock);
901 if (strlen(root->release_agent_path))
902 seq_show_option(seq, "release_agent",
903 root->release_agent_path);
904 spin_unlock(&release_agent_path_lock);
905
906 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
907 seq_puts(seq, ",clone_children");
908 if (strlen(root->name))
909 seq_show_option(seq, "name", root->name);
910 return 0;
911 }
912
913 enum cgroup1_param {
914 Opt_all,
915 Opt_clone_children,
916 Opt_cpuset_v2_mode,
917 Opt_name,
918 Opt_none,
919 Opt_noprefix,
920 Opt_release_agent,
921 Opt_xattr,
922 Opt_favordynmods,
923 Opt_nofavordynmods,
924 };
925
926 const struct fs_parameter_spec cgroup1_fs_parameters[] = {
927 fsparam_flag ("all", Opt_all),
928 fsparam_flag ("clone_children", Opt_clone_children),
929 fsparam_flag ("cpuset_v2_mode", Opt_cpuset_v2_mode),
930 fsparam_string("name", Opt_name),
931 fsparam_flag ("none", Opt_none),
932 fsparam_flag ("noprefix", Opt_noprefix),
933 fsparam_string("release_agent", Opt_release_agent),
934 fsparam_flag ("xattr", Opt_xattr),
935 fsparam_flag ("favordynmods", Opt_favordynmods),
936 fsparam_flag ("nofavordynmods", Opt_nofavordynmods),
937 {}
938 };
939
cgroup1_parse_param(struct fs_context * fc,struct fs_parameter * param)940 int cgroup1_parse_param(struct fs_context *fc, struct fs_parameter *param)
941 {
942 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
943 struct cgroup_subsys *ss;
944 struct fs_parse_result result;
945 int opt, i;
946
947 opt = fs_parse(fc, cgroup1_fs_parameters, param, &result);
948 if (opt == -ENOPARAM) {
949 int ret;
950
951 ret = vfs_parse_fs_param_source(fc, param);
952 if (ret != -ENOPARAM)
953 return ret;
954 for_each_subsys(ss, i) {
955 if (strcmp(param->key, ss->legacy_name) ||
956 cgroup1_subsys_absent(ss))
957 continue;
958 if (!cgroup_ssid_enabled(i) || cgroup1_ssid_disabled(i))
959 return invalfc(fc, "Disabled controller '%s'",
960 param->key);
961 ctx->subsys_mask |= (1 << i);
962 return 0;
963 }
964 return invalfc(fc, "Unknown subsys name '%s'", param->key);
965 }
966 if (opt < 0)
967 return opt;
968
969 switch (opt) {
970 case Opt_none:
971 /* Explicitly have no subsystems */
972 ctx->none = true;
973 break;
974 case Opt_all:
975 ctx->all_ss = true;
976 break;
977 case Opt_noprefix:
978 ctx->flags |= CGRP_ROOT_NOPREFIX;
979 break;
980 case Opt_clone_children:
981 ctx->cpuset_clone_children = true;
982 break;
983 case Opt_cpuset_v2_mode:
984 ctx->flags |= CGRP_ROOT_CPUSET_V2_MODE;
985 break;
986 case Opt_xattr:
987 ctx->flags |= CGRP_ROOT_XATTR;
988 break;
989 case Opt_favordynmods:
990 ctx->flags |= CGRP_ROOT_FAVOR_DYNMODS;
991 break;
992 case Opt_nofavordynmods:
993 ctx->flags &= ~CGRP_ROOT_FAVOR_DYNMODS;
994 break;
995 case Opt_release_agent:
996 /* Specifying two release agents is forbidden */
997 if (ctx->release_agent)
998 return invalfc(fc, "release_agent respecified");
999 /*
1000 * Release agent gets called with all capabilities,
1001 * require capabilities to set release agent.
1002 */
1003 if ((fc->user_ns != &init_user_ns) || !capable(CAP_SYS_ADMIN))
1004 return invalfc(fc, "Setting release_agent not allowed");
1005 ctx->release_agent = param->string;
1006 param->string = NULL;
1007 break;
1008 case Opt_name:
1009 /* blocked by boot param? */
1010 if (cgroup_no_v1_named)
1011 return -ENOENT;
1012 /* Can't specify an empty name */
1013 if (!param->size)
1014 return invalfc(fc, "Empty name");
1015 if (param->size > MAX_CGROUP_ROOT_NAMELEN - 1)
1016 return invalfc(fc, "Name too long");
1017 /* Must match [\w.-]+ */
1018 for (i = 0; i < param->size; i++) {
1019 char c = param->string[i];
1020 if (isalnum(c))
1021 continue;
1022 if ((c == '.') || (c == '-') || (c == '_'))
1023 continue;
1024 return invalfc(fc, "Invalid name");
1025 }
1026 /* Specifying two names is forbidden */
1027 if (ctx->name)
1028 return invalfc(fc, "name respecified");
1029 ctx->name = param->string;
1030 param->string = NULL;
1031 break;
1032 }
1033 return 0;
1034 }
1035
check_cgroupfs_options(struct fs_context * fc)1036 static int check_cgroupfs_options(struct fs_context *fc)
1037 {
1038 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1039 u16 mask = U16_MAX;
1040 u16 enabled = 0;
1041 struct cgroup_subsys *ss;
1042 int i;
1043
1044 #ifdef CONFIG_CPUSETS
1045 mask = ~((u16)1 << cpuset_cgrp_id);
1046 #endif
1047 for_each_subsys(ss, i)
1048 if (cgroup_ssid_enabled(i) && !cgroup1_ssid_disabled(i) &&
1049 !cgroup1_subsys_absent(ss))
1050 enabled |= 1 << i;
1051
1052 ctx->subsys_mask &= enabled;
1053
1054 /*
1055 * In absence of 'none', 'name=' and subsystem name options,
1056 * let's default to 'all'.
1057 */
1058 if (!ctx->subsys_mask && !ctx->none && !ctx->name)
1059 ctx->all_ss = true;
1060
1061 if (ctx->all_ss) {
1062 /* Mutually exclusive option 'all' + subsystem name */
1063 if (ctx->subsys_mask)
1064 return invalfc(fc, "subsys name conflicts with all");
1065 /* 'all' => select all the subsystems */
1066 ctx->subsys_mask = enabled;
1067 }
1068
1069 /*
1070 * We either have to specify by name or by subsystems. (So all
1071 * empty hierarchies must have a name).
1072 */
1073 if (!ctx->subsys_mask && !ctx->name)
1074 return invalfc(fc, "Need name or subsystem set");
1075
1076 /*
1077 * Option noprefix was introduced just for backward compatibility
1078 * with the old cpuset, so we allow noprefix only if mounting just
1079 * the cpuset subsystem.
1080 */
1081 if ((ctx->flags & CGRP_ROOT_NOPREFIX) && (ctx->subsys_mask & mask))
1082 return invalfc(fc, "noprefix used incorrectly");
1083
1084 /* Can't specify "none" and some subsystems */
1085 if (ctx->subsys_mask && ctx->none)
1086 return invalfc(fc, "none used incorrectly");
1087
1088 return 0;
1089 }
1090
cgroup1_reconfigure(struct fs_context * fc)1091 int cgroup1_reconfigure(struct fs_context *fc)
1092 {
1093 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1094 struct kernfs_root *kf_root = kernfs_root_from_sb(fc->root->d_sb);
1095 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1096 int ret = 0;
1097 u16 added_mask, removed_mask;
1098
1099 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1100
1101 /* See what subsystems are wanted */
1102 ret = check_cgroupfs_options(fc);
1103 if (ret)
1104 goto out_unlock;
1105
1106 if (ctx->subsys_mask != root->subsys_mask || ctx->release_agent)
1107 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
1108 task_tgid_nr(current), current->comm);
1109
1110 added_mask = ctx->subsys_mask & ~root->subsys_mask;
1111 removed_mask = root->subsys_mask & ~ctx->subsys_mask;
1112
1113 /* Don't allow flags or name to change at remount */
1114 if ((ctx->flags ^ root->flags) ||
1115 (ctx->name && strcmp(ctx->name, root->name))) {
1116 errorfc(fc, "option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"",
1117 ctx->flags, ctx->name ?: "", root->flags, root->name);
1118 ret = -EINVAL;
1119 goto out_unlock;
1120 }
1121
1122 /* remounting is not allowed for populated hierarchies */
1123 if (!list_empty(&root->cgrp.self.children)) {
1124 ret = -EBUSY;
1125 goto out_unlock;
1126 }
1127
1128 ret = rebind_subsystems(root, added_mask);
1129 if (ret)
1130 goto out_unlock;
1131
1132 WARN_ON(rebind_subsystems(&cgrp_dfl_root, removed_mask));
1133
1134 if (ctx->release_agent) {
1135 spin_lock(&release_agent_path_lock);
1136 strcpy(root->release_agent_path, ctx->release_agent);
1137 spin_unlock(&release_agent_path_lock);
1138 }
1139
1140 trace_cgroup_remount(root);
1141
1142 out_unlock:
1143 cgroup_unlock();
1144 return ret;
1145 }
1146
1147 struct kernfs_syscall_ops cgroup1_kf_syscall_ops = {
1148 .rename = cgroup1_rename,
1149 .show_options = cgroup1_show_options,
1150 .mkdir = cgroup_mkdir,
1151 .rmdir = cgroup_rmdir,
1152 .show_path = cgroup_show_path,
1153 };
1154
1155 /*
1156 * The guts of cgroup1 mount - find or create cgroup_root to use.
1157 * Called with cgroup_mutex held; returns 0 on success, -E... on
1158 * error and positive - in case when the candidate is busy dying.
1159 * On success it stashes a reference to cgroup_root into given
1160 * cgroup_fs_context; that reference is *NOT* counting towards the
1161 * cgroup_root refcount.
1162 */
cgroup1_root_to_use(struct fs_context * fc)1163 static int cgroup1_root_to_use(struct fs_context *fc)
1164 {
1165 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1166 struct cgroup_root *root;
1167 struct cgroup_subsys *ss;
1168 int i, ret;
1169
1170 /* First find the desired set of subsystems */
1171 ret = check_cgroupfs_options(fc);
1172 if (ret)
1173 return ret;
1174
1175 /*
1176 * Destruction of cgroup root is asynchronous, so subsystems may
1177 * still be dying after the previous unmount. Let's drain the
1178 * dying subsystems. We just need to ensure that the ones
1179 * unmounted previously finish dying and don't care about new ones
1180 * starting. Testing ref liveliness is good enough.
1181 */
1182 for_each_subsys(ss, i) {
1183 if (!(ctx->subsys_mask & (1 << i)) ||
1184 ss->root == &cgrp_dfl_root)
1185 continue;
1186
1187 if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt))
1188 return 1; /* restart */
1189 cgroup_put(&ss->root->cgrp);
1190 }
1191
1192 for_each_root(root) {
1193 bool name_match = false;
1194
1195 if (root == &cgrp_dfl_root)
1196 continue;
1197
1198 /*
1199 * If we asked for a name then it must match. Also, if
1200 * name matches but sybsys_mask doesn't, we should fail.
1201 * Remember whether name matched.
1202 */
1203 if (ctx->name) {
1204 if (strcmp(ctx->name, root->name))
1205 continue;
1206 name_match = true;
1207 }
1208
1209 /*
1210 * If we asked for subsystems (or explicitly for no
1211 * subsystems) then they must match.
1212 */
1213 if ((ctx->subsys_mask || ctx->none) &&
1214 (ctx->subsys_mask != root->subsys_mask)) {
1215 if (!name_match)
1216 continue;
1217 return -EBUSY;
1218 }
1219
1220 if (root->flags ^ ctx->flags)
1221 pr_warn("new mount options do not match the existing superblock, will be ignored\n");
1222
1223 ctx->root = root;
1224 return 0;
1225 }
1226
1227 /*
1228 * No such thing, create a new one. name= matching without subsys
1229 * specification is allowed for already existing hierarchies but we
1230 * can't create new one without subsys specification.
1231 */
1232 if (!ctx->subsys_mask && !ctx->none)
1233 return invalfc(fc, "No subsys list or none specified");
1234
1235 /* Hierarchies may only be created in the initial cgroup namespace. */
1236 if (ctx->ns != &init_cgroup_ns)
1237 return -EPERM;
1238
1239 root = kzalloc(sizeof(*root), GFP_KERNEL);
1240 if (!root)
1241 return -ENOMEM;
1242
1243 ctx->root = root;
1244 init_cgroup_root(ctx);
1245
1246 ret = cgroup_setup_root(root, ctx->subsys_mask);
1247 if (!ret)
1248 cgroup_favor_dynmods(root, ctx->flags & CGRP_ROOT_FAVOR_DYNMODS);
1249 else
1250 cgroup_free_root(root);
1251
1252 return ret;
1253 }
1254
cgroup1_get_tree(struct fs_context * fc)1255 int cgroup1_get_tree(struct fs_context *fc)
1256 {
1257 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1258 int ret;
1259
1260 /* Check if the caller has permission to mount. */
1261 if (!ns_capable(ctx->ns->user_ns, CAP_SYS_ADMIN))
1262 return -EPERM;
1263
1264 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1265
1266 ret = cgroup1_root_to_use(fc);
1267 if (!ret && !percpu_ref_tryget_live(&ctx->root->cgrp.self.refcnt))
1268 ret = 1; /* restart */
1269
1270 cgroup_unlock();
1271
1272 if (!ret)
1273 ret = cgroup_do_get_tree(fc);
1274
1275 if (!ret && percpu_ref_is_dying(&ctx->root->cgrp.self.refcnt)) {
1276 fc_drop_locked(fc);
1277 ret = 1;
1278 }
1279
1280 if (unlikely(ret > 0)) {
1281 msleep(10);
1282 return restart_syscall();
1283 }
1284 return ret;
1285 }
1286
1287 /**
1288 * task_get_cgroup1 - Acquires the associated cgroup of a task within a
1289 * specific cgroup1 hierarchy. The cgroup1 hierarchy is identified by its
1290 * hierarchy ID.
1291 * @tsk: The target task
1292 * @hierarchy_id: The ID of a cgroup1 hierarchy
1293 *
1294 * On success, the cgroup is returned. On failure, ERR_PTR is returned.
1295 * We limit it to cgroup1 only.
1296 */
task_get_cgroup1(struct task_struct * tsk,int hierarchy_id)1297 struct cgroup *task_get_cgroup1(struct task_struct *tsk, int hierarchy_id)
1298 {
1299 struct cgroup *cgrp = ERR_PTR(-ENOENT);
1300 struct cgroup_root *root;
1301 unsigned long flags;
1302
1303 rcu_read_lock();
1304 for_each_root(root) {
1305 /* cgroup1 only*/
1306 if (root == &cgrp_dfl_root)
1307 continue;
1308 if (root->hierarchy_id != hierarchy_id)
1309 continue;
1310 spin_lock_irqsave(&css_set_lock, flags);
1311 cgrp = task_cgroup_from_root(tsk, root);
1312 if (!cgrp || !cgroup_tryget(cgrp))
1313 cgrp = ERR_PTR(-ENOENT);
1314 spin_unlock_irqrestore(&css_set_lock, flags);
1315 break;
1316 }
1317 rcu_read_unlock();
1318 return cgrp;
1319 }
1320
cgroup1_wq_init(void)1321 static int __init cgroup1_wq_init(void)
1322 {
1323 /*
1324 * Used to destroy pidlists and separate to serve as flush domain.
1325 * Cap @max_active to 1 too.
1326 */
1327 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
1328 0, 1);
1329 BUG_ON(!cgroup_pidlist_destroy_wq);
1330 return 0;
1331 }
1332 core_initcall(cgroup1_wq_init);
1333
cgroup_no_v1(char * str)1334 static int __init cgroup_no_v1(char *str)
1335 {
1336 struct cgroup_subsys *ss;
1337 char *token;
1338 int i;
1339
1340 while ((token = strsep(&str, ",")) != NULL) {
1341 if (!*token)
1342 continue;
1343
1344 if (!strcmp(token, "all")) {
1345 cgroup_no_v1_mask = U16_MAX;
1346 continue;
1347 }
1348
1349 if (!strcmp(token, "named")) {
1350 cgroup_no_v1_named = true;
1351 continue;
1352 }
1353
1354 for_each_subsys(ss, i) {
1355 if (strcmp(token, ss->name) &&
1356 strcmp(token, ss->legacy_name))
1357 continue;
1358
1359 cgroup_no_v1_mask |= 1 << i;
1360 break;
1361 }
1362 }
1363 return 1;
1364 }
1365 __setup("cgroup_no_v1=", cgroup_no_v1);
1366
cgroup_v1_proc(char * str)1367 static int __init cgroup_v1_proc(char *str)
1368 {
1369 return (kstrtobool(str, &proc_show_all) == 0);
1370 }
1371 __setup("cgroup_v1_proc=", cgroup_v1_proc);
1372