1 /* SPDX-License-Identifier: MIT */
2 /*
3  * Copyright © 2021 Intel Corporation
4  */
5 
6 #ifndef _XE_BO_H_
7 #define _XE_BO_H_
8 
9 #include <drm/ttm/ttm_tt.h>
10 
11 #include "xe_bo_types.h"
12 #include "xe_macros.h"
13 #include "xe_vm_types.h"
14 #include "xe_vm.h"
15 
16 #define XE_DEFAULT_GTT_SIZE_MB          3072ULL /* 3GB by default */
17 
18 #define XE_BO_FLAG_USER		BIT(0)
19 /* The bits below need to be contiguous, or things break */
20 #define XE_BO_FLAG_SYSTEM		BIT(1)
21 #define XE_BO_FLAG_VRAM0		BIT(2)
22 #define XE_BO_FLAG_VRAM1		BIT(3)
23 #define XE_BO_FLAG_VRAM_MASK		(XE_BO_FLAG_VRAM0 | XE_BO_FLAG_VRAM1)
24 /* -- */
25 #define XE_BO_FLAG_STOLEN		BIT(4)
26 #define XE_BO_FLAG_VRAM_IF_DGFX(tile)	(IS_DGFX(tile_to_xe(tile)) ? \
27 					 XE_BO_FLAG_VRAM0 << (tile)->id : \
28 					 XE_BO_FLAG_SYSTEM)
29 #define XE_BO_FLAG_GGTT			BIT(5)
30 #define XE_BO_FLAG_IGNORE_MIN_PAGE_SIZE BIT(6)
31 #define XE_BO_FLAG_PINNED		BIT(7)
32 #define XE_BO_FLAG_NO_RESV_EVICT	BIT(8)
33 #define XE_BO_FLAG_DEFER_BACKING	BIT(9)
34 #define XE_BO_FLAG_SCANOUT		BIT(10)
35 #define XE_BO_FLAG_FIXED_PLACEMENT	BIT(11)
36 #define XE_BO_FLAG_PAGETABLE		BIT(12)
37 #define XE_BO_FLAG_NEEDS_CPU_ACCESS	BIT(13)
38 #define XE_BO_FLAG_NEEDS_UC		BIT(14)
39 #define XE_BO_FLAG_NEEDS_64K		BIT(15)
40 #define XE_BO_FLAG_NEEDS_2M		BIT(16)
41 #define XE_BO_FLAG_GGTT_INVALIDATE	BIT(17)
42 #define XE_BO_FLAG_GGTT0                BIT(18)
43 #define XE_BO_FLAG_GGTT1                BIT(19)
44 #define XE_BO_FLAG_GGTT2                BIT(20)
45 #define XE_BO_FLAG_GGTT3                BIT(21)
46 #define XE_BO_FLAG_GGTT_ALL             (XE_BO_FLAG_GGTT0 | \
47 					 XE_BO_FLAG_GGTT1 | \
48 					 XE_BO_FLAG_GGTT2 | \
49 					 XE_BO_FLAG_GGTT3)
50 #define XE_BO_FLAG_CPU_ADDR_MIRROR	BIT(22)
51 
52 /* this one is trigger internally only */
53 #define XE_BO_FLAG_INTERNAL_TEST	BIT(30)
54 #define XE_BO_FLAG_INTERNAL_64K		BIT(31)
55 
56 #define XE_BO_FLAG_GGTTx(tile) \
57 	(XE_BO_FLAG_GGTT0 << (tile)->id)
58 
59 #define XE_PTE_SHIFT			12
60 #define XE_PAGE_SIZE			(1 << XE_PTE_SHIFT)
61 #define XE_PTE_MASK			(XE_PAGE_SIZE - 1)
62 #define XE_PDE_SHIFT			(XE_PTE_SHIFT - 3)
63 #define XE_PDES				(1 << XE_PDE_SHIFT)
64 #define XE_PDE_MASK			(XE_PDES - 1)
65 
66 #define XE_64K_PTE_SHIFT		16
67 #define XE_64K_PAGE_SIZE		(1 << XE_64K_PTE_SHIFT)
68 #define XE_64K_PTE_MASK			(XE_64K_PAGE_SIZE - 1)
69 #define XE_64K_PDE_MASK			(XE_PDE_MASK >> 4)
70 
71 #define XE_PL_SYSTEM		TTM_PL_SYSTEM
72 #define XE_PL_TT		TTM_PL_TT
73 #define XE_PL_VRAM0		TTM_PL_VRAM
74 #define XE_PL_VRAM1		(XE_PL_VRAM0 + 1)
75 #define XE_PL_STOLEN		(TTM_NUM_MEM_TYPES - 1)
76 
77 #define XE_BO_PROPS_INVALID	(-1)
78 
79 #define XE_PCI_BARRIER_MMAP_OFFSET	(0x50 << XE_PTE_SHIFT)
80 
81 struct sg_table;
82 
83 struct xe_bo *xe_bo_alloc(void);
84 void xe_bo_free(struct xe_bo *bo);
85 
86 struct xe_bo *___xe_bo_create_locked(struct xe_device *xe, struct xe_bo *bo,
87 				     struct xe_tile *tile, struct dma_resv *resv,
88 				     struct ttm_lru_bulk_move *bulk, size_t size,
89 				     u16 cpu_caching, enum ttm_bo_type type,
90 				     u32 flags);
91 struct xe_bo *
92 xe_bo_create_locked_range(struct xe_device *xe,
93 			  struct xe_tile *tile, struct xe_vm *vm,
94 			  size_t size, u64 start, u64 end,
95 			  enum ttm_bo_type type, u32 flags, u64 alignment);
96 struct xe_bo *xe_bo_create_locked(struct xe_device *xe, struct xe_tile *tile,
97 				  struct xe_vm *vm, size_t size,
98 				  enum ttm_bo_type type, u32 flags);
99 struct xe_bo *xe_bo_create(struct xe_device *xe, struct xe_tile *tile,
100 			   struct xe_vm *vm, size_t size,
101 			   enum ttm_bo_type type, u32 flags);
102 struct xe_bo *xe_bo_create_user(struct xe_device *xe, struct xe_tile *tile,
103 				struct xe_vm *vm, size_t size,
104 				u16 cpu_caching,
105 				u32 flags);
106 struct xe_bo *xe_bo_create_pin_map(struct xe_device *xe, struct xe_tile *tile,
107 				   struct xe_vm *vm, size_t size,
108 				   enum ttm_bo_type type, u32 flags);
109 struct xe_bo *xe_bo_create_pin_map_at(struct xe_device *xe, struct xe_tile *tile,
110 				      struct xe_vm *vm, size_t size, u64 offset,
111 				      enum ttm_bo_type type, u32 flags);
112 struct xe_bo *xe_bo_create_pin_map_at_aligned(struct xe_device *xe,
113 					      struct xe_tile *tile,
114 					      struct xe_vm *vm,
115 					      size_t size, u64 offset,
116 					      enum ttm_bo_type type, u32 flags,
117 					      u64 alignment);
118 struct xe_bo *xe_bo_create_from_data(struct xe_device *xe, struct xe_tile *tile,
119 				     const void *data, size_t size,
120 				     enum ttm_bo_type type, u32 flags);
121 struct xe_bo *xe_managed_bo_create_pin_map(struct xe_device *xe, struct xe_tile *tile,
122 					   size_t size, u32 flags);
123 struct xe_bo *xe_managed_bo_create_from_data(struct xe_device *xe, struct xe_tile *tile,
124 					     const void *data, size_t size, u32 flags);
125 int xe_managed_bo_reinit_in_vram(struct xe_device *xe, struct xe_tile *tile, struct xe_bo **src);
126 
127 int xe_bo_placement_for_flags(struct xe_device *xe, struct xe_bo *bo,
128 			      u32 bo_flags);
129 
ttm_to_xe_bo(const struct ttm_buffer_object * bo)130 static inline struct xe_bo *ttm_to_xe_bo(const struct ttm_buffer_object *bo)
131 {
132 	return container_of(bo, struct xe_bo, ttm);
133 }
134 
gem_to_xe_bo(const struct drm_gem_object * obj)135 static inline struct xe_bo *gem_to_xe_bo(const struct drm_gem_object *obj)
136 {
137 	return container_of(obj, struct xe_bo, ttm.base);
138 }
139 
140 #define xe_bo_device(bo) ttm_to_xe_device((bo)->ttm.bdev)
141 
xe_bo_get(struct xe_bo * bo)142 static inline struct xe_bo *xe_bo_get(struct xe_bo *bo)
143 {
144 	if (bo)
145 		drm_gem_object_get(&bo->ttm.base);
146 
147 	return bo;
148 }
149 
150 void xe_bo_put(struct xe_bo *bo);
151 
152 /*
153  * xe_bo_get_unless_zero() - Conditionally obtain a GEM object refcount on an
154  * xe bo
155  * @bo: The bo for which we want to obtain a refcount.
156  *
157  * There is a short window between where the bo's GEM object refcount reaches
158  * zero and where we put the final ttm_bo reference. Code in the eviction- and
159  * shrinking path should therefore attempt to grab a gem object reference before
160  * trying to use members outside of the base class ttm object. This function is
161  * intended for that purpose. On successful return, this function must be paired
162  * with an xe_bo_put().
163  *
164  * Return: @bo on success, NULL on failure.
165  */
xe_bo_get_unless_zero(struct xe_bo * bo)166 static inline __must_check struct xe_bo *xe_bo_get_unless_zero(struct xe_bo *bo)
167 {
168 	if (!bo || !kref_get_unless_zero(&bo->ttm.base.refcount))
169 		return NULL;
170 
171 	return bo;
172 }
173 
__xe_bo_unset_bulk_move(struct xe_bo * bo)174 static inline void __xe_bo_unset_bulk_move(struct xe_bo *bo)
175 {
176 	if (bo)
177 		ttm_bo_set_bulk_move(&bo->ttm, NULL);
178 }
179 
xe_bo_assert_held(struct xe_bo * bo)180 static inline void xe_bo_assert_held(struct xe_bo *bo)
181 {
182 	if (bo)
183 		dma_resv_assert_held((bo)->ttm.base.resv);
184 }
185 
186 int xe_bo_lock(struct xe_bo *bo, bool intr);
187 
188 void xe_bo_unlock(struct xe_bo *bo);
189 
xe_bo_unlock_vm_held(struct xe_bo * bo)190 static inline void xe_bo_unlock_vm_held(struct xe_bo *bo)
191 {
192 	if (bo) {
193 		XE_WARN_ON(bo->vm && bo->ttm.base.resv != xe_vm_resv(bo->vm));
194 		if (bo->vm)
195 			xe_vm_assert_held(bo->vm);
196 		else
197 			dma_resv_unlock(bo->ttm.base.resv);
198 	}
199 }
200 
201 int xe_bo_pin_external(struct xe_bo *bo);
202 int xe_bo_pin(struct xe_bo *bo);
203 void xe_bo_unpin_external(struct xe_bo *bo);
204 void xe_bo_unpin(struct xe_bo *bo);
205 int xe_bo_validate(struct xe_bo *bo, struct xe_vm *vm, bool allow_res_evict);
206 
xe_bo_is_pinned(struct xe_bo * bo)207 static inline bool xe_bo_is_pinned(struct xe_bo *bo)
208 {
209 	return bo->ttm.pin_count;
210 }
211 
xe_bo_is_protected(const struct xe_bo * bo)212 static inline bool xe_bo_is_protected(const struct xe_bo *bo)
213 {
214 	return bo->pxp_key_instance;
215 }
216 
xe_bo_unpin_map_no_vm(struct xe_bo * bo)217 static inline void xe_bo_unpin_map_no_vm(struct xe_bo *bo)
218 {
219 	if (likely(bo)) {
220 		xe_bo_lock(bo, false);
221 		xe_bo_unpin(bo);
222 		xe_bo_unlock(bo);
223 
224 		xe_bo_put(bo);
225 	}
226 }
227 
228 bool xe_bo_is_xe_bo(struct ttm_buffer_object *bo);
229 dma_addr_t __xe_bo_addr(struct xe_bo *bo, u64 offset, size_t page_size);
230 dma_addr_t xe_bo_addr(struct xe_bo *bo, u64 offset, size_t page_size);
231 
232 static inline dma_addr_t
xe_bo_main_addr(struct xe_bo * bo,size_t page_size)233 xe_bo_main_addr(struct xe_bo *bo, size_t page_size)
234 {
235 	return xe_bo_addr(bo, 0, page_size);
236 }
237 
238 static inline u32
__xe_bo_ggtt_addr(struct xe_bo * bo,u8 tile_id)239 __xe_bo_ggtt_addr(struct xe_bo *bo, u8 tile_id)
240 {
241 	struct xe_ggtt_node *ggtt_node = bo->ggtt_node[tile_id];
242 
243 	if (XE_WARN_ON(!ggtt_node))
244 		return 0;
245 
246 	XE_WARN_ON(ggtt_node->base.size > bo->size);
247 	XE_WARN_ON(ggtt_node->base.start + ggtt_node->base.size > (1ull << 32));
248 	return ggtt_node->base.start;
249 }
250 
251 static inline u32
xe_bo_ggtt_addr(struct xe_bo * bo)252 xe_bo_ggtt_addr(struct xe_bo *bo)
253 {
254 	xe_assert(xe_bo_device(bo), bo->tile);
255 
256 	return __xe_bo_ggtt_addr(bo, bo->tile->id);
257 }
258 
259 int xe_bo_vmap(struct xe_bo *bo);
260 void xe_bo_vunmap(struct xe_bo *bo);
261 int xe_bo_read(struct xe_bo *bo, u64 offset, void *dst, int size);
262 
263 bool mem_type_is_vram(u32 mem_type);
264 bool xe_bo_is_vram(struct xe_bo *bo);
265 bool xe_bo_is_stolen(struct xe_bo *bo);
266 bool xe_bo_is_stolen_devmem(struct xe_bo *bo);
267 bool xe_bo_is_vm_bound(struct xe_bo *bo);
268 bool xe_bo_has_single_placement(struct xe_bo *bo);
269 uint64_t vram_region_gpu_offset(struct ttm_resource *res);
270 
271 bool xe_bo_can_migrate(struct xe_bo *bo, u32 mem_type);
272 
273 int xe_bo_migrate(struct xe_bo *bo, u32 mem_type);
274 int xe_bo_evict(struct xe_bo *bo, bool force_alloc);
275 
276 int xe_bo_evict_pinned(struct xe_bo *bo);
277 int xe_bo_restore_pinned(struct xe_bo *bo);
278 
279 extern const struct ttm_device_funcs xe_ttm_funcs;
280 extern const char *const xe_mem_type_to_name[];
281 
282 int xe_gem_create_ioctl(struct drm_device *dev, void *data,
283 			struct drm_file *file);
284 int xe_gem_mmap_offset_ioctl(struct drm_device *dev, void *data,
285 			     struct drm_file *file);
286 void xe_bo_runtime_pm_release_mmap_offset(struct xe_bo *bo);
287 
288 int xe_bo_dumb_create(struct drm_file *file_priv,
289 		      struct drm_device *dev,
290 		      struct drm_mode_create_dumb *args);
291 
292 bool xe_bo_needs_ccs_pages(struct xe_bo *bo);
293 
xe_bo_ccs_pages_start(struct xe_bo * bo)294 static inline size_t xe_bo_ccs_pages_start(struct xe_bo *bo)
295 {
296 	return PAGE_ALIGN(bo->ttm.base.size);
297 }
298 
xe_bo_has_pages(struct xe_bo * bo)299 static inline bool xe_bo_has_pages(struct xe_bo *bo)
300 {
301 	if ((bo->ttm.ttm && ttm_tt_is_populated(bo->ttm.ttm)) ||
302 	    xe_bo_is_vram(bo))
303 		return true;
304 
305 	return false;
306 }
307 
308 void __xe_bo_release_dummy(struct kref *kref);
309 
310 /**
311  * xe_bo_put_deferred() - Put a buffer object with delayed final freeing
312  * @bo: The bo to put.
313  * @deferred: List to which to add the buffer object if we cannot put, or
314  * NULL if the function is to put unconditionally.
315  *
316  * Since the final freeing of an object includes both sleeping and (!)
317  * memory allocation in the dma_resv individualization, it's not ok
318  * to put an object from atomic context nor from within a held lock
319  * tainted by reclaim. In such situations we want to defer the final
320  * freeing until we've exited the restricting context, or in the worst
321  * case to a workqueue.
322  * This function either puts the object if possible without the refcount
323  * reaching zero, or adds it to the @deferred list if that was not possible.
324  * The caller needs to follow up with a call to xe_bo_put_commit() to actually
325  * put the bo iff this function returns true. It's safe to always
326  * follow up with a call to xe_bo_put_commit().
327  * TODO: It's TTM that is the villain here. Perhaps TTM should add an
328  * interface like this.
329  *
330  * Return: true if @bo was the first object put on the @freed list,
331  * false otherwise.
332  */
333 static inline bool
xe_bo_put_deferred(struct xe_bo * bo,struct llist_head * deferred)334 xe_bo_put_deferred(struct xe_bo *bo, struct llist_head *deferred)
335 {
336 	if (!deferred) {
337 		xe_bo_put(bo);
338 		return false;
339 	}
340 
341 	if (!kref_put(&bo->ttm.base.refcount, __xe_bo_release_dummy))
342 		return false;
343 
344 	return llist_add(&bo->freed, deferred);
345 }
346 
347 void xe_bo_put_commit(struct llist_head *deferred);
348 
349 /**
350  * xe_bo_put_async() - Put BO async
351  * @bo: The bo to put.
352  *
353  * Put BO async, the final put is deferred to a worker to exit an IRQ context.
354  */
355 static inline void
xe_bo_put_async(struct xe_bo * bo)356 xe_bo_put_async(struct xe_bo *bo)
357 {
358 	struct xe_bo_dev *bo_device = &xe_bo_device(bo)->bo_device;
359 
360 	if (xe_bo_put_deferred(bo, &bo_device->async_list))
361 		schedule_work(&bo_device->async_free);
362 }
363 
364 void xe_bo_dev_init(struct xe_bo_dev *bo_device);
365 
366 void xe_bo_dev_fini(struct xe_bo_dev *bo_device);
367 
368 struct sg_table *xe_bo_sg(struct xe_bo *bo);
369 
370 /*
371  * xe_sg_segment_size() - Provides upper limit for sg segment size.
372  * @dev: device pointer
373  *
374  * Returns the maximum segment size for the 'struct scatterlist'
375  * elements.
376  */
xe_sg_segment_size(struct device * dev)377 static inline unsigned int xe_sg_segment_size(struct device *dev)
378 {
379 	struct scatterlist __maybe_unused sg;
380 	size_t max = BIT_ULL(sizeof(sg.length) * 8) - 1;
381 
382 	max = min_t(size_t, max, dma_max_mapping_size(dev));
383 
384 	/*
385 	 * The iommu_dma_map_sg() function ensures iova allocation doesn't
386 	 * cross dma segment boundary. It does so by padding some sg elements.
387 	 * This can cause overflow, ending up with sg->length being set to 0.
388 	 * Avoid this by ensuring maximum segment size is half of 'max'
389 	 * rounded down to PAGE_SIZE.
390 	 */
391 	return round_down(max / 2, PAGE_SIZE);
392 }
393 
394 /**
395  * struct xe_bo_shrink_flags - flags governing the shrink behaviour.
396  * @purge: Only purging allowed. Don't shrink if bo not purgeable.
397  * @writeback: Attempt to immediately move content to swap.
398  */
399 struct xe_bo_shrink_flags {
400 	u32 purge : 1;
401 	u32 writeback : 1;
402 };
403 
404 long xe_bo_shrink(struct ttm_operation_ctx *ctx, struct ttm_buffer_object *bo,
405 		  const struct xe_bo_shrink_flags flags,
406 		  unsigned long *scanned);
407 
408 /**
409  * xe_bo_is_mem_type - Whether the bo currently resides in the given
410  * TTM memory type
411  * @bo: The bo to check.
412  * @mem_type: The TTM memory type.
413  *
414  * Return: true iff the bo resides in @mem_type, false otherwise.
415  */
xe_bo_is_mem_type(struct xe_bo * bo,u32 mem_type)416 static inline bool xe_bo_is_mem_type(struct xe_bo *bo, u32 mem_type)
417 {
418 	xe_bo_assert_held(bo);
419 	return bo->ttm.resource->mem_type == mem_type;
420 }
421 #endif
422