1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * VFIO: IOMMU DMA mapping support for Type1 IOMMU
4 *
5 * Copyright (C) 2012 Red Hat, Inc. All rights reserved.
6 * Author: Alex Williamson <alex.williamson@redhat.com>
7 *
8 * Derived from original vfio:
9 * Copyright 2010 Cisco Systems, Inc. All rights reserved.
10 * Author: Tom Lyon, pugs@cisco.com
11 *
12 * We arbitrarily define a Type1 IOMMU as one matching the below code.
13 * It could be called the x86 IOMMU as it's designed for AMD-Vi & Intel
14 * VT-d, but that makes it harder to re-use as theoretically anyone
15 * implementing a similar IOMMU could make use of this. We expect the
16 * IOMMU to support the IOMMU API and have few to no restrictions around
17 * the IOVA range that can be mapped. The Type1 IOMMU is currently
18 * optimized for relatively static mappings of a userspace process with
19 * userspace pages pinned into memory. We also assume devices and IOMMU
20 * domains are PCI based as the IOMMU API is still centered around a
21 * device/bus interface rather than a group interface.
22 */
23
24 #include <linux/compat.h>
25 #include <linux/device.h>
26 #include <linux/fs.h>
27 #include <linux/highmem.h>
28 #include <linux/iommu.h>
29 #include <linux/module.h>
30 #include <linux/mm.h>
31 #include <linux/kthread.h>
32 #include <linux/rbtree.h>
33 #include <linux/sched/signal.h>
34 #include <linux/sched/mm.h>
35 #include <linux/slab.h>
36 #include <linux/uaccess.h>
37 #include <linux/vfio.h>
38 #include <linux/workqueue.h>
39 #include <linux/notifier.h>
40 #include "vfio.h"
41
42 #define DRIVER_VERSION "0.2"
43 #define DRIVER_AUTHOR "Alex Williamson <alex.williamson@redhat.com>"
44 #define DRIVER_DESC "Type1 IOMMU driver for VFIO"
45
46 static bool allow_unsafe_interrupts;
47 module_param_named(allow_unsafe_interrupts,
48 allow_unsafe_interrupts, bool, S_IRUGO | S_IWUSR);
49 MODULE_PARM_DESC(allow_unsafe_interrupts,
50 "Enable VFIO IOMMU support for on platforms without interrupt remapping support.");
51
52 static bool disable_hugepages;
53 module_param_named(disable_hugepages,
54 disable_hugepages, bool, S_IRUGO | S_IWUSR);
55 MODULE_PARM_DESC(disable_hugepages,
56 "Disable VFIO IOMMU support for IOMMU hugepages.");
57
58 static unsigned int dma_entry_limit __read_mostly = U16_MAX;
59 module_param_named(dma_entry_limit, dma_entry_limit, uint, 0644);
60 MODULE_PARM_DESC(dma_entry_limit,
61 "Maximum number of user DMA mappings per container (65535).");
62
63 struct vfio_iommu {
64 struct list_head domain_list;
65 struct list_head iova_list;
66 struct mutex lock;
67 struct rb_root dma_list;
68 struct list_head device_list;
69 struct mutex device_list_lock;
70 unsigned int dma_avail;
71 unsigned int vaddr_invalid_count;
72 uint64_t pgsize_bitmap;
73 uint64_t num_non_pinned_groups;
74 bool v2;
75 bool nesting;
76 bool dirty_page_tracking;
77 struct list_head emulated_iommu_groups;
78 };
79
80 struct vfio_domain {
81 struct iommu_domain *domain;
82 struct list_head next;
83 struct list_head group_list;
84 bool fgsp : 1; /* Fine-grained super pages */
85 bool enforce_cache_coherency : 1;
86 };
87
88 struct vfio_dma {
89 struct rb_node node;
90 dma_addr_t iova; /* Device address */
91 unsigned long vaddr; /* Process virtual addr */
92 size_t size; /* Map size (bytes) */
93 int prot; /* IOMMU_READ/WRITE */
94 bool iommu_mapped;
95 bool lock_cap; /* capable(CAP_IPC_LOCK) */
96 bool vaddr_invalid;
97 struct task_struct *task;
98 struct rb_root pfn_list; /* Ex-user pinned pfn list */
99 unsigned long *bitmap;
100 struct mm_struct *mm;
101 size_t locked_vm;
102 };
103
104 struct vfio_batch {
105 struct page **pages; /* for pin_user_pages_remote */
106 struct page *fallback_page; /* if pages alloc fails */
107 int capacity; /* length of pages array */
108 int size; /* of batch currently */
109 int offset; /* of next entry in pages */
110 };
111
112 struct vfio_iommu_group {
113 struct iommu_group *iommu_group;
114 struct list_head next;
115 bool pinned_page_dirty_scope;
116 };
117
118 struct vfio_iova {
119 struct list_head list;
120 dma_addr_t start;
121 dma_addr_t end;
122 };
123
124 /*
125 * Guest RAM pinning working set or DMA target
126 */
127 struct vfio_pfn {
128 struct rb_node node;
129 dma_addr_t iova; /* Device address */
130 unsigned long pfn; /* Host pfn */
131 unsigned int ref_count;
132 };
133
134 struct vfio_regions {
135 struct list_head list;
136 dma_addr_t iova;
137 phys_addr_t phys;
138 size_t len;
139 };
140
141 #define DIRTY_BITMAP_BYTES(n) (ALIGN(n, BITS_PER_TYPE(u64)) / BITS_PER_BYTE)
142
143 /*
144 * Input argument of number of bits to bitmap_set() is unsigned integer, which
145 * further casts to signed integer for unaligned multi-bit operation,
146 * __bitmap_set().
147 * Then maximum bitmap size supported is 2^31 bits divided by 2^3 bits/byte,
148 * that is 2^28 (256 MB) which maps to 2^31 * 2^12 = 2^43 (8TB) on 4K page
149 * system.
150 */
151 #define DIRTY_BITMAP_PAGES_MAX ((u64)INT_MAX)
152 #define DIRTY_BITMAP_SIZE_MAX DIRTY_BITMAP_BYTES(DIRTY_BITMAP_PAGES_MAX)
153
154 static int put_pfn(unsigned long pfn, int prot);
155
156 static struct vfio_iommu_group*
157 vfio_iommu_find_iommu_group(struct vfio_iommu *iommu,
158 struct iommu_group *iommu_group);
159
160 /*
161 * This code handles mapping and unmapping of user data buffers
162 * into DMA'ble space using the IOMMU
163 */
164
vfio_find_dma(struct vfio_iommu * iommu,dma_addr_t start,size_t size)165 static struct vfio_dma *vfio_find_dma(struct vfio_iommu *iommu,
166 dma_addr_t start, size_t size)
167 {
168 struct rb_node *node = iommu->dma_list.rb_node;
169
170 while (node) {
171 struct vfio_dma *dma = rb_entry(node, struct vfio_dma, node);
172
173 if (start + size <= dma->iova)
174 node = node->rb_left;
175 else if (start >= dma->iova + dma->size)
176 node = node->rb_right;
177 else
178 return dma;
179 }
180
181 return NULL;
182 }
183
vfio_find_dma_first_node(struct vfio_iommu * iommu,dma_addr_t start,u64 size)184 static struct rb_node *vfio_find_dma_first_node(struct vfio_iommu *iommu,
185 dma_addr_t start, u64 size)
186 {
187 struct rb_node *res = NULL;
188 struct rb_node *node = iommu->dma_list.rb_node;
189 struct vfio_dma *dma_res = NULL;
190
191 while (node) {
192 struct vfio_dma *dma = rb_entry(node, struct vfio_dma, node);
193
194 if (start < dma->iova + dma->size) {
195 res = node;
196 dma_res = dma;
197 if (start >= dma->iova)
198 break;
199 node = node->rb_left;
200 } else {
201 node = node->rb_right;
202 }
203 }
204 if (res && size && dma_res->iova >= start + size)
205 res = NULL;
206 return res;
207 }
208
vfio_link_dma(struct vfio_iommu * iommu,struct vfio_dma * new)209 static void vfio_link_dma(struct vfio_iommu *iommu, struct vfio_dma *new)
210 {
211 struct rb_node **link = &iommu->dma_list.rb_node, *parent = NULL;
212 struct vfio_dma *dma;
213
214 while (*link) {
215 parent = *link;
216 dma = rb_entry(parent, struct vfio_dma, node);
217
218 if (new->iova + new->size <= dma->iova)
219 link = &(*link)->rb_left;
220 else
221 link = &(*link)->rb_right;
222 }
223
224 rb_link_node(&new->node, parent, link);
225 rb_insert_color(&new->node, &iommu->dma_list);
226 }
227
vfio_unlink_dma(struct vfio_iommu * iommu,struct vfio_dma * old)228 static void vfio_unlink_dma(struct vfio_iommu *iommu, struct vfio_dma *old)
229 {
230 rb_erase(&old->node, &iommu->dma_list);
231 }
232
233
vfio_dma_bitmap_alloc(struct vfio_dma * dma,size_t pgsize)234 static int vfio_dma_bitmap_alloc(struct vfio_dma *dma, size_t pgsize)
235 {
236 uint64_t npages = dma->size / pgsize;
237
238 if (npages > DIRTY_BITMAP_PAGES_MAX)
239 return -EINVAL;
240
241 /*
242 * Allocate extra 64 bits that are used to calculate shift required for
243 * bitmap_shift_left() to manipulate and club unaligned number of pages
244 * in adjacent vfio_dma ranges.
245 */
246 dma->bitmap = kvzalloc(DIRTY_BITMAP_BYTES(npages) + sizeof(u64),
247 GFP_KERNEL);
248 if (!dma->bitmap)
249 return -ENOMEM;
250
251 return 0;
252 }
253
vfio_dma_bitmap_free(struct vfio_dma * dma)254 static void vfio_dma_bitmap_free(struct vfio_dma *dma)
255 {
256 kvfree(dma->bitmap);
257 dma->bitmap = NULL;
258 }
259
vfio_dma_populate_bitmap(struct vfio_dma * dma,size_t pgsize)260 static void vfio_dma_populate_bitmap(struct vfio_dma *dma, size_t pgsize)
261 {
262 struct rb_node *p;
263 unsigned long pgshift = __ffs(pgsize);
264
265 for (p = rb_first(&dma->pfn_list); p; p = rb_next(p)) {
266 struct vfio_pfn *vpfn = rb_entry(p, struct vfio_pfn, node);
267
268 bitmap_set(dma->bitmap, (vpfn->iova - dma->iova) >> pgshift, 1);
269 }
270 }
271
vfio_iommu_populate_bitmap_full(struct vfio_iommu * iommu)272 static void vfio_iommu_populate_bitmap_full(struct vfio_iommu *iommu)
273 {
274 struct rb_node *n;
275 unsigned long pgshift = __ffs(iommu->pgsize_bitmap);
276
277 for (n = rb_first(&iommu->dma_list); n; n = rb_next(n)) {
278 struct vfio_dma *dma = rb_entry(n, struct vfio_dma, node);
279
280 bitmap_set(dma->bitmap, 0, dma->size >> pgshift);
281 }
282 }
283
vfio_dma_bitmap_alloc_all(struct vfio_iommu * iommu,size_t pgsize)284 static int vfio_dma_bitmap_alloc_all(struct vfio_iommu *iommu, size_t pgsize)
285 {
286 struct rb_node *n;
287
288 for (n = rb_first(&iommu->dma_list); n; n = rb_next(n)) {
289 struct vfio_dma *dma = rb_entry(n, struct vfio_dma, node);
290 int ret;
291
292 ret = vfio_dma_bitmap_alloc(dma, pgsize);
293 if (ret) {
294 struct rb_node *p;
295
296 for (p = rb_prev(n); p; p = rb_prev(p)) {
297 struct vfio_dma *dma = rb_entry(n,
298 struct vfio_dma, node);
299
300 vfio_dma_bitmap_free(dma);
301 }
302 return ret;
303 }
304 vfio_dma_populate_bitmap(dma, pgsize);
305 }
306 return 0;
307 }
308
vfio_dma_bitmap_free_all(struct vfio_iommu * iommu)309 static void vfio_dma_bitmap_free_all(struct vfio_iommu *iommu)
310 {
311 struct rb_node *n;
312
313 for (n = rb_first(&iommu->dma_list); n; n = rb_next(n)) {
314 struct vfio_dma *dma = rb_entry(n, struct vfio_dma, node);
315
316 vfio_dma_bitmap_free(dma);
317 }
318 }
319
320 /*
321 * Helper Functions for host iova-pfn list
322 */
vfio_find_vpfn(struct vfio_dma * dma,dma_addr_t iova)323 static struct vfio_pfn *vfio_find_vpfn(struct vfio_dma *dma, dma_addr_t iova)
324 {
325 struct vfio_pfn *vpfn;
326 struct rb_node *node = dma->pfn_list.rb_node;
327
328 while (node) {
329 vpfn = rb_entry(node, struct vfio_pfn, node);
330
331 if (iova < vpfn->iova)
332 node = node->rb_left;
333 else if (iova > vpfn->iova)
334 node = node->rb_right;
335 else
336 return vpfn;
337 }
338 return NULL;
339 }
340
vfio_link_pfn(struct vfio_dma * dma,struct vfio_pfn * new)341 static void vfio_link_pfn(struct vfio_dma *dma,
342 struct vfio_pfn *new)
343 {
344 struct rb_node **link, *parent = NULL;
345 struct vfio_pfn *vpfn;
346
347 link = &dma->pfn_list.rb_node;
348 while (*link) {
349 parent = *link;
350 vpfn = rb_entry(parent, struct vfio_pfn, node);
351
352 if (new->iova < vpfn->iova)
353 link = &(*link)->rb_left;
354 else
355 link = &(*link)->rb_right;
356 }
357
358 rb_link_node(&new->node, parent, link);
359 rb_insert_color(&new->node, &dma->pfn_list);
360 }
361
vfio_unlink_pfn(struct vfio_dma * dma,struct vfio_pfn * old)362 static void vfio_unlink_pfn(struct vfio_dma *dma, struct vfio_pfn *old)
363 {
364 rb_erase(&old->node, &dma->pfn_list);
365 }
366
vfio_add_to_pfn_list(struct vfio_dma * dma,dma_addr_t iova,unsigned long pfn)367 static int vfio_add_to_pfn_list(struct vfio_dma *dma, dma_addr_t iova,
368 unsigned long pfn)
369 {
370 struct vfio_pfn *vpfn;
371
372 vpfn = kzalloc(sizeof(*vpfn), GFP_KERNEL);
373 if (!vpfn)
374 return -ENOMEM;
375
376 vpfn->iova = iova;
377 vpfn->pfn = pfn;
378 vpfn->ref_count = 1;
379 vfio_link_pfn(dma, vpfn);
380 return 0;
381 }
382
vfio_remove_from_pfn_list(struct vfio_dma * dma,struct vfio_pfn * vpfn)383 static void vfio_remove_from_pfn_list(struct vfio_dma *dma,
384 struct vfio_pfn *vpfn)
385 {
386 vfio_unlink_pfn(dma, vpfn);
387 kfree(vpfn);
388 }
389
vfio_iova_get_vfio_pfn(struct vfio_dma * dma,unsigned long iova)390 static struct vfio_pfn *vfio_iova_get_vfio_pfn(struct vfio_dma *dma,
391 unsigned long iova)
392 {
393 struct vfio_pfn *vpfn = vfio_find_vpfn(dma, iova);
394
395 if (vpfn)
396 vpfn->ref_count++;
397 return vpfn;
398 }
399
vfio_iova_put_vfio_pfn(struct vfio_dma * dma,struct vfio_pfn * vpfn)400 static int vfio_iova_put_vfio_pfn(struct vfio_dma *dma, struct vfio_pfn *vpfn)
401 {
402 int ret = 0;
403
404 vpfn->ref_count--;
405 if (!vpfn->ref_count) {
406 ret = put_pfn(vpfn->pfn, dma->prot);
407 vfio_remove_from_pfn_list(dma, vpfn);
408 }
409 return ret;
410 }
411
mm_lock_acct(struct task_struct * task,struct mm_struct * mm,bool lock_cap,long npage)412 static int mm_lock_acct(struct task_struct *task, struct mm_struct *mm,
413 bool lock_cap, long npage)
414 {
415 int ret = mmap_write_lock_killable(mm);
416
417 if (ret)
418 return ret;
419
420 ret = __account_locked_vm(mm, abs(npage), npage > 0, task, lock_cap);
421 mmap_write_unlock(mm);
422 return ret;
423 }
424
vfio_lock_acct(struct vfio_dma * dma,long npage,bool async)425 static int vfio_lock_acct(struct vfio_dma *dma, long npage, bool async)
426 {
427 struct mm_struct *mm;
428 int ret;
429
430 if (!npage)
431 return 0;
432
433 mm = dma->mm;
434 if (async && !mmget_not_zero(mm))
435 return -ESRCH; /* process exited */
436
437 ret = mm_lock_acct(dma->task, mm, dma->lock_cap, npage);
438 if (!ret)
439 dma->locked_vm += npage;
440
441 if (async)
442 mmput(mm);
443
444 return ret;
445 }
446
447 /*
448 * Some mappings aren't backed by a struct page, for example an mmap'd
449 * MMIO range for our own or another device. These use a different
450 * pfn conversion and shouldn't be tracked as locked pages.
451 * For compound pages, any driver that sets the reserved bit in head
452 * page needs to set the reserved bit in all subpages to be safe.
453 */
is_invalid_reserved_pfn(unsigned long pfn)454 static bool is_invalid_reserved_pfn(unsigned long pfn)
455 {
456 if (pfn_valid(pfn))
457 return PageReserved(pfn_to_page(pfn));
458
459 return true;
460 }
461
put_pfn(unsigned long pfn,int prot)462 static int put_pfn(unsigned long pfn, int prot)
463 {
464 if (!is_invalid_reserved_pfn(pfn)) {
465 struct page *page = pfn_to_page(pfn);
466
467 unpin_user_pages_dirty_lock(&page, 1, prot & IOMMU_WRITE);
468 return 1;
469 }
470 return 0;
471 }
472
473 #define VFIO_BATCH_MAX_CAPACITY (PAGE_SIZE / sizeof(struct page *))
474
vfio_batch_init(struct vfio_batch * batch)475 static void vfio_batch_init(struct vfio_batch *batch)
476 {
477 batch->size = 0;
478 batch->offset = 0;
479
480 if (unlikely(disable_hugepages))
481 goto fallback;
482
483 batch->pages = (struct page **) __get_free_page(GFP_KERNEL);
484 if (!batch->pages)
485 goto fallback;
486
487 batch->capacity = VFIO_BATCH_MAX_CAPACITY;
488 return;
489
490 fallback:
491 batch->pages = &batch->fallback_page;
492 batch->capacity = 1;
493 }
494
vfio_batch_unpin(struct vfio_batch * batch,struct vfio_dma * dma)495 static void vfio_batch_unpin(struct vfio_batch *batch, struct vfio_dma *dma)
496 {
497 while (batch->size) {
498 unsigned long pfn = page_to_pfn(batch->pages[batch->offset]);
499
500 put_pfn(pfn, dma->prot);
501 batch->offset++;
502 batch->size--;
503 }
504 }
505
vfio_batch_fini(struct vfio_batch * batch)506 static void vfio_batch_fini(struct vfio_batch *batch)
507 {
508 if (batch->capacity == VFIO_BATCH_MAX_CAPACITY)
509 free_page((unsigned long)batch->pages);
510 }
511
follow_fault_pfn(struct vm_area_struct * vma,struct mm_struct * mm,unsigned long vaddr,unsigned long * pfn,bool write_fault)512 static int follow_fault_pfn(struct vm_area_struct *vma, struct mm_struct *mm,
513 unsigned long vaddr, unsigned long *pfn,
514 bool write_fault)
515 {
516 pte_t *ptep;
517 pte_t pte;
518 spinlock_t *ptl;
519 int ret;
520
521 ret = follow_pte(vma->vm_mm, vaddr, &ptep, &ptl);
522 if (ret) {
523 bool unlocked = false;
524
525 ret = fixup_user_fault(mm, vaddr,
526 FAULT_FLAG_REMOTE |
527 (write_fault ? FAULT_FLAG_WRITE : 0),
528 &unlocked);
529 if (unlocked)
530 return -EAGAIN;
531
532 if (ret)
533 return ret;
534
535 ret = follow_pte(vma->vm_mm, vaddr, &ptep, &ptl);
536 if (ret)
537 return ret;
538 }
539
540 pte = ptep_get(ptep);
541
542 if (write_fault && !pte_write(pte))
543 ret = -EFAULT;
544 else
545 *pfn = pte_pfn(pte);
546
547 pte_unmap_unlock(ptep, ptl);
548 return ret;
549 }
550
551 /*
552 * Returns the positive number of pfns successfully obtained or a negative
553 * error code.
554 */
vaddr_get_pfns(struct mm_struct * mm,unsigned long vaddr,long npages,int prot,unsigned long * pfn,struct page ** pages)555 static int vaddr_get_pfns(struct mm_struct *mm, unsigned long vaddr,
556 long npages, int prot, unsigned long *pfn,
557 struct page **pages)
558 {
559 struct vm_area_struct *vma;
560 unsigned int flags = 0;
561 int ret;
562
563 if (prot & IOMMU_WRITE)
564 flags |= FOLL_WRITE;
565
566 mmap_read_lock(mm);
567 ret = pin_user_pages_remote(mm, vaddr, npages, flags | FOLL_LONGTERM,
568 pages, NULL);
569 if (ret > 0) {
570 int i;
571
572 /*
573 * The zero page is always resident, we don't need to pin it
574 * and it falls into our invalid/reserved test so we don't
575 * unpin in put_pfn(). Unpin all zero pages in the batch here.
576 */
577 for (i = 0 ; i < ret; i++) {
578 if (unlikely(is_zero_pfn(page_to_pfn(pages[i]))))
579 unpin_user_page(pages[i]);
580 }
581
582 *pfn = page_to_pfn(pages[0]);
583 goto done;
584 }
585
586 vaddr = untagged_addr_remote(mm, vaddr);
587
588 retry:
589 vma = vma_lookup(mm, vaddr);
590
591 if (vma && vma->vm_flags & VM_PFNMAP) {
592 ret = follow_fault_pfn(vma, mm, vaddr, pfn, prot & IOMMU_WRITE);
593 if (ret == -EAGAIN)
594 goto retry;
595
596 if (!ret) {
597 if (is_invalid_reserved_pfn(*pfn))
598 ret = 1;
599 else
600 ret = -EFAULT;
601 }
602 }
603 done:
604 mmap_read_unlock(mm);
605 return ret;
606 }
607
608 /*
609 * Attempt to pin pages. We really don't want to track all the pfns and
610 * the iommu can only map chunks of consecutive pfns anyway, so get the
611 * first page and all consecutive pages with the same locking.
612 */
vfio_pin_pages_remote(struct vfio_dma * dma,unsigned long vaddr,long npage,unsigned long * pfn_base,unsigned long limit,struct vfio_batch * batch)613 static long vfio_pin_pages_remote(struct vfio_dma *dma, unsigned long vaddr,
614 long npage, unsigned long *pfn_base,
615 unsigned long limit, struct vfio_batch *batch)
616 {
617 unsigned long pfn;
618 struct mm_struct *mm = current->mm;
619 long ret, pinned = 0, lock_acct = 0;
620 bool rsvd;
621 dma_addr_t iova = vaddr - dma->vaddr + dma->iova;
622
623 /* This code path is only user initiated */
624 if (!mm)
625 return -ENODEV;
626
627 if (batch->size) {
628 /* Leftover pages in batch from an earlier call. */
629 *pfn_base = page_to_pfn(batch->pages[batch->offset]);
630 pfn = *pfn_base;
631 rsvd = is_invalid_reserved_pfn(*pfn_base);
632 } else {
633 *pfn_base = 0;
634 }
635
636 while (npage) {
637 if (!batch->size) {
638 /* Empty batch, so refill it. */
639 long req_pages = min_t(long, npage, batch->capacity);
640
641 ret = vaddr_get_pfns(mm, vaddr, req_pages, dma->prot,
642 &pfn, batch->pages);
643 if (ret < 0)
644 goto unpin_out;
645
646 batch->size = ret;
647 batch->offset = 0;
648
649 if (!*pfn_base) {
650 *pfn_base = pfn;
651 rsvd = is_invalid_reserved_pfn(*pfn_base);
652 }
653 }
654
655 /*
656 * pfn is preset for the first iteration of this inner loop and
657 * updated at the end to handle a VM_PFNMAP pfn. In that case,
658 * batch->pages isn't valid (there's no struct page), so allow
659 * batch->pages to be touched only when there's more than one
660 * pfn to check, which guarantees the pfns are from a
661 * !VM_PFNMAP vma.
662 */
663 while (true) {
664 if (pfn != *pfn_base + pinned ||
665 rsvd != is_invalid_reserved_pfn(pfn))
666 goto out;
667
668 /*
669 * Reserved pages aren't counted against the user,
670 * externally pinned pages are already counted against
671 * the user.
672 */
673 if (!rsvd && !vfio_find_vpfn(dma, iova)) {
674 if (!dma->lock_cap &&
675 mm->locked_vm + lock_acct + 1 > limit) {
676 pr_warn("%s: RLIMIT_MEMLOCK (%ld) exceeded\n",
677 __func__, limit << PAGE_SHIFT);
678 ret = -ENOMEM;
679 goto unpin_out;
680 }
681 lock_acct++;
682 }
683
684 pinned++;
685 npage--;
686 vaddr += PAGE_SIZE;
687 iova += PAGE_SIZE;
688 batch->offset++;
689 batch->size--;
690
691 if (!batch->size)
692 break;
693
694 pfn = page_to_pfn(batch->pages[batch->offset]);
695 }
696
697 if (unlikely(disable_hugepages))
698 break;
699 }
700
701 out:
702 ret = vfio_lock_acct(dma, lock_acct, false);
703
704 unpin_out:
705 if (batch->size == 1 && !batch->offset) {
706 /* May be a VM_PFNMAP pfn, which the batch can't remember. */
707 put_pfn(pfn, dma->prot);
708 batch->size = 0;
709 }
710
711 if (ret < 0) {
712 if (pinned && !rsvd) {
713 for (pfn = *pfn_base ; pinned ; pfn++, pinned--)
714 put_pfn(pfn, dma->prot);
715 }
716 vfio_batch_unpin(batch, dma);
717
718 return ret;
719 }
720
721 return pinned;
722 }
723
vfio_unpin_pages_remote(struct vfio_dma * dma,dma_addr_t iova,unsigned long pfn,long npage,bool do_accounting)724 static long vfio_unpin_pages_remote(struct vfio_dma *dma, dma_addr_t iova,
725 unsigned long pfn, long npage,
726 bool do_accounting)
727 {
728 long unlocked = 0, locked = 0;
729 long i;
730
731 for (i = 0; i < npage; i++, iova += PAGE_SIZE) {
732 if (put_pfn(pfn++, dma->prot)) {
733 unlocked++;
734 if (vfio_find_vpfn(dma, iova))
735 locked++;
736 }
737 }
738
739 if (do_accounting)
740 vfio_lock_acct(dma, locked - unlocked, true);
741
742 return unlocked;
743 }
744
vfio_pin_page_external(struct vfio_dma * dma,unsigned long vaddr,unsigned long * pfn_base,bool do_accounting)745 static int vfio_pin_page_external(struct vfio_dma *dma, unsigned long vaddr,
746 unsigned long *pfn_base, bool do_accounting)
747 {
748 struct page *pages[1];
749 struct mm_struct *mm;
750 int ret;
751
752 mm = dma->mm;
753 if (!mmget_not_zero(mm))
754 return -ENODEV;
755
756 ret = vaddr_get_pfns(mm, vaddr, 1, dma->prot, pfn_base, pages);
757 if (ret != 1)
758 goto out;
759
760 ret = 0;
761
762 if (do_accounting && !is_invalid_reserved_pfn(*pfn_base)) {
763 ret = vfio_lock_acct(dma, 1, false);
764 if (ret) {
765 put_pfn(*pfn_base, dma->prot);
766 if (ret == -ENOMEM)
767 pr_warn("%s: Task %s (%d) RLIMIT_MEMLOCK "
768 "(%ld) exceeded\n", __func__,
769 dma->task->comm, task_pid_nr(dma->task),
770 task_rlimit(dma->task, RLIMIT_MEMLOCK));
771 }
772 }
773
774 out:
775 mmput(mm);
776 return ret;
777 }
778
vfio_unpin_page_external(struct vfio_dma * dma,dma_addr_t iova,bool do_accounting)779 static int vfio_unpin_page_external(struct vfio_dma *dma, dma_addr_t iova,
780 bool do_accounting)
781 {
782 int unlocked;
783 struct vfio_pfn *vpfn = vfio_find_vpfn(dma, iova);
784
785 if (!vpfn)
786 return 0;
787
788 unlocked = vfio_iova_put_vfio_pfn(dma, vpfn);
789
790 if (do_accounting)
791 vfio_lock_acct(dma, -unlocked, true);
792
793 return unlocked;
794 }
795
vfio_iommu_type1_pin_pages(void * iommu_data,struct iommu_group * iommu_group,dma_addr_t user_iova,int npage,int prot,struct page ** pages)796 static int vfio_iommu_type1_pin_pages(void *iommu_data,
797 struct iommu_group *iommu_group,
798 dma_addr_t user_iova,
799 int npage, int prot,
800 struct page **pages)
801 {
802 struct vfio_iommu *iommu = iommu_data;
803 struct vfio_iommu_group *group;
804 int i, j, ret;
805 unsigned long remote_vaddr;
806 struct vfio_dma *dma;
807 bool do_accounting;
808
809 if (!iommu || !pages)
810 return -EINVAL;
811
812 /* Supported for v2 version only */
813 if (!iommu->v2)
814 return -EACCES;
815
816 mutex_lock(&iommu->lock);
817
818 if (WARN_ONCE(iommu->vaddr_invalid_count,
819 "vfio_pin_pages not allowed with VFIO_UPDATE_VADDR\n")) {
820 ret = -EBUSY;
821 goto pin_done;
822 }
823
824 /* Fail if no dma_umap notifier is registered */
825 if (list_empty(&iommu->device_list)) {
826 ret = -EINVAL;
827 goto pin_done;
828 }
829
830 /*
831 * If iommu capable domain exist in the container then all pages are
832 * already pinned and accounted. Accounting should be done if there is no
833 * iommu capable domain in the container.
834 */
835 do_accounting = list_empty(&iommu->domain_list);
836
837 for (i = 0; i < npage; i++) {
838 unsigned long phys_pfn;
839 dma_addr_t iova;
840 struct vfio_pfn *vpfn;
841
842 iova = user_iova + PAGE_SIZE * i;
843 dma = vfio_find_dma(iommu, iova, PAGE_SIZE);
844 if (!dma) {
845 ret = -EINVAL;
846 goto pin_unwind;
847 }
848
849 if ((dma->prot & prot) != prot) {
850 ret = -EPERM;
851 goto pin_unwind;
852 }
853
854 vpfn = vfio_iova_get_vfio_pfn(dma, iova);
855 if (vpfn) {
856 pages[i] = pfn_to_page(vpfn->pfn);
857 continue;
858 }
859
860 remote_vaddr = dma->vaddr + (iova - dma->iova);
861 ret = vfio_pin_page_external(dma, remote_vaddr, &phys_pfn,
862 do_accounting);
863 if (ret)
864 goto pin_unwind;
865
866 if (!pfn_valid(phys_pfn)) {
867 ret = -EINVAL;
868 goto pin_unwind;
869 }
870
871 ret = vfio_add_to_pfn_list(dma, iova, phys_pfn);
872 if (ret) {
873 if (put_pfn(phys_pfn, dma->prot) && do_accounting)
874 vfio_lock_acct(dma, -1, true);
875 goto pin_unwind;
876 }
877
878 pages[i] = pfn_to_page(phys_pfn);
879
880 if (iommu->dirty_page_tracking) {
881 unsigned long pgshift = __ffs(iommu->pgsize_bitmap);
882
883 /*
884 * Bitmap populated with the smallest supported page
885 * size
886 */
887 bitmap_set(dma->bitmap,
888 (iova - dma->iova) >> pgshift, 1);
889 }
890 }
891 ret = i;
892
893 group = vfio_iommu_find_iommu_group(iommu, iommu_group);
894 if (!group->pinned_page_dirty_scope) {
895 group->pinned_page_dirty_scope = true;
896 iommu->num_non_pinned_groups--;
897 }
898
899 goto pin_done;
900
901 pin_unwind:
902 pages[i] = NULL;
903 for (j = 0; j < i; j++) {
904 dma_addr_t iova;
905
906 iova = user_iova + PAGE_SIZE * j;
907 dma = vfio_find_dma(iommu, iova, PAGE_SIZE);
908 vfio_unpin_page_external(dma, iova, do_accounting);
909 pages[j] = NULL;
910 }
911 pin_done:
912 mutex_unlock(&iommu->lock);
913 return ret;
914 }
915
vfio_iommu_type1_unpin_pages(void * iommu_data,dma_addr_t user_iova,int npage)916 static void vfio_iommu_type1_unpin_pages(void *iommu_data,
917 dma_addr_t user_iova, int npage)
918 {
919 struct vfio_iommu *iommu = iommu_data;
920 bool do_accounting;
921 int i;
922
923 /* Supported for v2 version only */
924 if (WARN_ON(!iommu->v2))
925 return;
926
927 mutex_lock(&iommu->lock);
928
929 do_accounting = list_empty(&iommu->domain_list);
930 for (i = 0; i < npage; i++) {
931 dma_addr_t iova = user_iova + PAGE_SIZE * i;
932 struct vfio_dma *dma;
933
934 dma = vfio_find_dma(iommu, iova, PAGE_SIZE);
935 if (!dma)
936 break;
937
938 vfio_unpin_page_external(dma, iova, do_accounting);
939 }
940
941 mutex_unlock(&iommu->lock);
942
943 WARN_ON(i != npage);
944 }
945
vfio_sync_unpin(struct vfio_dma * dma,struct vfio_domain * domain,struct list_head * regions,struct iommu_iotlb_gather * iotlb_gather)946 static long vfio_sync_unpin(struct vfio_dma *dma, struct vfio_domain *domain,
947 struct list_head *regions,
948 struct iommu_iotlb_gather *iotlb_gather)
949 {
950 long unlocked = 0;
951 struct vfio_regions *entry, *next;
952
953 iommu_iotlb_sync(domain->domain, iotlb_gather);
954
955 list_for_each_entry_safe(entry, next, regions, list) {
956 unlocked += vfio_unpin_pages_remote(dma,
957 entry->iova,
958 entry->phys >> PAGE_SHIFT,
959 entry->len >> PAGE_SHIFT,
960 false);
961 list_del(&entry->list);
962 kfree(entry);
963 }
964
965 cond_resched();
966
967 return unlocked;
968 }
969
970 /*
971 * Generally, VFIO needs to unpin remote pages after each IOTLB flush.
972 * Therefore, when using IOTLB flush sync interface, VFIO need to keep track
973 * of these regions (currently using a list).
974 *
975 * This value specifies maximum number of regions for each IOTLB flush sync.
976 */
977 #define VFIO_IOMMU_TLB_SYNC_MAX 512
978
unmap_unpin_fast(struct vfio_domain * domain,struct vfio_dma * dma,dma_addr_t * iova,size_t len,phys_addr_t phys,long * unlocked,struct list_head * unmapped_list,int * unmapped_cnt,struct iommu_iotlb_gather * iotlb_gather)979 static size_t unmap_unpin_fast(struct vfio_domain *domain,
980 struct vfio_dma *dma, dma_addr_t *iova,
981 size_t len, phys_addr_t phys, long *unlocked,
982 struct list_head *unmapped_list,
983 int *unmapped_cnt,
984 struct iommu_iotlb_gather *iotlb_gather)
985 {
986 size_t unmapped = 0;
987 struct vfio_regions *entry = kzalloc(sizeof(*entry), GFP_KERNEL);
988
989 if (entry) {
990 unmapped = iommu_unmap_fast(domain->domain, *iova, len,
991 iotlb_gather);
992
993 if (!unmapped) {
994 kfree(entry);
995 } else {
996 entry->iova = *iova;
997 entry->phys = phys;
998 entry->len = unmapped;
999 list_add_tail(&entry->list, unmapped_list);
1000
1001 *iova += unmapped;
1002 (*unmapped_cnt)++;
1003 }
1004 }
1005
1006 /*
1007 * Sync if the number of fast-unmap regions hits the limit
1008 * or in case of errors.
1009 */
1010 if (*unmapped_cnt >= VFIO_IOMMU_TLB_SYNC_MAX || !unmapped) {
1011 *unlocked += vfio_sync_unpin(dma, domain, unmapped_list,
1012 iotlb_gather);
1013 *unmapped_cnt = 0;
1014 }
1015
1016 return unmapped;
1017 }
1018
unmap_unpin_slow(struct vfio_domain * domain,struct vfio_dma * dma,dma_addr_t * iova,size_t len,phys_addr_t phys,long * unlocked)1019 static size_t unmap_unpin_slow(struct vfio_domain *domain,
1020 struct vfio_dma *dma, dma_addr_t *iova,
1021 size_t len, phys_addr_t phys,
1022 long *unlocked)
1023 {
1024 size_t unmapped = iommu_unmap(domain->domain, *iova, len);
1025
1026 if (unmapped) {
1027 *unlocked += vfio_unpin_pages_remote(dma, *iova,
1028 phys >> PAGE_SHIFT,
1029 unmapped >> PAGE_SHIFT,
1030 false);
1031 *iova += unmapped;
1032 cond_resched();
1033 }
1034 return unmapped;
1035 }
1036
vfio_unmap_unpin(struct vfio_iommu * iommu,struct vfio_dma * dma,bool do_accounting)1037 static long vfio_unmap_unpin(struct vfio_iommu *iommu, struct vfio_dma *dma,
1038 bool do_accounting)
1039 {
1040 dma_addr_t iova = dma->iova, end = dma->iova + dma->size;
1041 struct vfio_domain *domain, *d;
1042 LIST_HEAD(unmapped_region_list);
1043 struct iommu_iotlb_gather iotlb_gather;
1044 int unmapped_region_cnt = 0;
1045 long unlocked = 0;
1046
1047 if (!dma->size)
1048 return 0;
1049
1050 if (list_empty(&iommu->domain_list))
1051 return 0;
1052
1053 /*
1054 * We use the IOMMU to track the physical addresses, otherwise we'd
1055 * need a much more complicated tracking system. Unfortunately that
1056 * means we need to use one of the iommu domains to figure out the
1057 * pfns to unpin. The rest need to be unmapped in advance so we have
1058 * no iommu translations remaining when the pages are unpinned.
1059 */
1060 domain = d = list_first_entry(&iommu->domain_list,
1061 struct vfio_domain, next);
1062
1063 list_for_each_entry_continue(d, &iommu->domain_list, next) {
1064 iommu_unmap(d->domain, dma->iova, dma->size);
1065 cond_resched();
1066 }
1067
1068 iommu_iotlb_gather_init(&iotlb_gather);
1069 while (iova < end) {
1070 size_t unmapped, len;
1071 phys_addr_t phys, next;
1072
1073 phys = iommu_iova_to_phys(domain->domain, iova);
1074 if (WARN_ON(!phys)) {
1075 iova += PAGE_SIZE;
1076 continue;
1077 }
1078
1079 /*
1080 * To optimize for fewer iommu_unmap() calls, each of which
1081 * may require hardware cache flushing, try to find the
1082 * largest contiguous physical memory chunk to unmap.
1083 */
1084 for (len = PAGE_SIZE;
1085 !domain->fgsp && iova + len < end; len += PAGE_SIZE) {
1086 next = iommu_iova_to_phys(domain->domain, iova + len);
1087 if (next != phys + len)
1088 break;
1089 }
1090
1091 /*
1092 * First, try to use fast unmap/unpin. In case of failure,
1093 * switch to slow unmap/unpin path.
1094 */
1095 unmapped = unmap_unpin_fast(domain, dma, &iova, len, phys,
1096 &unlocked, &unmapped_region_list,
1097 &unmapped_region_cnt,
1098 &iotlb_gather);
1099 if (!unmapped) {
1100 unmapped = unmap_unpin_slow(domain, dma, &iova, len,
1101 phys, &unlocked);
1102 if (WARN_ON(!unmapped))
1103 break;
1104 }
1105 }
1106
1107 dma->iommu_mapped = false;
1108
1109 if (unmapped_region_cnt) {
1110 unlocked += vfio_sync_unpin(dma, domain, &unmapped_region_list,
1111 &iotlb_gather);
1112 }
1113
1114 if (do_accounting) {
1115 vfio_lock_acct(dma, -unlocked, true);
1116 return 0;
1117 }
1118 return unlocked;
1119 }
1120
vfio_remove_dma(struct vfio_iommu * iommu,struct vfio_dma * dma)1121 static void vfio_remove_dma(struct vfio_iommu *iommu, struct vfio_dma *dma)
1122 {
1123 WARN_ON(!RB_EMPTY_ROOT(&dma->pfn_list));
1124 vfio_unmap_unpin(iommu, dma, true);
1125 vfio_unlink_dma(iommu, dma);
1126 put_task_struct(dma->task);
1127 mmdrop(dma->mm);
1128 vfio_dma_bitmap_free(dma);
1129 if (dma->vaddr_invalid)
1130 iommu->vaddr_invalid_count--;
1131 kfree(dma);
1132 iommu->dma_avail++;
1133 }
1134
vfio_update_pgsize_bitmap(struct vfio_iommu * iommu)1135 static void vfio_update_pgsize_bitmap(struct vfio_iommu *iommu)
1136 {
1137 struct vfio_domain *domain;
1138
1139 iommu->pgsize_bitmap = ULONG_MAX;
1140
1141 list_for_each_entry(domain, &iommu->domain_list, next)
1142 iommu->pgsize_bitmap &= domain->domain->pgsize_bitmap;
1143
1144 /*
1145 * In case the IOMMU supports page sizes smaller than PAGE_SIZE
1146 * we pretend PAGE_SIZE is supported and hide sub-PAGE_SIZE sizes.
1147 * That way the user will be able to map/unmap buffers whose size/
1148 * start address is aligned with PAGE_SIZE. Pinning code uses that
1149 * granularity while iommu driver can use the sub-PAGE_SIZE size
1150 * to map the buffer.
1151 */
1152 if (iommu->pgsize_bitmap & ~PAGE_MASK) {
1153 iommu->pgsize_bitmap &= PAGE_MASK;
1154 iommu->pgsize_bitmap |= PAGE_SIZE;
1155 }
1156 }
1157
update_user_bitmap(u64 __user * bitmap,struct vfio_iommu * iommu,struct vfio_dma * dma,dma_addr_t base_iova,size_t pgsize)1158 static int update_user_bitmap(u64 __user *bitmap, struct vfio_iommu *iommu,
1159 struct vfio_dma *dma, dma_addr_t base_iova,
1160 size_t pgsize)
1161 {
1162 unsigned long pgshift = __ffs(pgsize);
1163 unsigned long nbits = dma->size >> pgshift;
1164 unsigned long bit_offset = (dma->iova - base_iova) >> pgshift;
1165 unsigned long copy_offset = bit_offset / BITS_PER_LONG;
1166 unsigned long shift = bit_offset % BITS_PER_LONG;
1167 unsigned long leftover;
1168
1169 /*
1170 * mark all pages dirty if any IOMMU capable device is not able
1171 * to report dirty pages and all pages are pinned and mapped.
1172 */
1173 if (iommu->num_non_pinned_groups && dma->iommu_mapped)
1174 bitmap_set(dma->bitmap, 0, nbits);
1175
1176 if (shift) {
1177 bitmap_shift_left(dma->bitmap, dma->bitmap, shift,
1178 nbits + shift);
1179
1180 if (copy_from_user(&leftover,
1181 (void __user *)(bitmap + copy_offset),
1182 sizeof(leftover)))
1183 return -EFAULT;
1184
1185 bitmap_or(dma->bitmap, dma->bitmap, &leftover, shift);
1186 }
1187
1188 if (copy_to_user((void __user *)(bitmap + copy_offset), dma->bitmap,
1189 DIRTY_BITMAP_BYTES(nbits + shift)))
1190 return -EFAULT;
1191
1192 return 0;
1193 }
1194
vfio_iova_dirty_bitmap(u64 __user * bitmap,struct vfio_iommu * iommu,dma_addr_t iova,size_t size,size_t pgsize)1195 static int vfio_iova_dirty_bitmap(u64 __user *bitmap, struct vfio_iommu *iommu,
1196 dma_addr_t iova, size_t size, size_t pgsize)
1197 {
1198 struct vfio_dma *dma;
1199 struct rb_node *n;
1200 unsigned long pgshift = __ffs(pgsize);
1201 int ret;
1202
1203 /*
1204 * GET_BITMAP request must fully cover vfio_dma mappings. Multiple
1205 * vfio_dma mappings may be clubbed by specifying large ranges, but
1206 * there must not be any previous mappings bisected by the range.
1207 * An error will be returned if these conditions are not met.
1208 */
1209 dma = vfio_find_dma(iommu, iova, 1);
1210 if (dma && dma->iova != iova)
1211 return -EINVAL;
1212
1213 dma = vfio_find_dma(iommu, iova + size - 1, 0);
1214 if (dma && dma->iova + dma->size != iova + size)
1215 return -EINVAL;
1216
1217 for (n = rb_first(&iommu->dma_list); n; n = rb_next(n)) {
1218 struct vfio_dma *dma = rb_entry(n, struct vfio_dma, node);
1219
1220 if (dma->iova < iova)
1221 continue;
1222
1223 if (dma->iova > iova + size - 1)
1224 break;
1225
1226 ret = update_user_bitmap(bitmap, iommu, dma, iova, pgsize);
1227 if (ret)
1228 return ret;
1229
1230 /*
1231 * Re-populate bitmap to include all pinned pages which are
1232 * considered as dirty but exclude pages which are unpinned and
1233 * pages which are marked dirty by vfio_dma_rw()
1234 */
1235 bitmap_clear(dma->bitmap, 0, dma->size >> pgshift);
1236 vfio_dma_populate_bitmap(dma, pgsize);
1237 }
1238 return 0;
1239 }
1240
verify_bitmap_size(uint64_t npages,uint64_t bitmap_size)1241 static int verify_bitmap_size(uint64_t npages, uint64_t bitmap_size)
1242 {
1243 if (!npages || !bitmap_size || (bitmap_size > DIRTY_BITMAP_SIZE_MAX) ||
1244 (bitmap_size < DIRTY_BITMAP_BYTES(npages)))
1245 return -EINVAL;
1246
1247 return 0;
1248 }
1249
1250 /*
1251 * Notify VFIO drivers using vfio_register_emulated_iommu_dev() to invalidate
1252 * and unmap iovas within the range we're about to unmap. Drivers MUST unpin
1253 * pages in response to an invalidation.
1254 */
vfio_notify_dma_unmap(struct vfio_iommu * iommu,struct vfio_dma * dma)1255 static void vfio_notify_dma_unmap(struct vfio_iommu *iommu,
1256 struct vfio_dma *dma)
1257 {
1258 struct vfio_device *device;
1259
1260 if (list_empty(&iommu->device_list))
1261 return;
1262
1263 /*
1264 * The device is expected to call vfio_unpin_pages() for any IOVA it has
1265 * pinned within the range. Since vfio_unpin_pages() will eventually
1266 * call back down to this code and try to obtain the iommu->lock we must
1267 * drop it.
1268 */
1269 mutex_lock(&iommu->device_list_lock);
1270 mutex_unlock(&iommu->lock);
1271
1272 list_for_each_entry(device, &iommu->device_list, iommu_entry)
1273 device->ops->dma_unmap(device, dma->iova, dma->size);
1274
1275 mutex_unlock(&iommu->device_list_lock);
1276 mutex_lock(&iommu->lock);
1277 }
1278
vfio_dma_do_unmap(struct vfio_iommu * iommu,struct vfio_iommu_type1_dma_unmap * unmap,struct vfio_bitmap * bitmap)1279 static int vfio_dma_do_unmap(struct vfio_iommu *iommu,
1280 struct vfio_iommu_type1_dma_unmap *unmap,
1281 struct vfio_bitmap *bitmap)
1282 {
1283 struct vfio_dma *dma, *dma_last = NULL;
1284 size_t unmapped = 0, pgsize;
1285 int ret = -EINVAL, retries = 0;
1286 unsigned long pgshift;
1287 dma_addr_t iova = unmap->iova;
1288 u64 size = unmap->size;
1289 bool unmap_all = unmap->flags & VFIO_DMA_UNMAP_FLAG_ALL;
1290 bool invalidate_vaddr = unmap->flags & VFIO_DMA_UNMAP_FLAG_VADDR;
1291 struct rb_node *n, *first_n;
1292
1293 mutex_lock(&iommu->lock);
1294
1295 /* Cannot update vaddr if mdev is present. */
1296 if (invalidate_vaddr && !list_empty(&iommu->emulated_iommu_groups)) {
1297 ret = -EBUSY;
1298 goto unlock;
1299 }
1300
1301 pgshift = __ffs(iommu->pgsize_bitmap);
1302 pgsize = (size_t)1 << pgshift;
1303
1304 if (iova & (pgsize - 1))
1305 goto unlock;
1306
1307 if (unmap_all) {
1308 if (iova || size)
1309 goto unlock;
1310 size = U64_MAX;
1311 } else if (!size || size & (pgsize - 1) ||
1312 iova + size - 1 < iova || size > SIZE_MAX) {
1313 goto unlock;
1314 }
1315
1316 /* When dirty tracking is enabled, allow only min supported pgsize */
1317 if ((unmap->flags & VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP) &&
1318 (!iommu->dirty_page_tracking || (bitmap->pgsize != pgsize))) {
1319 goto unlock;
1320 }
1321
1322 WARN_ON((pgsize - 1) & PAGE_MASK);
1323 again:
1324 /*
1325 * vfio-iommu-type1 (v1) - User mappings were coalesced together to
1326 * avoid tracking individual mappings. This means that the granularity
1327 * of the original mapping was lost and the user was allowed to attempt
1328 * to unmap any range. Depending on the contiguousness of physical
1329 * memory and page sizes supported by the IOMMU, arbitrary unmaps may
1330 * or may not have worked. We only guaranteed unmap granularity
1331 * matching the original mapping; even though it was untracked here,
1332 * the original mappings are reflected in IOMMU mappings. This
1333 * resulted in a couple unusual behaviors. First, if a range is not
1334 * able to be unmapped, ex. a set of 4k pages that was mapped as a
1335 * 2M hugepage into the IOMMU, the unmap ioctl returns success but with
1336 * a zero sized unmap. Also, if an unmap request overlaps the first
1337 * address of a hugepage, the IOMMU will unmap the entire hugepage.
1338 * This also returns success and the returned unmap size reflects the
1339 * actual size unmapped.
1340 *
1341 * We attempt to maintain compatibility with this "v1" interface, but
1342 * we take control out of the hands of the IOMMU. Therefore, an unmap
1343 * request offset from the beginning of the original mapping will
1344 * return success with zero sized unmap. And an unmap request covering
1345 * the first iova of mapping will unmap the entire range.
1346 *
1347 * The v2 version of this interface intends to be more deterministic.
1348 * Unmap requests must fully cover previous mappings. Multiple
1349 * mappings may still be unmaped by specifying large ranges, but there
1350 * must not be any previous mappings bisected by the range. An error
1351 * will be returned if these conditions are not met. The v2 interface
1352 * will only return success and a size of zero if there were no
1353 * mappings within the range.
1354 */
1355 if (iommu->v2 && !unmap_all) {
1356 dma = vfio_find_dma(iommu, iova, 1);
1357 if (dma && dma->iova != iova)
1358 goto unlock;
1359
1360 dma = vfio_find_dma(iommu, iova + size - 1, 0);
1361 if (dma && dma->iova + dma->size != iova + size)
1362 goto unlock;
1363 }
1364
1365 ret = 0;
1366 n = first_n = vfio_find_dma_first_node(iommu, iova, size);
1367
1368 while (n) {
1369 dma = rb_entry(n, struct vfio_dma, node);
1370 if (dma->iova >= iova + size)
1371 break;
1372
1373 if (!iommu->v2 && iova > dma->iova)
1374 break;
1375
1376 if (invalidate_vaddr) {
1377 if (dma->vaddr_invalid) {
1378 struct rb_node *last_n = n;
1379
1380 for (n = first_n; n != last_n; n = rb_next(n)) {
1381 dma = rb_entry(n,
1382 struct vfio_dma, node);
1383 dma->vaddr_invalid = false;
1384 iommu->vaddr_invalid_count--;
1385 }
1386 ret = -EINVAL;
1387 unmapped = 0;
1388 break;
1389 }
1390 dma->vaddr_invalid = true;
1391 iommu->vaddr_invalid_count++;
1392 unmapped += dma->size;
1393 n = rb_next(n);
1394 continue;
1395 }
1396
1397 if (!RB_EMPTY_ROOT(&dma->pfn_list)) {
1398 if (dma_last == dma) {
1399 BUG_ON(++retries > 10);
1400 } else {
1401 dma_last = dma;
1402 retries = 0;
1403 }
1404
1405 vfio_notify_dma_unmap(iommu, dma);
1406 goto again;
1407 }
1408
1409 if (unmap->flags & VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP) {
1410 ret = update_user_bitmap(bitmap->data, iommu, dma,
1411 iova, pgsize);
1412 if (ret)
1413 break;
1414 }
1415
1416 unmapped += dma->size;
1417 n = rb_next(n);
1418 vfio_remove_dma(iommu, dma);
1419 }
1420
1421 unlock:
1422 mutex_unlock(&iommu->lock);
1423
1424 /* Report how much was unmapped */
1425 unmap->size = unmapped;
1426
1427 return ret;
1428 }
1429
vfio_iommu_map(struct vfio_iommu * iommu,dma_addr_t iova,unsigned long pfn,long npage,int prot)1430 static int vfio_iommu_map(struct vfio_iommu *iommu, dma_addr_t iova,
1431 unsigned long pfn, long npage, int prot)
1432 {
1433 struct vfio_domain *d;
1434 int ret;
1435
1436 list_for_each_entry(d, &iommu->domain_list, next) {
1437 ret = iommu_map(d->domain, iova, (phys_addr_t)pfn << PAGE_SHIFT,
1438 npage << PAGE_SHIFT, prot | IOMMU_CACHE,
1439 GFP_KERNEL_ACCOUNT);
1440 if (ret)
1441 goto unwind;
1442
1443 cond_resched();
1444 }
1445
1446 return 0;
1447
1448 unwind:
1449 list_for_each_entry_continue_reverse(d, &iommu->domain_list, next) {
1450 iommu_unmap(d->domain, iova, npage << PAGE_SHIFT);
1451 cond_resched();
1452 }
1453
1454 return ret;
1455 }
1456
vfio_pin_map_dma(struct vfio_iommu * iommu,struct vfio_dma * dma,size_t map_size)1457 static int vfio_pin_map_dma(struct vfio_iommu *iommu, struct vfio_dma *dma,
1458 size_t map_size)
1459 {
1460 dma_addr_t iova = dma->iova;
1461 unsigned long vaddr = dma->vaddr;
1462 struct vfio_batch batch;
1463 size_t size = map_size;
1464 long npage;
1465 unsigned long pfn, limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1466 int ret = 0;
1467
1468 vfio_batch_init(&batch);
1469
1470 while (size) {
1471 /* Pin a contiguous chunk of memory */
1472 npage = vfio_pin_pages_remote(dma, vaddr + dma->size,
1473 size >> PAGE_SHIFT, &pfn, limit,
1474 &batch);
1475 if (npage <= 0) {
1476 WARN_ON(!npage);
1477 ret = (int)npage;
1478 break;
1479 }
1480
1481 /* Map it! */
1482 ret = vfio_iommu_map(iommu, iova + dma->size, pfn, npage,
1483 dma->prot);
1484 if (ret) {
1485 vfio_unpin_pages_remote(dma, iova + dma->size, pfn,
1486 npage, true);
1487 vfio_batch_unpin(&batch, dma);
1488 break;
1489 }
1490
1491 size -= npage << PAGE_SHIFT;
1492 dma->size += npage << PAGE_SHIFT;
1493 }
1494
1495 vfio_batch_fini(&batch);
1496 dma->iommu_mapped = true;
1497
1498 if (ret)
1499 vfio_remove_dma(iommu, dma);
1500
1501 return ret;
1502 }
1503
1504 /*
1505 * Check dma map request is within a valid iova range
1506 */
vfio_iommu_iova_dma_valid(struct vfio_iommu * iommu,dma_addr_t start,dma_addr_t end)1507 static bool vfio_iommu_iova_dma_valid(struct vfio_iommu *iommu,
1508 dma_addr_t start, dma_addr_t end)
1509 {
1510 struct list_head *iova = &iommu->iova_list;
1511 struct vfio_iova *node;
1512
1513 list_for_each_entry(node, iova, list) {
1514 if (start >= node->start && end <= node->end)
1515 return true;
1516 }
1517
1518 /*
1519 * Check for list_empty() as well since a container with
1520 * a single mdev device will have an empty list.
1521 */
1522 return list_empty(iova);
1523 }
1524
vfio_change_dma_owner(struct vfio_dma * dma)1525 static int vfio_change_dma_owner(struct vfio_dma *dma)
1526 {
1527 struct task_struct *task = current->group_leader;
1528 struct mm_struct *mm = current->mm;
1529 long npage = dma->locked_vm;
1530 bool lock_cap;
1531 int ret;
1532
1533 if (mm == dma->mm)
1534 return 0;
1535
1536 lock_cap = capable(CAP_IPC_LOCK);
1537 ret = mm_lock_acct(task, mm, lock_cap, npage);
1538 if (ret)
1539 return ret;
1540
1541 if (mmget_not_zero(dma->mm)) {
1542 mm_lock_acct(dma->task, dma->mm, dma->lock_cap, -npage);
1543 mmput(dma->mm);
1544 }
1545
1546 if (dma->task != task) {
1547 put_task_struct(dma->task);
1548 dma->task = get_task_struct(task);
1549 }
1550 mmdrop(dma->mm);
1551 dma->mm = mm;
1552 mmgrab(dma->mm);
1553 dma->lock_cap = lock_cap;
1554 return 0;
1555 }
1556
vfio_dma_do_map(struct vfio_iommu * iommu,struct vfio_iommu_type1_dma_map * map)1557 static int vfio_dma_do_map(struct vfio_iommu *iommu,
1558 struct vfio_iommu_type1_dma_map *map)
1559 {
1560 bool set_vaddr = map->flags & VFIO_DMA_MAP_FLAG_VADDR;
1561 dma_addr_t iova = map->iova;
1562 unsigned long vaddr = map->vaddr;
1563 size_t size = map->size;
1564 int ret = 0, prot = 0;
1565 size_t pgsize;
1566 struct vfio_dma *dma;
1567
1568 /* Verify that none of our __u64 fields overflow */
1569 if (map->size != size || map->vaddr != vaddr || map->iova != iova)
1570 return -EINVAL;
1571
1572 /* READ/WRITE from device perspective */
1573 if (map->flags & VFIO_DMA_MAP_FLAG_WRITE)
1574 prot |= IOMMU_WRITE;
1575 if (map->flags & VFIO_DMA_MAP_FLAG_READ)
1576 prot |= IOMMU_READ;
1577
1578 if ((prot && set_vaddr) || (!prot && !set_vaddr))
1579 return -EINVAL;
1580
1581 mutex_lock(&iommu->lock);
1582
1583 pgsize = (size_t)1 << __ffs(iommu->pgsize_bitmap);
1584
1585 WARN_ON((pgsize - 1) & PAGE_MASK);
1586
1587 if (!size || (size | iova | vaddr) & (pgsize - 1)) {
1588 ret = -EINVAL;
1589 goto out_unlock;
1590 }
1591
1592 /* Don't allow IOVA or virtual address wrap */
1593 if (iova + size - 1 < iova || vaddr + size - 1 < vaddr) {
1594 ret = -EINVAL;
1595 goto out_unlock;
1596 }
1597
1598 dma = vfio_find_dma(iommu, iova, size);
1599 if (set_vaddr) {
1600 if (!dma) {
1601 ret = -ENOENT;
1602 } else if (!dma->vaddr_invalid || dma->iova != iova ||
1603 dma->size != size) {
1604 ret = -EINVAL;
1605 } else {
1606 ret = vfio_change_dma_owner(dma);
1607 if (ret)
1608 goto out_unlock;
1609 dma->vaddr = vaddr;
1610 dma->vaddr_invalid = false;
1611 iommu->vaddr_invalid_count--;
1612 }
1613 goto out_unlock;
1614 } else if (dma) {
1615 ret = -EEXIST;
1616 goto out_unlock;
1617 }
1618
1619 if (!iommu->dma_avail) {
1620 ret = -ENOSPC;
1621 goto out_unlock;
1622 }
1623
1624 if (!vfio_iommu_iova_dma_valid(iommu, iova, iova + size - 1)) {
1625 ret = -EINVAL;
1626 goto out_unlock;
1627 }
1628
1629 dma = kzalloc(sizeof(*dma), GFP_KERNEL);
1630 if (!dma) {
1631 ret = -ENOMEM;
1632 goto out_unlock;
1633 }
1634
1635 iommu->dma_avail--;
1636 dma->iova = iova;
1637 dma->vaddr = vaddr;
1638 dma->prot = prot;
1639
1640 /*
1641 * We need to be able to both add to a task's locked memory and test
1642 * against the locked memory limit and we need to be able to do both
1643 * outside of this call path as pinning can be asynchronous via the
1644 * external interfaces for mdev devices. RLIMIT_MEMLOCK requires a
1645 * task_struct. Save the group_leader so that all DMA tracking uses
1646 * the same task, to make debugging easier. VM locked pages requires
1647 * an mm_struct, so grab the mm in case the task dies.
1648 */
1649 get_task_struct(current->group_leader);
1650 dma->task = current->group_leader;
1651 dma->lock_cap = capable(CAP_IPC_LOCK);
1652 dma->mm = current->mm;
1653 mmgrab(dma->mm);
1654
1655 dma->pfn_list = RB_ROOT;
1656
1657 /* Insert zero-sized and grow as we map chunks of it */
1658 vfio_link_dma(iommu, dma);
1659
1660 /* Don't pin and map if container doesn't contain IOMMU capable domain*/
1661 if (list_empty(&iommu->domain_list))
1662 dma->size = size;
1663 else
1664 ret = vfio_pin_map_dma(iommu, dma, size);
1665
1666 if (!ret && iommu->dirty_page_tracking) {
1667 ret = vfio_dma_bitmap_alloc(dma, pgsize);
1668 if (ret)
1669 vfio_remove_dma(iommu, dma);
1670 }
1671
1672 out_unlock:
1673 mutex_unlock(&iommu->lock);
1674 return ret;
1675 }
1676
vfio_iommu_replay(struct vfio_iommu * iommu,struct vfio_domain * domain)1677 static int vfio_iommu_replay(struct vfio_iommu *iommu,
1678 struct vfio_domain *domain)
1679 {
1680 struct vfio_batch batch;
1681 struct vfio_domain *d = NULL;
1682 struct rb_node *n;
1683 unsigned long limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1684 int ret;
1685
1686 /* Arbitrarily pick the first domain in the list for lookups */
1687 if (!list_empty(&iommu->domain_list))
1688 d = list_first_entry(&iommu->domain_list,
1689 struct vfio_domain, next);
1690
1691 vfio_batch_init(&batch);
1692
1693 n = rb_first(&iommu->dma_list);
1694
1695 for (; n; n = rb_next(n)) {
1696 struct vfio_dma *dma;
1697 dma_addr_t iova;
1698
1699 dma = rb_entry(n, struct vfio_dma, node);
1700 iova = dma->iova;
1701
1702 while (iova < dma->iova + dma->size) {
1703 phys_addr_t phys;
1704 size_t size;
1705
1706 if (dma->iommu_mapped) {
1707 phys_addr_t p;
1708 dma_addr_t i;
1709
1710 if (WARN_ON(!d)) { /* mapped w/o a domain?! */
1711 ret = -EINVAL;
1712 goto unwind;
1713 }
1714
1715 phys = iommu_iova_to_phys(d->domain, iova);
1716
1717 if (WARN_ON(!phys)) {
1718 iova += PAGE_SIZE;
1719 continue;
1720 }
1721
1722 size = PAGE_SIZE;
1723 p = phys + size;
1724 i = iova + size;
1725 while (i < dma->iova + dma->size &&
1726 p == iommu_iova_to_phys(d->domain, i)) {
1727 size += PAGE_SIZE;
1728 p += PAGE_SIZE;
1729 i += PAGE_SIZE;
1730 }
1731 } else {
1732 unsigned long pfn;
1733 unsigned long vaddr = dma->vaddr +
1734 (iova - dma->iova);
1735 size_t n = dma->iova + dma->size - iova;
1736 long npage;
1737
1738 npage = vfio_pin_pages_remote(dma, vaddr,
1739 n >> PAGE_SHIFT,
1740 &pfn, limit,
1741 &batch);
1742 if (npage <= 0) {
1743 WARN_ON(!npage);
1744 ret = (int)npage;
1745 goto unwind;
1746 }
1747
1748 phys = pfn << PAGE_SHIFT;
1749 size = npage << PAGE_SHIFT;
1750 }
1751
1752 ret = iommu_map(domain->domain, iova, phys, size,
1753 dma->prot | IOMMU_CACHE,
1754 GFP_KERNEL_ACCOUNT);
1755 if (ret) {
1756 if (!dma->iommu_mapped) {
1757 vfio_unpin_pages_remote(dma, iova,
1758 phys >> PAGE_SHIFT,
1759 size >> PAGE_SHIFT,
1760 true);
1761 vfio_batch_unpin(&batch, dma);
1762 }
1763 goto unwind;
1764 }
1765
1766 iova += size;
1767 }
1768 }
1769
1770 /* All dmas are now mapped, defer to second tree walk for unwind */
1771 for (n = rb_first(&iommu->dma_list); n; n = rb_next(n)) {
1772 struct vfio_dma *dma = rb_entry(n, struct vfio_dma, node);
1773
1774 dma->iommu_mapped = true;
1775 }
1776
1777 vfio_batch_fini(&batch);
1778 return 0;
1779
1780 unwind:
1781 for (; n; n = rb_prev(n)) {
1782 struct vfio_dma *dma = rb_entry(n, struct vfio_dma, node);
1783 dma_addr_t iova;
1784
1785 if (dma->iommu_mapped) {
1786 iommu_unmap(domain->domain, dma->iova, dma->size);
1787 continue;
1788 }
1789
1790 iova = dma->iova;
1791 while (iova < dma->iova + dma->size) {
1792 phys_addr_t phys, p;
1793 size_t size;
1794 dma_addr_t i;
1795
1796 phys = iommu_iova_to_phys(domain->domain, iova);
1797 if (!phys) {
1798 iova += PAGE_SIZE;
1799 continue;
1800 }
1801
1802 size = PAGE_SIZE;
1803 p = phys + size;
1804 i = iova + size;
1805 while (i < dma->iova + dma->size &&
1806 p == iommu_iova_to_phys(domain->domain, i)) {
1807 size += PAGE_SIZE;
1808 p += PAGE_SIZE;
1809 i += PAGE_SIZE;
1810 }
1811
1812 iommu_unmap(domain->domain, iova, size);
1813 vfio_unpin_pages_remote(dma, iova, phys >> PAGE_SHIFT,
1814 size >> PAGE_SHIFT, true);
1815 }
1816 }
1817
1818 vfio_batch_fini(&batch);
1819 return ret;
1820 }
1821
1822 /*
1823 * We change our unmap behavior slightly depending on whether the IOMMU
1824 * supports fine-grained superpages. IOMMUs like AMD-Vi will use a superpage
1825 * for practically any contiguous power-of-two mapping we give it. This means
1826 * we don't need to look for contiguous chunks ourselves to make unmapping
1827 * more efficient. On IOMMUs with coarse-grained super pages, like Intel VT-d
1828 * with discrete 2M/1G/512G/1T superpages, identifying contiguous chunks
1829 * significantly boosts non-hugetlbfs mappings and doesn't seem to hurt when
1830 * hugetlbfs is in use.
1831 */
vfio_test_domain_fgsp(struct vfio_domain * domain,struct list_head * regions)1832 static void vfio_test_domain_fgsp(struct vfio_domain *domain, struct list_head *regions)
1833 {
1834 int ret, order = get_order(PAGE_SIZE * 2);
1835 struct vfio_iova *region;
1836 struct page *pages;
1837 dma_addr_t start;
1838
1839 pages = alloc_pages(GFP_KERNEL | __GFP_ZERO, order);
1840 if (!pages)
1841 return;
1842
1843 list_for_each_entry(region, regions, list) {
1844 start = ALIGN(region->start, PAGE_SIZE * 2);
1845 if (start >= region->end || (region->end - start < PAGE_SIZE * 2))
1846 continue;
1847
1848 ret = iommu_map(domain->domain, start, page_to_phys(pages), PAGE_SIZE * 2,
1849 IOMMU_READ | IOMMU_WRITE | IOMMU_CACHE,
1850 GFP_KERNEL_ACCOUNT);
1851 if (!ret) {
1852 size_t unmapped = iommu_unmap(domain->domain, start, PAGE_SIZE);
1853
1854 if (unmapped == PAGE_SIZE)
1855 iommu_unmap(domain->domain, start + PAGE_SIZE, PAGE_SIZE);
1856 else
1857 domain->fgsp = true;
1858 }
1859 break;
1860 }
1861
1862 __free_pages(pages, order);
1863 }
1864
find_iommu_group(struct vfio_domain * domain,struct iommu_group * iommu_group)1865 static struct vfio_iommu_group *find_iommu_group(struct vfio_domain *domain,
1866 struct iommu_group *iommu_group)
1867 {
1868 struct vfio_iommu_group *g;
1869
1870 list_for_each_entry(g, &domain->group_list, next) {
1871 if (g->iommu_group == iommu_group)
1872 return g;
1873 }
1874
1875 return NULL;
1876 }
1877
1878 static struct vfio_iommu_group*
vfio_iommu_find_iommu_group(struct vfio_iommu * iommu,struct iommu_group * iommu_group)1879 vfio_iommu_find_iommu_group(struct vfio_iommu *iommu,
1880 struct iommu_group *iommu_group)
1881 {
1882 struct vfio_iommu_group *group;
1883 struct vfio_domain *domain;
1884
1885 list_for_each_entry(domain, &iommu->domain_list, next) {
1886 group = find_iommu_group(domain, iommu_group);
1887 if (group)
1888 return group;
1889 }
1890
1891 list_for_each_entry(group, &iommu->emulated_iommu_groups, next)
1892 if (group->iommu_group == iommu_group)
1893 return group;
1894 return NULL;
1895 }
1896
vfio_iommu_has_sw_msi(struct list_head * group_resv_regions,phys_addr_t * base)1897 static bool vfio_iommu_has_sw_msi(struct list_head *group_resv_regions,
1898 phys_addr_t *base)
1899 {
1900 struct iommu_resv_region *region;
1901 bool ret = false;
1902
1903 list_for_each_entry(region, group_resv_regions, list) {
1904 /*
1905 * The presence of any 'real' MSI regions should take
1906 * precedence over the software-managed one if the
1907 * IOMMU driver happens to advertise both types.
1908 */
1909 if (region->type == IOMMU_RESV_MSI) {
1910 ret = false;
1911 break;
1912 }
1913
1914 if (region->type == IOMMU_RESV_SW_MSI) {
1915 *base = region->start;
1916 ret = true;
1917 }
1918 }
1919
1920 return ret;
1921 }
1922
1923 /*
1924 * This is a helper function to insert an address range to iova list.
1925 * The list is initially created with a single entry corresponding to
1926 * the IOMMU domain geometry to which the device group is attached.
1927 * The list aperture gets modified when a new domain is added to the
1928 * container if the new aperture doesn't conflict with the current one
1929 * or with any existing dma mappings. The list is also modified to
1930 * exclude any reserved regions associated with the device group.
1931 */
vfio_iommu_iova_insert(struct list_head * head,dma_addr_t start,dma_addr_t end)1932 static int vfio_iommu_iova_insert(struct list_head *head,
1933 dma_addr_t start, dma_addr_t end)
1934 {
1935 struct vfio_iova *region;
1936
1937 region = kmalloc(sizeof(*region), GFP_KERNEL);
1938 if (!region)
1939 return -ENOMEM;
1940
1941 INIT_LIST_HEAD(®ion->list);
1942 region->start = start;
1943 region->end = end;
1944
1945 list_add_tail(®ion->list, head);
1946 return 0;
1947 }
1948
1949 /*
1950 * Check the new iommu aperture conflicts with existing aper or with any
1951 * existing dma mappings.
1952 */
vfio_iommu_aper_conflict(struct vfio_iommu * iommu,dma_addr_t start,dma_addr_t end)1953 static bool vfio_iommu_aper_conflict(struct vfio_iommu *iommu,
1954 dma_addr_t start, dma_addr_t end)
1955 {
1956 struct vfio_iova *first, *last;
1957 struct list_head *iova = &iommu->iova_list;
1958
1959 if (list_empty(iova))
1960 return false;
1961
1962 /* Disjoint sets, return conflict */
1963 first = list_first_entry(iova, struct vfio_iova, list);
1964 last = list_last_entry(iova, struct vfio_iova, list);
1965 if (start > last->end || end < first->start)
1966 return true;
1967
1968 /* Check for any existing dma mappings below the new start */
1969 if (start > first->start) {
1970 if (vfio_find_dma(iommu, first->start, start - first->start))
1971 return true;
1972 }
1973
1974 /* Check for any existing dma mappings beyond the new end */
1975 if (end < last->end) {
1976 if (vfio_find_dma(iommu, end + 1, last->end - end))
1977 return true;
1978 }
1979
1980 return false;
1981 }
1982
1983 /*
1984 * Resize iommu iova aperture window. This is called only if the new
1985 * aperture has no conflict with existing aperture and dma mappings.
1986 */
vfio_iommu_aper_resize(struct list_head * iova,dma_addr_t start,dma_addr_t end)1987 static int vfio_iommu_aper_resize(struct list_head *iova,
1988 dma_addr_t start, dma_addr_t end)
1989 {
1990 struct vfio_iova *node, *next;
1991
1992 if (list_empty(iova))
1993 return vfio_iommu_iova_insert(iova, start, end);
1994
1995 /* Adjust iova list start */
1996 list_for_each_entry_safe(node, next, iova, list) {
1997 if (start < node->start)
1998 break;
1999 if (start >= node->start && start < node->end) {
2000 node->start = start;
2001 break;
2002 }
2003 /* Delete nodes before new start */
2004 list_del(&node->list);
2005 kfree(node);
2006 }
2007
2008 /* Adjust iova list end */
2009 list_for_each_entry_safe(node, next, iova, list) {
2010 if (end > node->end)
2011 continue;
2012 if (end > node->start && end <= node->end) {
2013 node->end = end;
2014 continue;
2015 }
2016 /* Delete nodes after new end */
2017 list_del(&node->list);
2018 kfree(node);
2019 }
2020
2021 return 0;
2022 }
2023
2024 /*
2025 * Check reserved region conflicts with existing dma mappings
2026 */
vfio_iommu_resv_conflict(struct vfio_iommu * iommu,struct list_head * resv_regions)2027 static bool vfio_iommu_resv_conflict(struct vfio_iommu *iommu,
2028 struct list_head *resv_regions)
2029 {
2030 struct iommu_resv_region *region;
2031
2032 /* Check for conflict with existing dma mappings */
2033 list_for_each_entry(region, resv_regions, list) {
2034 if (region->type == IOMMU_RESV_DIRECT_RELAXABLE)
2035 continue;
2036
2037 if (vfio_find_dma(iommu, region->start, region->length))
2038 return true;
2039 }
2040
2041 return false;
2042 }
2043
2044 /*
2045 * Check iova region overlap with reserved regions and
2046 * exclude them from the iommu iova range
2047 */
vfio_iommu_resv_exclude(struct list_head * iova,struct list_head * resv_regions)2048 static int vfio_iommu_resv_exclude(struct list_head *iova,
2049 struct list_head *resv_regions)
2050 {
2051 struct iommu_resv_region *resv;
2052 struct vfio_iova *n, *next;
2053
2054 list_for_each_entry(resv, resv_regions, list) {
2055 phys_addr_t start, end;
2056
2057 if (resv->type == IOMMU_RESV_DIRECT_RELAXABLE)
2058 continue;
2059
2060 start = resv->start;
2061 end = resv->start + resv->length - 1;
2062
2063 list_for_each_entry_safe(n, next, iova, list) {
2064 int ret = 0;
2065
2066 /* No overlap */
2067 if (start > n->end || end < n->start)
2068 continue;
2069 /*
2070 * Insert a new node if current node overlaps with the
2071 * reserve region to exclude that from valid iova range.
2072 * Note that, new node is inserted before the current
2073 * node and finally the current node is deleted keeping
2074 * the list updated and sorted.
2075 */
2076 if (start > n->start)
2077 ret = vfio_iommu_iova_insert(&n->list, n->start,
2078 start - 1);
2079 if (!ret && end < n->end)
2080 ret = vfio_iommu_iova_insert(&n->list, end + 1,
2081 n->end);
2082 if (ret)
2083 return ret;
2084
2085 list_del(&n->list);
2086 kfree(n);
2087 }
2088 }
2089
2090 if (list_empty(iova))
2091 return -EINVAL;
2092
2093 return 0;
2094 }
2095
vfio_iommu_resv_free(struct list_head * resv_regions)2096 static void vfio_iommu_resv_free(struct list_head *resv_regions)
2097 {
2098 struct iommu_resv_region *n, *next;
2099
2100 list_for_each_entry_safe(n, next, resv_regions, list) {
2101 list_del(&n->list);
2102 kfree(n);
2103 }
2104 }
2105
vfio_iommu_iova_free(struct list_head * iova)2106 static void vfio_iommu_iova_free(struct list_head *iova)
2107 {
2108 struct vfio_iova *n, *next;
2109
2110 list_for_each_entry_safe(n, next, iova, list) {
2111 list_del(&n->list);
2112 kfree(n);
2113 }
2114 }
2115
vfio_iommu_iova_get_copy(struct vfio_iommu * iommu,struct list_head * iova_copy)2116 static int vfio_iommu_iova_get_copy(struct vfio_iommu *iommu,
2117 struct list_head *iova_copy)
2118 {
2119 struct list_head *iova = &iommu->iova_list;
2120 struct vfio_iova *n;
2121 int ret;
2122
2123 list_for_each_entry(n, iova, list) {
2124 ret = vfio_iommu_iova_insert(iova_copy, n->start, n->end);
2125 if (ret)
2126 goto out_free;
2127 }
2128
2129 return 0;
2130
2131 out_free:
2132 vfio_iommu_iova_free(iova_copy);
2133 return ret;
2134 }
2135
vfio_iommu_iova_insert_copy(struct vfio_iommu * iommu,struct list_head * iova_copy)2136 static void vfio_iommu_iova_insert_copy(struct vfio_iommu *iommu,
2137 struct list_head *iova_copy)
2138 {
2139 struct list_head *iova = &iommu->iova_list;
2140
2141 vfio_iommu_iova_free(iova);
2142
2143 list_splice_tail(iova_copy, iova);
2144 }
2145
vfio_iommu_domain_alloc(struct device * dev,void * data)2146 static int vfio_iommu_domain_alloc(struct device *dev, void *data)
2147 {
2148 struct iommu_domain **domain = data;
2149
2150 *domain = iommu_domain_alloc(dev->bus);
2151 return 1; /* Don't iterate */
2152 }
2153
vfio_iommu_type1_attach_group(void * iommu_data,struct iommu_group * iommu_group,enum vfio_group_type type)2154 static int vfio_iommu_type1_attach_group(void *iommu_data,
2155 struct iommu_group *iommu_group, enum vfio_group_type type)
2156 {
2157 struct vfio_iommu *iommu = iommu_data;
2158 struct vfio_iommu_group *group;
2159 struct vfio_domain *domain, *d;
2160 bool resv_msi;
2161 phys_addr_t resv_msi_base = 0;
2162 struct iommu_domain_geometry *geo;
2163 LIST_HEAD(iova_copy);
2164 LIST_HEAD(group_resv_regions);
2165 int ret = -EBUSY;
2166
2167 mutex_lock(&iommu->lock);
2168
2169 /* Attach could require pinning, so disallow while vaddr is invalid. */
2170 if (iommu->vaddr_invalid_count)
2171 goto out_unlock;
2172
2173 /* Check for duplicates */
2174 ret = -EINVAL;
2175 if (vfio_iommu_find_iommu_group(iommu, iommu_group))
2176 goto out_unlock;
2177
2178 ret = -ENOMEM;
2179 group = kzalloc(sizeof(*group), GFP_KERNEL);
2180 if (!group)
2181 goto out_unlock;
2182 group->iommu_group = iommu_group;
2183
2184 if (type == VFIO_EMULATED_IOMMU) {
2185 list_add(&group->next, &iommu->emulated_iommu_groups);
2186 /*
2187 * An emulated IOMMU group cannot dirty memory directly, it can
2188 * only use interfaces that provide dirty tracking.
2189 * The iommu scope can only be promoted with the addition of a
2190 * dirty tracking group.
2191 */
2192 group->pinned_page_dirty_scope = true;
2193 ret = 0;
2194 goto out_unlock;
2195 }
2196
2197 ret = -ENOMEM;
2198 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
2199 if (!domain)
2200 goto out_free_group;
2201
2202 /*
2203 * Going via the iommu_group iterator avoids races, and trivially gives
2204 * us a representative device for the IOMMU API call. We don't actually
2205 * want to iterate beyond the first device (if any).
2206 */
2207 ret = -EIO;
2208 iommu_group_for_each_dev(iommu_group, &domain->domain,
2209 vfio_iommu_domain_alloc);
2210 if (!domain->domain)
2211 goto out_free_domain;
2212
2213 if (iommu->nesting) {
2214 ret = iommu_enable_nesting(domain->domain);
2215 if (ret)
2216 goto out_domain;
2217 }
2218
2219 ret = iommu_attach_group(domain->domain, group->iommu_group);
2220 if (ret)
2221 goto out_domain;
2222
2223 /* Get aperture info */
2224 geo = &domain->domain->geometry;
2225 if (vfio_iommu_aper_conflict(iommu, geo->aperture_start,
2226 geo->aperture_end)) {
2227 ret = -EINVAL;
2228 goto out_detach;
2229 }
2230
2231 ret = iommu_get_group_resv_regions(iommu_group, &group_resv_regions);
2232 if (ret)
2233 goto out_detach;
2234
2235 if (vfio_iommu_resv_conflict(iommu, &group_resv_regions)) {
2236 ret = -EINVAL;
2237 goto out_detach;
2238 }
2239
2240 /*
2241 * We don't want to work on the original iova list as the list
2242 * gets modified and in case of failure we have to retain the
2243 * original list. Get a copy here.
2244 */
2245 ret = vfio_iommu_iova_get_copy(iommu, &iova_copy);
2246 if (ret)
2247 goto out_detach;
2248
2249 ret = vfio_iommu_aper_resize(&iova_copy, geo->aperture_start,
2250 geo->aperture_end);
2251 if (ret)
2252 goto out_detach;
2253
2254 ret = vfio_iommu_resv_exclude(&iova_copy, &group_resv_regions);
2255 if (ret)
2256 goto out_detach;
2257
2258 resv_msi = vfio_iommu_has_sw_msi(&group_resv_regions, &resv_msi_base);
2259
2260 INIT_LIST_HEAD(&domain->group_list);
2261 list_add(&group->next, &domain->group_list);
2262
2263 if (!allow_unsafe_interrupts &&
2264 !iommu_group_has_isolated_msi(iommu_group)) {
2265 pr_warn("%s: No interrupt remapping support. Use the module param \"allow_unsafe_interrupts\" to enable VFIO IOMMU support on this platform\n",
2266 __func__);
2267 ret = -EPERM;
2268 goto out_detach;
2269 }
2270
2271 /*
2272 * If the IOMMU can block non-coherent operations (ie PCIe TLPs with
2273 * no-snoop set) then VFIO always turns this feature on because on Intel
2274 * platforms it optimizes KVM to disable wbinvd emulation.
2275 */
2276 if (domain->domain->ops->enforce_cache_coherency)
2277 domain->enforce_cache_coherency =
2278 domain->domain->ops->enforce_cache_coherency(
2279 domain->domain);
2280
2281 /*
2282 * Try to match an existing compatible domain. We don't want to
2283 * preclude an IOMMU driver supporting multiple bus_types and being
2284 * able to include different bus_types in the same IOMMU domain, so
2285 * we test whether the domains use the same iommu_ops rather than
2286 * testing if they're on the same bus_type.
2287 */
2288 list_for_each_entry(d, &iommu->domain_list, next) {
2289 if (d->domain->ops == domain->domain->ops &&
2290 d->enforce_cache_coherency ==
2291 domain->enforce_cache_coherency) {
2292 iommu_detach_group(domain->domain, group->iommu_group);
2293 if (!iommu_attach_group(d->domain,
2294 group->iommu_group)) {
2295 list_add(&group->next, &d->group_list);
2296 iommu_domain_free(domain->domain);
2297 kfree(domain);
2298 goto done;
2299 }
2300
2301 ret = iommu_attach_group(domain->domain,
2302 group->iommu_group);
2303 if (ret)
2304 goto out_domain;
2305 }
2306 }
2307
2308 vfio_test_domain_fgsp(domain, &iova_copy);
2309
2310 /* replay mappings on new domains */
2311 ret = vfio_iommu_replay(iommu, domain);
2312 if (ret)
2313 goto out_detach;
2314
2315 if (resv_msi) {
2316 ret = iommu_get_msi_cookie(domain->domain, resv_msi_base);
2317 if (ret && ret != -ENODEV)
2318 goto out_detach;
2319 }
2320
2321 list_add(&domain->next, &iommu->domain_list);
2322 vfio_update_pgsize_bitmap(iommu);
2323 done:
2324 /* Delete the old one and insert new iova list */
2325 vfio_iommu_iova_insert_copy(iommu, &iova_copy);
2326
2327 /*
2328 * An iommu backed group can dirty memory directly and therefore
2329 * demotes the iommu scope until it declares itself dirty tracking
2330 * capable via the page pinning interface.
2331 */
2332 iommu->num_non_pinned_groups++;
2333 mutex_unlock(&iommu->lock);
2334 vfio_iommu_resv_free(&group_resv_regions);
2335
2336 return 0;
2337
2338 out_detach:
2339 iommu_detach_group(domain->domain, group->iommu_group);
2340 out_domain:
2341 iommu_domain_free(domain->domain);
2342 vfio_iommu_iova_free(&iova_copy);
2343 vfio_iommu_resv_free(&group_resv_regions);
2344 out_free_domain:
2345 kfree(domain);
2346 out_free_group:
2347 kfree(group);
2348 out_unlock:
2349 mutex_unlock(&iommu->lock);
2350 return ret;
2351 }
2352
vfio_iommu_unmap_unpin_all(struct vfio_iommu * iommu)2353 static void vfio_iommu_unmap_unpin_all(struct vfio_iommu *iommu)
2354 {
2355 struct rb_node *node;
2356
2357 while ((node = rb_first(&iommu->dma_list)))
2358 vfio_remove_dma(iommu, rb_entry(node, struct vfio_dma, node));
2359 }
2360
vfio_iommu_unmap_unpin_reaccount(struct vfio_iommu * iommu)2361 static void vfio_iommu_unmap_unpin_reaccount(struct vfio_iommu *iommu)
2362 {
2363 struct rb_node *n, *p;
2364
2365 n = rb_first(&iommu->dma_list);
2366 for (; n; n = rb_next(n)) {
2367 struct vfio_dma *dma;
2368 long locked = 0, unlocked = 0;
2369
2370 dma = rb_entry(n, struct vfio_dma, node);
2371 unlocked += vfio_unmap_unpin(iommu, dma, false);
2372 p = rb_first(&dma->pfn_list);
2373 for (; p; p = rb_next(p)) {
2374 struct vfio_pfn *vpfn = rb_entry(p, struct vfio_pfn,
2375 node);
2376
2377 if (!is_invalid_reserved_pfn(vpfn->pfn))
2378 locked++;
2379 }
2380 vfio_lock_acct(dma, locked - unlocked, true);
2381 }
2382 }
2383
2384 /*
2385 * Called when a domain is removed in detach. It is possible that
2386 * the removed domain decided the iova aperture window. Modify the
2387 * iova aperture with the smallest window among existing domains.
2388 */
vfio_iommu_aper_expand(struct vfio_iommu * iommu,struct list_head * iova_copy)2389 static void vfio_iommu_aper_expand(struct vfio_iommu *iommu,
2390 struct list_head *iova_copy)
2391 {
2392 struct vfio_domain *domain;
2393 struct vfio_iova *node;
2394 dma_addr_t start = 0;
2395 dma_addr_t end = (dma_addr_t)~0;
2396
2397 if (list_empty(iova_copy))
2398 return;
2399
2400 list_for_each_entry(domain, &iommu->domain_list, next) {
2401 struct iommu_domain_geometry *geo = &domain->domain->geometry;
2402
2403 if (geo->aperture_start > start)
2404 start = geo->aperture_start;
2405 if (geo->aperture_end < end)
2406 end = geo->aperture_end;
2407 }
2408
2409 /* Modify aperture limits. The new aper is either same or bigger */
2410 node = list_first_entry(iova_copy, struct vfio_iova, list);
2411 node->start = start;
2412 node = list_last_entry(iova_copy, struct vfio_iova, list);
2413 node->end = end;
2414 }
2415
2416 /*
2417 * Called when a group is detached. The reserved regions for that
2418 * group can be part of valid iova now. But since reserved regions
2419 * may be duplicated among groups, populate the iova valid regions
2420 * list again.
2421 */
vfio_iommu_resv_refresh(struct vfio_iommu * iommu,struct list_head * iova_copy)2422 static int vfio_iommu_resv_refresh(struct vfio_iommu *iommu,
2423 struct list_head *iova_copy)
2424 {
2425 struct vfio_domain *d;
2426 struct vfio_iommu_group *g;
2427 struct vfio_iova *node;
2428 dma_addr_t start, end;
2429 LIST_HEAD(resv_regions);
2430 int ret;
2431
2432 if (list_empty(iova_copy))
2433 return -EINVAL;
2434
2435 list_for_each_entry(d, &iommu->domain_list, next) {
2436 list_for_each_entry(g, &d->group_list, next) {
2437 ret = iommu_get_group_resv_regions(g->iommu_group,
2438 &resv_regions);
2439 if (ret)
2440 goto done;
2441 }
2442 }
2443
2444 node = list_first_entry(iova_copy, struct vfio_iova, list);
2445 start = node->start;
2446 node = list_last_entry(iova_copy, struct vfio_iova, list);
2447 end = node->end;
2448
2449 /* purge the iova list and create new one */
2450 vfio_iommu_iova_free(iova_copy);
2451
2452 ret = vfio_iommu_aper_resize(iova_copy, start, end);
2453 if (ret)
2454 goto done;
2455
2456 /* Exclude current reserved regions from iova ranges */
2457 ret = vfio_iommu_resv_exclude(iova_copy, &resv_regions);
2458 done:
2459 vfio_iommu_resv_free(&resv_regions);
2460 return ret;
2461 }
2462
vfio_iommu_type1_detach_group(void * iommu_data,struct iommu_group * iommu_group)2463 static void vfio_iommu_type1_detach_group(void *iommu_data,
2464 struct iommu_group *iommu_group)
2465 {
2466 struct vfio_iommu *iommu = iommu_data;
2467 struct vfio_domain *domain;
2468 struct vfio_iommu_group *group;
2469 bool update_dirty_scope = false;
2470 LIST_HEAD(iova_copy);
2471
2472 mutex_lock(&iommu->lock);
2473 list_for_each_entry(group, &iommu->emulated_iommu_groups, next) {
2474 if (group->iommu_group != iommu_group)
2475 continue;
2476 update_dirty_scope = !group->pinned_page_dirty_scope;
2477 list_del(&group->next);
2478 kfree(group);
2479
2480 if (list_empty(&iommu->emulated_iommu_groups) &&
2481 list_empty(&iommu->domain_list)) {
2482 WARN_ON(!list_empty(&iommu->device_list));
2483 vfio_iommu_unmap_unpin_all(iommu);
2484 }
2485 goto detach_group_done;
2486 }
2487
2488 /*
2489 * Get a copy of iova list. This will be used to update
2490 * and to replace the current one later. Please note that
2491 * we will leave the original list as it is if update fails.
2492 */
2493 vfio_iommu_iova_get_copy(iommu, &iova_copy);
2494
2495 list_for_each_entry(domain, &iommu->domain_list, next) {
2496 group = find_iommu_group(domain, iommu_group);
2497 if (!group)
2498 continue;
2499
2500 iommu_detach_group(domain->domain, group->iommu_group);
2501 update_dirty_scope = !group->pinned_page_dirty_scope;
2502 list_del(&group->next);
2503 kfree(group);
2504 /*
2505 * Group ownership provides privilege, if the group list is
2506 * empty, the domain goes away. If it's the last domain with
2507 * iommu and external domain doesn't exist, then all the
2508 * mappings go away too. If it's the last domain with iommu and
2509 * external domain exist, update accounting
2510 */
2511 if (list_empty(&domain->group_list)) {
2512 if (list_is_singular(&iommu->domain_list)) {
2513 if (list_empty(&iommu->emulated_iommu_groups)) {
2514 WARN_ON(!list_empty(
2515 &iommu->device_list));
2516 vfio_iommu_unmap_unpin_all(iommu);
2517 } else {
2518 vfio_iommu_unmap_unpin_reaccount(iommu);
2519 }
2520 }
2521 iommu_domain_free(domain->domain);
2522 list_del(&domain->next);
2523 kfree(domain);
2524 vfio_iommu_aper_expand(iommu, &iova_copy);
2525 vfio_update_pgsize_bitmap(iommu);
2526 }
2527 break;
2528 }
2529
2530 if (!vfio_iommu_resv_refresh(iommu, &iova_copy))
2531 vfio_iommu_iova_insert_copy(iommu, &iova_copy);
2532 else
2533 vfio_iommu_iova_free(&iova_copy);
2534
2535 detach_group_done:
2536 /*
2537 * Removal of a group without dirty tracking may allow the iommu scope
2538 * to be promoted.
2539 */
2540 if (update_dirty_scope) {
2541 iommu->num_non_pinned_groups--;
2542 if (iommu->dirty_page_tracking)
2543 vfio_iommu_populate_bitmap_full(iommu);
2544 }
2545 mutex_unlock(&iommu->lock);
2546 }
2547
vfio_iommu_type1_open(unsigned long arg)2548 static void *vfio_iommu_type1_open(unsigned long arg)
2549 {
2550 struct vfio_iommu *iommu;
2551
2552 iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
2553 if (!iommu)
2554 return ERR_PTR(-ENOMEM);
2555
2556 switch (arg) {
2557 case VFIO_TYPE1_IOMMU:
2558 break;
2559 case VFIO_TYPE1_NESTING_IOMMU:
2560 iommu->nesting = true;
2561 fallthrough;
2562 case VFIO_TYPE1v2_IOMMU:
2563 iommu->v2 = true;
2564 break;
2565 default:
2566 kfree(iommu);
2567 return ERR_PTR(-EINVAL);
2568 }
2569
2570 INIT_LIST_HEAD(&iommu->domain_list);
2571 INIT_LIST_HEAD(&iommu->iova_list);
2572 iommu->dma_list = RB_ROOT;
2573 iommu->dma_avail = dma_entry_limit;
2574 mutex_init(&iommu->lock);
2575 mutex_init(&iommu->device_list_lock);
2576 INIT_LIST_HEAD(&iommu->device_list);
2577 iommu->pgsize_bitmap = PAGE_MASK;
2578 INIT_LIST_HEAD(&iommu->emulated_iommu_groups);
2579
2580 return iommu;
2581 }
2582
vfio_release_domain(struct vfio_domain * domain)2583 static void vfio_release_domain(struct vfio_domain *domain)
2584 {
2585 struct vfio_iommu_group *group, *group_tmp;
2586
2587 list_for_each_entry_safe(group, group_tmp,
2588 &domain->group_list, next) {
2589 iommu_detach_group(domain->domain, group->iommu_group);
2590 list_del(&group->next);
2591 kfree(group);
2592 }
2593
2594 iommu_domain_free(domain->domain);
2595 }
2596
vfio_iommu_type1_release(void * iommu_data)2597 static void vfio_iommu_type1_release(void *iommu_data)
2598 {
2599 struct vfio_iommu *iommu = iommu_data;
2600 struct vfio_domain *domain, *domain_tmp;
2601 struct vfio_iommu_group *group, *next_group;
2602
2603 list_for_each_entry_safe(group, next_group,
2604 &iommu->emulated_iommu_groups, next) {
2605 list_del(&group->next);
2606 kfree(group);
2607 }
2608
2609 vfio_iommu_unmap_unpin_all(iommu);
2610
2611 list_for_each_entry_safe(domain, domain_tmp,
2612 &iommu->domain_list, next) {
2613 vfio_release_domain(domain);
2614 list_del(&domain->next);
2615 kfree(domain);
2616 }
2617
2618 vfio_iommu_iova_free(&iommu->iova_list);
2619
2620 kfree(iommu);
2621 }
2622
vfio_domains_have_enforce_cache_coherency(struct vfio_iommu * iommu)2623 static int vfio_domains_have_enforce_cache_coherency(struct vfio_iommu *iommu)
2624 {
2625 struct vfio_domain *domain;
2626 int ret = 1;
2627
2628 mutex_lock(&iommu->lock);
2629 list_for_each_entry(domain, &iommu->domain_list, next) {
2630 if (!(domain->enforce_cache_coherency)) {
2631 ret = 0;
2632 break;
2633 }
2634 }
2635 mutex_unlock(&iommu->lock);
2636
2637 return ret;
2638 }
2639
vfio_iommu_has_emulated(struct vfio_iommu * iommu)2640 static bool vfio_iommu_has_emulated(struct vfio_iommu *iommu)
2641 {
2642 bool ret;
2643
2644 mutex_lock(&iommu->lock);
2645 ret = !list_empty(&iommu->emulated_iommu_groups);
2646 mutex_unlock(&iommu->lock);
2647 return ret;
2648 }
2649
vfio_iommu_type1_check_extension(struct vfio_iommu * iommu,unsigned long arg)2650 static int vfio_iommu_type1_check_extension(struct vfio_iommu *iommu,
2651 unsigned long arg)
2652 {
2653 switch (arg) {
2654 case VFIO_TYPE1_IOMMU:
2655 case VFIO_TYPE1v2_IOMMU:
2656 case VFIO_TYPE1_NESTING_IOMMU:
2657 case VFIO_UNMAP_ALL:
2658 return 1;
2659 case VFIO_UPDATE_VADDR:
2660 /*
2661 * Disable this feature if mdevs are present. They cannot
2662 * safely pin/unpin/rw while vaddrs are being updated.
2663 */
2664 return iommu && !vfio_iommu_has_emulated(iommu);
2665 case VFIO_DMA_CC_IOMMU:
2666 if (!iommu)
2667 return 0;
2668 return vfio_domains_have_enforce_cache_coherency(iommu);
2669 default:
2670 return 0;
2671 }
2672 }
2673
vfio_iommu_iova_add_cap(struct vfio_info_cap * caps,struct vfio_iommu_type1_info_cap_iova_range * cap_iovas,size_t size)2674 static int vfio_iommu_iova_add_cap(struct vfio_info_cap *caps,
2675 struct vfio_iommu_type1_info_cap_iova_range *cap_iovas,
2676 size_t size)
2677 {
2678 struct vfio_info_cap_header *header;
2679 struct vfio_iommu_type1_info_cap_iova_range *iova_cap;
2680
2681 header = vfio_info_cap_add(caps, size,
2682 VFIO_IOMMU_TYPE1_INFO_CAP_IOVA_RANGE, 1);
2683 if (IS_ERR(header))
2684 return PTR_ERR(header);
2685
2686 iova_cap = container_of(header,
2687 struct vfio_iommu_type1_info_cap_iova_range,
2688 header);
2689 iova_cap->nr_iovas = cap_iovas->nr_iovas;
2690 memcpy(iova_cap->iova_ranges, cap_iovas->iova_ranges,
2691 cap_iovas->nr_iovas * sizeof(*cap_iovas->iova_ranges));
2692 return 0;
2693 }
2694
vfio_iommu_iova_build_caps(struct vfio_iommu * iommu,struct vfio_info_cap * caps)2695 static int vfio_iommu_iova_build_caps(struct vfio_iommu *iommu,
2696 struct vfio_info_cap *caps)
2697 {
2698 struct vfio_iommu_type1_info_cap_iova_range *cap_iovas;
2699 struct vfio_iova *iova;
2700 size_t size;
2701 int iovas = 0, i = 0, ret;
2702
2703 list_for_each_entry(iova, &iommu->iova_list, list)
2704 iovas++;
2705
2706 if (!iovas) {
2707 /*
2708 * Return 0 as a container with a single mdev device
2709 * will have an empty list
2710 */
2711 return 0;
2712 }
2713
2714 size = struct_size(cap_iovas, iova_ranges, iovas);
2715
2716 cap_iovas = kzalloc(size, GFP_KERNEL);
2717 if (!cap_iovas)
2718 return -ENOMEM;
2719
2720 cap_iovas->nr_iovas = iovas;
2721
2722 list_for_each_entry(iova, &iommu->iova_list, list) {
2723 cap_iovas->iova_ranges[i].start = iova->start;
2724 cap_iovas->iova_ranges[i].end = iova->end;
2725 i++;
2726 }
2727
2728 ret = vfio_iommu_iova_add_cap(caps, cap_iovas, size);
2729
2730 kfree(cap_iovas);
2731 return ret;
2732 }
2733
vfio_iommu_migration_build_caps(struct vfio_iommu * iommu,struct vfio_info_cap * caps)2734 static int vfio_iommu_migration_build_caps(struct vfio_iommu *iommu,
2735 struct vfio_info_cap *caps)
2736 {
2737 struct vfio_iommu_type1_info_cap_migration cap_mig = {};
2738
2739 cap_mig.header.id = VFIO_IOMMU_TYPE1_INFO_CAP_MIGRATION;
2740 cap_mig.header.version = 1;
2741
2742 cap_mig.flags = 0;
2743 /* support minimum pgsize */
2744 cap_mig.pgsize_bitmap = (size_t)1 << __ffs(iommu->pgsize_bitmap);
2745 cap_mig.max_dirty_bitmap_size = DIRTY_BITMAP_SIZE_MAX;
2746
2747 return vfio_info_add_capability(caps, &cap_mig.header, sizeof(cap_mig));
2748 }
2749
vfio_iommu_dma_avail_build_caps(struct vfio_iommu * iommu,struct vfio_info_cap * caps)2750 static int vfio_iommu_dma_avail_build_caps(struct vfio_iommu *iommu,
2751 struct vfio_info_cap *caps)
2752 {
2753 struct vfio_iommu_type1_info_dma_avail cap_dma_avail;
2754
2755 cap_dma_avail.header.id = VFIO_IOMMU_TYPE1_INFO_DMA_AVAIL;
2756 cap_dma_avail.header.version = 1;
2757
2758 cap_dma_avail.avail = iommu->dma_avail;
2759
2760 return vfio_info_add_capability(caps, &cap_dma_avail.header,
2761 sizeof(cap_dma_avail));
2762 }
2763
vfio_iommu_type1_get_info(struct vfio_iommu * iommu,unsigned long arg)2764 static int vfio_iommu_type1_get_info(struct vfio_iommu *iommu,
2765 unsigned long arg)
2766 {
2767 struct vfio_iommu_type1_info info = {};
2768 unsigned long minsz;
2769 struct vfio_info_cap caps = { .buf = NULL, .size = 0 };
2770 int ret;
2771
2772 minsz = offsetofend(struct vfio_iommu_type1_info, iova_pgsizes);
2773
2774 if (copy_from_user(&info, (void __user *)arg, minsz))
2775 return -EFAULT;
2776
2777 if (info.argsz < minsz)
2778 return -EINVAL;
2779
2780 minsz = min_t(size_t, info.argsz, sizeof(info));
2781
2782 mutex_lock(&iommu->lock);
2783 info.flags = VFIO_IOMMU_INFO_PGSIZES;
2784
2785 info.iova_pgsizes = iommu->pgsize_bitmap;
2786
2787 ret = vfio_iommu_migration_build_caps(iommu, &caps);
2788
2789 if (!ret)
2790 ret = vfio_iommu_dma_avail_build_caps(iommu, &caps);
2791
2792 if (!ret)
2793 ret = vfio_iommu_iova_build_caps(iommu, &caps);
2794
2795 mutex_unlock(&iommu->lock);
2796
2797 if (ret)
2798 return ret;
2799
2800 if (caps.size) {
2801 info.flags |= VFIO_IOMMU_INFO_CAPS;
2802
2803 if (info.argsz < sizeof(info) + caps.size) {
2804 info.argsz = sizeof(info) + caps.size;
2805 } else {
2806 vfio_info_cap_shift(&caps, sizeof(info));
2807 if (copy_to_user((void __user *)arg +
2808 sizeof(info), caps.buf,
2809 caps.size)) {
2810 kfree(caps.buf);
2811 return -EFAULT;
2812 }
2813 info.cap_offset = sizeof(info);
2814 }
2815
2816 kfree(caps.buf);
2817 }
2818
2819 return copy_to_user((void __user *)arg, &info, minsz) ?
2820 -EFAULT : 0;
2821 }
2822
vfio_iommu_type1_map_dma(struct vfio_iommu * iommu,unsigned long arg)2823 static int vfio_iommu_type1_map_dma(struct vfio_iommu *iommu,
2824 unsigned long arg)
2825 {
2826 struct vfio_iommu_type1_dma_map map;
2827 unsigned long minsz;
2828 uint32_t mask = VFIO_DMA_MAP_FLAG_READ | VFIO_DMA_MAP_FLAG_WRITE |
2829 VFIO_DMA_MAP_FLAG_VADDR;
2830
2831 minsz = offsetofend(struct vfio_iommu_type1_dma_map, size);
2832
2833 if (copy_from_user(&map, (void __user *)arg, minsz))
2834 return -EFAULT;
2835
2836 if (map.argsz < minsz || map.flags & ~mask)
2837 return -EINVAL;
2838
2839 return vfio_dma_do_map(iommu, &map);
2840 }
2841
vfio_iommu_type1_unmap_dma(struct vfio_iommu * iommu,unsigned long arg)2842 static int vfio_iommu_type1_unmap_dma(struct vfio_iommu *iommu,
2843 unsigned long arg)
2844 {
2845 struct vfio_iommu_type1_dma_unmap unmap;
2846 struct vfio_bitmap bitmap = { 0 };
2847 uint32_t mask = VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP |
2848 VFIO_DMA_UNMAP_FLAG_VADDR |
2849 VFIO_DMA_UNMAP_FLAG_ALL;
2850 unsigned long minsz;
2851 int ret;
2852
2853 minsz = offsetofend(struct vfio_iommu_type1_dma_unmap, size);
2854
2855 if (copy_from_user(&unmap, (void __user *)arg, minsz))
2856 return -EFAULT;
2857
2858 if (unmap.argsz < minsz || unmap.flags & ~mask)
2859 return -EINVAL;
2860
2861 if ((unmap.flags & VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP) &&
2862 (unmap.flags & (VFIO_DMA_UNMAP_FLAG_ALL |
2863 VFIO_DMA_UNMAP_FLAG_VADDR)))
2864 return -EINVAL;
2865
2866 if (unmap.flags & VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP) {
2867 unsigned long pgshift;
2868
2869 if (unmap.argsz < (minsz + sizeof(bitmap)))
2870 return -EINVAL;
2871
2872 if (copy_from_user(&bitmap,
2873 (void __user *)(arg + minsz),
2874 sizeof(bitmap)))
2875 return -EFAULT;
2876
2877 if (!access_ok((void __user *)bitmap.data, bitmap.size))
2878 return -EINVAL;
2879
2880 pgshift = __ffs(bitmap.pgsize);
2881 ret = verify_bitmap_size(unmap.size >> pgshift,
2882 bitmap.size);
2883 if (ret)
2884 return ret;
2885 }
2886
2887 ret = vfio_dma_do_unmap(iommu, &unmap, &bitmap);
2888 if (ret)
2889 return ret;
2890
2891 return copy_to_user((void __user *)arg, &unmap, minsz) ?
2892 -EFAULT : 0;
2893 }
2894
vfio_iommu_type1_dirty_pages(struct vfio_iommu * iommu,unsigned long arg)2895 static int vfio_iommu_type1_dirty_pages(struct vfio_iommu *iommu,
2896 unsigned long arg)
2897 {
2898 struct vfio_iommu_type1_dirty_bitmap dirty;
2899 uint32_t mask = VFIO_IOMMU_DIRTY_PAGES_FLAG_START |
2900 VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP |
2901 VFIO_IOMMU_DIRTY_PAGES_FLAG_GET_BITMAP;
2902 unsigned long minsz;
2903 int ret = 0;
2904
2905 if (!iommu->v2)
2906 return -EACCES;
2907
2908 minsz = offsetofend(struct vfio_iommu_type1_dirty_bitmap, flags);
2909
2910 if (copy_from_user(&dirty, (void __user *)arg, minsz))
2911 return -EFAULT;
2912
2913 if (dirty.argsz < minsz || dirty.flags & ~mask)
2914 return -EINVAL;
2915
2916 /* only one flag should be set at a time */
2917 if (__ffs(dirty.flags) != __fls(dirty.flags))
2918 return -EINVAL;
2919
2920 if (dirty.flags & VFIO_IOMMU_DIRTY_PAGES_FLAG_START) {
2921 size_t pgsize;
2922
2923 mutex_lock(&iommu->lock);
2924 pgsize = 1 << __ffs(iommu->pgsize_bitmap);
2925 if (!iommu->dirty_page_tracking) {
2926 ret = vfio_dma_bitmap_alloc_all(iommu, pgsize);
2927 if (!ret)
2928 iommu->dirty_page_tracking = true;
2929 }
2930 mutex_unlock(&iommu->lock);
2931 return ret;
2932 } else if (dirty.flags & VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP) {
2933 mutex_lock(&iommu->lock);
2934 if (iommu->dirty_page_tracking) {
2935 iommu->dirty_page_tracking = false;
2936 vfio_dma_bitmap_free_all(iommu);
2937 }
2938 mutex_unlock(&iommu->lock);
2939 return 0;
2940 } else if (dirty.flags & VFIO_IOMMU_DIRTY_PAGES_FLAG_GET_BITMAP) {
2941 struct vfio_iommu_type1_dirty_bitmap_get range;
2942 unsigned long pgshift;
2943 size_t data_size = dirty.argsz - minsz;
2944 size_t iommu_pgsize;
2945
2946 if (!data_size || data_size < sizeof(range))
2947 return -EINVAL;
2948
2949 if (copy_from_user(&range, (void __user *)(arg + minsz),
2950 sizeof(range)))
2951 return -EFAULT;
2952
2953 if (range.iova + range.size < range.iova)
2954 return -EINVAL;
2955 if (!access_ok((void __user *)range.bitmap.data,
2956 range.bitmap.size))
2957 return -EINVAL;
2958
2959 pgshift = __ffs(range.bitmap.pgsize);
2960 ret = verify_bitmap_size(range.size >> pgshift,
2961 range.bitmap.size);
2962 if (ret)
2963 return ret;
2964
2965 mutex_lock(&iommu->lock);
2966
2967 iommu_pgsize = (size_t)1 << __ffs(iommu->pgsize_bitmap);
2968
2969 /* allow only smallest supported pgsize */
2970 if (range.bitmap.pgsize != iommu_pgsize) {
2971 ret = -EINVAL;
2972 goto out_unlock;
2973 }
2974 if (range.iova & (iommu_pgsize - 1)) {
2975 ret = -EINVAL;
2976 goto out_unlock;
2977 }
2978 if (!range.size || range.size & (iommu_pgsize - 1)) {
2979 ret = -EINVAL;
2980 goto out_unlock;
2981 }
2982
2983 if (iommu->dirty_page_tracking)
2984 ret = vfio_iova_dirty_bitmap(range.bitmap.data,
2985 iommu, range.iova,
2986 range.size,
2987 range.bitmap.pgsize);
2988 else
2989 ret = -EINVAL;
2990 out_unlock:
2991 mutex_unlock(&iommu->lock);
2992
2993 return ret;
2994 }
2995
2996 return -EINVAL;
2997 }
2998
vfio_iommu_type1_ioctl(void * iommu_data,unsigned int cmd,unsigned long arg)2999 static long vfio_iommu_type1_ioctl(void *iommu_data,
3000 unsigned int cmd, unsigned long arg)
3001 {
3002 struct vfio_iommu *iommu = iommu_data;
3003
3004 switch (cmd) {
3005 case VFIO_CHECK_EXTENSION:
3006 return vfio_iommu_type1_check_extension(iommu, arg);
3007 case VFIO_IOMMU_GET_INFO:
3008 return vfio_iommu_type1_get_info(iommu, arg);
3009 case VFIO_IOMMU_MAP_DMA:
3010 return vfio_iommu_type1_map_dma(iommu, arg);
3011 case VFIO_IOMMU_UNMAP_DMA:
3012 return vfio_iommu_type1_unmap_dma(iommu, arg);
3013 case VFIO_IOMMU_DIRTY_PAGES:
3014 return vfio_iommu_type1_dirty_pages(iommu, arg);
3015 default:
3016 return -ENOTTY;
3017 }
3018 }
3019
vfio_iommu_type1_register_device(void * iommu_data,struct vfio_device * vdev)3020 static void vfio_iommu_type1_register_device(void *iommu_data,
3021 struct vfio_device *vdev)
3022 {
3023 struct vfio_iommu *iommu = iommu_data;
3024
3025 if (!vdev->ops->dma_unmap)
3026 return;
3027
3028 /*
3029 * list_empty(&iommu->device_list) is tested under the iommu->lock while
3030 * iteration for dma_unmap must be done under the device_list_lock.
3031 * Holding both locks here allows avoiding the device_list_lock in
3032 * several fast paths. See vfio_notify_dma_unmap()
3033 */
3034 mutex_lock(&iommu->lock);
3035 mutex_lock(&iommu->device_list_lock);
3036 list_add(&vdev->iommu_entry, &iommu->device_list);
3037 mutex_unlock(&iommu->device_list_lock);
3038 mutex_unlock(&iommu->lock);
3039 }
3040
vfio_iommu_type1_unregister_device(void * iommu_data,struct vfio_device * vdev)3041 static void vfio_iommu_type1_unregister_device(void *iommu_data,
3042 struct vfio_device *vdev)
3043 {
3044 struct vfio_iommu *iommu = iommu_data;
3045
3046 if (!vdev->ops->dma_unmap)
3047 return;
3048
3049 mutex_lock(&iommu->lock);
3050 mutex_lock(&iommu->device_list_lock);
3051 list_del(&vdev->iommu_entry);
3052 mutex_unlock(&iommu->device_list_lock);
3053 mutex_unlock(&iommu->lock);
3054 }
3055
vfio_iommu_type1_dma_rw_chunk(struct vfio_iommu * iommu,dma_addr_t user_iova,void * data,size_t count,bool write,size_t * copied)3056 static int vfio_iommu_type1_dma_rw_chunk(struct vfio_iommu *iommu,
3057 dma_addr_t user_iova, void *data,
3058 size_t count, bool write,
3059 size_t *copied)
3060 {
3061 struct mm_struct *mm;
3062 unsigned long vaddr;
3063 struct vfio_dma *dma;
3064 bool kthread = current->mm == NULL;
3065 size_t offset;
3066
3067 *copied = 0;
3068
3069 dma = vfio_find_dma(iommu, user_iova, 1);
3070 if (!dma)
3071 return -EINVAL;
3072
3073 if ((write && !(dma->prot & IOMMU_WRITE)) ||
3074 !(dma->prot & IOMMU_READ))
3075 return -EPERM;
3076
3077 mm = dma->mm;
3078 if (!mmget_not_zero(mm))
3079 return -EPERM;
3080
3081 if (kthread)
3082 kthread_use_mm(mm);
3083 else if (current->mm != mm)
3084 goto out;
3085
3086 offset = user_iova - dma->iova;
3087
3088 if (count > dma->size - offset)
3089 count = dma->size - offset;
3090
3091 vaddr = dma->vaddr + offset;
3092
3093 if (write) {
3094 *copied = copy_to_user((void __user *)vaddr, data,
3095 count) ? 0 : count;
3096 if (*copied && iommu->dirty_page_tracking) {
3097 unsigned long pgshift = __ffs(iommu->pgsize_bitmap);
3098 /*
3099 * Bitmap populated with the smallest supported page
3100 * size
3101 */
3102 bitmap_set(dma->bitmap, offset >> pgshift,
3103 ((offset + *copied - 1) >> pgshift) -
3104 (offset >> pgshift) + 1);
3105 }
3106 } else
3107 *copied = copy_from_user(data, (void __user *)vaddr,
3108 count) ? 0 : count;
3109 if (kthread)
3110 kthread_unuse_mm(mm);
3111 out:
3112 mmput(mm);
3113 return *copied ? 0 : -EFAULT;
3114 }
3115
vfio_iommu_type1_dma_rw(void * iommu_data,dma_addr_t user_iova,void * data,size_t count,bool write)3116 static int vfio_iommu_type1_dma_rw(void *iommu_data, dma_addr_t user_iova,
3117 void *data, size_t count, bool write)
3118 {
3119 struct vfio_iommu *iommu = iommu_data;
3120 int ret = 0;
3121 size_t done;
3122
3123 mutex_lock(&iommu->lock);
3124
3125 if (WARN_ONCE(iommu->vaddr_invalid_count,
3126 "vfio_dma_rw not allowed with VFIO_UPDATE_VADDR\n")) {
3127 ret = -EBUSY;
3128 goto out;
3129 }
3130
3131 while (count > 0) {
3132 ret = vfio_iommu_type1_dma_rw_chunk(iommu, user_iova, data,
3133 count, write, &done);
3134 if (ret)
3135 break;
3136
3137 count -= done;
3138 data += done;
3139 user_iova += done;
3140 }
3141
3142 out:
3143 mutex_unlock(&iommu->lock);
3144 return ret;
3145 }
3146
3147 static struct iommu_domain *
vfio_iommu_type1_group_iommu_domain(void * iommu_data,struct iommu_group * iommu_group)3148 vfio_iommu_type1_group_iommu_domain(void *iommu_data,
3149 struct iommu_group *iommu_group)
3150 {
3151 struct iommu_domain *domain = ERR_PTR(-ENODEV);
3152 struct vfio_iommu *iommu = iommu_data;
3153 struct vfio_domain *d;
3154
3155 if (!iommu || !iommu_group)
3156 return ERR_PTR(-EINVAL);
3157
3158 mutex_lock(&iommu->lock);
3159 list_for_each_entry(d, &iommu->domain_list, next) {
3160 if (find_iommu_group(d, iommu_group)) {
3161 domain = d->domain;
3162 break;
3163 }
3164 }
3165 mutex_unlock(&iommu->lock);
3166
3167 return domain;
3168 }
3169
3170 static const struct vfio_iommu_driver_ops vfio_iommu_driver_ops_type1 = {
3171 .name = "vfio-iommu-type1",
3172 .owner = THIS_MODULE,
3173 .open = vfio_iommu_type1_open,
3174 .release = vfio_iommu_type1_release,
3175 .ioctl = vfio_iommu_type1_ioctl,
3176 .attach_group = vfio_iommu_type1_attach_group,
3177 .detach_group = vfio_iommu_type1_detach_group,
3178 .pin_pages = vfio_iommu_type1_pin_pages,
3179 .unpin_pages = vfio_iommu_type1_unpin_pages,
3180 .register_device = vfio_iommu_type1_register_device,
3181 .unregister_device = vfio_iommu_type1_unregister_device,
3182 .dma_rw = vfio_iommu_type1_dma_rw,
3183 .group_iommu_domain = vfio_iommu_type1_group_iommu_domain,
3184 };
3185
vfio_iommu_type1_init(void)3186 static int __init vfio_iommu_type1_init(void)
3187 {
3188 return vfio_register_iommu_driver(&vfio_iommu_driver_ops_type1);
3189 }
3190
vfio_iommu_type1_cleanup(void)3191 static void __exit vfio_iommu_type1_cleanup(void)
3192 {
3193 vfio_unregister_iommu_driver(&vfio_iommu_driver_ops_type1);
3194 }
3195
3196 module_init(vfio_iommu_type1_init);
3197 module_exit(vfio_iommu_type1_cleanup);
3198
3199 MODULE_VERSION(DRIVER_VERSION);
3200 MODULE_LICENSE("GPL v2");
3201 MODULE_AUTHOR(DRIVER_AUTHOR);
3202 MODULE_DESCRIPTION(DRIVER_DESC);
3203