1 /*
2 * VMEbus User access driver
3 *
4 * Author: Martyn Welch <martyn.welch@ge.com>
5 * Copyright 2008 GE Intelligent Platforms Embedded Systems, Inc.
6 *
7 * Based on work by:
8 * Tom Armistead and Ajit Prem
9 * Copyright 2004 Motorola Inc.
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify it
13 * under the terms of the GNU General Public License as published by the
14 * Free Software Foundation; either version 2 of the License, or (at your
15 * option) any later version.
16 */
17
18 #include <linux/cdev.h>
19 #include <linux/delay.h>
20 #include <linux/device.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/errno.h>
23 #include <linux/init.h>
24 #include <linux/ioctl.h>
25 #include <linux/kernel.h>
26 #include <linux/mm.h>
27 #include <linux/module.h>
28 #include <linux/pagemap.h>
29 #include <linux/pci.h>
30 #include <linux/semaphore.h>
31 #include <linux/slab.h>
32 #include <linux/spinlock.h>
33 #include <linux/syscalls.h>
34 #include <linux/mutex.h>
35 #include <linux/types.h>
36
37 #include <linux/io.h>
38 #include <linux/uaccess.h>
39
40 #include "../vme.h"
41 #include "vme_user.h"
42
43 static DEFINE_MUTEX(vme_user_mutex);
44 static const char driver_name[] = "vme_user";
45
46 static int bus[VME_USER_BUS_MAX];
47 static unsigned int bus_num;
48
49 /* Currently Documentation/devices.txt defines the following for VME:
50 *
51 * 221 char VME bus
52 * 0 = /dev/bus/vme/m0 First master image
53 * 1 = /dev/bus/vme/m1 Second master image
54 * 2 = /dev/bus/vme/m2 Third master image
55 * 3 = /dev/bus/vme/m3 Fourth master image
56 * 4 = /dev/bus/vme/s0 First slave image
57 * 5 = /dev/bus/vme/s1 Second slave image
58 * 6 = /dev/bus/vme/s2 Third slave image
59 * 7 = /dev/bus/vme/s3 Fourth slave image
60 * 8 = /dev/bus/vme/ctl Control
61 *
62 * It is expected that all VME bus drivers will use the
63 * same interface. For interface documentation see
64 * http://www.vmelinux.org/.
65 *
66 * However the VME driver at http://www.vmelinux.org/ is rather old and doesn't
67 * even support the tsi148 chipset (which has 8 master and 8 slave windows).
68 * We'll run with this or now as far as possible, however it probably makes
69 * sense to get rid of the old mappings and just do everything dynamically.
70 *
71 * So for now, we'll restrict the driver to providing 4 masters and 4 slaves as
72 * defined above and try to support at least some of the interface from
73 * http://www.vmelinux.org/ as an alternative drive can be written providing a
74 * saner interface later.
75 *
76 * The vmelinux.org driver never supported slave images, the devices reserved
77 * for slaves were repurposed to support all 8 master images on the UniverseII!
78 * We shall support 4 masters and 4 slaves with this driver.
79 */
80 #define VME_MAJOR 221 /* VME Major Device Number */
81 #define VME_DEVS 9 /* Number of dev entries */
82
83 #define MASTER_MINOR 0
84 #define MASTER_MAX 3
85 #define SLAVE_MINOR 4
86 #define SLAVE_MAX 7
87 #define CONTROL_MINOR 8
88
89 #define PCI_BUF_SIZE 0x20000 /* Size of one slave image buffer */
90
91 /*
92 * Structure to handle image related parameters.
93 */
94 struct image_desc {
95 void *kern_buf; /* Buffer address in kernel space */
96 dma_addr_t pci_buf; /* Buffer address in PCI address space */
97 unsigned long long size_buf; /* Buffer size */
98 struct semaphore sem; /* Semaphore for locking image */
99 struct device *device; /* Sysfs device */
100 struct vme_resource *resource; /* VME resource */
101 int users; /* Number of current users */
102 };
103 static struct image_desc image[VME_DEVS];
104
105 struct driver_stats {
106 unsigned long reads;
107 unsigned long writes;
108 unsigned long ioctls;
109 unsigned long irqs;
110 unsigned long berrs;
111 unsigned long dmaErrors;
112 unsigned long timeouts;
113 unsigned long external;
114 };
115 static struct driver_stats statistics;
116
117 static struct cdev *vme_user_cdev; /* Character device */
118 static struct class *vme_user_sysfs_class; /* Sysfs class */
119 static struct vme_dev *vme_user_bridge; /* Pointer to user device */
120
121
122 static const int type[VME_DEVS] = { MASTER_MINOR, MASTER_MINOR,
123 MASTER_MINOR, MASTER_MINOR,
124 SLAVE_MINOR, SLAVE_MINOR,
125 SLAVE_MINOR, SLAVE_MINOR,
126 CONTROL_MINOR
127 };
128
129
130 static int vme_user_open(struct inode *, struct file *);
131 static int vme_user_release(struct inode *, struct file *);
132 static ssize_t vme_user_read(struct file *, char __user *, size_t, loff_t *);
133 static ssize_t vme_user_write(struct file *, const char __user *, size_t,
134 loff_t *);
135 static loff_t vme_user_llseek(struct file *, loff_t, int);
136 static long vme_user_unlocked_ioctl(struct file *, unsigned int, unsigned long);
137
138 static int vme_user_match(struct vme_dev *);
139 static int __devinit vme_user_probe(struct vme_dev *);
140 static int __devexit vme_user_remove(struct vme_dev *);
141
142 static const struct file_operations vme_user_fops = {
143 .open = vme_user_open,
144 .release = vme_user_release,
145 .read = vme_user_read,
146 .write = vme_user_write,
147 .llseek = vme_user_llseek,
148 .unlocked_ioctl = vme_user_unlocked_ioctl,
149 };
150
151
152 /*
153 * Reset all the statistic counters
154 */
reset_counters(void)155 static void reset_counters(void)
156 {
157 statistics.reads = 0;
158 statistics.writes = 0;
159 statistics.ioctls = 0;
160 statistics.irqs = 0;
161 statistics.berrs = 0;
162 statistics.dmaErrors = 0;
163 statistics.timeouts = 0;
164 }
165
vme_user_open(struct inode * inode,struct file * file)166 static int vme_user_open(struct inode *inode, struct file *file)
167 {
168 int err;
169 unsigned int minor = MINOR(inode->i_rdev);
170
171 down(&image[minor].sem);
172 /* Allow device to be opened if a resource is needed and allocated. */
173 if (minor < CONTROL_MINOR && image[minor].resource == NULL) {
174 printk(KERN_ERR "No resources allocated for device\n");
175 err = -EINVAL;
176 goto err_res;
177 }
178
179 /* Increment user count */
180 image[minor].users++;
181
182 up(&image[minor].sem);
183
184 return 0;
185
186 err_res:
187 up(&image[minor].sem);
188
189 return err;
190 }
191
vme_user_release(struct inode * inode,struct file * file)192 static int vme_user_release(struct inode *inode, struct file *file)
193 {
194 unsigned int minor = MINOR(inode->i_rdev);
195
196 down(&image[minor].sem);
197
198 /* Decrement user count */
199 image[minor].users--;
200
201 up(&image[minor].sem);
202
203 return 0;
204 }
205
206 /*
207 * We are going ot alloc a page during init per window for small transfers.
208 * Small transfers will go VME -> buffer -> user space. Larger (more than a
209 * page) transfers will lock the user space buffer into memory and then
210 * transfer the data directly into the user space buffers.
211 */
resource_to_user(int minor,char __user * buf,size_t count,loff_t * ppos)212 static ssize_t resource_to_user(int minor, char __user *buf, size_t count,
213 loff_t *ppos)
214 {
215 ssize_t retval;
216 ssize_t copied = 0;
217
218 if (count <= image[minor].size_buf) {
219 /* We copy to kernel buffer */
220 copied = vme_master_read(image[minor].resource,
221 image[minor].kern_buf, count, *ppos);
222 if (copied < 0)
223 return (int)copied;
224
225 retval = __copy_to_user(buf, image[minor].kern_buf,
226 (unsigned long)copied);
227 if (retval != 0) {
228 copied = (copied - retval);
229 printk(KERN_INFO "User copy failed\n");
230 return -EINVAL;
231 }
232
233 } else {
234 /* XXX Need to write this */
235 printk(KERN_INFO "Currently don't support large transfers\n");
236 /* Map in pages from userspace */
237
238 /* Call vme_master_read to do the transfer */
239 return -EINVAL;
240 }
241
242 return copied;
243 }
244
245 /*
246 * We are going ot alloc a page during init per window for small transfers.
247 * Small transfers will go user space -> buffer -> VME. Larger (more than a
248 * page) transfers will lock the user space buffer into memory and then
249 * transfer the data directly from the user space buffers out to VME.
250 */
resource_from_user(unsigned int minor,const char __user * buf,size_t count,loff_t * ppos)251 static ssize_t resource_from_user(unsigned int minor, const char __user *buf,
252 size_t count, loff_t *ppos)
253 {
254 ssize_t retval;
255 ssize_t copied = 0;
256
257 if (count <= image[minor].size_buf) {
258 retval = __copy_from_user(image[minor].kern_buf, buf,
259 (unsigned long)count);
260 if (retval != 0)
261 copied = (copied - retval);
262 else
263 copied = count;
264
265 copied = vme_master_write(image[minor].resource,
266 image[minor].kern_buf, copied, *ppos);
267 } else {
268 /* XXX Need to write this */
269 printk(KERN_INFO "Currently don't support large transfers\n");
270 /* Map in pages from userspace */
271
272 /* Call vme_master_write to do the transfer */
273 return -EINVAL;
274 }
275
276 return copied;
277 }
278
buffer_to_user(unsigned int minor,char __user * buf,size_t count,loff_t * ppos)279 static ssize_t buffer_to_user(unsigned int minor, char __user *buf,
280 size_t count, loff_t *ppos)
281 {
282 void *image_ptr;
283 ssize_t retval;
284
285 image_ptr = image[minor].kern_buf + *ppos;
286
287 retval = __copy_to_user(buf, image_ptr, (unsigned long)count);
288 if (retval != 0) {
289 retval = (count - retval);
290 printk(KERN_WARNING "Partial copy to userspace\n");
291 } else
292 retval = count;
293
294 /* Return number of bytes successfully read */
295 return retval;
296 }
297
buffer_from_user(unsigned int minor,const char __user * buf,size_t count,loff_t * ppos)298 static ssize_t buffer_from_user(unsigned int minor, const char __user *buf,
299 size_t count, loff_t *ppos)
300 {
301 void *image_ptr;
302 size_t retval;
303
304 image_ptr = image[minor].kern_buf + *ppos;
305
306 retval = __copy_from_user(image_ptr, buf, (unsigned long)count);
307 if (retval != 0) {
308 retval = (count - retval);
309 printk(KERN_WARNING "Partial copy to userspace\n");
310 } else
311 retval = count;
312
313 /* Return number of bytes successfully read */
314 return retval;
315 }
316
vme_user_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)317 static ssize_t vme_user_read(struct file *file, char __user *buf, size_t count,
318 loff_t *ppos)
319 {
320 unsigned int minor = MINOR(file->f_dentry->d_inode->i_rdev);
321 ssize_t retval;
322 size_t image_size;
323 size_t okcount;
324
325 if (minor == CONTROL_MINOR)
326 return 0;
327
328 down(&image[minor].sem);
329
330 /* XXX Do we *really* want this helper - we can use vme_*_get ? */
331 image_size = vme_get_size(image[minor].resource);
332
333 /* Ensure we are starting at a valid location */
334 if ((*ppos < 0) || (*ppos > (image_size - 1))) {
335 up(&image[minor].sem);
336 return 0;
337 }
338
339 /* Ensure not reading past end of the image */
340 if (*ppos + count > image_size)
341 okcount = image_size - *ppos;
342 else
343 okcount = count;
344
345 switch (type[minor]) {
346 case MASTER_MINOR:
347 retval = resource_to_user(minor, buf, okcount, ppos);
348 break;
349 case SLAVE_MINOR:
350 retval = buffer_to_user(minor, buf, okcount, ppos);
351 break;
352 default:
353 retval = -EINVAL;
354 }
355
356 up(&image[minor].sem);
357
358 if (retval > 0)
359 *ppos += retval;
360
361 return retval;
362 }
363
vme_user_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)364 static ssize_t vme_user_write(struct file *file, const char __user *buf,
365 size_t count, loff_t *ppos)
366 {
367 unsigned int minor = MINOR(file->f_dentry->d_inode->i_rdev);
368 ssize_t retval;
369 size_t image_size;
370 size_t okcount;
371
372 if (minor == CONTROL_MINOR)
373 return 0;
374
375 down(&image[minor].sem);
376
377 image_size = vme_get_size(image[minor].resource);
378
379 /* Ensure we are starting at a valid location */
380 if ((*ppos < 0) || (*ppos > (image_size - 1))) {
381 up(&image[minor].sem);
382 return 0;
383 }
384
385 /* Ensure not reading past end of the image */
386 if (*ppos + count > image_size)
387 okcount = image_size - *ppos;
388 else
389 okcount = count;
390
391 switch (type[minor]) {
392 case MASTER_MINOR:
393 retval = resource_from_user(minor, buf, okcount, ppos);
394 break;
395 case SLAVE_MINOR:
396 retval = buffer_from_user(minor, buf, okcount, ppos);
397 break;
398 default:
399 retval = -EINVAL;
400 }
401
402 up(&image[minor].sem);
403
404 if (retval > 0)
405 *ppos += retval;
406
407 return retval;
408 }
409
vme_user_llseek(struct file * file,loff_t off,int whence)410 static loff_t vme_user_llseek(struct file *file, loff_t off, int whence)
411 {
412 loff_t absolute = -1;
413 unsigned int minor = MINOR(file->f_dentry->d_inode->i_rdev);
414 size_t image_size;
415
416 if (minor == CONTROL_MINOR)
417 return -EINVAL;
418
419 down(&image[minor].sem);
420 image_size = vme_get_size(image[minor].resource);
421
422 switch (whence) {
423 case SEEK_SET:
424 absolute = off;
425 break;
426 case SEEK_CUR:
427 absolute = file->f_pos + off;
428 break;
429 case SEEK_END:
430 absolute = image_size + off;
431 break;
432 default:
433 up(&image[minor].sem);
434 return -EINVAL;
435 break;
436 }
437
438 if ((absolute < 0) || (absolute >= image_size)) {
439 up(&image[minor].sem);
440 return -EINVAL;
441 }
442
443 file->f_pos = absolute;
444
445 up(&image[minor].sem);
446
447 return absolute;
448 }
449
450 /*
451 * The ioctls provided by the old VME access method (the one at vmelinux.org)
452 * are most certainly wrong as the effectively push the registers layout
453 * through to user space. Given that the VME core can handle multiple bridges,
454 * with different register layouts this is most certainly not the way to go.
455 *
456 * We aren't using the structures defined in the Motorola driver either - these
457 * are also quite low level, however we should use the definitions that have
458 * already been defined.
459 */
vme_user_ioctl(struct inode * inode,struct file * file,unsigned int cmd,unsigned long arg)460 static int vme_user_ioctl(struct inode *inode, struct file *file,
461 unsigned int cmd, unsigned long arg)
462 {
463 struct vme_master master;
464 struct vme_slave slave;
465 struct vme_irq_id irq_req;
466 unsigned long copied;
467 unsigned int minor = MINOR(inode->i_rdev);
468 int retval;
469 dma_addr_t pci_addr;
470 void __user *argp = (void __user *)arg;
471
472 statistics.ioctls++;
473
474 switch (type[minor]) {
475 case CONTROL_MINOR:
476 switch (cmd) {
477 case VME_IRQ_GEN:
478 copied = copy_from_user(&irq_req, (char *)arg,
479 sizeof(struct vme_irq_id));
480 if (copied != 0) {
481 printk(KERN_WARNING "Partial copy from userspace\n");
482 return -EFAULT;
483 }
484
485 retval = vme_irq_generate(vme_user_bridge,
486 irq_req.level,
487 irq_req.statid);
488
489 return retval;
490 }
491 break;
492 case MASTER_MINOR:
493 switch (cmd) {
494 case VME_GET_MASTER:
495 memset(&master, 0, sizeof(struct vme_master));
496
497 /* XXX We do not want to push aspace, cycle and width
498 * to userspace as they are
499 */
500 retval = vme_master_get(image[minor].resource,
501 &master.enable, &master.vme_addr,
502 &master.size, &master.aspace,
503 &master.cycle, &master.dwidth);
504
505 copied = copy_to_user(argp, &master,
506 sizeof(struct vme_master));
507 if (copied != 0) {
508 printk(KERN_WARNING "Partial copy to "
509 "userspace\n");
510 return -EFAULT;
511 }
512
513 return retval;
514 break;
515
516 case VME_SET_MASTER:
517
518 copied = copy_from_user(&master, argp, sizeof(master));
519 if (copied != 0) {
520 printk(KERN_WARNING "Partial copy from "
521 "userspace\n");
522 return -EFAULT;
523 }
524
525 /* XXX We do not want to push aspace, cycle and width
526 * to userspace as they are
527 */
528 return vme_master_set(image[minor].resource,
529 master.enable, master.vme_addr, master.size,
530 master.aspace, master.cycle, master.dwidth);
531
532 break;
533 }
534 break;
535 case SLAVE_MINOR:
536 switch (cmd) {
537 case VME_GET_SLAVE:
538 memset(&slave, 0, sizeof(struct vme_slave));
539
540 /* XXX We do not want to push aspace, cycle and width
541 * to userspace as they are
542 */
543 retval = vme_slave_get(image[minor].resource,
544 &slave.enable, &slave.vme_addr,
545 &slave.size, &pci_addr, &slave.aspace,
546 &slave.cycle);
547
548 copied = copy_to_user(argp, &slave,
549 sizeof(struct vme_slave));
550 if (copied != 0) {
551 printk(KERN_WARNING "Partial copy to "
552 "userspace\n");
553 return -EFAULT;
554 }
555
556 return retval;
557 break;
558
559 case VME_SET_SLAVE:
560
561 copied = copy_from_user(&slave, argp, sizeof(slave));
562 if (copied != 0) {
563 printk(KERN_WARNING "Partial copy from "
564 "userspace\n");
565 return -EFAULT;
566 }
567
568 /* XXX We do not want to push aspace, cycle and width
569 * to userspace as they are
570 */
571 return vme_slave_set(image[minor].resource,
572 slave.enable, slave.vme_addr, slave.size,
573 image[minor].pci_buf, slave.aspace,
574 slave.cycle);
575
576 break;
577 }
578 break;
579 }
580
581 return -EINVAL;
582 }
583
584 static long
vme_user_unlocked_ioctl(struct file * file,unsigned int cmd,unsigned long arg)585 vme_user_unlocked_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
586 {
587 int ret;
588
589 mutex_lock(&vme_user_mutex);
590 ret = vme_user_ioctl(file->f_path.dentry->d_inode, file, cmd, arg);
591 mutex_unlock(&vme_user_mutex);
592
593 return ret;
594 }
595
596
597 /*
598 * Unallocate a previously allocated buffer
599 */
buf_unalloc(int num)600 static void buf_unalloc(int num)
601 {
602 if (image[num].kern_buf) {
603 #ifdef VME_DEBUG
604 printk(KERN_DEBUG "UniverseII:Releasing buffer at %p\n",
605 image[num].pci_buf);
606 #endif
607
608 vme_free_consistent(image[num].resource, image[num].size_buf,
609 image[num].kern_buf, image[num].pci_buf);
610
611 image[num].kern_buf = NULL;
612 image[num].pci_buf = 0;
613 image[num].size_buf = 0;
614
615 #ifdef VME_DEBUG
616 } else {
617 printk(KERN_DEBUG "UniverseII: Buffer not allocated\n");
618 #endif
619 }
620 }
621
622 static struct vme_driver vme_user_driver = {
623 .name = driver_name,
624 .match = vme_user_match,
625 .probe = vme_user_probe,
626 .remove = __devexit_p(vme_user_remove),
627 };
628
629
vme_user_init(void)630 static int __init vme_user_init(void)
631 {
632 int retval = 0;
633
634 printk(KERN_INFO "VME User Space Access Driver\n");
635
636 if (bus_num == 0) {
637 printk(KERN_ERR "%s: No cards, skipping registration\n",
638 driver_name);
639 retval = -ENODEV;
640 goto err_nocard;
641 }
642
643 /* Let's start by supporting one bus, we can support more than one
644 * in future revisions if that ever becomes necessary.
645 */
646 if (bus_num > VME_USER_BUS_MAX) {
647 printk(KERN_ERR "%s: Driver only able to handle %d buses\n",
648 driver_name, VME_USER_BUS_MAX);
649 bus_num = VME_USER_BUS_MAX;
650 }
651
652 /*
653 * Here we just register the maximum number of devices we can and
654 * leave vme_user_match() to allow only 1 to go through to probe().
655 * This way, if we later want to allow multiple user access devices,
656 * we just change the code in vme_user_match().
657 */
658 retval = vme_register_driver(&vme_user_driver, VME_MAX_SLOTS);
659 if (retval != 0)
660 goto err_reg;
661
662 return retval;
663
664 err_reg:
665 err_nocard:
666 return retval;
667 }
668
vme_user_match(struct vme_dev * vdev)669 static int vme_user_match(struct vme_dev *vdev)
670 {
671 if (vdev->num >= VME_USER_BUS_MAX)
672 return 0;
673 return 1;
674 }
675
676 /*
677 * In this simple access driver, the old behaviour is being preserved as much
678 * as practical. We will therefore reserve the buffers and request the images
679 * here so that we don't have to do it later.
680 */
vme_user_probe(struct vme_dev * vdev)681 static int __devinit vme_user_probe(struct vme_dev *vdev)
682 {
683 int i, err;
684 char name[12];
685
686 /* Save pointer to the bridge device */
687 if (vme_user_bridge != NULL) {
688 printk(KERN_ERR "%s: Driver can only be loaded for 1 device\n",
689 driver_name);
690 err = -EINVAL;
691 goto err_dev;
692 }
693 vme_user_bridge = vdev;
694
695 /* Initialise descriptors */
696 for (i = 0; i < VME_DEVS; i++) {
697 image[i].kern_buf = NULL;
698 image[i].pci_buf = 0;
699 sema_init(&image[i].sem, 1);
700 image[i].device = NULL;
701 image[i].resource = NULL;
702 image[i].users = 0;
703 }
704
705 /* Initialise statistics counters */
706 reset_counters();
707
708 /* Assign major and minor numbers for the driver */
709 err = register_chrdev_region(MKDEV(VME_MAJOR, 0), VME_DEVS,
710 driver_name);
711 if (err) {
712 printk(KERN_WARNING "%s: Error getting Major Number %d for "
713 "driver.\n", driver_name, VME_MAJOR);
714 goto err_region;
715 }
716
717 /* Register the driver as a char device */
718 vme_user_cdev = cdev_alloc();
719 vme_user_cdev->ops = &vme_user_fops;
720 vme_user_cdev->owner = THIS_MODULE;
721 err = cdev_add(vme_user_cdev, MKDEV(VME_MAJOR, 0), VME_DEVS);
722 if (err) {
723 printk(KERN_WARNING "%s: cdev_all failed\n", driver_name);
724 goto err_char;
725 }
726
727 /* Request slave resources and allocate buffers (128kB wide) */
728 for (i = SLAVE_MINOR; i < (SLAVE_MAX + 1); i++) {
729 /* XXX Need to properly request attributes */
730 /* For ca91cx42 bridge there are only two slave windows
731 * supporting A16 addressing, so we request A24 supported
732 * by all windows.
733 */
734 image[i].resource = vme_slave_request(vme_user_bridge,
735 VME_A24, VME_SCT);
736 if (image[i].resource == NULL) {
737 printk(KERN_WARNING "Unable to allocate slave "
738 "resource\n");
739 goto err_slave;
740 }
741 image[i].size_buf = PCI_BUF_SIZE;
742 image[i].kern_buf = vme_alloc_consistent(image[i].resource,
743 image[i].size_buf, &image[i].pci_buf);
744 if (image[i].kern_buf == NULL) {
745 printk(KERN_WARNING "Unable to allocate memory for "
746 "buffer\n");
747 image[i].pci_buf = 0;
748 vme_slave_free(image[i].resource);
749 err = -ENOMEM;
750 goto err_slave;
751 }
752 }
753
754 /*
755 * Request master resources allocate page sized buffers for small
756 * reads and writes
757 */
758 for (i = MASTER_MINOR; i < (MASTER_MAX + 1); i++) {
759 /* XXX Need to properly request attributes */
760 image[i].resource = vme_master_request(vme_user_bridge,
761 VME_A32, VME_SCT, VME_D32);
762 if (image[i].resource == NULL) {
763 printk(KERN_WARNING "Unable to allocate master "
764 "resource\n");
765 goto err_master;
766 }
767 image[i].size_buf = PCI_BUF_SIZE;
768 image[i].kern_buf = kmalloc(image[i].size_buf, GFP_KERNEL);
769 if (image[i].kern_buf == NULL) {
770 printk(KERN_WARNING "Unable to allocate memory for "
771 "master window buffers\n");
772 err = -ENOMEM;
773 goto err_master_buf;
774 }
775 }
776
777 /* Create sysfs entries - on udev systems this creates the dev files */
778 vme_user_sysfs_class = class_create(THIS_MODULE, driver_name);
779 if (IS_ERR(vme_user_sysfs_class)) {
780 printk(KERN_ERR "Error creating vme_user class.\n");
781 err = PTR_ERR(vme_user_sysfs_class);
782 goto err_class;
783 }
784
785 /* Add sysfs Entries */
786 for (i = 0; i < VME_DEVS; i++) {
787 int num;
788 switch (type[i]) {
789 case MASTER_MINOR:
790 sprintf(name, "bus/vme/m%%d");
791 break;
792 case CONTROL_MINOR:
793 sprintf(name, "bus/vme/ctl");
794 break;
795 case SLAVE_MINOR:
796 sprintf(name, "bus/vme/s%%d");
797 break;
798 default:
799 err = -EINVAL;
800 goto err_sysfs;
801 break;
802 }
803
804 num = (type[i] == SLAVE_MINOR) ? i - (MASTER_MAX + 1) : i;
805 image[i].device = device_create(vme_user_sysfs_class, NULL,
806 MKDEV(VME_MAJOR, i), NULL, name, num);
807 if (IS_ERR(image[i].device)) {
808 printk(KERN_INFO "%s: Error creating sysfs device\n",
809 driver_name);
810 err = PTR_ERR(image[i].device);
811 goto err_sysfs;
812 }
813 }
814
815 return 0;
816
817 /* Ensure counter set correcty to destroy all sysfs devices */
818 i = VME_DEVS;
819 err_sysfs:
820 while (i > 0) {
821 i--;
822 device_destroy(vme_user_sysfs_class, MKDEV(VME_MAJOR, i));
823 }
824 class_destroy(vme_user_sysfs_class);
825
826 /* Ensure counter set correcty to unalloc all master windows */
827 i = MASTER_MAX + 1;
828 err_master_buf:
829 for (i = MASTER_MINOR; i < (MASTER_MAX + 1); i++)
830 kfree(image[i].kern_buf);
831 err_master:
832 while (i > MASTER_MINOR) {
833 i--;
834 vme_master_free(image[i].resource);
835 }
836
837 /*
838 * Ensure counter set correcty to unalloc all slave windows and buffers
839 */
840 i = SLAVE_MAX + 1;
841 err_slave:
842 while (i > SLAVE_MINOR) {
843 i--;
844 buf_unalloc(i);
845 vme_slave_free(image[i].resource);
846 }
847 err_class:
848 cdev_del(vme_user_cdev);
849 err_char:
850 unregister_chrdev_region(MKDEV(VME_MAJOR, 0), VME_DEVS);
851 err_region:
852 err_dev:
853 return err;
854 }
855
vme_user_remove(struct vme_dev * dev)856 static int __devexit vme_user_remove(struct vme_dev *dev)
857 {
858 int i;
859
860 /* Remove sysfs Entries */
861 for (i = 0; i < VME_DEVS; i++)
862 device_destroy(vme_user_sysfs_class, MKDEV(VME_MAJOR, i));
863 class_destroy(vme_user_sysfs_class);
864
865 for (i = MASTER_MINOR; i < (MASTER_MAX + 1); i++) {
866 kfree(image[i].kern_buf);
867 vme_master_free(image[i].resource);
868 }
869
870 for (i = SLAVE_MINOR; i < (SLAVE_MAX + 1); i++) {
871 vme_slave_set(image[i].resource, 0, 0, 0, 0, VME_A32, 0);
872 buf_unalloc(i);
873 vme_slave_free(image[i].resource);
874 }
875
876 /* Unregister device driver */
877 cdev_del(vme_user_cdev);
878
879 /* Unregiser the major and minor device numbers */
880 unregister_chrdev_region(MKDEV(VME_MAJOR, 0), VME_DEVS);
881
882 return 0;
883 }
884
vme_user_exit(void)885 static void __exit vme_user_exit(void)
886 {
887 vme_unregister_driver(&vme_user_driver);
888 }
889
890
891 MODULE_PARM_DESC(bus, "Enumeration of VMEbus to which the driver is connected");
892 module_param_array(bus, int, &bus_num, 0);
893
894 MODULE_DESCRIPTION("VME User Space Access Driver");
895 MODULE_AUTHOR("Martyn Welch <martyn.welch@ge.com");
896 MODULE_LICENSE("GPL");
897
898 module_init(vme_user_init);
899 module_exit(vme_user_exit);
900