1 /**************************************************************************
2  *
3  * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
4  * All Rights Reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24  * USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27 /*
28  * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
29  */
30 
31 #include "ttm/ttm_module.h"
32 #include "ttm/ttm_bo_driver.h"
33 #include "ttm/ttm_placement.h"
34 #include <linux/jiffies.h>
35 #include <linux/slab.h>
36 #include <linux/sched.h>
37 #include <linux/mm.h>
38 #include <linux/file.h>
39 #include <linux/module.h>
40 #include <linux/atomic.h>
41 
42 #define TTM_ASSERT_LOCKED(param)
43 #define TTM_DEBUG(fmt, arg...)
44 #define TTM_BO_HASH_ORDER 13
45 
46 static int ttm_bo_setup_vm(struct ttm_buffer_object *bo);
47 static int ttm_bo_swapout(struct ttm_mem_shrink *shrink);
48 static void ttm_bo_global_kobj_release(struct kobject *kobj);
49 
50 static struct attribute ttm_bo_count = {
51 	.name = "bo_count",
52 	.mode = S_IRUGO
53 };
54 
ttm_mem_type_from_flags(uint32_t flags,uint32_t * mem_type)55 static inline int ttm_mem_type_from_flags(uint32_t flags, uint32_t *mem_type)
56 {
57 	int i;
58 
59 	for (i = 0; i <= TTM_PL_PRIV5; i++)
60 		if (flags & (1 << i)) {
61 			*mem_type = i;
62 			return 0;
63 		}
64 	return -EINVAL;
65 }
66 
ttm_mem_type_debug(struct ttm_bo_device * bdev,int mem_type)67 static void ttm_mem_type_debug(struct ttm_bo_device *bdev, int mem_type)
68 {
69 	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
70 
71 	printk(KERN_ERR TTM_PFX "    has_type: %d\n", man->has_type);
72 	printk(KERN_ERR TTM_PFX "    use_type: %d\n", man->use_type);
73 	printk(KERN_ERR TTM_PFX "    flags: 0x%08X\n", man->flags);
74 	printk(KERN_ERR TTM_PFX "    gpu_offset: 0x%08lX\n", man->gpu_offset);
75 	printk(KERN_ERR TTM_PFX "    size: %llu\n", man->size);
76 	printk(KERN_ERR TTM_PFX "    available_caching: 0x%08X\n",
77 		man->available_caching);
78 	printk(KERN_ERR TTM_PFX "    default_caching: 0x%08X\n",
79 		man->default_caching);
80 	if (mem_type != TTM_PL_SYSTEM)
81 		(*man->func->debug)(man, TTM_PFX);
82 }
83 
ttm_bo_mem_space_debug(struct ttm_buffer_object * bo,struct ttm_placement * placement)84 static void ttm_bo_mem_space_debug(struct ttm_buffer_object *bo,
85 					struct ttm_placement *placement)
86 {
87 	int i, ret, mem_type;
88 
89 	printk(KERN_ERR TTM_PFX "No space for %p (%lu pages, %luK, %luM)\n",
90 		bo, bo->mem.num_pages, bo->mem.size >> 10,
91 		bo->mem.size >> 20);
92 	for (i = 0; i < placement->num_placement; i++) {
93 		ret = ttm_mem_type_from_flags(placement->placement[i],
94 						&mem_type);
95 		if (ret)
96 			return;
97 		printk(KERN_ERR TTM_PFX "  placement[%d]=0x%08X (%d)\n",
98 			i, placement->placement[i], mem_type);
99 		ttm_mem_type_debug(bo->bdev, mem_type);
100 	}
101 }
102 
ttm_bo_global_show(struct kobject * kobj,struct attribute * attr,char * buffer)103 static ssize_t ttm_bo_global_show(struct kobject *kobj,
104 				  struct attribute *attr,
105 				  char *buffer)
106 {
107 	struct ttm_bo_global *glob =
108 		container_of(kobj, struct ttm_bo_global, kobj);
109 
110 	return snprintf(buffer, PAGE_SIZE, "%lu\n",
111 			(unsigned long) atomic_read(&glob->bo_count));
112 }
113 
114 static struct attribute *ttm_bo_global_attrs[] = {
115 	&ttm_bo_count,
116 	NULL
117 };
118 
119 static const struct sysfs_ops ttm_bo_global_ops = {
120 	.show = &ttm_bo_global_show
121 };
122 
123 static struct kobj_type ttm_bo_glob_kobj_type  = {
124 	.release = &ttm_bo_global_kobj_release,
125 	.sysfs_ops = &ttm_bo_global_ops,
126 	.default_attrs = ttm_bo_global_attrs
127 };
128 
129 
ttm_bo_type_flags(unsigned type)130 static inline uint32_t ttm_bo_type_flags(unsigned type)
131 {
132 	return 1 << (type);
133 }
134 
ttm_bo_release_list(struct kref * list_kref)135 static void ttm_bo_release_list(struct kref *list_kref)
136 {
137 	struct ttm_buffer_object *bo =
138 	    container_of(list_kref, struct ttm_buffer_object, list_kref);
139 	struct ttm_bo_device *bdev = bo->bdev;
140 	size_t acc_size = bo->acc_size;
141 
142 	BUG_ON(atomic_read(&bo->list_kref.refcount));
143 	BUG_ON(atomic_read(&bo->kref.refcount));
144 	BUG_ON(atomic_read(&bo->cpu_writers));
145 	BUG_ON(bo->sync_obj != NULL);
146 	BUG_ON(bo->mem.mm_node != NULL);
147 	BUG_ON(!list_empty(&bo->lru));
148 	BUG_ON(!list_empty(&bo->ddestroy));
149 
150 	if (bo->ttm)
151 		ttm_tt_destroy(bo->ttm);
152 	atomic_dec(&bo->glob->bo_count);
153 	if (bo->destroy)
154 		bo->destroy(bo);
155 	else {
156 		kfree(bo);
157 	}
158 	ttm_mem_global_free(bdev->glob->mem_glob, acc_size);
159 }
160 
ttm_bo_wait_unreserved(struct ttm_buffer_object * bo,bool interruptible)161 int ttm_bo_wait_unreserved(struct ttm_buffer_object *bo, bool interruptible)
162 {
163 	if (interruptible) {
164 		return wait_event_interruptible(bo->event_queue,
165 					       atomic_read(&bo->reserved) == 0);
166 	} else {
167 		wait_event(bo->event_queue, atomic_read(&bo->reserved) == 0);
168 		return 0;
169 	}
170 }
171 EXPORT_SYMBOL(ttm_bo_wait_unreserved);
172 
ttm_bo_add_to_lru(struct ttm_buffer_object * bo)173 void ttm_bo_add_to_lru(struct ttm_buffer_object *bo)
174 {
175 	struct ttm_bo_device *bdev = bo->bdev;
176 	struct ttm_mem_type_manager *man;
177 
178 	BUG_ON(!atomic_read(&bo->reserved));
179 
180 	if (!(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) {
181 
182 		BUG_ON(!list_empty(&bo->lru));
183 
184 		man = &bdev->man[bo->mem.mem_type];
185 		list_add_tail(&bo->lru, &man->lru);
186 		kref_get(&bo->list_kref);
187 
188 		if (bo->ttm != NULL) {
189 			list_add_tail(&bo->swap, &bo->glob->swap_lru);
190 			kref_get(&bo->list_kref);
191 		}
192 	}
193 }
194 
ttm_bo_del_from_lru(struct ttm_buffer_object * bo)195 int ttm_bo_del_from_lru(struct ttm_buffer_object *bo)
196 {
197 	int put_count = 0;
198 
199 	if (!list_empty(&bo->swap)) {
200 		list_del_init(&bo->swap);
201 		++put_count;
202 	}
203 	if (!list_empty(&bo->lru)) {
204 		list_del_init(&bo->lru);
205 		++put_count;
206 	}
207 
208 	/*
209 	 * TODO: Add a driver hook to delete from
210 	 * driver-specific LRU's here.
211 	 */
212 
213 	return put_count;
214 }
215 
ttm_bo_reserve_locked(struct ttm_buffer_object * bo,bool interruptible,bool no_wait,bool use_sequence,uint32_t sequence)216 int ttm_bo_reserve_locked(struct ttm_buffer_object *bo,
217 			  bool interruptible,
218 			  bool no_wait, bool use_sequence, uint32_t sequence)
219 {
220 	struct ttm_bo_global *glob = bo->glob;
221 	int ret;
222 
223 	while (unlikely(atomic_cmpxchg(&bo->reserved, 0, 1) != 0)) {
224 		/**
225 		 * Deadlock avoidance for multi-bo reserving.
226 		 */
227 		if (use_sequence && bo->seq_valid) {
228 			/**
229 			 * We've already reserved this one.
230 			 */
231 			if (unlikely(sequence == bo->val_seq))
232 				return -EDEADLK;
233 			/**
234 			 * Already reserved by a thread that will not back
235 			 * off for us. We need to back off.
236 			 */
237 			if (unlikely(sequence - bo->val_seq < (1 << 31)))
238 				return -EAGAIN;
239 		}
240 
241 		if (no_wait)
242 			return -EBUSY;
243 
244 		spin_unlock(&glob->lru_lock);
245 		ret = ttm_bo_wait_unreserved(bo, interruptible);
246 		spin_lock(&glob->lru_lock);
247 
248 		if (unlikely(ret))
249 			return ret;
250 	}
251 
252 	if (use_sequence) {
253 		/**
254 		 * Wake up waiters that may need to recheck for deadlock,
255 		 * if we decreased the sequence number.
256 		 */
257 		if (unlikely((bo->val_seq - sequence < (1 << 31))
258 			     || !bo->seq_valid))
259 			wake_up_all(&bo->event_queue);
260 
261 		bo->val_seq = sequence;
262 		bo->seq_valid = true;
263 	} else {
264 		bo->seq_valid = false;
265 	}
266 
267 	return 0;
268 }
269 EXPORT_SYMBOL(ttm_bo_reserve);
270 
ttm_bo_ref_bug(struct kref * list_kref)271 static void ttm_bo_ref_bug(struct kref *list_kref)
272 {
273 	BUG();
274 }
275 
ttm_bo_list_ref_sub(struct ttm_buffer_object * bo,int count,bool never_free)276 void ttm_bo_list_ref_sub(struct ttm_buffer_object *bo, int count,
277 			 bool never_free)
278 {
279 	kref_sub(&bo->list_kref, count,
280 		 (never_free) ? ttm_bo_ref_bug : ttm_bo_release_list);
281 }
282 
ttm_bo_reserve(struct ttm_buffer_object * bo,bool interruptible,bool no_wait,bool use_sequence,uint32_t sequence)283 int ttm_bo_reserve(struct ttm_buffer_object *bo,
284 		   bool interruptible,
285 		   bool no_wait, bool use_sequence, uint32_t sequence)
286 {
287 	struct ttm_bo_global *glob = bo->glob;
288 	int put_count = 0;
289 	int ret;
290 
291 	spin_lock(&glob->lru_lock);
292 	ret = ttm_bo_reserve_locked(bo, interruptible, no_wait, use_sequence,
293 				    sequence);
294 	if (likely(ret == 0))
295 		put_count = ttm_bo_del_from_lru(bo);
296 	spin_unlock(&glob->lru_lock);
297 
298 	ttm_bo_list_ref_sub(bo, put_count, true);
299 
300 	return ret;
301 }
302 
ttm_bo_unreserve_locked(struct ttm_buffer_object * bo)303 void ttm_bo_unreserve_locked(struct ttm_buffer_object *bo)
304 {
305 	ttm_bo_add_to_lru(bo);
306 	atomic_set(&bo->reserved, 0);
307 	wake_up_all(&bo->event_queue);
308 }
309 
ttm_bo_unreserve(struct ttm_buffer_object * bo)310 void ttm_bo_unreserve(struct ttm_buffer_object *bo)
311 {
312 	struct ttm_bo_global *glob = bo->glob;
313 
314 	spin_lock(&glob->lru_lock);
315 	ttm_bo_unreserve_locked(bo);
316 	spin_unlock(&glob->lru_lock);
317 }
318 EXPORT_SYMBOL(ttm_bo_unreserve);
319 
320 /*
321  * Call bo->mutex locked.
322  */
ttm_bo_add_ttm(struct ttm_buffer_object * bo,bool zero_alloc)323 static int ttm_bo_add_ttm(struct ttm_buffer_object *bo, bool zero_alloc)
324 {
325 	struct ttm_bo_device *bdev = bo->bdev;
326 	struct ttm_bo_global *glob = bo->glob;
327 	int ret = 0;
328 	uint32_t page_flags = 0;
329 
330 	TTM_ASSERT_LOCKED(&bo->mutex);
331 	bo->ttm = NULL;
332 
333 	if (bdev->need_dma32)
334 		page_flags |= TTM_PAGE_FLAG_DMA32;
335 
336 	switch (bo->type) {
337 	case ttm_bo_type_device:
338 		if (zero_alloc)
339 			page_flags |= TTM_PAGE_FLAG_ZERO_ALLOC;
340 	case ttm_bo_type_kernel:
341 		bo->ttm = bdev->driver->ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
342 						      page_flags, glob->dummy_read_page);
343 		if (unlikely(bo->ttm == NULL))
344 			ret = -ENOMEM;
345 		break;
346 	default:
347 		printk(KERN_ERR TTM_PFX "Illegal buffer object type\n");
348 		ret = -EINVAL;
349 		break;
350 	}
351 
352 	return ret;
353 }
354 
ttm_bo_handle_move_mem(struct ttm_buffer_object * bo,struct ttm_mem_reg * mem,bool evict,bool interruptible,bool no_wait_reserve,bool no_wait_gpu)355 static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo,
356 				  struct ttm_mem_reg *mem,
357 				  bool evict, bool interruptible,
358 				  bool no_wait_reserve, bool no_wait_gpu)
359 {
360 	struct ttm_bo_device *bdev = bo->bdev;
361 	bool old_is_pci = ttm_mem_reg_is_pci(bdev, &bo->mem);
362 	bool new_is_pci = ttm_mem_reg_is_pci(bdev, mem);
363 	struct ttm_mem_type_manager *old_man = &bdev->man[bo->mem.mem_type];
364 	struct ttm_mem_type_manager *new_man = &bdev->man[mem->mem_type];
365 	int ret = 0;
366 
367 	if (old_is_pci || new_is_pci ||
368 	    ((mem->placement & bo->mem.placement & TTM_PL_MASK_CACHING) == 0)) {
369 		ret = ttm_mem_io_lock(old_man, true);
370 		if (unlikely(ret != 0))
371 			goto out_err;
372 		ttm_bo_unmap_virtual_locked(bo);
373 		ttm_mem_io_unlock(old_man);
374 	}
375 
376 	/*
377 	 * Create and bind a ttm if required.
378 	 */
379 
380 	if (!(new_man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
381 		if (bo->ttm == NULL) {
382 			bool zero = !(old_man->flags & TTM_MEMTYPE_FLAG_FIXED);
383 			ret = ttm_bo_add_ttm(bo, zero);
384 			if (ret)
385 				goto out_err;
386 		}
387 
388 		ret = ttm_tt_set_placement_caching(bo->ttm, mem->placement);
389 		if (ret)
390 			goto out_err;
391 
392 		if (mem->mem_type != TTM_PL_SYSTEM) {
393 			ret = ttm_tt_bind(bo->ttm, mem);
394 			if (ret)
395 				goto out_err;
396 		}
397 
398 		if (bo->mem.mem_type == TTM_PL_SYSTEM) {
399 			if (bdev->driver->move_notify)
400 				bdev->driver->move_notify(bo, mem);
401 			bo->mem = *mem;
402 			mem->mm_node = NULL;
403 			goto moved;
404 		}
405 	}
406 
407 	if (bdev->driver->move_notify)
408 		bdev->driver->move_notify(bo, mem);
409 
410 	if (!(old_man->flags & TTM_MEMTYPE_FLAG_FIXED) &&
411 	    !(new_man->flags & TTM_MEMTYPE_FLAG_FIXED))
412 		ret = ttm_bo_move_ttm(bo, evict, no_wait_reserve, no_wait_gpu, mem);
413 	else if (bdev->driver->move)
414 		ret = bdev->driver->move(bo, evict, interruptible,
415 					 no_wait_reserve, no_wait_gpu, mem);
416 	else
417 		ret = ttm_bo_move_memcpy(bo, evict, no_wait_reserve, no_wait_gpu, mem);
418 
419 	if (ret) {
420 		if (bdev->driver->move_notify) {
421 			struct ttm_mem_reg tmp_mem = *mem;
422 			*mem = bo->mem;
423 			bo->mem = tmp_mem;
424 			bdev->driver->move_notify(bo, mem);
425 			bo->mem = *mem;
426 		}
427 
428 		goto out_err;
429 	}
430 
431 moved:
432 	if (bo->evicted) {
433 		ret = bdev->driver->invalidate_caches(bdev, bo->mem.placement);
434 		if (ret)
435 			printk(KERN_ERR TTM_PFX "Can not flush read caches\n");
436 		bo->evicted = false;
437 	}
438 
439 	if (bo->mem.mm_node) {
440 		bo->offset = (bo->mem.start << PAGE_SHIFT) +
441 		    bdev->man[bo->mem.mem_type].gpu_offset;
442 		bo->cur_placement = bo->mem.placement;
443 	} else
444 		bo->offset = 0;
445 
446 	return 0;
447 
448 out_err:
449 	new_man = &bdev->man[bo->mem.mem_type];
450 	if ((new_man->flags & TTM_MEMTYPE_FLAG_FIXED) && bo->ttm) {
451 		ttm_tt_unbind(bo->ttm);
452 		ttm_tt_destroy(bo->ttm);
453 		bo->ttm = NULL;
454 	}
455 
456 	return ret;
457 }
458 
459 /**
460  * Call bo::reserved.
461  * Will release GPU memory type usage on destruction.
462  * This is the place to put in driver specific hooks to release
463  * driver private resources.
464  * Will release the bo::reserved lock.
465  */
466 
ttm_bo_cleanup_memtype_use(struct ttm_buffer_object * bo)467 static void ttm_bo_cleanup_memtype_use(struct ttm_buffer_object *bo)
468 {
469 	if (bo->bdev->driver->move_notify)
470 		bo->bdev->driver->move_notify(bo, NULL);
471 
472 	if (bo->ttm) {
473 		ttm_tt_unbind(bo->ttm);
474 		ttm_tt_destroy(bo->ttm);
475 		bo->ttm = NULL;
476 	}
477 	ttm_bo_mem_put(bo, &bo->mem);
478 
479 	atomic_set(&bo->reserved, 0);
480 
481 	/*
482 	 * Make processes trying to reserve really pick it up.
483 	 */
484 	smp_mb__after_atomic_dec();
485 	wake_up_all(&bo->event_queue);
486 }
487 
ttm_bo_cleanup_refs_or_queue(struct ttm_buffer_object * bo)488 static void ttm_bo_cleanup_refs_or_queue(struct ttm_buffer_object *bo)
489 {
490 	struct ttm_bo_device *bdev = bo->bdev;
491 	struct ttm_bo_global *glob = bo->glob;
492 	struct ttm_bo_driver *driver;
493 	void *sync_obj = NULL;
494 	void *sync_obj_arg;
495 	int put_count;
496 	int ret;
497 
498 	spin_lock(&bdev->fence_lock);
499 	(void) ttm_bo_wait(bo, false, false, true);
500 	if (!bo->sync_obj) {
501 
502 		spin_lock(&glob->lru_lock);
503 
504 		/**
505 		 * Lock inversion between bo:reserve and bdev::fence_lock here,
506 		 * but that's OK, since we're only trylocking.
507 		 */
508 
509 		ret = ttm_bo_reserve_locked(bo, false, true, false, 0);
510 
511 		if (unlikely(ret == -EBUSY))
512 			goto queue;
513 
514 		spin_unlock(&bdev->fence_lock);
515 		put_count = ttm_bo_del_from_lru(bo);
516 
517 		spin_unlock(&glob->lru_lock);
518 		ttm_bo_cleanup_memtype_use(bo);
519 
520 		ttm_bo_list_ref_sub(bo, put_count, true);
521 
522 		return;
523 	} else {
524 		spin_lock(&glob->lru_lock);
525 	}
526 queue:
527 	driver = bdev->driver;
528 	if (bo->sync_obj)
529 		sync_obj = driver->sync_obj_ref(bo->sync_obj);
530 	sync_obj_arg = bo->sync_obj_arg;
531 
532 	kref_get(&bo->list_kref);
533 	list_add_tail(&bo->ddestroy, &bdev->ddestroy);
534 	spin_unlock(&glob->lru_lock);
535 	spin_unlock(&bdev->fence_lock);
536 
537 	if (sync_obj) {
538 		driver->sync_obj_flush(sync_obj, sync_obj_arg);
539 		driver->sync_obj_unref(&sync_obj);
540 	}
541 	schedule_delayed_work(&bdev->wq,
542 			      ((HZ / 100) < 1) ? 1 : HZ / 100);
543 }
544 
545 /**
546  * function ttm_bo_cleanup_refs
547  * If bo idle, remove from delayed- and lru lists, and unref.
548  * If not idle, do nothing.
549  *
550  * @interruptible         Any sleeps should occur interruptibly.
551  * @no_wait_reserve       Never wait for reserve. Return -EBUSY instead.
552  * @no_wait_gpu           Never wait for gpu. Return -EBUSY instead.
553  */
554 
ttm_bo_cleanup_refs(struct ttm_buffer_object * bo,bool interruptible,bool no_wait_reserve,bool no_wait_gpu)555 static int ttm_bo_cleanup_refs(struct ttm_buffer_object *bo,
556 			       bool interruptible,
557 			       bool no_wait_reserve,
558 			       bool no_wait_gpu)
559 {
560 	struct ttm_bo_device *bdev = bo->bdev;
561 	struct ttm_bo_global *glob = bo->glob;
562 	int put_count;
563 	int ret = 0;
564 
565 retry:
566 	spin_lock(&bdev->fence_lock);
567 	ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
568 	spin_unlock(&bdev->fence_lock);
569 
570 	if (unlikely(ret != 0))
571 		return ret;
572 
573 	spin_lock(&glob->lru_lock);
574 
575 	if (unlikely(list_empty(&bo->ddestroy))) {
576 		spin_unlock(&glob->lru_lock);
577 		return 0;
578 	}
579 
580 	ret = ttm_bo_reserve_locked(bo, interruptible,
581 				    no_wait_reserve, false, 0);
582 
583 	if (unlikely(ret != 0)) {
584 		spin_unlock(&glob->lru_lock);
585 		return ret;
586 	}
587 
588 	/**
589 	 * We can re-check for sync object without taking
590 	 * the bo::lock since setting the sync object requires
591 	 * also bo::reserved. A busy object at this point may
592 	 * be caused by another thread recently starting an accelerated
593 	 * eviction.
594 	 */
595 
596 	if (unlikely(bo->sync_obj)) {
597 		atomic_set(&bo->reserved, 0);
598 		wake_up_all(&bo->event_queue);
599 		spin_unlock(&glob->lru_lock);
600 		goto retry;
601 	}
602 
603 	put_count = ttm_bo_del_from_lru(bo);
604 	list_del_init(&bo->ddestroy);
605 	++put_count;
606 
607 	spin_unlock(&glob->lru_lock);
608 	ttm_bo_cleanup_memtype_use(bo);
609 
610 	ttm_bo_list_ref_sub(bo, put_count, true);
611 
612 	return 0;
613 }
614 
615 /**
616  * Traverse the delayed list, and call ttm_bo_cleanup_refs on all
617  * encountered buffers.
618  */
619 
ttm_bo_delayed_delete(struct ttm_bo_device * bdev,bool remove_all)620 static int ttm_bo_delayed_delete(struct ttm_bo_device *bdev, bool remove_all)
621 {
622 	struct ttm_bo_global *glob = bdev->glob;
623 	struct ttm_buffer_object *entry = NULL;
624 	int ret = 0;
625 
626 	spin_lock(&glob->lru_lock);
627 	if (list_empty(&bdev->ddestroy))
628 		goto out_unlock;
629 
630 	entry = list_first_entry(&bdev->ddestroy,
631 		struct ttm_buffer_object, ddestroy);
632 	kref_get(&entry->list_kref);
633 
634 	for (;;) {
635 		struct ttm_buffer_object *nentry = NULL;
636 
637 		if (entry->ddestroy.next != &bdev->ddestroy) {
638 			nentry = list_first_entry(&entry->ddestroy,
639 				struct ttm_buffer_object, ddestroy);
640 			kref_get(&nentry->list_kref);
641 		}
642 
643 		spin_unlock(&glob->lru_lock);
644 		ret = ttm_bo_cleanup_refs(entry, false, !remove_all,
645 					  !remove_all);
646 		kref_put(&entry->list_kref, ttm_bo_release_list);
647 		entry = nentry;
648 
649 		if (ret || !entry)
650 			goto out;
651 
652 		spin_lock(&glob->lru_lock);
653 		if (list_empty(&entry->ddestroy))
654 			break;
655 	}
656 
657 out_unlock:
658 	spin_unlock(&glob->lru_lock);
659 out:
660 	if (entry)
661 		kref_put(&entry->list_kref, ttm_bo_release_list);
662 	return ret;
663 }
664 
ttm_bo_delayed_workqueue(struct work_struct * work)665 static void ttm_bo_delayed_workqueue(struct work_struct *work)
666 {
667 	struct ttm_bo_device *bdev =
668 	    container_of(work, struct ttm_bo_device, wq.work);
669 
670 	if (ttm_bo_delayed_delete(bdev, false)) {
671 		schedule_delayed_work(&bdev->wq,
672 				      ((HZ / 100) < 1) ? 1 : HZ / 100);
673 	}
674 }
675 
ttm_bo_release(struct kref * kref)676 static void ttm_bo_release(struct kref *kref)
677 {
678 	struct ttm_buffer_object *bo =
679 	    container_of(kref, struct ttm_buffer_object, kref);
680 	struct ttm_bo_device *bdev = bo->bdev;
681 	struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
682 
683 	if (likely(bo->vm_node != NULL)) {
684 		rb_erase(&bo->vm_rb, &bdev->addr_space_rb);
685 		drm_mm_put_block(bo->vm_node);
686 		bo->vm_node = NULL;
687 	}
688 	write_unlock(&bdev->vm_lock);
689 	ttm_mem_io_lock(man, false);
690 	ttm_mem_io_free_vm(bo);
691 	ttm_mem_io_unlock(man);
692 	ttm_bo_cleanup_refs_or_queue(bo);
693 	kref_put(&bo->list_kref, ttm_bo_release_list);
694 	write_lock(&bdev->vm_lock);
695 }
696 
ttm_bo_unref(struct ttm_buffer_object ** p_bo)697 void ttm_bo_unref(struct ttm_buffer_object **p_bo)
698 {
699 	struct ttm_buffer_object *bo = *p_bo;
700 	struct ttm_bo_device *bdev = bo->bdev;
701 
702 	*p_bo = NULL;
703 	write_lock(&bdev->vm_lock);
704 	kref_put(&bo->kref, ttm_bo_release);
705 	write_unlock(&bdev->vm_lock);
706 }
707 EXPORT_SYMBOL(ttm_bo_unref);
708 
ttm_bo_lock_delayed_workqueue(struct ttm_bo_device * bdev)709 int ttm_bo_lock_delayed_workqueue(struct ttm_bo_device *bdev)
710 {
711 	return cancel_delayed_work_sync(&bdev->wq);
712 }
713 EXPORT_SYMBOL(ttm_bo_lock_delayed_workqueue);
714 
ttm_bo_unlock_delayed_workqueue(struct ttm_bo_device * bdev,int resched)715 void ttm_bo_unlock_delayed_workqueue(struct ttm_bo_device *bdev, int resched)
716 {
717 	if (resched)
718 		schedule_delayed_work(&bdev->wq,
719 				      ((HZ / 100) < 1) ? 1 : HZ / 100);
720 }
721 EXPORT_SYMBOL(ttm_bo_unlock_delayed_workqueue);
722 
ttm_bo_evict(struct ttm_buffer_object * bo,bool interruptible,bool no_wait_reserve,bool no_wait_gpu)723 static int ttm_bo_evict(struct ttm_buffer_object *bo, bool interruptible,
724 			bool no_wait_reserve, bool no_wait_gpu)
725 {
726 	struct ttm_bo_device *bdev = bo->bdev;
727 	struct ttm_mem_reg evict_mem;
728 	struct ttm_placement placement;
729 	int ret = 0;
730 
731 	spin_lock(&bdev->fence_lock);
732 	ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
733 	spin_unlock(&bdev->fence_lock);
734 
735 	if (unlikely(ret != 0)) {
736 		if (ret != -ERESTARTSYS) {
737 			printk(KERN_ERR TTM_PFX
738 			       "Failed to expire sync object before "
739 			       "buffer eviction.\n");
740 		}
741 		goto out;
742 	}
743 
744 	BUG_ON(!atomic_read(&bo->reserved));
745 
746 	evict_mem = bo->mem;
747 	evict_mem.mm_node = NULL;
748 	evict_mem.bus.io_reserved_vm = false;
749 	evict_mem.bus.io_reserved_count = 0;
750 
751 	placement.fpfn = 0;
752 	placement.lpfn = 0;
753 	placement.num_placement = 0;
754 	placement.num_busy_placement = 0;
755 	bdev->driver->evict_flags(bo, &placement);
756 	ret = ttm_bo_mem_space(bo, &placement, &evict_mem, interruptible,
757 				no_wait_reserve, no_wait_gpu);
758 	if (ret) {
759 		if (ret != -ERESTARTSYS) {
760 			printk(KERN_ERR TTM_PFX
761 			       "Failed to find memory space for "
762 			       "buffer 0x%p eviction.\n", bo);
763 			ttm_bo_mem_space_debug(bo, &placement);
764 		}
765 		goto out;
766 	}
767 
768 	ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, interruptible,
769 				     no_wait_reserve, no_wait_gpu);
770 	if (ret) {
771 		if (ret != -ERESTARTSYS)
772 			printk(KERN_ERR TTM_PFX "Buffer eviction failed\n");
773 		ttm_bo_mem_put(bo, &evict_mem);
774 		goto out;
775 	}
776 	bo->evicted = true;
777 out:
778 	return ret;
779 }
780 
ttm_mem_evict_first(struct ttm_bo_device * bdev,uint32_t mem_type,bool interruptible,bool no_wait_reserve,bool no_wait_gpu)781 static int ttm_mem_evict_first(struct ttm_bo_device *bdev,
782 				uint32_t mem_type,
783 				bool interruptible, bool no_wait_reserve,
784 				bool no_wait_gpu)
785 {
786 	struct ttm_bo_global *glob = bdev->glob;
787 	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
788 	struct ttm_buffer_object *bo;
789 	int ret, put_count = 0;
790 
791 retry:
792 	spin_lock(&glob->lru_lock);
793 	if (list_empty(&man->lru)) {
794 		spin_unlock(&glob->lru_lock);
795 		return -EBUSY;
796 	}
797 
798 	bo = list_first_entry(&man->lru, struct ttm_buffer_object, lru);
799 	kref_get(&bo->list_kref);
800 
801 	if (!list_empty(&bo->ddestroy)) {
802 		spin_unlock(&glob->lru_lock);
803 		ret = ttm_bo_cleanup_refs(bo, interruptible,
804 					  no_wait_reserve, no_wait_gpu);
805 		kref_put(&bo->list_kref, ttm_bo_release_list);
806 
807 		if (likely(ret == 0 || ret == -ERESTARTSYS))
808 			return ret;
809 
810 		goto retry;
811 	}
812 
813 	ret = ttm_bo_reserve_locked(bo, false, no_wait_reserve, false, 0);
814 
815 	if (unlikely(ret == -EBUSY)) {
816 		spin_unlock(&glob->lru_lock);
817 		if (likely(!no_wait_gpu))
818 			ret = ttm_bo_wait_unreserved(bo, interruptible);
819 
820 		kref_put(&bo->list_kref, ttm_bo_release_list);
821 
822 		/**
823 		 * We *need* to retry after releasing the lru lock.
824 		 */
825 
826 		if (unlikely(ret != 0))
827 			return ret;
828 		goto retry;
829 	}
830 
831 	put_count = ttm_bo_del_from_lru(bo);
832 	spin_unlock(&glob->lru_lock);
833 
834 	BUG_ON(ret != 0);
835 
836 	ttm_bo_list_ref_sub(bo, put_count, true);
837 
838 	ret = ttm_bo_evict(bo, interruptible, no_wait_reserve, no_wait_gpu);
839 	ttm_bo_unreserve(bo);
840 
841 	kref_put(&bo->list_kref, ttm_bo_release_list);
842 	return ret;
843 }
844 
ttm_bo_mem_put(struct ttm_buffer_object * bo,struct ttm_mem_reg * mem)845 void ttm_bo_mem_put(struct ttm_buffer_object *bo, struct ttm_mem_reg *mem)
846 {
847 	struct ttm_mem_type_manager *man = &bo->bdev->man[mem->mem_type];
848 
849 	if (mem->mm_node)
850 		(*man->func->put_node)(man, mem);
851 }
852 EXPORT_SYMBOL(ttm_bo_mem_put);
853 
854 /**
855  * Repeatedly evict memory from the LRU for @mem_type until we create enough
856  * space, or we've evicted everything and there isn't enough space.
857  */
ttm_bo_mem_force_space(struct ttm_buffer_object * bo,uint32_t mem_type,struct ttm_placement * placement,struct ttm_mem_reg * mem,bool interruptible,bool no_wait_reserve,bool no_wait_gpu)858 static int ttm_bo_mem_force_space(struct ttm_buffer_object *bo,
859 					uint32_t mem_type,
860 					struct ttm_placement *placement,
861 					struct ttm_mem_reg *mem,
862 					bool interruptible,
863 					bool no_wait_reserve,
864 					bool no_wait_gpu)
865 {
866 	struct ttm_bo_device *bdev = bo->bdev;
867 	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
868 	int ret;
869 
870 	do {
871 		ret = (*man->func->get_node)(man, bo, placement, mem);
872 		if (unlikely(ret != 0))
873 			return ret;
874 		if (mem->mm_node)
875 			break;
876 		ret = ttm_mem_evict_first(bdev, mem_type, interruptible,
877 						no_wait_reserve, no_wait_gpu);
878 		if (unlikely(ret != 0))
879 			return ret;
880 	} while (1);
881 	if (mem->mm_node == NULL)
882 		return -ENOMEM;
883 	mem->mem_type = mem_type;
884 	return 0;
885 }
886 
ttm_bo_select_caching(struct ttm_mem_type_manager * man,uint32_t cur_placement,uint32_t proposed_placement)887 static uint32_t ttm_bo_select_caching(struct ttm_mem_type_manager *man,
888 				      uint32_t cur_placement,
889 				      uint32_t proposed_placement)
890 {
891 	uint32_t caching = proposed_placement & TTM_PL_MASK_CACHING;
892 	uint32_t result = proposed_placement & ~TTM_PL_MASK_CACHING;
893 
894 	/**
895 	 * Keep current caching if possible.
896 	 */
897 
898 	if ((cur_placement & caching) != 0)
899 		result |= (cur_placement & caching);
900 	else if ((man->default_caching & caching) != 0)
901 		result |= man->default_caching;
902 	else if ((TTM_PL_FLAG_CACHED & caching) != 0)
903 		result |= TTM_PL_FLAG_CACHED;
904 	else if ((TTM_PL_FLAG_WC & caching) != 0)
905 		result |= TTM_PL_FLAG_WC;
906 	else if ((TTM_PL_FLAG_UNCACHED & caching) != 0)
907 		result |= TTM_PL_FLAG_UNCACHED;
908 
909 	return result;
910 }
911 
ttm_bo_mt_compatible(struct ttm_mem_type_manager * man,uint32_t mem_type,uint32_t proposed_placement,uint32_t * masked_placement)912 static bool ttm_bo_mt_compatible(struct ttm_mem_type_manager *man,
913 				 uint32_t mem_type,
914 				 uint32_t proposed_placement,
915 				 uint32_t *masked_placement)
916 {
917 	uint32_t cur_flags = ttm_bo_type_flags(mem_type);
918 
919 	if ((cur_flags & proposed_placement & TTM_PL_MASK_MEM) == 0)
920 		return false;
921 
922 	if ((proposed_placement & man->available_caching) == 0)
923 		return false;
924 
925 	cur_flags |= (proposed_placement & man->available_caching);
926 
927 	*masked_placement = cur_flags;
928 	return true;
929 }
930 
931 /**
932  * Creates space for memory region @mem according to its type.
933  *
934  * This function first searches for free space in compatible memory types in
935  * the priority order defined by the driver.  If free space isn't found, then
936  * ttm_bo_mem_force_space is attempted in priority order to evict and find
937  * space.
938  */
ttm_bo_mem_space(struct ttm_buffer_object * bo,struct ttm_placement * placement,struct ttm_mem_reg * mem,bool interruptible,bool no_wait_reserve,bool no_wait_gpu)939 int ttm_bo_mem_space(struct ttm_buffer_object *bo,
940 			struct ttm_placement *placement,
941 			struct ttm_mem_reg *mem,
942 			bool interruptible, bool no_wait_reserve,
943 			bool no_wait_gpu)
944 {
945 	struct ttm_bo_device *bdev = bo->bdev;
946 	struct ttm_mem_type_manager *man;
947 	uint32_t mem_type = TTM_PL_SYSTEM;
948 	uint32_t cur_flags = 0;
949 	bool type_found = false;
950 	bool type_ok = false;
951 	bool has_erestartsys = false;
952 	int i, ret;
953 
954 	mem->mm_node = NULL;
955 	for (i = 0; i < placement->num_placement; ++i) {
956 		ret = ttm_mem_type_from_flags(placement->placement[i],
957 						&mem_type);
958 		if (ret)
959 			return ret;
960 		man = &bdev->man[mem_type];
961 
962 		type_ok = ttm_bo_mt_compatible(man,
963 						mem_type,
964 						placement->placement[i],
965 						&cur_flags);
966 
967 		if (!type_ok)
968 			continue;
969 
970 		cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
971 						  cur_flags);
972 		/*
973 		 * Use the access and other non-mapping-related flag bits from
974 		 * the memory placement flags to the current flags
975 		 */
976 		ttm_flag_masked(&cur_flags, placement->placement[i],
977 				~TTM_PL_MASK_MEMTYPE);
978 
979 		if (mem_type == TTM_PL_SYSTEM)
980 			break;
981 
982 		if (man->has_type && man->use_type) {
983 			type_found = true;
984 			ret = (*man->func->get_node)(man, bo, placement, mem);
985 			if (unlikely(ret))
986 				return ret;
987 		}
988 		if (mem->mm_node)
989 			break;
990 	}
991 
992 	if ((type_ok && (mem_type == TTM_PL_SYSTEM)) || mem->mm_node) {
993 		mem->mem_type = mem_type;
994 		mem->placement = cur_flags;
995 		return 0;
996 	}
997 
998 	if (!type_found)
999 		return -EINVAL;
1000 
1001 	for (i = 0; i < placement->num_busy_placement; ++i) {
1002 		ret = ttm_mem_type_from_flags(placement->busy_placement[i],
1003 						&mem_type);
1004 		if (ret)
1005 			return ret;
1006 		man = &bdev->man[mem_type];
1007 		if (!man->has_type)
1008 			continue;
1009 		if (!ttm_bo_mt_compatible(man,
1010 						mem_type,
1011 						placement->busy_placement[i],
1012 						&cur_flags))
1013 			continue;
1014 
1015 		cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
1016 						  cur_flags);
1017 		/*
1018 		 * Use the access and other non-mapping-related flag bits from
1019 		 * the memory placement flags to the current flags
1020 		 */
1021 		ttm_flag_masked(&cur_flags, placement->busy_placement[i],
1022 				~TTM_PL_MASK_MEMTYPE);
1023 
1024 
1025 		if (mem_type == TTM_PL_SYSTEM) {
1026 			mem->mem_type = mem_type;
1027 			mem->placement = cur_flags;
1028 			mem->mm_node = NULL;
1029 			return 0;
1030 		}
1031 
1032 		ret = ttm_bo_mem_force_space(bo, mem_type, placement, mem,
1033 						interruptible, no_wait_reserve, no_wait_gpu);
1034 		if (ret == 0 && mem->mm_node) {
1035 			mem->placement = cur_flags;
1036 			return 0;
1037 		}
1038 		if (ret == -ERESTARTSYS)
1039 			has_erestartsys = true;
1040 	}
1041 	ret = (has_erestartsys) ? -ERESTARTSYS : -ENOMEM;
1042 	return ret;
1043 }
1044 EXPORT_SYMBOL(ttm_bo_mem_space);
1045 
ttm_bo_wait_cpu(struct ttm_buffer_object * bo,bool no_wait)1046 int ttm_bo_wait_cpu(struct ttm_buffer_object *bo, bool no_wait)
1047 {
1048 	if ((atomic_read(&bo->cpu_writers) > 0) && no_wait)
1049 		return -EBUSY;
1050 
1051 	return wait_event_interruptible(bo->event_queue,
1052 					atomic_read(&bo->cpu_writers) == 0);
1053 }
1054 EXPORT_SYMBOL(ttm_bo_wait_cpu);
1055 
ttm_bo_move_buffer(struct ttm_buffer_object * bo,struct ttm_placement * placement,bool interruptible,bool no_wait_reserve,bool no_wait_gpu)1056 int ttm_bo_move_buffer(struct ttm_buffer_object *bo,
1057 			struct ttm_placement *placement,
1058 			bool interruptible, bool no_wait_reserve,
1059 			bool no_wait_gpu)
1060 {
1061 	int ret = 0;
1062 	struct ttm_mem_reg mem;
1063 	struct ttm_bo_device *bdev = bo->bdev;
1064 
1065 	BUG_ON(!atomic_read(&bo->reserved));
1066 
1067 	/*
1068 	 * FIXME: It's possible to pipeline buffer moves.
1069 	 * Have the driver move function wait for idle when necessary,
1070 	 * instead of doing it here.
1071 	 */
1072 	spin_lock(&bdev->fence_lock);
1073 	ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
1074 	spin_unlock(&bdev->fence_lock);
1075 	if (ret)
1076 		return ret;
1077 	mem.num_pages = bo->num_pages;
1078 	mem.size = mem.num_pages << PAGE_SHIFT;
1079 	mem.page_alignment = bo->mem.page_alignment;
1080 	mem.bus.io_reserved_vm = false;
1081 	mem.bus.io_reserved_count = 0;
1082 	/*
1083 	 * Determine where to move the buffer.
1084 	 */
1085 	ret = ttm_bo_mem_space(bo, placement, &mem, interruptible, no_wait_reserve, no_wait_gpu);
1086 	if (ret)
1087 		goto out_unlock;
1088 	ret = ttm_bo_handle_move_mem(bo, &mem, false, interruptible, no_wait_reserve, no_wait_gpu);
1089 out_unlock:
1090 	if (ret && mem.mm_node)
1091 		ttm_bo_mem_put(bo, &mem);
1092 	return ret;
1093 }
1094 
ttm_bo_mem_compat(struct ttm_placement * placement,struct ttm_mem_reg * mem)1095 static int ttm_bo_mem_compat(struct ttm_placement *placement,
1096 			     struct ttm_mem_reg *mem)
1097 {
1098 	int i;
1099 
1100 	if (mem->mm_node && placement->lpfn != 0 &&
1101 	    (mem->start < placement->fpfn ||
1102 	     mem->start + mem->num_pages > placement->lpfn))
1103 		return -1;
1104 
1105 	for (i = 0; i < placement->num_placement; i++) {
1106 		if ((placement->placement[i] & mem->placement &
1107 			TTM_PL_MASK_CACHING) &&
1108 			(placement->placement[i] & mem->placement &
1109 			TTM_PL_MASK_MEM))
1110 			return i;
1111 	}
1112 	return -1;
1113 }
1114 
ttm_bo_validate(struct ttm_buffer_object * bo,struct ttm_placement * placement,bool interruptible,bool no_wait_reserve,bool no_wait_gpu)1115 int ttm_bo_validate(struct ttm_buffer_object *bo,
1116 			struct ttm_placement *placement,
1117 			bool interruptible, bool no_wait_reserve,
1118 			bool no_wait_gpu)
1119 {
1120 	int ret;
1121 
1122 	BUG_ON(!atomic_read(&bo->reserved));
1123 	/* Check that range is valid */
1124 	if (placement->lpfn || placement->fpfn)
1125 		if (placement->fpfn > placement->lpfn ||
1126 			(placement->lpfn - placement->fpfn) < bo->num_pages)
1127 			return -EINVAL;
1128 	/*
1129 	 * Check whether we need to move buffer.
1130 	 */
1131 	ret = ttm_bo_mem_compat(placement, &bo->mem);
1132 	if (ret < 0) {
1133 		ret = ttm_bo_move_buffer(bo, placement, interruptible, no_wait_reserve, no_wait_gpu);
1134 		if (ret)
1135 			return ret;
1136 	} else {
1137 		/*
1138 		 * Use the access and other non-mapping-related flag bits from
1139 		 * the compatible memory placement flags to the active flags
1140 		 */
1141 		ttm_flag_masked(&bo->mem.placement, placement->placement[ret],
1142 				~TTM_PL_MASK_MEMTYPE);
1143 	}
1144 	/*
1145 	 * We might need to add a TTM.
1146 	 */
1147 	if (bo->mem.mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
1148 		ret = ttm_bo_add_ttm(bo, true);
1149 		if (ret)
1150 			return ret;
1151 	}
1152 	return 0;
1153 }
1154 EXPORT_SYMBOL(ttm_bo_validate);
1155 
ttm_bo_check_placement(struct ttm_buffer_object * bo,struct ttm_placement * placement)1156 int ttm_bo_check_placement(struct ttm_buffer_object *bo,
1157 				struct ttm_placement *placement)
1158 {
1159 	BUG_ON((placement->fpfn || placement->lpfn) &&
1160 	       (bo->mem.num_pages > (placement->lpfn - placement->fpfn)));
1161 
1162 	return 0;
1163 }
1164 
ttm_bo_init(struct ttm_bo_device * bdev,struct ttm_buffer_object * bo,unsigned long size,enum ttm_bo_type type,struct ttm_placement * placement,uint32_t page_alignment,unsigned long buffer_start,bool interruptible,struct file * persistent_swap_storage,size_t acc_size,void (* destroy)(struct ttm_buffer_object *))1165 int ttm_bo_init(struct ttm_bo_device *bdev,
1166 		struct ttm_buffer_object *bo,
1167 		unsigned long size,
1168 		enum ttm_bo_type type,
1169 		struct ttm_placement *placement,
1170 		uint32_t page_alignment,
1171 		unsigned long buffer_start,
1172 		bool interruptible,
1173 		struct file *persistent_swap_storage,
1174 		size_t acc_size,
1175 		void (*destroy) (struct ttm_buffer_object *))
1176 {
1177 	int ret = 0;
1178 	unsigned long num_pages;
1179 	struct ttm_mem_global *mem_glob = bdev->glob->mem_glob;
1180 
1181 	ret = ttm_mem_global_alloc(mem_glob, acc_size, false, false);
1182 	if (ret) {
1183 		printk(KERN_ERR TTM_PFX "Out of kernel memory.\n");
1184 		if (destroy)
1185 			(*destroy)(bo);
1186 		else
1187 			kfree(bo);
1188 		return -ENOMEM;
1189 	}
1190 
1191 	size += buffer_start & ~PAGE_MASK;
1192 	num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1193 	if (num_pages == 0) {
1194 		printk(KERN_ERR TTM_PFX "Illegal buffer object size.\n");
1195 		if (destroy)
1196 			(*destroy)(bo);
1197 		else
1198 			kfree(bo);
1199 		return -EINVAL;
1200 	}
1201 	bo->destroy = destroy;
1202 
1203 	kref_init(&bo->kref);
1204 	kref_init(&bo->list_kref);
1205 	atomic_set(&bo->cpu_writers, 0);
1206 	atomic_set(&bo->reserved, 1);
1207 	init_waitqueue_head(&bo->event_queue);
1208 	INIT_LIST_HEAD(&bo->lru);
1209 	INIT_LIST_HEAD(&bo->ddestroy);
1210 	INIT_LIST_HEAD(&bo->swap);
1211 	INIT_LIST_HEAD(&bo->io_reserve_lru);
1212 	bo->bdev = bdev;
1213 	bo->glob = bdev->glob;
1214 	bo->type = type;
1215 	bo->num_pages = num_pages;
1216 	bo->mem.size = num_pages << PAGE_SHIFT;
1217 	bo->mem.mem_type = TTM_PL_SYSTEM;
1218 	bo->mem.num_pages = bo->num_pages;
1219 	bo->mem.mm_node = NULL;
1220 	bo->mem.page_alignment = page_alignment;
1221 	bo->mem.bus.io_reserved_vm = false;
1222 	bo->mem.bus.io_reserved_count = 0;
1223 	bo->buffer_start = buffer_start & PAGE_MASK;
1224 	bo->priv_flags = 0;
1225 	bo->mem.placement = (TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED);
1226 	bo->seq_valid = false;
1227 	bo->persistent_swap_storage = persistent_swap_storage;
1228 	bo->acc_size = acc_size;
1229 	atomic_inc(&bo->glob->bo_count);
1230 
1231 	ret = ttm_bo_check_placement(bo, placement);
1232 	if (unlikely(ret != 0))
1233 		goto out_err;
1234 
1235 	/*
1236 	 * For ttm_bo_type_device buffers, allocate
1237 	 * address space from the device.
1238 	 */
1239 	if (bo->type == ttm_bo_type_device) {
1240 		ret = ttm_bo_setup_vm(bo);
1241 		if (ret)
1242 			goto out_err;
1243 	}
1244 
1245 	ret = ttm_bo_validate(bo, placement, interruptible, false, false);
1246 	if (ret)
1247 		goto out_err;
1248 
1249 	ttm_bo_unreserve(bo);
1250 	return 0;
1251 
1252 out_err:
1253 	ttm_bo_unreserve(bo);
1254 	ttm_bo_unref(&bo);
1255 
1256 	return ret;
1257 }
1258 EXPORT_SYMBOL(ttm_bo_init);
1259 
ttm_bo_acc_size(struct ttm_bo_device * bdev,unsigned long bo_size,unsigned struct_size)1260 size_t ttm_bo_acc_size(struct ttm_bo_device *bdev,
1261 		       unsigned long bo_size,
1262 		       unsigned struct_size)
1263 {
1264 	unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT;
1265 	size_t size = 0;
1266 
1267 	size += ttm_round_pot(struct_size);
1268 	size += PAGE_ALIGN(npages * sizeof(void *));
1269 	size += ttm_round_pot(sizeof(struct ttm_tt));
1270 	return size;
1271 }
1272 EXPORT_SYMBOL(ttm_bo_acc_size);
1273 
ttm_bo_dma_acc_size(struct ttm_bo_device * bdev,unsigned long bo_size,unsigned struct_size)1274 size_t ttm_bo_dma_acc_size(struct ttm_bo_device *bdev,
1275 			   unsigned long bo_size,
1276 			   unsigned struct_size)
1277 {
1278 	unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT;
1279 	size_t size = 0;
1280 
1281 	size += ttm_round_pot(struct_size);
1282 	size += PAGE_ALIGN(npages * sizeof(void *));
1283 	size += PAGE_ALIGN(npages * sizeof(dma_addr_t));
1284 	size += ttm_round_pot(sizeof(struct ttm_dma_tt));
1285 	return size;
1286 }
1287 EXPORT_SYMBOL(ttm_bo_dma_acc_size);
1288 
ttm_bo_create(struct ttm_bo_device * bdev,unsigned long size,enum ttm_bo_type type,struct ttm_placement * placement,uint32_t page_alignment,unsigned long buffer_start,bool interruptible,struct file * persistent_swap_storage,struct ttm_buffer_object ** p_bo)1289 int ttm_bo_create(struct ttm_bo_device *bdev,
1290 			unsigned long size,
1291 			enum ttm_bo_type type,
1292 			struct ttm_placement *placement,
1293 			uint32_t page_alignment,
1294 			unsigned long buffer_start,
1295 			bool interruptible,
1296 			struct file *persistent_swap_storage,
1297 			struct ttm_buffer_object **p_bo)
1298 {
1299 	struct ttm_buffer_object *bo;
1300 	struct ttm_mem_global *mem_glob = bdev->glob->mem_glob;
1301 	size_t acc_size;
1302 	int ret;
1303 
1304 	acc_size = ttm_bo_acc_size(bdev, size, sizeof(struct ttm_buffer_object));
1305 	ret = ttm_mem_global_alloc(mem_glob, acc_size, false, false);
1306 	if (unlikely(ret != 0))
1307 		return ret;
1308 
1309 	bo = kzalloc(sizeof(*bo), GFP_KERNEL);
1310 
1311 	if (unlikely(bo == NULL)) {
1312 		ttm_mem_global_free(mem_glob, acc_size);
1313 		return -ENOMEM;
1314 	}
1315 
1316 	ret = ttm_bo_init(bdev, bo, size, type, placement, page_alignment,
1317 				buffer_start, interruptible,
1318 				persistent_swap_storage, acc_size, NULL);
1319 	if (likely(ret == 0))
1320 		*p_bo = bo;
1321 
1322 	return ret;
1323 }
1324 EXPORT_SYMBOL(ttm_bo_create);
1325 
ttm_bo_force_list_clean(struct ttm_bo_device * bdev,unsigned mem_type,bool allow_errors)1326 static int ttm_bo_force_list_clean(struct ttm_bo_device *bdev,
1327 					unsigned mem_type, bool allow_errors)
1328 {
1329 	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1330 	struct ttm_bo_global *glob = bdev->glob;
1331 	int ret;
1332 
1333 	/*
1334 	 * Can't use standard list traversal since we're unlocking.
1335 	 */
1336 
1337 	spin_lock(&glob->lru_lock);
1338 	while (!list_empty(&man->lru)) {
1339 		spin_unlock(&glob->lru_lock);
1340 		ret = ttm_mem_evict_first(bdev, mem_type, false, false, false);
1341 		if (ret) {
1342 			if (allow_errors) {
1343 				return ret;
1344 			} else {
1345 				printk(KERN_ERR TTM_PFX
1346 					"Cleanup eviction failed\n");
1347 			}
1348 		}
1349 		spin_lock(&glob->lru_lock);
1350 	}
1351 	spin_unlock(&glob->lru_lock);
1352 	return 0;
1353 }
1354 
ttm_bo_clean_mm(struct ttm_bo_device * bdev,unsigned mem_type)1355 int ttm_bo_clean_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1356 {
1357 	struct ttm_mem_type_manager *man;
1358 	int ret = -EINVAL;
1359 
1360 	if (mem_type >= TTM_NUM_MEM_TYPES) {
1361 		printk(KERN_ERR TTM_PFX "Illegal memory type %d\n", mem_type);
1362 		return ret;
1363 	}
1364 	man = &bdev->man[mem_type];
1365 
1366 	if (!man->has_type) {
1367 		printk(KERN_ERR TTM_PFX "Trying to take down uninitialized "
1368 		       "memory manager type %u\n", mem_type);
1369 		return ret;
1370 	}
1371 
1372 	man->use_type = false;
1373 	man->has_type = false;
1374 
1375 	ret = 0;
1376 	if (mem_type > 0) {
1377 		ttm_bo_force_list_clean(bdev, mem_type, false);
1378 
1379 		ret = (*man->func->takedown)(man);
1380 	}
1381 
1382 	return ret;
1383 }
1384 EXPORT_SYMBOL(ttm_bo_clean_mm);
1385 
ttm_bo_evict_mm(struct ttm_bo_device * bdev,unsigned mem_type)1386 int ttm_bo_evict_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1387 {
1388 	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1389 
1390 	if (mem_type == 0 || mem_type >= TTM_NUM_MEM_TYPES) {
1391 		printk(KERN_ERR TTM_PFX
1392 		       "Illegal memory manager memory type %u.\n",
1393 		       mem_type);
1394 		return -EINVAL;
1395 	}
1396 
1397 	if (!man->has_type) {
1398 		printk(KERN_ERR TTM_PFX
1399 		       "Memory type %u has not been initialized.\n",
1400 		       mem_type);
1401 		return 0;
1402 	}
1403 
1404 	return ttm_bo_force_list_clean(bdev, mem_type, true);
1405 }
1406 EXPORT_SYMBOL(ttm_bo_evict_mm);
1407 
ttm_bo_init_mm(struct ttm_bo_device * bdev,unsigned type,unsigned long p_size)1408 int ttm_bo_init_mm(struct ttm_bo_device *bdev, unsigned type,
1409 			unsigned long p_size)
1410 {
1411 	int ret = -EINVAL;
1412 	struct ttm_mem_type_manager *man;
1413 
1414 	BUG_ON(type >= TTM_NUM_MEM_TYPES);
1415 	man = &bdev->man[type];
1416 	BUG_ON(man->has_type);
1417 	man->io_reserve_fastpath = true;
1418 	man->use_io_reserve_lru = false;
1419 	mutex_init(&man->io_reserve_mutex);
1420 	INIT_LIST_HEAD(&man->io_reserve_lru);
1421 
1422 	ret = bdev->driver->init_mem_type(bdev, type, man);
1423 	if (ret)
1424 		return ret;
1425 	man->bdev = bdev;
1426 
1427 	ret = 0;
1428 	if (type != TTM_PL_SYSTEM) {
1429 		ret = (*man->func->init)(man, p_size);
1430 		if (ret)
1431 			return ret;
1432 	}
1433 	man->has_type = true;
1434 	man->use_type = true;
1435 	man->size = p_size;
1436 
1437 	INIT_LIST_HEAD(&man->lru);
1438 
1439 	return 0;
1440 }
1441 EXPORT_SYMBOL(ttm_bo_init_mm);
1442 
ttm_bo_global_kobj_release(struct kobject * kobj)1443 static void ttm_bo_global_kobj_release(struct kobject *kobj)
1444 {
1445 	struct ttm_bo_global *glob =
1446 		container_of(kobj, struct ttm_bo_global, kobj);
1447 
1448 	ttm_mem_unregister_shrink(glob->mem_glob, &glob->shrink);
1449 	__free_page(glob->dummy_read_page);
1450 	kfree(glob);
1451 }
1452 
ttm_bo_global_release(struct drm_global_reference * ref)1453 void ttm_bo_global_release(struct drm_global_reference *ref)
1454 {
1455 	struct ttm_bo_global *glob = ref->object;
1456 
1457 	kobject_del(&glob->kobj);
1458 	kobject_put(&glob->kobj);
1459 }
1460 EXPORT_SYMBOL(ttm_bo_global_release);
1461 
ttm_bo_global_init(struct drm_global_reference * ref)1462 int ttm_bo_global_init(struct drm_global_reference *ref)
1463 {
1464 	struct ttm_bo_global_ref *bo_ref =
1465 		container_of(ref, struct ttm_bo_global_ref, ref);
1466 	struct ttm_bo_global *glob = ref->object;
1467 	int ret;
1468 
1469 	mutex_init(&glob->device_list_mutex);
1470 	spin_lock_init(&glob->lru_lock);
1471 	glob->mem_glob = bo_ref->mem_glob;
1472 	glob->dummy_read_page = alloc_page(__GFP_ZERO | GFP_DMA32);
1473 
1474 	if (unlikely(glob->dummy_read_page == NULL)) {
1475 		ret = -ENOMEM;
1476 		goto out_no_drp;
1477 	}
1478 
1479 	INIT_LIST_HEAD(&glob->swap_lru);
1480 	INIT_LIST_HEAD(&glob->device_list);
1481 
1482 	ttm_mem_init_shrink(&glob->shrink, ttm_bo_swapout);
1483 	ret = ttm_mem_register_shrink(glob->mem_glob, &glob->shrink);
1484 	if (unlikely(ret != 0)) {
1485 		printk(KERN_ERR TTM_PFX
1486 		       "Could not register buffer object swapout.\n");
1487 		goto out_no_shrink;
1488 	}
1489 
1490 	atomic_set(&glob->bo_count, 0);
1491 
1492 	ret = kobject_init_and_add(
1493 		&glob->kobj, &ttm_bo_glob_kobj_type, ttm_get_kobj(), "buffer_objects");
1494 	if (unlikely(ret != 0))
1495 		kobject_put(&glob->kobj);
1496 	return ret;
1497 out_no_shrink:
1498 	__free_page(glob->dummy_read_page);
1499 out_no_drp:
1500 	kfree(glob);
1501 	return ret;
1502 }
1503 EXPORT_SYMBOL(ttm_bo_global_init);
1504 
1505 
ttm_bo_device_release(struct ttm_bo_device * bdev)1506 int ttm_bo_device_release(struct ttm_bo_device *bdev)
1507 {
1508 	int ret = 0;
1509 	unsigned i = TTM_NUM_MEM_TYPES;
1510 	struct ttm_mem_type_manager *man;
1511 	struct ttm_bo_global *glob = bdev->glob;
1512 
1513 	while (i--) {
1514 		man = &bdev->man[i];
1515 		if (man->has_type) {
1516 			man->use_type = false;
1517 			if ((i != TTM_PL_SYSTEM) && ttm_bo_clean_mm(bdev, i)) {
1518 				ret = -EBUSY;
1519 				printk(KERN_ERR TTM_PFX
1520 				       "DRM memory manager type %d "
1521 				       "is not clean.\n", i);
1522 			}
1523 			man->has_type = false;
1524 		}
1525 	}
1526 
1527 	mutex_lock(&glob->device_list_mutex);
1528 	list_del(&bdev->device_list);
1529 	mutex_unlock(&glob->device_list_mutex);
1530 
1531 	cancel_delayed_work_sync(&bdev->wq);
1532 
1533 	while (ttm_bo_delayed_delete(bdev, true))
1534 		;
1535 
1536 	spin_lock(&glob->lru_lock);
1537 	if (list_empty(&bdev->ddestroy))
1538 		TTM_DEBUG("Delayed destroy list was clean\n");
1539 
1540 	if (list_empty(&bdev->man[0].lru))
1541 		TTM_DEBUG("Swap list was clean\n");
1542 	spin_unlock(&glob->lru_lock);
1543 
1544 	BUG_ON(!drm_mm_clean(&bdev->addr_space_mm));
1545 	write_lock(&bdev->vm_lock);
1546 	drm_mm_takedown(&bdev->addr_space_mm);
1547 	write_unlock(&bdev->vm_lock);
1548 
1549 	return ret;
1550 }
1551 EXPORT_SYMBOL(ttm_bo_device_release);
1552 
ttm_bo_device_init(struct ttm_bo_device * bdev,struct ttm_bo_global * glob,struct ttm_bo_driver * driver,uint64_t file_page_offset,bool need_dma32)1553 int ttm_bo_device_init(struct ttm_bo_device *bdev,
1554 		       struct ttm_bo_global *glob,
1555 		       struct ttm_bo_driver *driver,
1556 		       uint64_t file_page_offset,
1557 		       bool need_dma32)
1558 {
1559 	int ret = -EINVAL;
1560 
1561 	rwlock_init(&bdev->vm_lock);
1562 	bdev->driver = driver;
1563 
1564 	memset(bdev->man, 0, sizeof(bdev->man));
1565 
1566 	/*
1567 	 * Initialize the system memory buffer type.
1568 	 * Other types need to be driver / IOCTL initialized.
1569 	 */
1570 	ret = ttm_bo_init_mm(bdev, TTM_PL_SYSTEM, 0);
1571 	if (unlikely(ret != 0))
1572 		goto out_no_sys;
1573 
1574 	bdev->addr_space_rb = RB_ROOT;
1575 	ret = drm_mm_init(&bdev->addr_space_mm, file_page_offset, 0x10000000);
1576 	if (unlikely(ret != 0))
1577 		goto out_no_addr_mm;
1578 
1579 	INIT_DELAYED_WORK(&bdev->wq, ttm_bo_delayed_workqueue);
1580 	bdev->nice_mode = true;
1581 	INIT_LIST_HEAD(&bdev->ddestroy);
1582 	bdev->dev_mapping = NULL;
1583 	bdev->glob = glob;
1584 	bdev->need_dma32 = need_dma32;
1585 	bdev->val_seq = 0;
1586 	spin_lock_init(&bdev->fence_lock);
1587 	mutex_lock(&glob->device_list_mutex);
1588 	list_add_tail(&bdev->device_list, &glob->device_list);
1589 	mutex_unlock(&glob->device_list_mutex);
1590 
1591 	return 0;
1592 out_no_addr_mm:
1593 	ttm_bo_clean_mm(bdev, 0);
1594 out_no_sys:
1595 	return ret;
1596 }
1597 EXPORT_SYMBOL(ttm_bo_device_init);
1598 
1599 /*
1600  * buffer object vm functions.
1601  */
1602 
ttm_mem_reg_is_pci(struct ttm_bo_device * bdev,struct ttm_mem_reg * mem)1603 bool ttm_mem_reg_is_pci(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
1604 {
1605 	struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
1606 
1607 	if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
1608 		if (mem->mem_type == TTM_PL_SYSTEM)
1609 			return false;
1610 
1611 		if (man->flags & TTM_MEMTYPE_FLAG_CMA)
1612 			return false;
1613 
1614 		if (mem->placement & TTM_PL_FLAG_CACHED)
1615 			return false;
1616 	}
1617 	return true;
1618 }
1619 
ttm_bo_unmap_virtual_locked(struct ttm_buffer_object * bo)1620 void ttm_bo_unmap_virtual_locked(struct ttm_buffer_object *bo)
1621 {
1622 	struct ttm_bo_device *bdev = bo->bdev;
1623 	loff_t offset = (loff_t) bo->addr_space_offset;
1624 	loff_t holelen = ((loff_t) bo->mem.num_pages) << PAGE_SHIFT;
1625 
1626 	if (!bdev->dev_mapping)
1627 		return;
1628 	unmap_mapping_range(bdev->dev_mapping, offset, holelen, 1);
1629 	ttm_mem_io_free_vm(bo);
1630 }
1631 
ttm_bo_unmap_virtual(struct ttm_buffer_object * bo)1632 void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo)
1633 {
1634 	struct ttm_bo_device *bdev = bo->bdev;
1635 	struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
1636 
1637 	ttm_mem_io_lock(man, false);
1638 	ttm_bo_unmap_virtual_locked(bo);
1639 	ttm_mem_io_unlock(man);
1640 }
1641 
1642 
1643 EXPORT_SYMBOL(ttm_bo_unmap_virtual);
1644 
ttm_bo_vm_insert_rb(struct ttm_buffer_object * bo)1645 static void ttm_bo_vm_insert_rb(struct ttm_buffer_object *bo)
1646 {
1647 	struct ttm_bo_device *bdev = bo->bdev;
1648 	struct rb_node **cur = &bdev->addr_space_rb.rb_node;
1649 	struct rb_node *parent = NULL;
1650 	struct ttm_buffer_object *cur_bo;
1651 	unsigned long offset = bo->vm_node->start;
1652 	unsigned long cur_offset;
1653 
1654 	while (*cur) {
1655 		parent = *cur;
1656 		cur_bo = rb_entry(parent, struct ttm_buffer_object, vm_rb);
1657 		cur_offset = cur_bo->vm_node->start;
1658 		if (offset < cur_offset)
1659 			cur = &parent->rb_left;
1660 		else if (offset > cur_offset)
1661 			cur = &parent->rb_right;
1662 		else
1663 			BUG();
1664 	}
1665 
1666 	rb_link_node(&bo->vm_rb, parent, cur);
1667 	rb_insert_color(&bo->vm_rb, &bdev->addr_space_rb);
1668 }
1669 
1670 /**
1671  * ttm_bo_setup_vm:
1672  *
1673  * @bo: the buffer to allocate address space for
1674  *
1675  * Allocate address space in the drm device so that applications
1676  * can mmap the buffer and access the contents. This only
1677  * applies to ttm_bo_type_device objects as others are not
1678  * placed in the drm device address space.
1679  */
1680 
ttm_bo_setup_vm(struct ttm_buffer_object * bo)1681 static int ttm_bo_setup_vm(struct ttm_buffer_object *bo)
1682 {
1683 	struct ttm_bo_device *bdev = bo->bdev;
1684 	int ret;
1685 
1686 retry_pre_get:
1687 	ret = drm_mm_pre_get(&bdev->addr_space_mm);
1688 	if (unlikely(ret != 0))
1689 		return ret;
1690 
1691 	write_lock(&bdev->vm_lock);
1692 	bo->vm_node = drm_mm_search_free(&bdev->addr_space_mm,
1693 					 bo->mem.num_pages, 0, 0);
1694 
1695 	if (unlikely(bo->vm_node == NULL)) {
1696 		ret = -ENOMEM;
1697 		goto out_unlock;
1698 	}
1699 
1700 	bo->vm_node = drm_mm_get_block_atomic(bo->vm_node,
1701 					      bo->mem.num_pages, 0);
1702 
1703 	if (unlikely(bo->vm_node == NULL)) {
1704 		write_unlock(&bdev->vm_lock);
1705 		goto retry_pre_get;
1706 	}
1707 
1708 	ttm_bo_vm_insert_rb(bo);
1709 	write_unlock(&bdev->vm_lock);
1710 	bo->addr_space_offset = ((uint64_t) bo->vm_node->start) << PAGE_SHIFT;
1711 
1712 	return 0;
1713 out_unlock:
1714 	write_unlock(&bdev->vm_lock);
1715 	return ret;
1716 }
1717 
ttm_bo_wait(struct ttm_buffer_object * bo,bool lazy,bool interruptible,bool no_wait)1718 int ttm_bo_wait(struct ttm_buffer_object *bo,
1719 		bool lazy, bool interruptible, bool no_wait)
1720 {
1721 	struct ttm_bo_driver *driver = bo->bdev->driver;
1722 	struct ttm_bo_device *bdev = bo->bdev;
1723 	void *sync_obj;
1724 	void *sync_obj_arg;
1725 	int ret = 0;
1726 
1727 	if (likely(bo->sync_obj == NULL))
1728 		return 0;
1729 
1730 	while (bo->sync_obj) {
1731 
1732 		if (driver->sync_obj_signaled(bo->sync_obj, bo->sync_obj_arg)) {
1733 			void *tmp_obj = bo->sync_obj;
1734 			bo->sync_obj = NULL;
1735 			clear_bit(TTM_BO_PRIV_FLAG_MOVING, &bo->priv_flags);
1736 			spin_unlock(&bdev->fence_lock);
1737 			driver->sync_obj_unref(&tmp_obj);
1738 			spin_lock(&bdev->fence_lock);
1739 			continue;
1740 		}
1741 
1742 		if (no_wait)
1743 			return -EBUSY;
1744 
1745 		sync_obj = driver->sync_obj_ref(bo->sync_obj);
1746 		sync_obj_arg = bo->sync_obj_arg;
1747 		spin_unlock(&bdev->fence_lock);
1748 		ret = driver->sync_obj_wait(sync_obj, sync_obj_arg,
1749 					    lazy, interruptible);
1750 		if (unlikely(ret != 0)) {
1751 			driver->sync_obj_unref(&sync_obj);
1752 			spin_lock(&bdev->fence_lock);
1753 			return ret;
1754 		}
1755 		spin_lock(&bdev->fence_lock);
1756 		if (likely(bo->sync_obj == sync_obj &&
1757 			   bo->sync_obj_arg == sync_obj_arg)) {
1758 			void *tmp_obj = bo->sync_obj;
1759 			bo->sync_obj = NULL;
1760 			clear_bit(TTM_BO_PRIV_FLAG_MOVING,
1761 				  &bo->priv_flags);
1762 			spin_unlock(&bdev->fence_lock);
1763 			driver->sync_obj_unref(&sync_obj);
1764 			driver->sync_obj_unref(&tmp_obj);
1765 			spin_lock(&bdev->fence_lock);
1766 		} else {
1767 			spin_unlock(&bdev->fence_lock);
1768 			driver->sync_obj_unref(&sync_obj);
1769 			spin_lock(&bdev->fence_lock);
1770 		}
1771 	}
1772 	return 0;
1773 }
1774 EXPORT_SYMBOL(ttm_bo_wait);
1775 
ttm_bo_synccpu_write_grab(struct ttm_buffer_object * bo,bool no_wait)1776 int ttm_bo_synccpu_write_grab(struct ttm_buffer_object *bo, bool no_wait)
1777 {
1778 	struct ttm_bo_device *bdev = bo->bdev;
1779 	int ret = 0;
1780 
1781 	/*
1782 	 * Using ttm_bo_reserve makes sure the lru lists are updated.
1783 	 */
1784 
1785 	ret = ttm_bo_reserve(bo, true, no_wait, false, 0);
1786 	if (unlikely(ret != 0))
1787 		return ret;
1788 	spin_lock(&bdev->fence_lock);
1789 	ret = ttm_bo_wait(bo, false, true, no_wait);
1790 	spin_unlock(&bdev->fence_lock);
1791 	if (likely(ret == 0))
1792 		atomic_inc(&bo->cpu_writers);
1793 	ttm_bo_unreserve(bo);
1794 	return ret;
1795 }
1796 EXPORT_SYMBOL(ttm_bo_synccpu_write_grab);
1797 
ttm_bo_synccpu_write_release(struct ttm_buffer_object * bo)1798 void ttm_bo_synccpu_write_release(struct ttm_buffer_object *bo)
1799 {
1800 	if (atomic_dec_and_test(&bo->cpu_writers))
1801 		wake_up_all(&bo->event_queue);
1802 }
1803 EXPORT_SYMBOL(ttm_bo_synccpu_write_release);
1804 
1805 /**
1806  * A buffer object shrink method that tries to swap out the first
1807  * buffer object on the bo_global::swap_lru list.
1808  */
1809 
ttm_bo_swapout(struct ttm_mem_shrink * shrink)1810 static int ttm_bo_swapout(struct ttm_mem_shrink *shrink)
1811 {
1812 	struct ttm_bo_global *glob =
1813 	    container_of(shrink, struct ttm_bo_global, shrink);
1814 	struct ttm_buffer_object *bo;
1815 	int ret = -EBUSY;
1816 	int put_count;
1817 	uint32_t swap_placement = (TTM_PL_FLAG_CACHED | TTM_PL_FLAG_SYSTEM);
1818 
1819 	spin_lock(&glob->lru_lock);
1820 	while (ret == -EBUSY) {
1821 		if (unlikely(list_empty(&glob->swap_lru))) {
1822 			spin_unlock(&glob->lru_lock);
1823 			return -EBUSY;
1824 		}
1825 
1826 		bo = list_first_entry(&glob->swap_lru,
1827 				      struct ttm_buffer_object, swap);
1828 		kref_get(&bo->list_kref);
1829 
1830 		if (!list_empty(&bo->ddestroy)) {
1831 			spin_unlock(&glob->lru_lock);
1832 			(void) ttm_bo_cleanup_refs(bo, false, false, false);
1833 			kref_put(&bo->list_kref, ttm_bo_release_list);
1834 			continue;
1835 		}
1836 
1837 		/**
1838 		 * Reserve buffer. Since we unlock while sleeping, we need
1839 		 * to re-check that nobody removed us from the swap-list while
1840 		 * we slept.
1841 		 */
1842 
1843 		ret = ttm_bo_reserve_locked(bo, false, true, false, 0);
1844 		if (unlikely(ret == -EBUSY)) {
1845 			spin_unlock(&glob->lru_lock);
1846 			ttm_bo_wait_unreserved(bo, false);
1847 			kref_put(&bo->list_kref, ttm_bo_release_list);
1848 			spin_lock(&glob->lru_lock);
1849 		}
1850 	}
1851 
1852 	BUG_ON(ret != 0);
1853 	put_count = ttm_bo_del_from_lru(bo);
1854 	spin_unlock(&glob->lru_lock);
1855 
1856 	ttm_bo_list_ref_sub(bo, put_count, true);
1857 
1858 	/**
1859 	 * Wait for GPU, then move to system cached.
1860 	 */
1861 
1862 	spin_lock(&bo->bdev->fence_lock);
1863 	ret = ttm_bo_wait(bo, false, false, false);
1864 	spin_unlock(&bo->bdev->fence_lock);
1865 
1866 	if (unlikely(ret != 0))
1867 		goto out;
1868 
1869 	if ((bo->mem.placement & swap_placement) != swap_placement) {
1870 		struct ttm_mem_reg evict_mem;
1871 
1872 		evict_mem = bo->mem;
1873 		evict_mem.mm_node = NULL;
1874 		evict_mem.placement = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED;
1875 		evict_mem.mem_type = TTM_PL_SYSTEM;
1876 
1877 		ret = ttm_bo_handle_move_mem(bo, &evict_mem, true,
1878 					     false, false, false);
1879 		if (unlikely(ret != 0))
1880 			goto out;
1881 	}
1882 
1883 	ttm_bo_unmap_virtual(bo);
1884 
1885 	/**
1886 	 * Swap out. Buffer will be swapped in again as soon as
1887 	 * anyone tries to access a ttm page.
1888 	 */
1889 
1890 	if (bo->bdev->driver->swap_notify)
1891 		bo->bdev->driver->swap_notify(bo);
1892 
1893 	ret = ttm_tt_swapout(bo->ttm, bo->persistent_swap_storage);
1894 out:
1895 
1896 	/**
1897 	 *
1898 	 * Unreserve without putting on LRU to avoid swapping out an
1899 	 * already swapped buffer.
1900 	 */
1901 
1902 	atomic_set(&bo->reserved, 0);
1903 	wake_up_all(&bo->event_queue);
1904 	kref_put(&bo->list_kref, ttm_bo_release_list);
1905 	return ret;
1906 }
1907 
ttm_bo_swapout_all(struct ttm_bo_device * bdev)1908 void ttm_bo_swapout_all(struct ttm_bo_device *bdev)
1909 {
1910 	while (ttm_bo_swapout(&bdev->glob->shrink) == 0)
1911 		;
1912 }
1913 EXPORT_SYMBOL(ttm_bo_swapout_all);
1914