1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 /*
22  * Changes:
23  *		Pedro Roque	:	Fast Retransmit/Recovery.
24  *					Two receive queues.
25  *					Retransmit queue handled by TCP.
26  *					Better retransmit timer handling.
27  *					New congestion avoidance.
28  *					Header prediction.
29  *					Variable renaming.
30  *
31  *		Eric		:	Fast Retransmit.
32  *		Randy Scott	:	MSS option defines.
33  *		Eric Schenk	:	Fixes to slow start algorithm.
34  *		Eric Schenk	:	Yet another double ACK bug.
35  *		Eric Schenk	:	Delayed ACK bug fixes.
36  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
37  *		David S. Miller	:	Don't allow zero congestion window.
38  *		Eric Schenk	:	Fix retransmitter so that it sends
39  *					next packet on ack of previous packet.
40  *		Andi Kleen	:	Moved open_request checking here
41  *					and process RSTs for open_requests.
42  *		Andi Kleen	:	Better prune_queue, and other fixes.
43  *		Andrey Savochkin:	Fix RTT measurements in the presence of
44  *					timestamps.
45  *		Andrey Savochkin:	Check sequence numbers correctly when
46  *					removing SACKs due to in sequence incoming
47  *					data segments.
48  *		Andi Kleen:		Make sure we never ack data there is not
49  *					enough room for. Also make this condition
50  *					a fatal error if it might still happen.
51  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
52  *					connections with MSS<min(MTU,ann. MSS)
53  *					work without delayed acks.
54  *		Andi Kleen:		Process packets with PSH set in the
55  *					fast path.
56  *		J Hadi Salim:		ECN support
57  *	 	Andrei Gurtov,
58  *		Pasi Sarolahti,
59  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
60  *					engine. Lots of bugs are found.
61  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
62  */
63 
64 #include <linux/mm.h>
65 #include <linux/slab.h>
66 #include <linux/module.h>
67 #include <linux/sysctl.h>
68 #include <linux/kernel.h>
69 #include <net/dst.h>
70 #include <net/tcp.h>
71 #include <net/inet_common.h>
72 #include <linux/ipsec.h>
73 #include <asm/unaligned.h>
74 #include <net/netdma.h>
75 
76 int sysctl_tcp_timestamps __read_mostly = 1;
77 int sysctl_tcp_window_scaling __read_mostly = 1;
78 int sysctl_tcp_sack __read_mostly = 1;
79 int sysctl_tcp_fack __read_mostly = 1;
80 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
81 EXPORT_SYMBOL(sysctl_tcp_reordering);
82 int sysctl_tcp_ecn __read_mostly = 2;
83 EXPORT_SYMBOL(sysctl_tcp_ecn);
84 int sysctl_tcp_dsack __read_mostly = 1;
85 int sysctl_tcp_app_win __read_mostly = 31;
86 int sysctl_tcp_adv_win_scale __read_mostly = 2;
87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
88 
89 int sysctl_tcp_stdurg __read_mostly;
90 int sysctl_tcp_rfc1337 __read_mostly;
91 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
92 int sysctl_tcp_frto __read_mostly = 2;
93 int sysctl_tcp_frto_response __read_mostly;
94 int sysctl_tcp_nometrics_save __read_mostly;
95 
96 int sysctl_tcp_thin_dupack __read_mostly;
97 
98 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
99 int sysctl_tcp_abc __read_mostly;
100 
101 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
102 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
103 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
104 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
105 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
106 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
107 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
108 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
109 #define FLAG_ONLY_ORIG_SACKED	0x200 /* SACKs only non-rexmit sent before RTO */
110 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
111 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
112 #define FLAG_NONHEAD_RETRANS_ACKED	0x1000 /* Non-head rexmitted data was ACKed */
113 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
114 
115 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
116 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
117 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE)
118 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
119 #define FLAG_ANY_PROGRESS	(FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
120 
121 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
122 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
123 
124 /* Adapt the MSS value used to make delayed ack decision to the
125  * real world.
126  */
tcp_measure_rcv_mss(struct sock * sk,const struct sk_buff * skb)127 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
128 {
129 	struct inet_connection_sock *icsk = inet_csk(sk);
130 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
131 	unsigned int len;
132 
133 	icsk->icsk_ack.last_seg_size = 0;
134 
135 	/* skb->len may jitter because of SACKs, even if peer
136 	 * sends good full-sized frames.
137 	 */
138 	len = skb_shinfo(skb)->gso_size ? : skb->len;
139 	if (len >= icsk->icsk_ack.rcv_mss) {
140 		icsk->icsk_ack.rcv_mss = len;
141 	} else {
142 		/* Otherwise, we make more careful check taking into account,
143 		 * that SACKs block is variable.
144 		 *
145 		 * "len" is invariant segment length, including TCP header.
146 		 */
147 		len += skb->data - skb_transport_header(skb);
148 		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
149 		    /* If PSH is not set, packet should be
150 		     * full sized, provided peer TCP is not badly broken.
151 		     * This observation (if it is correct 8)) allows
152 		     * to handle super-low mtu links fairly.
153 		     */
154 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
155 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
156 			/* Subtract also invariant (if peer is RFC compliant),
157 			 * tcp header plus fixed timestamp option length.
158 			 * Resulting "len" is MSS free of SACK jitter.
159 			 */
160 			len -= tcp_sk(sk)->tcp_header_len;
161 			icsk->icsk_ack.last_seg_size = len;
162 			if (len == lss) {
163 				icsk->icsk_ack.rcv_mss = len;
164 				return;
165 			}
166 		}
167 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
168 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
169 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
170 	}
171 }
172 
tcp_incr_quickack(struct sock * sk)173 static void tcp_incr_quickack(struct sock *sk)
174 {
175 	struct inet_connection_sock *icsk = inet_csk(sk);
176 	unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
177 
178 	if (quickacks == 0)
179 		quickacks = 2;
180 	if (quickacks > icsk->icsk_ack.quick)
181 		icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
182 }
183 
tcp_enter_quickack_mode(struct sock * sk)184 static void tcp_enter_quickack_mode(struct sock *sk)
185 {
186 	struct inet_connection_sock *icsk = inet_csk(sk);
187 	tcp_incr_quickack(sk);
188 	icsk->icsk_ack.pingpong = 0;
189 	icsk->icsk_ack.ato = TCP_ATO_MIN;
190 }
191 
192 /* Send ACKs quickly, if "quick" count is not exhausted
193  * and the session is not interactive.
194  */
195 
tcp_in_quickack_mode(const struct sock * sk)196 static inline int tcp_in_quickack_mode(const struct sock *sk)
197 {
198 	const struct inet_connection_sock *icsk = inet_csk(sk);
199 	return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
200 }
201 
TCP_ECN_queue_cwr(struct tcp_sock * tp)202 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
203 {
204 	if (tp->ecn_flags & TCP_ECN_OK)
205 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
206 }
207 
TCP_ECN_accept_cwr(struct tcp_sock * tp,const struct sk_buff * skb)208 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
209 {
210 	if (tcp_hdr(skb)->cwr)
211 		tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
212 }
213 
TCP_ECN_withdraw_cwr(struct tcp_sock * tp)214 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
215 {
216 	tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
217 }
218 
TCP_ECN_check_ce(struct tcp_sock * tp,const struct sk_buff * skb)219 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
220 {
221 	if (!(tp->ecn_flags & TCP_ECN_OK))
222 		return;
223 
224 	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
225 	case INET_ECN_NOT_ECT:
226 		/* Funny extension: if ECT is not set on a segment,
227 		 * and we already seen ECT on a previous segment,
228 		 * it is probably a retransmit.
229 		 */
230 		if (tp->ecn_flags & TCP_ECN_SEEN)
231 			tcp_enter_quickack_mode((struct sock *)tp);
232 		break;
233 	case INET_ECN_CE:
234 		tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
235 		/* fallinto */
236 	default:
237 		tp->ecn_flags |= TCP_ECN_SEEN;
238 	}
239 }
240 
TCP_ECN_rcv_synack(struct tcp_sock * tp,const struct tcphdr * th)241 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
242 {
243 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
244 		tp->ecn_flags &= ~TCP_ECN_OK;
245 }
246 
TCP_ECN_rcv_syn(struct tcp_sock * tp,const struct tcphdr * th)247 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
248 {
249 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
250 		tp->ecn_flags &= ~TCP_ECN_OK;
251 }
252 
TCP_ECN_rcv_ecn_echo(const struct tcp_sock * tp,const struct tcphdr * th)253 static inline int TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
254 {
255 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
256 		return 1;
257 	return 0;
258 }
259 
260 /* Buffer size and advertised window tuning.
261  *
262  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
263  */
264 
tcp_fixup_sndbuf(struct sock * sk)265 static void tcp_fixup_sndbuf(struct sock *sk)
266 {
267 	int sndmem = SKB_TRUESIZE(tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER);
268 
269 	sndmem *= TCP_INIT_CWND;
270 	if (sk->sk_sndbuf < sndmem)
271 		sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
272 }
273 
274 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
275  *
276  * All tcp_full_space() is split to two parts: "network" buffer, allocated
277  * forward and advertised in receiver window (tp->rcv_wnd) and
278  * "application buffer", required to isolate scheduling/application
279  * latencies from network.
280  * window_clamp is maximal advertised window. It can be less than
281  * tcp_full_space(), in this case tcp_full_space() - window_clamp
282  * is reserved for "application" buffer. The less window_clamp is
283  * the smoother our behaviour from viewpoint of network, but the lower
284  * throughput and the higher sensitivity of the connection to losses. 8)
285  *
286  * rcv_ssthresh is more strict window_clamp used at "slow start"
287  * phase to predict further behaviour of this connection.
288  * It is used for two goals:
289  * - to enforce header prediction at sender, even when application
290  *   requires some significant "application buffer". It is check #1.
291  * - to prevent pruning of receive queue because of misprediction
292  *   of receiver window. Check #2.
293  *
294  * The scheme does not work when sender sends good segments opening
295  * window and then starts to feed us spaghetti. But it should work
296  * in common situations. Otherwise, we have to rely on queue collapsing.
297  */
298 
299 /* Slow part of check#2. */
__tcp_grow_window(const struct sock * sk,const struct sk_buff * skb)300 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
301 {
302 	struct tcp_sock *tp = tcp_sk(sk);
303 	/* Optimize this! */
304 	int truesize = tcp_win_from_space(skb->truesize) >> 1;
305 	int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
306 
307 	while (tp->rcv_ssthresh <= window) {
308 		if (truesize <= skb->len)
309 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
310 
311 		truesize >>= 1;
312 		window >>= 1;
313 	}
314 	return 0;
315 }
316 
tcp_grow_window(struct sock * sk,const struct sk_buff * skb)317 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
318 {
319 	struct tcp_sock *tp = tcp_sk(sk);
320 
321 	/* Check #1 */
322 	if (tp->rcv_ssthresh < tp->window_clamp &&
323 	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
324 	    !sk_under_memory_pressure(sk)) {
325 		int incr;
326 
327 		/* Check #2. Increase window, if skb with such overhead
328 		 * will fit to rcvbuf in future.
329 		 */
330 		if (tcp_win_from_space(skb->truesize) <= skb->len)
331 			incr = 2 * tp->advmss;
332 		else
333 			incr = __tcp_grow_window(sk, skb);
334 
335 		if (incr) {
336 			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
337 					       tp->window_clamp);
338 			inet_csk(sk)->icsk_ack.quick |= 1;
339 		}
340 	}
341 }
342 
343 /* 3. Tuning rcvbuf, when connection enters established state. */
344 
tcp_fixup_rcvbuf(struct sock * sk)345 static void tcp_fixup_rcvbuf(struct sock *sk)
346 {
347 	u32 mss = tcp_sk(sk)->advmss;
348 	u32 icwnd = TCP_DEFAULT_INIT_RCVWND;
349 	int rcvmem;
350 
351 	/* Limit to 10 segments if mss <= 1460,
352 	 * or 14600/mss segments, with a minimum of two segments.
353 	 */
354 	if (mss > 1460)
355 		icwnd = max_t(u32, (1460 * TCP_DEFAULT_INIT_RCVWND) / mss, 2);
356 
357 	rcvmem = SKB_TRUESIZE(mss + MAX_TCP_HEADER);
358 	while (tcp_win_from_space(rcvmem) < mss)
359 		rcvmem += 128;
360 
361 	rcvmem *= icwnd;
362 
363 	if (sk->sk_rcvbuf < rcvmem)
364 		sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
365 }
366 
367 /* 4. Try to fixup all. It is made immediately after connection enters
368  *    established state.
369  */
tcp_init_buffer_space(struct sock * sk)370 static void tcp_init_buffer_space(struct sock *sk)
371 {
372 	struct tcp_sock *tp = tcp_sk(sk);
373 	int maxwin;
374 
375 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
376 		tcp_fixup_rcvbuf(sk);
377 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
378 		tcp_fixup_sndbuf(sk);
379 
380 	tp->rcvq_space.space = tp->rcv_wnd;
381 
382 	maxwin = tcp_full_space(sk);
383 
384 	if (tp->window_clamp >= maxwin) {
385 		tp->window_clamp = maxwin;
386 
387 		if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
388 			tp->window_clamp = max(maxwin -
389 					       (maxwin >> sysctl_tcp_app_win),
390 					       4 * tp->advmss);
391 	}
392 
393 	/* Force reservation of one segment. */
394 	if (sysctl_tcp_app_win &&
395 	    tp->window_clamp > 2 * tp->advmss &&
396 	    tp->window_clamp + tp->advmss > maxwin)
397 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
398 
399 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
400 	tp->snd_cwnd_stamp = tcp_time_stamp;
401 }
402 
403 /* 5. Recalculate window clamp after socket hit its memory bounds. */
tcp_clamp_window(struct sock * sk)404 static void tcp_clamp_window(struct sock *sk)
405 {
406 	struct tcp_sock *tp = tcp_sk(sk);
407 	struct inet_connection_sock *icsk = inet_csk(sk);
408 
409 	icsk->icsk_ack.quick = 0;
410 
411 	if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
412 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
413 	    !sk_under_memory_pressure(sk) &&
414 	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
415 		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
416 				    sysctl_tcp_rmem[2]);
417 	}
418 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
419 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
420 }
421 
422 /* Initialize RCV_MSS value.
423  * RCV_MSS is an our guess about MSS used by the peer.
424  * We haven't any direct information about the MSS.
425  * It's better to underestimate the RCV_MSS rather than overestimate.
426  * Overestimations make us ACKing less frequently than needed.
427  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
428  */
tcp_initialize_rcv_mss(struct sock * sk)429 void tcp_initialize_rcv_mss(struct sock *sk)
430 {
431 	const struct tcp_sock *tp = tcp_sk(sk);
432 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
433 
434 	hint = min(hint, tp->rcv_wnd / 2);
435 	hint = min(hint, TCP_MSS_DEFAULT);
436 	hint = max(hint, TCP_MIN_MSS);
437 
438 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
439 }
440 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
441 
442 /* Receiver "autotuning" code.
443  *
444  * The algorithm for RTT estimation w/o timestamps is based on
445  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
446  * <http://public.lanl.gov/radiant/pubs.html#DRS>
447  *
448  * More detail on this code can be found at
449  * <http://staff.psc.edu/jheffner/>,
450  * though this reference is out of date.  A new paper
451  * is pending.
452  */
tcp_rcv_rtt_update(struct tcp_sock * tp,u32 sample,int win_dep)453 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
454 {
455 	u32 new_sample = tp->rcv_rtt_est.rtt;
456 	long m = sample;
457 
458 	if (m == 0)
459 		m = 1;
460 
461 	if (new_sample != 0) {
462 		/* If we sample in larger samples in the non-timestamp
463 		 * case, we could grossly overestimate the RTT especially
464 		 * with chatty applications or bulk transfer apps which
465 		 * are stalled on filesystem I/O.
466 		 *
467 		 * Also, since we are only going for a minimum in the
468 		 * non-timestamp case, we do not smooth things out
469 		 * else with timestamps disabled convergence takes too
470 		 * long.
471 		 */
472 		if (!win_dep) {
473 			m -= (new_sample >> 3);
474 			new_sample += m;
475 		} else if (m < new_sample)
476 			new_sample = m << 3;
477 	} else {
478 		/* No previous measure. */
479 		new_sample = m << 3;
480 	}
481 
482 	if (tp->rcv_rtt_est.rtt != new_sample)
483 		tp->rcv_rtt_est.rtt = new_sample;
484 }
485 
tcp_rcv_rtt_measure(struct tcp_sock * tp)486 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
487 {
488 	if (tp->rcv_rtt_est.time == 0)
489 		goto new_measure;
490 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
491 		return;
492 	tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
493 
494 new_measure:
495 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
496 	tp->rcv_rtt_est.time = tcp_time_stamp;
497 }
498 
tcp_rcv_rtt_measure_ts(struct sock * sk,const struct sk_buff * skb)499 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
500 					  const struct sk_buff *skb)
501 {
502 	struct tcp_sock *tp = tcp_sk(sk);
503 	if (tp->rx_opt.rcv_tsecr &&
504 	    (TCP_SKB_CB(skb)->end_seq -
505 	     TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
506 		tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
507 }
508 
509 /*
510  * This function should be called every time data is copied to user space.
511  * It calculates the appropriate TCP receive buffer space.
512  */
tcp_rcv_space_adjust(struct sock * sk)513 void tcp_rcv_space_adjust(struct sock *sk)
514 {
515 	struct tcp_sock *tp = tcp_sk(sk);
516 	int time;
517 	int space;
518 
519 	if (tp->rcvq_space.time == 0)
520 		goto new_measure;
521 
522 	time = tcp_time_stamp - tp->rcvq_space.time;
523 	if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
524 		return;
525 
526 	space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
527 
528 	space = max(tp->rcvq_space.space, space);
529 
530 	if (tp->rcvq_space.space != space) {
531 		int rcvmem;
532 
533 		tp->rcvq_space.space = space;
534 
535 		if (sysctl_tcp_moderate_rcvbuf &&
536 		    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
537 			int new_clamp = space;
538 
539 			/* Receive space grows, normalize in order to
540 			 * take into account packet headers and sk_buff
541 			 * structure overhead.
542 			 */
543 			space /= tp->advmss;
544 			if (!space)
545 				space = 1;
546 			rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
547 			while (tcp_win_from_space(rcvmem) < tp->advmss)
548 				rcvmem += 128;
549 			space *= rcvmem;
550 			space = min(space, sysctl_tcp_rmem[2]);
551 			if (space > sk->sk_rcvbuf) {
552 				sk->sk_rcvbuf = space;
553 
554 				/* Make the window clamp follow along.  */
555 				tp->window_clamp = new_clamp;
556 			}
557 		}
558 	}
559 
560 new_measure:
561 	tp->rcvq_space.seq = tp->copied_seq;
562 	tp->rcvq_space.time = tcp_time_stamp;
563 }
564 
565 /* There is something which you must keep in mind when you analyze the
566  * behavior of the tp->ato delayed ack timeout interval.  When a
567  * connection starts up, we want to ack as quickly as possible.  The
568  * problem is that "good" TCP's do slow start at the beginning of data
569  * transmission.  The means that until we send the first few ACK's the
570  * sender will sit on his end and only queue most of his data, because
571  * he can only send snd_cwnd unacked packets at any given time.  For
572  * each ACK we send, he increments snd_cwnd and transmits more of his
573  * queue.  -DaveM
574  */
tcp_event_data_recv(struct sock * sk,struct sk_buff * skb)575 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
576 {
577 	struct tcp_sock *tp = tcp_sk(sk);
578 	struct inet_connection_sock *icsk = inet_csk(sk);
579 	u32 now;
580 
581 	inet_csk_schedule_ack(sk);
582 
583 	tcp_measure_rcv_mss(sk, skb);
584 
585 	tcp_rcv_rtt_measure(tp);
586 
587 	now = tcp_time_stamp;
588 
589 	if (!icsk->icsk_ack.ato) {
590 		/* The _first_ data packet received, initialize
591 		 * delayed ACK engine.
592 		 */
593 		tcp_incr_quickack(sk);
594 		icsk->icsk_ack.ato = TCP_ATO_MIN;
595 	} else {
596 		int m = now - icsk->icsk_ack.lrcvtime;
597 
598 		if (m <= TCP_ATO_MIN / 2) {
599 			/* The fastest case is the first. */
600 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
601 		} else if (m < icsk->icsk_ack.ato) {
602 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
603 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
604 				icsk->icsk_ack.ato = icsk->icsk_rto;
605 		} else if (m > icsk->icsk_rto) {
606 			/* Too long gap. Apparently sender failed to
607 			 * restart window, so that we send ACKs quickly.
608 			 */
609 			tcp_incr_quickack(sk);
610 			sk_mem_reclaim(sk);
611 		}
612 	}
613 	icsk->icsk_ack.lrcvtime = now;
614 
615 	TCP_ECN_check_ce(tp, skb);
616 
617 	if (skb->len >= 128)
618 		tcp_grow_window(sk, skb);
619 }
620 
621 /* Called to compute a smoothed rtt estimate. The data fed to this
622  * routine either comes from timestamps, or from segments that were
623  * known _not_ to have been retransmitted [see Karn/Partridge
624  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
625  * piece by Van Jacobson.
626  * NOTE: the next three routines used to be one big routine.
627  * To save cycles in the RFC 1323 implementation it was better to break
628  * it up into three procedures. -- erics
629  */
tcp_rtt_estimator(struct sock * sk,const __u32 mrtt)630 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
631 {
632 	struct tcp_sock *tp = tcp_sk(sk);
633 	long m = mrtt; /* RTT */
634 
635 	/*	The following amusing code comes from Jacobson's
636 	 *	article in SIGCOMM '88.  Note that rtt and mdev
637 	 *	are scaled versions of rtt and mean deviation.
638 	 *	This is designed to be as fast as possible
639 	 *	m stands for "measurement".
640 	 *
641 	 *	On a 1990 paper the rto value is changed to:
642 	 *	RTO = rtt + 4 * mdev
643 	 *
644 	 * Funny. This algorithm seems to be very broken.
645 	 * These formulae increase RTO, when it should be decreased, increase
646 	 * too slowly, when it should be increased quickly, decrease too quickly
647 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
648 	 * does not matter how to _calculate_ it. Seems, it was trap
649 	 * that VJ failed to avoid. 8)
650 	 */
651 	if (m == 0)
652 		m = 1;
653 	if (tp->srtt != 0) {
654 		m -= (tp->srtt >> 3);	/* m is now error in rtt est */
655 		tp->srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
656 		if (m < 0) {
657 			m = -m;		/* m is now abs(error) */
658 			m -= (tp->mdev >> 2);   /* similar update on mdev */
659 			/* This is similar to one of Eifel findings.
660 			 * Eifel blocks mdev updates when rtt decreases.
661 			 * This solution is a bit different: we use finer gain
662 			 * for mdev in this case (alpha*beta).
663 			 * Like Eifel it also prevents growth of rto,
664 			 * but also it limits too fast rto decreases,
665 			 * happening in pure Eifel.
666 			 */
667 			if (m > 0)
668 				m >>= 3;
669 		} else {
670 			m -= (tp->mdev >> 2);   /* similar update on mdev */
671 		}
672 		tp->mdev += m;	    	/* mdev = 3/4 mdev + 1/4 new */
673 		if (tp->mdev > tp->mdev_max) {
674 			tp->mdev_max = tp->mdev;
675 			if (tp->mdev_max > tp->rttvar)
676 				tp->rttvar = tp->mdev_max;
677 		}
678 		if (after(tp->snd_una, tp->rtt_seq)) {
679 			if (tp->mdev_max < tp->rttvar)
680 				tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
681 			tp->rtt_seq = tp->snd_nxt;
682 			tp->mdev_max = tcp_rto_min(sk);
683 		}
684 	} else {
685 		/* no previous measure. */
686 		tp->srtt = m << 3;	/* take the measured time to be rtt */
687 		tp->mdev = m << 1;	/* make sure rto = 3*rtt */
688 		tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
689 		tp->rtt_seq = tp->snd_nxt;
690 	}
691 }
692 
693 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
694  * routine referred to above.
695  */
tcp_set_rto(struct sock * sk)696 static inline void tcp_set_rto(struct sock *sk)
697 {
698 	const struct tcp_sock *tp = tcp_sk(sk);
699 	/* Old crap is replaced with new one. 8)
700 	 *
701 	 * More seriously:
702 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
703 	 *    It cannot be less due to utterly erratic ACK generation made
704 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
705 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
706 	 *    is invisible. Actually, Linux-2.4 also generates erratic
707 	 *    ACKs in some circumstances.
708 	 */
709 	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
710 
711 	/* 2. Fixups made earlier cannot be right.
712 	 *    If we do not estimate RTO correctly without them,
713 	 *    all the algo is pure shit and should be replaced
714 	 *    with correct one. It is exactly, which we pretend to do.
715 	 */
716 
717 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
718 	 * guarantees that rto is higher.
719 	 */
720 	tcp_bound_rto(sk);
721 }
722 
723 /* Save metrics learned by this TCP session.
724    This function is called only, when TCP finishes successfully
725    i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
726  */
tcp_update_metrics(struct sock * sk)727 void tcp_update_metrics(struct sock *sk)
728 {
729 	struct tcp_sock *tp = tcp_sk(sk);
730 	struct dst_entry *dst = __sk_dst_get(sk);
731 
732 	if (sysctl_tcp_nometrics_save)
733 		return;
734 
735 	dst_confirm(dst);
736 
737 	if (dst && (dst->flags & DST_HOST)) {
738 		const struct inet_connection_sock *icsk = inet_csk(sk);
739 		int m;
740 		unsigned long rtt;
741 
742 		if (icsk->icsk_backoff || !tp->srtt) {
743 			/* This session failed to estimate rtt. Why?
744 			 * Probably, no packets returned in time.
745 			 * Reset our results.
746 			 */
747 			if (!(dst_metric_locked(dst, RTAX_RTT)))
748 				dst_metric_set(dst, RTAX_RTT, 0);
749 			return;
750 		}
751 
752 		rtt = dst_metric_rtt(dst, RTAX_RTT);
753 		m = rtt - tp->srtt;
754 
755 		/* If newly calculated rtt larger than stored one,
756 		 * store new one. Otherwise, use EWMA. Remember,
757 		 * rtt overestimation is always better than underestimation.
758 		 */
759 		if (!(dst_metric_locked(dst, RTAX_RTT))) {
760 			if (m <= 0)
761 				set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
762 			else
763 				set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
764 		}
765 
766 		if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
767 			unsigned long var;
768 			if (m < 0)
769 				m = -m;
770 
771 			/* Scale deviation to rttvar fixed point */
772 			m >>= 1;
773 			if (m < tp->mdev)
774 				m = tp->mdev;
775 
776 			var = dst_metric_rtt(dst, RTAX_RTTVAR);
777 			if (m >= var)
778 				var = m;
779 			else
780 				var -= (var - m) >> 2;
781 
782 			set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
783 		}
784 
785 		if (tcp_in_initial_slowstart(tp)) {
786 			/* Slow start still did not finish. */
787 			if (dst_metric(dst, RTAX_SSTHRESH) &&
788 			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
789 			    (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
790 				dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_cwnd >> 1);
791 			if (!dst_metric_locked(dst, RTAX_CWND) &&
792 			    tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
793 				dst_metric_set(dst, RTAX_CWND, tp->snd_cwnd);
794 		} else if (tp->snd_cwnd > tp->snd_ssthresh &&
795 			   icsk->icsk_ca_state == TCP_CA_Open) {
796 			/* Cong. avoidance phase, cwnd is reliable. */
797 			if (!dst_metric_locked(dst, RTAX_SSTHRESH))
798 				dst_metric_set(dst, RTAX_SSTHRESH,
799 					       max(tp->snd_cwnd >> 1, tp->snd_ssthresh));
800 			if (!dst_metric_locked(dst, RTAX_CWND))
801 				dst_metric_set(dst, RTAX_CWND,
802 					       (dst_metric(dst, RTAX_CWND) +
803 						tp->snd_cwnd) >> 1);
804 		} else {
805 			/* Else slow start did not finish, cwnd is non-sense,
806 			   ssthresh may be also invalid.
807 			 */
808 			if (!dst_metric_locked(dst, RTAX_CWND))
809 				dst_metric_set(dst, RTAX_CWND,
810 					       (dst_metric(dst, RTAX_CWND) +
811 						tp->snd_ssthresh) >> 1);
812 			if (dst_metric(dst, RTAX_SSTHRESH) &&
813 			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
814 			    tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
815 				dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_ssthresh);
816 		}
817 
818 		if (!dst_metric_locked(dst, RTAX_REORDERING)) {
819 			if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
820 			    tp->reordering != sysctl_tcp_reordering)
821 				dst_metric_set(dst, RTAX_REORDERING, tp->reordering);
822 		}
823 	}
824 }
825 
tcp_init_cwnd(const struct tcp_sock * tp,const struct dst_entry * dst)826 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
827 {
828 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
829 
830 	if (!cwnd)
831 		cwnd = TCP_INIT_CWND;
832 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
833 }
834 
835 /* Set slow start threshold and cwnd not falling to slow start */
tcp_enter_cwr(struct sock * sk,const int set_ssthresh)836 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
837 {
838 	struct tcp_sock *tp = tcp_sk(sk);
839 	const struct inet_connection_sock *icsk = inet_csk(sk);
840 
841 	tp->prior_ssthresh = 0;
842 	tp->bytes_acked = 0;
843 	if (icsk->icsk_ca_state < TCP_CA_CWR) {
844 		tp->undo_marker = 0;
845 		if (set_ssthresh)
846 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
847 		tp->snd_cwnd = min(tp->snd_cwnd,
848 				   tcp_packets_in_flight(tp) + 1U);
849 		tp->snd_cwnd_cnt = 0;
850 		tp->high_seq = tp->snd_nxt;
851 		tp->snd_cwnd_stamp = tcp_time_stamp;
852 		TCP_ECN_queue_cwr(tp);
853 
854 		tcp_set_ca_state(sk, TCP_CA_CWR);
855 	}
856 }
857 
858 /*
859  * Packet counting of FACK is based on in-order assumptions, therefore TCP
860  * disables it when reordering is detected
861  */
tcp_disable_fack(struct tcp_sock * tp)862 static void tcp_disable_fack(struct tcp_sock *tp)
863 {
864 	/* RFC3517 uses different metric in lost marker => reset on change */
865 	if (tcp_is_fack(tp))
866 		tp->lost_skb_hint = NULL;
867 	tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
868 }
869 
870 /* Take a notice that peer is sending D-SACKs */
tcp_dsack_seen(struct tcp_sock * tp)871 static void tcp_dsack_seen(struct tcp_sock *tp)
872 {
873 	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
874 }
875 
876 /* Initialize metrics on socket. */
877 
tcp_init_metrics(struct sock * sk)878 static void tcp_init_metrics(struct sock *sk)
879 {
880 	struct tcp_sock *tp = tcp_sk(sk);
881 	struct dst_entry *dst = __sk_dst_get(sk);
882 
883 	if (dst == NULL)
884 		goto reset;
885 
886 	dst_confirm(dst);
887 
888 	if (dst_metric_locked(dst, RTAX_CWND))
889 		tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
890 	if (dst_metric(dst, RTAX_SSTHRESH)) {
891 		tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
892 		if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
893 			tp->snd_ssthresh = tp->snd_cwnd_clamp;
894 	} else {
895 		/* ssthresh may have been reduced unnecessarily during.
896 		 * 3WHS. Restore it back to its initial default.
897 		 */
898 		tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
899 	}
900 	if (dst_metric(dst, RTAX_REORDERING) &&
901 	    tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
902 		tcp_disable_fack(tp);
903 		tp->reordering = dst_metric(dst, RTAX_REORDERING);
904 	}
905 
906 	if (dst_metric(dst, RTAX_RTT) == 0 || tp->srtt == 0)
907 		goto reset;
908 
909 	/* Initial rtt is determined from SYN,SYN-ACK.
910 	 * The segment is small and rtt may appear much
911 	 * less than real one. Use per-dst memory
912 	 * to make it more realistic.
913 	 *
914 	 * A bit of theory. RTT is time passed after "normal" sized packet
915 	 * is sent until it is ACKed. In normal circumstances sending small
916 	 * packets force peer to delay ACKs and calculation is correct too.
917 	 * The algorithm is adaptive and, provided we follow specs, it
918 	 * NEVER underestimate RTT. BUT! If peer tries to make some clever
919 	 * tricks sort of "quick acks" for time long enough to decrease RTT
920 	 * to low value, and then abruptly stops to do it and starts to delay
921 	 * ACKs, wait for troubles.
922 	 */
923 	if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
924 		tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
925 		tp->rtt_seq = tp->snd_nxt;
926 	}
927 	if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
928 		tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
929 		tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
930 	}
931 	tcp_set_rto(sk);
932 reset:
933 	if (tp->srtt == 0) {
934 		/* RFC2988bis: We've failed to get a valid RTT sample from
935 		 * 3WHS. This is most likely due to retransmission,
936 		 * including spurious one. Reset the RTO back to 3secs
937 		 * from the more aggressive 1sec to avoid more spurious
938 		 * retransmission.
939 		 */
940 		tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_FALLBACK;
941 		inet_csk(sk)->icsk_rto = TCP_TIMEOUT_FALLBACK;
942 	}
943 	/* Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
944 	 * retransmitted. In light of RFC2988bis' more aggressive 1sec
945 	 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
946 	 * retransmission has occurred.
947 	 */
948 	if (tp->total_retrans > 1)
949 		tp->snd_cwnd = 1;
950 	else
951 		tp->snd_cwnd = tcp_init_cwnd(tp, dst);
952 	tp->snd_cwnd_stamp = tcp_time_stamp;
953 }
954 
tcp_update_reordering(struct sock * sk,const int metric,const int ts)955 static void tcp_update_reordering(struct sock *sk, const int metric,
956 				  const int ts)
957 {
958 	struct tcp_sock *tp = tcp_sk(sk);
959 	if (metric > tp->reordering) {
960 		int mib_idx;
961 
962 		tp->reordering = min(TCP_MAX_REORDERING, metric);
963 
964 		/* This exciting event is worth to be remembered. 8) */
965 		if (ts)
966 			mib_idx = LINUX_MIB_TCPTSREORDER;
967 		else if (tcp_is_reno(tp))
968 			mib_idx = LINUX_MIB_TCPRENOREORDER;
969 		else if (tcp_is_fack(tp))
970 			mib_idx = LINUX_MIB_TCPFACKREORDER;
971 		else
972 			mib_idx = LINUX_MIB_TCPSACKREORDER;
973 
974 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
975 #if FASTRETRANS_DEBUG > 1
976 		printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
977 		       tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
978 		       tp->reordering,
979 		       tp->fackets_out,
980 		       tp->sacked_out,
981 		       tp->undo_marker ? tp->undo_retrans : 0);
982 #endif
983 		tcp_disable_fack(tp);
984 	}
985 }
986 
987 /* This must be called before lost_out is incremented */
tcp_verify_retransmit_hint(struct tcp_sock * tp,struct sk_buff * skb)988 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
989 {
990 	if ((tp->retransmit_skb_hint == NULL) ||
991 	    before(TCP_SKB_CB(skb)->seq,
992 		   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
993 		tp->retransmit_skb_hint = skb;
994 
995 	if (!tp->lost_out ||
996 	    after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
997 		tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
998 }
999 
tcp_skb_mark_lost(struct tcp_sock * tp,struct sk_buff * skb)1000 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
1001 {
1002 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1003 		tcp_verify_retransmit_hint(tp, skb);
1004 
1005 		tp->lost_out += tcp_skb_pcount(skb);
1006 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1007 	}
1008 }
1009 
tcp_skb_mark_lost_uncond_verify(struct tcp_sock * tp,struct sk_buff * skb)1010 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
1011 					    struct sk_buff *skb)
1012 {
1013 	tcp_verify_retransmit_hint(tp, skb);
1014 
1015 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1016 		tp->lost_out += tcp_skb_pcount(skb);
1017 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1018 	}
1019 }
1020 
1021 /* This procedure tags the retransmission queue when SACKs arrive.
1022  *
1023  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1024  * Packets in queue with these bits set are counted in variables
1025  * sacked_out, retrans_out and lost_out, correspondingly.
1026  *
1027  * Valid combinations are:
1028  * Tag  InFlight	Description
1029  * 0	1		- orig segment is in flight.
1030  * S	0		- nothing flies, orig reached receiver.
1031  * L	0		- nothing flies, orig lost by net.
1032  * R	2		- both orig and retransmit are in flight.
1033  * L|R	1		- orig is lost, retransmit is in flight.
1034  * S|R  1		- orig reached receiver, retrans is still in flight.
1035  * (L|S|R is logically valid, it could occur when L|R is sacked,
1036  *  but it is equivalent to plain S and code short-curcuits it to S.
1037  *  L|S is logically invalid, it would mean -1 packet in flight 8))
1038  *
1039  * These 6 states form finite state machine, controlled by the following events:
1040  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1041  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1042  * 3. Loss detection event of two flavors:
1043  *	A. Scoreboard estimator decided the packet is lost.
1044  *	   A'. Reno "three dupacks" marks head of queue lost.
1045  *	   A''. Its FACK modification, head until snd.fack is lost.
1046  *	B. SACK arrives sacking SND.NXT at the moment, when the
1047  *	   segment was retransmitted.
1048  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1049  *
1050  * It is pleasant to note, that state diagram turns out to be commutative,
1051  * so that we are allowed not to be bothered by order of our actions,
1052  * when multiple events arrive simultaneously. (see the function below).
1053  *
1054  * Reordering detection.
1055  * --------------------
1056  * Reordering metric is maximal distance, which a packet can be displaced
1057  * in packet stream. With SACKs we can estimate it:
1058  *
1059  * 1. SACK fills old hole and the corresponding segment was not
1060  *    ever retransmitted -> reordering. Alas, we cannot use it
1061  *    when segment was retransmitted.
1062  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1063  *    for retransmitted and already SACKed segment -> reordering..
1064  * Both of these heuristics are not used in Loss state, when we cannot
1065  * account for retransmits accurately.
1066  *
1067  * SACK block validation.
1068  * ----------------------
1069  *
1070  * SACK block range validation checks that the received SACK block fits to
1071  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1072  * Note that SND.UNA is not included to the range though being valid because
1073  * it means that the receiver is rather inconsistent with itself reporting
1074  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1075  * perfectly valid, however, in light of RFC2018 which explicitly states
1076  * that "SACK block MUST reflect the newest segment.  Even if the newest
1077  * segment is going to be discarded ...", not that it looks very clever
1078  * in case of head skb. Due to potentional receiver driven attacks, we
1079  * choose to avoid immediate execution of a walk in write queue due to
1080  * reneging and defer head skb's loss recovery to standard loss recovery
1081  * procedure that will eventually trigger (nothing forbids us doing this).
1082  *
1083  * Implements also blockage to start_seq wrap-around. Problem lies in the
1084  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1085  * there's no guarantee that it will be before snd_nxt (n). The problem
1086  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1087  * wrap (s_w):
1088  *
1089  *         <- outs wnd ->                          <- wrapzone ->
1090  *         u     e      n                         u_w   e_w  s n_w
1091  *         |     |      |                          |     |   |  |
1092  * |<------------+------+----- TCP seqno space --------------+---------->|
1093  * ...-- <2^31 ->|                                           |<--------...
1094  * ...---- >2^31 ------>|                                    |<--------...
1095  *
1096  * Current code wouldn't be vulnerable but it's better still to discard such
1097  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1098  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1099  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1100  * equal to the ideal case (infinite seqno space without wrap caused issues).
1101  *
1102  * With D-SACK the lower bound is extended to cover sequence space below
1103  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1104  * again, D-SACK block must not to go across snd_una (for the same reason as
1105  * for the normal SACK blocks, explained above). But there all simplicity
1106  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1107  * fully below undo_marker they do not affect behavior in anyway and can
1108  * therefore be safely ignored. In rare cases (which are more or less
1109  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1110  * fragmentation and packet reordering past skb's retransmission. To consider
1111  * them correctly, the acceptable range must be extended even more though
1112  * the exact amount is rather hard to quantify. However, tp->max_window can
1113  * be used as an exaggerated estimate.
1114  */
tcp_is_sackblock_valid(struct tcp_sock * tp,int is_dsack,u32 start_seq,u32 end_seq)1115 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1116 				  u32 start_seq, u32 end_seq)
1117 {
1118 	/* Too far in future, or reversed (interpretation is ambiguous) */
1119 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1120 		return 0;
1121 
1122 	/* Nasty start_seq wrap-around check (see comments above) */
1123 	if (!before(start_seq, tp->snd_nxt))
1124 		return 0;
1125 
1126 	/* In outstanding window? ...This is valid exit for D-SACKs too.
1127 	 * start_seq == snd_una is non-sensical (see comments above)
1128 	 */
1129 	if (after(start_seq, tp->snd_una))
1130 		return 1;
1131 
1132 	if (!is_dsack || !tp->undo_marker)
1133 		return 0;
1134 
1135 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1136 	if (after(end_seq, tp->snd_una))
1137 		return 0;
1138 
1139 	if (!before(start_seq, tp->undo_marker))
1140 		return 1;
1141 
1142 	/* Too old */
1143 	if (!after(end_seq, tp->undo_marker))
1144 		return 0;
1145 
1146 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1147 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1148 	 */
1149 	return !before(start_seq, end_seq - tp->max_window);
1150 }
1151 
1152 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1153  * Event "B". Later note: FACK people cheated me again 8), we have to account
1154  * for reordering! Ugly, but should help.
1155  *
1156  * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1157  * less than what is now known to be received by the other end (derived from
1158  * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1159  * retransmitted skbs to avoid some costly processing per ACKs.
1160  */
tcp_mark_lost_retrans(struct sock * sk)1161 static void tcp_mark_lost_retrans(struct sock *sk)
1162 {
1163 	const struct inet_connection_sock *icsk = inet_csk(sk);
1164 	struct tcp_sock *tp = tcp_sk(sk);
1165 	struct sk_buff *skb;
1166 	int cnt = 0;
1167 	u32 new_low_seq = tp->snd_nxt;
1168 	u32 received_upto = tcp_highest_sack_seq(tp);
1169 
1170 	if (!tcp_is_fack(tp) || !tp->retrans_out ||
1171 	    !after(received_upto, tp->lost_retrans_low) ||
1172 	    icsk->icsk_ca_state != TCP_CA_Recovery)
1173 		return;
1174 
1175 	tcp_for_write_queue(skb, sk) {
1176 		u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1177 
1178 		if (skb == tcp_send_head(sk))
1179 			break;
1180 		if (cnt == tp->retrans_out)
1181 			break;
1182 		if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1183 			continue;
1184 
1185 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1186 			continue;
1187 
1188 		/* TODO: We would like to get rid of tcp_is_fack(tp) only
1189 		 * constraint here (see above) but figuring out that at
1190 		 * least tp->reordering SACK blocks reside between ack_seq
1191 		 * and received_upto is not easy task to do cheaply with
1192 		 * the available datastructures.
1193 		 *
1194 		 * Whether FACK should check here for tp->reordering segs
1195 		 * in-between one could argue for either way (it would be
1196 		 * rather simple to implement as we could count fack_count
1197 		 * during the walk and do tp->fackets_out - fack_count).
1198 		 */
1199 		if (after(received_upto, ack_seq)) {
1200 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1201 			tp->retrans_out -= tcp_skb_pcount(skb);
1202 
1203 			tcp_skb_mark_lost_uncond_verify(tp, skb);
1204 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1205 		} else {
1206 			if (before(ack_seq, new_low_seq))
1207 				new_low_seq = ack_seq;
1208 			cnt += tcp_skb_pcount(skb);
1209 		}
1210 	}
1211 
1212 	if (tp->retrans_out)
1213 		tp->lost_retrans_low = new_low_seq;
1214 }
1215 
tcp_check_dsack(struct sock * sk,const struct sk_buff * ack_skb,struct tcp_sack_block_wire * sp,int num_sacks,u32 prior_snd_una)1216 static int tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1217 			   struct tcp_sack_block_wire *sp, int num_sacks,
1218 			   u32 prior_snd_una)
1219 {
1220 	struct tcp_sock *tp = tcp_sk(sk);
1221 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1222 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1223 	int dup_sack = 0;
1224 
1225 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1226 		dup_sack = 1;
1227 		tcp_dsack_seen(tp);
1228 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1229 	} else if (num_sacks > 1) {
1230 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1231 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1232 
1233 		if (!after(end_seq_0, end_seq_1) &&
1234 		    !before(start_seq_0, start_seq_1)) {
1235 			dup_sack = 1;
1236 			tcp_dsack_seen(tp);
1237 			NET_INC_STATS_BH(sock_net(sk),
1238 					LINUX_MIB_TCPDSACKOFORECV);
1239 		}
1240 	}
1241 
1242 	/* D-SACK for already forgotten data... Do dumb counting. */
1243 	if (dup_sack && tp->undo_marker && tp->undo_retrans &&
1244 	    !after(end_seq_0, prior_snd_una) &&
1245 	    after(end_seq_0, tp->undo_marker))
1246 		tp->undo_retrans--;
1247 
1248 	return dup_sack;
1249 }
1250 
1251 struct tcp_sacktag_state {
1252 	int reord;
1253 	int fack_count;
1254 	int flag;
1255 };
1256 
1257 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1258  * the incoming SACK may not exactly match but we can find smaller MSS
1259  * aligned portion of it that matches. Therefore we might need to fragment
1260  * which may fail and creates some hassle (caller must handle error case
1261  * returns).
1262  *
1263  * FIXME: this could be merged to shift decision code
1264  */
tcp_match_skb_to_sack(struct sock * sk,struct sk_buff * skb,u32 start_seq,u32 end_seq)1265 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1266 				 u32 start_seq, u32 end_seq)
1267 {
1268 	int in_sack, err;
1269 	unsigned int pkt_len;
1270 	unsigned int mss;
1271 
1272 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1273 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1274 
1275 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1276 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1277 		mss = tcp_skb_mss(skb);
1278 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1279 
1280 		if (!in_sack) {
1281 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1282 			if (pkt_len < mss)
1283 				pkt_len = mss;
1284 		} else {
1285 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1286 			if (pkt_len < mss)
1287 				return -EINVAL;
1288 		}
1289 
1290 		/* Round if necessary so that SACKs cover only full MSSes
1291 		 * and/or the remaining small portion (if present)
1292 		 */
1293 		if (pkt_len > mss) {
1294 			unsigned int new_len = (pkt_len / mss) * mss;
1295 			if (!in_sack && new_len < pkt_len) {
1296 				new_len += mss;
1297 				if (new_len > skb->len)
1298 					return 0;
1299 			}
1300 			pkt_len = new_len;
1301 		}
1302 		err = tcp_fragment(sk, skb, pkt_len, mss);
1303 		if (err < 0)
1304 			return err;
1305 	}
1306 
1307 	return in_sack;
1308 }
1309 
1310 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
tcp_sacktag_one(struct sock * sk,struct tcp_sacktag_state * state,u8 sacked,u32 start_seq,u32 end_seq,int dup_sack,int pcount)1311 static u8 tcp_sacktag_one(struct sock *sk,
1312 			  struct tcp_sacktag_state *state, u8 sacked,
1313 			  u32 start_seq, u32 end_seq,
1314 			  int dup_sack, int pcount)
1315 {
1316 	struct tcp_sock *tp = tcp_sk(sk);
1317 	int fack_count = state->fack_count;
1318 
1319 	/* Account D-SACK for retransmitted packet. */
1320 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1321 		if (tp->undo_marker && tp->undo_retrans &&
1322 		    after(end_seq, tp->undo_marker))
1323 			tp->undo_retrans--;
1324 		if (sacked & TCPCB_SACKED_ACKED)
1325 			state->reord = min(fack_count, state->reord);
1326 	}
1327 
1328 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1329 	if (!after(end_seq, tp->snd_una))
1330 		return sacked;
1331 
1332 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1333 		if (sacked & TCPCB_SACKED_RETRANS) {
1334 			/* If the segment is not tagged as lost,
1335 			 * we do not clear RETRANS, believing
1336 			 * that retransmission is still in flight.
1337 			 */
1338 			if (sacked & TCPCB_LOST) {
1339 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1340 				tp->lost_out -= pcount;
1341 				tp->retrans_out -= pcount;
1342 			}
1343 		} else {
1344 			if (!(sacked & TCPCB_RETRANS)) {
1345 				/* New sack for not retransmitted frame,
1346 				 * which was in hole. It is reordering.
1347 				 */
1348 				if (before(start_seq,
1349 					   tcp_highest_sack_seq(tp)))
1350 					state->reord = min(fack_count,
1351 							   state->reord);
1352 
1353 				/* SACK enhanced F-RTO (RFC4138; Appendix B) */
1354 				if (!after(end_seq, tp->frto_highmark))
1355 					state->flag |= FLAG_ONLY_ORIG_SACKED;
1356 			}
1357 
1358 			if (sacked & TCPCB_LOST) {
1359 				sacked &= ~TCPCB_LOST;
1360 				tp->lost_out -= pcount;
1361 			}
1362 		}
1363 
1364 		sacked |= TCPCB_SACKED_ACKED;
1365 		state->flag |= FLAG_DATA_SACKED;
1366 		tp->sacked_out += pcount;
1367 
1368 		fack_count += pcount;
1369 
1370 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1371 		if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1372 		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1373 			tp->lost_cnt_hint += pcount;
1374 
1375 		if (fack_count > tp->fackets_out)
1376 			tp->fackets_out = fack_count;
1377 	}
1378 
1379 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1380 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1381 	 * are accounted above as well.
1382 	 */
1383 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1384 		sacked &= ~TCPCB_SACKED_RETRANS;
1385 		tp->retrans_out -= pcount;
1386 	}
1387 
1388 	return sacked;
1389 }
1390 
1391 /* Shift newly-SACKed bytes from this skb to the immediately previous
1392  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1393  */
tcp_shifted_skb(struct sock * sk,struct sk_buff * skb,struct tcp_sacktag_state * state,unsigned int pcount,int shifted,int mss,int dup_sack)1394 static int tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1395 			   struct tcp_sacktag_state *state,
1396 			   unsigned int pcount, int shifted, int mss,
1397 			   int dup_sack)
1398 {
1399 	struct tcp_sock *tp = tcp_sk(sk);
1400 	struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1401 	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1402 	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1403 
1404 	BUG_ON(!pcount);
1405 
1406 	/* Adjust counters and hints for the newly sacked sequence
1407 	 * range but discard the return value since prev is already
1408 	 * marked. We must tag the range first because the seq
1409 	 * advancement below implicitly advances
1410 	 * tcp_highest_sack_seq() when skb is highest_sack.
1411 	 */
1412 	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1413 			start_seq, end_seq, dup_sack, pcount);
1414 
1415 	if (skb == tp->lost_skb_hint)
1416 		tp->lost_cnt_hint += pcount;
1417 
1418 	TCP_SKB_CB(prev)->end_seq += shifted;
1419 	TCP_SKB_CB(skb)->seq += shifted;
1420 
1421 	skb_shinfo(prev)->gso_segs += pcount;
1422 	BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1423 	skb_shinfo(skb)->gso_segs -= pcount;
1424 
1425 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1426 	 * in theory this shouldn't be necessary but as long as DSACK
1427 	 * code can come after this skb later on it's better to keep
1428 	 * setting gso_size to something.
1429 	 */
1430 	if (!skb_shinfo(prev)->gso_size) {
1431 		skb_shinfo(prev)->gso_size = mss;
1432 		skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1433 	}
1434 
1435 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1436 	if (skb_shinfo(skb)->gso_segs <= 1) {
1437 		skb_shinfo(skb)->gso_size = 0;
1438 		skb_shinfo(skb)->gso_type = 0;
1439 	}
1440 
1441 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1442 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1443 
1444 	if (skb->len > 0) {
1445 		BUG_ON(!tcp_skb_pcount(skb));
1446 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1447 		return 0;
1448 	}
1449 
1450 	/* Whole SKB was eaten :-) */
1451 
1452 	if (skb == tp->retransmit_skb_hint)
1453 		tp->retransmit_skb_hint = prev;
1454 	if (skb == tp->scoreboard_skb_hint)
1455 		tp->scoreboard_skb_hint = prev;
1456 	if (skb == tp->lost_skb_hint) {
1457 		tp->lost_skb_hint = prev;
1458 		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1459 	}
1460 
1461 	TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(prev)->tcp_flags;
1462 	if (skb == tcp_highest_sack(sk))
1463 		tcp_advance_highest_sack(sk, skb);
1464 
1465 	tcp_unlink_write_queue(skb, sk);
1466 	sk_wmem_free_skb(sk, skb);
1467 
1468 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1469 
1470 	return 1;
1471 }
1472 
1473 /* I wish gso_size would have a bit more sane initialization than
1474  * something-or-zero which complicates things
1475  */
tcp_skb_seglen(const struct sk_buff * skb)1476 static int tcp_skb_seglen(const struct sk_buff *skb)
1477 {
1478 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1479 }
1480 
1481 /* Shifting pages past head area doesn't work */
skb_can_shift(const struct sk_buff * skb)1482 static int skb_can_shift(const struct sk_buff *skb)
1483 {
1484 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1485 }
1486 
1487 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1488  * skb.
1489  */
tcp_shift_skb_data(struct sock * sk,struct sk_buff * skb,struct tcp_sacktag_state * state,u32 start_seq,u32 end_seq,int dup_sack)1490 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1491 					  struct tcp_sacktag_state *state,
1492 					  u32 start_seq, u32 end_seq,
1493 					  int dup_sack)
1494 {
1495 	struct tcp_sock *tp = tcp_sk(sk);
1496 	struct sk_buff *prev;
1497 	int mss;
1498 	int pcount = 0;
1499 	int len;
1500 	int in_sack;
1501 
1502 	if (!sk_can_gso(sk))
1503 		goto fallback;
1504 
1505 	/* Normally R but no L won't result in plain S */
1506 	if (!dup_sack &&
1507 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1508 		goto fallback;
1509 	if (!skb_can_shift(skb))
1510 		goto fallback;
1511 	/* This frame is about to be dropped (was ACKed). */
1512 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1513 		goto fallback;
1514 
1515 	/* Can only happen with delayed DSACK + discard craziness */
1516 	if (unlikely(skb == tcp_write_queue_head(sk)))
1517 		goto fallback;
1518 	prev = tcp_write_queue_prev(sk, skb);
1519 
1520 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1521 		goto fallback;
1522 
1523 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1524 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1525 
1526 	if (in_sack) {
1527 		len = skb->len;
1528 		pcount = tcp_skb_pcount(skb);
1529 		mss = tcp_skb_seglen(skb);
1530 
1531 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1532 		 * drop this restriction as unnecessary
1533 		 */
1534 		if (mss != tcp_skb_seglen(prev))
1535 			goto fallback;
1536 	} else {
1537 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1538 			goto noop;
1539 		/* CHECKME: This is non-MSS split case only?, this will
1540 		 * cause skipped skbs due to advancing loop btw, original
1541 		 * has that feature too
1542 		 */
1543 		if (tcp_skb_pcount(skb) <= 1)
1544 			goto noop;
1545 
1546 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1547 		if (!in_sack) {
1548 			/* TODO: head merge to next could be attempted here
1549 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1550 			 * though it might not be worth of the additional hassle
1551 			 *
1552 			 * ...we can probably just fallback to what was done
1553 			 * previously. We could try merging non-SACKed ones
1554 			 * as well but it probably isn't going to buy off
1555 			 * because later SACKs might again split them, and
1556 			 * it would make skb timestamp tracking considerably
1557 			 * harder problem.
1558 			 */
1559 			goto fallback;
1560 		}
1561 
1562 		len = end_seq - TCP_SKB_CB(skb)->seq;
1563 		BUG_ON(len < 0);
1564 		BUG_ON(len > skb->len);
1565 
1566 		/* MSS boundaries should be honoured or else pcount will
1567 		 * severely break even though it makes things bit trickier.
1568 		 * Optimize common case to avoid most of the divides
1569 		 */
1570 		mss = tcp_skb_mss(skb);
1571 
1572 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1573 		 * drop this restriction as unnecessary
1574 		 */
1575 		if (mss != tcp_skb_seglen(prev))
1576 			goto fallback;
1577 
1578 		if (len == mss) {
1579 			pcount = 1;
1580 		} else if (len < mss) {
1581 			goto noop;
1582 		} else {
1583 			pcount = len / mss;
1584 			len = pcount * mss;
1585 		}
1586 	}
1587 
1588 	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1589 	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1590 		goto fallback;
1591 
1592 	if (!skb_shift(prev, skb, len))
1593 		goto fallback;
1594 	if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1595 		goto out;
1596 
1597 	/* Hole filled allows collapsing with the next as well, this is very
1598 	 * useful when hole on every nth skb pattern happens
1599 	 */
1600 	if (prev == tcp_write_queue_tail(sk))
1601 		goto out;
1602 	skb = tcp_write_queue_next(sk, prev);
1603 
1604 	if (!skb_can_shift(skb) ||
1605 	    (skb == tcp_send_head(sk)) ||
1606 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1607 	    (mss != tcp_skb_seglen(skb)))
1608 		goto out;
1609 
1610 	len = skb->len;
1611 	if (skb_shift(prev, skb, len)) {
1612 		pcount += tcp_skb_pcount(skb);
1613 		tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1614 	}
1615 
1616 out:
1617 	state->fack_count += pcount;
1618 	return prev;
1619 
1620 noop:
1621 	return skb;
1622 
1623 fallback:
1624 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1625 	return NULL;
1626 }
1627 
tcp_sacktag_walk(struct sk_buff * skb,struct sock * sk,struct tcp_sack_block * next_dup,struct tcp_sacktag_state * state,u32 start_seq,u32 end_seq,int dup_sack_in)1628 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1629 					struct tcp_sack_block *next_dup,
1630 					struct tcp_sacktag_state *state,
1631 					u32 start_seq, u32 end_seq,
1632 					int dup_sack_in)
1633 {
1634 	struct tcp_sock *tp = tcp_sk(sk);
1635 	struct sk_buff *tmp;
1636 
1637 	tcp_for_write_queue_from(skb, sk) {
1638 		int in_sack = 0;
1639 		int dup_sack = dup_sack_in;
1640 
1641 		if (skb == tcp_send_head(sk))
1642 			break;
1643 
1644 		/* queue is in-order => we can short-circuit the walk early */
1645 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1646 			break;
1647 
1648 		if ((next_dup != NULL) &&
1649 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1650 			in_sack = tcp_match_skb_to_sack(sk, skb,
1651 							next_dup->start_seq,
1652 							next_dup->end_seq);
1653 			if (in_sack > 0)
1654 				dup_sack = 1;
1655 		}
1656 
1657 		/* skb reference here is a bit tricky to get right, since
1658 		 * shifting can eat and free both this skb and the next,
1659 		 * so not even _safe variant of the loop is enough.
1660 		 */
1661 		if (in_sack <= 0) {
1662 			tmp = tcp_shift_skb_data(sk, skb, state,
1663 						 start_seq, end_seq, dup_sack);
1664 			if (tmp != NULL) {
1665 				if (tmp != skb) {
1666 					skb = tmp;
1667 					continue;
1668 				}
1669 
1670 				in_sack = 0;
1671 			} else {
1672 				in_sack = tcp_match_skb_to_sack(sk, skb,
1673 								start_seq,
1674 								end_seq);
1675 			}
1676 		}
1677 
1678 		if (unlikely(in_sack < 0))
1679 			break;
1680 
1681 		if (in_sack) {
1682 			TCP_SKB_CB(skb)->sacked =
1683 				tcp_sacktag_one(sk,
1684 						state,
1685 						TCP_SKB_CB(skb)->sacked,
1686 						TCP_SKB_CB(skb)->seq,
1687 						TCP_SKB_CB(skb)->end_seq,
1688 						dup_sack,
1689 						tcp_skb_pcount(skb));
1690 
1691 			if (!before(TCP_SKB_CB(skb)->seq,
1692 				    tcp_highest_sack_seq(tp)))
1693 				tcp_advance_highest_sack(sk, skb);
1694 		}
1695 
1696 		state->fack_count += tcp_skb_pcount(skb);
1697 	}
1698 	return skb;
1699 }
1700 
1701 /* Avoid all extra work that is being done by sacktag while walking in
1702  * a normal way
1703  */
tcp_sacktag_skip(struct sk_buff * skb,struct sock * sk,struct tcp_sacktag_state * state,u32 skip_to_seq)1704 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1705 					struct tcp_sacktag_state *state,
1706 					u32 skip_to_seq)
1707 {
1708 	tcp_for_write_queue_from(skb, sk) {
1709 		if (skb == tcp_send_head(sk))
1710 			break;
1711 
1712 		if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1713 			break;
1714 
1715 		state->fack_count += tcp_skb_pcount(skb);
1716 	}
1717 	return skb;
1718 }
1719 
tcp_maybe_skipping_dsack(struct sk_buff * skb,struct sock * sk,struct tcp_sack_block * next_dup,struct tcp_sacktag_state * state,u32 skip_to_seq)1720 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1721 						struct sock *sk,
1722 						struct tcp_sack_block *next_dup,
1723 						struct tcp_sacktag_state *state,
1724 						u32 skip_to_seq)
1725 {
1726 	if (next_dup == NULL)
1727 		return skb;
1728 
1729 	if (before(next_dup->start_seq, skip_to_seq)) {
1730 		skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1731 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1732 				       next_dup->start_seq, next_dup->end_seq,
1733 				       1);
1734 	}
1735 
1736 	return skb;
1737 }
1738 
tcp_sack_cache_ok(const struct tcp_sock * tp,const struct tcp_sack_block * cache)1739 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1740 {
1741 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1742 }
1743 
1744 static int
tcp_sacktag_write_queue(struct sock * sk,const struct sk_buff * ack_skb,u32 prior_snd_una)1745 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1746 			u32 prior_snd_una)
1747 {
1748 	const struct inet_connection_sock *icsk = inet_csk(sk);
1749 	struct tcp_sock *tp = tcp_sk(sk);
1750 	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1751 				    TCP_SKB_CB(ack_skb)->sacked);
1752 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1753 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1754 	struct tcp_sack_block *cache;
1755 	struct tcp_sacktag_state state;
1756 	struct sk_buff *skb;
1757 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1758 	int used_sacks;
1759 	int found_dup_sack = 0;
1760 	int i, j;
1761 	int first_sack_index;
1762 
1763 	state.flag = 0;
1764 	state.reord = tp->packets_out;
1765 
1766 	if (!tp->sacked_out) {
1767 		if (WARN_ON(tp->fackets_out))
1768 			tp->fackets_out = 0;
1769 		tcp_highest_sack_reset(sk);
1770 	}
1771 
1772 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1773 					 num_sacks, prior_snd_una);
1774 	if (found_dup_sack)
1775 		state.flag |= FLAG_DSACKING_ACK;
1776 
1777 	/* Eliminate too old ACKs, but take into
1778 	 * account more or less fresh ones, they can
1779 	 * contain valid SACK info.
1780 	 */
1781 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1782 		return 0;
1783 
1784 	if (!tp->packets_out)
1785 		goto out;
1786 
1787 	used_sacks = 0;
1788 	first_sack_index = 0;
1789 	for (i = 0; i < num_sacks; i++) {
1790 		int dup_sack = !i && found_dup_sack;
1791 
1792 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1793 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1794 
1795 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1796 					    sp[used_sacks].start_seq,
1797 					    sp[used_sacks].end_seq)) {
1798 			int mib_idx;
1799 
1800 			if (dup_sack) {
1801 				if (!tp->undo_marker)
1802 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1803 				else
1804 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1805 			} else {
1806 				/* Don't count olds caused by ACK reordering */
1807 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1808 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1809 					continue;
1810 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1811 			}
1812 
1813 			NET_INC_STATS_BH(sock_net(sk), mib_idx);
1814 			if (i == 0)
1815 				first_sack_index = -1;
1816 			continue;
1817 		}
1818 
1819 		/* Ignore very old stuff early */
1820 		if (!after(sp[used_sacks].end_seq, prior_snd_una))
1821 			continue;
1822 
1823 		used_sacks++;
1824 	}
1825 
1826 	/* order SACK blocks to allow in order walk of the retrans queue */
1827 	for (i = used_sacks - 1; i > 0; i--) {
1828 		for (j = 0; j < i; j++) {
1829 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1830 				swap(sp[j], sp[j + 1]);
1831 
1832 				/* Track where the first SACK block goes to */
1833 				if (j == first_sack_index)
1834 					first_sack_index = j + 1;
1835 			}
1836 		}
1837 	}
1838 
1839 	skb = tcp_write_queue_head(sk);
1840 	state.fack_count = 0;
1841 	i = 0;
1842 
1843 	if (!tp->sacked_out) {
1844 		/* It's already past, so skip checking against it */
1845 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1846 	} else {
1847 		cache = tp->recv_sack_cache;
1848 		/* Skip empty blocks in at head of the cache */
1849 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1850 		       !cache->end_seq)
1851 			cache++;
1852 	}
1853 
1854 	while (i < used_sacks) {
1855 		u32 start_seq = sp[i].start_seq;
1856 		u32 end_seq = sp[i].end_seq;
1857 		int dup_sack = (found_dup_sack && (i == first_sack_index));
1858 		struct tcp_sack_block *next_dup = NULL;
1859 
1860 		if (found_dup_sack && ((i + 1) == first_sack_index))
1861 			next_dup = &sp[i + 1];
1862 
1863 		/* Skip too early cached blocks */
1864 		while (tcp_sack_cache_ok(tp, cache) &&
1865 		       !before(start_seq, cache->end_seq))
1866 			cache++;
1867 
1868 		/* Can skip some work by looking recv_sack_cache? */
1869 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1870 		    after(end_seq, cache->start_seq)) {
1871 
1872 			/* Head todo? */
1873 			if (before(start_seq, cache->start_seq)) {
1874 				skb = tcp_sacktag_skip(skb, sk, &state,
1875 						       start_seq);
1876 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1877 						       &state,
1878 						       start_seq,
1879 						       cache->start_seq,
1880 						       dup_sack);
1881 			}
1882 
1883 			/* Rest of the block already fully processed? */
1884 			if (!after(end_seq, cache->end_seq))
1885 				goto advance_sp;
1886 
1887 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1888 						       &state,
1889 						       cache->end_seq);
1890 
1891 			/* ...tail remains todo... */
1892 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1893 				/* ...but better entrypoint exists! */
1894 				skb = tcp_highest_sack(sk);
1895 				if (skb == NULL)
1896 					break;
1897 				state.fack_count = tp->fackets_out;
1898 				cache++;
1899 				goto walk;
1900 			}
1901 
1902 			skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1903 			/* Check overlap against next cached too (past this one already) */
1904 			cache++;
1905 			continue;
1906 		}
1907 
1908 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1909 			skb = tcp_highest_sack(sk);
1910 			if (skb == NULL)
1911 				break;
1912 			state.fack_count = tp->fackets_out;
1913 		}
1914 		skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1915 
1916 walk:
1917 		skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1918 				       start_seq, end_seq, dup_sack);
1919 
1920 advance_sp:
1921 		/* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1922 		 * due to in-order walk
1923 		 */
1924 		if (after(end_seq, tp->frto_highmark))
1925 			state.flag &= ~FLAG_ONLY_ORIG_SACKED;
1926 
1927 		i++;
1928 	}
1929 
1930 	/* Clear the head of the cache sack blocks so we can skip it next time */
1931 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1932 		tp->recv_sack_cache[i].start_seq = 0;
1933 		tp->recv_sack_cache[i].end_seq = 0;
1934 	}
1935 	for (j = 0; j < used_sacks; j++)
1936 		tp->recv_sack_cache[i++] = sp[j];
1937 
1938 	tcp_mark_lost_retrans(sk);
1939 
1940 	tcp_verify_left_out(tp);
1941 
1942 	if ((state.reord < tp->fackets_out) &&
1943 	    ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1944 	    (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1945 		tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1946 
1947 out:
1948 
1949 #if FASTRETRANS_DEBUG > 0
1950 	WARN_ON((int)tp->sacked_out < 0);
1951 	WARN_ON((int)tp->lost_out < 0);
1952 	WARN_ON((int)tp->retrans_out < 0);
1953 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1954 #endif
1955 	return state.flag;
1956 }
1957 
1958 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1959  * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1960  */
tcp_limit_reno_sacked(struct tcp_sock * tp)1961 static int tcp_limit_reno_sacked(struct tcp_sock *tp)
1962 {
1963 	u32 holes;
1964 
1965 	holes = max(tp->lost_out, 1U);
1966 	holes = min(holes, tp->packets_out);
1967 
1968 	if ((tp->sacked_out + holes) > tp->packets_out) {
1969 		tp->sacked_out = tp->packets_out - holes;
1970 		return 1;
1971 	}
1972 	return 0;
1973 }
1974 
1975 /* If we receive more dupacks than we expected counting segments
1976  * in assumption of absent reordering, interpret this as reordering.
1977  * The only another reason could be bug in receiver TCP.
1978  */
tcp_check_reno_reordering(struct sock * sk,const int addend)1979 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1980 {
1981 	struct tcp_sock *tp = tcp_sk(sk);
1982 	if (tcp_limit_reno_sacked(tp))
1983 		tcp_update_reordering(sk, tp->packets_out + addend, 0);
1984 }
1985 
1986 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1987 
tcp_add_reno_sack(struct sock * sk)1988 static void tcp_add_reno_sack(struct sock *sk)
1989 {
1990 	struct tcp_sock *tp = tcp_sk(sk);
1991 	tp->sacked_out++;
1992 	tcp_check_reno_reordering(sk, 0);
1993 	tcp_verify_left_out(tp);
1994 }
1995 
1996 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1997 
tcp_remove_reno_sacks(struct sock * sk,int acked)1998 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1999 {
2000 	struct tcp_sock *tp = tcp_sk(sk);
2001 
2002 	if (acked > 0) {
2003 		/* One ACK acked hole. The rest eat duplicate ACKs. */
2004 		if (acked - 1 >= tp->sacked_out)
2005 			tp->sacked_out = 0;
2006 		else
2007 			tp->sacked_out -= acked - 1;
2008 	}
2009 	tcp_check_reno_reordering(sk, acked);
2010 	tcp_verify_left_out(tp);
2011 }
2012 
tcp_reset_reno_sack(struct tcp_sock * tp)2013 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
2014 {
2015 	tp->sacked_out = 0;
2016 }
2017 
tcp_is_sackfrto(const struct tcp_sock * tp)2018 static int tcp_is_sackfrto(const struct tcp_sock *tp)
2019 {
2020 	return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
2021 }
2022 
2023 /* F-RTO can only be used if TCP has never retransmitted anything other than
2024  * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
2025  */
tcp_use_frto(struct sock * sk)2026 int tcp_use_frto(struct sock *sk)
2027 {
2028 	const struct tcp_sock *tp = tcp_sk(sk);
2029 	const struct inet_connection_sock *icsk = inet_csk(sk);
2030 	struct sk_buff *skb;
2031 
2032 	if (!sysctl_tcp_frto)
2033 		return 0;
2034 
2035 	/* MTU probe and F-RTO won't really play nicely along currently */
2036 	if (icsk->icsk_mtup.probe_size)
2037 		return 0;
2038 
2039 	if (tcp_is_sackfrto(tp))
2040 		return 1;
2041 
2042 	/* Avoid expensive walking of rexmit queue if possible */
2043 	if (tp->retrans_out > 1)
2044 		return 0;
2045 
2046 	skb = tcp_write_queue_head(sk);
2047 	if (tcp_skb_is_last(sk, skb))
2048 		return 1;
2049 	skb = tcp_write_queue_next(sk, skb);	/* Skips head */
2050 	tcp_for_write_queue_from(skb, sk) {
2051 		if (skb == tcp_send_head(sk))
2052 			break;
2053 		if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2054 			return 0;
2055 		/* Short-circuit when first non-SACKed skb has been checked */
2056 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2057 			break;
2058 	}
2059 	return 1;
2060 }
2061 
2062 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
2063  * recovery a bit and use heuristics in tcp_process_frto() to detect if
2064  * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
2065  * keep retrans_out counting accurate (with SACK F-RTO, other than head
2066  * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
2067  * bits are handled if the Loss state is really to be entered (in
2068  * tcp_enter_frto_loss).
2069  *
2070  * Do like tcp_enter_loss() would; when RTO expires the second time it
2071  * does:
2072  *  "Reduce ssthresh if it has not yet been made inside this window."
2073  */
tcp_enter_frto(struct sock * sk)2074 void tcp_enter_frto(struct sock *sk)
2075 {
2076 	const struct inet_connection_sock *icsk = inet_csk(sk);
2077 	struct tcp_sock *tp = tcp_sk(sk);
2078 	struct sk_buff *skb;
2079 
2080 	if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
2081 	    tp->snd_una == tp->high_seq ||
2082 	    ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
2083 	     !icsk->icsk_retransmits)) {
2084 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2085 		/* Our state is too optimistic in ssthresh() call because cwnd
2086 		 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
2087 		 * recovery has not yet completed. Pattern would be this: RTO,
2088 		 * Cumulative ACK, RTO (2xRTO for the same segment does not end
2089 		 * up here twice).
2090 		 * RFC4138 should be more specific on what to do, even though
2091 		 * RTO is quite unlikely to occur after the first Cumulative ACK
2092 		 * due to back-off and complexity of triggering events ...
2093 		 */
2094 		if (tp->frto_counter) {
2095 			u32 stored_cwnd;
2096 			stored_cwnd = tp->snd_cwnd;
2097 			tp->snd_cwnd = 2;
2098 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2099 			tp->snd_cwnd = stored_cwnd;
2100 		} else {
2101 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2102 		}
2103 		/* ... in theory, cong.control module could do "any tricks" in
2104 		 * ssthresh(), which means that ca_state, lost bits and lost_out
2105 		 * counter would have to be faked before the call occurs. We
2106 		 * consider that too expensive, unlikely and hacky, so modules
2107 		 * using these in ssthresh() must deal these incompatibility
2108 		 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
2109 		 */
2110 		tcp_ca_event(sk, CA_EVENT_FRTO);
2111 	}
2112 
2113 	tp->undo_marker = tp->snd_una;
2114 	tp->undo_retrans = 0;
2115 
2116 	skb = tcp_write_queue_head(sk);
2117 	if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2118 		tp->undo_marker = 0;
2119 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2120 		TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2121 		tp->retrans_out -= tcp_skb_pcount(skb);
2122 	}
2123 	tcp_verify_left_out(tp);
2124 
2125 	/* Too bad if TCP was application limited */
2126 	tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2127 
2128 	/* Earlier loss recovery underway (see RFC4138; Appendix B).
2129 	 * The last condition is necessary at least in tp->frto_counter case.
2130 	 */
2131 	if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
2132 	    ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
2133 	    after(tp->high_seq, tp->snd_una)) {
2134 		tp->frto_highmark = tp->high_seq;
2135 	} else {
2136 		tp->frto_highmark = tp->snd_nxt;
2137 	}
2138 	tcp_set_ca_state(sk, TCP_CA_Disorder);
2139 	tp->high_seq = tp->snd_nxt;
2140 	tp->frto_counter = 1;
2141 }
2142 
2143 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
2144  * which indicates that we should follow the traditional RTO recovery,
2145  * i.e. mark everything lost and do go-back-N retransmission.
2146  */
tcp_enter_frto_loss(struct sock * sk,int allowed_segments,int flag)2147 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
2148 {
2149 	struct tcp_sock *tp = tcp_sk(sk);
2150 	struct sk_buff *skb;
2151 
2152 	tp->lost_out = 0;
2153 	tp->retrans_out = 0;
2154 	if (tcp_is_reno(tp))
2155 		tcp_reset_reno_sack(tp);
2156 
2157 	tcp_for_write_queue(skb, sk) {
2158 		if (skb == tcp_send_head(sk))
2159 			break;
2160 
2161 		TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2162 		/*
2163 		 * Count the retransmission made on RTO correctly (only when
2164 		 * waiting for the first ACK and did not get it)...
2165 		 */
2166 		if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
2167 			/* For some reason this R-bit might get cleared? */
2168 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
2169 				tp->retrans_out += tcp_skb_pcount(skb);
2170 			/* ...enter this if branch just for the first segment */
2171 			flag |= FLAG_DATA_ACKED;
2172 		} else {
2173 			if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2174 				tp->undo_marker = 0;
2175 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2176 		}
2177 
2178 		/* Marking forward transmissions that were made after RTO lost
2179 		 * can cause unnecessary retransmissions in some scenarios,
2180 		 * SACK blocks will mitigate that in some but not in all cases.
2181 		 * We used to not mark them but it was causing break-ups with
2182 		 * receivers that do only in-order receival.
2183 		 *
2184 		 * TODO: we could detect presence of such receiver and select
2185 		 * different behavior per flow.
2186 		 */
2187 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2188 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2189 			tp->lost_out += tcp_skb_pcount(skb);
2190 			tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2191 		}
2192 	}
2193 	tcp_verify_left_out(tp);
2194 
2195 	tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
2196 	tp->snd_cwnd_cnt = 0;
2197 	tp->snd_cwnd_stamp = tcp_time_stamp;
2198 	tp->frto_counter = 0;
2199 	tp->bytes_acked = 0;
2200 
2201 	tp->reordering = min_t(unsigned int, tp->reordering,
2202 			       sysctl_tcp_reordering);
2203 	tcp_set_ca_state(sk, TCP_CA_Loss);
2204 	tp->high_seq = tp->snd_nxt;
2205 	TCP_ECN_queue_cwr(tp);
2206 
2207 	tcp_clear_all_retrans_hints(tp);
2208 }
2209 
tcp_clear_retrans_partial(struct tcp_sock * tp)2210 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
2211 {
2212 	tp->retrans_out = 0;
2213 	tp->lost_out = 0;
2214 
2215 	tp->undo_marker = 0;
2216 	tp->undo_retrans = 0;
2217 }
2218 
tcp_clear_retrans(struct tcp_sock * tp)2219 void tcp_clear_retrans(struct tcp_sock *tp)
2220 {
2221 	tcp_clear_retrans_partial(tp);
2222 
2223 	tp->fackets_out = 0;
2224 	tp->sacked_out = 0;
2225 }
2226 
2227 /* Enter Loss state. If "how" is not zero, forget all SACK information
2228  * and reset tags completely, otherwise preserve SACKs. If receiver
2229  * dropped its ofo queue, we will know this due to reneging detection.
2230  */
tcp_enter_loss(struct sock * sk,int how)2231 void tcp_enter_loss(struct sock *sk, int how)
2232 {
2233 	const struct inet_connection_sock *icsk = inet_csk(sk);
2234 	struct tcp_sock *tp = tcp_sk(sk);
2235 	struct sk_buff *skb;
2236 
2237 	/* Reduce ssthresh if it has not yet been made inside this window. */
2238 	if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
2239 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2240 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2241 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2242 		tcp_ca_event(sk, CA_EVENT_LOSS);
2243 	}
2244 	tp->snd_cwnd	   = 1;
2245 	tp->snd_cwnd_cnt   = 0;
2246 	tp->snd_cwnd_stamp = tcp_time_stamp;
2247 
2248 	tp->bytes_acked = 0;
2249 	tcp_clear_retrans_partial(tp);
2250 
2251 	if (tcp_is_reno(tp))
2252 		tcp_reset_reno_sack(tp);
2253 
2254 	if (!how) {
2255 		/* Push undo marker, if it was plain RTO and nothing
2256 		 * was retransmitted. */
2257 		tp->undo_marker = tp->snd_una;
2258 	} else {
2259 		tp->sacked_out = 0;
2260 		tp->fackets_out = 0;
2261 	}
2262 	tcp_clear_all_retrans_hints(tp);
2263 
2264 	tcp_for_write_queue(skb, sk) {
2265 		if (skb == tcp_send_head(sk))
2266 			break;
2267 
2268 		if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2269 			tp->undo_marker = 0;
2270 		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
2271 		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
2272 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2273 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2274 			tp->lost_out += tcp_skb_pcount(skb);
2275 			tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2276 		}
2277 	}
2278 	tcp_verify_left_out(tp);
2279 
2280 	tp->reordering = min_t(unsigned int, tp->reordering,
2281 			       sysctl_tcp_reordering);
2282 	tcp_set_ca_state(sk, TCP_CA_Loss);
2283 	tp->high_seq = tp->snd_nxt;
2284 	TCP_ECN_queue_cwr(tp);
2285 	/* Abort F-RTO algorithm if one is in progress */
2286 	tp->frto_counter = 0;
2287 }
2288 
2289 /* If ACK arrived pointing to a remembered SACK, it means that our
2290  * remembered SACKs do not reflect real state of receiver i.e.
2291  * receiver _host_ is heavily congested (or buggy).
2292  *
2293  * Do processing similar to RTO timeout.
2294  */
tcp_check_sack_reneging(struct sock * sk,int flag)2295 static int tcp_check_sack_reneging(struct sock *sk, int flag)
2296 {
2297 	if (flag & FLAG_SACK_RENEGING) {
2298 		struct inet_connection_sock *icsk = inet_csk(sk);
2299 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2300 
2301 		tcp_enter_loss(sk, 1);
2302 		icsk->icsk_retransmits++;
2303 		tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
2304 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2305 					  icsk->icsk_rto, TCP_RTO_MAX);
2306 		return 1;
2307 	}
2308 	return 0;
2309 }
2310 
tcp_fackets_out(const struct tcp_sock * tp)2311 static inline int tcp_fackets_out(const struct tcp_sock *tp)
2312 {
2313 	return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2314 }
2315 
2316 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2317  * counter when SACK is enabled (without SACK, sacked_out is used for
2318  * that purpose).
2319  *
2320  * Instead, with FACK TCP uses fackets_out that includes both SACKed
2321  * segments up to the highest received SACK block so far and holes in
2322  * between them.
2323  *
2324  * With reordering, holes may still be in flight, so RFC3517 recovery
2325  * uses pure sacked_out (total number of SACKed segments) even though
2326  * it violates the RFC that uses duplicate ACKs, often these are equal
2327  * but when e.g. out-of-window ACKs or packet duplication occurs,
2328  * they differ. Since neither occurs due to loss, TCP should really
2329  * ignore them.
2330  */
tcp_dupack_heuristics(const struct tcp_sock * tp)2331 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2332 {
2333 	return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2334 }
2335 
tcp_skb_timedout(const struct sock * sk,const struct sk_buff * skb)2336 static inline int tcp_skb_timedout(const struct sock *sk,
2337 				   const struct sk_buff *skb)
2338 {
2339 	return tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto;
2340 }
2341 
tcp_head_timedout(const struct sock * sk)2342 static inline int tcp_head_timedout(const struct sock *sk)
2343 {
2344 	const struct tcp_sock *tp = tcp_sk(sk);
2345 
2346 	return tp->packets_out &&
2347 	       tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2348 }
2349 
2350 /* Linux NewReno/SACK/FACK/ECN state machine.
2351  * --------------------------------------
2352  *
2353  * "Open"	Normal state, no dubious events, fast path.
2354  * "Disorder"   In all the respects it is "Open",
2355  *		but requires a bit more attention. It is entered when
2356  *		we see some SACKs or dupacks. It is split of "Open"
2357  *		mainly to move some processing from fast path to slow one.
2358  * "CWR"	CWND was reduced due to some Congestion Notification event.
2359  *		It can be ECN, ICMP source quench, local device congestion.
2360  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2361  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2362  *
2363  * tcp_fastretrans_alert() is entered:
2364  * - each incoming ACK, if state is not "Open"
2365  * - when arrived ACK is unusual, namely:
2366  *	* SACK
2367  *	* Duplicate ACK.
2368  *	* ECN ECE.
2369  *
2370  * Counting packets in flight is pretty simple.
2371  *
2372  *	in_flight = packets_out - left_out + retrans_out
2373  *
2374  *	packets_out is SND.NXT-SND.UNA counted in packets.
2375  *
2376  *	retrans_out is number of retransmitted segments.
2377  *
2378  *	left_out is number of segments left network, but not ACKed yet.
2379  *
2380  *		left_out = sacked_out + lost_out
2381  *
2382  *     sacked_out: Packets, which arrived to receiver out of order
2383  *		   and hence not ACKed. With SACKs this number is simply
2384  *		   amount of SACKed data. Even without SACKs
2385  *		   it is easy to give pretty reliable estimate of this number,
2386  *		   counting duplicate ACKs.
2387  *
2388  *       lost_out: Packets lost by network. TCP has no explicit
2389  *		   "loss notification" feedback from network (for now).
2390  *		   It means that this number can be only _guessed_.
2391  *		   Actually, it is the heuristics to predict lossage that
2392  *		   distinguishes different algorithms.
2393  *
2394  *	F.e. after RTO, when all the queue is considered as lost,
2395  *	lost_out = packets_out and in_flight = retrans_out.
2396  *
2397  *		Essentially, we have now two algorithms counting
2398  *		lost packets.
2399  *
2400  *		FACK: It is the simplest heuristics. As soon as we decided
2401  *		that something is lost, we decide that _all_ not SACKed
2402  *		packets until the most forward SACK are lost. I.e.
2403  *		lost_out = fackets_out - sacked_out and left_out = fackets_out.
2404  *		It is absolutely correct estimate, if network does not reorder
2405  *		packets. And it loses any connection to reality when reordering
2406  *		takes place. We use FACK by default until reordering
2407  *		is suspected on the path to this destination.
2408  *
2409  *		NewReno: when Recovery is entered, we assume that one segment
2410  *		is lost (classic Reno). While we are in Recovery and
2411  *		a partial ACK arrives, we assume that one more packet
2412  *		is lost (NewReno). This heuristics are the same in NewReno
2413  *		and SACK.
2414  *
2415  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2416  *  deflation etc. CWND is real congestion window, never inflated, changes
2417  *  only according to classic VJ rules.
2418  *
2419  * Really tricky (and requiring careful tuning) part of algorithm
2420  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2421  * The first determines the moment _when_ we should reduce CWND and,
2422  * hence, slow down forward transmission. In fact, it determines the moment
2423  * when we decide that hole is caused by loss, rather than by a reorder.
2424  *
2425  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2426  * holes, caused by lost packets.
2427  *
2428  * And the most logically complicated part of algorithm is undo
2429  * heuristics. We detect false retransmits due to both too early
2430  * fast retransmit (reordering) and underestimated RTO, analyzing
2431  * timestamps and D-SACKs. When we detect that some segments were
2432  * retransmitted by mistake and CWND reduction was wrong, we undo
2433  * window reduction and abort recovery phase. This logic is hidden
2434  * inside several functions named tcp_try_undo_<something>.
2435  */
2436 
2437 /* This function decides, when we should leave Disordered state
2438  * and enter Recovery phase, reducing congestion window.
2439  *
2440  * Main question: may we further continue forward transmission
2441  * with the same cwnd?
2442  */
tcp_time_to_recover(struct sock * sk)2443 static int tcp_time_to_recover(struct sock *sk)
2444 {
2445 	struct tcp_sock *tp = tcp_sk(sk);
2446 	__u32 packets_out;
2447 
2448 	/* Do not perform any recovery during F-RTO algorithm */
2449 	if (tp->frto_counter)
2450 		return 0;
2451 
2452 	/* Trick#1: The loss is proven. */
2453 	if (tp->lost_out)
2454 		return 1;
2455 
2456 	/* Not-A-Trick#2 : Classic rule... */
2457 	if (tcp_dupack_heuristics(tp) > tp->reordering)
2458 		return 1;
2459 
2460 	/* Trick#3 : when we use RFC2988 timer restart, fast
2461 	 * retransmit can be triggered by timeout of queue head.
2462 	 */
2463 	if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2464 		return 1;
2465 
2466 	/* Trick#4: It is still not OK... But will it be useful to delay
2467 	 * recovery more?
2468 	 */
2469 	packets_out = tp->packets_out;
2470 	if (packets_out <= tp->reordering &&
2471 	    tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2472 	    !tcp_may_send_now(sk)) {
2473 		/* We have nothing to send. This connection is limited
2474 		 * either by receiver window or by application.
2475 		 */
2476 		return 1;
2477 	}
2478 
2479 	/* If a thin stream is detected, retransmit after first
2480 	 * received dupack. Employ only if SACK is supported in order
2481 	 * to avoid possible corner-case series of spurious retransmissions
2482 	 * Use only if there are no unsent data.
2483 	 */
2484 	if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2485 	    tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2486 	    tcp_is_sack(tp) && !tcp_send_head(sk))
2487 		return 1;
2488 
2489 	return 0;
2490 }
2491 
2492 /* New heuristics: it is possible only after we switched to restart timer
2493  * each time when something is ACKed. Hence, we can detect timed out packets
2494  * during fast retransmit without falling to slow start.
2495  *
2496  * Usefulness of this as is very questionable, since we should know which of
2497  * the segments is the next to timeout which is relatively expensive to find
2498  * in general case unless we add some data structure just for that. The
2499  * current approach certainly won't find the right one too often and when it
2500  * finally does find _something_ it usually marks large part of the window
2501  * right away (because a retransmission with a larger timestamp blocks the
2502  * loop from advancing). -ij
2503  */
tcp_timeout_skbs(struct sock * sk)2504 static void tcp_timeout_skbs(struct sock *sk)
2505 {
2506 	struct tcp_sock *tp = tcp_sk(sk);
2507 	struct sk_buff *skb;
2508 
2509 	if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
2510 		return;
2511 
2512 	skb = tp->scoreboard_skb_hint;
2513 	if (tp->scoreboard_skb_hint == NULL)
2514 		skb = tcp_write_queue_head(sk);
2515 
2516 	tcp_for_write_queue_from(skb, sk) {
2517 		if (skb == tcp_send_head(sk))
2518 			break;
2519 		if (!tcp_skb_timedout(sk, skb))
2520 			break;
2521 
2522 		tcp_skb_mark_lost(tp, skb);
2523 	}
2524 
2525 	tp->scoreboard_skb_hint = skb;
2526 
2527 	tcp_verify_left_out(tp);
2528 }
2529 
2530 /* Detect loss in event "A" above by marking head of queue up as lost.
2531  * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2532  * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2533  * has at least tp->reordering SACKed seqments above it; "packets" refers to
2534  * the maximum SACKed segments to pass before reaching this limit.
2535  */
tcp_mark_head_lost(struct sock * sk,int packets,int mark_head)2536 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2537 {
2538 	struct tcp_sock *tp = tcp_sk(sk);
2539 	struct sk_buff *skb;
2540 	int cnt, oldcnt;
2541 	int err;
2542 	unsigned int mss;
2543 	/* Use SACK to deduce losses of new sequences sent during recovery */
2544 	const u32 loss_high = tcp_is_sack(tp) ?  tp->snd_nxt : tp->high_seq;
2545 
2546 	WARN_ON(packets > tp->packets_out);
2547 	if (tp->lost_skb_hint) {
2548 		skb = tp->lost_skb_hint;
2549 		cnt = tp->lost_cnt_hint;
2550 		/* Head already handled? */
2551 		if (mark_head && skb != tcp_write_queue_head(sk))
2552 			return;
2553 	} else {
2554 		skb = tcp_write_queue_head(sk);
2555 		cnt = 0;
2556 	}
2557 
2558 	tcp_for_write_queue_from(skb, sk) {
2559 		if (skb == tcp_send_head(sk))
2560 			break;
2561 		/* TODO: do this better */
2562 		/* this is not the most efficient way to do this... */
2563 		tp->lost_skb_hint = skb;
2564 		tp->lost_cnt_hint = cnt;
2565 
2566 		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2567 			break;
2568 
2569 		oldcnt = cnt;
2570 		if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2571 		    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2572 			cnt += tcp_skb_pcount(skb);
2573 
2574 		if (cnt > packets) {
2575 			if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2576 			    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2577 			    (oldcnt >= packets))
2578 				break;
2579 
2580 			mss = skb_shinfo(skb)->gso_size;
2581 			err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2582 			if (err < 0)
2583 				break;
2584 			cnt = packets;
2585 		}
2586 
2587 		tcp_skb_mark_lost(tp, skb);
2588 
2589 		if (mark_head)
2590 			break;
2591 	}
2592 	tcp_verify_left_out(tp);
2593 }
2594 
2595 /* Account newly detected lost packet(s) */
2596 
tcp_update_scoreboard(struct sock * sk,int fast_rexmit)2597 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2598 {
2599 	struct tcp_sock *tp = tcp_sk(sk);
2600 
2601 	if (tcp_is_reno(tp)) {
2602 		tcp_mark_head_lost(sk, 1, 1);
2603 	} else if (tcp_is_fack(tp)) {
2604 		int lost = tp->fackets_out - tp->reordering;
2605 		if (lost <= 0)
2606 			lost = 1;
2607 		tcp_mark_head_lost(sk, lost, 0);
2608 	} else {
2609 		int sacked_upto = tp->sacked_out - tp->reordering;
2610 		if (sacked_upto >= 0)
2611 			tcp_mark_head_lost(sk, sacked_upto, 0);
2612 		else if (fast_rexmit)
2613 			tcp_mark_head_lost(sk, 1, 1);
2614 	}
2615 
2616 	tcp_timeout_skbs(sk);
2617 }
2618 
2619 /* CWND moderation, preventing bursts due to too big ACKs
2620  * in dubious situations.
2621  */
tcp_moderate_cwnd(struct tcp_sock * tp)2622 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2623 {
2624 	tp->snd_cwnd = min(tp->snd_cwnd,
2625 			   tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2626 	tp->snd_cwnd_stamp = tcp_time_stamp;
2627 }
2628 
2629 /* Lower bound on congestion window is slow start threshold
2630  * unless congestion avoidance choice decides to overide it.
2631  */
tcp_cwnd_min(const struct sock * sk)2632 static inline u32 tcp_cwnd_min(const struct sock *sk)
2633 {
2634 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2635 
2636 	return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2637 }
2638 
2639 /* Decrease cwnd each second ack. */
tcp_cwnd_down(struct sock * sk,int flag)2640 static void tcp_cwnd_down(struct sock *sk, int flag)
2641 {
2642 	struct tcp_sock *tp = tcp_sk(sk);
2643 	int decr = tp->snd_cwnd_cnt + 1;
2644 
2645 	if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2646 	    (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2647 		tp->snd_cwnd_cnt = decr & 1;
2648 		decr >>= 1;
2649 
2650 		if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2651 			tp->snd_cwnd -= decr;
2652 
2653 		tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2654 		tp->snd_cwnd_stamp = tcp_time_stamp;
2655 	}
2656 }
2657 
2658 /* Nothing was retransmitted or returned timestamp is less
2659  * than timestamp of the first retransmission.
2660  */
tcp_packet_delayed(const struct tcp_sock * tp)2661 static inline int tcp_packet_delayed(const struct tcp_sock *tp)
2662 {
2663 	return !tp->retrans_stamp ||
2664 		(tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2665 		 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2666 }
2667 
2668 /* Undo procedures. */
2669 
2670 #if FASTRETRANS_DEBUG > 1
DBGUNDO(struct sock * sk,const char * msg)2671 static void DBGUNDO(struct sock *sk, const char *msg)
2672 {
2673 	struct tcp_sock *tp = tcp_sk(sk);
2674 	struct inet_sock *inet = inet_sk(sk);
2675 
2676 	if (sk->sk_family == AF_INET) {
2677 		printk(KERN_DEBUG "Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2678 		       msg,
2679 		       &inet->inet_daddr, ntohs(inet->inet_dport),
2680 		       tp->snd_cwnd, tcp_left_out(tp),
2681 		       tp->snd_ssthresh, tp->prior_ssthresh,
2682 		       tp->packets_out);
2683 	}
2684 #if IS_ENABLED(CONFIG_IPV6)
2685 	else if (sk->sk_family == AF_INET6) {
2686 		struct ipv6_pinfo *np = inet6_sk(sk);
2687 		printk(KERN_DEBUG "Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2688 		       msg,
2689 		       &np->daddr, ntohs(inet->inet_dport),
2690 		       tp->snd_cwnd, tcp_left_out(tp),
2691 		       tp->snd_ssthresh, tp->prior_ssthresh,
2692 		       tp->packets_out);
2693 	}
2694 #endif
2695 }
2696 #else
2697 #define DBGUNDO(x...) do { } while (0)
2698 #endif
2699 
tcp_undo_cwr(struct sock * sk,const bool undo_ssthresh)2700 static void tcp_undo_cwr(struct sock *sk, const bool undo_ssthresh)
2701 {
2702 	struct tcp_sock *tp = tcp_sk(sk);
2703 
2704 	if (tp->prior_ssthresh) {
2705 		const struct inet_connection_sock *icsk = inet_csk(sk);
2706 
2707 		if (icsk->icsk_ca_ops->undo_cwnd)
2708 			tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2709 		else
2710 			tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2711 
2712 		if (undo_ssthresh && tp->prior_ssthresh > tp->snd_ssthresh) {
2713 			tp->snd_ssthresh = tp->prior_ssthresh;
2714 			TCP_ECN_withdraw_cwr(tp);
2715 		}
2716 	} else {
2717 		tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2718 	}
2719 	tp->snd_cwnd_stamp = tcp_time_stamp;
2720 }
2721 
tcp_may_undo(const struct tcp_sock * tp)2722 static inline int tcp_may_undo(const struct tcp_sock *tp)
2723 {
2724 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2725 }
2726 
2727 /* People celebrate: "We love our President!" */
tcp_try_undo_recovery(struct sock * sk)2728 static int tcp_try_undo_recovery(struct sock *sk)
2729 {
2730 	struct tcp_sock *tp = tcp_sk(sk);
2731 
2732 	if (tcp_may_undo(tp)) {
2733 		int mib_idx;
2734 
2735 		/* Happy end! We did not retransmit anything
2736 		 * or our original transmission succeeded.
2737 		 */
2738 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2739 		tcp_undo_cwr(sk, true);
2740 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2741 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2742 		else
2743 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2744 
2745 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
2746 		tp->undo_marker = 0;
2747 	}
2748 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2749 		/* Hold old state until something *above* high_seq
2750 		 * is ACKed. For Reno it is MUST to prevent false
2751 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2752 		tcp_moderate_cwnd(tp);
2753 		return 1;
2754 	}
2755 	tcp_set_ca_state(sk, TCP_CA_Open);
2756 	return 0;
2757 }
2758 
2759 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
tcp_try_undo_dsack(struct sock * sk)2760 static void tcp_try_undo_dsack(struct sock *sk)
2761 {
2762 	struct tcp_sock *tp = tcp_sk(sk);
2763 
2764 	if (tp->undo_marker && !tp->undo_retrans) {
2765 		DBGUNDO(sk, "D-SACK");
2766 		tcp_undo_cwr(sk, true);
2767 		tp->undo_marker = 0;
2768 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2769 	}
2770 }
2771 
2772 /* We can clear retrans_stamp when there are no retransmissions in the
2773  * window. It would seem that it is trivially available for us in
2774  * tp->retrans_out, however, that kind of assumptions doesn't consider
2775  * what will happen if errors occur when sending retransmission for the
2776  * second time. ...It could the that such segment has only
2777  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2778  * the head skb is enough except for some reneging corner cases that
2779  * are not worth the effort.
2780  *
2781  * Main reason for all this complexity is the fact that connection dying
2782  * time now depends on the validity of the retrans_stamp, in particular,
2783  * that successive retransmissions of a segment must not advance
2784  * retrans_stamp under any conditions.
2785  */
tcp_any_retrans_done(const struct sock * sk)2786 static int tcp_any_retrans_done(const struct sock *sk)
2787 {
2788 	const struct tcp_sock *tp = tcp_sk(sk);
2789 	struct sk_buff *skb;
2790 
2791 	if (tp->retrans_out)
2792 		return 1;
2793 
2794 	skb = tcp_write_queue_head(sk);
2795 	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2796 		return 1;
2797 
2798 	return 0;
2799 }
2800 
2801 /* Undo during fast recovery after partial ACK. */
2802 
tcp_try_undo_partial(struct sock * sk,int acked)2803 static int tcp_try_undo_partial(struct sock *sk, int acked)
2804 {
2805 	struct tcp_sock *tp = tcp_sk(sk);
2806 	/* Partial ACK arrived. Force Hoe's retransmit. */
2807 	int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2808 
2809 	if (tcp_may_undo(tp)) {
2810 		/* Plain luck! Hole if filled with delayed
2811 		 * packet, rather than with a retransmit.
2812 		 */
2813 		if (!tcp_any_retrans_done(sk))
2814 			tp->retrans_stamp = 0;
2815 
2816 		tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2817 
2818 		DBGUNDO(sk, "Hoe");
2819 		tcp_undo_cwr(sk, false);
2820 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2821 
2822 		/* So... Do not make Hoe's retransmit yet.
2823 		 * If the first packet was delayed, the rest
2824 		 * ones are most probably delayed as well.
2825 		 */
2826 		failed = 0;
2827 	}
2828 	return failed;
2829 }
2830 
2831 /* Undo during loss recovery after partial ACK. */
tcp_try_undo_loss(struct sock * sk)2832 static int tcp_try_undo_loss(struct sock *sk)
2833 {
2834 	struct tcp_sock *tp = tcp_sk(sk);
2835 
2836 	if (tcp_may_undo(tp)) {
2837 		struct sk_buff *skb;
2838 		tcp_for_write_queue(skb, sk) {
2839 			if (skb == tcp_send_head(sk))
2840 				break;
2841 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2842 		}
2843 
2844 		tcp_clear_all_retrans_hints(tp);
2845 
2846 		DBGUNDO(sk, "partial loss");
2847 		tp->lost_out = 0;
2848 		tcp_undo_cwr(sk, true);
2849 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2850 		inet_csk(sk)->icsk_retransmits = 0;
2851 		tp->undo_marker = 0;
2852 		if (tcp_is_sack(tp))
2853 			tcp_set_ca_state(sk, TCP_CA_Open);
2854 		return 1;
2855 	}
2856 	return 0;
2857 }
2858 
tcp_complete_cwr(struct sock * sk)2859 static inline void tcp_complete_cwr(struct sock *sk)
2860 {
2861 	struct tcp_sock *tp = tcp_sk(sk);
2862 
2863 	/* Do not moderate cwnd if it's already undone in cwr or recovery. */
2864 	if (tp->undo_marker) {
2865 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR)
2866 			tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2867 		else /* PRR */
2868 			tp->snd_cwnd = tp->snd_ssthresh;
2869 		tp->snd_cwnd_stamp = tcp_time_stamp;
2870 	}
2871 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2872 }
2873 
tcp_try_keep_open(struct sock * sk)2874 static void tcp_try_keep_open(struct sock *sk)
2875 {
2876 	struct tcp_sock *tp = tcp_sk(sk);
2877 	int state = TCP_CA_Open;
2878 
2879 	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2880 		state = TCP_CA_Disorder;
2881 
2882 	if (inet_csk(sk)->icsk_ca_state != state) {
2883 		tcp_set_ca_state(sk, state);
2884 		tp->high_seq = tp->snd_nxt;
2885 	}
2886 }
2887 
tcp_try_to_open(struct sock * sk,int flag)2888 static void tcp_try_to_open(struct sock *sk, int flag)
2889 {
2890 	struct tcp_sock *tp = tcp_sk(sk);
2891 
2892 	tcp_verify_left_out(tp);
2893 
2894 	if (!tp->frto_counter && !tcp_any_retrans_done(sk))
2895 		tp->retrans_stamp = 0;
2896 
2897 	if (flag & FLAG_ECE)
2898 		tcp_enter_cwr(sk, 1);
2899 
2900 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2901 		tcp_try_keep_open(sk);
2902 		if (inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
2903 			tcp_moderate_cwnd(tp);
2904 	} else {
2905 		tcp_cwnd_down(sk, flag);
2906 	}
2907 }
2908 
tcp_mtup_probe_failed(struct sock * sk)2909 static void tcp_mtup_probe_failed(struct sock *sk)
2910 {
2911 	struct inet_connection_sock *icsk = inet_csk(sk);
2912 
2913 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2914 	icsk->icsk_mtup.probe_size = 0;
2915 }
2916 
tcp_mtup_probe_success(struct sock * sk)2917 static void tcp_mtup_probe_success(struct sock *sk)
2918 {
2919 	struct tcp_sock *tp = tcp_sk(sk);
2920 	struct inet_connection_sock *icsk = inet_csk(sk);
2921 
2922 	/* FIXME: breaks with very large cwnd */
2923 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2924 	tp->snd_cwnd = tp->snd_cwnd *
2925 		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2926 		       icsk->icsk_mtup.probe_size;
2927 	tp->snd_cwnd_cnt = 0;
2928 	tp->snd_cwnd_stamp = tcp_time_stamp;
2929 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2930 
2931 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2932 	icsk->icsk_mtup.probe_size = 0;
2933 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2934 }
2935 
2936 /* Do a simple retransmit without using the backoff mechanisms in
2937  * tcp_timer. This is used for path mtu discovery.
2938  * The socket is already locked here.
2939  */
tcp_simple_retransmit(struct sock * sk)2940 void tcp_simple_retransmit(struct sock *sk)
2941 {
2942 	const struct inet_connection_sock *icsk = inet_csk(sk);
2943 	struct tcp_sock *tp = tcp_sk(sk);
2944 	struct sk_buff *skb;
2945 	unsigned int mss = tcp_current_mss(sk);
2946 	u32 prior_lost = tp->lost_out;
2947 
2948 	tcp_for_write_queue(skb, sk) {
2949 		if (skb == tcp_send_head(sk))
2950 			break;
2951 		if (tcp_skb_seglen(skb) > mss &&
2952 		    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2953 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2954 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2955 				tp->retrans_out -= tcp_skb_pcount(skb);
2956 			}
2957 			tcp_skb_mark_lost_uncond_verify(tp, skb);
2958 		}
2959 	}
2960 
2961 	tcp_clear_retrans_hints_partial(tp);
2962 
2963 	if (prior_lost == tp->lost_out)
2964 		return;
2965 
2966 	if (tcp_is_reno(tp))
2967 		tcp_limit_reno_sacked(tp);
2968 
2969 	tcp_verify_left_out(tp);
2970 
2971 	/* Don't muck with the congestion window here.
2972 	 * Reason is that we do not increase amount of _data_
2973 	 * in network, but units changed and effective
2974 	 * cwnd/ssthresh really reduced now.
2975 	 */
2976 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2977 		tp->high_seq = tp->snd_nxt;
2978 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2979 		tp->prior_ssthresh = 0;
2980 		tp->undo_marker = 0;
2981 		tcp_set_ca_state(sk, TCP_CA_Loss);
2982 	}
2983 	tcp_xmit_retransmit_queue(sk);
2984 }
2985 EXPORT_SYMBOL(tcp_simple_retransmit);
2986 
2987 /* This function implements the PRR algorithm, specifcally the PRR-SSRB
2988  * (proportional rate reduction with slow start reduction bound) as described in
2989  * http://www.ietf.org/id/draft-mathis-tcpm-proportional-rate-reduction-01.txt.
2990  * It computes the number of packets to send (sndcnt) based on packets newly
2991  * delivered:
2992  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2993  *	cwnd reductions across a full RTT.
2994  *   2) If packets in flight is lower than ssthresh (such as due to excess
2995  *	losses and/or application stalls), do not perform any further cwnd
2996  *	reductions, but instead slow start up to ssthresh.
2997  */
tcp_update_cwnd_in_recovery(struct sock * sk,int newly_acked_sacked,int fast_rexmit,int flag)2998 static void tcp_update_cwnd_in_recovery(struct sock *sk, int newly_acked_sacked,
2999 					int fast_rexmit, int flag)
3000 {
3001 	struct tcp_sock *tp = tcp_sk(sk);
3002 	int sndcnt = 0;
3003 	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
3004 
3005 	if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
3006 		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
3007 			       tp->prior_cwnd - 1;
3008 		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
3009 	} else {
3010 		sndcnt = min_t(int, delta,
3011 			       max_t(int, tp->prr_delivered - tp->prr_out,
3012 				     newly_acked_sacked) + 1);
3013 	}
3014 
3015 	sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
3016 	tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
3017 }
3018 
3019 /* Process an event, which can update packets-in-flight not trivially.
3020  * Main goal of this function is to calculate new estimate for left_out,
3021  * taking into account both packets sitting in receiver's buffer and
3022  * packets lost by network.
3023  *
3024  * Besides that it does CWND reduction, when packet loss is detected
3025  * and changes state of machine.
3026  *
3027  * It does _not_ decide what to send, it is made in function
3028  * tcp_xmit_retransmit_queue().
3029  */
tcp_fastretrans_alert(struct sock * sk,int pkts_acked,int newly_acked_sacked,bool is_dupack,int flag)3030 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked,
3031 				  int newly_acked_sacked, bool is_dupack,
3032 				  int flag)
3033 {
3034 	struct inet_connection_sock *icsk = inet_csk(sk);
3035 	struct tcp_sock *tp = tcp_sk(sk);
3036 	int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
3037 				    (tcp_fackets_out(tp) > tp->reordering));
3038 	int fast_rexmit = 0, mib_idx;
3039 
3040 	if (WARN_ON(!tp->packets_out && tp->sacked_out))
3041 		tp->sacked_out = 0;
3042 	if (WARN_ON(!tp->sacked_out && tp->fackets_out))
3043 		tp->fackets_out = 0;
3044 
3045 	/* Now state machine starts.
3046 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
3047 	if (flag & FLAG_ECE)
3048 		tp->prior_ssthresh = 0;
3049 
3050 	/* B. In all the states check for reneging SACKs. */
3051 	if (tcp_check_sack_reneging(sk, flag))
3052 		return;
3053 
3054 	/* C. Check consistency of the current state. */
3055 	tcp_verify_left_out(tp);
3056 
3057 	/* D. Check state exit conditions. State can be terminated
3058 	 *    when high_seq is ACKed. */
3059 	if (icsk->icsk_ca_state == TCP_CA_Open) {
3060 		WARN_ON(tp->retrans_out != 0);
3061 		tp->retrans_stamp = 0;
3062 	} else if (!before(tp->snd_una, tp->high_seq)) {
3063 		switch (icsk->icsk_ca_state) {
3064 		case TCP_CA_Loss:
3065 			icsk->icsk_retransmits = 0;
3066 			if (tcp_try_undo_recovery(sk))
3067 				return;
3068 			break;
3069 
3070 		case TCP_CA_CWR:
3071 			/* CWR is to be held something *above* high_seq
3072 			 * is ACKed for CWR bit to reach receiver. */
3073 			if (tp->snd_una != tp->high_seq) {
3074 				tcp_complete_cwr(sk);
3075 				tcp_set_ca_state(sk, TCP_CA_Open);
3076 			}
3077 			break;
3078 
3079 		case TCP_CA_Recovery:
3080 			if (tcp_is_reno(tp))
3081 				tcp_reset_reno_sack(tp);
3082 			if (tcp_try_undo_recovery(sk))
3083 				return;
3084 			tcp_complete_cwr(sk);
3085 			break;
3086 		}
3087 	}
3088 
3089 	/* E. Process state. */
3090 	switch (icsk->icsk_ca_state) {
3091 	case TCP_CA_Recovery:
3092 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
3093 			if (tcp_is_reno(tp) && is_dupack)
3094 				tcp_add_reno_sack(sk);
3095 		} else
3096 			do_lost = tcp_try_undo_partial(sk, pkts_acked);
3097 		break;
3098 	case TCP_CA_Loss:
3099 		if (flag & FLAG_DATA_ACKED)
3100 			icsk->icsk_retransmits = 0;
3101 		if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
3102 			tcp_reset_reno_sack(tp);
3103 		if (!tcp_try_undo_loss(sk)) {
3104 			tcp_moderate_cwnd(tp);
3105 			tcp_xmit_retransmit_queue(sk);
3106 			return;
3107 		}
3108 		if (icsk->icsk_ca_state != TCP_CA_Open)
3109 			return;
3110 		/* Loss is undone; fall through to processing in Open state. */
3111 	default:
3112 		if (tcp_is_reno(tp)) {
3113 			if (flag & FLAG_SND_UNA_ADVANCED)
3114 				tcp_reset_reno_sack(tp);
3115 			if (is_dupack)
3116 				tcp_add_reno_sack(sk);
3117 		}
3118 
3119 		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
3120 			tcp_try_undo_dsack(sk);
3121 
3122 		if (!tcp_time_to_recover(sk)) {
3123 			tcp_try_to_open(sk, flag);
3124 			return;
3125 		}
3126 
3127 		/* MTU probe failure: don't reduce cwnd */
3128 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
3129 		    icsk->icsk_mtup.probe_size &&
3130 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
3131 			tcp_mtup_probe_failed(sk);
3132 			/* Restores the reduction we did in tcp_mtup_probe() */
3133 			tp->snd_cwnd++;
3134 			tcp_simple_retransmit(sk);
3135 			return;
3136 		}
3137 
3138 		/* Otherwise enter Recovery state */
3139 
3140 		if (tcp_is_reno(tp))
3141 			mib_idx = LINUX_MIB_TCPRENORECOVERY;
3142 		else
3143 			mib_idx = LINUX_MIB_TCPSACKRECOVERY;
3144 
3145 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
3146 
3147 		tp->high_seq = tp->snd_nxt;
3148 		tp->prior_ssthresh = 0;
3149 		tp->undo_marker = tp->snd_una;
3150 		tp->undo_retrans = tp->retrans_out;
3151 
3152 		if (icsk->icsk_ca_state < TCP_CA_CWR) {
3153 			if (!(flag & FLAG_ECE))
3154 				tp->prior_ssthresh = tcp_current_ssthresh(sk);
3155 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
3156 			TCP_ECN_queue_cwr(tp);
3157 		}
3158 
3159 		tp->bytes_acked = 0;
3160 		tp->snd_cwnd_cnt = 0;
3161 		tp->prior_cwnd = tp->snd_cwnd;
3162 		tp->prr_delivered = 0;
3163 		tp->prr_out = 0;
3164 		tcp_set_ca_state(sk, TCP_CA_Recovery);
3165 		fast_rexmit = 1;
3166 	}
3167 
3168 	if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
3169 		tcp_update_scoreboard(sk, fast_rexmit);
3170 	tp->prr_delivered += newly_acked_sacked;
3171 	tcp_update_cwnd_in_recovery(sk, newly_acked_sacked, fast_rexmit, flag);
3172 	tcp_xmit_retransmit_queue(sk);
3173 }
3174 
tcp_valid_rtt_meas(struct sock * sk,u32 seq_rtt)3175 void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
3176 {
3177 	tcp_rtt_estimator(sk, seq_rtt);
3178 	tcp_set_rto(sk);
3179 	inet_csk(sk)->icsk_backoff = 0;
3180 }
3181 EXPORT_SYMBOL(tcp_valid_rtt_meas);
3182 
3183 /* Read draft-ietf-tcplw-high-performance before mucking
3184  * with this code. (Supersedes RFC1323)
3185  */
tcp_ack_saw_tstamp(struct sock * sk,int flag)3186 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
3187 {
3188 	/* RTTM Rule: A TSecr value received in a segment is used to
3189 	 * update the averaged RTT measurement only if the segment
3190 	 * acknowledges some new data, i.e., only if it advances the
3191 	 * left edge of the send window.
3192 	 *
3193 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3194 	 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
3195 	 *
3196 	 * Changed: reset backoff as soon as we see the first valid sample.
3197 	 * If we do not, we get strongly overestimated rto. With timestamps
3198 	 * samples are accepted even from very old segments: f.e., when rtt=1
3199 	 * increases to 8, we retransmit 5 times and after 8 seconds delayed
3200 	 * answer arrives rto becomes 120 seconds! If at least one of segments
3201 	 * in window is lost... Voila.	 			--ANK (010210)
3202 	 */
3203 	struct tcp_sock *tp = tcp_sk(sk);
3204 
3205 	tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
3206 }
3207 
tcp_ack_no_tstamp(struct sock * sk,u32 seq_rtt,int flag)3208 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
3209 {
3210 	/* We don't have a timestamp. Can only use
3211 	 * packets that are not retransmitted to determine
3212 	 * rtt estimates. Also, we must not reset the
3213 	 * backoff for rto until we get a non-retransmitted
3214 	 * packet. This allows us to deal with a situation
3215 	 * where the network delay has increased suddenly.
3216 	 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
3217 	 */
3218 
3219 	if (flag & FLAG_RETRANS_DATA_ACKED)
3220 		return;
3221 
3222 	tcp_valid_rtt_meas(sk, seq_rtt);
3223 }
3224 
tcp_ack_update_rtt(struct sock * sk,const int flag,const s32 seq_rtt)3225 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
3226 				      const s32 seq_rtt)
3227 {
3228 	const struct tcp_sock *tp = tcp_sk(sk);
3229 	/* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
3230 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3231 		tcp_ack_saw_tstamp(sk, flag);
3232 	else if (seq_rtt >= 0)
3233 		tcp_ack_no_tstamp(sk, seq_rtt, flag);
3234 }
3235 
tcp_cong_avoid(struct sock * sk,u32 ack,u32 in_flight)3236 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
3237 {
3238 	const struct inet_connection_sock *icsk = inet_csk(sk);
3239 	icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
3240 	tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
3241 }
3242 
3243 /* Restart timer after forward progress on connection.
3244  * RFC2988 recommends to restart timer to now+rto.
3245  */
tcp_rearm_rto(struct sock * sk)3246 static void tcp_rearm_rto(struct sock *sk)
3247 {
3248 	const struct tcp_sock *tp = tcp_sk(sk);
3249 
3250 	if (!tp->packets_out) {
3251 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3252 	} else {
3253 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3254 					  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3255 	}
3256 }
3257 
3258 /* If we get here, the whole TSO packet has not been acked. */
tcp_tso_acked(struct sock * sk,struct sk_buff * skb)3259 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3260 {
3261 	struct tcp_sock *tp = tcp_sk(sk);
3262 	u32 packets_acked;
3263 
3264 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3265 
3266 	packets_acked = tcp_skb_pcount(skb);
3267 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3268 		return 0;
3269 	packets_acked -= tcp_skb_pcount(skb);
3270 
3271 	if (packets_acked) {
3272 		BUG_ON(tcp_skb_pcount(skb) == 0);
3273 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3274 	}
3275 
3276 	return packets_acked;
3277 }
3278 
3279 /* Remove acknowledged frames from the retransmission queue. If our packet
3280  * is before the ack sequence we can discard it as it's confirmed to have
3281  * arrived at the other end.
3282  */
tcp_clean_rtx_queue(struct sock * sk,int prior_fackets,u32 prior_snd_una)3283 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3284 			       u32 prior_snd_una)
3285 {
3286 	struct tcp_sock *tp = tcp_sk(sk);
3287 	const struct inet_connection_sock *icsk = inet_csk(sk);
3288 	struct sk_buff *skb;
3289 	u32 now = tcp_time_stamp;
3290 	int fully_acked = 1;
3291 	int flag = 0;
3292 	u32 pkts_acked = 0;
3293 	u32 reord = tp->packets_out;
3294 	u32 prior_sacked = tp->sacked_out;
3295 	s32 seq_rtt = -1;
3296 	s32 ca_seq_rtt = -1;
3297 	ktime_t last_ackt = net_invalid_timestamp();
3298 
3299 	while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3300 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3301 		u32 acked_pcount;
3302 		u8 sacked = scb->sacked;
3303 
3304 		/* Determine how many packets and what bytes were acked, tso and else */
3305 		if (after(scb->end_seq, tp->snd_una)) {
3306 			if (tcp_skb_pcount(skb) == 1 ||
3307 			    !after(tp->snd_una, scb->seq))
3308 				break;
3309 
3310 			acked_pcount = tcp_tso_acked(sk, skb);
3311 			if (!acked_pcount)
3312 				break;
3313 
3314 			fully_acked = 0;
3315 		} else {
3316 			acked_pcount = tcp_skb_pcount(skb);
3317 		}
3318 
3319 		if (sacked & TCPCB_RETRANS) {
3320 			if (sacked & TCPCB_SACKED_RETRANS)
3321 				tp->retrans_out -= acked_pcount;
3322 			flag |= FLAG_RETRANS_DATA_ACKED;
3323 			ca_seq_rtt = -1;
3324 			seq_rtt = -1;
3325 			if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
3326 				flag |= FLAG_NONHEAD_RETRANS_ACKED;
3327 		} else {
3328 			ca_seq_rtt = now - scb->when;
3329 			last_ackt = skb->tstamp;
3330 			if (seq_rtt < 0) {
3331 				seq_rtt = ca_seq_rtt;
3332 			}
3333 			if (!(sacked & TCPCB_SACKED_ACKED))
3334 				reord = min(pkts_acked, reord);
3335 		}
3336 
3337 		if (sacked & TCPCB_SACKED_ACKED)
3338 			tp->sacked_out -= acked_pcount;
3339 		if (sacked & TCPCB_LOST)
3340 			tp->lost_out -= acked_pcount;
3341 
3342 		tp->packets_out -= acked_pcount;
3343 		pkts_acked += acked_pcount;
3344 
3345 		/* Initial outgoing SYN's get put onto the write_queue
3346 		 * just like anything else we transmit.  It is not
3347 		 * true data, and if we misinform our callers that
3348 		 * this ACK acks real data, we will erroneously exit
3349 		 * connection startup slow start one packet too
3350 		 * quickly.  This is severely frowned upon behavior.
3351 		 */
3352 		if (!(scb->tcp_flags & TCPHDR_SYN)) {
3353 			flag |= FLAG_DATA_ACKED;
3354 		} else {
3355 			flag |= FLAG_SYN_ACKED;
3356 			tp->retrans_stamp = 0;
3357 		}
3358 
3359 		if (!fully_acked)
3360 			break;
3361 
3362 		tcp_unlink_write_queue(skb, sk);
3363 		sk_wmem_free_skb(sk, skb);
3364 		tp->scoreboard_skb_hint = NULL;
3365 		if (skb == tp->retransmit_skb_hint)
3366 			tp->retransmit_skb_hint = NULL;
3367 		if (skb == tp->lost_skb_hint)
3368 			tp->lost_skb_hint = NULL;
3369 	}
3370 
3371 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3372 		tp->snd_up = tp->snd_una;
3373 
3374 	if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3375 		flag |= FLAG_SACK_RENEGING;
3376 
3377 	if (flag & FLAG_ACKED) {
3378 		const struct tcp_congestion_ops *ca_ops
3379 			= inet_csk(sk)->icsk_ca_ops;
3380 
3381 		if (unlikely(icsk->icsk_mtup.probe_size &&
3382 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3383 			tcp_mtup_probe_success(sk);
3384 		}
3385 
3386 		tcp_ack_update_rtt(sk, flag, seq_rtt);
3387 		tcp_rearm_rto(sk);
3388 
3389 		if (tcp_is_reno(tp)) {
3390 			tcp_remove_reno_sacks(sk, pkts_acked);
3391 		} else {
3392 			int delta;
3393 
3394 			/* Non-retransmitted hole got filled? That's reordering */
3395 			if (reord < prior_fackets)
3396 				tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3397 
3398 			delta = tcp_is_fack(tp) ? pkts_acked :
3399 						  prior_sacked - tp->sacked_out;
3400 			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3401 		}
3402 
3403 		tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3404 
3405 		if (ca_ops->pkts_acked) {
3406 			s32 rtt_us = -1;
3407 
3408 			/* Is the ACK triggering packet unambiguous? */
3409 			if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3410 				/* High resolution needed and available? */
3411 				if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3412 				    !ktime_equal(last_ackt,
3413 						 net_invalid_timestamp()))
3414 					rtt_us = ktime_us_delta(ktime_get_real(),
3415 								last_ackt);
3416 				else if (ca_seq_rtt >= 0)
3417 					rtt_us = jiffies_to_usecs(ca_seq_rtt);
3418 			}
3419 
3420 			ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3421 		}
3422 	}
3423 
3424 #if FASTRETRANS_DEBUG > 0
3425 	WARN_ON((int)tp->sacked_out < 0);
3426 	WARN_ON((int)tp->lost_out < 0);
3427 	WARN_ON((int)tp->retrans_out < 0);
3428 	if (!tp->packets_out && tcp_is_sack(tp)) {
3429 		icsk = inet_csk(sk);
3430 		if (tp->lost_out) {
3431 			printk(KERN_DEBUG "Leak l=%u %d\n",
3432 			       tp->lost_out, icsk->icsk_ca_state);
3433 			tp->lost_out = 0;
3434 		}
3435 		if (tp->sacked_out) {
3436 			printk(KERN_DEBUG "Leak s=%u %d\n",
3437 			       tp->sacked_out, icsk->icsk_ca_state);
3438 			tp->sacked_out = 0;
3439 		}
3440 		if (tp->retrans_out) {
3441 			printk(KERN_DEBUG "Leak r=%u %d\n",
3442 			       tp->retrans_out, icsk->icsk_ca_state);
3443 			tp->retrans_out = 0;
3444 		}
3445 	}
3446 #endif
3447 	return flag;
3448 }
3449 
tcp_ack_probe(struct sock * sk)3450 static void tcp_ack_probe(struct sock *sk)
3451 {
3452 	const struct tcp_sock *tp = tcp_sk(sk);
3453 	struct inet_connection_sock *icsk = inet_csk(sk);
3454 
3455 	/* Was it a usable window open? */
3456 
3457 	if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3458 		icsk->icsk_backoff = 0;
3459 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3460 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3461 		 * This function is not for random using!
3462 		 */
3463 	} else {
3464 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3465 					  min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3466 					  TCP_RTO_MAX);
3467 	}
3468 }
3469 
tcp_ack_is_dubious(const struct sock * sk,const int flag)3470 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
3471 {
3472 	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3473 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3474 }
3475 
tcp_may_raise_cwnd(const struct sock * sk,const int flag)3476 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3477 {
3478 	const struct tcp_sock *tp = tcp_sk(sk);
3479 	return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3480 		!((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
3481 }
3482 
3483 /* Check that window update is acceptable.
3484  * The function assumes that snd_una<=ack<=snd_next.
3485  */
tcp_may_update_window(const struct tcp_sock * tp,const u32 ack,const u32 ack_seq,const u32 nwin)3486 static inline int tcp_may_update_window(const struct tcp_sock *tp,
3487 					const u32 ack, const u32 ack_seq,
3488 					const u32 nwin)
3489 {
3490 	return	after(ack, tp->snd_una) ||
3491 		after(ack_seq, tp->snd_wl1) ||
3492 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3493 }
3494 
3495 /* Update our send window.
3496  *
3497  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3498  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3499  */
tcp_ack_update_window(struct sock * sk,const struct sk_buff * skb,u32 ack,u32 ack_seq)3500 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3501 				 u32 ack_seq)
3502 {
3503 	struct tcp_sock *tp = tcp_sk(sk);
3504 	int flag = 0;
3505 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3506 
3507 	if (likely(!tcp_hdr(skb)->syn))
3508 		nwin <<= tp->rx_opt.snd_wscale;
3509 
3510 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3511 		flag |= FLAG_WIN_UPDATE;
3512 		tcp_update_wl(tp, ack_seq);
3513 
3514 		if (tp->snd_wnd != nwin) {
3515 			tp->snd_wnd = nwin;
3516 
3517 			/* Note, it is the only place, where
3518 			 * fast path is recovered for sending TCP.
3519 			 */
3520 			tp->pred_flags = 0;
3521 			tcp_fast_path_check(sk);
3522 
3523 			if (nwin > tp->max_window) {
3524 				tp->max_window = nwin;
3525 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3526 			}
3527 		}
3528 	}
3529 
3530 	tp->snd_una = ack;
3531 
3532 	return flag;
3533 }
3534 
3535 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3536  * continue in congestion avoidance.
3537  */
tcp_conservative_spur_to_response(struct tcp_sock * tp)3538 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3539 {
3540 	tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3541 	tp->snd_cwnd_cnt = 0;
3542 	tp->bytes_acked = 0;
3543 	TCP_ECN_queue_cwr(tp);
3544 	tcp_moderate_cwnd(tp);
3545 }
3546 
3547 /* A conservative spurious RTO response algorithm: reduce cwnd using
3548  * rate halving and continue in congestion avoidance.
3549  */
tcp_ratehalving_spur_to_response(struct sock * sk)3550 static void tcp_ratehalving_spur_to_response(struct sock *sk)
3551 {
3552 	tcp_enter_cwr(sk, 0);
3553 }
3554 
tcp_undo_spur_to_response(struct sock * sk,int flag)3555 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3556 {
3557 	if (flag & FLAG_ECE)
3558 		tcp_ratehalving_spur_to_response(sk);
3559 	else
3560 		tcp_undo_cwr(sk, true);
3561 }
3562 
3563 /* F-RTO spurious RTO detection algorithm (RFC4138)
3564  *
3565  * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3566  * comments). State (ACK number) is kept in frto_counter. When ACK advances
3567  * window (but not to or beyond highest sequence sent before RTO):
3568  *   On First ACK,  send two new segments out.
3569  *   On Second ACK, RTO was likely spurious. Do spurious response (response
3570  *                  algorithm is not part of the F-RTO detection algorithm
3571  *                  given in RFC4138 but can be selected separately).
3572  * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3573  * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3574  * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3575  * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3576  *
3577  * Rationale: if the RTO was spurious, new ACKs should arrive from the
3578  * original window even after we transmit two new data segments.
3579  *
3580  * SACK version:
3581  *   on first step, wait until first cumulative ACK arrives, then move to
3582  *   the second step. In second step, the next ACK decides.
3583  *
3584  * F-RTO is implemented (mainly) in four functions:
3585  *   - tcp_use_frto() is used to determine if TCP is can use F-RTO
3586  *   - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3587  *     called when tcp_use_frto() showed green light
3588  *   - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3589  *   - tcp_enter_frto_loss() is called if there is not enough evidence
3590  *     to prove that the RTO is indeed spurious. It transfers the control
3591  *     from F-RTO to the conventional RTO recovery
3592  */
tcp_process_frto(struct sock * sk,int flag)3593 static int tcp_process_frto(struct sock *sk, int flag)
3594 {
3595 	struct tcp_sock *tp = tcp_sk(sk);
3596 
3597 	tcp_verify_left_out(tp);
3598 
3599 	/* Duplicate the behavior from Loss state (fastretrans_alert) */
3600 	if (flag & FLAG_DATA_ACKED)
3601 		inet_csk(sk)->icsk_retransmits = 0;
3602 
3603 	if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3604 	    ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3605 		tp->undo_marker = 0;
3606 
3607 	if (!before(tp->snd_una, tp->frto_highmark)) {
3608 		tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3609 		return 1;
3610 	}
3611 
3612 	if (!tcp_is_sackfrto(tp)) {
3613 		/* RFC4138 shortcoming in step 2; should also have case c):
3614 		 * ACK isn't duplicate nor advances window, e.g., opposite dir
3615 		 * data, winupdate
3616 		 */
3617 		if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3618 			return 1;
3619 
3620 		if (!(flag & FLAG_DATA_ACKED)) {
3621 			tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3622 					    flag);
3623 			return 1;
3624 		}
3625 	} else {
3626 		if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3627 			/* Prevent sending of new data. */
3628 			tp->snd_cwnd = min(tp->snd_cwnd,
3629 					   tcp_packets_in_flight(tp));
3630 			return 1;
3631 		}
3632 
3633 		if ((tp->frto_counter >= 2) &&
3634 		    (!(flag & FLAG_FORWARD_PROGRESS) ||
3635 		     ((flag & FLAG_DATA_SACKED) &&
3636 		      !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3637 			/* RFC4138 shortcoming (see comment above) */
3638 			if (!(flag & FLAG_FORWARD_PROGRESS) &&
3639 			    (flag & FLAG_NOT_DUP))
3640 				return 1;
3641 
3642 			tcp_enter_frto_loss(sk, 3, flag);
3643 			return 1;
3644 		}
3645 	}
3646 
3647 	if (tp->frto_counter == 1) {
3648 		/* tcp_may_send_now needs to see updated state */
3649 		tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3650 		tp->frto_counter = 2;
3651 
3652 		if (!tcp_may_send_now(sk))
3653 			tcp_enter_frto_loss(sk, 2, flag);
3654 
3655 		return 1;
3656 	} else {
3657 		switch (sysctl_tcp_frto_response) {
3658 		case 2:
3659 			tcp_undo_spur_to_response(sk, flag);
3660 			break;
3661 		case 1:
3662 			tcp_conservative_spur_to_response(tp);
3663 			break;
3664 		default:
3665 			tcp_ratehalving_spur_to_response(sk);
3666 			break;
3667 		}
3668 		tp->frto_counter = 0;
3669 		tp->undo_marker = 0;
3670 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
3671 	}
3672 	return 0;
3673 }
3674 
3675 /* This routine deals with incoming acks, but not outgoing ones. */
tcp_ack(struct sock * sk,const struct sk_buff * skb,int flag)3676 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3677 {
3678 	struct inet_connection_sock *icsk = inet_csk(sk);
3679 	struct tcp_sock *tp = tcp_sk(sk);
3680 	u32 prior_snd_una = tp->snd_una;
3681 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3682 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3683 	bool is_dupack = false;
3684 	u32 prior_in_flight;
3685 	u32 prior_fackets;
3686 	int prior_packets;
3687 	int prior_sacked = tp->sacked_out;
3688 	int pkts_acked = 0;
3689 	int newly_acked_sacked = 0;
3690 	int frto_cwnd = 0;
3691 
3692 	/* If the ack is older than previous acks
3693 	 * then we can probably ignore it.
3694 	 */
3695 	if (before(ack, prior_snd_una))
3696 		goto old_ack;
3697 
3698 	/* If the ack includes data we haven't sent yet, discard
3699 	 * this segment (RFC793 Section 3.9).
3700 	 */
3701 	if (after(ack, tp->snd_nxt))
3702 		goto invalid_ack;
3703 
3704 	if (after(ack, prior_snd_una))
3705 		flag |= FLAG_SND_UNA_ADVANCED;
3706 
3707 	if (sysctl_tcp_abc) {
3708 		if (icsk->icsk_ca_state < TCP_CA_CWR)
3709 			tp->bytes_acked += ack - prior_snd_una;
3710 		else if (icsk->icsk_ca_state == TCP_CA_Loss)
3711 			/* we assume just one segment left network */
3712 			tp->bytes_acked += min(ack - prior_snd_una,
3713 					       tp->mss_cache);
3714 	}
3715 
3716 	prior_fackets = tp->fackets_out;
3717 	prior_in_flight = tcp_packets_in_flight(tp);
3718 
3719 	if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3720 		/* Window is constant, pure forward advance.
3721 		 * No more checks are required.
3722 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3723 		 */
3724 		tcp_update_wl(tp, ack_seq);
3725 		tp->snd_una = ack;
3726 		flag |= FLAG_WIN_UPDATE;
3727 
3728 		tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3729 
3730 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3731 	} else {
3732 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3733 			flag |= FLAG_DATA;
3734 		else
3735 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3736 
3737 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3738 
3739 		if (TCP_SKB_CB(skb)->sacked)
3740 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3741 
3742 		if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3743 			flag |= FLAG_ECE;
3744 
3745 		tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3746 	}
3747 
3748 	/* We passed data and got it acked, remove any soft error
3749 	 * log. Something worked...
3750 	 */
3751 	sk->sk_err_soft = 0;
3752 	icsk->icsk_probes_out = 0;
3753 	tp->rcv_tstamp = tcp_time_stamp;
3754 	prior_packets = tp->packets_out;
3755 	if (!prior_packets)
3756 		goto no_queue;
3757 
3758 	/* See if we can take anything off of the retransmit queue. */
3759 	flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
3760 
3761 	pkts_acked = prior_packets - tp->packets_out;
3762 	newly_acked_sacked = (prior_packets - prior_sacked) -
3763 			     (tp->packets_out - tp->sacked_out);
3764 
3765 	if (tp->frto_counter)
3766 		frto_cwnd = tcp_process_frto(sk, flag);
3767 	/* Guarantee sacktag reordering detection against wrap-arounds */
3768 	if (before(tp->frto_highmark, tp->snd_una))
3769 		tp->frto_highmark = 0;
3770 
3771 	if (tcp_ack_is_dubious(sk, flag)) {
3772 		/* Advance CWND, if state allows this. */
3773 		if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3774 		    tcp_may_raise_cwnd(sk, flag))
3775 			tcp_cong_avoid(sk, ack, prior_in_flight);
3776 		is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3777 		tcp_fastretrans_alert(sk, pkts_acked, newly_acked_sacked,
3778 				      is_dupack, flag);
3779 	} else {
3780 		if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3781 			tcp_cong_avoid(sk, ack, prior_in_flight);
3782 	}
3783 
3784 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3785 		dst_confirm(__sk_dst_get(sk));
3786 
3787 	return 1;
3788 
3789 no_queue:
3790 	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3791 	if (flag & FLAG_DSACKING_ACK)
3792 		tcp_fastretrans_alert(sk, pkts_acked, newly_acked_sacked,
3793 				      is_dupack, flag);
3794 	/* If this ack opens up a zero window, clear backoff.  It was
3795 	 * being used to time the probes, and is probably far higher than
3796 	 * it needs to be for normal retransmission.
3797 	 */
3798 	if (tcp_send_head(sk))
3799 		tcp_ack_probe(sk);
3800 	return 1;
3801 
3802 invalid_ack:
3803 	SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3804 	return -1;
3805 
3806 old_ack:
3807 	/* If data was SACKed, tag it and see if we should send more data.
3808 	 * If data was DSACKed, see if we can undo a cwnd reduction.
3809 	 */
3810 	if (TCP_SKB_CB(skb)->sacked) {
3811 		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3812 		newly_acked_sacked = tp->sacked_out - prior_sacked;
3813 		tcp_fastretrans_alert(sk, pkts_acked, newly_acked_sacked,
3814 				      is_dupack, flag);
3815 	}
3816 
3817 	SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3818 	return 0;
3819 }
3820 
3821 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3822  * But, this can also be called on packets in the established flow when
3823  * the fast version below fails.
3824  */
tcp_parse_options(const struct sk_buff * skb,struct tcp_options_received * opt_rx,const u8 ** hvpp,int estab)3825 void tcp_parse_options(const struct sk_buff *skb, struct tcp_options_received *opt_rx,
3826 		       const u8 **hvpp, int estab)
3827 {
3828 	const unsigned char *ptr;
3829 	const struct tcphdr *th = tcp_hdr(skb);
3830 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3831 
3832 	ptr = (const unsigned char *)(th + 1);
3833 	opt_rx->saw_tstamp = 0;
3834 
3835 	while (length > 0) {
3836 		int opcode = *ptr++;
3837 		int opsize;
3838 
3839 		switch (opcode) {
3840 		case TCPOPT_EOL:
3841 			return;
3842 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3843 			length--;
3844 			continue;
3845 		default:
3846 			opsize = *ptr++;
3847 			if (opsize < 2) /* "silly options" */
3848 				return;
3849 			if (opsize > length)
3850 				return;	/* don't parse partial options */
3851 			switch (opcode) {
3852 			case TCPOPT_MSS:
3853 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3854 					u16 in_mss = get_unaligned_be16(ptr);
3855 					if (in_mss) {
3856 						if (opt_rx->user_mss &&
3857 						    opt_rx->user_mss < in_mss)
3858 							in_mss = opt_rx->user_mss;
3859 						opt_rx->mss_clamp = in_mss;
3860 					}
3861 				}
3862 				break;
3863 			case TCPOPT_WINDOW:
3864 				if (opsize == TCPOLEN_WINDOW && th->syn &&
3865 				    !estab && sysctl_tcp_window_scaling) {
3866 					__u8 snd_wscale = *(__u8 *)ptr;
3867 					opt_rx->wscale_ok = 1;
3868 					if (snd_wscale > 14) {
3869 						if (net_ratelimit())
3870 							printk(KERN_INFO "tcp_parse_options: Illegal window "
3871 							       "scaling value %d >14 received.\n",
3872 							       snd_wscale);
3873 						snd_wscale = 14;
3874 					}
3875 					opt_rx->snd_wscale = snd_wscale;
3876 				}
3877 				break;
3878 			case TCPOPT_TIMESTAMP:
3879 				if ((opsize == TCPOLEN_TIMESTAMP) &&
3880 				    ((estab && opt_rx->tstamp_ok) ||
3881 				     (!estab && sysctl_tcp_timestamps))) {
3882 					opt_rx->saw_tstamp = 1;
3883 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3884 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3885 				}
3886 				break;
3887 			case TCPOPT_SACK_PERM:
3888 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3889 				    !estab && sysctl_tcp_sack) {
3890 					opt_rx->sack_ok = TCP_SACK_SEEN;
3891 					tcp_sack_reset(opt_rx);
3892 				}
3893 				break;
3894 
3895 			case TCPOPT_SACK:
3896 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3897 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3898 				   opt_rx->sack_ok) {
3899 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3900 				}
3901 				break;
3902 #ifdef CONFIG_TCP_MD5SIG
3903 			case TCPOPT_MD5SIG:
3904 				/*
3905 				 * The MD5 Hash has already been
3906 				 * checked (see tcp_v{4,6}_do_rcv()).
3907 				 */
3908 				break;
3909 #endif
3910 			case TCPOPT_COOKIE:
3911 				/* This option is variable length.
3912 				 */
3913 				switch (opsize) {
3914 				case TCPOLEN_COOKIE_BASE:
3915 					/* not yet implemented */
3916 					break;
3917 				case TCPOLEN_COOKIE_PAIR:
3918 					/* not yet implemented */
3919 					break;
3920 				case TCPOLEN_COOKIE_MIN+0:
3921 				case TCPOLEN_COOKIE_MIN+2:
3922 				case TCPOLEN_COOKIE_MIN+4:
3923 				case TCPOLEN_COOKIE_MIN+6:
3924 				case TCPOLEN_COOKIE_MAX:
3925 					/* 16-bit multiple */
3926 					opt_rx->cookie_plus = opsize;
3927 					*hvpp = ptr;
3928 					break;
3929 				default:
3930 					/* ignore option */
3931 					break;
3932 				}
3933 				break;
3934 			}
3935 
3936 			ptr += opsize-2;
3937 			length -= opsize;
3938 		}
3939 	}
3940 }
3941 EXPORT_SYMBOL(tcp_parse_options);
3942 
tcp_parse_aligned_timestamp(struct tcp_sock * tp,const struct tcphdr * th)3943 static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3944 {
3945 	const __be32 *ptr = (const __be32 *)(th + 1);
3946 
3947 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3948 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3949 		tp->rx_opt.saw_tstamp = 1;
3950 		++ptr;
3951 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
3952 		++ptr;
3953 		tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3954 		return 1;
3955 	}
3956 	return 0;
3957 }
3958 
3959 /* Fast parse options. This hopes to only see timestamps.
3960  * If it is wrong it falls back on tcp_parse_options().
3961  */
tcp_fast_parse_options(const struct sk_buff * skb,const struct tcphdr * th,struct tcp_sock * tp,const u8 ** hvpp)3962 static int tcp_fast_parse_options(const struct sk_buff *skb,
3963 				  const struct tcphdr *th,
3964 				  struct tcp_sock *tp, const u8 **hvpp)
3965 {
3966 	/* In the spirit of fast parsing, compare doff directly to constant
3967 	 * values.  Because equality is used, short doff can be ignored here.
3968 	 */
3969 	if (th->doff == (sizeof(*th) / 4)) {
3970 		tp->rx_opt.saw_tstamp = 0;
3971 		return 0;
3972 	} else if (tp->rx_opt.tstamp_ok &&
3973 		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3974 		if (tcp_parse_aligned_timestamp(tp, th))
3975 			return 1;
3976 	}
3977 	tcp_parse_options(skb, &tp->rx_opt, hvpp, 1);
3978 	return 1;
3979 }
3980 
3981 #ifdef CONFIG_TCP_MD5SIG
3982 /*
3983  * Parse MD5 Signature option
3984  */
tcp_parse_md5sig_option(const struct tcphdr * th)3985 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3986 {
3987 	int length = (th->doff << 2) - sizeof(*th);
3988 	const u8 *ptr = (const u8 *)(th + 1);
3989 
3990 	/* If the TCP option is too short, we can short cut */
3991 	if (length < TCPOLEN_MD5SIG)
3992 		return NULL;
3993 
3994 	while (length > 0) {
3995 		int opcode = *ptr++;
3996 		int opsize;
3997 
3998 		switch(opcode) {
3999 		case TCPOPT_EOL:
4000 			return NULL;
4001 		case TCPOPT_NOP:
4002 			length--;
4003 			continue;
4004 		default:
4005 			opsize = *ptr++;
4006 			if (opsize < 2 || opsize > length)
4007 				return NULL;
4008 			if (opcode == TCPOPT_MD5SIG)
4009 				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
4010 		}
4011 		ptr += opsize - 2;
4012 		length -= opsize;
4013 	}
4014 	return NULL;
4015 }
4016 EXPORT_SYMBOL(tcp_parse_md5sig_option);
4017 #endif
4018 
tcp_store_ts_recent(struct tcp_sock * tp)4019 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
4020 {
4021 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
4022 	tp->rx_opt.ts_recent_stamp = get_seconds();
4023 }
4024 
tcp_replace_ts_recent(struct tcp_sock * tp,u32 seq)4025 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
4026 {
4027 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
4028 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
4029 		 * extra check below makes sure this can only happen
4030 		 * for pure ACK frames.  -DaveM
4031 		 *
4032 		 * Not only, also it occurs for expired timestamps.
4033 		 */
4034 
4035 		if (tcp_paws_check(&tp->rx_opt, 0))
4036 			tcp_store_ts_recent(tp);
4037 	}
4038 }
4039 
4040 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4041  *
4042  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4043  * it can pass through stack. So, the following predicate verifies that
4044  * this segment is not used for anything but congestion avoidance or
4045  * fast retransmit. Moreover, we even are able to eliminate most of such
4046  * second order effects, if we apply some small "replay" window (~RTO)
4047  * to timestamp space.
4048  *
4049  * All these measures still do not guarantee that we reject wrapped ACKs
4050  * on networks with high bandwidth, when sequence space is recycled fastly,
4051  * but it guarantees that such events will be very rare and do not affect
4052  * connection seriously. This doesn't look nice, but alas, PAWS is really
4053  * buggy extension.
4054  *
4055  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4056  * states that events when retransmit arrives after original data are rare.
4057  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4058  * the biggest problem on large power networks even with minor reordering.
4059  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4060  * up to bandwidth of 18Gigabit/sec. 8) ]
4061  */
4062 
tcp_disordered_ack(const struct sock * sk,const struct sk_buff * skb)4063 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4064 {
4065 	const struct tcp_sock *tp = tcp_sk(sk);
4066 	const struct tcphdr *th = tcp_hdr(skb);
4067 	u32 seq = TCP_SKB_CB(skb)->seq;
4068 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
4069 
4070 	return (/* 1. Pure ACK with correct sequence number. */
4071 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4072 
4073 		/* 2. ... and duplicate ACK. */
4074 		ack == tp->snd_una &&
4075 
4076 		/* 3. ... and does not update window. */
4077 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4078 
4079 		/* 4. ... and sits in replay window. */
4080 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4081 }
4082 
tcp_paws_discard(const struct sock * sk,const struct sk_buff * skb)4083 static inline int tcp_paws_discard(const struct sock *sk,
4084 				   const struct sk_buff *skb)
4085 {
4086 	const struct tcp_sock *tp = tcp_sk(sk);
4087 
4088 	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4089 	       !tcp_disordered_ack(sk, skb);
4090 }
4091 
4092 /* Check segment sequence number for validity.
4093  *
4094  * Segment controls are considered valid, if the segment
4095  * fits to the window after truncation to the window. Acceptability
4096  * of data (and SYN, FIN, of course) is checked separately.
4097  * See tcp_data_queue(), for example.
4098  *
4099  * Also, controls (RST is main one) are accepted using RCV.WUP instead
4100  * of RCV.NXT. Peer still did not advance his SND.UNA when we
4101  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4102  * (borrowed from freebsd)
4103  */
4104 
tcp_sequence(const struct tcp_sock * tp,u32 seq,u32 end_seq)4105 static inline int tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4106 {
4107 	return	!before(end_seq, tp->rcv_wup) &&
4108 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4109 }
4110 
4111 /* When we get a reset we do this. */
tcp_reset(struct sock * sk)4112 static void tcp_reset(struct sock *sk)
4113 {
4114 	/* We want the right error as BSD sees it (and indeed as we do). */
4115 	switch (sk->sk_state) {
4116 	case TCP_SYN_SENT:
4117 		sk->sk_err = ECONNREFUSED;
4118 		break;
4119 	case TCP_CLOSE_WAIT:
4120 		sk->sk_err = EPIPE;
4121 		break;
4122 	case TCP_CLOSE:
4123 		return;
4124 	default:
4125 		sk->sk_err = ECONNRESET;
4126 	}
4127 	/* This barrier is coupled with smp_rmb() in tcp_poll() */
4128 	smp_wmb();
4129 
4130 	if (!sock_flag(sk, SOCK_DEAD))
4131 		sk->sk_error_report(sk);
4132 
4133 	tcp_done(sk);
4134 }
4135 
4136 /*
4137  * 	Process the FIN bit. This now behaves as it is supposed to work
4138  *	and the FIN takes effect when it is validly part of sequence
4139  *	space. Not before when we get holes.
4140  *
4141  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4142  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4143  *	TIME-WAIT)
4144  *
4145  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4146  *	close and we go into CLOSING (and later onto TIME-WAIT)
4147  *
4148  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4149  */
tcp_fin(struct sock * sk)4150 static void tcp_fin(struct sock *sk)
4151 {
4152 	struct tcp_sock *tp = tcp_sk(sk);
4153 
4154 	inet_csk_schedule_ack(sk);
4155 
4156 	sk->sk_shutdown |= RCV_SHUTDOWN;
4157 	sock_set_flag(sk, SOCK_DONE);
4158 
4159 	switch (sk->sk_state) {
4160 	case TCP_SYN_RECV:
4161 	case TCP_ESTABLISHED:
4162 		/* Move to CLOSE_WAIT */
4163 		tcp_set_state(sk, TCP_CLOSE_WAIT);
4164 		inet_csk(sk)->icsk_ack.pingpong = 1;
4165 		break;
4166 
4167 	case TCP_CLOSE_WAIT:
4168 	case TCP_CLOSING:
4169 		/* Received a retransmission of the FIN, do
4170 		 * nothing.
4171 		 */
4172 		break;
4173 	case TCP_LAST_ACK:
4174 		/* RFC793: Remain in the LAST-ACK state. */
4175 		break;
4176 
4177 	case TCP_FIN_WAIT1:
4178 		/* This case occurs when a simultaneous close
4179 		 * happens, we must ack the received FIN and
4180 		 * enter the CLOSING state.
4181 		 */
4182 		tcp_send_ack(sk);
4183 		tcp_set_state(sk, TCP_CLOSING);
4184 		break;
4185 	case TCP_FIN_WAIT2:
4186 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4187 		tcp_send_ack(sk);
4188 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4189 		break;
4190 	default:
4191 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4192 		 * cases we should never reach this piece of code.
4193 		 */
4194 		printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
4195 		       __func__, sk->sk_state);
4196 		break;
4197 	}
4198 
4199 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4200 	 * Probably, we should reset in this case. For now drop them.
4201 	 */
4202 	__skb_queue_purge(&tp->out_of_order_queue);
4203 	if (tcp_is_sack(tp))
4204 		tcp_sack_reset(&tp->rx_opt);
4205 	sk_mem_reclaim(sk);
4206 
4207 	if (!sock_flag(sk, SOCK_DEAD)) {
4208 		sk->sk_state_change(sk);
4209 
4210 		/* Do not send POLL_HUP for half duplex close. */
4211 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4212 		    sk->sk_state == TCP_CLOSE)
4213 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4214 		else
4215 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4216 	}
4217 }
4218 
tcp_sack_extend(struct tcp_sack_block * sp,u32 seq,u32 end_seq)4219 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4220 				  u32 end_seq)
4221 {
4222 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4223 		if (before(seq, sp->start_seq))
4224 			sp->start_seq = seq;
4225 		if (after(end_seq, sp->end_seq))
4226 			sp->end_seq = end_seq;
4227 		return 1;
4228 	}
4229 	return 0;
4230 }
4231 
tcp_dsack_set(struct sock * sk,u32 seq,u32 end_seq)4232 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4233 {
4234 	struct tcp_sock *tp = tcp_sk(sk);
4235 
4236 	if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4237 		int mib_idx;
4238 
4239 		if (before(seq, tp->rcv_nxt))
4240 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4241 		else
4242 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4243 
4244 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
4245 
4246 		tp->rx_opt.dsack = 1;
4247 		tp->duplicate_sack[0].start_seq = seq;
4248 		tp->duplicate_sack[0].end_seq = end_seq;
4249 	}
4250 }
4251 
tcp_dsack_extend(struct sock * sk,u32 seq,u32 end_seq)4252 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4253 {
4254 	struct tcp_sock *tp = tcp_sk(sk);
4255 
4256 	if (!tp->rx_opt.dsack)
4257 		tcp_dsack_set(sk, seq, end_seq);
4258 	else
4259 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4260 }
4261 
tcp_send_dupack(struct sock * sk,const struct sk_buff * skb)4262 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4263 {
4264 	struct tcp_sock *tp = tcp_sk(sk);
4265 
4266 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4267 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4268 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4269 		tcp_enter_quickack_mode(sk);
4270 
4271 		if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4272 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4273 
4274 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4275 				end_seq = tp->rcv_nxt;
4276 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4277 		}
4278 	}
4279 
4280 	tcp_send_ack(sk);
4281 }
4282 
4283 /* These routines update the SACK block as out-of-order packets arrive or
4284  * in-order packets close up the sequence space.
4285  */
tcp_sack_maybe_coalesce(struct tcp_sock * tp)4286 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4287 {
4288 	int this_sack;
4289 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4290 	struct tcp_sack_block *swalk = sp + 1;
4291 
4292 	/* See if the recent change to the first SACK eats into
4293 	 * or hits the sequence space of other SACK blocks, if so coalesce.
4294 	 */
4295 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4296 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4297 			int i;
4298 
4299 			/* Zap SWALK, by moving every further SACK up by one slot.
4300 			 * Decrease num_sacks.
4301 			 */
4302 			tp->rx_opt.num_sacks--;
4303 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4304 				sp[i] = sp[i + 1];
4305 			continue;
4306 		}
4307 		this_sack++, swalk++;
4308 	}
4309 }
4310 
tcp_sack_new_ofo_skb(struct sock * sk,u32 seq,u32 end_seq)4311 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4312 {
4313 	struct tcp_sock *tp = tcp_sk(sk);
4314 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4315 	int cur_sacks = tp->rx_opt.num_sacks;
4316 	int this_sack;
4317 
4318 	if (!cur_sacks)
4319 		goto new_sack;
4320 
4321 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4322 		if (tcp_sack_extend(sp, seq, end_seq)) {
4323 			/* Rotate this_sack to the first one. */
4324 			for (; this_sack > 0; this_sack--, sp--)
4325 				swap(*sp, *(sp - 1));
4326 			if (cur_sacks > 1)
4327 				tcp_sack_maybe_coalesce(tp);
4328 			return;
4329 		}
4330 	}
4331 
4332 	/* Could not find an adjacent existing SACK, build a new one,
4333 	 * put it at the front, and shift everyone else down.  We
4334 	 * always know there is at least one SACK present already here.
4335 	 *
4336 	 * If the sack array is full, forget about the last one.
4337 	 */
4338 	if (this_sack >= TCP_NUM_SACKS) {
4339 		this_sack--;
4340 		tp->rx_opt.num_sacks--;
4341 		sp--;
4342 	}
4343 	for (; this_sack > 0; this_sack--, sp--)
4344 		*sp = *(sp - 1);
4345 
4346 new_sack:
4347 	/* Build the new head SACK, and we're done. */
4348 	sp->start_seq = seq;
4349 	sp->end_seq = end_seq;
4350 	tp->rx_opt.num_sacks++;
4351 }
4352 
4353 /* RCV.NXT advances, some SACKs should be eaten. */
4354 
tcp_sack_remove(struct tcp_sock * tp)4355 static void tcp_sack_remove(struct tcp_sock *tp)
4356 {
4357 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4358 	int num_sacks = tp->rx_opt.num_sacks;
4359 	int this_sack;
4360 
4361 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4362 	if (skb_queue_empty(&tp->out_of_order_queue)) {
4363 		tp->rx_opt.num_sacks = 0;
4364 		return;
4365 	}
4366 
4367 	for (this_sack = 0; this_sack < num_sacks;) {
4368 		/* Check if the start of the sack is covered by RCV.NXT. */
4369 		if (!before(tp->rcv_nxt, sp->start_seq)) {
4370 			int i;
4371 
4372 			/* RCV.NXT must cover all the block! */
4373 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4374 
4375 			/* Zap this SACK, by moving forward any other SACKS. */
4376 			for (i=this_sack+1; i < num_sacks; i++)
4377 				tp->selective_acks[i-1] = tp->selective_acks[i];
4378 			num_sacks--;
4379 			continue;
4380 		}
4381 		this_sack++;
4382 		sp++;
4383 	}
4384 	tp->rx_opt.num_sacks = num_sacks;
4385 }
4386 
4387 /* This one checks to see if we can put data from the
4388  * out_of_order queue into the receive_queue.
4389  */
tcp_ofo_queue(struct sock * sk)4390 static void tcp_ofo_queue(struct sock *sk)
4391 {
4392 	struct tcp_sock *tp = tcp_sk(sk);
4393 	__u32 dsack_high = tp->rcv_nxt;
4394 	struct sk_buff *skb;
4395 
4396 	while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4397 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4398 			break;
4399 
4400 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4401 			__u32 dsack = dsack_high;
4402 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4403 				dsack_high = TCP_SKB_CB(skb)->end_seq;
4404 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4405 		}
4406 
4407 		if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4408 			SOCK_DEBUG(sk, "ofo packet was already received\n");
4409 			__skb_unlink(skb, &tp->out_of_order_queue);
4410 			__kfree_skb(skb);
4411 			continue;
4412 		}
4413 		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4414 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4415 			   TCP_SKB_CB(skb)->end_seq);
4416 
4417 		__skb_unlink(skb, &tp->out_of_order_queue);
4418 		__skb_queue_tail(&sk->sk_receive_queue, skb);
4419 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4420 		if (tcp_hdr(skb)->fin)
4421 			tcp_fin(sk);
4422 	}
4423 }
4424 
4425 static int tcp_prune_ofo_queue(struct sock *sk);
4426 static int tcp_prune_queue(struct sock *sk);
4427 
tcp_try_rmem_schedule(struct sock * sk,unsigned int size)4428 static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
4429 {
4430 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4431 	    !sk_rmem_schedule(sk, size)) {
4432 
4433 		if (tcp_prune_queue(sk) < 0)
4434 			return -1;
4435 
4436 		if (!sk_rmem_schedule(sk, size)) {
4437 			if (!tcp_prune_ofo_queue(sk))
4438 				return -1;
4439 
4440 			if (!sk_rmem_schedule(sk, size))
4441 				return -1;
4442 		}
4443 	}
4444 	return 0;
4445 }
4446 
tcp_data_queue(struct sock * sk,struct sk_buff * skb)4447 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4448 {
4449 	const struct tcphdr *th = tcp_hdr(skb);
4450 	struct tcp_sock *tp = tcp_sk(sk);
4451 	int eaten = -1;
4452 
4453 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4454 		goto drop;
4455 
4456 	skb_dst_drop(skb);
4457 	__skb_pull(skb, th->doff * 4);
4458 
4459 	TCP_ECN_accept_cwr(tp, skb);
4460 
4461 	tp->rx_opt.dsack = 0;
4462 
4463 	/*  Queue data for delivery to the user.
4464 	 *  Packets in sequence go to the receive queue.
4465 	 *  Out of sequence packets to the out_of_order_queue.
4466 	 */
4467 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4468 		if (tcp_receive_window(tp) == 0)
4469 			goto out_of_window;
4470 
4471 		/* Ok. In sequence. In window. */
4472 		if (tp->ucopy.task == current &&
4473 		    tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4474 		    sock_owned_by_user(sk) && !tp->urg_data) {
4475 			int chunk = min_t(unsigned int, skb->len,
4476 					  tp->ucopy.len);
4477 
4478 			__set_current_state(TASK_RUNNING);
4479 
4480 			local_bh_enable();
4481 			if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4482 				tp->ucopy.len -= chunk;
4483 				tp->copied_seq += chunk;
4484 				eaten = (chunk == skb->len);
4485 				tcp_rcv_space_adjust(sk);
4486 			}
4487 			local_bh_disable();
4488 		}
4489 
4490 		if (eaten <= 0) {
4491 queue_and_out:
4492 			if (eaten < 0 &&
4493 			    tcp_try_rmem_schedule(sk, skb->truesize))
4494 				goto drop;
4495 
4496 			skb_set_owner_r(skb, sk);
4497 			__skb_queue_tail(&sk->sk_receive_queue, skb);
4498 		}
4499 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4500 		if (skb->len)
4501 			tcp_event_data_recv(sk, skb);
4502 		if (th->fin)
4503 			tcp_fin(sk);
4504 
4505 		if (!skb_queue_empty(&tp->out_of_order_queue)) {
4506 			tcp_ofo_queue(sk);
4507 
4508 			/* RFC2581. 4.2. SHOULD send immediate ACK, when
4509 			 * gap in queue is filled.
4510 			 */
4511 			if (skb_queue_empty(&tp->out_of_order_queue))
4512 				inet_csk(sk)->icsk_ack.pingpong = 0;
4513 		}
4514 
4515 		if (tp->rx_opt.num_sacks)
4516 			tcp_sack_remove(tp);
4517 
4518 		tcp_fast_path_check(sk);
4519 
4520 		if (eaten > 0)
4521 			__kfree_skb(skb);
4522 		else if (!sock_flag(sk, SOCK_DEAD))
4523 			sk->sk_data_ready(sk, 0);
4524 		return;
4525 	}
4526 
4527 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4528 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
4529 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4530 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4531 
4532 out_of_window:
4533 		tcp_enter_quickack_mode(sk);
4534 		inet_csk_schedule_ack(sk);
4535 drop:
4536 		__kfree_skb(skb);
4537 		return;
4538 	}
4539 
4540 	/* Out of window. F.e. zero window probe. */
4541 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4542 		goto out_of_window;
4543 
4544 	tcp_enter_quickack_mode(sk);
4545 
4546 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4547 		/* Partial packet, seq < rcv_next < end_seq */
4548 		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4549 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4550 			   TCP_SKB_CB(skb)->end_seq);
4551 
4552 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4553 
4554 		/* If window is closed, drop tail of packet. But after
4555 		 * remembering D-SACK for its head made in previous line.
4556 		 */
4557 		if (!tcp_receive_window(tp))
4558 			goto out_of_window;
4559 		goto queue_and_out;
4560 	}
4561 
4562 	TCP_ECN_check_ce(tp, skb);
4563 
4564 	if (tcp_try_rmem_schedule(sk, skb->truesize))
4565 		goto drop;
4566 
4567 	/* Disable header prediction. */
4568 	tp->pred_flags = 0;
4569 	inet_csk_schedule_ack(sk);
4570 
4571 	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4572 		   tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4573 
4574 	skb_set_owner_r(skb, sk);
4575 
4576 	if (!skb_peek(&tp->out_of_order_queue)) {
4577 		/* Initial out of order segment, build 1 SACK. */
4578 		if (tcp_is_sack(tp)) {
4579 			tp->rx_opt.num_sacks = 1;
4580 			tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4581 			tp->selective_acks[0].end_seq =
4582 						TCP_SKB_CB(skb)->end_seq;
4583 		}
4584 		__skb_queue_head(&tp->out_of_order_queue, skb);
4585 	} else {
4586 		struct sk_buff *skb1 = skb_peek_tail(&tp->out_of_order_queue);
4587 		u32 seq = TCP_SKB_CB(skb)->seq;
4588 		u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4589 
4590 		if (seq == TCP_SKB_CB(skb1)->end_seq) {
4591 			__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4592 
4593 			if (!tp->rx_opt.num_sacks ||
4594 			    tp->selective_acks[0].end_seq != seq)
4595 				goto add_sack;
4596 
4597 			/* Common case: data arrive in order after hole. */
4598 			tp->selective_acks[0].end_seq = end_seq;
4599 			return;
4600 		}
4601 
4602 		/* Find place to insert this segment. */
4603 		while (1) {
4604 			if (!after(TCP_SKB_CB(skb1)->seq, seq))
4605 				break;
4606 			if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4607 				skb1 = NULL;
4608 				break;
4609 			}
4610 			skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4611 		}
4612 
4613 		/* Do skb overlap to previous one? */
4614 		if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4615 			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4616 				/* All the bits are present. Drop. */
4617 				__kfree_skb(skb);
4618 				tcp_dsack_set(sk, seq, end_seq);
4619 				goto add_sack;
4620 			}
4621 			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4622 				/* Partial overlap. */
4623 				tcp_dsack_set(sk, seq,
4624 					      TCP_SKB_CB(skb1)->end_seq);
4625 			} else {
4626 				if (skb_queue_is_first(&tp->out_of_order_queue,
4627 						       skb1))
4628 					skb1 = NULL;
4629 				else
4630 					skb1 = skb_queue_prev(
4631 						&tp->out_of_order_queue,
4632 						skb1);
4633 			}
4634 		}
4635 		if (!skb1)
4636 			__skb_queue_head(&tp->out_of_order_queue, skb);
4637 		else
4638 			__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4639 
4640 		/* And clean segments covered by new one as whole. */
4641 		while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4642 			skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4643 
4644 			if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4645 				break;
4646 			if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4647 				tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4648 						 end_seq);
4649 				break;
4650 			}
4651 			__skb_unlink(skb1, &tp->out_of_order_queue);
4652 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4653 					 TCP_SKB_CB(skb1)->end_seq);
4654 			__kfree_skb(skb1);
4655 		}
4656 
4657 add_sack:
4658 		if (tcp_is_sack(tp))
4659 			tcp_sack_new_ofo_skb(sk, seq, end_seq);
4660 	}
4661 }
4662 
tcp_collapse_one(struct sock * sk,struct sk_buff * skb,struct sk_buff_head * list)4663 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4664 					struct sk_buff_head *list)
4665 {
4666 	struct sk_buff *next = NULL;
4667 
4668 	if (!skb_queue_is_last(list, skb))
4669 		next = skb_queue_next(list, skb);
4670 
4671 	__skb_unlink(skb, list);
4672 	__kfree_skb(skb);
4673 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4674 
4675 	return next;
4676 }
4677 
4678 /* Collapse contiguous sequence of skbs head..tail with
4679  * sequence numbers start..end.
4680  *
4681  * If tail is NULL, this means until the end of the list.
4682  *
4683  * Segments with FIN/SYN are not collapsed (only because this
4684  * simplifies code)
4685  */
4686 static void
tcp_collapse(struct sock * sk,struct sk_buff_head * list,struct sk_buff * head,struct sk_buff * tail,u32 start,u32 end)4687 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4688 	     struct sk_buff *head, struct sk_buff *tail,
4689 	     u32 start, u32 end)
4690 {
4691 	struct sk_buff *skb, *n;
4692 	bool end_of_skbs;
4693 
4694 	/* First, check that queue is collapsible and find
4695 	 * the point where collapsing can be useful. */
4696 	skb = head;
4697 restart:
4698 	end_of_skbs = true;
4699 	skb_queue_walk_from_safe(list, skb, n) {
4700 		if (skb == tail)
4701 			break;
4702 		/* No new bits? It is possible on ofo queue. */
4703 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4704 			skb = tcp_collapse_one(sk, skb, list);
4705 			if (!skb)
4706 				break;
4707 			goto restart;
4708 		}
4709 
4710 		/* The first skb to collapse is:
4711 		 * - not SYN/FIN and
4712 		 * - bloated or contains data before "start" or
4713 		 *   overlaps to the next one.
4714 		 */
4715 		if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4716 		    (tcp_win_from_space(skb->truesize) > skb->len ||
4717 		     before(TCP_SKB_CB(skb)->seq, start))) {
4718 			end_of_skbs = false;
4719 			break;
4720 		}
4721 
4722 		if (!skb_queue_is_last(list, skb)) {
4723 			struct sk_buff *next = skb_queue_next(list, skb);
4724 			if (next != tail &&
4725 			    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4726 				end_of_skbs = false;
4727 				break;
4728 			}
4729 		}
4730 
4731 		/* Decided to skip this, advance start seq. */
4732 		start = TCP_SKB_CB(skb)->end_seq;
4733 	}
4734 	if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4735 		return;
4736 
4737 	while (before(start, end)) {
4738 		struct sk_buff *nskb;
4739 		unsigned int header = skb_headroom(skb);
4740 		int copy = SKB_MAX_ORDER(header, 0);
4741 
4742 		/* Too big header? This can happen with IPv6. */
4743 		if (copy < 0)
4744 			return;
4745 		if (end - start < copy)
4746 			copy = end - start;
4747 		nskb = alloc_skb(copy + header, GFP_ATOMIC);
4748 		if (!nskb)
4749 			return;
4750 
4751 		skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4752 		skb_set_network_header(nskb, (skb_network_header(skb) -
4753 					      skb->head));
4754 		skb_set_transport_header(nskb, (skb_transport_header(skb) -
4755 						skb->head));
4756 		skb_reserve(nskb, header);
4757 		memcpy(nskb->head, skb->head, header);
4758 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4759 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4760 		__skb_queue_before(list, skb, nskb);
4761 		skb_set_owner_r(nskb, sk);
4762 
4763 		/* Copy data, releasing collapsed skbs. */
4764 		while (copy > 0) {
4765 			int offset = start - TCP_SKB_CB(skb)->seq;
4766 			int size = TCP_SKB_CB(skb)->end_seq - start;
4767 
4768 			BUG_ON(offset < 0);
4769 			if (size > 0) {
4770 				size = min(copy, size);
4771 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4772 					BUG();
4773 				TCP_SKB_CB(nskb)->end_seq += size;
4774 				copy -= size;
4775 				start += size;
4776 			}
4777 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4778 				skb = tcp_collapse_one(sk, skb, list);
4779 				if (!skb ||
4780 				    skb == tail ||
4781 				    tcp_hdr(skb)->syn ||
4782 				    tcp_hdr(skb)->fin)
4783 					return;
4784 			}
4785 		}
4786 	}
4787 }
4788 
4789 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4790  * and tcp_collapse() them until all the queue is collapsed.
4791  */
tcp_collapse_ofo_queue(struct sock * sk)4792 static void tcp_collapse_ofo_queue(struct sock *sk)
4793 {
4794 	struct tcp_sock *tp = tcp_sk(sk);
4795 	struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4796 	struct sk_buff *head;
4797 	u32 start, end;
4798 
4799 	if (skb == NULL)
4800 		return;
4801 
4802 	start = TCP_SKB_CB(skb)->seq;
4803 	end = TCP_SKB_CB(skb)->end_seq;
4804 	head = skb;
4805 
4806 	for (;;) {
4807 		struct sk_buff *next = NULL;
4808 
4809 		if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4810 			next = skb_queue_next(&tp->out_of_order_queue, skb);
4811 		skb = next;
4812 
4813 		/* Segment is terminated when we see gap or when
4814 		 * we are at the end of all the queue. */
4815 		if (!skb ||
4816 		    after(TCP_SKB_CB(skb)->seq, end) ||
4817 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
4818 			tcp_collapse(sk, &tp->out_of_order_queue,
4819 				     head, skb, start, end);
4820 			head = skb;
4821 			if (!skb)
4822 				break;
4823 			/* Start new segment */
4824 			start = TCP_SKB_CB(skb)->seq;
4825 			end = TCP_SKB_CB(skb)->end_seq;
4826 		} else {
4827 			if (before(TCP_SKB_CB(skb)->seq, start))
4828 				start = TCP_SKB_CB(skb)->seq;
4829 			if (after(TCP_SKB_CB(skb)->end_seq, end))
4830 				end = TCP_SKB_CB(skb)->end_seq;
4831 		}
4832 	}
4833 }
4834 
4835 /*
4836  * Purge the out-of-order queue.
4837  * Return true if queue was pruned.
4838  */
tcp_prune_ofo_queue(struct sock * sk)4839 static int tcp_prune_ofo_queue(struct sock *sk)
4840 {
4841 	struct tcp_sock *tp = tcp_sk(sk);
4842 	int res = 0;
4843 
4844 	if (!skb_queue_empty(&tp->out_of_order_queue)) {
4845 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4846 		__skb_queue_purge(&tp->out_of_order_queue);
4847 
4848 		/* Reset SACK state.  A conforming SACK implementation will
4849 		 * do the same at a timeout based retransmit.  When a connection
4850 		 * is in a sad state like this, we care only about integrity
4851 		 * of the connection not performance.
4852 		 */
4853 		if (tp->rx_opt.sack_ok)
4854 			tcp_sack_reset(&tp->rx_opt);
4855 		sk_mem_reclaim(sk);
4856 		res = 1;
4857 	}
4858 	return res;
4859 }
4860 
4861 /* Reduce allocated memory if we can, trying to get
4862  * the socket within its memory limits again.
4863  *
4864  * Return less than zero if we should start dropping frames
4865  * until the socket owning process reads some of the data
4866  * to stabilize the situation.
4867  */
tcp_prune_queue(struct sock * sk)4868 static int tcp_prune_queue(struct sock *sk)
4869 {
4870 	struct tcp_sock *tp = tcp_sk(sk);
4871 
4872 	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4873 
4874 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4875 
4876 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4877 		tcp_clamp_window(sk);
4878 	else if (sk_under_memory_pressure(sk))
4879 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4880 
4881 	tcp_collapse_ofo_queue(sk);
4882 	if (!skb_queue_empty(&sk->sk_receive_queue))
4883 		tcp_collapse(sk, &sk->sk_receive_queue,
4884 			     skb_peek(&sk->sk_receive_queue),
4885 			     NULL,
4886 			     tp->copied_seq, tp->rcv_nxt);
4887 	sk_mem_reclaim(sk);
4888 
4889 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4890 		return 0;
4891 
4892 	/* Collapsing did not help, destructive actions follow.
4893 	 * This must not ever occur. */
4894 
4895 	tcp_prune_ofo_queue(sk);
4896 
4897 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4898 		return 0;
4899 
4900 	/* If we are really being abused, tell the caller to silently
4901 	 * drop receive data on the floor.  It will get retransmitted
4902 	 * and hopefully then we'll have sufficient space.
4903 	 */
4904 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4905 
4906 	/* Massive buffer overcommit. */
4907 	tp->pred_flags = 0;
4908 	return -1;
4909 }
4910 
4911 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4912  * As additional protections, we do not touch cwnd in retransmission phases,
4913  * and if application hit its sndbuf limit recently.
4914  */
tcp_cwnd_application_limited(struct sock * sk)4915 void tcp_cwnd_application_limited(struct sock *sk)
4916 {
4917 	struct tcp_sock *tp = tcp_sk(sk);
4918 
4919 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4920 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4921 		/* Limited by application or receiver window. */
4922 		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4923 		u32 win_used = max(tp->snd_cwnd_used, init_win);
4924 		if (win_used < tp->snd_cwnd) {
4925 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
4926 			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4927 		}
4928 		tp->snd_cwnd_used = 0;
4929 	}
4930 	tp->snd_cwnd_stamp = tcp_time_stamp;
4931 }
4932 
tcp_should_expand_sndbuf(const struct sock * sk)4933 static int tcp_should_expand_sndbuf(const struct sock *sk)
4934 {
4935 	const struct tcp_sock *tp = tcp_sk(sk);
4936 
4937 	/* If the user specified a specific send buffer setting, do
4938 	 * not modify it.
4939 	 */
4940 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4941 		return 0;
4942 
4943 	/* If we are under global TCP memory pressure, do not expand.  */
4944 	if (sk_under_memory_pressure(sk))
4945 		return 0;
4946 
4947 	/* If we are under soft global TCP memory pressure, do not expand.  */
4948 	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
4949 		return 0;
4950 
4951 	/* If we filled the congestion window, do not expand.  */
4952 	if (tp->packets_out >= tp->snd_cwnd)
4953 		return 0;
4954 
4955 	return 1;
4956 }
4957 
4958 /* When incoming ACK allowed to free some skb from write_queue,
4959  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4960  * on the exit from tcp input handler.
4961  *
4962  * PROBLEM: sndbuf expansion does not work well with largesend.
4963  */
tcp_new_space(struct sock * sk)4964 static void tcp_new_space(struct sock *sk)
4965 {
4966 	struct tcp_sock *tp = tcp_sk(sk);
4967 
4968 	if (tcp_should_expand_sndbuf(sk)) {
4969 		int sndmem = SKB_TRUESIZE(max_t(u32,
4970 						tp->rx_opt.mss_clamp,
4971 						tp->mss_cache) +
4972 					  MAX_TCP_HEADER);
4973 		int demanded = max_t(unsigned int, tp->snd_cwnd,
4974 				     tp->reordering + 1);
4975 		sndmem *= 2 * demanded;
4976 		if (sndmem > sk->sk_sndbuf)
4977 			sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4978 		tp->snd_cwnd_stamp = tcp_time_stamp;
4979 	}
4980 
4981 	sk->sk_write_space(sk);
4982 }
4983 
tcp_check_space(struct sock * sk)4984 static void tcp_check_space(struct sock *sk)
4985 {
4986 	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4987 		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4988 		if (sk->sk_socket &&
4989 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4990 			tcp_new_space(sk);
4991 	}
4992 }
4993 
tcp_data_snd_check(struct sock * sk)4994 static inline void tcp_data_snd_check(struct sock *sk)
4995 {
4996 	tcp_push_pending_frames(sk);
4997 	tcp_check_space(sk);
4998 }
4999 
5000 /*
5001  * Check if sending an ack is needed.
5002  */
__tcp_ack_snd_check(struct sock * sk,int ofo_possible)5003 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5004 {
5005 	struct tcp_sock *tp = tcp_sk(sk);
5006 
5007 	    /* More than one full frame received... */
5008 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5009 	     /* ... and right edge of window advances far enough.
5010 	      * (tcp_recvmsg() will send ACK otherwise). Or...
5011 	      */
5012 	     __tcp_select_window(sk) >= tp->rcv_wnd) ||
5013 	    /* We ACK each frame or... */
5014 	    tcp_in_quickack_mode(sk) ||
5015 	    /* We have out of order data. */
5016 	    (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
5017 		/* Then ack it now */
5018 		tcp_send_ack(sk);
5019 	} else {
5020 		/* Else, send delayed ack. */
5021 		tcp_send_delayed_ack(sk);
5022 	}
5023 }
5024 
tcp_ack_snd_check(struct sock * sk)5025 static inline void tcp_ack_snd_check(struct sock *sk)
5026 {
5027 	if (!inet_csk_ack_scheduled(sk)) {
5028 		/* We sent a data segment already. */
5029 		return;
5030 	}
5031 	__tcp_ack_snd_check(sk, 1);
5032 }
5033 
5034 /*
5035  *	This routine is only called when we have urgent data
5036  *	signaled. Its the 'slow' part of tcp_urg. It could be
5037  *	moved inline now as tcp_urg is only called from one
5038  *	place. We handle URGent data wrong. We have to - as
5039  *	BSD still doesn't use the correction from RFC961.
5040  *	For 1003.1g we should support a new option TCP_STDURG to permit
5041  *	either form (or just set the sysctl tcp_stdurg).
5042  */
5043 
tcp_check_urg(struct sock * sk,const struct tcphdr * th)5044 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5045 {
5046 	struct tcp_sock *tp = tcp_sk(sk);
5047 	u32 ptr = ntohs(th->urg_ptr);
5048 
5049 	if (ptr && !sysctl_tcp_stdurg)
5050 		ptr--;
5051 	ptr += ntohl(th->seq);
5052 
5053 	/* Ignore urgent data that we've already seen and read. */
5054 	if (after(tp->copied_seq, ptr))
5055 		return;
5056 
5057 	/* Do not replay urg ptr.
5058 	 *
5059 	 * NOTE: interesting situation not covered by specs.
5060 	 * Misbehaving sender may send urg ptr, pointing to segment,
5061 	 * which we already have in ofo queue. We are not able to fetch
5062 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
5063 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
5064 	 * situations. But it is worth to think about possibility of some
5065 	 * DoSes using some hypothetical application level deadlock.
5066 	 */
5067 	if (before(ptr, tp->rcv_nxt))
5068 		return;
5069 
5070 	/* Do we already have a newer (or duplicate) urgent pointer? */
5071 	if (tp->urg_data && !after(ptr, tp->urg_seq))
5072 		return;
5073 
5074 	/* Tell the world about our new urgent pointer. */
5075 	sk_send_sigurg(sk);
5076 
5077 	/* We may be adding urgent data when the last byte read was
5078 	 * urgent. To do this requires some care. We cannot just ignore
5079 	 * tp->copied_seq since we would read the last urgent byte again
5080 	 * as data, nor can we alter copied_seq until this data arrives
5081 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5082 	 *
5083 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5084 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5085 	 * and expect that both A and B disappear from stream. This is _wrong_.
5086 	 * Though this happens in BSD with high probability, this is occasional.
5087 	 * Any application relying on this is buggy. Note also, that fix "works"
5088 	 * only in this artificial test. Insert some normal data between A and B and we will
5089 	 * decline of BSD again. Verdict: it is better to remove to trap
5090 	 * buggy users.
5091 	 */
5092 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5093 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5094 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5095 		tp->copied_seq++;
5096 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5097 			__skb_unlink(skb, &sk->sk_receive_queue);
5098 			__kfree_skb(skb);
5099 		}
5100 	}
5101 
5102 	tp->urg_data = TCP_URG_NOTYET;
5103 	tp->urg_seq = ptr;
5104 
5105 	/* Disable header prediction. */
5106 	tp->pred_flags = 0;
5107 }
5108 
5109 /* This is the 'fast' part of urgent handling. */
tcp_urg(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th)5110 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5111 {
5112 	struct tcp_sock *tp = tcp_sk(sk);
5113 
5114 	/* Check if we get a new urgent pointer - normally not. */
5115 	if (th->urg)
5116 		tcp_check_urg(sk, th);
5117 
5118 	/* Do we wait for any urgent data? - normally not... */
5119 	if (tp->urg_data == TCP_URG_NOTYET) {
5120 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5121 			  th->syn;
5122 
5123 		/* Is the urgent pointer pointing into this packet? */
5124 		if (ptr < skb->len) {
5125 			u8 tmp;
5126 			if (skb_copy_bits(skb, ptr, &tmp, 1))
5127 				BUG();
5128 			tp->urg_data = TCP_URG_VALID | tmp;
5129 			if (!sock_flag(sk, SOCK_DEAD))
5130 				sk->sk_data_ready(sk, 0);
5131 		}
5132 	}
5133 }
5134 
tcp_copy_to_iovec(struct sock * sk,struct sk_buff * skb,int hlen)5135 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5136 {
5137 	struct tcp_sock *tp = tcp_sk(sk);
5138 	int chunk = skb->len - hlen;
5139 	int err;
5140 
5141 	local_bh_enable();
5142 	if (skb_csum_unnecessary(skb))
5143 		err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
5144 	else
5145 		err = skb_copy_and_csum_datagram_iovec(skb, hlen,
5146 						       tp->ucopy.iov);
5147 
5148 	if (!err) {
5149 		tp->ucopy.len -= chunk;
5150 		tp->copied_seq += chunk;
5151 		tcp_rcv_space_adjust(sk);
5152 	}
5153 
5154 	local_bh_disable();
5155 	return err;
5156 }
5157 
__tcp_checksum_complete_user(struct sock * sk,struct sk_buff * skb)5158 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
5159 					    struct sk_buff *skb)
5160 {
5161 	__sum16 result;
5162 
5163 	if (sock_owned_by_user(sk)) {
5164 		local_bh_enable();
5165 		result = __tcp_checksum_complete(skb);
5166 		local_bh_disable();
5167 	} else {
5168 		result = __tcp_checksum_complete(skb);
5169 	}
5170 	return result;
5171 }
5172 
tcp_checksum_complete_user(struct sock * sk,struct sk_buff * skb)5173 static inline int tcp_checksum_complete_user(struct sock *sk,
5174 					     struct sk_buff *skb)
5175 {
5176 	return !skb_csum_unnecessary(skb) &&
5177 	       __tcp_checksum_complete_user(sk, skb);
5178 }
5179 
5180 #ifdef CONFIG_NET_DMA
tcp_dma_try_early_copy(struct sock * sk,struct sk_buff * skb,int hlen)5181 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
5182 				  int hlen)
5183 {
5184 	struct tcp_sock *tp = tcp_sk(sk);
5185 	int chunk = skb->len - hlen;
5186 	int dma_cookie;
5187 	int copied_early = 0;
5188 
5189 	if (tp->ucopy.wakeup)
5190 		return 0;
5191 
5192 	if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
5193 		tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
5194 
5195 	if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
5196 
5197 		dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
5198 							 skb, hlen,
5199 							 tp->ucopy.iov, chunk,
5200 							 tp->ucopy.pinned_list);
5201 
5202 		if (dma_cookie < 0)
5203 			goto out;
5204 
5205 		tp->ucopy.dma_cookie = dma_cookie;
5206 		copied_early = 1;
5207 
5208 		tp->ucopy.len -= chunk;
5209 		tp->copied_seq += chunk;
5210 		tcp_rcv_space_adjust(sk);
5211 
5212 		if ((tp->ucopy.len == 0) ||
5213 		    (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
5214 		    (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
5215 			tp->ucopy.wakeup = 1;
5216 			sk->sk_data_ready(sk, 0);
5217 		}
5218 	} else if (chunk > 0) {
5219 		tp->ucopy.wakeup = 1;
5220 		sk->sk_data_ready(sk, 0);
5221 	}
5222 out:
5223 	return copied_early;
5224 }
5225 #endif /* CONFIG_NET_DMA */
5226 
5227 /* Does PAWS and seqno based validation of an incoming segment, flags will
5228  * play significant role here.
5229  */
tcp_validate_incoming(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th,int syn_inerr)5230 static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5231 			      const struct tcphdr *th, int syn_inerr)
5232 {
5233 	const u8 *hash_location;
5234 	struct tcp_sock *tp = tcp_sk(sk);
5235 
5236 	/* RFC1323: H1. Apply PAWS check first. */
5237 	if (tcp_fast_parse_options(skb, th, tp, &hash_location) &&
5238 	    tp->rx_opt.saw_tstamp &&
5239 	    tcp_paws_discard(sk, skb)) {
5240 		if (!th->rst) {
5241 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5242 			tcp_send_dupack(sk, skb);
5243 			goto discard;
5244 		}
5245 		/* Reset is accepted even if it did not pass PAWS. */
5246 	}
5247 
5248 	/* Step 1: check sequence number */
5249 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5250 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5251 		 * (RST) segments are validated by checking their SEQ-fields."
5252 		 * And page 69: "If an incoming segment is not acceptable,
5253 		 * an acknowledgment should be sent in reply (unless the RST
5254 		 * bit is set, if so drop the segment and return)".
5255 		 */
5256 		if (!th->rst)
5257 			tcp_send_dupack(sk, skb);
5258 		goto discard;
5259 	}
5260 
5261 	/* Step 2: check RST bit */
5262 	if (th->rst) {
5263 		tcp_reset(sk);
5264 		goto discard;
5265 	}
5266 
5267 	/* ts_recent update must be made after we are sure that the packet
5268 	 * is in window.
5269 	 */
5270 	tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5271 
5272 	/* step 3: check security and precedence [ignored] */
5273 
5274 	/* step 4: Check for a SYN in window. */
5275 	if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5276 		if (syn_inerr)
5277 			TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5278 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN);
5279 		tcp_reset(sk);
5280 		return -1;
5281 	}
5282 
5283 	return 1;
5284 
5285 discard:
5286 	__kfree_skb(skb);
5287 	return 0;
5288 }
5289 
5290 /*
5291  *	TCP receive function for the ESTABLISHED state.
5292  *
5293  *	It is split into a fast path and a slow path. The fast path is
5294  * 	disabled when:
5295  *	- A zero window was announced from us - zero window probing
5296  *        is only handled properly in the slow path.
5297  *	- Out of order segments arrived.
5298  *	- Urgent data is expected.
5299  *	- There is no buffer space left
5300  *	- Unexpected TCP flags/window values/header lengths are received
5301  *	  (detected by checking the TCP header against pred_flags)
5302  *	- Data is sent in both directions. Fast path only supports pure senders
5303  *	  or pure receivers (this means either the sequence number or the ack
5304  *	  value must stay constant)
5305  *	- Unexpected TCP option.
5306  *
5307  *	When these conditions are not satisfied it drops into a standard
5308  *	receive procedure patterned after RFC793 to handle all cases.
5309  *	The first three cases are guaranteed by proper pred_flags setting,
5310  *	the rest is checked inline. Fast processing is turned on in
5311  *	tcp_data_queue when everything is OK.
5312  */
tcp_rcv_established(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th,unsigned int len)5313 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5314 			const struct tcphdr *th, unsigned int len)
5315 {
5316 	struct tcp_sock *tp = tcp_sk(sk);
5317 	int res;
5318 
5319 	/*
5320 	 *	Header prediction.
5321 	 *	The code loosely follows the one in the famous
5322 	 *	"30 instruction TCP receive" Van Jacobson mail.
5323 	 *
5324 	 *	Van's trick is to deposit buffers into socket queue
5325 	 *	on a device interrupt, to call tcp_recv function
5326 	 *	on the receive process context and checksum and copy
5327 	 *	the buffer to user space. smart...
5328 	 *
5329 	 *	Our current scheme is not silly either but we take the
5330 	 *	extra cost of the net_bh soft interrupt processing...
5331 	 *	We do checksum and copy also but from device to kernel.
5332 	 */
5333 
5334 	tp->rx_opt.saw_tstamp = 0;
5335 
5336 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5337 	 *	if header_prediction is to be made
5338 	 *	'S' will always be tp->tcp_header_len >> 2
5339 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5340 	 *  turn it off	(when there are holes in the receive
5341 	 *	 space for instance)
5342 	 *	PSH flag is ignored.
5343 	 */
5344 
5345 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5346 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5347 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5348 		int tcp_header_len = tp->tcp_header_len;
5349 
5350 		/* Timestamp header prediction: tcp_header_len
5351 		 * is automatically equal to th->doff*4 due to pred_flags
5352 		 * match.
5353 		 */
5354 
5355 		/* Check timestamp */
5356 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5357 			/* No? Slow path! */
5358 			if (!tcp_parse_aligned_timestamp(tp, th))
5359 				goto slow_path;
5360 
5361 			/* If PAWS failed, check it more carefully in slow path */
5362 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5363 				goto slow_path;
5364 
5365 			/* DO NOT update ts_recent here, if checksum fails
5366 			 * and timestamp was corrupted part, it will result
5367 			 * in a hung connection since we will drop all
5368 			 * future packets due to the PAWS test.
5369 			 */
5370 		}
5371 
5372 		if (len <= tcp_header_len) {
5373 			/* Bulk data transfer: sender */
5374 			if (len == tcp_header_len) {
5375 				/* Predicted packet is in window by definition.
5376 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5377 				 * Hence, check seq<=rcv_wup reduces to:
5378 				 */
5379 				if (tcp_header_len ==
5380 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5381 				    tp->rcv_nxt == tp->rcv_wup)
5382 					tcp_store_ts_recent(tp);
5383 
5384 				/* We know that such packets are checksummed
5385 				 * on entry.
5386 				 */
5387 				tcp_ack(sk, skb, 0);
5388 				__kfree_skb(skb);
5389 				tcp_data_snd_check(sk);
5390 				return 0;
5391 			} else { /* Header too small */
5392 				TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5393 				goto discard;
5394 			}
5395 		} else {
5396 			int eaten = 0;
5397 			int copied_early = 0;
5398 
5399 			if (tp->copied_seq == tp->rcv_nxt &&
5400 			    len - tcp_header_len <= tp->ucopy.len) {
5401 #ifdef CONFIG_NET_DMA
5402 				if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5403 					copied_early = 1;
5404 					eaten = 1;
5405 				}
5406 #endif
5407 				if (tp->ucopy.task == current &&
5408 				    sock_owned_by_user(sk) && !copied_early) {
5409 					__set_current_state(TASK_RUNNING);
5410 
5411 					if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5412 						eaten = 1;
5413 				}
5414 				if (eaten) {
5415 					/* Predicted packet is in window by definition.
5416 					 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5417 					 * Hence, check seq<=rcv_wup reduces to:
5418 					 */
5419 					if (tcp_header_len ==
5420 					    (sizeof(struct tcphdr) +
5421 					     TCPOLEN_TSTAMP_ALIGNED) &&
5422 					    tp->rcv_nxt == tp->rcv_wup)
5423 						tcp_store_ts_recent(tp);
5424 
5425 					tcp_rcv_rtt_measure_ts(sk, skb);
5426 
5427 					__skb_pull(skb, tcp_header_len);
5428 					tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5429 					NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5430 				}
5431 				if (copied_early)
5432 					tcp_cleanup_rbuf(sk, skb->len);
5433 			}
5434 			if (!eaten) {
5435 				if (tcp_checksum_complete_user(sk, skb))
5436 					goto csum_error;
5437 
5438 				/* Predicted packet is in window by definition.
5439 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5440 				 * Hence, check seq<=rcv_wup reduces to:
5441 				 */
5442 				if (tcp_header_len ==
5443 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5444 				    tp->rcv_nxt == tp->rcv_wup)
5445 					tcp_store_ts_recent(tp);
5446 
5447 				tcp_rcv_rtt_measure_ts(sk, skb);
5448 
5449 				if ((int)skb->truesize > sk->sk_forward_alloc)
5450 					goto step5;
5451 
5452 				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5453 
5454 				/* Bulk data transfer: receiver */
5455 				__skb_pull(skb, tcp_header_len);
5456 				__skb_queue_tail(&sk->sk_receive_queue, skb);
5457 				skb_set_owner_r(skb, sk);
5458 				tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5459 			}
5460 
5461 			tcp_event_data_recv(sk, skb);
5462 
5463 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5464 				/* Well, only one small jumplet in fast path... */
5465 				tcp_ack(sk, skb, FLAG_DATA);
5466 				tcp_data_snd_check(sk);
5467 				if (!inet_csk_ack_scheduled(sk))
5468 					goto no_ack;
5469 			}
5470 
5471 			if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5472 				__tcp_ack_snd_check(sk, 0);
5473 no_ack:
5474 #ifdef CONFIG_NET_DMA
5475 			if (copied_early)
5476 				__skb_queue_tail(&sk->sk_async_wait_queue, skb);
5477 			else
5478 #endif
5479 			if (eaten)
5480 				__kfree_skb(skb);
5481 			else
5482 				sk->sk_data_ready(sk, 0);
5483 			return 0;
5484 		}
5485 	}
5486 
5487 slow_path:
5488 	if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5489 		goto csum_error;
5490 
5491 	/*
5492 	 *	Standard slow path.
5493 	 */
5494 
5495 	res = tcp_validate_incoming(sk, skb, th, 1);
5496 	if (res <= 0)
5497 		return -res;
5498 
5499 step5:
5500 	if (th->ack && tcp_ack(sk, skb, FLAG_SLOWPATH) < 0)
5501 		goto discard;
5502 
5503 	tcp_rcv_rtt_measure_ts(sk, skb);
5504 
5505 	/* Process urgent data. */
5506 	tcp_urg(sk, skb, th);
5507 
5508 	/* step 7: process the segment text */
5509 	tcp_data_queue(sk, skb);
5510 
5511 	tcp_data_snd_check(sk);
5512 	tcp_ack_snd_check(sk);
5513 	return 0;
5514 
5515 csum_error:
5516 	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5517 
5518 discard:
5519 	__kfree_skb(skb);
5520 	return 0;
5521 }
5522 EXPORT_SYMBOL(tcp_rcv_established);
5523 
tcp_rcv_synsent_state_process(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th,unsigned int len)5524 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5525 					 const struct tcphdr *th, unsigned int len)
5526 {
5527 	const u8 *hash_location;
5528 	struct inet_connection_sock *icsk = inet_csk(sk);
5529 	struct tcp_sock *tp = tcp_sk(sk);
5530 	struct tcp_cookie_values *cvp = tp->cookie_values;
5531 	int saved_clamp = tp->rx_opt.mss_clamp;
5532 
5533 	tcp_parse_options(skb, &tp->rx_opt, &hash_location, 0);
5534 
5535 	if (th->ack) {
5536 		/* rfc793:
5537 		 * "If the state is SYN-SENT then
5538 		 *    first check the ACK bit
5539 		 *      If the ACK bit is set
5540 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5541 		 *        a reset (unless the RST bit is set, if so drop
5542 		 *        the segment and return)"
5543 		 *
5544 		 *  We do not send data with SYN, so that RFC-correct
5545 		 *  test reduces to:
5546 		 */
5547 		if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
5548 			goto reset_and_undo;
5549 
5550 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5551 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5552 			     tcp_time_stamp)) {
5553 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5554 			goto reset_and_undo;
5555 		}
5556 
5557 		/* Now ACK is acceptable.
5558 		 *
5559 		 * "If the RST bit is set
5560 		 *    If the ACK was acceptable then signal the user "error:
5561 		 *    connection reset", drop the segment, enter CLOSED state,
5562 		 *    delete TCB, and return."
5563 		 */
5564 
5565 		if (th->rst) {
5566 			tcp_reset(sk);
5567 			goto discard;
5568 		}
5569 
5570 		/* rfc793:
5571 		 *   "fifth, if neither of the SYN or RST bits is set then
5572 		 *    drop the segment and return."
5573 		 *
5574 		 *    See note below!
5575 		 *                                        --ANK(990513)
5576 		 */
5577 		if (!th->syn)
5578 			goto discard_and_undo;
5579 
5580 		/* rfc793:
5581 		 *   "If the SYN bit is on ...
5582 		 *    are acceptable then ...
5583 		 *    (our SYN has been ACKed), change the connection
5584 		 *    state to ESTABLISHED..."
5585 		 */
5586 
5587 		TCP_ECN_rcv_synack(tp, th);
5588 
5589 		tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5590 		tcp_ack(sk, skb, FLAG_SLOWPATH);
5591 
5592 		/* Ok.. it's good. Set up sequence numbers and
5593 		 * move to established.
5594 		 */
5595 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5596 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5597 
5598 		/* RFC1323: The window in SYN & SYN/ACK segments is
5599 		 * never scaled.
5600 		 */
5601 		tp->snd_wnd = ntohs(th->window);
5602 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5603 
5604 		if (!tp->rx_opt.wscale_ok) {
5605 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5606 			tp->window_clamp = min(tp->window_clamp, 65535U);
5607 		}
5608 
5609 		if (tp->rx_opt.saw_tstamp) {
5610 			tp->rx_opt.tstamp_ok	   = 1;
5611 			tp->tcp_header_len =
5612 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5613 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
5614 			tcp_store_ts_recent(tp);
5615 		} else {
5616 			tp->tcp_header_len = sizeof(struct tcphdr);
5617 		}
5618 
5619 		if (tcp_is_sack(tp) && sysctl_tcp_fack)
5620 			tcp_enable_fack(tp);
5621 
5622 		tcp_mtup_init(sk);
5623 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5624 		tcp_initialize_rcv_mss(sk);
5625 
5626 		/* Remember, tcp_poll() does not lock socket!
5627 		 * Change state from SYN-SENT only after copied_seq
5628 		 * is initialized. */
5629 		tp->copied_seq = tp->rcv_nxt;
5630 
5631 		if (cvp != NULL &&
5632 		    cvp->cookie_pair_size > 0 &&
5633 		    tp->rx_opt.cookie_plus > 0) {
5634 			int cookie_size = tp->rx_opt.cookie_plus
5635 					- TCPOLEN_COOKIE_BASE;
5636 			int cookie_pair_size = cookie_size
5637 					     + cvp->cookie_desired;
5638 
5639 			/* A cookie extension option was sent and returned.
5640 			 * Note that each incoming SYNACK replaces the
5641 			 * Responder cookie.  The initial exchange is most
5642 			 * fragile, as protection against spoofing relies
5643 			 * entirely upon the sequence and timestamp (above).
5644 			 * This replacement strategy allows the correct pair to
5645 			 * pass through, while any others will be filtered via
5646 			 * Responder verification later.
5647 			 */
5648 			if (sizeof(cvp->cookie_pair) >= cookie_pair_size) {
5649 				memcpy(&cvp->cookie_pair[cvp->cookie_desired],
5650 				       hash_location, cookie_size);
5651 				cvp->cookie_pair_size = cookie_pair_size;
5652 			}
5653 		}
5654 
5655 		smp_mb();
5656 		tcp_set_state(sk, TCP_ESTABLISHED);
5657 
5658 		security_inet_conn_established(sk, skb);
5659 
5660 		/* Make sure socket is routed, for correct metrics.  */
5661 		icsk->icsk_af_ops->rebuild_header(sk);
5662 
5663 		tcp_init_metrics(sk);
5664 
5665 		tcp_init_congestion_control(sk);
5666 
5667 		/* Prevent spurious tcp_cwnd_restart() on first data
5668 		 * packet.
5669 		 */
5670 		tp->lsndtime = tcp_time_stamp;
5671 
5672 		tcp_init_buffer_space(sk);
5673 
5674 		if (sock_flag(sk, SOCK_KEEPOPEN))
5675 			inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5676 
5677 		if (!tp->rx_opt.snd_wscale)
5678 			__tcp_fast_path_on(tp, tp->snd_wnd);
5679 		else
5680 			tp->pred_flags = 0;
5681 
5682 		if (!sock_flag(sk, SOCK_DEAD)) {
5683 			sk->sk_state_change(sk);
5684 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5685 		}
5686 
5687 		if (sk->sk_write_pending ||
5688 		    icsk->icsk_accept_queue.rskq_defer_accept ||
5689 		    icsk->icsk_ack.pingpong) {
5690 			/* Save one ACK. Data will be ready after
5691 			 * several ticks, if write_pending is set.
5692 			 *
5693 			 * It may be deleted, but with this feature tcpdumps
5694 			 * look so _wonderfully_ clever, that I was not able
5695 			 * to stand against the temptation 8)     --ANK
5696 			 */
5697 			inet_csk_schedule_ack(sk);
5698 			icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5699 			icsk->icsk_ack.ato	 = TCP_ATO_MIN;
5700 			tcp_incr_quickack(sk);
5701 			tcp_enter_quickack_mode(sk);
5702 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5703 						  TCP_DELACK_MAX, TCP_RTO_MAX);
5704 
5705 discard:
5706 			__kfree_skb(skb);
5707 			return 0;
5708 		} else {
5709 			tcp_send_ack(sk);
5710 		}
5711 		return -1;
5712 	}
5713 
5714 	/* No ACK in the segment */
5715 
5716 	if (th->rst) {
5717 		/* rfc793:
5718 		 * "If the RST bit is set
5719 		 *
5720 		 *      Otherwise (no ACK) drop the segment and return."
5721 		 */
5722 
5723 		goto discard_and_undo;
5724 	}
5725 
5726 	/* PAWS check. */
5727 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5728 	    tcp_paws_reject(&tp->rx_opt, 0))
5729 		goto discard_and_undo;
5730 
5731 	if (th->syn) {
5732 		/* We see SYN without ACK. It is attempt of
5733 		 * simultaneous connect with crossed SYNs.
5734 		 * Particularly, it can be connect to self.
5735 		 */
5736 		tcp_set_state(sk, TCP_SYN_RECV);
5737 
5738 		if (tp->rx_opt.saw_tstamp) {
5739 			tp->rx_opt.tstamp_ok = 1;
5740 			tcp_store_ts_recent(tp);
5741 			tp->tcp_header_len =
5742 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5743 		} else {
5744 			tp->tcp_header_len = sizeof(struct tcphdr);
5745 		}
5746 
5747 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5748 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5749 
5750 		/* RFC1323: The window in SYN & SYN/ACK segments is
5751 		 * never scaled.
5752 		 */
5753 		tp->snd_wnd    = ntohs(th->window);
5754 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5755 		tp->max_window = tp->snd_wnd;
5756 
5757 		TCP_ECN_rcv_syn(tp, th);
5758 
5759 		tcp_mtup_init(sk);
5760 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5761 		tcp_initialize_rcv_mss(sk);
5762 
5763 		tcp_send_synack(sk);
5764 #if 0
5765 		/* Note, we could accept data and URG from this segment.
5766 		 * There are no obstacles to make this.
5767 		 *
5768 		 * However, if we ignore data in ACKless segments sometimes,
5769 		 * we have no reasons to accept it sometimes.
5770 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5771 		 * is not flawless. So, discard packet for sanity.
5772 		 * Uncomment this return to process the data.
5773 		 */
5774 		return -1;
5775 #else
5776 		goto discard;
5777 #endif
5778 	}
5779 	/* "fifth, if neither of the SYN or RST bits is set then
5780 	 * drop the segment and return."
5781 	 */
5782 
5783 discard_and_undo:
5784 	tcp_clear_options(&tp->rx_opt);
5785 	tp->rx_opt.mss_clamp = saved_clamp;
5786 	goto discard;
5787 
5788 reset_and_undo:
5789 	tcp_clear_options(&tp->rx_opt);
5790 	tp->rx_opt.mss_clamp = saved_clamp;
5791 	return 1;
5792 }
5793 
5794 /*
5795  *	This function implements the receiving procedure of RFC 793 for
5796  *	all states except ESTABLISHED and TIME_WAIT.
5797  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5798  *	address independent.
5799  */
5800 
tcp_rcv_state_process(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th,unsigned int len)5801 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5802 			  const struct tcphdr *th, unsigned int len)
5803 {
5804 	struct tcp_sock *tp = tcp_sk(sk);
5805 	struct inet_connection_sock *icsk = inet_csk(sk);
5806 	int queued = 0;
5807 	int res;
5808 
5809 	tp->rx_opt.saw_tstamp = 0;
5810 
5811 	switch (sk->sk_state) {
5812 	case TCP_CLOSE:
5813 		goto discard;
5814 
5815 	case TCP_LISTEN:
5816 		if (th->ack)
5817 			return 1;
5818 
5819 		if (th->rst)
5820 			goto discard;
5821 
5822 		if (th->syn) {
5823 			if (th->fin)
5824 				goto discard;
5825 			if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5826 				return 1;
5827 
5828 			/* Now we have several options: In theory there is
5829 			 * nothing else in the frame. KA9Q has an option to
5830 			 * send data with the syn, BSD accepts data with the
5831 			 * syn up to the [to be] advertised window and
5832 			 * Solaris 2.1 gives you a protocol error. For now
5833 			 * we just ignore it, that fits the spec precisely
5834 			 * and avoids incompatibilities. It would be nice in
5835 			 * future to drop through and process the data.
5836 			 *
5837 			 * Now that TTCP is starting to be used we ought to
5838 			 * queue this data.
5839 			 * But, this leaves one open to an easy denial of
5840 			 * service attack, and SYN cookies can't defend
5841 			 * against this problem. So, we drop the data
5842 			 * in the interest of security over speed unless
5843 			 * it's still in use.
5844 			 */
5845 			kfree_skb(skb);
5846 			return 0;
5847 		}
5848 		goto discard;
5849 
5850 	case TCP_SYN_SENT:
5851 		queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5852 		if (queued >= 0)
5853 			return queued;
5854 
5855 		/* Do step6 onward by hand. */
5856 		tcp_urg(sk, skb, th);
5857 		__kfree_skb(skb);
5858 		tcp_data_snd_check(sk);
5859 		return 0;
5860 	}
5861 
5862 	res = tcp_validate_incoming(sk, skb, th, 0);
5863 	if (res <= 0)
5864 		return -res;
5865 
5866 	/* step 5: check the ACK field */
5867 	if (th->ack) {
5868 		int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH) > 0;
5869 
5870 		switch (sk->sk_state) {
5871 		case TCP_SYN_RECV:
5872 			if (acceptable) {
5873 				tp->copied_seq = tp->rcv_nxt;
5874 				smp_mb();
5875 				tcp_set_state(sk, TCP_ESTABLISHED);
5876 				sk->sk_state_change(sk);
5877 
5878 				/* Note, that this wakeup is only for marginal
5879 				 * crossed SYN case. Passively open sockets
5880 				 * are not waked up, because sk->sk_sleep ==
5881 				 * NULL and sk->sk_socket == NULL.
5882 				 */
5883 				if (sk->sk_socket)
5884 					sk_wake_async(sk,
5885 						      SOCK_WAKE_IO, POLL_OUT);
5886 
5887 				tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5888 				tp->snd_wnd = ntohs(th->window) <<
5889 					      tp->rx_opt.snd_wscale;
5890 				tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5891 
5892 				if (tp->rx_opt.tstamp_ok)
5893 					tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5894 
5895 				/* Make sure socket is routed, for
5896 				 * correct metrics.
5897 				 */
5898 				icsk->icsk_af_ops->rebuild_header(sk);
5899 
5900 				tcp_init_metrics(sk);
5901 
5902 				tcp_init_congestion_control(sk);
5903 
5904 				/* Prevent spurious tcp_cwnd_restart() on
5905 				 * first data packet.
5906 				 */
5907 				tp->lsndtime = tcp_time_stamp;
5908 
5909 				tcp_mtup_init(sk);
5910 				tcp_initialize_rcv_mss(sk);
5911 				tcp_init_buffer_space(sk);
5912 				tcp_fast_path_on(tp);
5913 			} else {
5914 				return 1;
5915 			}
5916 			break;
5917 
5918 		case TCP_FIN_WAIT1:
5919 			if (tp->snd_una == tp->write_seq) {
5920 				tcp_set_state(sk, TCP_FIN_WAIT2);
5921 				sk->sk_shutdown |= SEND_SHUTDOWN;
5922 				dst_confirm(__sk_dst_get(sk));
5923 
5924 				if (!sock_flag(sk, SOCK_DEAD))
5925 					/* Wake up lingering close() */
5926 					sk->sk_state_change(sk);
5927 				else {
5928 					int tmo;
5929 
5930 					if (tp->linger2 < 0 ||
5931 					    (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5932 					     after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5933 						tcp_done(sk);
5934 						NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5935 						return 1;
5936 					}
5937 
5938 					tmo = tcp_fin_time(sk);
5939 					if (tmo > TCP_TIMEWAIT_LEN) {
5940 						inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5941 					} else if (th->fin || sock_owned_by_user(sk)) {
5942 						/* Bad case. We could lose such FIN otherwise.
5943 						 * It is not a big problem, but it looks confusing
5944 						 * and not so rare event. We still can lose it now,
5945 						 * if it spins in bh_lock_sock(), but it is really
5946 						 * marginal case.
5947 						 */
5948 						inet_csk_reset_keepalive_timer(sk, tmo);
5949 					} else {
5950 						tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5951 						goto discard;
5952 					}
5953 				}
5954 			}
5955 			break;
5956 
5957 		case TCP_CLOSING:
5958 			if (tp->snd_una == tp->write_seq) {
5959 				tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5960 				goto discard;
5961 			}
5962 			break;
5963 
5964 		case TCP_LAST_ACK:
5965 			if (tp->snd_una == tp->write_seq) {
5966 				tcp_update_metrics(sk);
5967 				tcp_done(sk);
5968 				goto discard;
5969 			}
5970 			break;
5971 		}
5972 	} else
5973 		goto discard;
5974 
5975 	/* step 6: check the URG bit */
5976 	tcp_urg(sk, skb, th);
5977 
5978 	/* step 7: process the segment text */
5979 	switch (sk->sk_state) {
5980 	case TCP_CLOSE_WAIT:
5981 	case TCP_CLOSING:
5982 	case TCP_LAST_ACK:
5983 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5984 			break;
5985 	case TCP_FIN_WAIT1:
5986 	case TCP_FIN_WAIT2:
5987 		/* RFC 793 says to queue data in these states,
5988 		 * RFC 1122 says we MUST send a reset.
5989 		 * BSD 4.4 also does reset.
5990 		 */
5991 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
5992 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5993 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5994 				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5995 				tcp_reset(sk);
5996 				return 1;
5997 			}
5998 		}
5999 		/* Fall through */
6000 	case TCP_ESTABLISHED:
6001 		tcp_data_queue(sk, skb);
6002 		queued = 1;
6003 		break;
6004 	}
6005 
6006 	/* tcp_data could move socket to TIME-WAIT */
6007 	if (sk->sk_state != TCP_CLOSE) {
6008 		tcp_data_snd_check(sk);
6009 		tcp_ack_snd_check(sk);
6010 	}
6011 
6012 	if (!queued) {
6013 discard:
6014 		__kfree_skb(skb);
6015 	}
6016 	return 0;
6017 }
6018 EXPORT_SYMBOL(tcp_rcv_state_process);
6019