xref: /linux/drivers/crypto/s5p-sss.c (revision ab93e0dd72c37d378dd936f031ffb83ff2bd87ce)
1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // Cryptographic API.
4 //
5 // Support for Samsung S5PV210 and Exynos HW acceleration.
6 //
7 // Copyright (C) 2011 NetUP Inc. All rights reserved.
8 // Copyright (c) 2017 Samsung Electronics Co., Ltd. All rights reserved.
9 //
10 // Hash part based on omap-sham.c driver.
11 
12 #include <crypto/aes.h>
13 #include <crypto/ctr.h>
14 #include <crypto/internal/hash.h>
15 #include <crypto/internal/skcipher.h>
16 #include <crypto/md5.h>
17 #include <crypto/scatterwalk.h>
18 #include <crypto/sha1.h>
19 #include <crypto/sha2.h>
20 #include <linux/clk.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/err.h>
23 #include <linux/init.h>
24 #include <linux/interrupt.h>
25 #include <linux/io.h>
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28 #include <linux/of.h>
29 #include <linux/platform_device.h>
30 #include <linux/scatterlist.h>
31 #include <linux/slab.h>
32 #include <linux/spinlock.h>
33 #include <linux/string.h>
34 
35 #define _SBF(s, v)			((v) << (s))
36 
37 /* Feed control registers */
38 #define SSS_REG_FCINTSTAT		0x0000
39 #define SSS_FCINTSTAT_HPARTINT		BIT(7)
40 #define SSS_FCINTSTAT_HDONEINT		BIT(5)
41 #define SSS_FCINTSTAT_BRDMAINT		BIT(3)
42 #define SSS_FCINTSTAT_BTDMAINT		BIT(2)
43 #define SSS_FCINTSTAT_HRDMAINT		BIT(1)
44 #define SSS_FCINTSTAT_PKDMAINT		BIT(0)
45 
46 #define SSS_REG_FCINTENSET		0x0004
47 #define SSS_FCINTENSET_HPARTINTENSET	BIT(7)
48 #define SSS_FCINTENSET_HDONEINTENSET	BIT(5)
49 #define SSS_FCINTENSET_BRDMAINTENSET	BIT(3)
50 #define SSS_FCINTENSET_BTDMAINTENSET	BIT(2)
51 #define SSS_FCINTENSET_HRDMAINTENSET	BIT(1)
52 #define SSS_FCINTENSET_PKDMAINTENSET	BIT(0)
53 
54 #define SSS_REG_FCINTENCLR		0x0008
55 #define SSS_FCINTENCLR_HPARTINTENCLR	BIT(7)
56 #define SSS_FCINTENCLR_HDONEINTENCLR	BIT(5)
57 #define SSS_FCINTENCLR_BRDMAINTENCLR	BIT(3)
58 #define SSS_FCINTENCLR_BTDMAINTENCLR	BIT(2)
59 #define SSS_FCINTENCLR_HRDMAINTENCLR	BIT(1)
60 #define SSS_FCINTENCLR_PKDMAINTENCLR	BIT(0)
61 
62 #define SSS_REG_FCINTPEND		0x000C
63 #define SSS_FCINTPEND_HPARTINTP		BIT(7)
64 #define SSS_FCINTPEND_HDONEINTP		BIT(5)
65 #define SSS_FCINTPEND_BRDMAINTP		BIT(3)
66 #define SSS_FCINTPEND_BTDMAINTP		BIT(2)
67 #define SSS_FCINTPEND_HRDMAINTP		BIT(1)
68 #define SSS_FCINTPEND_PKDMAINTP		BIT(0)
69 
70 #define SSS_REG_FCFIFOSTAT		0x0010
71 #define SSS_FCFIFOSTAT_BRFIFOFUL	BIT(7)
72 #define SSS_FCFIFOSTAT_BRFIFOEMP	BIT(6)
73 #define SSS_FCFIFOSTAT_BTFIFOFUL	BIT(5)
74 #define SSS_FCFIFOSTAT_BTFIFOEMP	BIT(4)
75 #define SSS_FCFIFOSTAT_HRFIFOFUL	BIT(3)
76 #define SSS_FCFIFOSTAT_HRFIFOEMP	BIT(2)
77 #define SSS_FCFIFOSTAT_PKFIFOFUL	BIT(1)
78 #define SSS_FCFIFOSTAT_PKFIFOEMP	BIT(0)
79 
80 #define SSS_REG_FCFIFOCTRL		0x0014
81 #define SSS_FCFIFOCTRL_DESSEL		BIT(2)
82 #define SSS_HASHIN_INDEPENDENT		_SBF(0, 0x00)
83 #define SSS_HASHIN_CIPHER_INPUT		_SBF(0, 0x01)
84 #define SSS_HASHIN_CIPHER_OUTPUT	_SBF(0, 0x02)
85 #define SSS_HASHIN_MASK			_SBF(0, 0x03)
86 
87 #define SSS_REG_FCBRDMAS		0x0020
88 #define SSS_REG_FCBRDMAL		0x0024
89 #define SSS_REG_FCBRDMAC		0x0028
90 #define SSS_FCBRDMAC_BYTESWAP		BIT(1)
91 #define SSS_FCBRDMAC_FLUSH		BIT(0)
92 
93 #define SSS_REG_FCBTDMAS		0x0030
94 #define SSS_REG_FCBTDMAL		0x0034
95 #define SSS_REG_FCBTDMAC		0x0038
96 #define SSS_FCBTDMAC_BYTESWAP		BIT(1)
97 #define SSS_FCBTDMAC_FLUSH		BIT(0)
98 
99 #define SSS_REG_FCHRDMAS		0x0040
100 #define SSS_REG_FCHRDMAL		0x0044
101 #define SSS_REG_FCHRDMAC		0x0048
102 #define SSS_FCHRDMAC_BYTESWAP		BIT(1)
103 #define SSS_FCHRDMAC_FLUSH		BIT(0)
104 
105 #define SSS_REG_FCPKDMAS		0x0050
106 #define SSS_REG_FCPKDMAL		0x0054
107 #define SSS_REG_FCPKDMAC		0x0058
108 #define SSS_FCPKDMAC_BYTESWAP		BIT(3)
109 #define SSS_FCPKDMAC_DESCEND		BIT(2)
110 #define SSS_FCPKDMAC_TRANSMIT		BIT(1)
111 #define SSS_FCPKDMAC_FLUSH		BIT(0)
112 
113 #define SSS_REG_FCPKDMAO		0x005C
114 
115 /* AES registers */
116 #define SSS_REG_AES_CONTROL		0x00
117 #define SSS_AES_BYTESWAP_DI		BIT(11)
118 #define SSS_AES_BYTESWAP_DO		BIT(10)
119 #define SSS_AES_BYTESWAP_IV		BIT(9)
120 #define SSS_AES_BYTESWAP_CNT		BIT(8)
121 #define SSS_AES_BYTESWAP_KEY		BIT(7)
122 #define SSS_AES_KEY_CHANGE_MODE		BIT(6)
123 #define SSS_AES_KEY_SIZE_128		_SBF(4, 0x00)
124 #define SSS_AES_KEY_SIZE_192		_SBF(4, 0x01)
125 #define SSS_AES_KEY_SIZE_256		_SBF(4, 0x02)
126 #define SSS_AES_FIFO_MODE		BIT(3)
127 #define SSS_AES_CHAIN_MODE_ECB		_SBF(1, 0x00)
128 #define SSS_AES_CHAIN_MODE_CBC		_SBF(1, 0x01)
129 #define SSS_AES_CHAIN_MODE_CTR		_SBF(1, 0x02)
130 #define SSS_AES_MODE_DECRYPT		BIT(0)
131 
132 #define SSS_REG_AES_STATUS		0x04
133 #define SSS_AES_BUSY			BIT(2)
134 #define SSS_AES_INPUT_READY		BIT(1)
135 #define SSS_AES_OUTPUT_READY		BIT(0)
136 
137 #define SSS_REG_AES_IN_DATA(s)		(0x10 + (s << 2))
138 #define SSS_REG_AES_OUT_DATA(s)		(0x20 + (s << 2))
139 #define SSS_REG_AES_IV_DATA(s)		(0x30 + (s << 2))
140 #define SSS_REG_AES_CNT_DATA(s)		(0x40 + (s << 2))
141 #define SSS_REG_AES_KEY_DATA(s)		(0x80 + (s << 2))
142 
143 #define SSS_REG(dev, reg)		((dev)->ioaddr + (SSS_REG_##reg))
144 #define SSS_READ(dev, reg)		__raw_readl(SSS_REG(dev, reg))
145 #define SSS_WRITE(dev, reg, val)	__raw_writel((val), SSS_REG(dev, reg))
146 
147 #define SSS_AES_REG(dev, reg)		((dev)->aes_ioaddr + SSS_REG_##reg)
148 #define SSS_AES_WRITE(dev, reg, val)    __raw_writel((val), \
149 						SSS_AES_REG(dev, reg))
150 
151 /* HW engine modes */
152 #define FLAGS_AES_DECRYPT		BIT(0)
153 #define FLAGS_AES_MODE_MASK		_SBF(1, 0x03)
154 #define FLAGS_AES_CBC			_SBF(1, 0x01)
155 #define FLAGS_AES_CTR			_SBF(1, 0x02)
156 
157 #define AES_KEY_LEN			16
158 #define CRYPTO_QUEUE_LEN		1
159 
160 /* HASH registers */
161 #define SSS_REG_HASH_CTRL		0x00
162 
163 #define SSS_HASH_USER_IV_EN		BIT(5)
164 #define SSS_HASH_INIT_BIT		BIT(4)
165 #define SSS_HASH_ENGINE_SHA1		_SBF(1, 0x00)
166 #define SSS_HASH_ENGINE_MD5		_SBF(1, 0x01)
167 #define SSS_HASH_ENGINE_SHA256		_SBF(1, 0x02)
168 
169 #define SSS_HASH_ENGINE_MASK		_SBF(1, 0x03)
170 
171 #define SSS_REG_HASH_CTRL_PAUSE		0x04
172 
173 #define SSS_HASH_PAUSE			BIT(0)
174 
175 #define SSS_REG_HASH_CTRL_FIFO		0x08
176 
177 #define SSS_HASH_FIFO_MODE_DMA		BIT(0)
178 #define SSS_HASH_FIFO_MODE_CPU          0
179 
180 #define SSS_REG_HASH_CTRL_SWAP		0x0C
181 
182 #define SSS_HASH_BYTESWAP_DI		BIT(3)
183 #define SSS_HASH_BYTESWAP_DO		BIT(2)
184 #define SSS_HASH_BYTESWAP_IV		BIT(1)
185 #define SSS_HASH_BYTESWAP_KEY		BIT(0)
186 
187 #define SSS_REG_HASH_STATUS		0x10
188 
189 #define SSS_HASH_STATUS_MSG_DONE	BIT(6)
190 #define SSS_HASH_STATUS_PARTIAL_DONE	BIT(4)
191 #define SSS_HASH_STATUS_BUFFER_READY	BIT(0)
192 
193 #define SSS_REG_HASH_MSG_SIZE_LOW	0x20
194 #define SSS_REG_HASH_MSG_SIZE_HIGH	0x24
195 
196 #define SSS_REG_HASH_PRE_MSG_SIZE_LOW	0x28
197 #define SSS_REG_HASH_PRE_MSG_SIZE_HIGH	0x2C
198 
199 #define SSS_REG_HASH_IV(s)		(0xB0 + ((s) << 2))
200 #define SSS_REG_HASH_OUT(s)		(0x100 + ((s) << 2))
201 
202 #define HASH_BLOCK_SIZE			64
203 #define HASH_REG_SIZEOF			4
204 #define HASH_MD5_MAX_REG		(MD5_DIGEST_SIZE / HASH_REG_SIZEOF)
205 #define HASH_SHA1_MAX_REG		(SHA1_DIGEST_SIZE / HASH_REG_SIZEOF)
206 #define HASH_SHA256_MAX_REG		(SHA256_DIGEST_SIZE / HASH_REG_SIZEOF)
207 
208 /*
209  * HASH bit numbers, used by device, setting in dev->hash_flags with
210  * functions set_bit(), clear_bit() or tested with test_bit() or BIT(),
211  * to keep HASH state BUSY or FREE, or to signal state from irq_handler
212  * to hash_tasklet. SGS keep track of allocated memory for scatterlist
213  */
214 #define HASH_FLAGS_BUSY		0
215 #define HASH_FLAGS_FINAL	1
216 #define HASH_FLAGS_DMA_ACTIVE	2
217 #define HASH_FLAGS_OUTPUT_READY	3
218 #define HASH_FLAGS_DMA_READY	4
219 #define HASH_FLAGS_SGS_COPIED	5
220 #define HASH_FLAGS_SGS_ALLOCED	6
221 
222 /* HASH HW constants */
223 #define BUFLEN			HASH_BLOCK_SIZE
224 
225 #define SSS_HASH_QUEUE_LENGTH	10
226 
227 /**
228  * struct samsung_aes_variant - platform specific SSS driver data
229  * @aes_offset: AES register offset from SSS module's base.
230  * @hash_offset: HASH register offset from SSS module's base.
231  * @clk_names: names of clocks needed to run SSS IP
232  *
233  * Specifies platform specific configuration of SSS module.
234  * Note: A structure for driver specific platform data is used for future
235  * expansion of its usage.
236  */
237 struct samsung_aes_variant {
238 	unsigned int			aes_offset;
239 	unsigned int			hash_offset;
240 	const char			*clk_names[2];
241 };
242 
243 struct s5p_aes_reqctx {
244 	unsigned long			mode;
245 };
246 
247 struct s5p_aes_ctx {
248 	struct s5p_aes_dev		*dev;
249 
250 	u8				aes_key[AES_MAX_KEY_SIZE];
251 	u8				nonce[CTR_RFC3686_NONCE_SIZE];
252 	int				keylen;
253 };
254 
255 /**
256  * struct s5p_aes_dev - Crypto device state container
257  * @dev:	Associated device
258  * @clk:	Clock for accessing hardware
259  * @pclk:	APB bus clock necessary to access the hardware
260  * @ioaddr:	Mapped IO memory region
261  * @aes_ioaddr:	Per-varian offset for AES block IO memory
262  * @irq_fc:	Feed control interrupt line
263  * @req:	Crypto request currently handled by the device
264  * @ctx:	Configuration for currently handled crypto request
265  * @sg_src:	Scatter list with source data for currently handled block
266  *		in device.  This is DMA-mapped into device.
267  * @sg_dst:	Scatter list with destination data for currently handled block
268  *		in device. This is DMA-mapped into device.
269  * @sg_src_cpy:	In case of unaligned access, copied scatter list
270  *		with source data.
271  * @sg_dst_cpy:	In case of unaligned access, copied scatter list
272  *		with destination data.
273  * @tasklet:	New request scheduling jib
274  * @queue:	Crypto queue
275  * @busy:	Indicates whether the device is currently handling some request
276  *		thus it uses some of the fields from this state, like:
277  *		req, ctx, sg_src/dst (and copies).  This essentially
278  *		protects against concurrent access to these fields.
279  * @lock:	Lock for protecting both access to device hardware registers
280  *		and fields related to current request (including the busy field).
281  * @res:	Resources for hash.
282  * @io_hash_base: Per-variant offset for HASH block IO memory.
283  * @hash_lock:	Lock for protecting hash_req, hash_queue and hash_flags
284  *		variable.
285  * @hash_flags:	Flags for current HASH op.
286  * @hash_queue:	Async hash queue.
287  * @hash_tasklet: New HASH request scheduling job.
288  * @xmit_buf:	Buffer for current HASH request transfer into SSS block.
289  * @hash_req:	Current request sending to SSS HASH block.
290  * @hash_sg_iter: Scatterlist transferred through DMA into SSS HASH block.
291  * @hash_sg_cnt: Counter for hash_sg_iter.
292  *
293  * @use_hash:	true if HASH algs enabled
294  */
295 struct s5p_aes_dev {
296 	struct device			*dev;
297 	struct clk			*clk;
298 	struct clk			*pclk;
299 	void __iomem			*ioaddr;
300 	void __iomem			*aes_ioaddr;
301 	int				irq_fc;
302 
303 	struct skcipher_request		*req;
304 	struct s5p_aes_ctx		*ctx;
305 	struct scatterlist		*sg_src;
306 	struct scatterlist		*sg_dst;
307 
308 	struct scatterlist		*sg_src_cpy;
309 	struct scatterlist		*sg_dst_cpy;
310 
311 	struct tasklet_struct		tasklet;
312 	struct crypto_queue		queue;
313 	bool				busy;
314 	spinlock_t			lock;
315 
316 	struct resource			*res;
317 	void __iomem			*io_hash_base;
318 
319 	spinlock_t			hash_lock; /* protect hash_ vars */
320 	unsigned long			hash_flags;
321 	struct crypto_queue		hash_queue;
322 	struct tasklet_struct		hash_tasklet;
323 
324 	u8				xmit_buf[BUFLEN];
325 	struct ahash_request		*hash_req;
326 	struct scatterlist		*hash_sg_iter;
327 	unsigned int			hash_sg_cnt;
328 
329 	bool				use_hash;
330 };
331 
332 /**
333  * struct s5p_hash_reqctx - HASH request context
334  * @dd:		Associated device
335  * @op_update:	Current request operation (OP_UPDATE or OP_FINAL)
336  * @digcnt:	Number of bytes processed by HW (without buffer[] ones)
337  * @digest:	Digest message or IV for partial result
338  * @nregs:	Number of HW registers for digest or IV read/write
339  * @engine:	Bits for selecting type of HASH in SSS block
340  * @sg:		sg for DMA transfer
341  * @sg_len:	Length of sg for DMA transfer
342  * @sgl:	sg for joining buffer and req->src scatterlist
343  * @skip:	Skip offset in req->src for current op
344  * @total:	Total number of bytes for current request
345  * @finup:	Keep state for finup or final.
346  * @error:	Keep track of error.
347  * @bufcnt:	Number of bytes holded in buffer[]
348  * @buffer:	For byte(s) from end of req->src in UPDATE op
349  */
350 struct s5p_hash_reqctx {
351 	struct s5p_aes_dev	*dd;
352 	bool			op_update;
353 
354 	u64			digcnt;
355 	u8			digest[SHA256_DIGEST_SIZE];
356 
357 	unsigned int		nregs; /* digest_size / sizeof(reg) */
358 	u32			engine;
359 
360 	struct scatterlist	*sg;
361 	unsigned int		sg_len;
362 	struct scatterlist	sgl[2];
363 	unsigned int		skip;
364 	unsigned int		total;
365 	bool			finup;
366 	bool			error;
367 
368 	u32			bufcnt;
369 	u8			buffer[];
370 };
371 
372 /**
373  * struct s5p_hash_ctx - HASH transformation context
374  * @dd:		Associated device
375  * @flags:	Bits for algorithm HASH.
376  * @fallback:	Software transformation for zero message or size < BUFLEN.
377  */
378 struct s5p_hash_ctx {
379 	struct s5p_aes_dev	*dd;
380 	unsigned long		flags;
381 	struct crypto_shash	*fallback;
382 };
383 
384 static const struct samsung_aes_variant s5p_aes_data = {
385 	.aes_offset	= 0x4000,
386 	.hash_offset	= 0x6000,
387 	.clk_names	= { "secss", },
388 };
389 
390 static const struct samsung_aes_variant exynos_aes_data = {
391 	.aes_offset	= 0x200,
392 	.hash_offset	= 0x400,
393 	.clk_names	= { "secss", },
394 };
395 
396 static const struct samsung_aes_variant exynos5433_slim_aes_data = {
397 	.aes_offset	= 0x400,
398 	.hash_offset	= 0x800,
399 	.clk_names	= { "aclk", "pclk", },
400 };
401 
402 static const struct of_device_id s5p_sss_dt_match[] = {
403 	{
404 		.compatible = "samsung,s5pv210-secss",
405 		.data = &s5p_aes_data,
406 	},
407 	{
408 		.compatible = "samsung,exynos4210-secss",
409 		.data = &exynos_aes_data,
410 	},
411 	{
412 		.compatible = "samsung,exynos5433-slim-sss",
413 		.data = &exynos5433_slim_aes_data,
414 	},
415 	{ },
416 };
417 MODULE_DEVICE_TABLE(of, s5p_sss_dt_match);
418 
find_s5p_sss_version(const struct platform_device * pdev)419 static inline const struct samsung_aes_variant *find_s5p_sss_version
420 				   (const struct platform_device *pdev)
421 {
422 	if (IS_ENABLED(CONFIG_OF) && (pdev->dev.of_node))
423 		return of_device_get_match_data(&pdev->dev);
424 
425 	return (const struct samsung_aes_variant *)
426 			platform_get_device_id(pdev)->driver_data;
427 }
428 
429 static struct s5p_aes_dev *s5p_dev;
430 
s5p_set_dma_indata(struct s5p_aes_dev * dev,const struct scatterlist * sg)431 static void s5p_set_dma_indata(struct s5p_aes_dev *dev,
432 			       const struct scatterlist *sg)
433 {
434 	SSS_WRITE(dev, FCBRDMAS, sg_dma_address(sg));
435 	SSS_WRITE(dev, FCBRDMAL, sg_dma_len(sg));
436 }
437 
s5p_set_dma_outdata(struct s5p_aes_dev * dev,const struct scatterlist * sg)438 static void s5p_set_dma_outdata(struct s5p_aes_dev *dev,
439 				const struct scatterlist *sg)
440 {
441 	SSS_WRITE(dev, FCBTDMAS, sg_dma_address(sg));
442 	SSS_WRITE(dev, FCBTDMAL, sg_dma_len(sg));
443 }
444 
s5p_free_sg_cpy(struct s5p_aes_dev * dev,struct scatterlist ** sg)445 static void s5p_free_sg_cpy(struct s5p_aes_dev *dev, struct scatterlist **sg)
446 {
447 	int len;
448 
449 	if (!*sg)
450 		return;
451 
452 	len = ALIGN(dev->req->cryptlen, AES_BLOCK_SIZE);
453 	free_pages((unsigned long)sg_virt(*sg), get_order(len));
454 
455 	kfree(*sg);
456 	*sg = NULL;
457 }
458 
s5p_sg_done(struct s5p_aes_dev * dev)459 static void s5p_sg_done(struct s5p_aes_dev *dev)
460 {
461 	struct skcipher_request *req = dev->req;
462 	struct s5p_aes_reqctx *reqctx = skcipher_request_ctx(req);
463 
464 	if (dev->sg_dst_cpy) {
465 		dev_dbg(dev->dev,
466 			"Copying %d bytes of output data back to original place\n",
467 			dev->req->cryptlen);
468 		memcpy_to_sglist(dev->req->dst, 0, sg_virt(dev->sg_dst_cpy),
469 				 dev->req->cryptlen);
470 	}
471 	s5p_free_sg_cpy(dev, &dev->sg_src_cpy);
472 	s5p_free_sg_cpy(dev, &dev->sg_dst_cpy);
473 	if (reqctx->mode & FLAGS_AES_CBC)
474 		memcpy_fromio(req->iv, dev->aes_ioaddr + SSS_REG_AES_IV_DATA(0), AES_BLOCK_SIZE);
475 
476 	else if (reqctx->mode & FLAGS_AES_CTR)
477 		memcpy_fromio(req->iv, dev->aes_ioaddr + SSS_REG_AES_CNT_DATA(0), AES_BLOCK_SIZE);
478 }
479 
480 /* Calls the completion. Cannot be called with dev->lock hold. */
s5p_aes_complete(struct skcipher_request * req,int err)481 static void s5p_aes_complete(struct skcipher_request *req, int err)
482 {
483 	skcipher_request_complete(req, err);
484 }
485 
s5p_unset_outdata(struct s5p_aes_dev * dev)486 static void s5p_unset_outdata(struct s5p_aes_dev *dev)
487 {
488 	dma_unmap_sg(dev->dev, dev->sg_dst, 1, DMA_FROM_DEVICE);
489 }
490 
s5p_unset_indata(struct s5p_aes_dev * dev)491 static void s5p_unset_indata(struct s5p_aes_dev *dev)
492 {
493 	dma_unmap_sg(dev->dev, dev->sg_src, 1, DMA_TO_DEVICE);
494 }
495 
s5p_make_sg_cpy(struct s5p_aes_dev * dev,struct scatterlist * src,struct scatterlist ** dst)496 static int s5p_make_sg_cpy(struct s5p_aes_dev *dev, struct scatterlist *src,
497 			   struct scatterlist **dst)
498 {
499 	void *pages;
500 	int len;
501 
502 	*dst = kmalloc(sizeof(**dst), GFP_ATOMIC);
503 	if (!*dst)
504 		return -ENOMEM;
505 
506 	len = ALIGN(dev->req->cryptlen, AES_BLOCK_SIZE);
507 	pages = (void *)__get_free_pages(GFP_ATOMIC, get_order(len));
508 	if (!pages) {
509 		kfree(*dst);
510 		*dst = NULL;
511 		return -ENOMEM;
512 	}
513 
514 	memcpy_from_sglist(pages, src, 0, dev->req->cryptlen);
515 
516 	sg_init_table(*dst, 1);
517 	sg_set_buf(*dst, pages, len);
518 
519 	return 0;
520 }
521 
s5p_set_outdata(struct s5p_aes_dev * dev,struct scatterlist * sg)522 static int s5p_set_outdata(struct s5p_aes_dev *dev, struct scatterlist *sg)
523 {
524 	if (!sg->length)
525 		return -EINVAL;
526 
527 	if (!dma_map_sg(dev->dev, sg, 1, DMA_FROM_DEVICE))
528 		return -ENOMEM;
529 
530 	dev->sg_dst = sg;
531 
532 	return 0;
533 }
534 
s5p_set_indata(struct s5p_aes_dev * dev,struct scatterlist * sg)535 static int s5p_set_indata(struct s5p_aes_dev *dev, struct scatterlist *sg)
536 {
537 	if (!sg->length)
538 		return -EINVAL;
539 
540 	if (!dma_map_sg(dev->dev, sg, 1, DMA_TO_DEVICE))
541 		return -ENOMEM;
542 
543 	dev->sg_src = sg;
544 
545 	return 0;
546 }
547 
548 /*
549  * Returns -ERRNO on error (mapping of new data failed).
550  * On success returns:
551  *  - 0 if there is no more data,
552  *  - 1 if new transmitting (output) data is ready and its address+length
553  *     have to be written to device (by calling s5p_set_dma_outdata()).
554  */
s5p_aes_tx(struct s5p_aes_dev * dev)555 static int s5p_aes_tx(struct s5p_aes_dev *dev)
556 {
557 	int ret = 0;
558 
559 	s5p_unset_outdata(dev);
560 
561 	if (!sg_is_last(dev->sg_dst)) {
562 		ret = s5p_set_outdata(dev, sg_next(dev->sg_dst));
563 		if (!ret)
564 			ret = 1;
565 	}
566 
567 	return ret;
568 }
569 
570 /*
571  * Returns -ERRNO on error (mapping of new data failed).
572  * On success returns:
573  *  - 0 if there is no more data,
574  *  - 1 if new receiving (input) data is ready and its address+length
575  *     have to be written to device (by calling s5p_set_dma_indata()).
576  */
s5p_aes_rx(struct s5p_aes_dev * dev)577 static int s5p_aes_rx(struct s5p_aes_dev *dev/*, bool *set_dma*/)
578 {
579 	int ret = 0;
580 
581 	s5p_unset_indata(dev);
582 
583 	if (!sg_is_last(dev->sg_src)) {
584 		ret = s5p_set_indata(dev, sg_next(dev->sg_src));
585 		if (!ret)
586 			ret = 1;
587 	}
588 
589 	return ret;
590 }
591 
s5p_hash_read(struct s5p_aes_dev * dd,u32 offset)592 static inline u32 s5p_hash_read(struct s5p_aes_dev *dd, u32 offset)
593 {
594 	return __raw_readl(dd->io_hash_base + offset);
595 }
596 
s5p_hash_write(struct s5p_aes_dev * dd,u32 offset,u32 value)597 static inline void s5p_hash_write(struct s5p_aes_dev *dd,
598 				  u32 offset, u32 value)
599 {
600 	__raw_writel(value, dd->io_hash_base + offset);
601 }
602 
603 /**
604  * s5p_set_dma_hashdata() - start DMA with sg
605  * @dev:	device
606  * @sg:		scatterlist ready to DMA transmit
607  */
s5p_set_dma_hashdata(struct s5p_aes_dev * dev,const struct scatterlist * sg)608 static void s5p_set_dma_hashdata(struct s5p_aes_dev *dev,
609 				 const struct scatterlist *sg)
610 {
611 	dev->hash_sg_cnt--;
612 	SSS_WRITE(dev, FCHRDMAS, sg_dma_address(sg));
613 	SSS_WRITE(dev, FCHRDMAL, sg_dma_len(sg)); /* DMA starts */
614 }
615 
616 /**
617  * s5p_hash_rx() - get next hash_sg_iter
618  * @dev:	device
619  *
620  * Return:
621  * 2	if there is no more data and it is UPDATE op
622  * 1	if new receiving (input) data is ready and can be written to device
623  * 0	if there is no more data and it is FINAL op
624  */
s5p_hash_rx(struct s5p_aes_dev * dev)625 static int s5p_hash_rx(struct s5p_aes_dev *dev)
626 {
627 	if (dev->hash_sg_cnt > 0) {
628 		dev->hash_sg_iter = sg_next(dev->hash_sg_iter);
629 		return 1;
630 	}
631 
632 	set_bit(HASH_FLAGS_DMA_READY, &dev->hash_flags);
633 	if (test_bit(HASH_FLAGS_FINAL, &dev->hash_flags))
634 		return 0;
635 
636 	return 2;
637 }
638 
s5p_aes_interrupt(int irq,void * dev_id)639 static irqreturn_t s5p_aes_interrupt(int irq, void *dev_id)
640 {
641 	struct platform_device *pdev = dev_id;
642 	struct s5p_aes_dev *dev = platform_get_drvdata(pdev);
643 	struct skcipher_request *req;
644 	int err_dma_tx = 0;
645 	int err_dma_rx = 0;
646 	int err_dma_hx = 0;
647 	bool tx_end = false;
648 	bool hx_end = false;
649 	unsigned long flags;
650 	u32 status, st_bits;
651 	int err;
652 
653 	spin_lock_irqsave(&dev->lock, flags);
654 
655 	/*
656 	 * Handle rx or tx interrupt. If there is still data (scatterlist did not
657 	 * reach end), then map next scatterlist entry.
658 	 * In case of such mapping error, s5p_aes_complete() should be called.
659 	 *
660 	 * If there is no more data in tx scatter list, call s5p_aes_complete()
661 	 * and schedule new tasklet.
662 	 *
663 	 * Handle hx interrupt. If there is still data map next entry.
664 	 */
665 	status = SSS_READ(dev, FCINTSTAT);
666 	if (status & SSS_FCINTSTAT_BRDMAINT)
667 		err_dma_rx = s5p_aes_rx(dev);
668 
669 	if (status & SSS_FCINTSTAT_BTDMAINT) {
670 		if (sg_is_last(dev->sg_dst))
671 			tx_end = true;
672 		err_dma_tx = s5p_aes_tx(dev);
673 	}
674 
675 	if (status & SSS_FCINTSTAT_HRDMAINT)
676 		err_dma_hx = s5p_hash_rx(dev);
677 
678 	st_bits = status & (SSS_FCINTSTAT_BRDMAINT | SSS_FCINTSTAT_BTDMAINT |
679 				SSS_FCINTSTAT_HRDMAINT);
680 	/* clear DMA bits */
681 	SSS_WRITE(dev, FCINTPEND, st_bits);
682 
683 	/* clear HASH irq bits */
684 	if (status & (SSS_FCINTSTAT_HDONEINT | SSS_FCINTSTAT_HPARTINT)) {
685 		/* cannot have both HPART and HDONE */
686 		if (status & SSS_FCINTSTAT_HPARTINT)
687 			st_bits = SSS_HASH_STATUS_PARTIAL_DONE;
688 
689 		if (status & SSS_FCINTSTAT_HDONEINT)
690 			st_bits = SSS_HASH_STATUS_MSG_DONE;
691 
692 		set_bit(HASH_FLAGS_OUTPUT_READY, &dev->hash_flags);
693 		s5p_hash_write(dev, SSS_REG_HASH_STATUS, st_bits);
694 		hx_end = true;
695 		/* when DONE or PART, do not handle HASH DMA */
696 		err_dma_hx = 0;
697 	}
698 
699 	if (err_dma_rx < 0) {
700 		err = err_dma_rx;
701 		goto error;
702 	}
703 	if (err_dma_tx < 0) {
704 		err = err_dma_tx;
705 		goto error;
706 	}
707 
708 	if (tx_end) {
709 		s5p_sg_done(dev);
710 		if (err_dma_hx == 1)
711 			s5p_set_dma_hashdata(dev, dev->hash_sg_iter);
712 
713 		spin_unlock_irqrestore(&dev->lock, flags);
714 
715 		s5p_aes_complete(dev->req, 0);
716 		/* Device is still busy */
717 		tasklet_schedule(&dev->tasklet);
718 	} else {
719 		/*
720 		 * Writing length of DMA block (either receiving or
721 		 * transmitting) will start the operation immediately, so this
722 		 * should be done at the end (even after clearing pending
723 		 * interrupts to not miss the interrupt).
724 		 */
725 		if (err_dma_tx == 1)
726 			s5p_set_dma_outdata(dev, dev->sg_dst);
727 		if (err_dma_rx == 1)
728 			s5p_set_dma_indata(dev, dev->sg_src);
729 		if (err_dma_hx == 1)
730 			s5p_set_dma_hashdata(dev, dev->hash_sg_iter);
731 
732 		spin_unlock_irqrestore(&dev->lock, flags);
733 	}
734 
735 	goto hash_irq_end;
736 
737 error:
738 	s5p_sg_done(dev);
739 	dev->busy = false;
740 	req = dev->req;
741 	if (err_dma_hx == 1)
742 		s5p_set_dma_hashdata(dev, dev->hash_sg_iter);
743 
744 	spin_unlock_irqrestore(&dev->lock, flags);
745 	s5p_aes_complete(req, err);
746 
747 hash_irq_end:
748 	/*
749 	 * Note about else if:
750 	 *   when hash_sg_iter reaches end and its UPDATE op,
751 	 *   issue SSS_HASH_PAUSE and wait for HPART irq
752 	 */
753 	if (hx_end)
754 		tasklet_schedule(&dev->hash_tasklet);
755 	else if (err_dma_hx == 2)
756 		s5p_hash_write(dev, SSS_REG_HASH_CTRL_PAUSE,
757 			       SSS_HASH_PAUSE);
758 
759 	return IRQ_HANDLED;
760 }
761 
762 /**
763  * s5p_hash_read_msg() - read message or IV from HW
764  * @req:	AHASH request
765  */
s5p_hash_read_msg(struct ahash_request * req)766 static void s5p_hash_read_msg(struct ahash_request *req)
767 {
768 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
769 	struct s5p_aes_dev *dd = ctx->dd;
770 	u32 *hash = (u32 *)ctx->digest;
771 	unsigned int i;
772 
773 	for (i = 0; i < ctx->nregs; i++)
774 		hash[i] = s5p_hash_read(dd, SSS_REG_HASH_OUT(i));
775 }
776 
777 /**
778  * s5p_hash_write_ctx_iv() - write IV for next partial/finup op.
779  * @dd:		device
780  * @ctx:	request context
781  */
s5p_hash_write_ctx_iv(struct s5p_aes_dev * dd,const struct s5p_hash_reqctx * ctx)782 static void s5p_hash_write_ctx_iv(struct s5p_aes_dev *dd,
783 				  const struct s5p_hash_reqctx *ctx)
784 {
785 	const u32 *hash = (const u32 *)ctx->digest;
786 	unsigned int i;
787 
788 	for (i = 0; i < ctx->nregs; i++)
789 		s5p_hash_write(dd, SSS_REG_HASH_IV(i), hash[i]);
790 }
791 
792 /**
793  * s5p_hash_write_iv() - write IV for next partial/finup op.
794  * @req:	AHASH request
795  */
s5p_hash_write_iv(struct ahash_request * req)796 static void s5p_hash_write_iv(struct ahash_request *req)
797 {
798 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
799 
800 	s5p_hash_write_ctx_iv(ctx->dd, ctx);
801 }
802 
803 /**
804  * s5p_hash_copy_result() - copy digest into req->result
805  * @req:	AHASH request
806  */
s5p_hash_copy_result(struct ahash_request * req)807 static void s5p_hash_copy_result(struct ahash_request *req)
808 {
809 	const struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
810 
811 	if (!req->result)
812 		return;
813 
814 	memcpy(req->result, ctx->digest, ctx->nregs * HASH_REG_SIZEOF);
815 }
816 
817 /**
818  * s5p_hash_dma_flush() - flush HASH DMA
819  * @dev:	secss device
820  */
s5p_hash_dma_flush(struct s5p_aes_dev * dev)821 static void s5p_hash_dma_flush(struct s5p_aes_dev *dev)
822 {
823 	SSS_WRITE(dev, FCHRDMAC, SSS_FCHRDMAC_FLUSH);
824 }
825 
826 /**
827  * s5p_hash_dma_enable() - enable DMA mode for HASH
828  * @dev:	secss device
829  *
830  * enable DMA mode for HASH
831  */
s5p_hash_dma_enable(struct s5p_aes_dev * dev)832 static void s5p_hash_dma_enable(struct s5p_aes_dev *dev)
833 {
834 	s5p_hash_write(dev, SSS_REG_HASH_CTRL_FIFO, SSS_HASH_FIFO_MODE_DMA);
835 }
836 
837 /**
838  * s5p_hash_irq_disable() - disable irq HASH signals
839  * @dev:	secss device
840  * @flags:	bitfield with irq's to be disabled
841  */
s5p_hash_irq_disable(struct s5p_aes_dev * dev,u32 flags)842 static void s5p_hash_irq_disable(struct s5p_aes_dev *dev, u32 flags)
843 {
844 	SSS_WRITE(dev, FCINTENCLR, flags);
845 }
846 
847 /**
848  * s5p_hash_irq_enable() - enable irq signals
849  * @dev:	secss device
850  * @flags:	bitfield with irq's to be enabled
851  */
s5p_hash_irq_enable(struct s5p_aes_dev * dev,int flags)852 static void s5p_hash_irq_enable(struct s5p_aes_dev *dev, int flags)
853 {
854 	SSS_WRITE(dev, FCINTENSET, flags);
855 }
856 
857 /**
858  * s5p_hash_set_flow() - set flow inside SecSS AES/DES with/without HASH
859  * @dev:	secss device
860  * @hashflow:	HASH stream flow with/without crypto AES/DES
861  */
s5p_hash_set_flow(struct s5p_aes_dev * dev,u32 hashflow)862 static void s5p_hash_set_flow(struct s5p_aes_dev *dev, u32 hashflow)
863 {
864 	unsigned long flags;
865 	u32 flow;
866 
867 	spin_lock_irqsave(&dev->lock, flags);
868 
869 	flow = SSS_READ(dev, FCFIFOCTRL);
870 	flow &= ~SSS_HASHIN_MASK;
871 	flow |= hashflow;
872 	SSS_WRITE(dev, FCFIFOCTRL, flow);
873 
874 	spin_unlock_irqrestore(&dev->lock, flags);
875 }
876 
877 /**
878  * s5p_ahash_dma_init() - enable DMA and set HASH flow inside SecSS
879  * @dev:	secss device
880  * @hashflow:	HASH stream flow with/without AES/DES
881  *
882  * flush HASH DMA and enable DMA, set HASH stream flow inside SecSS HW,
883  * enable HASH irq's HRDMA, HDONE, HPART
884  */
s5p_ahash_dma_init(struct s5p_aes_dev * dev,u32 hashflow)885 static void s5p_ahash_dma_init(struct s5p_aes_dev *dev, u32 hashflow)
886 {
887 	s5p_hash_irq_disable(dev, SSS_FCINTENCLR_HRDMAINTENCLR |
888 			     SSS_FCINTENCLR_HDONEINTENCLR |
889 			     SSS_FCINTENCLR_HPARTINTENCLR);
890 	s5p_hash_dma_flush(dev);
891 
892 	s5p_hash_dma_enable(dev);
893 	s5p_hash_set_flow(dev, hashflow & SSS_HASHIN_MASK);
894 	s5p_hash_irq_enable(dev, SSS_FCINTENSET_HRDMAINTENSET |
895 			    SSS_FCINTENSET_HDONEINTENSET |
896 			    SSS_FCINTENSET_HPARTINTENSET);
897 }
898 
899 /**
900  * s5p_hash_write_ctrl() - prepare HASH block in SecSS for processing
901  * @dd:		secss device
902  * @length:	length for request
903  * @final:	true if final op
904  *
905  * Prepare SSS HASH block for processing bytes in DMA mode. If it is called
906  * after previous updates, fill up IV words. For final, calculate and set
907  * lengths for HASH so SecSS can finalize hash. For partial, set SSS HASH
908  * length as 2^63 so it will be never reached and set to zero prelow and
909  * prehigh.
910  *
911  * This function does not start DMA transfer.
912  */
s5p_hash_write_ctrl(struct s5p_aes_dev * dd,size_t length,bool final)913 static void s5p_hash_write_ctrl(struct s5p_aes_dev *dd, size_t length,
914 				bool final)
915 {
916 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(dd->hash_req);
917 	u32 prelow, prehigh, low, high;
918 	u32 configflags, swapflags;
919 	u64 tmplen;
920 
921 	configflags = ctx->engine | SSS_HASH_INIT_BIT;
922 
923 	if (likely(ctx->digcnt)) {
924 		s5p_hash_write_ctx_iv(dd, ctx);
925 		configflags |= SSS_HASH_USER_IV_EN;
926 	}
927 
928 	if (final) {
929 		/* number of bytes for last part */
930 		low = length;
931 		high = 0;
932 		/* total number of bits prev hashed */
933 		tmplen = ctx->digcnt * 8;
934 		prelow = (u32)tmplen;
935 		prehigh = (u32)(tmplen >> 32);
936 	} else {
937 		prelow = 0;
938 		prehigh = 0;
939 		low = 0;
940 		high = BIT(31);
941 	}
942 
943 	swapflags = SSS_HASH_BYTESWAP_DI | SSS_HASH_BYTESWAP_DO |
944 		    SSS_HASH_BYTESWAP_IV | SSS_HASH_BYTESWAP_KEY;
945 
946 	s5p_hash_write(dd, SSS_REG_HASH_MSG_SIZE_LOW, low);
947 	s5p_hash_write(dd, SSS_REG_HASH_MSG_SIZE_HIGH, high);
948 	s5p_hash_write(dd, SSS_REG_HASH_PRE_MSG_SIZE_LOW, prelow);
949 	s5p_hash_write(dd, SSS_REG_HASH_PRE_MSG_SIZE_HIGH, prehigh);
950 
951 	s5p_hash_write(dd, SSS_REG_HASH_CTRL_SWAP, swapflags);
952 	s5p_hash_write(dd, SSS_REG_HASH_CTRL, configflags);
953 }
954 
955 /**
956  * s5p_hash_xmit_dma() - start DMA hash processing
957  * @dd:		secss device
958  * @length:	length for request
959  * @final:	true if final op
960  *
961  * Update digcnt here, as it is needed for finup/final op.
962  */
s5p_hash_xmit_dma(struct s5p_aes_dev * dd,size_t length,bool final)963 static int s5p_hash_xmit_dma(struct s5p_aes_dev *dd, size_t length,
964 			     bool final)
965 {
966 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(dd->hash_req);
967 	unsigned int cnt;
968 
969 	cnt = dma_map_sg(dd->dev, ctx->sg, ctx->sg_len, DMA_TO_DEVICE);
970 	if (!cnt) {
971 		dev_err(dd->dev, "dma_map_sg error\n");
972 		ctx->error = true;
973 		return -EINVAL;
974 	}
975 
976 	set_bit(HASH_FLAGS_DMA_ACTIVE, &dd->hash_flags);
977 	dd->hash_sg_iter = ctx->sg;
978 	dd->hash_sg_cnt = cnt;
979 	s5p_hash_write_ctrl(dd, length, final);
980 	ctx->digcnt += length;
981 	ctx->total -= length;
982 
983 	/* catch last interrupt */
984 	if (final)
985 		set_bit(HASH_FLAGS_FINAL, &dd->hash_flags);
986 
987 	s5p_set_dma_hashdata(dd, dd->hash_sg_iter); /* DMA starts */
988 
989 	return -EINPROGRESS;
990 }
991 
992 /**
993  * s5p_hash_copy_sgs() - copy request's bytes into new buffer
994  * @ctx:	request context
995  * @sg:		source scatterlist request
996  * @new_len:	number of bytes to process from sg
997  *
998  * Allocate new buffer, copy data for HASH into it. If there was xmit_buf
999  * filled, copy it first, then copy data from sg into it. Prepare one sgl[0]
1000  * with allocated buffer.
1001  *
1002  * Set bit in dd->hash_flag so we can free it after irq ends processing.
1003  */
s5p_hash_copy_sgs(struct s5p_hash_reqctx * ctx,struct scatterlist * sg,unsigned int new_len)1004 static int s5p_hash_copy_sgs(struct s5p_hash_reqctx *ctx,
1005 			     struct scatterlist *sg, unsigned int new_len)
1006 {
1007 	unsigned int pages, len;
1008 	void *buf;
1009 
1010 	len = new_len + ctx->bufcnt;
1011 	pages = get_order(len);
1012 
1013 	buf = (void *)__get_free_pages(GFP_ATOMIC, pages);
1014 	if (!buf) {
1015 		dev_err(ctx->dd->dev, "alloc pages for unaligned case.\n");
1016 		ctx->error = true;
1017 		return -ENOMEM;
1018 	}
1019 
1020 	if (ctx->bufcnt)
1021 		memcpy(buf, ctx->dd->xmit_buf, ctx->bufcnt);
1022 
1023 	memcpy_from_sglist(buf + ctx->bufcnt, sg, ctx->skip, new_len);
1024 	sg_init_table(ctx->sgl, 1);
1025 	sg_set_buf(ctx->sgl, buf, len);
1026 	ctx->sg = ctx->sgl;
1027 	ctx->sg_len = 1;
1028 	ctx->bufcnt = 0;
1029 	ctx->skip = 0;
1030 	set_bit(HASH_FLAGS_SGS_COPIED, &ctx->dd->hash_flags);
1031 
1032 	return 0;
1033 }
1034 
1035 /**
1036  * s5p_hash_copy_sg_lists() - copy sg list and make fixes in copy
1037  * @ctx:	request context
1038  * @sg:		source scatterlist request
1039  * @new_len:	number of bytes to process from sg
1040  *
1041  * Allocate new scatterlist table, copy data for HASH into it. If there was
1042  * xmit_buf filled, prepare it first, then copy page, length and offset from
1043  * source sg into it, adjusting begin and/or end for skip offset and
1044  * hash_later value.
1045  *
1046  * Resulting sg table will be assigned to ctx->sg. Set flag so we can free
1047  * it after irq ends processing.
1048  */
s5p_hash_copy_sg_lists(struct s5p_hash_reqctx * ctx,struct scatterlist * sg,unsigned int new_len)1049 static int s5p_hash_copy_sg_lists(struct s5p_hash_reqctx *ctx,
1050 				  struct scatterlist *sg, unsigned int new_len)
1051 {
1052 	unsigned int skip = ctx->skip, n = sg_nents(sg);
1053 	struct scatterlist *tmp;
1054 	unsigned int len;
1055 
1056 	if (ctx->bufcnt)
1057 		n++;
1058 
1059 	ctx->sg = kmalloc_array(n, sizeof(*sg), GFP_KERNEL);
1060 	if (!ctx->sg) {
1061 		ctx->error = true;
1062 		return -ENOMEM;
1063 	}
1064 
1065 	sg_init_table(ctx->sg, n);
1066 
1067 	tmp = ctx->sg;
1068 
1069 	ctx->sg_len = 0;
1070 
1071 	if (ctx->bufcnt) {
1072 		sg_set_buf(tmp, ctx->dd->xmit_buf, ctx->bufcnt);
1073 		tmp = sg_next(tmp);
1074 		ctx->sg_len++;
1075 	}
1076 
1077 	while (sg && skip >= sg->length) {
1078 		skip -= sg->length;
1079 		sg = sg_next(sg);
1080 	}
1081 
1082 	while (sg && new_len) {
1083 		len = sg->length - skip;
1084 		if (new_len < len)
1085 			len = new_len;
1086 
1087 		new_len -= len;
1088 		sg_set_page(tmp, sg_page(sg), len, sg->offset + skip);
1089 		skip = 0;
1090 		if (new_len <= 0)
1091 			sg_mark_end(tmp);
1092 
1093 		tmp = sg_next(tmp);
1094 		ctx->sg_len++;
1095 		sg = sg_next(sg);
1096 	}
1097 
1098 	set_bit(HASH_FLAGS_SGS_ALLOCED, &ctx->dd->hash_flags);
1099 
1100 	return 0;
1101 }
1102 
1103 /**
1104  * s5p_hash_prepare_sgs() - prepare sg for processing
1105  * @ctx:	request context
1106  * @sg:		source scatterlist request
1107  * @new_len:	number of bytes to process from sg
1108  * @final:	final flag
1109  *
1110  * Check two conditions: (1) if buffers in sg have len aligned data, and (2)
1111  * sg table have good aligned elements (list_ok). If one of this checks fails,
1112  * then either (1) allocates new buffer for data with s5p_hash_copy_sgs, copy
1113  * data into this buffer and prepare request in sgl, or (2) allocates new sg
1114  * table and prepare sg elements.
1115  *
1116  * For digest or finup all conditions can be good, and we may not need any
1117  * fixes.
1118  */
s5p_hash_prepare_sgs(struct s5p_hash_reqctx * ctx,struct scatterlist * sg,unsigned int new_len,bool final)1119 static int s5p_hash_prepare_sgs(struct s5p_hash_reqctx *ctx,
1120 				struct scatterlist *sg,
1121 				unsigned int new_len, bool final)
1122 {
1123 	unsigned int skip = ctx->skip, nbytes = new_len, n = 0;
1124 	bool aligned = true, list_ok = true;
1125 	struct scatterlist *sg_tmp = sg;
1126 
1127 	if (!sg || !sg->length || !new_len)
1128 		return 0;
1129 
1130 	if (skip || !final)
1131 		list_ok = false;
1132 
1133 	while (nbytes > 0 && sg_tmp) {
1134 		n++;
1135 		if (skip >= sg_tmp->length) {
1136 			skip -= sg_tmp->length;
1137 			if (!sg_tmp->length) {
1138 				aligned = false;
1139 				break;
1140 			}
1141 		} else {
1142 			if (!IS_ALIGNED(sg_tmp->length - skip, BUFLEN)) {
1143 				aligned = false;
1144 				break;
1145 			}
1146 
1147 			if (nbytes < sg_tmp->length - skip) {
1148 				list_ok = false;
1149 				break;
1150 			}
1151 
1152 			nbytes -= sg_tmp->length - skip;
1153 			skip = 0;
1154 		}
1155 
1156 		sg_tmp = sg_next(sg_tmp);
1157 	}
1158 
1159 	if (!aligned)
1160 		return s5p_hash_copy_sgs(ctx, sg, new_len);
1161 	else if (!list_ok)
1162 		return s5p_hash_copy_sg_lists(ctx, sg, new_len);
1163 
1164 	/*
1165 	 * Have aligned data from previous operation and/or current
1166 	 * Note: will enter here only if (digest or finup) and aligned
1167 	 */
1168 	if (ctx->bufcnt) {
1169 		ctx->sg_len = n;
1170 		sg_init_table(ctx->sgl, 2);
1171 		sg_set_buf(ctx->sgl, ctx->dd->xmit_buf, ctx->bufcnt);
1172 		sg_chain(ctx->sgl, 2, sg);
1173 		ctx->sg = ctx->sgl;
1174 		ctx->sg_len++;
1175 	} else {
1176 		ctx->sg = sg;
1177 		ctx->sg_len = n;
1178 	}
1179 
1180 	return 0;
1181 }
1182 
1183 /**
1184  * s5p_hash_prepare_request() - prepare request for processing
1185  * @req:	AHASH request
1186  * @update:	true if UPDATE op
1187  *
1188  * Note 1: we can have update flag _and_ final flag at the same time.
1189  * Note 2: we enter here when digcnt > BUFLEN (=HASH_BLOCK_SIZE) or
1190  *	   either req->nbytes or ctx->bufcnt + req->nbytes is > BUFLEN or
1191  *	   we have final op
1192  */
s5p_hash_prepare_request(struct ahash_request * req,bool update)1193 static int s5p_hash_prepare_request(struct ahash_request *req, bool update)
1194 {
1195 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1196 	bool final = ctx->finup;
1197 	int xmit_len, hash_later, nbytes;
1198 	int ret;
1199 
1200 	if (update)
1201 		nbytes = req->nbytes;
1202 	else
1203 		nbytes = 0;
1204 
1205 	ctx->total = nbytes + ctx->bufcnt;
1206 	if (!ctx->total)
1207 		return 0;
1208 
1209 	if (nbytes && (!IS_ALIGNED(ctx->bufcnt, BUFLEN))) {
1210 		/* bytes left from previous request, so fill up to BUFLEN */
1211 		int len = BUFLEN - ctx->bufcnt % BUFLEN;
1212 
1213 		if (len > nbytes)
1214 			len = nbytes;
1215 
1216 		memcpy_from_sglist(ctx->buffer + ctx->bufcnt, req->src, 0, len);
1217 		ctx->bufcnt += len;
1218 		nbytes -= len;
1219 		ctx->skip = len;
1220 	} else {
1221 		ctx->skip = 0;
1222 	}
1223 
1224 	if (ctx->bufcnt)
1225 		memcpy(ctx->dd->xmit_buf, ctx->buffer, ctx->bufcnt);
1226 
1227 	xmit_len = ctx->total;
1228 	if (final) {
1229 		hash_later = 0;
1230 	} else {
1231 		if (IS_ALIGNED(xmit_len, BUFLEN))
1232 			xmit_len -= BUFLEN;
1233 		else
1234 			xmit_len -= xmit_len & (BUFLEN - 1);
1235 
1236 		hash_later = ctx->total - xmit_len;
1237 		/* copy hash_later bytes from end of req->src */
1238 		/* previous bytes are in xmit_buf, so no overwrite */
1239 		memcpy_from_sglist(ctx->buffer, req->src,
1240 				   req->nbytes - hash_later, hash_later);
1241 	}
1242 
1243 	if (xmit_len > BUFLEN) {
1244 		ret = s5p_hash_prepare_sgs(ctx, req->src, nbytes - hash_later,
1245 					   final);
1246 		if (ret)
1247 			return ret;
1248 	} else {
1249 		/* have buffered data only */
1250 		if (unlikely(!ctx->bufcnt)) {
1251 			/* first update didn't fill up buffer */
1252 			memcpy_from_sglist(ctx->dd->xmit_buf, req->src,
1253 					   0, xmit_len);
1254 		}
1255 
1256 		sg_init_table(ctx->sgl, 1);
1257 		sg_set_buf(ctx->sgl, ctx->dd->xmit_buf, xmit_len);
1258 
1259 		ctx->sg = ctx->sgl;
1260 		ctx->sg_len = 1;
1261 	}
1262 
1263 	ctx->bufcnt = hash_later;
1264 	if (!final)
1265 		ctx->total = xmit_len;
1266 
1267 	return 0;
1268 }
1269 
1270 /**
1271  * s5p_hash_update_dma_stop() - unmap DMA
1272  * @dd:		secss device
1273  *
1274  * Unmap scatterlist ctx->sg.
1275  */
s5p_hash_update_dma_stop(struct s5p_aes_dev * dd)1276 static void s5p_hash_update_dma_stop(struct s5p_aes_dev *dd)
1277 {
1278 	const struct s5p_hash_reqctx *ctx = ahash_request_ctx(dd->hash_req);
1279 
1280 	dma_unmap_sg(dd->dev, ctx->sg, ctx->sg_len, DMA_TO_DEVICE);
1281 	clear_bit(HASH_FLAGS_DMA_ACTIVE, &dd->hash_flags);
1282 }
1283 
1284 /**
1285  * s5p_hash_finish() - copy calculated digest to crypto layer
1286  * @req:	AHASH request
1287  */
s5p_hash_finish(struct ahash_request * req)1288 static void s5p_hash_finish(struct ahash_request *req)
1289 {
1290 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1291 	struct s5p_aes_dev *dd = ctx->dd;
1292 
1293 	if (ctx->digcnt)
1294 		s5p_hash_copy_result(req);
1295 
1296 	dev_dbg(dd->dev, "hash_finish digcnt: %lld\n", ctx->digcnt);
1297 }
1298 
1299 /**
1300  * s5p_hash_finish_req() - finish request
1301  * @req:	AHASH request
1302  * @err:	error
1303  */
s5p_hash_finish_req(struct ahash_request * req,int err)1304 static void s5p_hash_finish_req(struct ahash_request *req, int err)
1305 {
1306 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1307 	struct s5p_aes_dev *dd = ctx->dd;
1308 	unsigned long flags;
1309 
1310 	if (test_bit(HASH_FLAGS_SGS_COPIED, &dd->hash_flags))
1311 		free_pages((unsigned long)sg_virt(ctx->sg),
1312 			   get_order(ctx->sg->length));
1313 
1314 	if (test_bit(HASH_FLAGS_SGS_ALLOCED, &dd->hash_flags))
1315 		kfree(ctx->sg);
1316 
1317 	ctx->sg = NULL;
1318 	dd->hash_flags &= ~(BIT(HASH_FLAGS_SGS_ALLOCED) |
1319 			    BIT(HASH_FLAGS_SGS_COPIED));
1320 
1321 	if (!err && !ctx->error) {
1322 		s5p_hash_read_msg(req);
1323 		if (test_bit(HASH_FLAGS_FINAL, &dd->hash_flags))
1324 			s5p_hash_finish(req);
1325 	} else {
1326 		ctx->error = true;
1327 	}
1328 
1329 	spin_lock_irqsave(&dd->hash_lock, flags);
1330 	dd->hash_flags &= ~(BIT(HASH_FLAGS_BUSY) | BIT(HASH_FLAGS_FINAL) |
1331 			    BIT(HASH_FLAGS_DMA_READY) |
1332 			    BIT(HASH_FLAGS_OUTPUT_READY));
1333 	spin_unlock_irqrestore(&dd->hash_lock, flags);
1334 
1335 	if (req->base.complete)
1336 		ahash_request_complete(req, err);
1337 }
1338 
1339 /**
1340  * s5p_hash_handle_queue() - handle hash queue
1341  * @dd:		device s5p_aes_dev
1342  * @req:	AHASH request
1343  *
1344  * If req!=NULL enqueue it on dd->queue, if FLAGS_BUSY is not set on the
1345  * device then processes the first request from the dd->queue
1346  *
1347  * Returns: see s5p_hash_final below.
1348  */
s5p_hash_handle_queue(struct s5p_aes_dev * dd,struct ahash_request * req)1349 static int s5p_hash_handle_queue(struct s5p_aes_dev *dd,
1350 				 struct ahash_request *req)
1351 {
1352 	struct crypto_async_request *async_req, *backlog;
1353 	struct s5p_hash_reqctx *ctx;
1354 	unsigned long flags;
1355 	int err = 0, ret = 0;
1356 
1357 retry:
1358 	spin_lock_irqsave(&dd->hash_lock, flags);
1359 	if (req)
1360 		ret = ahash_enqueue_request(&dd->hash_queue, req);
1361 
1362 	if (test_bit(HASH_FLAGS_BUSY, &dd->hash_flags)) {
1363 		spin_unlock_irqrestore(&dd->hash_lock, flags);
1364 		return ret;
1365 	}
1366 
1367 	backlog = crypto_get_backlog(&dd->hash_queue);
1368 	async_req = crypto_dequeue_request(&dd->hash_queue);
1369 	if (async_req)
1370 		set_bit(HASH_FLAGS_BUSY, &dd->hash_flags);
1371 
1372 	spin_unlock_irqrestore(&dd->hash_lock, flags);
1373 
1374 	if (!async_req)
1375 		return ret;
1376 
1377 	if (backlog)
1378 		crypto_request_complete(backlog, -EINPROGRESS);
1379 
1380 	req = ahash_request_cast(async_req);
1381 	dd->hash_req = req;
1382 	ctx = ahash_request_ctx(req);
1383 
1384 	err = s5p_hash_prepare_request(req, ctx->op_update);
1385 	if (err || !ctx->total)
1386 		goto out;
1387 
1388 	dev_dbg(dd->dev, "handling new req, op_update: %u, nbytes: %d\n",
1389 		ctx->op_update, req->nbytes);
1390 
1391 	s5p_ahash_dma_init(dd, SSS_HASHIN_INDEPENDENT);
1392 	if (ctx->digcnt)
1393 		s5p_hash_write_iv(req); /* restore hash IV */
1394 
1395 	if (ctx->op_update) { /* HASH_OP_UPDATE */
1396 		err = s5p_hash_xmit_dma(dd, ctx->total, ctx->finup);
1397 		if (err != -EINPROGRESS && ctx->finup && !ctx->error)
1398 			/* no final() after finup() */
1399 			err = s5p_hash_xmit_dma(dd, ctx->total, true);
1400 	} else { /* HASH_OP_FINAL */
1401 		err = s5p_hash_xmit_dma(dd, ctx->total, true);
1402 	}
1403 out:
1404 	if (err != -EINPROGRESS) {
1405 		/* hash_tasklet_cb will not finish it, so do it here */
1406 		s5p_hash_finish_req(req, err);
1407 		req = NULL;
1408 
1409 		/*
1410 		 * Execute next request immediately if there is anything
1411 		 * in queue.
1412 		 */
1413 		goto retry;
1414 	}
1415 
1416 	return ret;
1417 }
1418 
1419 /**
1420  * s5p_hash_tasklet_cb() - hash tasklet
1421  * @data:	ptr to s5p_aes_dev
1422  */
s5p_hash_tasklet_cb(unsigned long data)1423 static void s5p_hash_tasklet_cb(unsigned long data)
1424 {
1425 	struct s5p_aes_dev *dd = (struct s5p_aes_dev *)data;
1426 
1427 	if (!test_bit(HASH_FLAGS_BUSY, &dd->hash_flags)) {
1428 		s5p_hash_handle_queue(dd, NULL);
1429 		return;
1430 	}
1431 
1432 	if (test_bit(HASH_FLAGS_DMA_READY, &dd->hash_flags)) {
1433 		if (test_and_clear_bit(HASH_FLAGS_DMA_ACTIVE,
1434 				       &dd->hash_flags)) {
1435 			s5p_hash_update_dma_stop(dd);
1436 		}
1437 
1438 		if (test_and_clear_bit(HASH_FLAGS_OUTPUT_READY,
1439 				       &dd->hash_flags)) {
1440 			/* hash or semi-hash ready */
1441 			clear_bit(HASH_FLAGS_DMA_READY, &dd->hash_flags);
1442 			goto finish;
1443 		}
1444 	}
1445 
1446 	return;
1447 
1448 finish:
1449 	/* finish curent request */
1450 	s5p_hash_finish_req(dd->hash_req, 0);
1451 
1452 	/* If we are not busy, process next req */
1453 	if (!test_bit(HASH_FLAGS_BUSY, &dd->hash_flags))
1454 		s5p_hash_handle_queue(dd, NULL);
1455 }
1456 
1457 /**
1458  * s5p_hash_enqueue() - enqueue request
1459  * @req:	AHASH request
1460  * @op:		operation UPDATE (true) or FINAL (false)
1461  *
1462  * Returns: see s5p_hash_final below.
1463  */
s5p_hash_enqueue(struct ahash_request * req,bool op)1464 static int s5p_hash_enqueue(struct ahash_request *req, bool op)
1465 {
1466 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1467 	struct s5p_hash_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
1468 
1469 	ctx->op_update = op;
1470 
1471 	return s5p_hash_handle_queue(tctx->dd, req);
1472 }
1473 
1474 /**
1475  * s5p_hash_update() - process the hash input data
1476  * @req:	AHASH request
1477  *
1478  * If request will fit in buffer, copy it and return immediately
1479  * else enqueue it with OP_UPDATE.
1480  *
1481  * Returns: see s5p_hash_final below.
1482  */
s5p_hash_update(struct ahash_request * req)1483 static int s5p_hash_update(struct ahash_request *req)
1484 {
1485 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1486 
1487 	if (!req->nbytes)
1488 		return 0;
1489 
1490 	if (ctx->bufcnt + req->nbytes <= BUFLEN) {
1491 		memcpy_from_sglist(ctx->buffer + ctx->bufcnt, req->src,
1492 				   0, req->nbytes);
1493 		ctx->bufcnt += req->nbytes;
1494 		return 0;
1495 	}
1496 
1497 	return s5p_hash_enqueue(req, true); /* HASH_OP_UPDATE */
1498 }
1499 
1500 /**
1501  * s5p_hash_final() - close up hash and calculate digest
1502  * @req:	AHASH request
1503  *
1504  * Note: in final req->src do not have any data, and req->nbytes can be
1505  * non-zero.
1506  *
1507  * If there were no input data processed yet and the buffered hash data is
1508  * less than BUFLEN (64) then calculate the final hash immediately by using
1509  * SW algorithm fallback.
1510  *
1511  * Otherwise enqueues the current AHASH request with OP_FINAL operation op
1512  * and finalize hash message in HW. Note that if digcnt!=0 then there were
1513  * previous update op, so there are always some buffered bytes in ctx->buffer,
1514  * which means that ctx->bufcnt!=0
1515  *
1516  * Returns:
1517  * 0 if the request has been processed immediately,
1518  * -EINPROGRESS if the operation has been queued for later execution or is set
1519  *		to processing by HW,
1520  * -EBUSY if queue is full and request should be resubmitted later,
1521  * other negative values denotes an error.
1522  */
s5p_hash_final(struct ahash_request * req)1523 static int s5p_hash_final(struct ahash_request *req)
1524 {
1525 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1526 
1527 	ctx->finup = true;
1528 	if (ctx->error)
1529 		return -EINVAL; /* uncompleted hash is not needed */
1530 
1531 	if (!ctx->digcnt && ctx->bufcnt < BUFLEN) {
1532 		struct s5p_hash_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
1533 
1534 		return crypto_shash_tfm_digest(tctx->fallback, ctx->buffer,
1535 					       ctx->bufcnt, req->result);
1536 	}
1537 
1538 	return s5p_hash_enqueue(req, false); /* HASH_OP_FINAL */
1539 }
1540 
1541 /**
1542  * s5p_hash_finup() - process last req->src and calculate digest
1543  * @req:	AHASH request containing the last update data
1544  *
1545  * Return values: see s5p_hash_final above.
1546  */
s5p_hash_finup(struct ahash_request * req)1547 static int s5p_hash_finup(struct ahash_request *req)
1548 {
1549 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1550 	int err1, err2;
1551 
1552 	ctx->finup = true;
1553 
1554 	err1 = s5p_hash_update(req);
1555 	if (err1 == -EINPROGRESS || err1 == -EBUSY)
1556 		return err1;
1557 
1558 	/*
1559 	 * final() has to be always called to cleanup resources even if
1560 	 * update() failed, except EINPROGRESS or calculate digest for small
1561 	 * size
1562 	 */
1563 	err2 = s5p_hash_final(req);
1564 
1565 	return err1 ?: err2;
1566 }
1567 
1568 /**
1569  * s5p_hash_init() - initialize AHASH request contex
1570  * @req:	AHASH request
1571  *
1572  * Init async hash request context.
1573  */
s5p_hash_init(struct ahash_request * req)1574 static int s5p_hash_init(struct ahash_request *req)
1575 {
1576 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1577 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1578 	struct s5p_hash_ctx *tctx = crypto_ahash_ctx(tfm);
1579 
1580 	ctx->dd = tctx->dd;
1581 	ctx->error = false;
1582 	ctx->finup = false;
1583 	ctx->bufcnt = 0;
1584 	ctx->digcnt = 0;
1585 	ctx->total = 0;
1586 	ctx->skip = 0;
1587 
1588 	dev_dbg(tctx->dd->dev, "init: digest size: %d\n",
1589 		crypto_ahash_digestsize(tfm));
1590 
1591 	switch (crypto_ahash_digestsize(tfm)) {
1592 	case MD5_DIGEST_SIZE:
1593 		ctx->engine = SSS_HASH_ENGINE_MD5;
1594 		ctx->nregs = HASH_MD5_MAX_REG;
1595 		break;
1596 	case SHA1_DIGEST_SIZE:
1597 		ctx->engine = SSS_HASH_ENGINE_SHA1;
1598 		ctx->nregs = HASH_SHA1_MAX_REG;
1599 		break;
1600 	case SHA256_DIGEST_SIZE:
1601 		ctx->engine = SSS_HASH_ENGINE_SHA256;
1602 		ctx->nregs = HASH_SHA256_MAX_REG;
1603 		break;
1604 	default:
1605 		ctx->error = true;
1606 		return -EINVAL;
1607 	}
1608 
1609 	return 0;
1610 }
1611 
1612 /**
1613  * s5p_hash_digest - calculate digest from req->src
1614  * @req:	AHASH request
1615  *
1616  * Return values: see s5p_hash_final above.
1617  */
s5p_hash_digest(struct ahash_request * req)1618 static int s5p_hash_digest(struct ahash_request *req)
1619 {
1620 	return s5p_hash_init(req) ?: s5p_hash_finup(req);
1621 }
1622 
1623 /**
1624  * s5p_hash_cra_init_alg - init crypto alg transformation
1625  * @tfm:	crypto transformation
1626  */
s5p_hash_cra_init_alg(struct crypto_tfm * tfm)1627 static int s5p_hash_cra_init_alg(struct crypto_tfm *tfm)
1628 {
1629 	struct s5p_hash_ctx *tctx = crypto_tfm_ctx(tfm);
1630 	const char *alg_name = crypto_tfm_alg_name(tfm);
1631 
1632 	tctx->dd = s5p_dev;
1633 	/* Allocate a fallback and abort if it failed. */
1634 	tctx->fallback = crypto_alloc_shash(alg_name, 0,
1635 					    CRYPTO_ALG_NEED_FALLBACK);
1636 	if (IS_ERR(tctx->fallback)) {
1637 		pr_err("fallback alloc fails for '%s'\n", alg_name);
1638 		return PTR_ERR(tctx->fallback);
1639 	}
1640 
1641 	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
1642 				 sizeof(struct s5p_hash_reqctx) + BUFLEN);
1643 
1644 	return 0;
1645 }
1646 
1647 /**
1648  * s5p_hash_cra_init - init crypto tfm
1649  * @tfm:	crypto transformation
1650  */
s5p_hash_cra_init(struct crypto_tfm * tfm)1651 static int s5p_hash_cra_init(struct crypto_tfm *tfm)
1652 {
1653 	return s5p_hash_cra_init_alg(tfm);
1654 }
1655 
1656 /**
1657  * s5p_hash_cra_exit - exit crypto tfm
1658  * @tfm:	crypto transformation
1659  *
1660  * free allocated fallback
1661  */
s5p_hash_cra_exit(struct crypto_tfm * tfm)1662 static void s5p_hash_cra_exit(struct crypto_tfm *tfm)
1663 {
1664 	struct s5p_hash_ctx *tctx = crypto_tfm_ctx(tfm);
1665 
1666 	crypto_free_shash(tctx->fallback);
1667 	tctx->fallback = NULL;
1668 }
1669 
1670 /**
1671  * s5p_hash_export - export hash state
1672  * @req:	AHASH request
1673  * @out:	buffer for exported state
1674  */
s5p_hash_export(struct ahash_request * req,void * out)1675 static int s5p_hash_export(struct ahash_request *req, void *out)
1676 {
1677 	const struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1678 
1679 	memcpy(out, ctx, sizeof(*ctx) + ctx->bufcnt);
1680 
1681 	return 0;
1682 }
1683 
1684 /**
1685  * s5p_hash_import - import hash state
1686  * @req:	AHASH request
1687  * @in:		buffer with state to be imported from
1688  */
s5p_hash_import(struct ahash_request * req,const void * in)1689 static int s5p_hash_import(struct ahash_request *req, const void *in)
1690 {
1691 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1692 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1693 	struct s5p_hash_ctx *tctx = crypto_ahash_ctx(tfm);
1694 	const struct s5p_hash_reqctx *ctx_in = in;
1695 
1696 	memcpy(ctx, in, sizeof(*ctx) + BUFLEN);
1697 	if (ctx_in->bufcnt > BUFLEN) {
1698 		ctx->error = true;
1699 		return -EINVAL;
1700 	}
1701 
1702 	ctx->dd = tctx->dd;
1703 	ctx->error = false;
1704 
1705 	return 0;
1706 }
1707 
1708 static struct ahash_alg algs_sha1_md5_sha256[] = {
1709 {
1710 	.init		= s5p_hash_init,
1711 	.update		= s5p_hash_update,
1712 	.final		= s5p_hash_final,
1713 	.finup		= s5p_hash_finup,
1714 	.digest		= s5p_hash_digest,
1715 	.export		= s5p_hash_export,
1716 	.import		= s5p_hash_import,
1717 	.halg.statesize = sizeof(struct s5p_hash_reqctx) + BUFLEN,
1718 	.halg.digestsize	= SHA1_DIGEST_SIZE,
1719 	.halg.base	= {
1720 		.cra_name		= "sha1",
1721 		.cra_driver_name	= "exynos-sha1",
1722 		.cra_priority		= 100,
1723 		.cra_flags		= CRYPTO_ALG_KERN_DRIVER_ONLY |
1724 					  CRYPTO_ALG_ASYNC |
1725 					  CRYPTO_ALG_NEED_FALLBACK,
1726 		.cra_blocksize		= HASH_BLOCK_SIZE,
1727 		.cra_ctxsize		= sizeof(struct s5p_hash_ctx),
1728 		.cra_module		= THIS_MODULE,
1729 		.cra_init		= s5p_hash_cra_init,
1730 		.cra_exit		= s5p_hash_cra_exit,
1731 	}
1732 },
1733 {
1734 	.init		= s5p_hash_init,
1735 	.update		= s5p_hash_update,
1736 	.final		= s5p_hash_final,
1737 	.finup		= s5p_hash_finup,
1738 	.digest		= s5p_hash_digest,
1739 	.export		= s5p_hash_export,
1740 	.import		= s5p_hash_import,
1741 	.halg.statesize = sizeof(struct s5p_hash_reqctx) + BUFLEN,
1742 	.halg.digestsize	= MD5_DIGEST_SIZE,
1743 	.halg.base	= {
1744 		.cra_name		= "md5",
1745 		.cra_driver_name	= "exynos-md5",
1746 		.cra_priority		= 100,
1747 		.cra_flags		= CRYPTO_ALG_KERN_DRIVER_ONLY |
1748 					  CRYPTO_ALG_ASYNC |
1749 					  CRYPTO_ALG_NEED_FALLBACK,
1750 		.cra_blocksize		= HASH_BLOCK_SIZE,
1751 		.cra_ctxsize		= sizeof(struct s5p_hash_ctx),
1752 		.cra_module		= THIS_MODULE,
1753 		.cra_init		= s5p_hash_cra_init,
1754 		.cra_exit		= s5p_hash_cra_exit,
1755 	}
1756 },
1757 {
1758 	.init		= s5p_hash_init,
1759 	.update		= s5p_hash_update,
1760 	.final		= s5p_hash_final,
1761 	.finup		= s5p_hash_finup,
1762 	.digest		= s5p_hash_digest,
1763 	.export		= s5p_hash_export,
1764 	.import		= s5p_hash_import,
1765 	.halg.statesize = sizeof(struct s5p_hash_reqctx) + BUFLEN,
1766 	.halg.digestsize	= SHA256_DIGEST_SIZE,
1767 	.halg.base	= {
1768 		.cra_name		= "sha256",
1769 		.cra_driver_name	= "exynos-sha256",
1770 		.cra_priority		= 100,
1771 		.cra_flags		= CRYPTO_ALG_KERN_DRIVER_ONLY |
1772 					  CRYPTO_ALG_ASYNC |
1773 					  CRYPTO_ALG_NEED_FALLBACK,
1774 		.cra_blocksize		= HASH_BLOCK_SIZE,
1775 		.cra_ctxsize		= sizeof(struct s5p_hash_ctx),
1776 		.cra_module		= THIS_MODULE,
1777 		.cra_init		= s5p_hash_cra_init,
1778 		.cra_exit		= s5p_hash_cra_exit,
1779 	}
1780 }
1781 
1782 };
1783 
s5p_set_aes(struct s5p_aes_dev * dev,const u8 * key,const u8 * iv,const u8 * ctr,unsigned int keylen)1784 static void s5p_set_aes(struct s5p_aes_dev *dev,
1785 			const u8 *key, const u8 *iv, const u8 *ctr,
1786 			unsigned int keylen)
1787 {
1788 	void __iomem *keystart;
1789 
1790 	if (iv)
1791 		memcpy_toio(dev->aes_ioaddr + SSS_REG_AES_IV_DATA(0), iv,
1792 			    AES_BLOCK_SIZE);
1793 
1794 	if (ctr)
1795 		memcpy_toio(dev->aes_ioaddr + SSS_REG_AES_CNT_DATA(0), ctr,
1796 			    AES_BLOCK_SIZE);
1797 
1798 	if (keylen == AES_KEYSIZE_256)
1799 		keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(0);
1800 	else if (keylen == AES_KEYSIZE_192)
1801 		keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(2);
1802 	else
1803 		keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(4);
1804 
1805 	memcpy_toio(keystart, key, keylen);
1806 }
1807 
s5p_is_sg_aligned(struct scatterlist * sg)1808 static bool s5p_is_sg_aligned(struct scatterlist *sg)
1809 {
1810 	while (sg) {
1811 		if (!IS_ALIGNED(sg->length, AES_BLOCK_SIZE))
1812 			return false;
1813 		sg = sg_next(sg);
1814 	}
1815 
1816 	return true;
1817 }
1818 
s5p_set_indata_start(struct s5p_aes_dev * dev,struct skcipher_request * req)1819 static int s5p_set_indata_start(struct s5p_aes_dev *dev,
1820 				struct skcipher_request *req)
1821 {
1822 	struct scatterlist *sg;
1823 	int err;
1824 
1825 	dev->sg_src_cpy = NULL;
1826 	sg = req->src;
1827 	if (!s5p_is_sg_aligned(sg)) {
1828 		dev_dbg(dev->dev,
1829 			"At least one unaligned source scatter list, making a copy\n");
1830 		err = s5p_make_sg_cpy(dev, sg, &dev->sg_src_cpy);
1831 		if (err)
1832 			return err;
1833 
1834 		sg = dev->sg_src_cpy;
1835 	}
1836 
1837 	err = s5p_set_indata(dev, sg);
1838 	if (err) {
1839 		s5p_free_sg_cpy(dev, &dev->sg_src_cpy);
1840 		return err;
1841 	}
1842 
1843 	return 0;
1844 }
1845 
s5p_set_outdata_start(struct s5p_aes_dev * dev,struct skcipher_request * req)1846 static int s5p_set_outdata_start(struct s5p_aes_dev *dev,
1847 				 struct skcipher_request *req)
1848 {
1849 	struct scatterlist *sg;
1850 	int err;
1851 
1852 	dev->sg_dst_cpy = NULL;
1853 	sg = req->dst;
1854 	if (!s5p_is_sg_aligned(sg)) {
1855 		dev_dbg(dev->dev,
1856 			"At least one unaligned dest scatter list, making a copy\n");
1857 		err = s5p_make_sg_cpy(dev, sg, &dev->sg_dst_cpy);
1858 		if (err)
1859 			return err;
1860 
1861 		sg = dev->sg_dst_cpy;
1862 	}
1863 
1864 	err = s5p_set_outdata(dev, sg);
1865 	if (err) {
1866 		s5p_free_sg_cpy(dev, &dev->sg_dst_cpy);
1867 		return err;
1868 	}
1869 
1870 	return 0;
1871 }
1872 
s5p_aes_crypt_start(struct s5p_aes_dev * dev,unsigned long mode)1873 static void s5p_aes_crypt_start(struct s5p_aes_dev *dev, unsigned long mode)
1874 {
1875 	struct skcipher_request *req = dev->req;
1876 	u32 aes_control;
1877 	unsigned long flags;
1878 	int err;
1879 	u8 *iv, *ctr;
1880 
1881 	/* This sets bit [13:12] to 00, which selects 128-bit counter */
1882 	aes_control = SSS_AES_KEY_CHANGE_MODE;
1883 	if (mode & FLAGS_AES_DECRYPT)
1884 		aes_control |= SSS_AES_MODE_DECRYPT;
1885 
1886 	if ((mode & FLAGS_AES_MODE_MASK) == FLAGS_AES_CBC) {
1887 		aes_control |= SSS_AES_CHAIN_MODE_CBC;
1888 		iv = req->iv;
1889 		ctr = NULL;
1890 	} else if ((mode & FLAGS_AES_MODE_MASK) == FLAGS_AES_CTR) {
1891 		aes_control |= SSS_AES_CHAIN_MODE_CTR;
1892 		iv = NULL;
1893 		ctr = req->iv;
1894 	} else {
1895 		iv = NULL; /* AES_ECB */
1896 		ctr = NULL;
1897 	}
1898 
1899 	if (dev->ctx->keylen == AES_KEYSIZE_192)
1900 		aes_control |= SSS_AES_KEY_SIZE_192;
1901 	else if (dev->ctx->keylen == AES_KEYSIZE_256)
1902 		aes_control |= SSS_AES_KEY_SIZE_256;
1903 
1904 	aes_control |= SSS_AES_FIFO_MODE;
1905 
1906 	/* as a variant it is possible to use byte swapping on DMA side */
1907 	aes_control |= SSS_AES_BYTESWAP_DI
1908 		    |  SSS_AES_BYTESWAP_DO
1909 		    |  SSS_AES_BYTESWAP_IV
1910 		    |  SSS_AES_BYTESWAP_KEY
1911 		    |  SSS_AES_BYTESWAP_CNT;
1912 
1913 	spin_lock_irqsave(&dev->lock, flags);
1914 
1915 	SSS_WRITE(dev, FCINTENCLR,
1916 		  SSS_FCINTENCLR_BTDMAINTENCLR | SSS_FCINTENCLR_BRDMAINTENCLR);
1917 	SSS_WRITE(dev, FCFIFOCTRL, 0x00);
1918 
1919 	err = s5p_set_indata_start(dev, req);
1920 	if (err)
1921 		goto indata_error;
1922 
1923 	err = s5p_set_outdata_start(dev, req);
1924 	if (err)
1925 		goto outdata_error;
1926 
1927 	SSS_AES_WRITE(dev, AES_CONTROL, aes_control);
1928 	s5p_set_aes(dev, dev->ctx->aes_key, iv, ctr, dev->ctx->keylen);
1929 
1930 	s5p_set_dma_indata(dev,  dev->sg_src);
1931 	s5p_set_dma_outdata(dev, dev->sg_dst);
1932 
1933 	SSS_WRITE(dev, FCINTENSET,
1934 		  SSS_FCINTENSET_BTDMAINTENSET | SSS_FCINTENSET_BRDMAINTENSET);
1935 
1936 	spin_unlock_irqrestore(&dev->lock, flags);
1937 
1938 	return;
1939 
1940 outdata_error:
1941 	s5p_unset_indata(dev);
1942 
1943 indata_error:
1944 	s5p_sg_done(dev);
1945 	dev->busy = false;
1946 	spin_unlock_irqrestore(&dev->lock, flags);
1947 	s5p_aes_complete(req, err);
1948 }
1949 
s5p_tasklet_cb(unsigned long data)1950 static void s5p_tasklet_cb(unsigned long data)
1951 {
1952 	struct s5p_aes_dev *dev = (struct s5p_aes_dev *)data;
1953 	struct crypto_async_request *async_req, *backlog;
1954 	struct s5p_aes_reqctx *reqctx;
1955 	unsigned long flags;
1956 
1957 	spin_lock_irqsave(&dev->lock, flags);
1958 	backlog   = crypto_get_backlog(&dev->queue);
1959 	async_req = crypto_dequeue_request(&dev->queue);
1960 
1961 	if (!async_req) {
1962 		dev->busy = false;
1963 		spin_unlock_irqrestore(&dev->lock, flags);
1964 		return;
1965 	}
1966 	spin_unlock_irqrestore(&dev->lock, flags);
1967 
1968 	if (backlog)
1969 		crypto_request_complete(backlog, -EINPROGRESS);
1970 
1971 	dev->req = skcipher_request_cast(async_req);
1972 	dev->ctx = crypto_tfm_ctx(dev->req->base.tfm);
1973 	reqctx   = skcipher_request_ctx(dev->req);
1974 
1975 	s5p_aes_crypt_start(dev, reqctx->mode);
1976 }
1977 
s5p_aes_handle_req(struct s5p_aes_dev * dev,struct skcipher_request * req)1978 static int s5p_aes_handle_req(struct s5p_aes_dev *dev,
1979 			      struct skcipher_request *req)
1980 {
1981 	unsigned long flags;
1982 	int err;
1983 
1984 	spin_lock_irqsave(&dev->lock, flags);
1985 	err = crypto_enqueue_request(&dev->queue, &req->base);
1986 	if (dev->busy) {
1987 		spin_unlock_irqrestore(&dev->lock, flags);
1988 		return err;
1989 	}
1990 	dev->busy = true;
1991 
1992 	spin_unlock_irqrestore(&dev->lock, flags);
1993 
1994 	tasklet_schedule(&dev->tasklet);
1995 
1996 	return err;
1997 }
1998 
s5p_aes_crypt(struct skcipher_request * req,unsigned long mode)1999 static int s5p_aes_crypt(struct skcipher_request *req, unsigned long mode)
2000 {
2001 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
2002 	struct s5p_aes_reqctx *reqctx = skcipher_request_ctx(req);
2003 	struct s5p_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
2004 	struct s5p_aes_dev *dev = ctx->dev;
2005 
2006 	if (!req->cryptlen)
2007 		return 0;
2008 
2009 	if (!IS_ALIGNED(req->cryptlen, AES_BLOCK_SIZE) &&
2010 			((mode & FLAGS_AES_MODE_MASK) != FLAGS_AES_CTR)) {
2011 		dev_dbg(dev->dev, "request size is not exact amount of AES blocks\n");
2012 		return -EINVAL;
2013 	}
2014 
2015 	reqctx->mode = mode;
2016 
2017 	return s5p_aes_handle_req(dev, req);
2018 }
2019 
s5p_aes_setkey(struct crypto_skcipher * cipher,const u8 * key,unsigned int keylen)2020 static int s5p_aes_setkey(struct crypto_skcipher *cipher,
2021 			  const u8 *key, unsigned int keylen)
2022 {
2023 	struct crypto_tfm *tfm = crypto_skcipher_tfm(cipher);
2024 	struct s5p_aes_ctx *ctx = crypto_tfm_ctx(tfm);
2025 
2026 	if (keylen != AES_KEYSIZE_128 &&
2027 	    keylen != AES_KEYSIZE_192 &&
2028 	    keylen != AES_KEYSIZE_256)
2029 		return -EINVAL;
2030 
2031 	memcpy(ctx->aes_key, key, keylen);
2032 	ctx->keylen = keylen;
2033 
2034 	return 0;
2035 }
2036 
s5p_aes_ecb_encrypt(struct skcipher_request * req)2037 static int s5p_aes_ecb_encrypt(struct skcipher_request *req)
2038 {
2039 	return s5p_aes_crypt(req, 0);
2040 }
2041 
s5p_aes_ecb_decrypt(struct skcipher_request * req)2042 static int s5p_aes_ecb_decrypt(struct skcipher_request *req)
2043 {
2044 	return s5p_aes_crypt(req, FLAGS_AES_DECRYPT);
2045 }
2046 
s5p_aes_cbc_encrypt(struct skcipher_request * req)2047 static int s5p_aes_cbc_encrypt(struct skcipher_request *req)
2048 {
2049 	return s5p_aes_crypt(req, FLAGS_AES_CBC);
2050 }
2051 
s5p_aes_cbc_decrypt(struct skcipher_request * req)2052 static int s5p_aes_cbc_decrypt(struct skcipher_request *req)
2053 {
2054 	return s5p_aes_crypt(req, FLAGS_AES_DECRYPT | FLAGS_AES_CBC);
2055 }
2056 
s5p_aes_ctr_crypt(struct skcipher_request * req)2057 static int s5p_aes_ctr_crypt(struct skcipher_request *req)
2058 {
2059 	return s5p_aes_crypt(req, FLAGS_AES_CTR);
2060 }
2061 
s5p_aes_init_tfm(struct crypto_skcipher * tfm)2062 static int s5p_aes_init_tfm(struct crypto_skcipher *tfm)
2063 {
2064 	struct s5p_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
2065 
2066 	ctx->dev = s5p_dev;
2067 	crypto_skcipher_set_reqsize(tfm, sizeof(struct s5p_aes_reqctx));
2068 
2069 	return 0;
2070 }
2071 
2072 static struct skcipher_alg algs[] = {
2073 	{
2074 		.base.cra_name		= "ecb(aes)",
2075 		.base.cra_driver_name	= "ecb-aes-s5p",
2076 		.base.cra_priority	= 100,
2077 		.base.cra_flags		= CRYPTO_ALG_ASYNC |
2078 					  CRYPTO_ALG_KERN_DRIVER_ONLY,
2079 		.base.cra_blocksize	= AES_BLOCK_SIZE,
2080 		.base.cra_ctxsize	= sizeof(struct s5p_aes_ctx),
2081 		.base.cra_alignmask	= 0x0f,
2082 		.base.cra_module	= THIS_MODULE,
2083 
2084 		.min_keysize		= AES_MIN_KEY_SIZE,
2085 		.max_keysize		= AES_MAX_KEY_SIZE,
2086 		.setkey			= s5p_aes_setkey,
2087 		.encrypt		= s5p_aes_ecb_encrypt,
2088 		.decrypt		= s5p_aes_ecb_decrypt,
2089 		.init			= s5p_aes_init_tfm,
2090 	},
2091 	{
2092 		.base.cra_name		= "cbc(aes)",
2093 		.base.cra_driver_name	= "cbc-aes-s5p",
2094 		.base.cra_priority	= 100,
2095 		.base.cra_flags		= CRYPTO_ALG_ASYNC |
2096 					  CRYPTO_ALG_KERN_DRIVER_ONLY,
2097 		.base.cra_blocksize	= AES_BLOCK_SIZE,
2098 		.base.cra_ctxsize	= sizeof(struct s5p_aes_ctx),
2099 		.base.cra_alignmask	= 0x0f,
2100 		.base.cra_module	= THIS_MODULE,
2101 
2102 		.min_keysize		= AES_MIN_KEY_SIZE,
2103 		.max_keysize		= AES_MAX_KEY_SIZE,
2104 		.ivsize			= AES_BLOCK_SIZE,
2105 		.setkey			= s5p_aes_setkey,
2106 		.encrypt		= s5p_aes_cbc_encrypt,
2107 		.decrypt		= s5p_aes_cbc_decrypt,
2108 		.init			= s5p_aes_init_tfm,
2109 	},
2110 	{
2111 		.base.cra_name		= "ctr(aes)",
2112 		.base.cra_driver_name	= "ctr-aes-s5p",
2113 		.base.cra_priority	= 100,
2114 		.base.cra_flags		= CRYPTO_ALG_ASYNC |
2115 					  CRYPTO_ALG_KERN_DRIVER_ONLY,
2116 		.base.cra_blocksize	= 1,
2117 		.base.cra_ctxsize	= sizeof(struct s5p_aes_ctx),
2118 		.base.cra_alignmask	= 0x0f,
2119 		.base.cra_module	= THIS_MODULE,
2120 
2121 		.min_keysize		= AES_MIN_KEY_SIZE,
2122 		.max_keysize		= AES_MAX_KEY_SIZE,
2123 		.ivsize			= AES_BLOCK_SIZE,
2124 		.setkey			= s5p_aes_setkey,
2125 		.encrypt		= s5p_aes_ctr_crypt,
2126 		.decrypt		= s5p_aes_ctr_crypt,
2127 		.init			= s5p_aes_init_tfm,
2128 	},
2129 };
2130 
s5p_aes_probe(struct platform_device * pdev)2131 static int s5p_aes_probe(struct platform_device *pdev)
2132 {
2133 	struct device *dev = &pdev->dev;
2134 	int i, j, err;
2135 	const struct samsung_aes_variant *variant;
2136 	struct s5p_aes_dev *pdata;
2137 	struct resource *res;
2138 	unsigned int hash_i;
2139 
2140 	if (s5p_dev)
2141 		return -EEXIST;
2142 
2143 	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
2144 	if (!pdata)
2145 		return -ENOMEM;
2146 
2147 	variant = find_s5p_sss_version(pdev);
2148 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2149 	if (!res)
2150 		return -EINVAL;
2151 
2152 	/*
2153 	 * Note: HASH and PRNG uses the same registers in secss, avoid
2154 	 * overwrite each other. This will drop HASH when CONFIG_EXYNOS_RNG
2155 	 * is enabled in config. We need larger size for HASH registers in
2156 	 * secss, current describe only AES/DES
2157 	 */
2158 	if (IS_ENABLED(CONFIG_CRYPTO_DEV_EXYNOS_HASH)) {
2159 		if (variant == &exynos_aes_data) {
2160 			res->end += 0x300;
2161 			pdata->use_hash = true;
2162 		}
2163 	}
2164 
2165 	pdata->res = res;
2166 	pdata->ioaddr = devm_ioremap_resource(dev, res);
2167 	if (IS_ERR(pdata->ioaddr)) {
2168 		if (!pdata->use_hash)
2169 			return PTR_ERR(pdata->ioaddr);
2170 		/* try AES without HASH */
2171 		res->end -= 0x300;
2172 		pdata->use_hash = false;
2173 		pdata->ioaddr = devm_ioremap_resource(dev, res);
2174 		if (IS_ERR(pdata->ioaddr))
2175 			return PTR_ERR(pdata->ioaddr);
2176 	}
2177 
2178 	pdata->clk = devm_clk_get(dev, variant->clk_names[0]);
2179 	if (IS_ERR(pdata->clk))
2180 		return dev_err_probe(dev, PTR_ERR(pdata->clk),
2181 				     "failed to find secss clock %s\n",
2182 				     variant->clk_names[0]);
2183 
2184 	err = clk_prepare_enable(pdata->clk);
2185 	if (err < 0) {
2186 		dev_err(dev, "Enabling clock %s failed, err %d\n",
2187 			variant->clk_names[0], err);
2188 		return err;
2189 	}
2190 
2191 	if (variant->clk_names[1]) {
2192 		pdata->pclk = devm_clk_get(dev, variant->clk_names[1]);
2193 		if (IS_ERR(pdata->pclk)) {
2194 			err = dev_err_probe(dev, PTR_ERR(pdata->pclk),
2195 					    "failed to find clock %s\n",
2196 					    variant->clk_names[1]);
2197 			goto err_clk;
2198 		}
2199 
2200 		err = clk_prepare_enable(pdata->pclk);
2201 		if (err < 0) {
2202 			dev_err(dev, "Enabling clock %s failed, err %d\n",
2203 				variant->clk_names[0], err);
2204 			goto err_clk;
2205 		}
2206 	} else {
2207 		pdata->pclk = NULL;
2208 	}
2209 
2210 	spin_lock_init(&pdata->lock);
2211 	spin_lock_init(&pdata->hash_lock);
2212 
2213 	pdata->aes_ioaddr = pdata->ioaddr + variant->aes_offset;
2214 	pdata->io_hash_base = pdata->ioaddr + variant->hash_offset;
2215 
2216 	pdata->irq_fc = platform_get_irq(pdev, 0);
2217 	if (pdata->irq_fc < 0) {
2218 		err = pdata->irq_fc;
2219 		dev_warn(dev, "feed control interrupt is not available.\n");
2220 		goto err_irq;
2221 	}
2222 	err = devm_request_threaded_irq(dev, pdata->irq_fc, NULL,
2223 					s5p_aes_interrupt, IRQF_ONESHOT,
2224 					pdev->name, pdev);
2225 	if (err < 0) {
2226 		dev_warn(dev, "feed control interrupt is not available.\n");
2227 		goto err_irq;
2228 	}
2229 
2230 	pdata->busy = false;
2231 	pdata->dev = dev;
2232 	platform_set_drvdata(pdev, pdata);
2233 	s5p_dev = pdata;
2234 
2235 	tasklet_init(&pdata->tasklet, s5p_tasklet_cb, (unsigned long)pdata);
2236 	crypto_init_queue(&pdata->queue, CRYPTO_QUEUE_LEN);
2237 
2238 	for (i = 0; i < ARRAY_SIZE(algs); i++) {
2239 		err = crypto_register_skcipher(&algs[i]);
2240 		if (err)
2241 			goto err_algs;
2242 	}
2243 
2244 	if (pdata->use_hash) {
2245 		tasklet_init(&pdata->hash_tasklet, s5p_hash_tasklet_cb,
2246 			     (unsigned long)pdata);
2247 		crypto_init_queue(&pdata->hash_queue, SSS_HASH_QUEUE_LENGTH);
2248 
2249 		for (hash_i = 0; hash_i < ARRAY_SIZE(algs_sha1_md5_sha256);
2250 		     hash_i++) {
2251 			struct ahash_alg *alg;
2252 
2253 			alg = &algs_sha1_md5_sha256[hash_i];
2254 			err = crypto_register_ahash(alg);
2255 			if (err) {
2256 				dev_err(dev, "can't register '%s': %d\n",
2257 					alg->halg.base.cra_driver_name, err);
2258 				goto err_hash;
2259 			}
2260 		}
2261 	}
2262 
2263 	dev_info(dev, "s5p-sss driver registered\n");
2264 
2265 	return 0;
2266 
2267 err_hash:
2268 	for (j = hash_i - 1; j >= 0; j--)
2269 		crypto_unregister_ahash(&algs_sha1_md5_sha256[j]);
2270 
2271 	tasklet_kill(&pdata->hash_tasklet);
2272 	res->end -= 0x300;
2273 
2274 err_algs:
2275 	if (i < ARRAY_SIZE(algs))
2276 		dev_err(dev, "can't register '%s': %d\n", algs[i].base.cra_name,
2277 			err);
2278 
2279 	for (j = 0; j < i; j++)
2280 		crypto_unregister_skcipher(&algs[j]);
2281 
2282 	tasklet_kill(&pdata->tasklet);
2283 
2284 err_irq:
2285 	clk_disable_unprepare(pdata->pclk);
2286 
2287 err_clk:
2288 	clk_disable_unprepare(pdata->clk);
2289 	s5p_dev = NULL;
2290 
2291 	return err;
2292 }
2293 
s5p_aes_remove(struct platform_device * pdev)2294 static void s5p_aes_remove(struct platform_device *pdev)
2295 {
2296 	struct s5p_aes_dev *pdata = platform_get_drvdata(pdev);
2297 	int i;
2298 
2299 	for (i = 0; i < ARRAY_SIZE(algs); i++)
2300 		crypto_unregister_skcipher(&algs[i]);
2301 
2302 	tasklet_kill(&pdata->tasklet);
2303 	if (pdata->use_hash) {
2304 		for (i = ARRAY_SIZE(algs_sha1_md5_sha256) - 1; i >= 0; i--)
2305 			crypto_unregister_ahash(&algs_sha1_md5_sha256[i]);
2306 
2307 		pdata->res->end -= 0x300;
2308 		tasklet_kill(&pdata->hash_tasklet);
2309 		pdata->use_hash = false;
2310 	}
2311 
2312 	clk_disable_unprepare(pdata->pclk);
2313 
2314 	clk_disable_unprepare(pdata->clk);
2315 	s5p_dev = NULL;
2316 }
2317 
2318 static struct platform_driver s5p_aes_crypto = {
2319 	.probe	= s5p_aes_probe,
2320 	.remove = s5p_aes_remove,
2321 	.driver	= {
2322 		.name	= "s5p-secss",
2323 		.of_match_table = s5p_sss_dt_match,
2324 	},
2325 };
2326 
2327 module_platform_driver(s5p_aes_crypto);
2328 
2329 MODULE_DESCRIPTION("S5PV210 AES hw acceleration support.");
2330 MODULE_LICENSE("GPL v2");
2331 MODULE_AUTHOR("Vladimir Zapolskiy <vzapolskiy@gmail.com>");
2332 MODULE_AUTHOR("Kamil Konieczny <k.konieczny@partner.samsung.com>");
2333